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Abstract

Due to the enormous growth of digital image collections, image analysis and retrieval

is of vital importance. Traditional image analysis and retrieval techniques may be time

consuming and inaccurate. This thesis presents a new technique for image analysis

and retrieval based on dendronic image signatures. Dendronic image characterization,

as implemented in the DICE (Dendronic Image Characterization Environment) soft

ware environment, is a data-driven and self-structuring process, which can be used in

many application areas such as military surveillance, medical image analysis, and com

puter graphics. The algorithm for dendrone construction is robust and the algorithm

for matching sub-dendrones (i.e., feature extraction) according to distance-to-centroid

signatures is simple and effective. The DICE software environment presented in this

thesis is flexible, extendable, and portable.

Ill



Contents

1  Introduction 1

1.1 Motivation and Goals 1

1.2 Overview 3

2 Overview of Dendrone Data Structure and Algorithms 4

2.1 Dendrone Data Structure 4

2.1.1 Construction of Dendrones 4

2.1.2 Properties of Dendrones 13

2.1.3 Uses of Dendrones 16

2.2 Algorithms 16

2.2.1 Dendrone Construction Algorithms 17

2.2.2 Sub-Dendrone Matching Algorithms 20

3 The Design and Implementation of DICE 36

3.1 The Dendrone Library 37

3.1.1 The Image Class 40

iv



3.1.2 The Xpmlmage Class 40

3.1.3 The Histogram Class 40

3.1.4 The Option Class 40

3.1.5 The Object Class 41

3.1.6 The Dendrone Class 41

3.1.7 The Shape Class 51

3.1.8 The RankList Class 51

3.2 The Graphical User Interface 52

3.2.1 Generating Denclrones from Images 53

3.2.2 Reconstructing Images from Dendrones 55

3.2.3 Object Retrieval by Matching Sub-Dendrones 58

3.2.4 Customizing DICE 60

3.3 The Interface Module 61

4 Evaluating the Performance and Effectiveness of DICE 63

4.1 Performance Evaluation 63

4.1.1 Procedure 64

4.1.2 Results 66

4.2 Effectiveness Evaluation 78

4.2.1 Matching Artificial Shapes 79

4.2.2 Matching Objects from Real Images 82

5 Conclusions 85

V



Bibliography 87

Appendix API Tables of C++ Classes in DICE 90

Vita 101

VI



List of Tables

3.1 File management in DICE 52

4.1 Images used to evaluate the performance of the dendrone construction

algorithms 64

4.2 Summary of dendrone construction performance figures and tables. . . . 66

4.3 Elapsed times of dendrone construction (at selected stride values) for the

image in Figure 4.1 using the pixel labeling algorithm 68

4.4 Percentage time for different steps of dendrone construction (at selected

stride values) for the image in Figure 4.1 using the pixel labeling algorithm. 68

4.5 Elapsed times of dendrone construction (at selected stride values) for the

image in Figure 4.1 using the recursive Connectivity Filling algorithm. . 70

4.6 Percentage time for different steps of dendrone construction (at selected

stride values) for the image in Figure 4.1 using the recursive Connectivity

Filling algorithm 70

vn



4.7 Elapsed times of dendrone construction (at selected stride values) for the

image in Figure 4.1 using the non-recursive Connectivity Filling algorithm. 72

4.8 Percentage time for different steps of dendrone construction (at selected

stride values) for the image in Figure 4.1 using the non-recursive Con

nectivity Filling algorithm 72

4.9 Elapsed times of dendrone construction (at selected stride values) for the

image in Figure 4.2 using the pixel labeling algorithm 74

4.10 Percentage time for different steps of dendrone construction (at selected

stride values) for the image in Figure 4.2 using the pixel labeling algorithm. 74

4.11 Elapsed times of dendrone construction (at selected stride values) for the

image in Figure 4.2 using the non-recursive Connectivity Filling algorithm. 76

4.12 Percentage time for different steps of dendrone construction (at selected

stride values) for the image in Figure 4.2 using the non-recursive Con

nectivity Filling algorithm 76

4.13 Memory usage of dendrone construction (stride = 30) 78

4.14 Summary of images used to evaluate the effectiveness of the distance-to-

centroid image signature matching algorithm 79

A.l API methods of the Image class 91

A.2 API methods of the Xpmlmage class 91

A.3 API methods of the Histogram class 92

A.4 API methods of the Option class (part 1) 93

Vlll



A.5 API methods of the Option class (part 2) 94

A.6 API methods of the Object class (part 1) 95

A.7 API methods of the Object class (part 2) 96

A.8 API methods of the Dendrone class (part 1) 97

A.9 API methods of the Dendrone class (part 2) 98

A.10 API methods of the Dendrone class (part 3) 99

A. 11 API methods of the Shape class 99

A. 12 API methods of the RankList class 100

IX



List of Figures

2.1 Image showing three objects 5

2.2 Histogram of intensity levels represented in the image from Figure 2.1. . 6

2.3 Imaginary three-dimensional intensity terrain generated from the image

in Figure 2.1 6

2.4 Dendrogram of the image in Figure 2.1 8

2.5 Image (a) showing three separate objects appearing when the water level

is 255 and its sub-dendrogram (b) 10

2.6 Image (a) showing two of the three separate objects growing larger when

the water level is 165 and its sul>dendrongram (b) 11

2.7 Image (a) showing two separate objects merging and forming one larger

object when the water level is 135 and its sub-dendrogram (b) 12

2.8 Enlarged and rotated version of the image in Figure 2.1 14

2.9 Dendrogram of the image in Figure 2.8 15

2.10 Bounding boxes of objects 21



2.11 One object extracted (a) from the image in Figure 2.1 along with the

original edge (b), thinned edge (c), and final edge (d) 25

2.12 (a) Image before m-connectivity is checked, (b) Image after m-connectivity

is checked 27

2.13 Image showing one object with four pixels labeled 30

2.14 The edge signature of the object in Figure 2.13. Four pixels are labeled

accordingly 31

2.15 One object (rotated object from Figure 2.13) with four pixels labeled. . 33

2.16 The edge signature of the object in Figure 2.15. Four pixels are labeled

accordingly 33

2.17 Signature image matching 34

3.1 Interactions among DICE software modules and the user 38

3.2 Dendrone lil)rary class hierarchy 39

3.3 Steps of the construction of a dendrone 42

3.4 Dendrone data structure implementation 44

3.5 X-coordinate dendrogram of the image in Figure 2.1 46

3.6 y-coordinate dendrogram of the image in Figure 2.1 47

3.7 DICE main window 53

3.8 Im(ujeDisplayer window for dendrone construction 54

3.9 BuildDinloy window for dendrone construction 54

3.10 DendroneDisplayer window 55

XI



3.11 ^ecorjs<r«c<Z)ia/or7 window for image reconstruction 56

3.12 /majfeZlisp/aj/er window for image reconstruction 57

3.13 MatchDialog window for object matching 59

3.14 MatcliResultDisplayer w'mdo-w showing object matching results 60

3.15 AppConfigDialog mndow for external application program configuration. 61

3.16 Calling C++ methods in Java 62

4.1 High-altitude photograph of a Boeing 747 in flight 64

4.2 A biplane and its shadow as seen from above 65

4.3 Total elapsed time of dendrone construction for the image in Figure 4.1

using the pixel labeling algorithm 67

4.4 Total elapsed time of dendrone construction for the image in Figure 4.1

using the recursive Connectivity Filling algorithm 69

4.5 Total elapsed time of dendrone construction for the image in Figure 4.1

using the non-recursive Connectivity Filling algorithm 71

4.6 Total elapsed time of dendrone construction for the image in Figure 4.2

using the pixel labeling algorithm 73

4.7 Total elapsed time of dendrone construction for the image in Figure 4.2

using the non-recursive Connectivity Filling algorithm 75

4.8 Images used to evahiate the effectiveness of the distance-to-centroid image

signature matching algorithm 80

4.9 Matching shapes from Figure 4.8(b) 81

Xll



4.10 Matching objects from Figure 4.8(d) 84

Xlll



Chapter 1

Introduction

Images are being generated at an increasing rate by sources such as defense and civilian

satellites, military reconnaissance, and biomedical imaging (see [GR95]). New image

analysis and retrieval techniques are required to effectively extract and use information

from these images.

1.1 Motivation and Goals

As described in [GR95], among many different ways, previous approaches to image

analysis and content-based retrieval have mainly taken two directions. The first ap

proach models image contents as a set of attributes extracted manually and managed

within conventional database-management systems, which entails a high level of image

abstraction. For example, the Chabot system (see [OS95]) developed at UC Berkeley

uses a relational database to store text information describing certain attributes of im-



ages (photos), which are searched when a user enters a query. These attributes include

abstract, title, comments, copyright information, location where the photo is taken and

date when the photo is taken.

The second approach uses an integrated feature-extraction/object-recognition sub

system to overcome the limitations of attribute-based retrieval. However, this approach

is often computationally expensive, difficult, and tends to be domain-specific. One ex

ample of this approach is the QBIC (Query by Image Content) system (see [FSN+95])

developed at IBM Almaden Research Center, which allows queries on large image and

video databases based on example images, user-constructed sketches and drawings, se

lected color and texture patterns, camera and object motion, and other graphical infor

mation.

This thesis presents a new technique for image analysis and retrieval based on den-

dronic image signatures. A dendrone is a searchable hierarchical thresholding struc

ture generated from an image. The dendrone structure captures the unique signatures

of objects within the image and siib-dendrones within the hierarchy are recognizable as

objects within the image. A dendrone can be used as a framework for image analysis and

retrieval. While the dendrone itself does not impose external restrictions to the image,

certain attributes could be incorporated into the dendrone. For example, text informa

tion describing the image could be added to the dendrone to facilitate content-based

retrieval. Different feature description attributes could also be computed and stored

in the dendrone for shape-based object retrieval. An implementation of the dendrone



technique, the DICE (Dendronic Image Characterization Environment) software envi

ronment is presented in this thesis. DICE provides an integrated tool for image feature

extraction and object retrieval based on dendronic image signatures.

1.2 Overview

The following chapters discuss the theory, implementation, and evaluation of dendronic

image characterization. Chapter 2 reviews the underlying concepts of dendrones and

discusses the algorithms for dendrone construction and sub-dendrone matching. Chap

ter 3 introduces the design and implementation of the DICE software environment.

