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1. Introduction 
As technology advances, more and more robots will take the place of human work in many fields. We are now 

talking about exploration and intervention robots, military robots, medical, assistant or domestic robots, and an infinite 
number of robotic systems are emerging. These applications require the system to have a high capacity, ease of control, 
processing, and a sophisticated hierarchical structure to achieve its autonomy. This requires modifying our 
conventional design techniques, both at the processing and reasoning levels, control and execution levels, to give robots 
a constantly evolving degree of autonomy. The mobile manipulator includes a robotic manipulator installed on a 
movable platform with wheels. It combines the agile handling ability provided by the operator's arm with the mobility 
offered by the mobile platform, allowing it to perform all tasks primarily related to manipulation [1, 2]. The realization 
of these tasks requires the design of high-performance controllers, allowing them to overcome theoretical and practical 
challenges, which is the focus of the researchers [2-7]. Indeed, the systems are typical examples of under-actuated 
mechanical systems with holonomic and nonholonomic constraints [8]. In general, robot control techniques are 
decoupled into two steps: planning and trajectory tracking. This strategy was developed to reduce the difficulties 
caused by the complexity of the dynamics of complex manipulators [9]. In the paper [10], the authors presented a 
control structure based on a preselected configuration (mobility index) for a nonholonomic platform with wheels. The 
mobile base is controlled in such a way as to place the arm's terminal member in the desired position. Its mobility 
depends on information about the measured joint position of the robotic arm [11]. The same authors reported that 
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regard mobile manipulator systems to be two distinct sub-systems facilitates monitoring and predict issues [12]. 
Moreover, a much better efficient movement control could be obtained through combination of the mobility of the 
mobile base and the arm manipulation. The paper [13] exposes a trajectory planning strategy based on two completely 
independent controllers. One of which controls the mobile base and the other the manipulator. The two controllers 
communicate via an algorithm that ensures cooperative movement between the mobile base and the manipulator's arm. 
More recently, the whole-body control strategy (manipulator arm-mobile platform) has been the subject of several 
publications. Silva and Adorno [14] have developed a control that provides trajectory generation for the effector. The 
input signals for the nonholonomic mobile base and the manipulator's arm are generated using the pseudo-inverse of 
the Jacobian matrix of the whole system. Wang and Yu [15] developed a position controller for simple rigid bodies 
based on feedback linearization and dual quaternion algebra. Kussaba et al. [16] presented a hybrid control structure 
based on unitary double quaternions to develop a control law that guarantees the global asymptotic stability of the 
closed-loop system. The study presented in this paper aims to develop a control approach based on the passivity 
principle to guarantee a certain level of performance and, more precisely, during a trajectory tracking application for a 
mobile manipulator robot in an unknown environment. By exploiting the particularity of the modelling of mobile 
manipulator robots equipped with a nonholonomic mobile base, we have developed a control law that allows us to 
consider the whole system by modifying its dynamics through the introduction of a highly nonlinear regressive matrix 
in order to take in to account several constraints and modelling uncertainties. The Lyapunov theory proves the stability 
of the mobile manipulator robot. Our study is justified by à comparison between two types of control techniques of a 
mobile manipulator for trajectory tracking, namely the proportional-integral-derivative (PID) controller and a passivity-
based control. The rest of this paper is organized as follows. Section two is devoted to describing the mobile 
manipulator system and its dynamic modelling. Section three is devoted to presenting the control approach applied to 
the system. Moreover, we conclude with the presentation of the results of the simulation performed. 

 
2. Description of The Mobile Manipulator Robot 

In this section, an atypical nonholonomic mobile manipulator robot is presented. The system consists of a mobile 
unicycle-type base and a two-degree-of-freedom manipulator mounted on the center of the robot base. The base is a 
platform with two driving wheels mounted on the same axis, as shown in Fig. 1 [17].  

 

 
Fig. 1 - Mobile manipulator 

 
2.1 Dynamic Modelling of the Mobile Manipulator 

The dynamic model is necessary for the simulation; the analysis is of the robot motion and the design of the control 
algorithm varieties. Several formalisms, such as the Euler-Lagrange formalism, the Newton-Euler formalism, and the 
D'Alembert principle, allow the dynamic modeling of the mobile manipulator robot. The latter gives the vector of 
torques. First, the operational coordinates of each joint of the manipulator robot are calculated concerning the fixed 
reference (o,x,y,z ), including the coordinates of the mobile platform. The robot's kinetic and potential energy are 
calculated to calculate/derive the constrained Lagrange equation, which gives the dynamic model of the system.  
The coordinates of the two driving wheels are: 
 

�

𝑥𝑥𝑟𝑟 = 𝑥𝑥 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜃𝜃)
𝑦𝑦𝑟𝑟 = 𝑦𝑦 − 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜃𝜃)
𝑥𝑥𝑙𝑙 = 𝑥𝑥 − 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜃𝜃)
𝑦𝑦𝑙𝑙 = 𝑦𝑦 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜃𝜃)

          (1) 

 
By derivation of equation (1), the corresponding speed for each wheel is as follows: 
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⎩
⎪
⎨

⎪
⎧𝑥̇𝑥𝑟𝑟 = 𝑥̇𝑥 + 𝐷𝐷𝜃̇𝜃𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃)

