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1. Introduction 

Polymer matrix composites (PMCs) have been gaining attention as materials for structural application because of 
their exceptional features including ease of manufacture and high specific stiffness and strength. Thus, they are largely 
employed in applications needing abrasion resistance. Usual applications are clutches, brakes, vanes, pumps handling 
industrial fluids, gears, conveyor aids, bushes, seals in mining and agricultural hardware [1-2]. To design and develop 
PMCs suitable for aforesaid applications, polytetrafluoroethylene (PTFE) is commonly chosen owing to its thermal 
stability, chemical inertness, anti-friction and indentation. Similarly, fibres are added to polymers as a means of 
increasing their load bearing ability [3–5]. In abrasive conditions, inclusion of fibres into polymer lead to dual effect of 
either improvement or deterioration [6]. According to the work of Harsha and Tewari, it was found that the abrasive 
performance of polymeric polysulfone deteriorated when 20 wt.% and 30 wt.% glass fibre was added to it [7].  
However, Suresha et al. reported improvement on the abrasive wear performance of epoxy reinforced with carbon 
fabric and addition of 5 wt. % and 10 wt. % graphite fillers into the epoxy-carbon fabric composites [8]. Similarly, 
Suresha et al. and Suresha and Kumar reported that there was an enhancement of abrasive wear performance of vinyl 
ester and P66/PP polymers when glass and carbon fibres and nano-clay and discontinuous carbon fibre were introduced 
into the polymers [9-10], respectively. The effect of various factors on abrasive wear of composites is depicted in 
Figure 1.  
In addition to natural characteristics of materials, wear of materials relies on operating conditions as well as 
environments [12-13]. To better comprehend the wear rate of materials in abrasive environment, components of the 
materials and the operating conditions are important. Abrasive wear of materials such as PMCs have been modelled 
using several kinds of equations as reported in [14-15]. The equations expressed wear rate as a function of mechanical 
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properties, for example hardness of reinforcements and operating conditions such as applied load. In order to advance 
the understanding of wear, different authors experimentally studied wear rate of various PMCs [16–[21]. In these 
experiments it was found that the wear rate of PMCs was influenced by the operating conditions such as load, sliding 
distance and grit size. Therefore, abrasive wear is a phenomenon influenced by operating conditions. The problem of 
the wear equations and experiments is inadequate information on the effect operating parameters influencing the 
abrasive wear of PMCs. 
 

 
Fig. 1 - Effect of different parameters on the abrasive wear of composites [11] 

 
In order to study the effect of process parameters for optimization of single outputs, traditional and Taguchi 

approaches are used. However, in wear problem of PMCs several parameters and responses are involved. The above 
approaches consume time and cost due to individual computation of each response and the overall determination of 
optimized settings are based on researcher’s experience. This method is handicapped especially when dealing with 
problems of several responses due to likelihood of erroneous judgment [22-23]. As panacea to this problem, grey based 
Taguchi optimization method has been proposed for multi-objective outputs. Grey relational analysis (GRA) gives an 
inclusive pointer, grey relational grade (GRG), to depict the performance of all responses. Grey based Taguchi 
approach is used in addressing optimization problems involving multiple responses in several fields as in dimple 
geometry optimization of stainless steel (SS36L), machining parameters to drill hybrid aluminium metal matrix 
composites [24], thin-film sputtering process with many quality characteristics in colour filter manufacturing [25], 
submerged arc welding process parameters in hard facing [26], turning operations with multiple performance 
characteristics [27] and flank milling parameters [28]. 

Therefore, this study is aimed at optimizing parameters affecting the abrasive property of PTFE matrix reinforced 
with 25 wt. % glass and 25 wt. % carbon fibres composites (GF25 and CF25) as shown in Table 1 . The study is thus 
formulated into an optimization problem using grey based Taguchi approach so that the optimum parameter settings for 
multiple responses of volume loss (VL) as well as specific wear rate (Ks) of the PTFE matrix composites are estimated. 
 