Chapter 4 examines the efficiency of dendrone construction and effectiveness of sub-

dendrone matching. Finally, Chapter 5 summarizes the usefulness and effectiveness of

dendronic image characterization.



Chapter 2

Overview of Dendrone Data

Structure and Algorithms

2.1 Dendrone Data Structure

This section presents the searchable dendrone [Har97] data structure generated from

raw unsearchable digital images, the algorithms used to construct dendrones and match

sub-dendrones.

2.1.1 Construction of Dendrones

An image may be considered as a two-dimensional intensity field. In addition, if the

intensity values of each pixel in the image is considered as elevations, an image can be

viewed as a three-dimensional intensity terrain. The brighter the pixel is, the higher the

elevation. Brighter pixels form mountains with the brightest pixel as the peak. Darker



pixels form valleys with the darkest pixel as the bottom. However, this imaginary terrain

differs from real-world geographical terrain in that the imaginary terrain is solid, which

means it has no subsurface features such as holes or caves.
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Figure 2.1: Image showing three objects.

Figure 2.1 is an artificially generated greyscale image showing three objects. Figure

2.2 is the histogram of intensity levels represented in the image from Figure 2.1. The

distribution of different intensity levels ranging from 0 to 255 are represented in this

graph. Figure 2.3 is the three-dimensional intensity terrain corresponding to the image

in Figure 2.1. In the original image, the brightest intensity value is 255 and the darkest

intensity value is 0. Accordingly, in the imaginary three-dimensional intensity terrain,

the highest elevation is 255 and lowest elevation is 0.

Given an image, a unique dendrone structure can be constructed from the imaginary
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Figure 2.2: Histogram of intensity levels represented in the image from Figure 2.1.

Figure 2.3: Imaginary three-dimensional intensity terrain generated from the image in
Figure 2.1.



three-dimensional terrain. The dendrone structure captures the connectedness of objects

and sub-objects during successive brightness thresholding. The construction process can

be visualized as if the terrain is first flooded with water and then the water is slowly

drained away. Initially, the water level is so high that no land is visible above the water

level. As the water level decreases, mountains associated with the higher elevations

appear first, then plains, and finally valleys. At any particular water (intensity) level, the

image is segmented into islands (objects). When the water (intensity) level decreases,

only three kinds of events occur:

1. New isolated islands (objects) appear above the water level.

2. Existing islands (objects) grow in size.

3. Multiple islands (objects) merge or coalesce and form larger islands (objects).

Figure 2.4 illustrates the tree-like dendrogram corresponding to the dendrone gen

erated from Figure 2.1. This figure illustrates one of many possible ways to draw the

dendrone graphically. The dendrone, in this case, is generated with the intensity level

decreasing at an intensity resolution increment (stride value) of 30. The smaller the

stride value, the more detailed the dendrone in terms of the number and size of sub

trees. It is clear that there are three distinct sub-dendrones within the dendrone (see

Figure 2.4), which correspond to the three distinct objects in Figure 2.1. In this den

drogram, the horizontal axis is arbitrary and the vertical axis indicates the intensity

value from 0 to 255. Each vertical line of the dendrogram corresponds to one object
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Figiire 2.4: Dendrogram of the image in Figure 2.1.



within the image. The length of the line indicates the intensity of the object. Each

horizontal line connects one vertical line above with several other vertical lines below

so that the object (actually the parent object identified by the number above the hori

zontal line) represented by the vertical line above the horizontal line is formed by those

objects (the sub-objects or child objects) represented by the vertical lines beneath the

horizontal line. The position of the horizontal lines indicates the intensity level at which

the image is segmented. The intensity level decreases from 255 to 0 at a specified stride

value. When the intensity level reaches 0, the entire image forms one object, which is

repre.sented by the root or the trunk of the dendrone. Despite the flooding/draining

allegory, the dendrogram cannot be drawn or constructed until all of the water has been

drained and the thresholding is complete. Until then, it is unknown where on the arbi

trary horizontal axis the vertical lines should be drawn so that they can be connected

properly. It is the connectedness as one traverses the dendrone tree from root to leaves

that contains the information about the relationships between objects, which can be

used to reconstruct part or all of the original image.

Figures 2.5, 2.6, and 2.7 are images and dendrograms generated from the original

image in Figure 2.1 when the water level is three different values. Figure 2.5(a) shows

that when the water level starts at 255, three separate objects begin to appear. Cor

respondingly, in Figure 2.5(b), there are three vertical lines representing these three

objects. Since they are distinct objects, the three vertical lines have no connections

among them. As the water level decreases to 165, two of the three objects have grown
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Figure 2.5: Image (a) showing three separate objects appearing when the water level Is
255 and Its sub-dendrogram (b).
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Figure 2.6: Image (a) showing two of the three separate objects growing larger when
the water level is 165 and its sub-dendrongram (b).



Figure 2.7: Image (a) showing two separate objects merging and forming one larger
object when the water level is 135 and its sub-dendrogram (b).



larger (see Figure 2.6(a)) as more components appear. In Figure 2.6(b), the larger ob

jects are represented by the vertical lines identified by integers <?and 10. They link their

corresponding sub-objects together by the horizontal lines whose t/-coordinate positions

are 165. The other object's size does not increase at this moment. Figure 2.7(a) shows

that when the water level is 135, which is below the elevation of a connected portion

shared by two of the three objects, these two objects merge and form a larger object,

which is identified by the integer 5 in the dendrogram in Figure 2.7(b). At that water

level, the third object also grows and becomes a larger object, which is identified by

integer 28 in the dendrogram. In real-world (more complex) images, the segmentation

and merging processes are much more complicated and the three events described above

may simultaneously occur and involve more than two objects.

2.1.2 Properties of Dendrones

Dendrones generated from images are invariant to scaling. The information stored in

the nodes in the dendrones may be different, but the overall structure of the dendrones

does not change. Dendrones are also invariant to rotation from a connectedness stand

point although they are not necessarily structurally equivalent. In other words, the

relationships among child objects and parent objects will not change although the order

of objects with in the dendrones may be different. Figure 2.8 illustrates an enlarged and

rotated version of the image in Figure 2.1. The dendrogram generated from this image

(see Figure 2.9) is exactly the same as the dendrogram shown in Figure 2.4. Dendrones

are invariant (from a connectedness standpoint) to the placement of objects within the

13
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Figure 2.8: Enlarged and rotated version of the image in Figure 2.1.



50-

100-

V
>
V

>.
s
L

0
150-

200-

250-

Figure 2.9: Dendrogram of the image in Figure 2.8.
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image and subsequent intensity changes as long as the relative intensity relationships

among the objects remain the same.

2.1.3 Uses of Dendrones

The clendrone data structure provides a useful and powerful computational framework

for image analysis and visual information retrieval. Each node (branching point) of the

dendrone can store information such as the position of the object within the image, the

size of the object, its eccentricity and axis orientation and information that is directly

available from the image itself (e.g., the intensity values of the pixels).

If the dendrone stores information such as pixel coordinates and intensity values, the

original image can be reconstructed from the dendrone. Furthermore, one can detect

individual objects from the image by extracting sub-dendrones from the dendrone. In

DICE (Dendronic Image Characterization Environment) (see Chapter 3), dendrones

are used to detect objects with similar shape and/or similar surface structure from

multiple images.

2.2 Algorithms

In DICE, fast algorithms are used to generate dendrones and match sub-dendrones.

The construction of dendrones involves segmenting the image into isolated objects and

building the tree structure from these objects. The matching of dendrones is more

complicated than the construction of dendrones. As mentioned above, in DICE, the

16



primary goal is to match dendrones representing objects with similarity shape and/or

surface structure from multiple images. The structure of the dendrone is sufficient

to match objects for similar surface structure. However, matching objects for similar

shape is more difficult. Many algorithms and techniques have been developed in image

analysis for shape matching. In DICE, a simple but effective distance-to-centroid

[Rau94] signature matching algorithm is used. Of course, this particular method is not

the only way or necessarily best way to match objects from random images. DICE is

designed to be flexible enough to allow different matching algorithms to be used (see

Chapter 3).

2.2.1 Dendrone Construction Algorithms

The construction of dendrones is accomplished by thresholding the image in a repetitive

fashion. At one particular threshold intensity level, the image is processed in two stages:

1. Image segmentation.

2. Object merging.

Image Segmentation Algorithm

The pixel labeling algorithm presented in [Jai89] can be used to segment the image

into isolated objects. The image is scanned from left to right and top to bottom. The

17



current pixel is labeled according to its intensity value. Consider the collection of pixels

A B C

D X

where the current pixel is X. The pixels above and to left of the current pixel have

already been labeled if they are within the current threshold range. If the intensity

value of the current pixel is within the current threshold range, pixels A, B, C, and D

are examined and one of the following situations can occur:

1. None of these pixels are labeled.

Pixel X is assigned a new label. A new object is created with one pixel X in it.

2. One of these pixels is labeled.

Its label is assigned to X. For example, if Cis the only pixel that has been labeled,

Cs label is assigned to X and pixel X is added to the object with that label.

3. There are two or more qualified labels.

These labels are declared to be the same and updated with a new label which is

assigned to X. The objects associated with these labels are merged to become a

new object (with the new label) and pixel X is added to the new object.

Other existing image segmentation algorithms include Connectivity Filling [Pav82],

Amplitude Thresholding or Window Slicing [Jai89], and Run-length Connectivity Anal

ysis [.Tai89]. Detailed discussion of the performance of the pixel labeling algorithm, the

18



recursive version of Connectivity Filling, and the non-recursive version of Connectivity

Filling is presented in Chapter 4.

Object Merging Algorithm

After all pixels have been scanned, the image is segmented into isolated objects, each

with a distinct label. These objects are then examined along with any objects generated

from previous iterations of the segmentation and merging processes.

The object merging algorithm compares each object generated from the current

segmentation process with any object previously generated. If two objects are connected

or touch, they are merged. Newly generated objects are stored together and will be

examined when the image is segmented at a lower threshold intensity level. The newly

generated objects also link their respective sub-objects together. If an object does not

touch any other object, it is also stored with other newly generated objects and will be

examined in future segmentations. The steps of detecting whether two objects, object

A and object B, touch each other are:

1. If object A is a composite object (object that has sub-objects), check each of its

sub-objects against object B. If any of these sub-objects touches object B, object

A touches object B.