𝑦̇𝑦𝑟𝑟 = 𝑦̇𝑦 + 𝐷𝐷𝜃̇𝜃𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃)
𝑥̇𝑥𝑙𝑙 = 𝑥̇𝑥 − 𝐷𝐷𝜃̇𝜃𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃)
𝑦̇𝑦𝑙𝑙 = 𝑦̇𝑦 − 𝐷𝐷𝜃̇𝜃𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃)

                            (2) 

 
The coordinates of the first segment: 
 

�
𝑥𝑥1 = 𝑥𝑥
𝑦𝑦1 = 𝑦𝑦
𝑧𝑧1 = 0

                                                                   (3) 

 
The coordinates of the second segment: 
 

�
𝑥𝑥2 = 𝑥𝑥1 − 𝑙𝑙2𝑠𝑠𝑠𝑠𝑠𝑠 (𝜃𝜃2)𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃 + 𝜃𝜃1)
𝑦𝑦2 = 𝑦𝑦1 − 𝑙𝑙2𝑠𝑠𝑠𝑠𝑠𝑠 (𝜃𝜃2)𝑠𝑠𝑠𝑠𝑠𝑠 (𝜃𝜃 + 𝜃𝜃1)

𝑧𝑧2 = 2𝑙𝑙1 − 𝑙𝑙2𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃2)
        (4) 

 
By derivation of (3) and (4), the corresponding velocities for each segment of the manipulator arm are as follows: 
 

⎩
⎪
⎨

⎪
⎧

𝑥̇𝑥1 = 𝑥̇𝑥
𝑦̇𝑦1 = 𝑦̇𝑦

𝑥̇𝑥2 = 𝑥̇𝑥1 − 𝑙𝑙2𝜃̇𝜃2𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃2)𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃 + 𝜃𝜃1) + 𝑙𝑙2 (𝜃̇𝜃 + 𝜃̇𝜃1) 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜃𝜃2)𝑠𝑠𝑠𝑠𝑠𝑠 (𝜃𝜃 + 𝜃𝜃1)
𝑦̇𝑦2 = 𝑦̇𝑦1 − 𝑙𝑙2𝜃̇𝜃2𝑐𝑐𝑐𝑐 𝑠𝑠(𝜃𝜃2) 𝑠𝑠𝑠𝑠 𝑛𝑛(𝜃𝜃 + 𝜃𝜃1) − 𝑙𝑙2 (𝜃̇𝜃 + 𝜃̇𝜃1) 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜃𝜃2)𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃 + 𝜃𝜃1)

𝑧̇𝑧2 = 𝑙𝑙2𝜃̇𝜃2 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃2)

             (5) 

 
The motion of the mobile robot is subject to nonholonomic constraints given by: 
 

𝐴𝐴(𝑞𝑞)𝑞̇𝑞 = 0                                         (6) 
 

With 𝐴𝐴(𝑞𝑞) = [sin (𝜃𝜃) −cos (𝜃𝜃) 0 0 0]and 𝑞𝑞 : the generalized coordinate vector. 
Or S (q) which satisfies: 

 
𝑆𝑆𝑇𝑇(𝑞𝑞)𝐴𝐴𝑇𝑇(𝑞𝑞) = 0                                                                               (7) 

 

𝑆𝑆(𝑞𝑞) =

⎣
⎢
⎢
⎢
⎢
⎡

𝑟𝑟
2

cos (𝜃𝜃) 𝑟𝑟
2

𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃) 0 0
𝑟𝑟
2

𝑠𝑠𝑠𝑠𝑠𝑠 (𝜃𝜃) 𝑟𝑟
2

𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃) 0 0
𝑟𝑟

2𝐷𝐷
0
0

−𝑟𝑟
2𝐷𝐷
0
0

0 0
1 0
0 1⎦

⎥
⎥
⎥
⎥
⎤

                                                                                   (8) 

 

We can find the input velocity vector𝑣𝑣 = �𝜃̇𝜃𝑟𝑟𝜃̇𝜃𝑙𝑙𝜃̇𝜃1𝜃̇𝜃2�
𝑇𝑇

, for all given𝑞̇𝑞 in the following equation: 
 

𝑞̇𝑞 = 𝑆𝑆(𝑞𝑞)𝑣𝑣(𝑡𝑡)                                                                                                                                                   (9) 
 

The total kinetic energy is the sum of the kinetic energies of each subsystem (manipulator arm and the mobile 
platform): 
 

𝐸𝐸𝐶𝐶 = 1
2

𝑚𝑚𝑝𝑝(𝑥̇𝑥2 + 𝑦̇𝑦2) + 1
2

𝐼𝐼𝑝𝑝𝜃̇𝜃2 + 1
2

𝑚𝑚1(𝑥̇𝑥1
2 + 𝑦̇𝑦1

2) + 1
2

𝐼𝐼1𝜃̇𝜃1
2 + 1

2
𝑚𝑚2(𝑥̇𝑥2

2 + 𝑦̇𝑦2
2) + 1

2
𝐼𝐼2(𝜃̇𝜃1

2 + 𝜃̇𝜃2
2)                             (10) 

 
The total potential energy of the system, taking into account that the potential energy of the moving platform is zero, is: 
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𝐸𝐸𝑃𝑃 = 𝑙𝑙1
2

