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ABSTRACT

The advent of Field Programmable Gate Arrays (FPGA) has started a new field of

malleable processors. Which is FPGA-based processor whose architecture can be

changed as required. These tailor-made architectures make malleable processors ten to

one hundred times faster than CPU-based processors for the same application. Based on

the concept of COTS (Commercial off the shelf) various available components and

malleable architectures were studied. A few malleable processors were designed and

studied for the requirements put forward by Phillips Laboratory. One architecture is

proposed for further study and making a hardware copy of it. A malleable processor

similar to the proposed one is designed and manufactured by Great River Technologies,

for which some programming in VHDL is done as a part of this research.
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Chapter 1

Introduction

The concept of malleable hardware using FPGAs and VHDL offers immense

untapped possibilities primarily in the field of digital electronics. FPGAs are

programmable chips that can be programmed in VHDL for specific tasks, and run much

faster than a general-purpose microprocessor for the applications that can be parallelized

or pipelined. In practice, the speedup is 10 to 1000 times the average microprocessor,

which is comparable to supercomputer performance.

This new method drastically changes the programming methodology used for

programming microprocessors. So far, the programming for normal microprocessors

meant that execution of instructions would be sequential, but FPGAs are quite different in

that the "hardware" can be changed. This means that the FPGA programmer designs

application specific hardware. The hardware can be described by the designer in many

different ways, one of which is a hardware description language (HDL). Two HDLs are
1



widely used: Verilog HDL and Very High Speed Integrated Circuit (VHSIC) Hardware

Description language (VHDL).

The primary goals of this research were to do a study of malleable architectures

already designed, manufactured, and tested by other institutions and then to propose one

or more candidate architectures for use by Phillips Laboratories. The chosen architecture

was implemented physically by Great River Technologies (CRT), a consulting firm near

Phillips Laboratories. Since programming the architecture is a formidable task, the

software development process is discussed in this report.

To achieve the stated goals, we decided to study common computer architectures

from "Computer Architecture - A Quantitative Approach" [1] written by Hennessy and

Patterson. The same book also discusses the different methods of quantizing the

performance of a machine, which could be used to compute performance of malleable

machines with some modifications. Equipped with the knowledge of computer

architecture, the next logical step was to study currently available malleable machine

designs. The study focussed primarily the Splash-2 and Programmable Active Memory

(PAM) machines. These two are very different architectures and have been demonstrated

to be highly effective in solving computationally intensive problems. After studying these

architectures, we started designing potential architectures that would meet the constraints

placed by Phillips Laboratory. At the same time information on different ways of

optimizing digital circuits was gathered from "Synthesis and Optimization of Digital



Circuits" written by G. De Micheli [2]. These optimization techniques could be used to

design software for a malleable processor.

In the second chapter of this thesis, a survey is given of programmable devices

available in the market and how they are used in malleable machines. The available

programmable devices support a wide range of applications. FPGAs by Xilinx and Altera

were studied. However, FPGAs are not the only programmable parts in a large malleable

system. Since the interconnections between different programmable logic devices may

also need to be programmable to achieve maximum flexibility. An example of such a

reprogrammable interconnect device is Field Programmable Interconnect Devices (FPID).

Chapter 2 further discusses existing and functioning malleable architectures such as

Splash 2 and PAM. Splash 2 and PAM are well tested architectures and are used as one of

the basis of this research. The signal processing done on malleable machines is also

studied as the final application of this project is primarily for image processing.

The third chapter describes the system requirements presented by Phillips

Laboratory. The preliminary architecture proposed by Phillips Laboratory is also

reviewed. A few probable and improved architectures that meet the constraints are

introduced in this chapter. In this chapter, only conceptual designs are discussed, without

discussing the specifications such as which programmable devices would be used in the

final design.



The fourth chapter looks into the details of the architectures proposed in chapter

three and discusses the pros and cons of different architectures at the physical level. This

chapter also discusses an architecture proposed by Phillips Laboratory with some added

improvements that are based on newer interconnect devices. At the same time, an attempt

is made to achieve a balance between the unprogrammable programmable connections

between FPGAs and memory.

The fifth chapter deals with a software example that could be used on a Malleable

Signal Processor. The malleable signal processor is designed as an intermediate stage

between sensors that take pictures of the outside world and a much larger fusion

processor that is intended to make sense out of these pictures. Thus, the processing that

takes place in a malleable signal processor is very low level, such as non-uniformity

correction and Region-of-interest extraction. The region-of-interest algorithm has been

synthesized, simulated, and tested in the experimental Malleable Signal Processor

(MSP-0) designed by Great River Technologies.

The sixth chapter is the summary detailing achievements of the research and

future possibilities for development.



Chapter 2

Background

In this chapter, a survey is given of programmable devices available in the market

and how they are used in malleable machines. The available programmable devices

support a wide range of applications. FPGAs by Xilinx and Altera are studied. However,

FPGAs are not the only programmable parts in a large malleable system. Since the

interconnections between different programmable logic devices may also need to be

programmable to achieve maximum flexibility. An example of such a reprogrammable

interconnect device is Field Programmable Interconnect Devices (FPID). This chapter

further discusses existing and functioning malleable architectures such as Splash 2 and

PAM. Splash 2 and PAM are well tested architectures and are used as one of the basis of

this research. The signal processing done on malleable machines is also studied as the

final application of this project is primarily for image processing.



2.1 Available Building Blocks

2.1.1 FPGAs

Mainly two types of FPGAs are available in the market: antifuse-based FPGAs

and SRAM-based FPGAs. In antifuse-based FPGAs, programming is done by melting

antifuses with high voltage. This process is irreversible so that this programming is

permanent.

SRAM-based (Static Random Access Memory) FPGAS are programmed after

each power up by downloading a binary file, which turns ON or OFF the SRAM

switches, which in turn connect or disconnect different types of logic elements and I/Os

of the FPGAs. SRAM-based FPGAs can also be programmed whenever the need arises

during an operation. In this study, we have concentrated only on SRAM-based FPGAs

because they are continually malleable.

2.1.1.1 Altera

One of the leading manufacturers of SRAM-based FPGAs is the Altera

Corporation. The largest capacities FPGAs produced by Altera are their FLEX lOK

devices as shown in Figure 2.1. These devices are important to this research mainly

because of their size, which varies from 10,000 gates to 250,000 gates. FLEX devices are



based on reconfigurable CMOS SRAM elements. FLEX stands for Flexible Logic

Element MatriX, which comprises logic elements (LE), embedded array blocks (EAB)

and interconnections. The 1/0 Element (IDE) that connects a flexible logic element to the

outer world is also programmable.

The gate-level architecture of the FLEX lOKis based on that of embedded gate

arrays. Embedded gate arrays apply normal binary logic using the same traditional "sea of

gates" architecture just as standard gate arrays. The difference is that embedded gate
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Figure 2.1: Altera FLEX lOK Device Block Diagram.



arrays have dedicated areas on the silicon to implement large Redefined functions. This

approach increases speed and reduces required die area of a particular function. The

possible drawback of embedded gate arrays is that it rules out customization and

programmability. This disadvantage is overcome by making the embedded array block a

memory block with SRAM-based interconnects. Also, in FLEX lOK devices, two

primary building blocks, LB and BAB, are programmable which in tum makes the whole

chip programmable.

Altera also provides BPROM (Electrically Programmable Read Only Memory) to

configure FLBXIOK devices upon power up, which can be used for a stand-alone design.

The configuration time for FLEX lOK devices is less than 200 ms. The short time

required for reprogramming enables the designer to reconfigure the device during system

operation.

"FLEX lOK devices contain an optimized microprocessor interface that permits

the microprocessor to configure FLEXIOK devices serially, in parallel, synchronously,

asynchronously. The interface also enables the microprocessor to treat the FLEXIOK

device as a memory and configure the device by writing to a virtual memory location,

making it very easy for the designer to reconfigure the device." [8]



2.1.1.2 Xilinx

The other leading SRAM-based FPGA manufacturer is Xilinx. The Logic Cell

Array (LCA) architecture of Xilinx contains three primary programmable parts;

Configurable Logic Block (CLB), Input/Output Block (lOB), and interconnections as

shown in Figure 2.2. CLBs are basic elements that provide logic functionality to the user.

lOBs connect internal paths of a chip to package pins. Interconnects provide

programmable routing pathways for data movement between inputs and outputs of CLBs

and lOBs in the chip.

The Logic Cell Array architecture is built around CLBs, which functionally

constitute the brain cells of Xilinx FPGAs. CLBs have two function generators each with

four inputs and a couple of D flip-flops. Function generators can be accessed separately

by logic design tools, which improves usage, as most functions have four or less

combinatorial inputs. A larger function can be implemented by using a third function

generator, which combines the results of the first two function generators with an extra

input H 1.

2.1.2FPIDS

Another important programmable member for a malleable signal processor is the Field

Programmable Interconnect Device (FPED). For small system implementation, one or two

FPGAs are enough and the interconnections between them can be static. However,
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for large and malleable function implementation when more then two FPGAs are needed,

static interconnect places a heavy load on placement and routing resources of the FPGAs

and quite often requires the helping hand of FPE)s.