2. If object 5 is a composite object, check object A against each of object 5's sub-

objects. If object A touches any of these sub-objects, object A touches object

B.

19



3. If both object A and object B are primitive objects (objects that have no sub-

objects) :

(a) If the bounding boxes of the two objects do not overlap, object A does not

touch object B. The bounding box of an object is the smallest rectangle

containing the object. In addition, the edges of the box must be parallel to

the axes of the coordinate system. In Figure 2.10, object I's bounding box

and object 2's bounding box do not overlap. Therefore, these two objects do

not touch.

(b) Otherwise, get the intersecting (overlapping) part of the bounding boxes.

Extract pixels from both objects that are inside the intersecting part. In

Figure 2.10, object 5's bounding box and object 4^s bounding box overlap.

The intersecting part is the shaded area.

(c) Check the pixels obtained from the previous step. If there is a pixel from

object A that is adjacent to a pixel from object B, object A touches object

B. In Figure 2.10, although object 5's bounding box and object 4^s bounding

box overlap, no pixels are adjacent. Therefore, these two objects do not

touch.

2.2.2 Sub-Dendrone Matching Algorithms

In DICE, there are two types of sul>dendrone matching:

1. Matching based on the structures of the dendrones.

20
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Figure 2.10: Bounding boxes of objects.



2. Matching based on the shapes of the objects represented by the dendrones.

As mentioned previously in Section 2.2, there are potentially many different ways to

compare sub-objects. In DICE, just a few candidate methods based on sub-dendrone

matching are currently used.

Structure-Based Matching

The structure-based matching algorithm takes two dendrones as inputs. One is the

source dendrone computed from the source image. Usually it is a sub-dendrone extracted

from a complete dendrone. The other is the target dendrone, which is usually computed

from a complete image.

The structure-based matching algorithm does a breadth-first search on the target

dendrone. At every node, the algorithm computes the difference between the number

of descendent nodes in the source dendrone and the number of descendent nodes in

the target dendrone. For each descendent node, it recursively computes the difference

also. A similarity value between 0 and 1 is assigned to every child node to indicate how

similar two sul>dendrones are. A similarity value of 1 indicates the two sub-dendrones

are identical and a similarity value of 0 means the two sub-dendrones have no similarities.

Several simple rules have been applied to calculate the similarity between two sub-

dendrones:

1. Leaf sub-dendrone (dendrones that have only one node) and non-leaf sub-dendrone

(dendrones that have at least two nodes) have a similarity value of 0.

22



2. Two leaf sub-dendrones (dendrones that have only one node) have a similarity

value of 1.

3. The similarity value of two non-leaf dendrones is computed as:

where

Sij is the similarity between dendrone i and dendrone j and the total number of

objects in dendrone i is not more than the total number of objects in dendrone j,

Ski is the best-fit similarity between sul>dendrone A:, which is a sub-dendrone of

dendrone i, and sub-dendrone I, which is a sub-dendrone of dendrone j,

Nk is the total number of objects in sub-dendrone k,

Ni is the total number of objects in sub-dendrone I, and

Nm is the total number of objects in sub-dendrone m, which is an unmatched

sub-dendrone in dendrone j.

Finally, the weighted average value S,j (see Equation (2.1)) is used to represent the

overall similarity between the source dendrone and every sub-dendrone within the target

dendrone.
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Shape-Based Matching

Shape is an important feature to identify or match objects from multiple images. There

are many techniques in shape representation and matching. Some examples are bound

ary representation techniques [Jai89] (including Chain Codes, Fitting Line Segments,

B-Spline Representation, Control Points, and Fourier Descriptors), Region Representa

tions [Jai89] (including Run-length Codes, Quad-trees, and Projections), and Moment

Representations [Jai89]. In DICE, a distance-to-centroid representation is used.

Similar to the structure-based matching algorithm, the shape-based matching algo

rithm does a breadth-first search on the target dendrone. At every node, the distance-

to-centroid signature of the object represented by that sub-dendrone is computed. The

signature is then compared with the signature of the object represented by the source

dendrone.

The procedure to compute the distance-to-centroid signature of an object is as fol

lows:

1. The pixels of the object are extracted from the dendrone and an image of the

object is reconstructed. In the original image, these pixels may have different

intensity values, but in the reconstructed image they all have the same intensity

value. Figure 2.11(a) shows the image of one object extracted from the image in

Figure 2.1.

2. The edge pixels are extracted and an image of the object's edge is obtained. An

edge pixel is defined to be a pixel whose eight-neighbor pixels are not all pixels of
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Figure 2.11: One object extracted (a) from the image in Figure 2.1 along with the
original edge (b), thinned edge (c), and final edge (d).
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the object. Figure 2.11(b) shows the edge image of the object from Figure 2.11(a).

3. A thinning algorithm [ZS84] is applied to the edge image so that the edges are at

most one pixel wide. After the thinning algorithm is applied, a skeleton image of

the object's edge is obtained. Figure 2.11(c) shows the thinned edge image of the

object from Figure 2.11(a).

4. Each edge pixel is examined for m-connectivity [GW87]. Pixels p and q are said

to be m-connected if one of the two following situations occurs:

(a) q G N4{p), where N4{p) is the set of four neighboring pixels of pixel p. For

example, in the collection of pixels

(  q \

X p X

\  X .

where pixels labeled A's are the pixels in set N4{p), pixels p and q are m-

connected.

(b) q G Nd{p), where Nd{p) is the set of four diagonal neighbor pixels of pixel

p, and A'^4(7;) n N2{q) ̂  0, where N2 is the set of two neighboring pixels of

pixel q. For example, in the collection of pixels

(X Y q \

P Y

[X X)
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where pixels labeled X's are the pixels in set Nd{p) and pixels labeled y's

are the pixels in set N2{q), pixels p and q are m-connected.

Some pixels are deleted to guarantee that there is only one path between any

two pixels in the edge image and ensure that there is no ambiguity with respect

to edge traversal. Figure 2.11(d) shows the final edge image of the object from

Figure 2.11(a).

II

Figure 2.12: (a) Image before m-connectivity is checked, (b) Image after m-connectivity
is checked.

Figure 2.12(a) illustrates an image before m-connectivity is checked. In the image,

there are two possible paths from pixel (0,0) to pixel (1,1). One is from pixel (0, 0)

to pixel (1,1) directly and the other one is via pixel (0,1). A mask is passed over

the image which searches for certain patterns and eventually deletes the pixel that

causes the ambiguity, in this case, pixel (0,1) (see Figure 2.12(b)).

5. The centroid (the geometrical center) of the object and the distances from all edge



pixels to the centroid are computed. The edges are interpolated in order to make

the signature invariant to scaling. Since the image is digital, the objects in the

image are discrete. Consequently, the edge curves of the objects are also discrete.

One simple approach to approximate a discrete curve pattern is to compose it

by all line segments of neighboring pixels. As presented in [Rau94], an analytical

definition of a discrete line segment between two points Zi = (x,-, t/,) and Zj =

(xj, j/j) is given by

~ (^« "b ~ ̂j)) j/» "b ̂ {yj ~ yi)))^ ̂  (®)

A discrete object Q{t) consisting of n pixels x,- = (x,-,y,) is then composed of the

union of m line segments Zij{t) between all neighboring pixels z,- = {xi,yi) and

Zj = {xj,yj) of the object [R.au94]. Specifically,

Q(f) = U Zij{t), Zij{t) = (x,- + t{xj - X,), yi + t{yj - y,)), f € (0,1).

The centroid O of an object is calculated as

n  n

o = {0,,0y),0, =
n  ' n '

where
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Ox is the ar-coordinate of the centroid,

Oy is the y-coordinate of the centroid,

Xi is the i-coordinate of one edge pixel,

j/i is the y-coordinate of one edge pixel, and

n is the total number of edge pixels.

When computing the distances from edge pixels to the centroid, the maximum

distance, M, from the edge pixels to the centroid is also calculated. The maximum

Euclidean distance M of any pixel to the centroid is calculated as

M = max (.T,- - + (y,- - Oy)^^ ,« = 1, 2,..., n.

In the signature image, the distances of all pixels to the centroid are normalized

ha.sed on the maximum distance to the centroid M. Normalization is to compen

sate for any change of the size of the object by representing the dimensions of

the object in relative measurement in stead of absolute measurement. If Di is the

distance from one pixel to the centroid, it will become ̂  after the normalization.

G. The signature image is thinned by applying the thinning algorithm [ZS84] to the

signature image.

7. M-connectivity is evaluated with each pixel so that a signature image of the edge

of the object is obtained in polar coordinates.
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The edge signature image of the object in Figure 2.13 (the same object in 2.11 (a))

is illustrated in Figure 2.14. The horizontal axis is from 0 to 27r and the vertical axis is

the normalized distance from edge pixels to the centroid of the object. Points A, B, C,

and D are labeled accordingly in the two figures.

Figure 2.13: Image showing one object with four pixels labeled.

The distance-to-centroid edge signature is invariant to translation, rotation, and

scaling. Translation has no effect on the signature since the calculation of the signature

does not involve the position of the object in the image. Rotation will cause the curves to

shift in the signature image. However, the curves themselves are not changed. Scaling

does not affect the signature either since the distances are normalized based on the

maximum distance to the centroid.

A signature image is computed for each object in the target dendrone by the above



360

Figure 2.14: The edge signature of the object in Figure 2.13. Four pixels are labeled
accordingly.

procedure. The signature images of these target objects are then compared with that

of the root object in the source dendrone. The comparison procedure has two steps:

1. If the signature images are not of the same size, the larger image is scaled to be

the same size as the smaller one. The scaling is accomplished by re-calculating

every pixel's coordinates of the larger signature image. For each pixel (a:,-,?/,) in

the larger signature image, a new pixel (a:|,j/,') is calculated as:

'  Sj / Sj
x- z= — X Xi, y- = — x yi,

S2 S2

where
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51 is the dimension of the smaller image, and

52 is the dimension of the larger image.

2. The signature images are compared and a similarity value between 0 and 1 is

calculated to indicate how similar these two objects are. A similarity value of 1

indicates that the two objects are exactly the same and a similarity value of 0

indicates they have no similarities.