2. Materials and Method  
2.1 Materials 

The wear property of PTFE matrix composites sliding against silicon carbide (SiC) abrasive paper on toughened 
disc under non-lubricated conditions is investigated through a bi-directional pin-on-disc configuration. Reinforcements 
used are glass and carbon fibres in 25 wt. %. For the glass-PTFE composite, E-glass milled fibre whose nominative 
diameter of 13 μm, nominal length of 0.8 mm and aspect ratio of 10 was used. Whereas for carbon-PTFE composite, 
amorphous petroleum-coke having particle size <75 μm and purity of 99 % was utilized. Names, codes and some 
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properties of the materials used in the study are displayed in Table 1. Polymer Chemical Industry Ltd. (Polikim A.Ş., 
Gebze/Turkiye) in Turkey provides the materials in the form of plates. Produced using the compression molding 
process, the materials in rectangular forms were supplied by Polymer Chemical Industry Ltd., (Gebze, Turkey). At 
present, these materials are used in the automotive and aerospace industries. The materials, their codes, and some 
selected properties are shown in Table 1. Computer numerical water jet machining was used to cut samples for the tests 
from the rectangular plates, whose dimensions were 500 mm × 500 mm × 6 mm. Thereafter, the samples were cleaned 
before the experiments. SiC particles of sizes in the range of 150, 400, and 1000 meshes were used as abrasives. 

 
Table 1 - Physical property of materials used in the study 

Samples Code Color (gcm-3) 
Glass–PTFE composite GF25 Grey 2.30 
Carbon–PTFE composite CF25 Black 2.15 
Polytetrafluoroethylene PTFE White 2.20 

 
2.2 Method 
2.2.1 Taguchi Experimental Design 

Classically, parameter optimization is intricate and difficult to use when the number of factors keep increasing 
leading to several experiments. This drawback is solved by Taguchi approach using exclusive orthogonal arrays (OAs) 
to investigate the whole parameters with small number of tests at lowered cost and time. In this study, parameters 
affecting the wear rate of PTFE matrix composites such as load (L), girt size (G), sliding distance (D) and sliding speed 
(S) were treated as control parameters affecting the process. In the OA, four control parameters and each at three 
settings were taken. Coded and uncoded values of the control parameters are shown in Table 2. The OA has nine rows 
and four columns as depicted in Table 3. Each parameter was allocated to a column. The tests were randomly arranged 
in order to minimize errors associated with experiments. Responses are the outputs of the experiments. The current 
study was aimed at minimizing VL as well as Ks. Therefore, VL and Ks were regarded as responses. The results of the 
experiments based on the Taguchi were transformed into signal noise ratios (SNRs) as tabulated in Table 4. A design 
parameter with a huge variation in the SNRs from one parameter level to another signifies that the parameter is an 
important contributor to the performance characteristic. The final phase in the design of the experiment is prediction as 
well as verification using optimum settings of parameters. Several SNRs functions exist but here the smaller the better 
characteristic was selected and can be computed as logarithmic transformation of the loss function using equation (1). 
 

      (1) 
 

Where n = number of experimental trials, yi = output value of the ith experiment.   
 

Table 2 - Process parameters and their levels 
Symbol Parameter Unit Level 1 Level 2 Level 3 
L Load N 3 6 9 
G Grit size mesh 1000 400 150 
D Sliding distance m 25 45 55 
S Sliding speed ms-1 0.04 0.08 0.14 
 

Table 3 - Standard Taguchi L9 experimental design 
Run Parameter L Parameter G Parameter D Parameter S 

1 1 1 1 1 
2 1 2 2 2 
3 1 3 3 3 
4 2 1 2 3 
5 2 2 3 1 
6 2 3 1 2 
7 3 1 3 2 
8 3 2 1 3 
9 3 3 2 1 
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2.2.2 Wear Experiment 
Pin-on-disc configuration (according to ASTM: G99 standard) was applied for the abrasive tribological 

experiments tribometer machine. Rectangular surface of (20 × 20 × 6) mm composite samples were fixed to a fixture 
specially fabricated to hold the composite samples before putting the composite samples to the lever of the tribometer. 
The waterproof silicon carbide (SiC) abrasive papers glued to a rotating disc which come in contact with the composite 
samples. Prior to experimentation, the samples were polished against SiC paper of 1000 mesh to establish good contact 
with the counter face. The surface finish of 0.12 µm centre line average was maintained for each sample to ensure good 
contact. Samples’ surfaces were cleaned with acetone and completely dried before experimentation. From the first to 
the last of the experimentation, samples were maintained along the same wear path and for each sample a new SiC 
abrasive paper was applied. Prior to performing multi-faceted optimization, prelude trials were conducted so that an 
adequate insight into the effect of parameters upon VL and KS. These analyses not only give insight into the 
characteristic trends of each parameter but also assist in putting the parameter levels in order. Experiments concerning 
grey relational analysis were carried out as parameters depicted in Table 2. The mass losses of the samples were 
recorded using digital weighing balance (Ohaus: accuracy 0.001 g). The difference between the mass before testing and 
mass after testing of the samples gives the amount of the wear loss. At least two sets of experiments were performed for 
each run and average data reported and used for final analysis. The abrasive wear loss was quantified by loss in mass 
which was then transformed into volume loss via density data. The volume loss (VL) and the specific wear rate (KS) 
were determined based on equations (2) and (3), respectively. 