FPIDs have an SRAM-configured routing structure, and they are completely

prefabricated, dynamically reconfigurable devices, which are reconfigured the same way

as SRAM-based FPGAs. These devices are used to interconnect programmable logic

devices. The number of pins on an FPID could be around 1,000 pins, so if efficiently

used, a few such devices are enough on a single circuit board.

An FPID does not have any logic capacity; therefore, the exclusive use for an

FPID is to interconnect its I/O pins arbitrarily. This feature combined with a large number

of I/O pins make the FPIC an ideal device for large malleable architecture design with

FPGAs. For example, a chip with N I/Os requires three chips with 2/3 the I/Os to match

the flexibility [6]. FPIDs are specifically designed for interconnections; therefore, its

propagation delay is much smaller than that in a FPGA. For example the propagation

delay in Aptix FPID is 4.5 ns; whereas the delay for a Altera FPGA is 14 ns.

2.2 Implemented Architectures

Many FPGA-based architectures have been proposed and manufactured. In this

discussion, we will concentrate on multi-FPGA architectures involving high bandwidth

for data transfer. These generally have a one-dimensional array of FPGA or a

11



two-dimensional array of FPGAs. The one-dimensional array is ideal for pipelining

applications, whereas a two-dimensional array can be used for parallel processing

applications as well as for pipelining applications.

2.2.1 Splash-2

Splash 2 is the best-known one-dimensional array architecture [3]. Even though

the one-dimensional array of Splash-2 is hardwired, the programmable interconnection

are provided for data transmission between FPGAs that are out of the sequence of the

array on the board.

The system level architecture of Splash 2 is shown in Figure 2.3. Splash 2 is

attached to a microprocessor that controls programming and data transfer. Splash 2 is

made-up of two types of boards. The Interface Board is responsible for interfacing

Optional
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External

Input Array Board 1

Array Board 2
SIMD

Interface

Board

SBusSBus

Rbus

Array Board n
Optional

External

Output

Figure 2.3: Splash System Level Architecture.
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Splash 2 with a microprocessor and the Array Board is a programmable logic processing

board.

The two fundamental modes of computation supported by the Splash 2

architecture are SIMD (Single Instruction Multiple Data) mode and linear mode. The

programmer, who is using Splash 2 as a SIMD machine, can broadcast data through the

SIMD bus to each array board simultaneously. The XO on an Array Board can then

broadcast the data to all other FPGAs on that board through a crossbar switch. This is

parallel processing at the system level.

If the programmer views the machine as having a linear data path, then the SIMD

bus from the Interface Board can be used to transmit data to the FPGA XO of the first

Array Board. Further data is moved through the linear datapath of one Array Board and

transmitted to the next Array Board. The last Array Board transmits the data to the

Interface Board through its last FPGA in the linear data path.

The above two data paths need not be mutually exclusive. A mix of these two is

not an unlikely scenario as all busses are programmable and an application-specific data

path can be programmed.

13



2.2.1.1 Interface Board

The primziry functions of the Interface Board are SBus control and data transfer,

processing the data and preparing it for an Array Board, receiving data from an Array

Board and processing it for further interpretation, and generating the system clock. Figure

2.4 shows the Interface Board architecture. Address (SA) and data (SD) of the host bus

(SBus) are both buffered. The host address bus SA[2:24] is buffered and decoded on the

Interface Board for further use. The host data bus is gated and buffered to drive the

memory data bus of the Array Board bank.

The clock can be programmed to different frequencies by the host. The clock

circuit can be programmed to stop, single cycle, or run for a fixed number of cycles. This
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Figure 2.4: Interface Board Architecture
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is helpful in the process of debugging programs. The clock can also be programmed by

user-defined logic that is loaded in the Xilinx 4010 XL or XR. The host address bus (SA)

is decoded and supplied to the Slave Control, which generates read and write signals for

the Interface Board in response to the SBus slave cycle. User-programmable FPGAs XL

and XR provide the interface between the DMA channels and the backplane bus. Channel

B and C are controlled and the 36-bit SIMD bus is driven by XL. XR controls Channel A

and can receive data from or transmit to the 36-bit RBus. Output registers of XR decide

the direction of data transfer.

2.2.1.2 Array board

The Array Board of the Splash 2, as shown in Figure 2.5, has seventeen Xilinx

XC4010 FPGAs (XO to XI6) chips as the logic processing elements. A 256 K x 16-bit

memory is connected to each FPGA with a 16-bit data path. XO is the control chip that

does most of the housekeeping on the Array Board. The other sixteen processing elements

XI to X16 are connected linearly by the 36-bit wide data path. XI to XI6 are also

connected with the crossbar by the 36-bit wide data path.

The crossbar is composed of nine 4-bit Texas Instrument SN74ACT8841crossbar

chips. Each crossbar chip can be loaded by eight different interconnection configurations,

which can be changed whenever required in effectively one clock cycle. The crossbar

allows the programmer a great deal of flexibility.

15
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The housekeeper FPGA XO controls which program should be loaded in a

crossbar chip by a 3-bit connection. The XO is also responsible for broadcasting data

received from the SIMD Bus to other processing elements through the crossbar.

2.2.2 PAM

The second design of interest to this research is a two-dimensional hard wired

array of FPGAs. The two dimensional array is useful in applications that are huge and

would not fit in a single FPGA. An implementation of PAM (Programmable Active

Memory) [4] is shown in Figure 2.6. All interconnections are hard wired and each FPGA

is connected to four FPGAs around it. PAM allows implementation of very large

functions as well as functions that can be pipelined. The drawback of this architecture is

that it has hard wired interconnections, which reduces the flexibility, but signal

16



propagation time is much less for a hard wired connection than a programmable

connection.

DECPeRLe-1 is a programmable machine designed by Digital Equipment

Corporation, and based on PAM architecture, which is shown in the Figure 2.6.

DECPeRLe-1 is being used at as many as a dozen scientific locations world wide.

In the above the DECPeRLe-1 architecture of a 4 x 4 matrix of logic elements

(FPGA XC3090) is the logic core of the machine. Each logic element has four 16-bit

wide I/Os named E, W. N. and S. which connect FPGA to its adjoining neighbors. There

FIFOs
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Figure 2.6: PAM Architecture.
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is one 64-bit bus in each of the E, W. N. and S direction. This bus divides into four 16-bit

buses and are shared by all four logic elements of the corresponding row or column.

The amount of cache RAM available to DECPeRLe-1 is 4MByte. E, W. N. and S

each have 256 K x 32bit RAM R attached to it through Switch FPGA S. The address to

RAM is supplied by two Controller FPGAs C, as shown in Figure 2.6.

18



Chapter 3

System requirements and
Architecture Tradeoffs

3.1 Design considerations

Phillips Laboratory wanted to acquire or build a generic malleable processor

capable of meeting most digital image processing and passive sensor subsystem control

requirements. A wide range of architectures were considered in this study and several

candidate solutions were proposed that can perform specific applications such as

non-uniformity correction and region-of-interest operations. The architecture

recommended by this study was selected based on hardware simplicity and application

friendliness.

3.2 Pros and Cons

The need for a malleable processor arises from many different existing realities.

First of all, the advent of programmable chips has made designing malleable circuits

19



possible. Using available FPGAs and FPE)s, a one million gate-equivalent programmable

hardware system is feasible.

Secondly, it is desirable that the system be highly flexible. All projects have

deadlines and most large projects have a reasonably large portion that remains undecided

until the project approaches its final stages. At this type of critical juncture, use of

malleable hardware is a logical and feasible solution.

Thirdly, interfacing two systems can become a major problem, which needs a

quick solution. Traditionally microprocessors have been used to meet the time-to-market

and final product flexibility requirements. In many cases this solution may not meet

performance constraints and lacks the concurrency possible in a hardware design.

Therefore in a typical design process, the overall design is partitioned into hardware and

software components. An interface is defined and the design process continues along two

parallel paths. Sometime later, the software and hardware components must be integrated.

Problems usually develop at this point because of interface misinterpretation or

partitioning that cannot meet design requirements. This influences the hardware, the

software and the schedule. If the hardware design is realized in programmable logic, the

hardware can be manipulated as easily as the software using hardware description

languages such as Verilog and VHDL.

Fourthly, microprocessors are general-purpose devices and execute instructions in

series. Contrary to that, parallel execution of instructions is possible in specially designed

20



hardware. A malleable processor can perform the iterative operations that consume

excessive CPU time.

Fifthly, the malleable processors are typically 10 to 1000 times faster than a CPU

when executing applications that can be parallelized or pipelined, because special purpose

hardware can be programmed in the malleable processor. Since the malleable processor in

the present project will be used for processing signals from sensors (including images), it

has been designated the Malleable Signal Processor (MSP).