Since the signature images are invariant to translation and scaling, a simple

cohnnn-by-column matching scheme is sufficient to compare the two images. In

order to compensate the effect of rotation, one signature is shifted once every

column. Every shift generates a signature image of the same object except that

it is rotated to a certain degree. Every generated signature image for one object

is compared with the other object's signature image using the column-by-column

matching scheme and the best match is considered the similarity between the two

objects. Figure 2.16 is the .signature image of the object in Figure 2.15, which is

the same object in Figure 2.13. By comparing Figure 2.16 with Figure 2.14, it is

clear that the.se two curves are the same but shifted. Without shifting one of the

two signature images, the column-by-column matching scheme would obviously

not detect the true similarity (see Figure 2.17).

A similarity value is calculated when two signature images are compared column

l)y column. There are two ways to calculate the similarity value:
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Figure 2.16: The edge signature of the object in Figure 2.15. Four pixels are labeled
accordingly.
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Figure 2.17: Signature image matching.

(a) The two images are overlapped and the differences between each correspond

ing pixel of the images are used to compute the similarity value

71®

5 = 1-—,
nt

(2.2)

where

5 is the similarity value between the two objects,

7/,s is the number of pixels in one image whose corresponding pixels in

the other image have the same value, and

■Hf is the total number of pixels in one image.

(b) Each curve in one signature image is compared against each curve in the other
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image so that the area between the curves is used to compute the similarity

value

■5=1- " ir- r'V '■ = 1- 2 Ci. j = 1,2,.... C2, (2.3)A X max (61,62)

where

S is the similarity value between the two objects,

Aij is the area between curve i in one signature image and curve j in

the other one,

A is the total area of one image,

Ci is the number of curves in one signature image, and

C2 is the number of curves in the other signature image.

For example, in Figure 2.17, the shaded area between the two curves is used

to compute the similarity value.
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Chapter 3

The Design and Implementation

of DICE

DICE (Dendronic Image Characterization Environment) is an object-oriented com

putational framework designed for image characterization and retrieval based on den

dronic image signatures. The three primary goals of the design and implementation of

DICE are flexibility, extendability, and portability. The design of DICE achieves these

goals through an object-oriented methodology and using programming languages such

as C-f-f- and Java [CW98, Eck98].

Flexibility is achieved so that users of DICE can exploit their own image charac

terization algorithms. For instance, if the user wants to use a image segmentation

algorithm other than the pixel labeling algorithm, he or she can write a method in

C-I-+ and override the default algorithm. Alternative techniques for matching objects
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from multiple images can also be incorporated into DICE. Extendability is achieved

as the user can extend the functionalities of DICE by adding more C++ classes. For

example, since the default image format for DICE is XPM [HN91], the user could easily

add classes to process images in other formats, such as GIF and JPEG. Portability is

achieved because the graphical user interface (or GUI) is implemented in Java which is

platform-independent. The GUI can be implemented using other languages or libraries

such as X Window/Motif without modifying other modules.

The DICE software environment can be divided into three modules: the dendrone

library module (implemented in C++), the GUI module (implemented in Java), and

the interface module between the library and the GUI (implemented in C). Figure 3.1

illustrates the interactions among these three modules and the user.

3.1 The Dendrone Library

The dendrone library, which is implemented in C++, contains all major functionalities

of DICE, such as image segmentation, dendrone construction, and image reconstruc

tion. The dendrone library has eight classes: Image, Xpmlmage, Histogram, Option,

Object, Dendrone, Shape, and RankList. Figure 3.2 illustrates the class hierarchy and

the interactions among the classes.
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Figure 3.1: Interactions among DICE software modules and the user.

38



Option

Image

Histogram

DendroneXpmlmage

Shape

Object

A

Rankust

indicates there are

interactions betwe«i

the two connected

classes

indicates class A

is inherited from

class B

Figure 3.2: Dendrone library class hierarchy.

39



3.1.1 The Image Class

The Image class is the generic class for processing greyscale images. Its functionalities

include reading an image into memory, writing an image to a file and so on. Table A.l

in the Appendix illustrates the API (Application Programming Interface) methods of

the Image class.

3.1.2 The Xpmlmage Class

The Xpmlmage class, which processes images in XPM format, is a sub-class of the Image

class. Table A.2 in the Appendix illustrates the API methods of the Xpmlmage class.

The user can design new classes for different image formats and make them sub-classes

of the Image class.

3.1.3 The Histogram Class

The Histogram class can calculate and display the histogram, which is the distribution

of different intensity values, of an image. Table A.3 in the Appendix illustrates the API

methods of the Histogram class.

3.1.4 The Option Class

The Option class parses command line arguments and sets parameters and control flags

for subsequent program execution. The initial design of DICE used a command line

interface, which can still be used in shell scripts for batch execution. After the GUI was
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incorporated, the Option class merely served as a class for passing parameters. Tables

A.4 and A.5 in the Appendix illustrate the API methods of the Option class.

3.1.5 The Object Class

The Object class represents the objects in an image. Its functionalities include the

ability of checking whether one object touches another object, building the dendrone

hierarchy, retrieving pixels from the object, and measuring the similarity of object

surface structures. Currently, the Object class only stores information about the pixels

contained in the object and the dimension and position of the object within the image.

If needed, more information such as the ellipse (roundness) of the object could be

computed and stored as well. Tables A.6 and A.7 in the Appendix illustrate the API

methods of the Object class.

3.1.6 The Dendrone Class

The Dendrone class, which is a sul>class of the Image class, represents the dendrones

generated from images. Its primary functionalities are segmenting the input image,

linking objects generated from the segmentations together to build the dendrone, re

constructing individual object images from the dendrone, and generating PostScript

dendrograms. Tables A.8, A.9, and A.10 in the Appendix illustrate the API methods

of the Dendrone class. Method buildDendronalTree() is one of the major methods of

the dendrone class, which constructs a dendrone from the input image. Figure 3..3 illus

trates the four major stejjs associated with dendrone construction; image segmentation,
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Figure 3.3: Steps of the construction of a dendrone.
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object merging, object sorting, and object indexing (declaring object ids).

Design of the Dendrone Data Structure

In the design and implementation of the dendrone data structure, a dynamically linked

tree structure is used. Considering the variety of images and the large amount of infor

mation a dendrone could contain, static memory allocation is clearly neither practical

nor efficient. In addtion, during the construction of the dendrone, every iteration of the

segmentation process generates a large number of objects. Some of these objects may

be merged immediately with other objects while others may not be merged until much

later. Furthermore, the merging process requires efficient access to the parent objects

and child objects. After the dendrone is built, the objects are sorted according to inten

sity value. In order to retrieve the objects quickly, and at the same time, without using

a lot of memory, a pointer hierarchy is implemented (illustrated in Figure 3.4). The

first set of pointers give immediate access to the objects in the dendrone through the

ids of the objects. On the other hand, the links among related objects give easy access

to parent objects and child objects. A third set of pointers group objects with differ

ent levels of intensities together, which are used during the segmentation and merging

processes and also facilitate parallelization of the segmentation process.

Dendrogram

For each dendrone, DICE can generate three kinds of dendrograms in PostScript format:

1. The non-coordinate dendrogram (see Figure 2.4 for an example).
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Figure 3.4: Deiulrone data structure implementation.
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The x-coordinate of this dendrogram has no meaning and the y-coordinate indi

cates the intensity level (ranging from 0 to 255). In addition, the objects in the

dendrone are displayed in a certain order:

(a) Objects with higher intensity values (brighter objects) are displayed to the

left side of objects with lower intensity values (darker objects).

(b) At the same intensity level, composite objects are displayed to the left side

of primitive objects.

2. The x-coordinate dendrogram (see Figure 3.5).

The x-coordinate of this dendrogram corresponds to the x-coordinate of the image

from which the dendrogram is generated. The y-coordinate indicates the intensity

level (ranging from 0 to 255). The individual horizontal and vertical lines in the

.T-coordinate dendrogram are interpreted as in the non-coordinate dendrogram.

3. The y-coordinate dendrogram (see Figure 3.6).

The y-coordinate of this dendrogram corresponds to the y-coordinate of the image

from which the dendrogram is generated, and the a;-coordinate indicates the inten

sity level. As with the x-coordinate dendrogram, the horizontal and vertical lines

in the y-coordinate dendrogram designate objects in the image and the intensity

levels at which the image is segmented, respectively.

The non-coordinate dendrogram is useful because it does not contain information

related to objects' positions within the image, which makes it ideal for comparing den-
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Figure 3.5: X-coordinate dendrogram of the image in Figure 2.1.

46



lO-

20- 21 L

"S 0.

J
><

30l

40-

idL

50 UK) ISO
Gray Level

200 2SO
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drones generated from rotated or scaled images. The x-coordinate and j/-coordinate

dendrograms are useful when constructing individual object images from the dendrone.

From these two kinds of dendrograms, the user can locate an object according to its

x-coordinate and/or y-coordinate position within the original image (DICE's GUI has

a more convenient way to locate objects (see Section 3.2)). As in the non-coordinate

dendrogram, composite objects in the i-coordinate and y-coordinate dendrograms are

identified by the integers near the lines representing the objects.

In Section 2.1, the construction of dendrones was visualized as decreasing water

level on an imaginary three-dimensional intensity terrain. This approach works well

with images that have dark background and bright foreground. If the image has bright

background and dark foreground, this approach may not be optimal. In this case,

increasing the water level may more appropriately reveal the relationships among the

objects in the image. DICE enables both the decrease and increase of the water level

so that the user can control how the dendrone should be properly constructed.

Text Dendrone File

In DICE, the user can save the dendrones generated from images to files for future

processing. A specific text format has been designed to store dendrones. This format

is easy to modify for test purposes and can be compressed using external programs.

In the file, comment lines begin with a and are ignored by DICE. The first

meaningful line/record must be of the form
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maxID rows cols left top right bottom stride reverse ,

where

maxID is the maximum object id in the dendrone,

rows is the number of rows in the image,

cols is the number of columns in the image,

left, top, right, and bottom are the coordinates of the sub-image from which

the dendrone is generated,

stride is the stride value at which the image is segmented, and

reverse indicates whether the dendrone is generated from the highest

intensity value to the lowest or vice versa.