 

                (2)    

                                                                                                                                                      
                   (3) 

 

where  = change in mass (g),  = volume loss (mm3),  = (gcm−3), L = load (N), D = sliding distance (m) and S 
sliding distance (ms-1).  
 

 
Fig. 2 - The rectangular plates, samples of materials used and experimental set-up of the abrasive experiment 

 
2.2.3 Grey Relational Analysis (GRA) 

Proposed by Deng, grey system theory is helpful in dealing with poor, uncertain as well as insufficient data. GRA 
is according to this theory and is related to Taguchi approach presents a method of optimization of parameters affecting 
tribological rate involving many performance objectives. In GRA, results gotten from the experiments were first 
normalized ranging from 0 to 1[29]. This operation is referred to as grey relational generation (GRGr). In GRGr, the 
normal values of VL as well as Ks correspond to the smaller the better-quality characteristic which was given by the 
following equation:  
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 (4) 

 
Where is the value after normalization, is the comparability sequence, k = 1 and 2 for VL and Ks, i = 1, 
2, 3… for 1-9 experiments, max = maximum value of and min = minimum value of . 

Secondly, the deviation sequence of the normalized data which is the difference of the absolute value of  
can be computed using equation (5). 
 

 
 

(5) 

Where  stands for deviation,  denotes the normalized data, and  refers to the comparability 
sequence. Table 7 shows the reference and deviation sequences of the study. Thirdly, grey relational grade (GRG) that 
depicts the relationship between reference sequence and the real normalized test results can be estimated through 
equation (6): 
 

 
 

(6) 

Where = grey relational coefficient (GRC) of response variable,  and  are the minimum and the 
maximum deviations of the individual target factor, respectively. The identification coefficient is characterized by  
and is held in the range of . This is commonly placed at 0.5 to give equal weights to every variable. In the 
fourth stage of GRA, GRG is obtained by finding the average of the GRG of individual response according to equation 
(7): 
 

 
(7) 

  

where  presents the GRG whereas n stands for number of multiple responses. Table 8 depicts the GRG computed for 
the data. Finally, prediction and confirmation of the best conditions using the optimum combination of parameters was 
performed. The predicted results are achieved using equation (8) given below. 
 

 

(8) 

  

where  = biggest mean of GRG at best operating conditions,   = average GRG.  = parameter that exhibits the 
parameters which affect the responses. 
 
2.2.4 Analysis of Variance (ANOVA) 

Analysis of variance (ANOVA) is traditionally applied to find out the effect of independent variables on dependent 
variables. Percentage contribution (%C) of each factor is used as a criterion for establishing the effect of each 
independent variable on the dependent variable. A large %C signifies an independent variable (parameter) exerting a 
significant influence on the dependent variable (response).  

 
3. Results and Discussion 
3.1 Effect of the Process Parameters on VL 

The results of VL in Table 4 were transformed into SNRs using Mintab 2007 software. The most influential 
parameters were established using the maximum-minimum i.e. delta (max-min) values in the table of response for 
SNRs provided (Table 5). Ranks are assigned to the parameters based on the max-min value. Max-min with highest 
value is assigned the first rank and max-min with lowest value the last rank and named the most and least influential 
process parameter affecting the VL. Therefore, the process parameters are ranked in the following order as G (1st) D 

Engr Faisal Balarabe
GRG or GRC? Is GRC
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(2nd), S (3rd) and L (4th) as seen in Table 5. Desired parameter levels were bolded to make understanding easier in all 
tables shown in the study. 