𝑚𝑚1gsin (𝜃𝜃1) + 𝑚𝑚2𝑔𝑔(𝑙𝑙1 + 𝑙𝑙2
2

𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃2))                                                                          (11) 

 
The equation of motion of the mobile manipulator is determined using Lagrange’s method which is based on the 

differentiation of energy terms. Taking into consideration the kinematic constraint of the mobile platform (6), we write; 
 

𝑑𝑑
𝑑𝑑𝑑𝑑

�𝑑𝑑𝑑𝑑
𝑑𝑑𝑞̇𝑞

� − 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜏𝜏 − 𝐴𝐴(𝑞𝑞)𝜆𝜆                                                                                                      (12) 

 
With𝐿𝐿 = 𝐸𝐸𝐶𝐶 − 𝐸𝐸𝑃𝑃, 𝜏𝜏 = [𝜏𝜏𝑟𝑟𝜏𝜏𝑙𝑙𝜏𝜏1𝜏𝜏2]𝑇𝑇  :the torque vector driving the mobile manipulator robot. λ: Lagrange 
multiplier.𝑞𝑞 = [𝜃𝜃𝑟𝑟 , 𝜃𝜃𝑙𝑙 , 𝜃𝜃1, 𝜃𝜃2] : Generalized coordinate vector. 
The equation of motion of the moving manipulator obtained by the Lagrangian approach as follows: 
 

𝑀𝑀(𝑞𝑞)𝑞̈𝑞 + 𝐶𝐶(𝑞𝑞, 𝑞̇𝑞)𝑞̇𝑞 + 𝐺𝐺(𝑞𝑞) = 𝑄𝑄                                                                                             (13) 
 
Where 𝑄𝑄 = 𝐵𝐵𝐵𝐵 − 𝐴𝐴𝑇𝑇(𝑞𝑞)𝜆𝜆 
M (q)𝜖𝜖𝑅𝑅4𝑥𝑥4 : Inertia matrix, C (q,𝑞̇𝑞)𝜖𝜖𝑅𝑅4𝑥𝑥4 : Centrifugal and Coriolis force matrix, G (q) 𝜖𝜖𝑅𝑅1𝑥𝑥4   : The vector of 
gravitational forces, Q𝜖𝜖𝑅𝑅1𝑥𝑥4the vector of applied torques and B =𝐼𝐼4𝑥𝑥4is the input matrix. 
 
3. Control Design 

The time-varying path follows the given control problem and its successive derivatives or describes the desired 
velocity and acceleration, respectively. To achieve good performance, significant efforts have been devoted to the 
development of model-based control strategies [23]. Among the control approaches developed, we cite, typical methods 
include the inverse dynamic control, the feedback linearization technique, and the passivity-based control method. 
 
3.1 Linear Control 

The PID control consists of three basic actions, namely, proportional, integral and derivative, which represent the 
current, past and expected future error that covers the whole-time history, the error signal. The appropriate gains 
are: 𝑘𝑘𝑝𝑝,𝑘𝑘𝑖𝑖  and 𝑘𝑘𝑑𝑑 . By adjusting these parameters, the system performance and stability (13) can be achieved. The PID 
controller is given by the continuous time expression: 
 

𝑄𝑄 = 𝑘𝑘𝑝𝑝𝑒𝑒𝑞𝑞 + 𝑘𝑘𝑖𝑖 ∫ 𝑒𝑒𝑞𝑞𝑑𝑑𝑑𝑑 + 𝑘𝑘𝑑𝑑𝑒̇𝑒𝑞𝑞                                                                                                (14) 

 
Where: 𝑒𝑒𝑞𝑞 = 𝑞𝑞𝑑𝑑 − 𝑞𝑞, e(t), or 𝑒𝑒𝑞𝑞(𝑡𝑡): the position error in radians. 
𝑞𝑞𝑑𝑑: The desired position vector in radian and Q the vector of applied torques. 
 
3.2 Passivity-Based Motion Control 

While the PID controller is suitable for set point control problems, many tasks require high-precision path 
following capabilities. Examples of such tasks include plasma welding, laser cutting, or high-speed operations in the 
presence of obstacles. In these cases, local models require slow traversal through several intermediate set points, which 
significantly delays task completion. Therefore, to improve the trajectory tracking performance, the controllers must 
consider the dynamic model of the mobile manipulator via a purely adaptive control law. Assuming the mobile 
manipulators movements (13) are already saved devoid of the exterior disruptions and that all the velocities of the robot 
joints are available for feedback, there is room of taking the passivity benefit (properties, which follow) of the rigid 
robot to derive a command that present many benefits compared to linearization-based algorithms [18-20]. The 
controller conception planned on the passivity involves two fundamental points. The first point is energy shaping, 
conceived to make the closed loop system match the required energy function. The second point includes the injection 
of a damping term, to ensure the stability of the closed-loop system even in the presence of external disturbances. At 
this phase, the robot system passivity characteristics may be conserved in the closed-circuit system. 