3.2.1 Specifications of the MSP

The Phillips Laboratory MSP effort involves the development of a generic

processor capable of meeting most digital image processing and passive sensor subsystem

control requirements. Figure 3.1 describes all the peripheral connections to the MSP. The

MSP will interface to at least one neuromorphic, two-waveband sensor with special

cryogenic analog front-end processor. The MSP will provide an electrical interface to

gather raw and preprocessed digitized data, and it will supply clocks and biases for this

sensor. The performance of the MSP is based on the ability to support several channels of

input data. The capability of data throughput in each of five channels is based on the rate

required to support a 512 X 512 sensor, digitized to 16 bits, operating at 100

frames/second. The outputs of the MSP are primarily five fiber-channel interfaces, which

have a theoretical transport capability of 1.2 gigabits/second each, but in fact each operate

at a more modest rate. These fiber-channel interfaces are viewed as video-on-demand

21
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portals to the MSP. The system control interface between the MSP and ASTP system

integrator's command and data handling computer is a high-performance Myrinet (gigabit

Local Area Network). Most commands issued from the fusion processor are through the

Myrinet interface.

Software development on the MSP is limited primarily to drivers for the imaging

sensors, fiber-channel, and Myrinet interfaces. Software algorithms will be reviewed at a

level higher than the coding level, although non-uniformity correction and bad pixel

removal may be performed in the 'stock' software that comes with the MSP. Tracking and

stabilization, as well as other algorithms will be studied for implementation on the MSP,

but no plans for complete algorithm development in a ready-to-use form are planned. The

console processor interface and support requirements will be defined, and a user's guide

based on the hardware and software developed will be prepared to guide the integrator in

his own software development exercises.

It is expected that the integrator will develop the application code, including the

operational flight program, for the MSP, mostly concentrated within the QC40 (a digital

signal processing subsystem). Since the MSP is itself under development, it is minimally

expected that the integrator would work closely with the MSP development team to

insure its compatibility with the integration effort.
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3.2.1.1 The MSP reconfigurable core

A million-gate reconfigurable processor will be developed for real-time embedded

processing. This is the heart of the MSP and enables it to interface sensors to the fusion

processor. Though primarily intended for data mapping and routing, the MSP

reconfigurable core is capable of performing potentially several billion operations per

second on the data for simple time-intensive operations such as gain and offset correction,

gamma circumvention, etc.

3.2.1.2 The Quad-C40 (QC40).

The QC40 combines four TMS320C40 processors in a tightly-coupled

multiprocessing configuration to support local floating-point processing requirements.

Interestingly, the QC40 can support approximately 120-150 megaflops (MFLOPS) and up

to 500 operations per second (MOPS). The primary control of the QC40 is performed

through a VME backplane.

3.2.1.3 Fiber-channel interfaces.

The primary interface for real-time data for the fusion processor and the system

command and data handling processor (CDHP) is a set of five fiber channel interfaces.

The information presented at these fiber channel interfaces is configured through

commands issued to the MSP via the Myrinet interface.
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3.2.1.4 Myrinet Interface.

The Myrinet may be thought of as a powerful gigabit local area network (LAN). It

is to be used as the primary command channel for the control of the passive sensor

subsystem (PASS).

3.2.1.5 Console Processor.

The console processor will be a general-purpose personal computer or Unix-based

computer for monitoring and providing overall control of the MSP, including FPGA

personalization and calibration coefficients. The console processor arbitrates test and

calibration processes.

3.2.1.6 Analog supplies.

A set of manually adjustable power supplies is provided as a part of the MSP for

convenience to provide biases to sensors. A total of eight power supplies are bussed to all

sensor interfaces ports.

3.3 System Requirements

3.3.1 Flexibility

Flexibility is inherent in any design using FPGAs, but this intrinsic flexibility

might be restricted if the architecture does not take the application requirements into

consideration. In order to have maximum flexibility, many architectures were considered
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in this study and their flexibility were compared with each other. The flexibility was

classified into two types as described below:

3.3.1.1 Local (module level).

Module level flexibility may be defined as the number of programmable

interconnects available in the path of data-flow within a given module. The path of data

begins with the wide area surveillance sensor and proceeds through the FPGA and then to

memory and then to another FPGA before being output. Figure 3.2 shows an architecture

with 100 % module level flexibility. In the MSP design, 100 % module level flexibility is

not required because the planned applications for portions of the modules are predefined.

Adding very high degree of flexibility would slow down the flow of data through the
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3.3.1.2 Global (inter-module).

At the global level, flexibility may be defined as the number of programmable

interconnects available for data transfer from one module to another. Figure 3.3 shows the

way one could have 100 % global flexibility, which could overlap with some module

level flexibility. 100 % flexibility is not practical even at the global level since latency of

the processing would be increased significantly. However, a moderate amount of global

flexibility is prudent since large logic functions may exceed the capacity of a single logic

block and it may be necessary to cascade multiple blocks. These mega functions probably
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will change, even after the final version of MSP is made, in accordance with the received

results of the processed data.

3.3.1.3 Bit and Region-of-Interest Operations.

One of the motivations behind designing the MSP is image/data processing. This

image/data processing will be bit-level operations such as non-uniformity correction and

bad pixel removal and global operations such as region-of-interest as well as tracking and

stabilization operations.

3.3.1.4 Required Performance

100 512x512 pixel frames/second is the necessary throughput. This requirement

puts a limit on the minimum required pixel processing rate to 512x512x100 = 26.21 M

pixel/second.

3.4 Candidate Architectures

Many different architectures were considered throughout this study. The

architectures were evaluated on the basis of criteria set up in the previous two chapters. A

few of the winners are discussed here.

Before going further, let us introduce the architecture for MSP as suggested by

Phillips Laboratory. In the architecture of Figure 3.4, the input logic blocks collect the wi-
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de area surveillance sensor data for processing. These logic blocks have connections with

memory and other input logic blocks through interconnect devices as shown in Figure

3.4. Output logic blocks can access data stored in memory, or data can be supplied to

them directly by input logic blocks. Each input has a 100-pin connection to a wide area

surveillance sensor and each output has a 30-pin connection to a fiber channel.

The starting point of this research was to understand microprocessor and system

design from [1] and [2]. Further research on malleable processors was done by studying

architectures such as Splash [3], PAM [4], EVC [5] and the architecture proposed by

Phillips Laboratory. Incorporating the prerequisites with these architectures gave rise to

many different options, which were more or less global solutions (i.e. solution for the

whole problem that includes all five channels). PAM is a good example of a global

solution. Additional study of the problem led us to consider the strategy of divide and

conquer. Breaking up the problem into smaller modules and designing them with

different amounts of flexibility gives a basic structure to the whole problem. Connecting

these modules in a different fashion, as one would put tiles on a floor, produced a wide

range of architectures, some of which are discussed in later chapters. Breaking up

problems into smaller modules also helps in designing a stacked MCM (if needed for a

future implementation) by making a module on one or two traditional MCMs. Then the

interconnections between modules can be done through the outer wall of the stack.
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3.4.1 Module-1.

The design shown in Figure 3.5 is the simplest one. The input data comes from

the wide area surveillance sensor to the input logic block, which processes the image for

bit-level operations. Then the image is stored in memory or is passed to the output logic

block. If the image is stored in memory the output logic block can access data as needed.

The output logic block primarily processes each image at the region level, and performs

complex functions such as filtering and region-of-interest operations.

Module-1 is an isolated module. This architecture does not permit any

communication with other neighboring modules. This may also mean that the user's

desire to have fewer number of sensors and more processing in the MSP would not be

feasible. In short, the flexibility for the programmer and future changes is not offered by

this architecture.
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On the other hand, the primary advantage of Module-1 is its simplicity. Module-1

is very simple to build and the data flow is simple to manage. If the application is not

computationally demanding, then this architecture is ideal. Further, since the memory is

accessible by both the input and output logic blocks, a dual-port memory will be

necessary.

3.4.2 Module-2.

A little refinement of Module-1 results in Module-2 shown in Figure 3.6.

Module-2 has the same input logic block, memory, and output logic block connections,

except one additional connection is provided to the input logic block and the output logic

block. This extra connection provides the software designer an added flexibility but at the

same time adds complexity for both the hardware and software designers.

The interconnection between different modules allowed by Module-2 permits the

design of an integrated system, which can effectively have one million gates for one

application. Using Module-2, one can pipeline data to hardwired adjacent modules or

even use a FPID and pipeline the data as the requirement arises. Further, Module-2s can

be cascaded to build a much larger MSP if required.

Because the memory is not directly accessible from outside a given module, all

communication takes place through logic blocks only. Since the memory is accessible by
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both logic blocks, a dual-port memory would be required. A MSP based on Splash is very

easy to design using this Module-2 architecture. This will be discussed later.

3.4.3 Module-3.

Module-3 offers the maximum flexibility to a composite architecture designer and

FPGA programmer. Figure 3.7 shows the architecture of Module-3, whose input logic

block takes data from a wide area surveillance sensor. The input logic block processes the

image data and prepares it for the next stage. The next stage in MSP design using

Module-3 could be the output logic block of the same module or memory or any other

logic block of the MSP. Any logic block chosen by the MSP designer could access the

data stored in memory. The data could be passed to fiber channels by any other output

logic block. This flexibility in accessing memory requires some sort of memory

management and might necessitate a ten-port memory controller for the MSP.
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The main disadvantage of Module-3 is its complexity, which also brings out the

primary advantages of the module. Due to added different types of intra-module as well

as inter-module connections, the netlist becomes complex. To use the module at its fullest

potential, designing a multi-port memory controller and the use of a FPED would be

imperative.