Based on the response in Table 5, the main effects graph for SNRs of VL were produced as displayed in Figure 3 
(a). The behaviour of the graph indicated that VL is significantly influenced by variation in the SiC grit size. As 
observed in Table 4, the VL increased with decrease in the SiC grit size. A possible reason for this is penetration of 
large grit size into the materials thereby pulling out or removing either the matrix or the fibre from the whole system of 
composites. The increasing behaviour in a steep manner of SNRs for VL from 150 to 1000 mesh in Figure 3 (a) adds to 
the explanation that quality of responses is enhanced when the SiC grit size soars. The correlation between load and 
SNRs in Figure 3(a) expresses a decreasing pattern for load from 3 N to 9 N. The graph for sliding distance indicates an 
increasing trend from 25 m to 45 m as well as a decreasing pattern from 45 m to 55 m. However, the reverse was 
obtained for the relationship between sliding speed and SNRs for sliding speed. As regards SNRs analysis, irrespective 
of the quality characteristic, a higher SNRs signify desired values of experiments; here, a smaller VL. According to 
Table 5 and the main effects graph for SNRs in Figure 3 (a) signify that L1, G1, D2 and S3 were the required parameter 
levels for high SNRs corresponding to desired values of VL. 

 
Table 4 - Taguchi L9 OA and multi-objective responses with SNRs 

  Control Factors   

     
Response 
values         SNRs (dB)  

Run L (N) G (mesh) D (m) S (ms-1) VL×10-4  
(mm3) KS × 10-6 (mm3N-1m-1) VL Ks 

1 3 1000 25 0.04  6.14 8.18 64.2418 101.743 

2 3 400 45 0.08 8.70 6.44 61.2140 103.821 

3 3 150 55 0.14 27.44 16.63 51.2317 95.581 

4 6 1000 45 0.14 3.95 1.46 68.0604 116.688 

51 6 400 55 0.04 10.91 3.31 59.2442 109.615 

6 6 150 25 0.08 40.47 26.98 47.8584 91.380 

7 9 1000 55 0.08 13.72 2.77 57.2523 111.144 

8 9 400 25 0.14 13.04 5.80 57.6921 104.736 

9 9 150 45 0.04 23.41 5.78 52.6123 104.761 

 
Table 5 - Response table for SNRs of VL               Table 6 - Response table for SNRs of Ks 

Level L G D S  Level L G D S 
1 58.90 50.57 56.60 58.70  1 100.38 97.24 99.29 105.37 
2 58.39 59.38 60.63 55.44  2 105.89 106.06 108.42 102.12 
3 55.85 63.18 55.91 58.99  3 106.88 109.86 105.45 105.67 
Delta 3.04 12.62 4.72 3.55  Delta 6.50 12.62 9.14 3.55 
Rank 4 1 2 3  Rank 3 1 2 4 
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Fig. 3 - Main effects plot for SNRs of (a) VL and; (b) Ks 

 
3.2 Effect of the Process Parameters on Ks 

To find the parameters affecting the KS, the SNRs of the experimental data were computed (Table 4). Similarly, the 
smaller the better characteristic of Taguchi approach has been chosen to evaluate the parameter influences on KS.  The 
response table for SNRs of KS was then generated using the same software as indicated in Table 6. The findings 
showed that the grit size with a max-min value of 12.62 possesses the biggest effect on KS followed by sliding distance 
with max-min value 9.14, load with max-min value 6.50 and finally sliding speed with max-min value of 3.55. Table 5 
was utilized to get the graph of main effects for KS as shown in Figure 3 (b).  It could be decoded that the ratios 
increased steeply for load and SiC grit size with increase in the load and grit size. In the case of sliding distance and 
speed, the ratios increased and decreased (from 25-45 m and 45-55 m) as well as decreased and increased (from 0.01-
0.08 ms-1 and 0.08-0.14 ms-1), respectively. Figure 3 (b) indicates that required values of SNRs of KS were obtained as 
follows: load at level (L3), grit size at level one (G1), sliding distance at second level (D2) and finally third level of 
sliding speed (S3). The outcomes of SNRs in Table 6 also indicate similar findings. More so, the max-min value (Table 
6) exhibit that Ks is majorly influenced by SiC grit size, coming after are distance, load as well as speed. 
 