Admitting that the equation (13) of the robot's dynamics is known, the passive-based controller of Slotine [21] may 
be used, where we consider the following dynamic equation: 
 

𝑀𝑀(𝑞𝑞𝑟𝑟)𝑞𝑞𝑟̈𝑟 + 𝐶𝐶(𝑞𝑞𝑟𝑟 , 𝑞𝑞𝑟̇𝑟)𝑞𝑞𝑟̇𝑟 + 𝐺𝐺(𝑞𝑞𝑟𝑟) + 𝑢𝑢 = 𝑄𝑄                                                                             (15) 
 
Considering (7), (8), and replacing (9) and its derivative in (13), the dynamic model can be written as: 
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𝐷𝐷(𝑞𝑞)𝑣̈𝑣 + 𝐹𝐹(𝑞𝑞, 𝑞̇𝑞)𝑣̇𝑣 + 𝑁𝑁(𝑞𝑞) = 𝑆𝑆𝑇𝑇𝐵𝐵𝐵𝐵 + 𝑢𝑢                                                                                 (16) 
 

Where𝐷𝐷(𝑞𝑞) = 𝑆𝑆𝑇𝑇𝑀𝑀𝑀𝑀, 𝐹𝐹(𝑞𝑞) = 𝑆𝑆𝑇𝑇(𝑀𝑀𝑆̇𝑆 + 𝐶𝐶𝐶𝐶)and 𝑁𝑁(𝑞𝑞) = 𝑆𝑆𝑇𝑇𝐺𝐺, 𝑄𝑄� = 𝑆𝑆𝑇𝑇𝐵𝐵𝐵𝐵 , Knowing that 𝑆𝑆𝑇𝑇𝐵𝐵 = 𝐼𝐼. 
 

With: 𝑞𝑞𝑟𝑟 = 𝑞𝑞𝑑̇𝑑 − 𝛾𝛾𝑒𝑒𝑞𝑞 , 𝑞𝑞𝑑𝑑 is the desired trajectory of the robot, 𝑒𝑒𝑞𝑞 = 𝑞𝑞 − 𝑞𝑞𝑑𝑑 ,the error vector. 𝛾𝛾𝛾𝛾𝑅𝑅4𝑥𝑥4 A 
diagonal matrix of positive gains; 𝑢𝑢 = − 𝑘𝑘𝑑𝑑1. 𝑠𝑠 represents a new control input. 

Models (13) and (16) have important properties which will be exploited for the calculation of the controller, the 
most relevant of which are recalled below. 
 
Property 1: The matrix D is symmetric positive definite. 
Property 2: The matrix(𝐷̇𝐷 − 2𝐹𝐹), is skew symmetric, i.e. for several vector x, there is: 
 

𝑥𝑥𝑇𝑇(𝐷̇𝐷  −  2𝐹𝐹) 𝑥𝑥 =  0                                                                                                              (17) 
 

Property 3 [22]:  The system (13) is passive of the simulated monitoring feed 𝝉𝝉 to 𝒒̇𝒒 so: 
 

⟨𝒒̇𝒒,   𝝉𝝉⟩ =∫ q̇ T  (s)τ (s)dst
0   ≥ −𝛽𝛽                                                                                                                                                    (18) 

 
With: 𝛽𝛽 = 𝐻𝐻0 (𝒒̇𝒒 (0)) > 0, and 𝐻𝐻0 represents all energy of the open-loop system (13), 
 

𝐻𝐻0(𝑞𝑞) = 1
2

𝑞̇𝑞𝑇𝑇𝑀𝑀𝑞̇𝑞                                                                                                                      (19) 

 
By combining (13) and (16), the dynamic equation error for the closed loop maybe as: 
 

𝐷𝐷𝑠̇𝑠 + (𝐹𝐹 + 𝑘𝑘𝑑𝑑1)𝑠𝑠 = 0                                                                                                                                                            (20) 
 

𝑠𝑠 = 𝑒𝑒𝑞̇𝑞 + 𝛾𝛾𝑒𝑒𝑞𝑞                                                                                                                                 (21) 

 
s: A new variable which is the linear combination of the position error and the speed error. The closed-loop system (20) 
is strict passive from u to s. Thus, the passivity of the robotic system is maintained in the closed- loop structure. Hence 
the minimum energy of the open-loop system (13), so that: (q,𝑞̇𝑞) = (0,0), has been translated to (𝑒𝑒𝑞𝑞 , 𝑒𝑒𝑞̇𝑞) = (0,0) by the 
regulator (16). In fact, the controller (16) reforms the functioning energy (19) of the open-loop system (13) into: 
 

𝐻𝐻1(𝑒𝑒𝑞𝑞, 𝑒𝑒𝑞̇𝑞) = 1
2

𝑠𝑠𝑇𝑇𝑀𝑀𝑀𝑀                                                                                                                                 (22) 

 
The equation (22) is the system's operational energy (20). The phase where the reforming energy is complete. To 

obtain a stable path-following control, we need to add the damping: 
 

𝑢𝑢 =  −𝑘𝑘𝑑𝑑1. 𝑠𝑠                                                                                                                            (23) 
 

Where,𝒌𝒌𝒅𝒅𝒅𝒅∈ R4×4 : diagonal positive definite matrix. 𝒌𝒌𝒅𝒅𝒅𝒅. 𝒔𝒔 : damping injection. It is the idea of energy reforming and 
damping of the control approach based on the passivity principle [21]. 
The Lyapunov candidate function 
 