The advantages of this design on the other hand are numerous. The first advantage

is that one can have a design larger than two hundred thousand gate equivalent and this

mega function theoretically could occupy up to one million gates. Secondly, memory is

accessible directly by any other module, though the total number of modules that could

have this type of accessibility depends on the number of extra address lines provided in

Module-3. Thirdly, it gives the designer absolute flexibility in designing the MSP.
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Fourthly, Module-3 is cascadable just like Module-2. Fifthly, memory management could

be done hierarchically as is done in modem computers.
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Chapter 4

Derived Architectures and

Calculations

The fourth chapter looks into the details of the architectures proposed in chapter

three and discusses the pros and cons of different architectures at the physical level. This

chapter also discusses an architecture proposed by Phillips Laboratory with some added

improvements that are based on newer interconnect devices. At the same time, an attempt

is made to achieve a balance between the unprogrammable and programmable

connections between FPGAs and memory.

4.1 Module -1.

The design of Module-1 is straightforward but, since each module is isolated, an

integrated MS? is not possible. The designer simply employs five self-contained modules

for the application.
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4.2 Module - 2

Module-2 can be used as a tile with which one can design different architectures

as per requirement of the project. Two well tested arrangements are discussed in the

following sections.

4.2.1 Architecture- 1

Module-2 can be treated as a cell of the Splash architecture. Properly arranging

them using a FPID produces us a Splash with different, faster, and larger parts as shown

in Figure 4.1.

As Figure 4.1 shows, in a Splash-type design, input and output logic blocks can

work as a single connected logic block, and both of them have access to dual-port

memory. The image data is supplied by five wide area surveillance sensors to input logic

blocks. The input address/data/control bus for the wide area surveillance sensor is a

100-bit bus. The output to each fiber channel is 30 bits wide.

Input data to each input logic block can come from the wide area surveillance

sensor, a hardwired adjacent output logic block, or any other logic block of the same

MSP. Between two neighboring logic blocks d-bit wide data/control bus is hardwired.

From every logic block of MSP, an e-hit wide bus is connected to the interconnection

module.
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The interconnection module is also connected to a Quad TMC320C40, which

manages the booting as well as programming of the logic blocks and interconnect

module. Each logic block is connected to the dual-port memory through an m-bit wide

data/address bus.

4.2.2 Architecture - 2

Using Module-2, a PAM-based array of FPGAs can be used to construct a MSP,

but project requirements and availability of much larger FPGAs makes a PAM-type

design impractical. Therefore, further consideration of this type of architecture was not

pursued. We were able to produce a design shown in Figure 4.2 of an MSP where five

Module-2s are connected in a two-dimensional array. This is not exactly a PAM-type

design but it shows the possibilities presented by a modular design, which can be tiled to

produce a variety of dissirrular architectures.

In Figure 4.2 four modules are connected in a ring and the fifth is placed in the

center of the ring. All modules are connected to the interconnect block, through which the

central module can be accessed by the outer modules.

This module is not identical to PAM, because in PAM, each logic block has four

I/O busses from all four sides called E, W. N. S. and each logic block is connected to

others through these busses in a two-dimensional array. Apart from this difference, in
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the memory is placed outside the array, and no interconnect devices are used in PAM.

The requirement of five wide area surveillance sensor inputs and five separate

outputs make a two-dimensional array configuration of PAM impractical. The

two-dimensional array is ideal for implementation of mega functions using much smaller,

13,000 effective gate XILINX XC4013 FPGAs. Presently available 100,000 effective

gate ALTERA lOKlOO in a single chip is already more then seven times larger, and five

different input and output bus requirements make PAM an inefficient design for the

present application.

4.3 Module - 3

Module-3 has all the features of Module-2 and some extra added features of its own so all

architectures discussed for Module- 1 and Module-2 can be created using Module-3.

4.3.1 Architecture- 1

As mentioned earlier the major difference between Module-2 and Module-3 is

that the latter has memory accessible by logic blocks outside a given module. This change

obviously affects the memory management of MSP. An example of this is shown in

Figure 4.3.

The flexibility offered by Module-3 is well used in the above architecture, which
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is a derivation of the Splash architecture. In Splash, each FPGA has its own local memory

that is not accessible by other FPGAs. However, using Module-3, memory is made

accessible to all logic blocks through m-bit address/data lines. All other features remain

the same as in the architecture- 1 design using Module-2.

4.4 SpeciHc Implementations

Replacing all logic blocks in all architectures by Altera FLEX lOKlOOs,

interconnect devices by Aptix AX 1024, and memory by IBM dual-clock memory

IBM041810QLAB, we can achieve actual designs.

4.4.1 Architecture- 1

The architecture in Figure 4.4 is an altered version of MSP suggested by the

Phillips lab. This architecture takes advantage of larger FPIDs available in the market.

Some connections are changed to avoid FPID to FPED connections, which would waste

FPID connections and slow down the MSP. In addition, FPGA-to-FPGA connections and

FPGA-to-memory connections are through different FPIDs to avoid passing signals

through two FPIDs. However, use of multiple FPIDs in series will enable the designer to

connect any two pins of the lOKlOOs.
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The above architecture was designed as a single entity and not as a composition of

smaller modular parts. This jumbo 1,000,000 programmable gate design is not a practical

way of designing any circuit, because debugging the hardware would be a monstrous task

and a ten-port memory controller would be expensive and difficult to design.

4.4.2 Architecture - 2

Figure 4.5 shows the details of the architecture based on Splash using Module-2.

FPID- 1 and FPID-2 are in parallel to each other to avoid FPID-to-FPED connections.

This arrangement increases throughput and also increases the availability of FPID pins for

connections to FPGAs since a FPID is not connected to another FPID.

The modular design of the architecture shown in Figure 4.5 makes manufacturing

it much easier. If hardware of one module is properly debugged, then other modules can

be manufactured without much difficulty. The memory is separate for each module. This

eliminates the need for a ten-port memory and it will also simplify the software, although

data-sharing between different modules could become a cumbersome problem.

In Figure 4.5 besides having two interconnecting FPBDs, one lOKlOO is also

included with five Module-2s. This additional lOKlOO will perform the housekeeping

tasks such as loading programs, communicating with the QC40 and keeping up with the

different stages of data processing which would be done by different modules. In short,

the additional lOKlOO is a manager.
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4.5 Recommendation

This discussion leads us to a choice of architecture. What we need is, an

architecture that is flexible and can also be as fast as the technology allows it to be. These

two primary constraints gives a designer a freedom to make choices in accordance with

the application. We recommend the architecture discussed in the section 4.4.2 as it is

based on module 2 which has hardwired interconnections between different components

of it but at the same time inter-module connections are programmable. This gives a

balanced architecture that has fast intra-module interconnections and flexible

inter-module interconnections. The module-3 has been ignored here because it would

require a ten-port memory, which would be a daunting task and could end-up becoming a

bottleneck.
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Chapter 5

Software Development for MSP

Programming malleable processors is very much like designing ASIC

(Application Specific Integrated Circuit). This task could be accomplished by the

following methods:

(1) Using Hardware Description Languages such as Verilog HDL and VHDL.

(2) Graphically representing system using softwares such as COSSAP digital signal

processing development system, which allows user to enter the design at concept,

algorithm, and architecture level. Then one can convert it to the choice of HDL.

(3) Describing the system in equations and generating HDL of choice.
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(4) Programming in high level computer programming language such as C and creating

netlist from it.

(5) The old fashioned way, by connecting each and every connection manually.

Manual programming of FPGAs defeats the purpose since the FPGAs are used to

speed up the design cycle of the project and manual programming is a cumbersome and

slow process.

The software discussed and developed in this chapter was suggested by Jeff

Weaver of Maxwell Technologies, as shown in the Figure 5.1, who is in charge of the
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Figure 5.1: MSP-0 made by Great River Technologies.
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overall software design of the Malleable Signal Processor. The suggested problem for

programming was region-of-interest. The created netlist will be downloaded in MSP-0,

which is an experimental and first version of MSP.

For programming MSP we chose VHDL. This was based on my familiarity with

VHDL, our desire to be independent of the software development toolset, and the FPGAs

used.

5.1 Problem Definition

The image delivered to a channel of the MSP consists of 12-bit infrared (IR) data

arranged as a 480 (row) x 640 (column) frame. The output for the region-of-interest

(ROI) program will be the data that is in the specified ROI.

Two memory storage banks MEMA (memory-A) and MEMB (memory-B) are

connected to MSP-0 as shown in the Figure 5.1. Each memory bank can store the whole

480 X 640 frame of nonuniformity corrected data in real time. The even number frame is

stored in MEMA and the odd number frame in MEMB. In other words, IR image frames

are loaded in MEMA and MEMB in alternate manner. When MEMB is being loaded with

frame number N from the IR camera, data of frame N-1 is read and sent to the Fiber

Channel interface (which is also 12-bits). During the next cycle, the N-i-1 frame data is

loaded in MEMA and data from MEMB (frame N) is being sent to the same Fiber

Channel interface. This technique of constantly shifting the data destination between

MEMA and MEMB, which is called double buffering, permits the MSP-0 to keep up
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with real time non-uniformity correction and at the same time outputting the data to the

Fiber Channel interface.