3.3 Multi-Objective Optimization 

GRG is fundamentally used to solve practical issues composed of a limited set of data. The results in Table 4 were 
preprocessed via grey relational generation. Reference sequence of the responses within range of 0-1 was determined 
through normalization (equation 4). Thereafter, deviation sequences were calculated using equation 5. Once the 
deviation sequences were determined the grey relational coefficient (GRC) for individual value of the output was 
computed via equation 6. Lastly, mean values of the GRCs were calculated to find the grey relational grade (GRG). As 
provided in Table 8, the calculated values of GRGs were used to generate the SNRs. A bigger magnitude of SNRs is 
useful and shows that the experiments are in proximity to values of GRG [30] equation 7. Figure 5 shows the graph of 
GRGs against the SNRs. It shows the fourth trial has the maximum SNR. Consequently, the first rank was apportioned 
to the fourth trial. The chasing behaviour of the GRG below the graph of SNRs (Figure 5) adds to the discussion 
aforesaid. As soon as the ranks have been found, the mean response table for GRG is contrived. The GRG of individual 
parameter at the selected setting is chosen and its average determined to produce the mean of GRG for each parameter. 
As an example, the parameter load was set at level 1 (L1) in the first, second and third trials of the test. The equivalent 
GRG values in Table 8 were used for computation as in equation (9). 

 

              (9) 
 
Following the above operation, Table 9 was created. The grades in the response table act as a criterion of the 

correlativity between reference sequence and comparability sequence of GRA. Bigger values of the average GRGs 
show a strong correlativity [31]. Hence, based on Table 9 it is potential to obtain optimum parameters which can 
maximize the whole response. Therefore, the maximum GRG live at L2, at G1, at D2 and at S1. Consequently, the 
optimum parameter settings for beneficial abrasive wear behaviour of filled PTFE composite are L at 6 N, G at 1000 
mesh, D at 45 m as well as S at 0.04 ms-1. 

 



Musa Alhaji Ibrahim et al., Int. Journal of Integrated Engineering Vol. 15 No. 7 (2023) p. 145-156 

152 

3.4 ANOVA 
 To determine the %C of each process parameter to VL, KS and GRG ANOVA was performed. For VL, it was found 
that G having a %C of 76.25% has the maximum influence on the VL, followed by D with 11.83%, S with 7.08% and 
then L with least contribution of 4.84%. With respect to KS, it was established that G shows the maximum percentage 
contribution of 52.52%, followed by D of 27.22%, L of 15.38% and lastly S with the least contribution of 4.87%. 
Similarly, ANOVA for GRG shows that G with 76.63% is the biggest contributor, followed by D with 16.55%, S 
having 6.14% and then L with least %C of 1.40%. These are further depicted in Figure 4 (a, b and c) for VL, KS and 
GRG, respectively. 
 

Table 7 - Reference as well as deviation sequences post data pre-processing 
 
Run  VL 

  
Ks  VL  Ks 

1 0.9402 0.7367 0.0598 0.2633 
2 0.8701 0.8049 0.1299 0.1951 
3 0.3567 0.4055 0.6433 0.5945 
4  1.0000 1.0000 0.0000 0.0000 
5 0.8095 0.9278 0.1905 0.0722 
6 0.0000 0.0000 1.0000 1.0000 
7 0.7325 0.9487 0.2675 0.0513 
8 0.7510 0.8302 0.2490 0.1698 
9 0.4671 0.8308 0.5329 0.1692 

 
Table 8 - Rank of GRG with SNRs 

 
Run     SNRs(dB) Rank 

1 0.8932 0.6550 0.7741 -2.22 4 
2 0.7938 0.7193 0.7566 -2.42 5 
3 0.4373 0.4568 0.4471 -6.99 8 
4 1.0000 1.0000 1.0000  0.00 1 
5 0.7241 0.8738 0.7990 -1.95 2 
6 0.3333 0.3333 0.3333 -9.54 9 
7 0.6515 0.9070 0.7792 -2.17 3 
8 0.6676 0.7465 0.7070 -3.01 6 
9 0.4841 0.7472 0.6156 -4.21 7 

 
Table 9 - Response table of GRGs 

Level L G D S 
1 0.6593 0.4654 0.6048 0.7296 
2 0.7108 0.7542 0.7907 0.6230 
3 0.7006 0.8511 0.6751 0.7180 

Delta 0.0515 0.3858 0.1859 0.1065 
Rank 4 1 2 3 
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Fig. 5 - Plot of GRG against GRG SNRs 

 

 
Fig. 4 - Pie chart showing the percentage contribution of each factor on (a) VL; (b) Ks and; (c) GRG 