𝑉𝑉 = 1
2

𝑠𝑠𝑇𝑇𝐷𝐷𝐷𝐷 + 𝑒𝑒𝑞𝑞
𝑇𝑇𝛾𝛾𝑘𝑘𝑑𝑑1𝑒̇𝑒𝑞𝑞                                                                                                 (24) 

 
Its derivative with respect to time along the trajectory (20) is: 
 

𝑉̇𝑉 = 1
2

𝑠𝑠𝑇𝑇𝐷̇𝐷𝑠𝑠 + 𝑠𝑠𝑇𝑇𝐷𝐷𝑠̇𝑠 + 2𝑒𝑒𝑞𝑞
𝑇𝑇𝛾𝛾𝑘𝑘𝑑𝑑1𝑒̇𝑒𝑞𝑞                                                                                             (25) 

 

= 1
2

𝑠𝑠𝑇𝑇𝐷̇𝐷𝑠𝑠 − 𝑠𝑠𝑇𝑇(𝑢𝑢 + 𝐹𝐹𝐹𝐹) + 2𝑒𝑒𝑞𝑞
𝑇𝑇𝛾𝛾𝑘𝑘𝑑𝑑1𝑒̇𝑒𝑞𝑞                                                                                       (26) 

= 1
2

𝑠𝑠𝑇𝑇(𝐷̇𝐷 − 2𝐹𝐹)𝑠𝑠 − 𝑠𝑠𝑇𝑇𝑘𝑘𝑑𝑑1𝑠𝑠 + 2𝑒𝑒𝑞𝑞
𝑇𝑇𝛾𝛾𝑘𝑘𝑑𝑑1𝑒̇𝑒𝑞𝑞                                                                                 (27) 
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Where 𝑠𝑠𝑇𝑇�𝐷̇𝐷 − 2𝐹𝐹�𝑠𝑠 = 0, 
 

𝑉̇𝑉 = −𝑠𝑠𝑇𝑇𝑘𝑘𝑑𝑑1𝑠𝑠 + 2𝑒𝑒𝑞𝑞
𝑇𝑇𝛾𝛾𝑘𝑘𝑑𝑑1𝑒̇𝑒𝑞𝑞                                                                                                      (28) 

 
By properly choosing γ, (24) and (26) establish the closed-loop stability of the system in the Lyapunov sense and 

the boundedness of the state𝑞𝑞𝑟𝑟  and eq. Moreover, from (21) and the boundedness of the error eq, 𝑒̇𝑒q is also bounded. In 
other words what leads to the conclusion that when s → 0 has t → ∞, it ends to e and  𝑒̇𝑒q → 0 when t → ∞. Except, the 
operation of the system can be exposed to external disturbances(𝜏𝜏𝑝𝑝),we introduce adaptive control schemes to reduce 
these effects. Describing their estimates by(𝜏̂𝜏𝑝𝑝), the dynamic equation error for the closed loop (20) becomes: 

 
𝐷𝐷𝑠̇𝑠 + (𝐹𝐹 + 𝑘𝑘𝑑𝑑1)𝑠𝑠 + 𝐵𝐵𝜏̃𝜏𝑝𝑝  = 0                                                                                                     (29) 

 
With 𝜏̃𝜏𝑝𝑝 = 𝜏̂𝜏𝑝𝑝 − 𝜏𝜏𝑝𝑝. 
The disturbance estimation law is of the form: 
 

𝜏̇̂𝜏𝑝𝑝 = 𝛿𝛿−𝑇𝑇𝐵𝐵𝑇𝑇𝑠𝑠                                                                                                                   (30) 
 

To demonstrate closed-loop stability, consider the following Lyapunov function: 
 

𝑉𝑉 = 1
2

𝑠𝑠𝑇𝑇𝐷𝐷𝐷𝐷 + 1
2

𝜏̃𝜏𝑝𝑝
𝑇𝑇𝛿𝛿𝜏̃𝜏𝑝𝑝 + 𝑒𝑒𝑞𝑞

𝑇𝑇𝛾𝛾𝑘𝑘𝑑𝑑1𝑒̇𝑒𝑞𝑞                                                                                       (31) 

 
Its time derivative along the trajectory (29) is: 
 

𝑉̇𝑉 = 1
2

𝑠𝑠𝑇𝑇𝐷̇𝐷𝑠𝑠 + 𝑠𝑠𝑇𝑇𝐷𝐷𝑠̇𝑠 + 𝜏̇̃𝜏𝑝𝑝
𝑇𝑇𝛿𝛿𝜏̃𝜏𝑝𝑝 + 2𝑒𝑒𝑞𝑞

𝑇𝑇𝛾𝛾𝑘𝑘𝑑𝑑1𝑒̇𝑒𝑞𝑞                                           (32) 

= 1
2

𝑠𝑠𝑇𝑇𝐷̇𝐷𝑠𝑠 + 𝑠𝑠𝑇𝑇(−(𝐹𝐹 + 𝑘𝑘𝑑𝑑1)𝑠𝑠 − 𝐵𝐵𝜏̃𝜏𝑝𝑝) + 𝜏̇̃𝜏𝑝𝑝
𝑇𝑇𝛿𝛿𝜏̃𝜏𝑝𝑝 + 2𝑒𝑒𝑞𝑞

𝑇𝑇𝛾𝛾𝑘𝑘𝑑𝑑1𝑒̇𝑒𝑞𝑞                                              (33) 