The remaining lines/records of the file contain information of the objects in the

dendrone. The objects are listed according to a pre-order traversal of the dendrone.

Each composite object is listed as

{ID, top, left, bottom, right, cRow, cCol, size, subObjNo) ,

where

ID is the id of the object.
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top, left, bottom, and right are the coordinates of the object's bounding box,

cRow is the y-coordinate of the center of the bounding box,

cCol is the x-coordinate of the center of the bounding box,

size is the number of pixels in the object, and

subObjNo is the number of child objects.

Primitive objects are listed under their parent objects respectively, each followed by

information about the pixels in the object:

{ID, top, left, bottom, right, cRow, cCol, size, 0)
(yi, xi, intensityi)
{y2,X2,intensity2)

{ysize j ̂ size i intensitysize)

where

■iji [i G [l,sr2:e]) is the y-coordinate of one pixel in the object,

■T, (z 6 [l,sz2e]) is the x-coordinate of one pixel in the object, and

intensityi (i 6 [l,szze]) is the intensity value of the pixel.

Reconstructed Image

In DICE, the user can reconstruct individual object images from the dendrone generated

from the input image. The generated images are in PPM [Pos91] format. Currently,

the reconstructed objects are rendered using their ids as the intensity values. In the
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dendrone library, it is also possible to render the objects using their original intensity

values.

File Management

For one input image, DICE may generate a large number of output files in different

formats. To manage these files, a simple root filename approach is taken. A root

filename is chosen (either by default or designated by the user) for each input image file

and certain attributes and extension names are appended to the root filename to form

the output filename. Table 3.1 summarizes the file management in DICE. The Jgraph

files shown are used to generate PostScript dendrograms. Jgraph is a simple description

language for plotting graphs (see [Pla]).

3.1.7 The Shape Class

The Shape class implements the distance-to-centroid image signature algorithms pre

sented in Section 2.2. It can generate the signature image from a detected object and

compare similarity of object shapes. This class can be replaced if the user chooses an

alternative object matching algorithm. Table A.11 in the Appendix illustrates the API

methods of the Shape class.

3.1.8 The RankList Class

The RankList class collects the results of object matching into a ranked list sorted by

similarity value in descending order and handles information passing between the GUI
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Table 3.1: File management in DICE.

File Name Format Description Example

root.xpm XPM input image file peaks.xpm

TOot-stride-objID.txt ASCII text text (sub-)dendrone file peaks-30-0.txt

root-histo.ps PostScript PostScript histogram peaks-histo.ps

Toot-stride-objID.jgT Jgraph Jgraph non-coordinate
(sub-)dendrogram

peaks-30-0.jgr

Toot-x-stride-obj/D.jgr Jgraph Jgraph x-coordinate
(sub-)dendrogram

peaks-x-30-0.jgr

Toot-y-stride-obj/D.jgr Jgraph Jgraph y-coordinate
(sub-)dendrogram

peaks-y-30-0.jgr

Toot-stride-obj ID.ps PostScript PostScript non-coordinate
(sub-)dendrogram

peaks-30-0.ps

Toot-x-stride-obj I D.ps PostScript PostScript x-coordinate
(su b-) dendrogram

peaks-x-30-0.ps

voot-y-stride-obj I D.ps PostScript PostScript y-coordinate
(sub-)dendrogram

peaks-y-30-0.ps

root-stride-oo5j7D.ppm PPM reconstructed object image peaks-30-o0. ppm

and the dendrone library. Table A.12 illustrates the API methods of the RankList class.

3.2 The Graphical User Interface

The GUI module (see Figure 3.7), implemented in Java, provides convenient ways for the

user to generate dendrones from images, reconstruct images from dendrones, and retrieve

objects in images by matching sub-dendrones. The GUI also provides a customizable

configuration environment, which the user can modify according to personal preferences.
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Figure 3.7: DICE main window.

3.2.1 Generating Dendrones from Images

In the GUI, it is straightforward to generate dendrones from images. First, the user

selects an input image from a FileDialog. If the file is successfully read, a ImageDis-

p/ayer window (see Figure 3.8) containing the image is displayed. In the ImageDisplayer

window, the user can select a sub-image (represented by the rectangle) by clicking and

dragging the mouse button. Without a selected sub-image, the dendrone will be built

from the entire image. By clicking the Build Dendrone... button, the user can bring

up a BuildDialog window (see Figure 3.9) in which a number of parameters and options

regarding the construction of the dendrone can be selected. The Output File Root is

automatically derived from the input image file name unless supplied by the user. If the

root file name is not an absolute path name, the generated files (see Table 3.1) will be

stored in the directory relative to the current directory. The user can also set the stride

value using the scroll bar and edit the Left, Top, Right, and Bottom text fields for the

sub-image coordinates by either entering numbers manually or selecting a sub-image in

the ImageDisplmjer window using the mouse. The radio buttons and check boxes allow

the user to generate and display selected PostScript dendrograms.
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Figure 3.9: BuildDialog window for dendrone construction.
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3.2.2 Reconstructing Images from Dendrones

With the help of the GUI, reconstructing images from dendrones becomes very con

venient. The user first loads the dendrone into DICE by selecting a file storing the

dendrone using the FileDialog. If the dendrone is successfully loaded, a DendroneDis

player window (see Figure 3.10) will be displayed. This window contains information

about the dendrone, such as the size and coordinates of the (sub-)image from which

the dendrone is generated and the stride value used to generate the dendrone. Clicking

the Reconstruct Image... button will bring up a ReconstructDialog window (see Figure

3.11) for specifying additional information concerning the reconstruction. An ImageDis-

player window (see Figure 3.12) containing the original (sub-)image is also displayed.
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This window is identical to the one used to generate dendrones from images (illustrated

in Figure 3.8) with the exception that the Build Dendrone... button is not present.

The reconstruction of an individual object is accomplished by using its id. A few

different ways to obtain an object's id are:

1. Point and click the mouse in the BnageDisplayer window.

This is the most convenient way to locate an object. The user can move the mouse

to a pixel and click on the pixel. The smallest object containing that pixel will be

highlighted (see Figure 3.12 for an example). At the same time, the Object ID text

field, the Parent Object text field, and the Child Objects scroll list are updated

accordingly.

2. Enter the object id in the Object ID text field directly.

If the user knows the object's id (by viewing the PostScript dendrograms, for



example), he or she can enter the id directly. The corresponding object with that

id in the ImageDisplayer window will be highlighted. In addition, the Parent

Object text field and the Child Objects scroll list are updated automatically to

contain the parent object id and child object ids, respectively.

3. Select an object id from the Parent Object text field or the Child Objects scroll

list.

After the initial object is selected (for instance, by pointing and clicking the

mouse), the user can traverse the dendrone by using the Parent Object text field

and the Child Objects scroW list until the desired object is found.

In the ReconstructDialog window, the user can also specify the root file name for

output files, a range of intensity values for reconstruction, and other options regarding

the generation and display of object images, text sub-dendrone files, and PostScript

sub-dendrograms.

3.2.3 Object Retrieval by Matching Sub-Dendrones

The MatchDialog window (see Figure 3.13) can be used to retrieve objects with similar

surface structure and/or shape as determined by matching sub-dendrones representing

the objects. The user can enter the name of the file containing the dendrone representing

the source object to match and the name of the file containing the target image from

which objects will be retrieved. To narrow down the number of potential candidate

objects, the user can increase the similarity value, or specify the size of the objects to
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Figure 3.13: MatchDialog window for object matching.

retrieve. Finally, the user can select the criteria for the match. Currently, DICE only

implements two kinds of matching - matching by dendrone structure and by object shape

using the distance-to-centroid signature. The user can write his or her own MatchDialog

class in Java to implement alternative matching algorithms. After the user clicks the

Match... button, the matching results will be displayed in a MatchResultDisplayer

window (see Figure 3.14). The results are sorted by the similarity value in descending

order. The ids and sizes of the matching objects are also displayed so that the user can

double-click on an item to bring up an ReconstructDialog window and reconstruct the

selected object's image.
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Figure 3.14: MatcliResultDisplnyer window showing object matching results.

3.2.4 Customizing DICE

DICE provides a configuration fi le which allows each individual user to set his or her

own default DICE environment. The user can either edit the text configuration fi le

directly or use the DICE GUI. As illustrated in Figure 3.15, the user can specify any

available application programs to display and edit images. The parameters and options

used in the construction of dendrones, reconstruction of images, and matching of sub-

dendrones are also customizable so that the user doesn't have to set the same options

redundantly. To demonstrate the use of the distance-to-centroid matching algorithm,

DICE has included a sub-dendrone matching demo, which matches 747 airplanes in two

different images.
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Figure 3.15: AppConfigDialog window for external application program configuration.

3.3 The Interface Module

Since the clenclrone library and the GUI module are written in two different program

ming languages, an interface module must be used to communicate between them. More

specifically, in the GUI module, Java objects need to call methods in the C-|-+ dendrone

library. DICE uses the JA^/(Java Native Interface) mechanism [CW98, Eck98] provided

by Sun's JDK (Java Develoi)ment Kit) to accomplish the interactions between Java

objects and C-f-f methods. The interface module, written in C, contains wrapper func

tions which call a C-|-+ method and return results to Java objects. Such functions are

required since the JDK only supports native methods written in C. In order to call a

C-t-+ method, a C function must be used, which accepts a pointer to a C-t-+ object

for subsequent method invocations. Figure 3.16 illustrates the steps of calling a C-I-+

method from a Java object:

1. The Java object calls the C function, passing a pointer to the designated C-f—b
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Figure 3.16: Calling C++ methods in Java.

object, which is returned from a previous invocation of another C++ method, and

other parameters.

2. The C function calls the C++ method in the designated object.

3. The C++ method returns results to the C function.

4. The C function returns results to the Java object.
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Chapter 4

Evaluating the Performance and

Effectiveness of DICE

The focus of this chapter is to evaluate the performance and effectiveness of the DICE

software. The benchmarked execution time and complexity of constructing dendrones

from images are discussed. The effectiveness of the object matching algorithm using

distaiice-to-centroid image signatures is also examined.