 
3.5 Confirmation Tests 

Prediction and validation of the performance improvement of  the responses is the final phase in GRA analysis. 
GRA prediction was performed using equation 8. Confirmation was carried out to verify outcomes of the investigation 
and the average of two tests was calculated and reported. For best condition, VL and KS were determined to be 3.67 × 
10-5 mm3 and 4.98 × 10-6 mm3N-1m-1, respectively. Besides, it could be inferred from Table 10 that the findings of 
confirmatory tests are in concord with the predicted findings. Moreover, an improvement of 21.93% in GRA was 
realized. This asserts the rigour of Taguchi hybridized with GRA for getting higher abrasive tribological performance 
of reinforced PTFE composites. 

 
Table 10 - Results of the confirmation tests 

  Optimal Parameter  
 Initial Design Parameter Prediction Confirmation 

Level settings L2G2D3S1 L2G1D2S1 L2G1D2S1 
GRG 0.7990 1.0000 0.9742 
Improvement (%)  25.16 21.93 

 
4. Modelling of the GRG 

In the current study, a mathematical model has been built based on the findings of the GRG for the reinforced 
PTFE composites using linear regression analysis in Minitab 2017. No transformation has been carried out on the GRG. 
The mathematical models for predicting the GRG as a function of load, grit size, sliding speed and sliding distance 
obtained from the regression analysis is provided in the following equation 10. 

  
   (10) 

Engr Faisal Balarabe
Of what? The responses
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The adequacy of the built model was checked by means of coefficient of determination (R2.). R2. value differs from 

zero to unity. If the R2 is close to unity it signifies that there exists a good fit between the independent and dependent 
variables otherwise bad fit exists. Assuming, R2 = 90% then it means that the new observations were predicted with a 
variability of 90 %. In the current article, the mathematical model developed based on the linear regression model for 
GRG has R2. = 63.09 %. The residual plot was utilized to find the importance of the coefficients in the mathematical 
model. When the residual plot is a straight line, it shows that the residual errors in the mathematical model are 
important. The residual plot achieved for the GRG was as depicted in Figure 6.   

 

0.30.20.10.0-0.1-0.2-0.3

99

95
90
80
70
60
50
40
30
20
10
5

1

Residual

Pe
rc

en
t

Normal Probability Plot
(response is GRG)

 
Fig. 6 - Normal probability plot of the residuals for GRG 

 
From Figure 6, it was noticed that only a few points fell near the straight line for the GRG. This implies that the 

built mathematical model coefficients for predicting the GRG are insignificant. Additionally, abrasive wear is noisy, 
complex and non-linear phenomenon. Thus, linear regression model cannot handle these behaviours of abrasion.  Using 
the developed mathematical model, corresponding values for the GRG were obtained and compared with the actual 
GRG values as presented in Figure 7. As seen from the figure, the observed values seemed to mimic the actual values 
but with less accuracy.  
 

 
Fig. 7 - Comparison of the actual and observed GRG values 

 
5. Conclusion 

Taguchi based grey relational analysis (GRA) for multi-objective approach was used in this paper for optimization 
of wear rate of reinforced polytetrafluoroethylene (PTFE) composites. Findings of the study were summarized as 
follows: The study proposed an orthogonal array hybridized with GRA in order to optimize the multiple objectives of 
volume loss as well as specific wear rate of reinforced PTFE composites. Experimental findings indicated that abrasive 
wear rate of PTFE composites was greatly influenced by grit size, load, sliding distance as well as sliding speed. The 
GRA converted the multi-objectives namely volume loss and specific wear rate into a response. The optimum 
combination of parameters of grey relational grade (GRG) for abrasive wear rate of reinforced PTFE composites was 
determined to be load of 6 N, grit size of 1000 mesh, sliding distance of 45 m and sliding speed of 0.04 ms-1. According 
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to the analysis of variance of GRG, it was found that SiC grit size with 76.63% exerted the biggest impact on abrasive 
wear of PTFE based composites, followed by sliding distance with 16.55%, sliding speed having 6.14% and load with 
least exertion of 1.40%. Confirmation tests conducted revealed an improvement of 21.93 % in GRG from 0.7990 for 
initial design parameter combination (L2G2D3S1) to 0.9742 for the combination of optimal parameters (L2G1D2S1). 
The mathematical modelling of the GRG revealed a fair agreement of 63.09 % between the actual and the observed 
values of GRG.  
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