= 1
2

𝑠𝑠𝑇𝑇𝐷̇𝐷𝑠𝑠 + 𝑠𝑠𝑇𝑇(−(𝐹𝐹 + 𝑘𝑘𝑑𝑑1)𝑠𝑠 − 𝐵𝐵𝜏̃𝜏𝑝𝑝) + 𝜏̇̃𝜏𝑝𝑝
𝑇𝑇𝛿𝛿𝜏̃𝜏𝑝𝑝 + 2𝑒𝑒𝑞𝑞

𝑇𝑇𝛾𝛾𝑘𝑘𝑑𝑑1𝑒̇𝑒𝑞𝑞                                              (34) 

= 𝑠𝑠𝑇𝑇(𝐷̇𝐷 − 2𝐹𝐹)𝑠𝑠 − 𝑠𝑠𝑇𝑇𝑘𝑘𝑑𝑑𝑠𝑠 − 𝑠𝑠𝑇𝑇𝐵𝐵𝜏̃𝜏𝑝𝑝 + 𝜏̇̃𝜏𝑝𝑝
𝑇𝑇𝛿𝛿𝜏̃𝜏𝑝𝑝 + 2𝑒𝑒𝑞𝑞

𝑇𝑇𝛾𝛾𝑘𝑘𝑑𝑑1𝑒̇𝑒𝑞𝑞                                                  (35) 
 

Based on equation (17), equation (35) becomes, 
 

𝑉̇𝑉 = −𝑠𝑠𝑇𝑇𝑘𝑘𝑑𝑑𝑠𝑠 + (−𝑠𝑠𝑇𝑇𝐵𝐵 + 𝜏̇̃𝜏𝑝𝑝
𝑇𝑇𝛿𝛿)𝜏̃𝜏𝑝𝑝 + 2𝑒𝑒𝑞𝑞

𝑇𝑇𝛾𝛾𝑘𝑘𝑑𝑑1𝑒̇𝑒𝑞𝑞                                                                                            (36) 
 

Based on (21) and (30), we have: 
 

𝑉̇𝑉 = −𝑠𝑠𝑇𝑇𝑘𝑘𝑑𝑑1𝑠𝑠 + 2𝑒𝑒𝑞𝑞
𝑇𝑇𝛾𝛾𝑘𝑘𝑑𝑑1𝑒̇𝑒𝑞𝑞                                                                                                                    (37) 

 

From equation (37), properly choosing γ, 𝑉̇𝑉(𝑞𝑞) is negative, this proves the closed loop stability in the Lyapunov 
sense. Moreover, from the definition 𝑠𝑠 = 𝑒𝑒𝑞̇𝑞 + 𝛾𝛾𝑒𝑒𝑞𝑞and the boundedness of the error 𝑒𝑒𝑞𝑞, 𝑒𝑒𝑞̇𝑞 is also bounded. In other 
words what allows us to reach the conclusion that when s → 0 has t → ∞, it results e and𝑒𝑒𝑞̇𝑞 → 0 when t → ∞. 

 
3.3 Dealing with Uncertainties 

Referring to the work on passivity in [21], [24], we are introducing an adaptive control system based in passivity. 
Admitting the inertia of the matrix M, Coriolis matrix C, and gravity G contain uncertainties. According to [24], and 
based on (13), (7), (8), (9) and (16), the dynamic model (13) can be indicated by a following relationship: 
 

  D(𝑞𝑞)𝑣̈𝑣 + 𝐹𝐹(𝑞𝑞, 𝑞̇𝑞)𝑣̇𝑣 + 𝑁𝑁(𝑞𝑞) = 𝑌𝑌(𝑣̈𝑣, 𝑣̇𝑣, 𝑞̇𝑞, 𝑞𝑞)𝛼𝛼                                                                                            (38) 
 

The robot’s physical setting is unknown and should be evaluated. Note by α the vector of parametric uncertainties, 
where 𝛼𝛼�, is its estimate. The dynamic equation of the system is as follows: 
 

D(𝑞𝑞)𝑣̈𝑣 + 𝐹𝐹(𝑞𝑞, 𝑞̇𝑞)𝑣̇𝑣 + 𝑁𝑁(𝑞𝑞) = 𝑌𝑌(𝑣̈𝑣, 𝑣̇𝑣, 𝑞̇𝑞, 𝑞𝑞)𝛼𝛼�                                                                                                                (39) 
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The notation Y known as the regressor is a function known from generalized co-ordinates, and α is a vector of 
uncertain parameters. In other words, the uncertainties of M, C, and G are summarized in those of α, and (39) is 
rewritten as follows: 

 
𝑆𝑆𝑇𝑇𝐵𝐵𝐵𝐵 = 𝑌𝑌𝛼𝛼� − 𝑘𝑘𝑑𝑑1𝑞𝑞𝑟𝑟                                                                                                                                                                        (40) 

 
Substituting (39) and (40) into (13), we obtain: 
 

𝐷𝐷𝑠̇𝑠 + 𝐹𝐹𝐹𝐹 + 𝑘𝑘𝑑𝑑𝑠𝑠 = 𝑌𝑌(𝛼𝛼� − 𝛼𝛼)                                                                                                    (41) 
 