4.1 Performance Evaluation

To evaluate the performance of dendrone construction algorithms, processing times for

a few benchmark images (of different sizes and contents) were recorded.
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4.1.1 Procedure

All performance timings were recorded on a Sun Ultral SPARCstation with a 167 MHz

processor, 32 KB on-chip cache (16 KB Instruction, 16 KB Data), 512 KB external

cache, and 256 MB of main memory. A C version of the DICE dendrone library soft

ware (presented in Section 3.1) exploiting a command line interface was used for the

evaluation. As illustrated in Table 4.1 and Figures 4.1 and 4.2, two different images

were used in the experiment.

Table 4.1: Images used to evaluate the performance of the dendrone construction algo
rithms.

Figure Size in Pixels (rows X columns) Description
4.1 128 X 192 747 airplane
4.2 264 X 472 biplane

Figure 4.1: High-altitude photograph of a Boeing 747 in flight.

As mentioned in Section 2.2.1, three different image segmentation algorithms are

available:
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Figure 4.2: A biplane and its shadow as seen from above.

1. The pixel labeling algorithm.

2. The recursive version of Connectivity Filling.

3. The non-recursive version of Connectivity Filling.

One implementation of each of the three image segmentation algorithms was bench-

marked. In the pixel labeling version, elapsed CPU times were recorded in four key

steps of the bmldDcndvonalTree() function (see Figure 3.3): image segmentation, object

merging, object sorting, and object indexing (i.e., declaring object ids). In the Connec

tivity Filling version, an extra step, pixel sorting, must be performed before the above

four steps. In this step, the pixels in the image are sorted by their intensity values in

descending order. To reveal the relationship between the time spent in each of these

steps and the stride value used to segment the images and construct the dendrones.



Table 4.2: Summary of dendrone construction performance figures and tables.

Figure/Table Input Image Segmentation Algorithm
Figure 4.3 Figure 4.1 (747) Pixel Labeling
Table 4.3 Figure 4.1 (747) Pixel Labeling
Table 4.4 Figure 4.1 (747) Pixel Labeling
Figure 4.4 Figure 4.1 (747) Recursive Connectivity Filling
Table 4.5 Figure 4.1 (747) Recursive Connectivity Filling
Table 4.6 Figure 4.1 (747) Recursive Connectivity Filling
Figure 4.5 Figure 4.1 (747) Non-recursive Connectivity Filling
Table 4.7 Figure 4.1 (747) Non-recursive Connectivity Filling
Table 4.8 Figure 4.1 (747) Non-recursive Connectivity Filling
Figure 4.6 Figure 4.2 (Biplane) Pixel Labeling
Table 4.9 Figure 4.2 (Biplane) Pixel Labeling
Table 4.10 Figure 4.2 (Biplane) Pixel Labeling
Figure 4.7 Figure 4.2 (Biplane) Non-recursive Connectivity Filling
Table 4.11 Figure 4.2 (Biplane) Non-recursive Connectivity Filling
Table 4.12 Figure 4.2 (Biplane) Non-recursive Connectivity Filling

different stride values ranging from 1 up to 255 were used.

4.1.2 Results

The elapsed times were collected and drawn in Figures 4.3 through 4.7. To illustrate

the percentage of time consumed by different steps in the dendrone construction, the

total construction time is broken down at selected stride values. Table 4.2 summarizes

these figures and tables.

From Figures 4.3 through 4.7, it is clear that the smaller the stride value, the longer

the total time of dendrone construction. As the stride value is chosen to be smaller,

relatively more objects are detected during the segmentation processes, although the
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Figure 4.3: Total elapsed time of dendrone construction for the image in Figure 4.1
using the pixel labeling algorithm.
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Table 4.3: Elapsed times of dendrone construction (at selected stride values) for the
image in Figure 4.1 using the pixel labeling algorithm.

Stride Segmentation Merging Indexing Object Sorting Total

1 3149.87 141301.97 64.00 187.70 144715.61

5 850.46 77834.05 52.04 1826.38 80565.80

10 562.91 36098.59 43.54 1077.91 37784.54

20 412.66 10128.57 20.39 732.91 11295.34

30 351.38 5044.24 12.04 573.77 5982.01

50 269.82 18425.86 5.72 258.25 18960.06

100 161.03 4192.02 2.20 6169.51 10525.00

150 113.98 0.00 0.26 122.68 237.13

200 127.38 0.00 0.04 0.07 127.71

255 128.04 0.00 0.04 0.07 128.38

Table 4.4: Percentage time for different steps of dendrone construction (at selected
stride values) for the image in Figure 4.1 using the pixel labeling algorithm.

Stride Segmentation Merging Indexing Object Sorting
1 2.18 97.64 0.04 0.13

5 1.06 96.61 0.06 2.27

10 1.49 95.54 0.12 2.85

20 3.65 89.67 0.18 6.49

30 5.87 84.32 0.20 9.59

50 1.42 97.18 0.03 1.36

100 1.53 39.83 0.02 58.62

150 48.06 0.00 0.11 51.74

200 99.74 0.00 0.03 0.05

255 99.74 0.00 0.03 0.06
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Figure 4.4: Total elapsed time of dendrone construction for the image in Figure 4.1
using the recursive Connectivity Filling algorithm.
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Table 4.5: Elapsed times of dendrone construction (at selected stride values) for the
image in Figure 4.1 using the recursive Connectivity Filling algorithm.

Stride Pixel

Sorting
Segmentation Merging Indexing Object

Sorting
Total

1 1604.33 400.18 145563.12 64.56 192.73 147836.19

5 1583.88 366.38 82705.34 51.87 409.38 85120.14

10 1591.96 333.48 36524.52 36.68 301.38 38789.83

20 1588.71 289.42 10171.17 19.39 290.50 12360.31

30 1597.70 268.41 4722.05 12.08 258.63 6859.79

50 1587.09 252.92 6236.29 5.54 3623.13 11705.68

100 1588.05 252.87 4267.07 1.99 6385.33 12495.85

150 1590.80 173.58 0.00 0.22 124.03 1889.12

200 1590.40 246.07 0.00 0.04 0.03 1837.02

255 1597.94 246.69 0.00 0.03 0.03 1845.18

Table 4.6: Percentage time for different steps of dendrone construction (at selected stride
values) for the image in Figure 4.1 using the recursive Connectivity Filling algorithm.

Stride Pixel Sorting Segmentation Merging Indexing Object Sorting

1 1.09 0.27 98.46 0.04 0.13

5 1.86 0.43 97.16 0.06 0.48

10 4.10 0.86 94.16 0.09 0.78

20 12.85 2.34 82.29 0.16 2.35

30 23.29 3.91 68.84 0.18 3.77

50 13.56 2.16 53.28 0.05 30.95

100 12.71 2.02 34.15 0.02 51.10

150 84.21 9.19 0.00 0.01 6.57

200 86.57 13.40 0.00 0.00 0.00

255 86.60 13.37 0.00 0.00 0.00
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Figure 4.5: Total elapsed time of dendrone construction for the image in Figure 4.1
using the non-recursive Connectivity Filling algorithm.
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Table 4.7: Elapsed times of dendrone construction (at selected stride values) for the
image in Figure 4.1 using the non-recursive Connectivity Filling algorithm.

Stride Pixel

Sorting
Segmentation Merging Indexing Object

Sorting
Total

1 1640.32 649.69 157450.41 66.33 198.08 160016.16

5 1601.99 602.69 95345.07 55.46 419.15 98027.55

10 1614.97 513.40 40549.01 37.26 310.46 43026.94

20 1595.05 409.60 10395.39 19.68 296.30 12717.13

30 1613.75 348.80 4574.30 12.10 256.37 6806.23

50 1621.52 292.73 6061.30 5.40 3495.64 11477.28

100 1618.94 264.64 4171.13 2.09 6542.94 12600.32

150 1604.27 164.80 0.00 0.26 127.68 1897.51

200 1628.02 248.95 0.00 0.03 0.03 1877.55

255 1614.94 246.08 0.00 0.03 0.03 1861.57

Table 4.8: Percentage time for different steps of dendrone construction (at selected
stride values) for the image in Figure 4.1 using the non-recursive Connectivity Filling
algorithm.

Stride Pixel Sorting Segmentation Merging Indexing Object Sorting
1 1.03 0.41 98.40 0.04 0.12

5 1.63 0.61 97.26 0.06 0.43

10 3.75 1.19 94.24 0.09 0.72

20 12.54 3.22 81.74 0.15 2.33

30 23.71 5.12 67.21 0.18 3.77

50 14.13 2.55 52.81 0.05 30.46

100 12.85 2.10 33.10 0.02 51.93

150 84.55 8.68 0.00 0.01 6.73

200 86.71 13.26 0.00 0.00 0.00

255 86.75 13.22 0.00 0.00 0.00
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Figure 4.6: Total elapsed time of deiulrone construction for the image in Figure 4.2
using the pixel labeling algorithm.
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Table 4.9: Elapsed times of dendrone construction (at selected stride values) for the
image in Figure 4.2 using the pixel labeling algorithm.

Stride Segmentation Merging Indexing Object Sorting Total

1 15983.31 491851.16 114.31 1654.03 509615.09

5 4612.73 201469.41 76.69 7113.61 213275.58

10 2781.57 65908.59 39.02 9484.02 78214.82

20 1733.67 70949.89 20.09 1756.38 74460.95
30 1419.86 57862.00 12.78 1881.23 61176.66

50 1046.15 19135.43 4.55 2889.49 23076.08

100 695.25 4046.65 0.65 8322.47 13065.35

150 233.76 0.00 1.40 128.96 364.48

200 610.61 0.00 0.10 875.80 1486.73

255 585.97 0.00 0.03 0.07 586.30

Table 4.10: Percentage time for different steps of dendrone construction (at selected
stride values) for the image in Figure 4.2 using the pixel labeling algorithm.

Stride Segmentation Merging Indexing Object Sorting
1 3.14 96.51 0.02 0.32

5 2.16 94.46 0.04 3.34

10 3.56 84.27 0.05 12.13

20 2.33 95.28 0.03 2.36

30 2.32 94.58 0.02 3.08

50 4.53 82.92 0.02 12.52

100 5.32 30.97 0.01 63.70

150 64.13 0.00 0.39 35.38

200 41.07 0.00 0.01 58.91

255 99.94 0.00 0.01 0.01
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Table 4.11: Elapsed times of dendrone construction (at selected stride values) for the
image in Figure 4.2 using the non-recursive Connectivity Filling algorithm.