The problem suggested to me is to design an "ROI server". The MSP-0 will have

four Fiber Channel interfaces each with a dedicated ROI server. The ROI server will

make sure that only the defined region will be sent to the Fiber Channel interface to

which it is connected. All Fiber Channel interfaces are identical except the

region-of-interest could be different and its output go to different Fiber Channel

interfaces.

5.2 ROI Algorithm

The 1 2-bit IR image is stored in the memory sequentially in a row by row

fashion. Pixels 0 to 639 of row 0 of the image are stored sequentially in the first 640

memory locations, pixel 0 to 639 of row 1 are stored sequentially in the next 640 memory

locations and so on up to 479th row.

The region-of-interest is defined by upper, left, bottom, and right as shown in the

Figure 5.2. Each of these variables provides information on the boundaries of the

region-of-interest. It is assumed that 0 Supper Bottom <479 and 0 <left Bright <640. The

ROI server does not check these conditions.

The flowchart for ROI server is shown in the Figure 5.3, which presents the big

picture of the working of the ROI server. When the ROI server is downloaded to MSP-0,
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Figure 5.2: Region-of-Interest.

the circuit requires a reset. The most important things happen when the reset is HIGH

are: MEMA is selected as the next memory for ROI server access, and the output done

(which indicates whether the circuit is ready or not for new region-of-interest processing)

is set to HIGH, implying the server is ready.

The ROI server can be used only after initial reset which sets done to high. After

reset is set to LOW, the ROI server is ready to pull out ROI data from MEMA. Setting

start to HIGH starts the process of pulling the ROI data from the memory. Variable done

is set to ZERO and the ROI boundary-marking variables upper, left, bottom, and right are

stored in a register for future use. During the same first clock tick, the starting address of
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YES
reset

NO Is (done = 1
and

(start = '!')?

YES

done <='!';

Mem_select <= ' 1';

(i.e. MEMA is selected)

1 Multiplication i

Starting
Address ^
of the ROI)

done <='!';

A

done <= '0';
Store ROI data.
1 <= left;
b <= bottom; r <=right;
Setup counters.
row_counter <= upper;
column counter <= left;

1

Compute the ROI address
vertical_offset <= 128 * upper

+ 512 * ijpper;
roi address <= vertical offset

+left;

1

next_row <= roi_address

+ 640;

NOTE

ROI server could be "reset"

from any where in the process
but before starting the first
region-of-interest for extraction,
setting "reset" HIGH is required.

YES

YE
Is row counter = b?Is column counter = r?

NO NO

roi address <= roi address + 1 roi_address <= next_row;
next_row <= next_row + 640;
row_counter <= row counter + I;
column_counter <= IT

Figure 5.3: Algorithm Implemented in VHDLfor ROI server.
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the region-of-interest in the memory is computed. At present, the starting address of the

image in both MEMA and MEMB is set to the 00000 HEX, which could be changed as

per requirements. This starting address is placed on the address bus of the memory. The

row-counter is set to upper, and the column-counter is set to left. The next address is

computed by adding one in the present address, and the address of the next row is

computed by adding 640 in the present address.

At the next clock tick, the computed next address is placed on the address bus of

MEMA and a new next address is computed by incrementing the present address by one

and the column counter is incremented by one. This process goes on until the column

counter is equal to the ROI boundary right. When the column counter is equal to the ROI

boundary left, the address of next row is assigned to the next address. A new next line

address is computed by adding 640 in the present next line address. The column-counter

is set to the ROI boundary left and the row-counter is incremented by one.

When the row-counter is equal to the ROI boundary bottom and colunm-counter

equal to the ROI boundary right, all addresses of the region-of-interest have been placed

on the address bus of the memory. The variable done is set to HIGH and MEMB would

be selected for the next access, and the ROI server waits for the variable start to go

HIGH. The cycle explained above goes on with MEMA and MEMB being accessed

alternately.
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5.3 Finer Details of Programming

The VHDL source code for the ROI server is given in appendix A. The

connections between different VHDL programs is shown in the Figure 5.4. The ROI

server needs a multiplier to find the starting address of the region-of-interest and

comparators to check whether the end of the region-of-interest has been reached or not.

These algorithms are discussed below.
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Figure 5.4: Connections of different Modules of ROI server.
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5.3.1 Shift-and-Add multiplication Algorithm

The ROI server needs a multiplier to compute the starting address of

region-of-interest. The multiplication between 640 and the ROI boundary upper is

implemented using a "shift-and-add" multiplication algorithm. A further fine-tuning of

the "shift-and-add" algorithm is done by utilizing the fact that 640 is 29 + 27, i.e. binary

"1010000000". This also means that only one addition of a 9-bit left-shifted ROI

boundary upper and 7-bit left-shifted ROI boundary upper is needed to achieve the same

effect as multiplying the ROI boundary upper with 640. Realization of this fact made

multiplication an easy task, which was performed by designing a ripple-carry adder using

a FOR loop.

5.3.2 Comparator

A  10-bit comparator was designed to compare the row-counter and

column-counter with their end conditions bottom and right respectively. The 10-bit inputs

A, and B are compared bit-by-bit, starting from the MSB and rippling the result of each

bit-comparison to the next lower significant bit comparison. After comparing the Least

Significant Bits (LSB), the result is returned. The result is 1' if the condition A > B is

satisfied; otherwise, the result is B'.

56



5.4 Simulation Results

Figure 5.5 illustrates the results of simulation of region-of-interest code. The

regionof-interest is simulated for a 3x3 pixel region of the image defined by upper = 2,

left = 4, bottom = 4 and right = 6. One could observe that after start signal is set HIGH,

done goes LOW and after every three clock cycles an eol (end-of-line) signal is set HIGH

for one clock cycle. When clothe addresses of region-of-interest are generated done goes

HIGH, indicating that the ROI-server is ready for next region-of-interest. The ROI-server

generates addresses continuously without weighting for the eol is reached or not. One

could further observe that these results are directed towards MEMA or MEMB

automatically.

IX

IX

Figure 5.5 : Simulation Results of the ROI-server.
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The ROI server was further tested by simulating it for an infrared image shown in

the Figure 5.6 (a). This image has two region-of-interest. The ROI server was simulated

with these two region-of-interest data in succession. The upper, left, bottom, and right

coordinates of the region (a) are 208, 268, 265, 357 and that of region (b) are 212, 40,

268, 125. The addresses generated by the ROI server are listed in the Appendix B. These

addresses perfectly correspond with the offset-addresses of the image. Further, the signals

eol, done, and the memory selected for data retrieval also match with the intended signal

patterns. Figures 5.6 (b) and 5.6 (c) show the regions-of-interest whose coordinates are

sent to the ROT server.
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Figure 5.6: Simulation for Infrared Image



Chapter 6

Summary, Conclusions and Future
Work

In this research, we studied malleable architectures already designed,

manufactured, and tested by other institutions and one proposed candidate architecture for

Phillips Laboratories. The chosen architecture was implemented physically by GRT. The

software development process was also discussed.

A survey of programmable devices available in the market and how they are used

in malleable machines was done. It was found that the available programmable devices

support a wide range of applications. FPGAs by Xilinx and Altera. Further,

programmable interconnect devices were studied as the interconnections between

different programmable logic devices may also need to be programmable to achieve

maximum flexibility. We also discussed existing and functioning malleable architectures

such as Splash 2 and PAM. Splash 2 and PAM are well tested architectures and were
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used as one of the basis of this research. The signal processing done on malleable

machines was also studied as the final application of this project is primarily for image

processing.

The system requirements and the preliminary architecture proposed by Phillips

Laboratory was reviewed. A few probable and improved architectures that meet the

constraints were introduced. Details of the different architectures and their pros and cons

were discussed. At the same time, an attempt was made to achieve a balance between the

unprogrammable programmable connections between FPGAs and memory in these

architectures and a balanced architecture was proposed for physical copy.

A software example that could be used on a Malleable Signal Processor was

designed and sent to Phillips Laboratories for testing. The VHDL source code was written

to implement a region-of-interest function between the MSP and a much larger fusion

processor that is intended to make sense out of these pictures. This region-of-interest

algorithm has been synthesized and simulated before sending it for testing to the Phillips

Laboratories.

Malleable systems provide considerable improvement in performance for many

types of applications. With conventional hardware, change or improvement in hardware

architecture design without replacing it is not possible. Using malleable processors for the

same application would give the designer flexibility needed for future changes at a cost of

lower clock speed. The primary reason for lower clock speed in FPGAs than an
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equivalent feature size microprocessor is that the signals traveling through nets of FPGAs

must pass through slow switches of the interconnection matrix which connect two logic

elements of FPGAs are not required in microprocessors. Furthermore, the number of

equivalent gates that could be crammed on a single chip is much less in malleable chip

than on conventional CMOS chip (the ratio is about 1:8. Altera FLEX1OK250 compared

with Pentium-n). In the most of the cases this drawback is overcome by the application

specific nature of the downloaded designs, parallel and/or pipelined architectures, and

changing the architecture of malleable processor with change in applications.