The estimation of the vector of uncertainties 𝛼𝛼�is as follows: 
 

𝛼𝛼�̇ = −𝜌𝜌−1𝑌𝑌𝑇𝑇𝑠𝑠                                                                                                                                                                                         (42) 
 

Consider the following Lyapunov function to demonstrate the stability of the system with uncertainties: 
 

𝑉𝑉 = 1
2

𝑠𝑠𝑇𝑇𝐷𝐷𝐷𝐷 + 𝑒𝑒𝑞𝑞
𝑇𝑇𝛾𝛾𝑘𝑘𝑑𝑑𝑒̇𝑒𝑞𝑞 + 1

2
𝛼𝛼�𝑇𝑇𝜌𝜌𝛼𝛼�                                                                                                                                         (43) 

 
Where: 𝛼𝛼� = 𝛼𝛼� − 𝛼𝛼. Its time derivative along the trajectory of (41) is given by: 
 

𝑉̇𝑉 = 1
2

𝑠𝑠𝑇𝑇𝐷̇𝐷𝑠𝑠 + 𝑠𝑠𝑇𝑇𝐷𝐷𝑠̇𝑠 + 2𝑒𝑒𝑞𝑞
𝑇𝑇𝛾𝛾𝑘𝑘𝑑𝑑1𝑒̇𝑒𝑞𝑞 + 𝑠𝑠𝑇𝑇𝑌𝑌𝛼𝛼�                                                                                                                   (44) 

 

𝑉̇𝑉 = 𝑠𝑠𝑇𝑇�𝐷̇𝐷 − 2𝐹𝐹�𝑠𝑠 − 𝑠𝑠𝑇𝑇𝑘𝑘𝑑𝑑𝑠𝑠 − 𝑠𝑠𝑇𝑇𝑌𝑌𝛼𝛼� + 2𝑒𝑒𝑞𝑞
𝑇𝑇𝛾𝛾𝑘𝑘𝑑𝑑𝑒̇𝑒𝑞𝑞                                                                      (45) 

 

Meanwhile, the time derivative of  
1
2

𝛼𝛼�𝑇𝑇𝜌𝜌𝛼𝛼� is: 
 

𝑑𝑑
𝑑𝑑𝑑𝑑

�1
2

𝛼𝛼�𝑇𝑇𝜌𝜌𝛼𝛼�� = −𝛼𝛼�𝑇𝑇𝑌𝑌𝑇𝑇𝑠𝑠                                                                                                           (46) 

 
Where the equation (45) holds because α is invariable. Considering (17), and combining (45) and (46), we get: 
 

𝑉̇𝑉 = −𝑠𝑠𝑇𝑇𝑘𝑘𝑑𝑑1𝑠𝑠 + 2𝑒𝑒𝑞𝑞
𝑇𝑇𝛾𝛾𝑘𝑘𝑑𝑑1𝑒̇𝑒𝑞𝑞                                                                                                                           (47) 

 

From equation (47) and by properly choosing γ, 𝑉̇𝑉(𝑞𝑞) is negative, we conclude the stability of the closed loop 
system in the Lyapunov sense. Moreover, from equation (21) and the boundedness of the error 𝑒𝑒𝑞𝑞, 𝑒𝑒𝑞̇𝑞 is also bounded. 
In other words what allows us to obtain: when s →0 has t→∞, it allows e and𝑒𝑒𝑞̇𝑞 →0 when t→∞. The applied controller 
diagram is shown in figure bellow. 
 

 

Fig. 2 - Diagram of applied control 
 
4. Results of The Simulation  

To test the performance of the presented study, simulations were performed under Matlab/Simulink software for a 
desired trajectory of the platform of the following form: 
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𝜃𝜃(𝑡𝑡) = �2𝑝𝑝𝑝𝑝
5

� 𝑡𝑡 + 5                (48) 

 
And reference trajectories for the two segments of the manipulator arm as follows: 
 

𝜃𝜃1(𝑡𝑡) = 1.3𝑠𝑠𝑠𝑠𝑠𝑠 �𝑡𝑡 + 𝑝𝑝𝑝𝑝
6

�               (49) 

θ2(t)=2(1-cos�𝑡𝑡 + 𝑝𝑝𝑝𝑝
6

�)                             (50) 

 
The simulations were conducted in uncertain conditions to evaluate the ability of the proposed scheme. The 

uncertain conditions considered here consist of the effect of perturbations in the parameters and external perturbations 
applied (dist_τ(t)) to the different components of the torque vector Q= f (𝜏𝜏 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝜏𝜏) (torque of the platform wheels 
and arm joints), of the form: 

 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝜏𝜏 = �

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝜏𝜏1
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝜏𝜏2
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝜏𝜏𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝜏𝜏𝑟𝑟

� = �

2sin(3𝑡𝑡)
2cos (3𝑡𝑡)
5sin(1.5𝑡𝑡)
5cos(1.5𝑡𝑡)

�                         (51) 

 
The perturbations in the parameters are chosen as follows: 
 