Stride Pixel

Sorting
Segmentation Merging Indexing Object

Sorting
Total

1 45392.06 2135.81 510723.41 116.25 810.12 559189.12

5 44930.38 1865.48 199120.08 77.61 4436.14 250433.08

10 45300.02 1549.29 68713.97 37.88 3234.05 118837.15

20 45325.69 1348.69 68755.80 18.26 8754.45 124204.09

30 45420.70 1261.07 59283.42 11.37 853.52 106831.12

50 45388.91 1280.89 19255.86 4.69 561.43 66492.57

100 44932.12 1153.75 12030.96 0.64 8412.92 66531.02

150 45394.00 246.09 0.00 1.20 145.57 45787.54

200 45363.00 1193.44 0.00 0.11 759.59 47316.70

255 45173.09 1269.58 0.00 0.03 0.03 46443.27

Table 4.12: Percentage time for different steps of dendrone construction (at selected
stride values) for the image in Figure 4.2 using the non-recursive Connectivity Filling
algorithm.

Stride Pixel Sorting Segmentation Merging Indexing Object Sorting
1 8.12 0.38 91.33 0.02 0.14

5 17.94 0.74 79.51 0.03 1.77

10 38.12 1.30 57.82 0.03 2.72

20 36.49 1.09 55.36 0.01 7.05

30 42.52 1.18 55.49 0.01 0.80

50 68.26 1.93 28.96 0.01 0.84

100 67.54 1.73 18.08 0.00 12.65

150 99.14 0.54 0.00 0.00 0.32

200 95.87 2.52 0.00 0.00 1.61

255 97.27 2.73 0.00 0.00 0.00

76



sizes of the objects may be smaller than those when the stride value is larger. As the

number of objects increases, the time for building the dendrone increases dramatically.

In fact, Figures 4.3 through 4.7 demonstrate that the total dendrone construction time

increases (regardless of the segmentation algorithm) as the stride decreases. From the

breakdown tables of percentage time for different steps, it is clear which specific step

is taking the most time. In the pixel labeling version, dendrone construction time is

dominated by the time spent in the object merging step when the stride value is not

very large (see Tables 4.4 and 4.10). The object merging step occupies more than 80

percent of the total time. On the contrary, in the Connectivity Filling versions, the

pixel sorting process takes a constant time, or over 80 percent of the total time, when

the stride is large (see Tables 4.6, 4.8, and 4.12). As the stride decreases, the object

merging step occupies larger part of the total time, which is similar to the situation

in the pixel labeling version. From the breakdown tables of elapsed time (Tables 4.3,

4.5, 4.7, 4.9, and 4.11), it can be seen that at most stride values, the total construction

times for three versions are within the same magnitude. However, the pixel labeling

algorithm is a little slower than the Connectivity Filling versions in only a few cases.

For example, for input image Figure 4.1, when the stride value is 50, the pixel labeling

version takes about 18,960 milliseconds and the two Connectivity Filling versions take

11,706 and 11,477 milliseconds, respectively. On average, the pixel labeling version is

faster (by a factor ranging from 1.02 when the stride value is 1, to 14.5 when the stride

value is 255) than the other versions.
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Another aspect of the complexity is space. While all three versions require a tremen

dous amount of memory (illustrated in Table 4.13), the pixel labeling version excels in

that it does not require any memory beyond that needed to store the dendrone itself.

Both the recursive and non-recursive Connectivity Filling versions must use auxiliary

memory to store the sorted pixels. In addition, the recursive Connectivity Fill version

relies on the operating system for recursive function invocations. It is quite possible

that the size and contents of an input image will cause the system's internal stack to

overflow.

Table 4.13: Memory usage of dendrone construction (stride = 30).

Figure Segmentation Algorithm Process Virtual Memory
Size (kilobytes)

4.1 Pixel Labeling 2048

4.1 Recursive Connectivity Filling 2536

4.1 Non-recursive Connectivity Filling 2328

4.2 Pixel Labeling 3688

4.2 Recursive Connectivity Filling 4984

4.2 Effectiveness Evaluation

The effectiveness of the object matching algorithm using distance-to-centroid image

signatures (see Section 2.2.2) was evaluated using both artificially generated images

and real-world complex images.

A number of different images have been used to evaluate the eflFectiveness of the

78



distaiice-to-centroid image signature matching algorithm. Table 4.14 and Figure 4.8

illustrate four of the images used for the evaluation.

Table 4.14: Summary of images used to evaluate the effectiveness of the distance-to-
centroid image signature matching algorithm.

Figure Type Description
4.8(a) artificial circle object
4.8(b) artificial objects with different shapes
4.8(c) photograph 747 airplane extracted from Figure 4.1
4.8(d) photograph another high-altitude view of the 747 airplane

from Figure 4.1 (later in time)

4.2.1 Matching Artificial Shapes

Theoretically, the distance-to-centroid image signature is invariant to translation, ro

tation, and scaling (see [Rau94]). To test these properties, two artificially generated

images are used. The images are binary, which means that there are only two inten

sity values in the images and any pixel is either black (with an intensity value of 0) or

white (with an intensity value of 255). The shape for matching (or query shape) is a

circle (illustrated in Figure 4.8(a)) and the shapes to match are in a composite image

(illustrated in Figure 4.8(b)) of different shapes such as circles, rectangles, triangles,

polygons, and objects with holes. The matching algorithm should match the circles

best, although they are not of the same size as the source circle, then shapes similar to

the circle, and finally the other shapes. Figure 4.9 illustrates the matched shapes from

the image in Figure 4.8(b) according to the value of S from Equation (2.3), in order
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of percent similarity (shown in parentheses). The first object is judged most similar

while the object in frame 24 is the least similar. From Figure 4.9, it is clear that the

best matches are circles, then some irregular shapes, and most of the long and thin

rectangles are ranked last. It can be noticed that the eleventh match is a circle with

a hole in it. This match is not ranked very high although the overall shape is a circle.

However, the signature image of this object contains two curves. One corresponds to

the edge of the larger circle and the other corresponds to the edge of the inner hole. As

calculated by Equation (2.3), the similarity value S is not only determined by the area

between the curve corresponding to the large circle and the curve in the source circle

signature image, but also by the area between the curve corresponding to the inner hole

and the curve in the source circle signature image. As a result, the value of S in this

case is much smaller so that this object is not ranked as high as the solid circles.

4.2.2 Matching Objects from Real Images

Tests using artificially generated images that contain simple shapes have proven that the

distance-to-centroid image signature algorithm is effective theoretically. To further test

its effectiveness on real-world (more complex) images, in which the shapes and intensity

values of objects are much more diverse and irregular, two aerial photographs of Boeing

747 airplanes were used. The goal in this case is to locate the plane in the target

image (illustrated in Figure 4.8(d)), which contains not only the plane, but also other

background objects. The query image contains only the plane (illustrated in Figure

4.8(c)), which is a reconstructed object image (from the image in Figure 4.1) obtained
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via sul>dendrone extraction.

Compared with simple shape matching, matching objects in real-world complex

images involves more trial and error. In such images, small objects that contain only

a few pixels are much more likely to be present. Hence, the minimum and maximum

object sizes for matching can be used to filter out very small objects during the matching

process. Due to the size of the object, a small object's distance-to-centroid signature

often only contains a few pixels, which is not very useful in the computation of the

signature image. In addition, when a larger object is compared with a very small

object, the larger object's signature image is scaled to be the same size of the smaller

object's signature image, which may cause the loss of some important features in the

scaled signature image. In the extreme case, if the smaller object has only one pixel,

its signature image will also has one pixel only. Even if the larger object's signature

image has many features, the scaled signature image will have only one pixel and the

matching algorithm will recognize the two images as a perfect match.

In real-world images, intensity values also play an important role in the matching.

By combining shape matching and object surface structure matching, better results may

be achieved. Figure 4.10 illustrates the top twelve matched objects from the image in

Figure 4.8(d) according to the similarity value S listed in Equation 2.3. During the

matching, only objects whose sizes are between 30 and 60 pixels were processed and

only object shapes were matched using Equation (2.3). The best match is the plane

plus some background noise near the wings. Therefore, the distance-to-centroid image
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Figure 4.10: Matching objects from Figure 4.8(d).

signature matching algorithm also works well for this particular real-world image. Of

course, the effectiveness of this algorithm may well depend on the contents of the input

image.

Another very important issue regarding object matching is that since the matching

is based on (sub-)dendrones, the construction of the dendrone from the input image,

particularly the choice of the stride value, is crucial to the effectiveness of the matching

process. If the stride value is too large, some objects may never be presented in the

dendrone and consequently will never be matched. On the other hand, if the stride value

is too small, too many objects that are very similar (only different by a few pixels) will

be present in the dendrones, which not only slows down the matching process, but also

makes the matching results difficult to differentiate.
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Chapter 5

Conclusions

Dendronic image characterization is a data-driven and self-structuring process, which

can be used in application areas such as military surveillance, medical image analysis,

and computer graphics. The algorithm for dendrone construction is robust and strikes

a balance between computational time and memory consumption. The algorithm for

matching sub-dendrones according to distance-to-centroid signatures is also simple and

effective.

DICE is a flexible, extendable, and portable implementation of dendronic image

characterization. The dendrone library and API's allow users to easily extend DICE's

functionalities and add alternative algorithms. The graphical user interface provides a

simple and straightforward way to analyze images using their dendronic signatures and

locate objects with similar shapes (via sul>dendrones) from multiple images.

Currently, a serial implementation for dendrone construction is used within DICE.
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Certainly an optimized parallel approach to image segmentation would speed up the

object merging process.

Research in shape matching would provide insight into what alternative object

matching algorithm could be used for locating objects with similar shapes. Also, an

notating a sub-dendrone with text describing the corresponding objects could achieve

better results for information retrieval purposes.

Aside from algorithms, the DICE software environment could be extended in a few

functional areas. Encoding dendrones could not only decrease memory usage but also

achieve better performance. A tool for annotating images would be desirable. The

abilities to maintain a large collection of images and their dendronic signatures would

also be desirable.
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API Tables of C+4- Classes in

DICE
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Table A.l: API methods of the Image class.