Present day FPGAs are extremely expensive compared to microprocessors (about

4.5 times more expensive per-gate). The reason behind such a high price is that the FPGA

feature size is behind present day technology by 1 to 2 years and they are not sold in as

large quantities as microprocessors.

Another important consideration for future development of malleable processor is

the Moore's law, which states that circuit density of semiconductors has and will continue

to double every eighteen months. When Moore's law bottoms out due to either

economical reasons (Ross 1995) and/or due to the limitations imposed by the realities of

physics, the feature size would stop shrinking and the improvements in performance of

microprocessor will be based less on decreased feature size and more on improved

architecture. This emerging scenario clearly indicates that changeable or malleable

hardware has potential of producing an answer to future needs. The combination of a
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simple microprocessor with a malleable processor is a solution to the present problem of

microprocessors becoming obsolete every five years.

The MSPs designed in previous chapters are for generic processing of specific

inputs. As the previous discussion clearly shows that design of an MSP is a balancing act,

there are no clear winners for MSP. Timing, flexibility, hardware and software

complexity, power consumption etc. are factors one has to ponder to get a balanced

design representing global minima. The architecture shown in Figure 4.1 using Module-2

is the closest to the global minima. This architecture is not extremely complex, as is the

case with the architecture in figure 4.3, which requires a ten-port memory. Unlike

Module-1, Module-2 is flexible and the power consumption remains nearly the same as

that of Module-1. The recommended design also has a balance between direct

FPGA-to-FPGA connections and connections through FPEDs which gives the

programmer complete control over data transfer for processing. Further, designing a

module, replicating it, and connecting them as tiles to achieve the recommended

architecture is an easy and efficient way of manufacturing the MSP.

Malleable systems show a lot of promise but at the same time a lot is left to be

done to fulfill the promise. Pushing the concept of having a balance between a malleable

system and present day microprocessors in a computer further, inclusion of

reprogrammable functional units would provide very high bandwidth application-specific

coprocessors in a application-generic manner. This amalgamation can deliver custom

designed accelerators for non-predefined functions and for critical applications can
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provide custom hardware which otherwise will not be available due to its lack of

cost-effectiveness.
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Appendix A

Program Listing

In this appendix VHDL code generated for the region-of-interest server are

listed.

-- roi.vhd

-- Source code by Amiya A. Chokhavala
-- Region-of-interest server.
-- The region-of-interest is defined by the inputs ROI_U, ROI_R,
-- ROI_B, and ROI_L based on present memory access cycle ROI server
-- will put address on address_A or address_B and fetch the data
-- from data_A or data_B.
— After start signal is set HIGH, done goes LOW and after every

-- three clock cycles an eol (end-of-line) signal is set HIGH for one
-- clock cycle. When all the addresses of region-of-interest are
-- generated done goes HIGH, indicating that the ROI-server is ready
-- for next region-of-interest. The ROI-server generates addresses
-- continuously without weighting for the eol is reached or not.

library ieee;
use ieee.std_logic_1164.all;

entity roi is
port {

ROI_U

ROI_R

ROI_B

ROI_L
data_A

data_B
start

reset

elk

address_A
address_B

data_out

eol

done

)  ;

end roi;

in std_logic_vector(8 downto 0)
in std_logic_vector(9 downto 0)
in std_logic_vector(8 downto 0)
in std_logic_vector(9 downto 0)

:  in std_logic_vector(11 downto
:  in std_logic_vector(11 downto

in std_logic;
in std_logic;
in std_logic;

out std_logic_vector(20 downto 0)
out std_logic_vector(20 downto 0)
out std_logic_vector(11 downto 0)
out std_logic;
out std_logic

0) ;

0) ;
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architecture structural of roi is

component select_mem
port (

signal Mem_select
signal data_inA
signal data_inB
signal address_in

signal data_out
signal address_outA
signal address_outB

end component;

component save_ROI
port( signal ROI_upper

signal ROI_left
signal ROI_bottom
signal ROI_right
signal new_ROI
signal reset
signal elk

signal upper
signal left
signal bottom
signal right

end component;

component add21
port( signal data_inA

signal data_inB
signal output

end component;

component incr_21
port( signal data_inA

signal output
end component;

component addlO
port( signal data_inA

signal data_inB
signal output

end component;

component add640
port( signal data_in

signal output
end component;

component incr_10
port( signal data_inA

signal output
end component;

component cmplObit
port (

in std_logic;
;  in std_logic_vector(11 downto 0)
:  in std_logic_vector(11 downto 0)

in std_logic_vector(20 downto 0);

out std_logic_vector(11 downto 0);
out std_logic_vector(20 downto 0);
out std_logic_vector(20 downto 0)

in std_logic_vector(8 downto 0);
;  in std_logic_vector(9 downto 0);

in std_logic_vector(8 downto 0);
in std_logic_vector(9 downto 0);

:  in std_logic;
:  in std_logic;

in std_logic;

:  out std_logic_vector(9 downto 0);
out std_logic_vector(9 downto 0);

:  out std_logic_vector(9 downto 0);
:  out std_logic_vector{9 downto 0) )

in std_logic_vector(20 downto 0);
in std_logic_vector(20 downto 0);
out std_logic_vector(20 downto 0)

in std_logic_vector(20 downto 0);
out std_logic_vector(20 downto 0) )

in std_logic_vector(9 downto 0);
in std_logic_vector(9 downto 0);
out std_logic_vector(9 downto 0)

in std_logic_vector(20 downto 0);
out std_logic_vector(20 downto 0) )

in std_logic_vector(9 downto 0);
out std_logic_vector(9 downto 0) )
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A, B : in std_logic_vector{9 downto 0);
output : out std_logic );

end component;

component Generate_addr
port (

signal ROI_upper
signal ROI_left

signal left

signal start
addresses

in std_logic_vector{8 downto 0);
:  in std_logic_vector(9 downto 0)

in std_logic_vector(9 downto 0);

in std_logic; -- starts generating

signal reset

signal compl
signal comp2
signal Mem_select :
signal Ccounter
signal Rcounter
signal line_address
signal address

signal v_offsetl :
signal v_offset2 :
signal h_offset
signal total_offset
signal second_line

signal incr_address
signal incr_column

signal add640address
signal incr_row
signal data_in
signal data_out
signal eol
signal done
signal elk

)  ;
end component;

-- based on present ROI values.
:  in std_logic;

:  in std_logic;
:  in std_logic;

out std_logic;
out std_logic_vector(9 downto 0);
out std_logic_vector(9 downto 0);
out std_logic_vector(20 downto 0);
out std_logic_vector(20 downto 0);

out std_logic_vector(20 downto 0);
out std_logic_vector(20 downto 0);

out std_logic_vector(20 downto 0);
in std_logic_vector(20 downto 0);
in std_logic_vector(20 downto 0);

in std_logic_vector(20 downto 0);
in std_logic_vector(9 downto 0);

in std_logic_vector(20 downto 0);
in std_logic_vector(9 downto 0);
in std_logic_vector(11 downto 0);
out std_logic_vector(11 downto 0);

out std_logic;
out std_logic;
in std_logic

signal compl, comp2 : std_logic;
signal Mem_select : std_logic;
signal Ccounter
signal Rcounter
signal line_address
signal address

std_logic_vector(9 downto 0);
std_logic_vector(9 downto 0);
std_logic_vector(20 downto 0);
std_logic_vector(20 downto 0);

signal u, 1, b, r : std_logic_vector(9 downto 0);

signal v_offI, v_offII : std_logic_vector(20 downto 0);
signal v_off, h_off : std_logic_vector(20 downto 0);
signal tot_off, IInd_line: std_logic_vector(20 downto 0);

signal inc_addr
signal next_row_addr

std_logic_vector(20 downto 0);
std_logic_vector(20 downto 0);
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signal inc_coluinn : std_logic_vector (9 downto 0);
signal inc_row
signal data_in
signal nexts

std_logic_vector(9 downto 0);
std_logic_vector(11 downto 0)
std_logic;

begin

done <= nexts;

U1 : select_mem
port map (Mem_select, data_A, data_B, address, data_in,

address_A, address_B);

U2 : save_ROI

port map (ROI_U, ROI_L, ROI_B, ROI_R, nexts, reset, elk,
u, 1, b, r) ;

U3 ; add21

port map (v_offI, v_offII, v_off);

U4 : add21

port map (v_off, h_off, tot_off);

U5 : add640

port map (tot_off, IInd_line);

U6 : incr_21
port map (address, inc_addr);

U7 : incr_10
port map (Ccounter, inc_column);

U8 : add640

port map (line_address, next_row_addr);

U9 : incr_10
port map (Rcounter,inc_row);

UIO : cmplObit
port map (r,Ccounter,compl);

Ull : cmplObit
port map (inc_row,b,comp2);