𝑚𝑚𝑝𝑝 = 12 + 2 sin �2𝑝𝑝𝑝𝑝
5

𝑡𝑡� [𝑘𝑘𝑘𝑘], 𝑚𝑚1 = 12 + 2 sin �2𝑝𝑝𝑝𝑝
5

𝑡𝑡� [𝑘𝑘𝑘𝑘], 𝑚𝑚2 = 2 + sin �2𝑝𝑝𝑝𝑝
5

𝑡𝑡� [𝑘𝑘𝑘𝑘]      (52) 

𝐼𝐼0 = 1.2 + 0.2 sin �2𝑝𝑝𝑝𝑝
5

𝑡𝑡� [𝑘𝑘𝑘𝑘],𝐼𝐼1 = 𝐼𝐼2 = 0.12 + 0.02 sin �2𝑝𝑝𝑝𝑝
5

𝑡𝑡� [𝑘𝑘𝑘𝑘]         (53) 
 

To validate the presented technique by comparing its performers to the known methods, such as, the 
Proportional Integral Derivative (PID). All the gain matrices of the controllers are defined so that all the 
monitors performing satisfactorily below conditions of no external disturbances (dist _ τ= 0).  The parameters 
of the PID controller and the proposed controller are:𝑘𝑘𝑝𝑝 =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(35𝐼𝐼4𝑥𝑥4),𝑘𝑘𝑖𝑖 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(25𝐼𝐼4𝑥𝑥4 ),𝑘𝑘𝑑𝑑 =
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(5𝐼𝐼4𝑥𝑥4)  and for the proposed controller ;𝛾𝛾 = 6𝐼𝐼1𝑥𝑥4and𝑘𝑘𝑑𝑑1 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(20𝐼𝐼4𝑥𝑥4).The simulation results are 
presented in the figures fig. 3 to fig. 6.Figures 3 and 4 illustrate the system's behavior in the absence of disturbances, 
respectively, in the case of the application of the classical PID controller and the case of the application of the proposed 
technique (adaptive passive). Figures (fig. 5 and fig. 6) illustrate the behavior of the system under disturbances at time t 
= 10 s, respectively, including the case of applying the conventional PID controller and the case of applying the 
proposed (passive adaptive) technique. 
 

 
Fig.3 - System behavior without disturbances, PID case 
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Fig. 4 - Behavior of the system without disturbances, passivity case 

 

 
Fig. 5 - System behavior with disturbances (t = 10sec), PID case 
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Fig. 6 - Behavior of the system with disturbances (t = 10sec), passivity case 

 

 
Fig.7 - Torque curve at the beginning of the disturbances at t= 10sec, PID case 

 



Ikni and Achour, Int. Journal of Integrated Engineering Vol. 15 No. 7 (2023) p. 124-135 

134 

 
Fig. 8 - Torque behavior at the beginning of the disturbance at t= 10sec, passivity case 

 
The results confirm the advantages of the presented control scheme. The curves show that the proposed controller 

provides higher accuracy in position tracking control than those provided by PID controllers. In addition, the proposed 
control technique can achieve a better dynamic performance of the systems. By observing figures (Fig.3 and Fig.4), it 
can be verified that the proposed control law can provide a faster convergence rate of position tracking errors along the 
desired trajectories compared to PID controllers. By observing figures (Fig. 5and Fig. 6), it is quickly noticed that the 
proposed control method is more efficient for operating the mobile manipulator robot under external disturbances. Not 
only does it ensure the tracking of the position provide asymptotic errors tend to zero, but it also allows accommodation 
of the system's operation in the presence of external disturbances. In other words, we conclude that the tracking results 
of PID based control shows its limits and the mobile manipulator unsuccessfully tends to the referenced trajectory. This 
shows that PID controller is not robust against external disturbances (Fig. 7). However, the passivity-based adaptive 
control law, which can correct the effects of disturbances (Fig. 8), provides good outputs and achieves good trajectory 
tracking performance. Which, Fig.6 clearly shows that the adaptive control process based on passivity in the presence 
of external disturbances and parametric uncertainties is very well realized via the rules of updating the vector of 
uncertain parameters, thus ensuring the compensation of the effect of disturbances (external and parametric 
uncertainties) allowing to reach a superior performance of tracking the trajectory. Fig. 8 shows the torques generated by 
the various actuators of the mobile manipulator. 
 
5. Conclusion 

This work presents a control approach based on the passivity principle, developed to guarantee performance of the 
application used to track the trajectory of mobile manipulator when disturbed. Although already known by several 
researchers, the passivity-based control used in our work has been adapted according to the context of the system. Since 
the mobile robot manipulator is a non-linear system and the internal parameters of the system are not precisely known, 
we had to use the adaptive passivity-based control that considers these perturbations. The added value of our work 
regarding the control of mobile manipulator robots by an adaptive control strategy based on passivity is that we have 
introduced a highly nonlinear regressive matrix to consider uncertainties and disturbances. The results presented show 
that the control law developed allows to drive the motion of the mobile manipulator robot to converge to the desired 
operation although in the presence of modeling uncertainties and disturbances on the torques.  The stability of the 
system and the asymptotic convergence of the tracking errors are established using Lyapunov’s theory.  
As perspectives, we will consider applying neural intelligent methods to control the manipulator mobile. Neural 
methods establish significant analytical relationships for the control phase and have great flexibility because there is no 
limit to the number of input and output system parameters. 
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