Method Description

Image() creates an empty Image object
(without allocating memory for pixels)

Image(int rows, int columns) creates an Image object with allocated
memory for rows x columns pixels)

~Image() destroys the Image object
int getRows() returns the number of rows in the image
int getCols() returns the number of columns in the image
int ♦*getData() returns a pointer to the image data

(in two-dimensional representation)
int *getAiTay() returns a pointer to the image data

(in one-dimensional representation)
void fi ll(

ObjectPtr objectPtr,
int **objec.tData)

paints pixels (pixel coordinates available
from the object pointed by objectPtr)
of the image with intensity values
(available from objectData)

void fill(
ObjectPtr objectPtr,
int intensity)

paints pixels (pixel coordinates available
from the object pointed by objectPtr)
of the image with intensity

void fill(
ObjectPtr objectPtr,
long id)

paints pixels (pixel coordinates available
from the object pointed by objectPtr)
of the image with id

void writeToFile(char +fileName) writes the Image object to a file
in PPM format

void view(
char *fileName,
char *imageViewerPath)

displays the image fi le

Table A.2: API methods of the Xpmlmage class.

Method Description
Xpmlmage(char *fileName) creates an Xpmlmage object from a fi le
~XpmImage() destroys the Xpmlmage object
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Table A.3; API methods of the Histogram class.

Method Description

Histogram (Image *lmage) creates a Histogram object from an Image
object

void displayO displays the histogram using an image viewer
chosen by the user (xv, which is an
interactive image displayer for the
X Window system, by default)

void saveToPSFile(char *fileName) saves the histogram to a file in PostScript
format

void deletePSFile() deletes the saved PostScript file
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Table A.4: API methods of the Option class (part 1).

Method Description

Option(int argc, char *+argv) creates an Option object from command line
arguments

Option (
char +fileName,
char *rootFileName,
int. stride,
bool fullDump,

bool noDendrogram,

bool display ID,

bool reverse)

creates an Option object from parameters:
input image file name
output image file name
stride value to segment the image
true (1) if pixel information should be generated
and false (0) otherwise
true (1) if no dendrogram should be generated
and false (0) otherwise
true (1) if composite object ids should be generated
in the dendrogram and false (0) otherwise
true (1) if the image should be segmented from the
lowest intensity value to the highest one
and false (0) otherwise

~Option() destroys the Option object

char +getImageFileName() returns the input image file name

Xpmlmage +getlmage() returns a pointer to the Xpmlmage object

int getLeft() returns the left a;-coordinate of the sub-image
from which to generate dendrones

int getTopO returns the top y-coordinate of the sub-image
from which to generate dendrones

int getRight() returns the right i-coordinate of the sul>image
from which to generate dendrones

int getBottom() returns the bottom y-coordinate of the sub-image
from which to generate dendrones

int getStride() returns the stride value to segment the image
char +getRootFileName() returns the root file name from which generated

out|)ut file names are formed
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Table A.5: API methods of the Option class (part 2).

Method Description

i)ool getFullDuinpO returns true (1) if the generated dendrones
contain pixel information and false (0) otherwise

bool getNoDendrogram() returns true (1) if the no PostScript dendrograms
should be generated and false (0) otherwise

!)Ool getDisplayID() returns tine (1) if the no composite object ids
should be used in the dendrograms and
false (0) otherwise

i)ool getRevei'se() returns true (1) if the image is segmented
from the lowest to the highest intensity value
and false (0) otherwise
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Table A.6: API methods of the Object class (part 1).

Method Description

Object(int row, int col) creates an Object object containing
one pixel [row, col)

Object (
FILE *fp,
Object *parentObjectPtr,
int **data)

creates an Object object from a file

Object (
Object +subObjectlPtr,
Object *subObject2Ptr)

creates an Object object as the
parent object of two sub-objects

~Object() destroys the Object object
long getID() returns the id of the object
int getStartRow() returns the top r/-coordinate of the

object's bounding box
int getStaitCol() returns the left x-coordinate of the

object's bounding box
int getEndR,ow() returns the bottom y-coordinate of the

object's bounding box
int getEndCol() returns the right x-coordinate of the

object's bounding box
float getCenterRow() returns the center y-coordinate of the

object's bounding box
float getCenterCol() returns the center x-coordinate of the

object's bounding box
long getSize() returns the size (in terms of number

of pixels) of the object
int getChildrenNumberO returns the number of sub-objects
Object ++getChildren() returns a pointer to an array containing

the sub-objects
Object *getChild(int i) returns a pointer to the ith sub-object
Object *getParent() returns a pointer to the parent object
long getDescendentNumber() returns the number of descendent

objects of the object (including
the object itself)

long getMaxObjectID() returns the maximum object id
in the sub-dendrone

Pixel *getPixel(long i) returns a pointer to the rth pixel
contained in the object
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Table A.7: API methods of the Object class (part 2).

Method Description

Pixel *getAllPixels() returns a pointer to an array of
pixels contained in the object
including those in its sub-objects

bool isComposite() returns true (1) is the object is composite
and false (0) otherwise

bool isEmptyO returns true (1) is the object is empty
and false (0) otherwise

void setID(long id) sets the object id

void setStai tR.ow(iiit startRow) sets the top y-coordinate of the
object's bounding box

void setStaitCol(int startCol) sets the left x-coordinate of the

object's bounding box
void setEndRow(int endRow) sets the bottom y-coordinate of the

object's bounding box

void setEndCol(int endCol) sets the right x-coordinate of the
object's bounding box

void setCenter() sets the center x-coordinate and

y-coordinate of the
object's bounding box

void setChild(
long i, Object *objectPti)

sets the object pointed by
ohjectPtr as the tth sub-object

void addChild(Object *objectPti) adds a sub-object

void swapChildrenPosition(int i, int j) swaps positions of the rth and jth
sub-objects

void mergeParents(Object +objectPtr) merges the parent objects into one
void add Pixel (int y, int x) adds pixel (x,y) to the object
void mergePixels(Object *objectPtr) merges pixels of two objects

bool touch (Object +objectPtr) returns true (1) if the two objects touch
and false (0) otherwise

void printFuIl(FILE *fp) dumps full object information into a file
void printPartial(FILE *fp) dumps partial object information into a file
void printPixels(FILE +fp, int *+data) dumps pixel information into a file
bool checkSelf(FILE *fp) checks the object integrity
float siiTiilarity(Object *objectPti) returns the similarity value (with respect

to surface structure) between two objects
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Table A.8: API methods of the Dendrone class (part 1).

Method Description

Dendrone(
Image +image, Int left, int top,
int right, int bottom, int stride,
bool reverse)

creates an empty Dendrone object
from an image

Dendrone(char +fileName) creates a Dendrone object from a file
~Dendrone() destroys the Dendrone object
int getStride() returns the stride value to segment

the image
int getLeft() returns the left i-coordinate of the sub-image

from which to generate dendrones
int getTopO returns the top j/-coordinate of the sub-image

from which to generate dendrones
int getRight() returns the right a;-coordinate of the sub-image

from which to generate dendrones
int getBottom() retuirns the bottom y-coordinate of the sul>image

from which to generate dendrones
bool getReverse() returns true (1) if the image is segmented

from the lowest intensity value to the highest
one and false (0) otherwise

long getObjectNumber() returns the maximum possible number of
objects in the dendrone

long getRealObjectNumber() returns the exact number of objects
in the dendrone

ObjectPtr getObject(long i) returns a pointer to object i in the dendrone
ObjectPtr getRootObject() returns the root object in the dendrone
long getParentObjectID(long i) returns id of the parent object of object i
int getChildrenNumber(long i) returns number of sub-objects of object i
long getChildObjectID(
long i, int j)

returns id of the jth sub-object of object i

long getMinObjectSize() returns size of the smallest object in the dendrone
long getMaxObjectSize() returns size of the largest object in the dendrone
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Table A.9: API methods of the Dendrone class (part 2).

Method Description

void buildDendronalTree() constructs the dendrone

void displayDendronaITree(
char *rootFileName,
long objectID,
bool fullDump,
char *dendroneFileName)

dumps the sub-dendrone with object
objectID as the root to a file

void freeDendronalTree(
ObjectPtr objectPtr)

frees memory of the dendronal tree

long searchPixel(int x, int y) returns the id of the smallest object
containing pixel {x,y)

void geneiateNCDendrograin(
long id,
int minGrayLevel,
int maxGrayLevel,
bool display ID,
char *iootFileName,
char *psFileName)

generates a non-coordinate dendrogram

void generateXDendrogram(
long id,
int minGrayLevel,
int maxGrayLevel,
bool displaylD,
bool wholeTree,
char *rootFileName,

char *psFileName)

generates an a;-coordinate dendrogram

void generateYDendrogram(
long id,
int minGrayLevel,
int maxGrayLevel,
bool displaylD,
bool wholeTree,
char *rootFileName,
char *psFileName)

generates a y-coordinate dendrogram

void viewDendrogram(char *psFileName) displays the dendrogram
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Table A.10: API methods of the Dendrone class (part 3).

Method Description

Image +reconstructImage(
int threshold,
char *rootFileName,
char *fileName)

reconstructs an image containing
objects whose intensities are greater
than threshold

Image *reconstructImage(
long id,
long filllD,
char *rootFileName,
char *fileName)

reconstructs an image of object id

bool ieadDendronaITreeFromFlle(
char +fileName)

reads a dendrone from a file and

return true (1) if successful and
false (0) otherwise

Table A.11: API methods of the Shape class.

Method Description

Shape(ObjectPtr objectPtr) creates a Shape (distance-to-centroid
signature) object

~Shape() destroys the Shape object

float similarityByPoint(Shape *shapePtr) returns the similarity of two objects
according to Equation (2.2)

float similarityByArea(Shape *shapePtr) returns the similarity of two objects
according to Equation (2.3)
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Table A.12: API metliods of the RankList class.

Method Description

Rank List 0 creates an empty RankList object
~R.ankList() destroys the RankList object
void append (long id, float score, long size) appends an item to the ranked list
void soitByScore() sorts the ranked list by score in

descending order
long getItemNmnber() returns the number of items

in the ranked list

long getObjectID(long i) returns the ith item's objectID field
float getScore(long i) returns the ith item's score field

long getSize(long i) returns the ith item's size field

void displayO displays the ranked list in
standard output
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