U12 : Generate_addr
port map (ROI_U, ROI_L, 1, start, reset, compl, comp2,

Mem_select, Ccounter, Rcounter, line_address, address,
v_offI, v_offII, h_off, tot_off, IInd_line, inc_addr,
inc_column, next_row_addr, inc_row, data_in, data_out,
eol, nexts, elk);

end structural;
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-- select_mem.vhd
-- Source code by Amiya A. Chokhavala
— When mem_select is HIGH then MEMA is enabled otherwise MEMB is
-- enabled.

library ieee;
use ieee.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity select_mein is
port (

Mein_select
data_inA
data_inB
address_in

in std_logic;
in std_logic_vector{11 downto 0)
in std_logic_vector(11 downto 0)
in std_logic_vector(20 downto 0)

data_out : out std_logic_vector(11 downto 0);
address_outA : out std_logic_vector(20 downto 0)
address_outB : out std_logic_vector(20 downto 0) ) ;

end select_mem;

architecture behavior of select_inem is
begin

selection:process(Mem_select,address_in,data_inA,data_inB)
begin

if (Mem_select = '1') then
address_outA <= address_in;
data_out <= data_inA;

else

address_outB <= address_in;
data_out <= data_inB;

end i f;

end process selection;

end behavior;

-- Generate_addr.vhd
-- Source code by Amiya A. Chokhavala
-- This is main program that does most of the house keeping and
-- keeps up with different components of ROI server.

library ieee;
use ieee.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity Generate_addr is
port (

ROI_upper : in std_logic_vector(8 downto 0);
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ROI left in std_logic_vector(9 downto 0)

left

start

reset

compl
comp2
Mem_select
Ccounter

Rcounter

line_address
address

v_offsetl
v_offset2
h_offset
total_offset
second_line :

incr_address
incr column :

:

add640address

incr_row :
data_in
data_out

eol

done

elk

)  ;
end Generate_addr;

 in std_logic_vector(9 downto 0);

:  in std_logic;

:  in std_logic;

-- starts generating addresses
- based on present ROI values.

in std_logic;
in std_logic;
out std_logic;
out std_logic_vector(9 downto 0);
out std_logic_vector(9 downto 0);

;  out std_logic_vector(20 downto 0);
:  out std_logic_vector(20 downto 0);

out std_logic_vector(20 downto 0)
out std_logic_vector(20 downto 0)
out std_logic_vector(20 downto 0)

:  in std_logic_vector(20 downto 0);
in std_logic_vector(20 downto 0);

:  in std_logic_vector(20 downto 0);
in std_logic_vector(9 downto 0);

;  in std_logic_vector(20 downto 0);
in std_logic_vector(9 downto 0);

:  in std_logic_vector(11 downto 0);
out std_logic_vector(11 downto 0);
out std_logic;
out std_logic;
in std_logic

architecture behavior of Generate_addr is

signal p_Mem_select, n_Mem_select
signal p_address, n_address
signal p_done, n_done
signal p_countR, n_countR
signal p_countC, n_countC
signal p_line_addr, n_line_addr
0) ;
signal p_data, n_data
--signal p_eol, n_eol

std_logic;
std_logic_vector(20 downto 0) ;
std_logic;
std_logic_vector(9 downto 0) ;
std_logic_vector(9 downto 0);

:  std_logic_vector(20 downto

std_logic_vector(11 downto 0);
std_logic;

begin

v_offsetl <= "000" & ROI_upper & "000000000";
v_offset2 <= "00000" & ROI_upper & "0000000";
h_offset <= "00000000000" & R0I_left(9 downto 0)

Mem_select <= p_Mem_select;
line_address <= p_line_addr;
address <= p_address;
Ccounter <= p_countC;

Rcounter <= p_countR;
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data_out <= p_data;

--eol <= p_eol;
done <= p_done;

clockiprocess(elk)

begin

if (elk'event and elk = '1') then
p_Mem_seleet <= n_Mem_seleet;
p_address(20 downto 0) <= n_address(20 downto 0);
p_line_addr(20 downto 0) <= n_line_addr(20 downto 0}
p_done <= n_done;
p_eountR(9 downto 0) <= n_eountR{9 downto 0);
p_eountC(9 downto 0) <= n_eountC(9 downto 0);
p_data <= n_data;
p_eol <= n_eol;

end i f;

end proeess eloek;

xxx:proeess(p_Mem_seleet, p_address, p_line_addr, reset, p_done,
start, ROI_upper, ROI_left, total_offset, seeond_line, left,
eompl, eomp2, p_eountC, p_eountR, iner_row, iner_eoluitin,
iner_address, add540address)

begin

n_Mem_seleet <= p_Mein_seleet ;
n_address(20 downto 0) <= iner_address(20 downto 0);
n_line_addr(20 downto 0) <= p_line_addr(20 downto 0);
n_done < = p_done;
n_eountR(9 downto 0) <= p_eountR(9 downto 0);
n_countC(9 downto 0) <= iner_eolumn(9 downto 0);
n_data <= data_in;
--n_eol <= p_eol;
eol <= '0';

if (reset = '1') then
n_Mein_seleet <= ' 1' ;
n_address <= "000000000000000000000";
n_done <= '1' ;
n_eountR <= "0000000000";
n_eountC <= "0000000000";
n_line_addr <= "000000000000000000000";
eol <= '0 ' ;

else

if ((p_done = '1') and (start = '1')} then
n_Mem_seleet <= p_Mem_seleet;
n_done <= '0';
n_eountR <= '0' & ROI_upper;
n_eountC <= ROI_left;
n_address <= total_offset;
n_line_addr <= seeond_line;

else

i f p_done = '0' then
if (eompl = '0') then
eol <= '1';
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n_countC <= left;
n_countR <= incr_row;
n_address <= p_line_addr;
n_line_addr <= add640address;

end i f;
if ((comp2 = '1') and (compl = '0')) then
n_done <= '1';
n_Mem_select <= (p_Mein_select xor '1');
n_address <= "000000000000000000000";
n_countR <= "0000000000";
n_countC <= "0000000000";
n_line_addr <= "000000000000000000000";
eol <= '1' ;

end i f;
end i f;

end i f;

end i f;

end process xxx;

end behavior;

-- add21.vhd

-- Source code by Amiya A. Chokhavala
-- The ROI server needs a multiplier to compute the starting address
-- of region-of-interest. The multiplication between 640 and the ROI
-- boundary w implemented using a "shift-and-add"
— multiplication algorithm. A further fine-tuning of the
-- nshift-and-add- algorithm is done by utilizing the fact that 640
-- is 2' + 2'', i.e. binary "1010000000". This also means that only one
-- addition of a 9-bit left-shifted ROI boundary upper and 7-bit
-- left-shifted ROI boundary upper is needad to achieve the same effect
-- as multiplying the ROI boundary uppervrith 640. Realization of this
-- fact made multiplication an easy task, which was performed by
-- designing a ripple-carry adder using a FOR loop.
-- This is implemented by using two addl2.vhd and one add640.vhd.

library ieee;
use ieee.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity add21 is
port{ data_inA : in std_logic_vector(20 downto 0);

data_inB : in std_logic_vector(20 downto 0);
output : out std_logic_vector(20 downto 0) );

end add21;

architecture behavior of add21 is

begin
addr_21_bit:process(data_inA, data_inB)
variable CARRY : std_logic;
begin
carry := '0';
for i in 0 to 20 loop
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output(i) <= data_inA(i) xor data_inB(i) xor carry;
carry := (data_inA(i) and data_inB(i)) or

(data_inA(i) and carry) or
(carry and data_inB(i));

end loop;
end process addr_21_bit;

end behavior;

-- add640.vhd

-- Source code by Amiya A. Chokhavala

library ieee;
use ieee.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity add640 is
port( data_in : in std_logic_vector(20 downto 0);

output : out std_logic_vector(20 downto 0)
end add640;

architecture behavior of add640 is
begin

addr640:process(data_in)
variable CARRY : std_logic;
variable B : std_logic_vector(20 downto 0);

begin
carry := '0';
B  := "000000000001010000000";

for i in 0 to 20 loop
output(i) <= data_in(i) xor B(i) xor carry;
carry := (data_in(i) and B(i)) or

(data_in(i) and carry) or
(carry and B(i));

end loop;
end process addr640;

end behavior;

-- compare.vhd
-- Source code by Amiya A. Chokhavala
— A 10-bit comparator was designed to compare the row-counter and
-- column-counter with their end conditions bottom and right
-- respectively. The 10-bit inputs A, and B are compared bit-by-bit,
-- starting from the MSB and rippling the result of each bit-comparison
-- to the next lower significant bit comparison. After comparing the
-- Least Significant Bits (LSB), the result is returned. The result is
-- '1' if the condition A > B is satisfied; otherwise, the result is
-- >0' .

library ieee;
use ieee.std_logic_1164.all;
use IEEE.std_logic_arith.all;
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entity cmplObit is
port {

A, B ; in std_logic_vector(9 downto 0);
output : out std_logic ) ;

end cmplObit;

architecture behavior of cmplObit is

function comp(Ax, Ex : std_logic_vector(9 downto 0))
return std_logic is

variable finish : std_logic;
begin

finish := '0 ' ;

for i in 9 downto 0 loop
finish := (Ax(i) and not Bx(i)) or finish;

end loop;
return(finish);

end;

begin
comparelObit:process(A, B)

begin

output <= comp(A, B);

end process comparelObit;

end behavior;

-- save_ROI.vhd
-- Source code by Amiya A. ChoRhavala
— The region-of-interest needs to be stored for future use and to
-- reduce the load from interfacing program.

library ieee;
use ieee.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity save_ROI is
port( ROI_upper

ROI_left
ROI_bottom
ROI_right
new_ROI

reset

elk

upper

left

bottom

right

in std_logic_vector(8 downto 0);
in std_logic_vector(9 downto 0);
in std_logic_vector(8 downto 0);
in std_logic_vector(9 downto 0);

;  in std_logic;
in std_logic;
in std_logic;

out std_logic_vector(9 downto 0) ;
out std_logic_vector(9 downto 0);

:  out std_logic_vector(9 downto 0)
out std_logic_vector(9 downto 0) );

end save_ROI;
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architecture behavior of save ROI is

signal pU, nU, pL, nL, pB, nB, pR, nR
0) ;

std_logic_vector(9 downto

begin

upper <= pU;

bottom <= pB;
left <= pL;
right <= pR;

clockiprocess(elk)
begin

if (elk'event and elk = '1') then
pU(9 downto 0)
pL{9 downto 0)
pB{9 downto 0)
pR(9 downto 0)

end i f;
end process clock;

<= nU(9 downto 0)

<= nL(9 downto 0)
<= nB(9 downto 0)
<= nR(9 downto 0)

Store ROI values at the

start of new frame.

store_ROI:process(new_ROI,ROI_upper,ROI_left,ROI_bottom,ROI_right,reset)
begin

if (reset = '1')
nU(9 downto 0)

nL(9 downto 0)

nB(9 downto 0)
nR(9 downto 0)

else

if (new_ROI = '1
nU{9 downto 0)
nL(9 downto 0)
nB(9 downto 0)
nR(9 downto 0)

end i f;
end if;
end process store_ROI;

end behavior;

then

<= "0

)  t

000000000"

<= "0000000000"

<= "0000000000"

<= "0000000000"

hen

<= '0' & R0I_upper(8 downto 0);
<= R0I_left(9 downto 0);
<= '0' & R0I_bottom(8 downto 0);
<= R0I_right(9 downto 0);
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Appendix B

Synthesis Results

The addresses generated while synthesizing the ROI server are given below. The first
region-of-interest shown in the Figure 5.6(a) had its coordinates upper = 208, left = 268,
bottom = 265, and right = 357. Each discontinuity indicates eol (end-of-line). These
addresses are passed to the address busses of MEMA.

2090C 2090D 2090E 2090F 20910 20911 20912 20913 20914 20915

20916 20917 20918 20919 2091A 2091B 2091C 2091D 2091E 2091F

20920 20921 20922 20923 20924 20925 20926 20927 20928 20929

2092A 2092B 2092C 2092D 2092E 2092F 20930 20931 20932 20933

20934 20935 20936 20937 20938 20939 2093A 2093B 2093C 2093D

2093E 2093F 20940 20941 20942 20943 20944 20945 20946 20947

20948 20949 2094A 2094B 2094C 2094D 2094E 2094F 20950 20951

20952 20953 20954 20955 20956 20957 20958 20959 2095A 2095B

2095C 2095D 2095E 2095F 20960 20961 20962 20963 20964 20965

20B8C 20B8D 20B8E 20B8F 20B90 20B91 20B92 20B93 20B94 20B95

20B96 20B97 20B98 20B99 20B9A 20B9B 20B9C 20B9D 20B9E 20B9F

20BA0 20BA1 2 0BA2 2 0BA3 20BA4 20BA5 2 0BA6 2 0BA7 20BA8 2 0BA9

20BAA 20 BAB 20 BAG 2 0BAD 20BAE 2 0BAF 20BB0 20BB1 20BB2 2 0BB3

20BB4 20BB5 20BB6 20BB7 20BB8 20BB9 20BBA 20BBB 20 BBC 2 0BBD

20BBE 20BBF 20BC0 20BC1 20BC2 20BC3 2 0BC4 2 0BC5 20BC6 2 0BC7

20BC8 20BC9 2 0 BOA 20BCB 20BCC 20BCD 2 0BCE 2 0BCF 2 0BD0 2 0BD1

20BD2 20BD3 2 0BD4 20BD5 20BD6 2 0BD7 20BD8 2 0BD9 20BDA 2 0BDB

20BDC 20BDD 20BDE 2 0BDF 20BE0 20BE1 2 0BE2 2 0BE3 2 0BE4 2 0BE5

20E0C 20E0D 20E0E 20E0F 20E10 20E11 20E12 20E13 20E14 20E15

20E16 20E17 20E18 20E19 20E1A 20E1B 20E1C 20E1D 20E1E 20E1F

20E20 20E21 20E22 20E23 20E24 20E25 20E26 20E27 20E28 20E29

20E2A 20E2B 20E2C 20E2D 20E2E 20E2F 20E30 20E31 20E32 20E33

20E34 20E35 20E36 20E37 20E38 20E39 20E3A 20E3B 20E3C 20E3D

20E3E 20E3F 20E40 20E41 20E42 20E43 20E44 20E45 20E46 20E47

20E48 20E49 2 0E4A 2 0E4B 20E4C 20E4D 20E4E 20E4F 20E50 20E51

20E52 20E53 20E54 20E55 20E56 20E57 20E58 20E59 20E5A 20E5B

20E5C 20E5D 20E5E 20E5F 20E60 20E61 20E62 20E63 20E64 20E65
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297B4 297B5 297B6 297B7 297B8 297B9 297BA 297BB 297BC 297BD
297BE 297BF 297C0 297C1 297C2 297C3 297C4 297C5 297C6 297C7
297C8 297C9 297CA 297CB 297CC 297CD 297CE 297CF 297D0 297D1
297D2 297D3 297D4 297D5 297D6 297D7 297D8 297D9 297DA 297DB
297DC 297DD 297DE 297DF 297E0 297E1 297E2 297E3 297E4 297E5

The image in the Figure 5.6(a) has ended. The done is HIGH, indicating the ROI

server is ready for the new image.

The region-of-interest shown in the Figure 5.6 (b) had its coordinates upper = 212, left =

40, bottom = 268, and right = 125. Each discintinuit indicates eol (end-of-line). These addresses

are passed to the address busses of MEMB.

21228 21229 2122A 2122B 2122C 2122D 2122E 2122F 21230 21231

21232 21233 21234 21235 21236 21237 21238 21239 2123A 2123B

2123C 2123D 2123E 2123F 21240 21241 21242 21243 21244 21245

21246 21247 21248 21249 2124A 2124B 2124C 2124D 2124E 2124F

21250 21251 21252 21253 21254 21255 21256 21257 21258 21259

2125A 2125B 2125C 2125D 2125E 2125F 21260 21261 21262 21263

21264 21265 21266 21267 21268 21269 2126A 2126B 2126C 2126D

2126E 2126F 21270 21271 21272 21273 21274 21275 21276 21277

21278 21279 2127A 2127B 2127C 2127D

214A8 214A9 214AA 214AB 214AC 214AD 214AE 214AF 214B0 214B1

214B2 214B3 214B4 214B5 214B6 214B7 214B8 214B9 214BA 214BB

214BC 214BD 214BE 214BF 214C0 214C1 214C2 214C3 214C4 214C5

214C6 214C7 214C8 214C9 214CA 214CB 214CC 214CD 214CE 214CF

214D0 214D1 214D2 214D3 214D4 214D5 214D6 214D7 214D8 214D9

214DA 214DB 214DC 214DD 214DE 214DF 214E0 214E1 214E2 214E3

214E4 214E5 214E6 214E7 214E8 214E9 214EA 214EB 214EC 214ED

214EE 214EF 214F0 214F1 214F2 214F3 214F4 214F5 214F6 214F7

214F8 214F9 214FA 214FB 214FC 214FD
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29E28 29E29 2 9E2A 29E2B 29E2C 29E2D 29E2E 29E2F 29E30 29E31

29E32 29E33 29E34 29E35 29E35 29E37 29E38 29E39 29E3A 29E3B

29E3C 29E3D 29E3E 29E3F 29E40 29E41 29E42 29E43 29E44 29E45

29E46 29E47 29E48 29E49 29E4A 29E4B 29E4C 29E4D 29E4E 29E4F

29E50 29E51 29E52 29E53 29E54 29E55 29E56 29E57 29E58 29E59

29E5A 29E5B 29E5C 29E5D 29E5E 29E5F 29E60 29E61 29E62 29E63

29E64 29E65 29E66 29E67 29E68 29E69 29E6A 29E6B 29E6C 29E6D

29E6E 29E6F 29E70 29E71 29E72 29E73 29E74 29E75 29E76 29E77

29E78 29E79 29E7A 29E7B 29E7C 29E7D

The image in the Figure 5.6(b) has ended. The done is HIGH, indicating the ROI

server is ready for the new image.
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