
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

8-1998

Using geographic information systems for business logistics Using geographic information systems for business logistics

analysis analysis

Kenneth M. Bennett

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Recommended Citation Recommended Citation
Bennett, Kenneth M., "Using geographic information systems for business logistics analysis. " Master's
Thesis, University of Tennessee, 1998.
https://trace.tennessee.edu/utk_gradthes/10171

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F10171&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Kenneth M. Bennett entitled "Using geographic

information systems for business logistics analysis." I have examined the final electronic copy

of this thesis for form and content and recommend that it be accepted in partial fulfillment of

the requirements for the degree of Master of Science, with a major in Geography.

Bruce Ralston, Major Professor

We have read this thesis and recommend its acceptance:

Tom Bell, Chen Liu

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Kenneth M. Bennett entitled "Using
Geographic Information Systems for Business Logistics Analysis." I have examined the
final copy of this thesis for form and content and recommend that it be accepted in partial
fulfillment of the requirements for the degree of Master of Science, with a major in
Geography.

/2
Bruce Ralston, Major Professor

We have read this thesis

and recommend its acceptance:

Tom Bell

Chen Liu

Accepted for the Council:

Associate Vice Chancellor and

Dean of The Graduate School

USING GEOGRAPHIC INFORMATION SYSTEMS

FOR

BUSINESS LOGISTICS ANALYSIS

A Thesis

Presented for the

Master of Science

Degree
The University of Tennessee, Knoxville

Kenneth M. Bennett

August 1998

Acknowledgments

During the nearly two years I have spent at the University of Tennessee, and

throughout my life, there have been many colleagues, friends, and femily members

whose influence on me has led, in one way or another, to my arrival at this moment.

While I cannot acknowledge all of them here, there are several whose names must not go

unmentioned.

First and foremost, I would like to express my deepest gratitude to Dr. Bruce

Ralston for being my teacher, mentor, and friend. For the entirety of my stay here at the

University of Tennessee, he has responded to my concerns and ambitions - both as a

student, and as a first-time father - with the utmost respect, understanding, and

generosity. I woxild like to thank the other members of my Thesis Committee - Drs. Bell

and Liu - for their cooperation and guidance, and Bill Dewitt, fr-om the College of

Business, for his inspiration and support. I must also offer my appreciation to the faculty

and my fellow graduate students in the Department of Geography for their friendship and

camaraderie, and for giving me a new perspective on the world.

Perhaps the greatest debt I owe is to my family. My parents, Errol and Sharon

Bennett, long ago planted the seeds of intellectual and professional pursuit that have bom

fhxit with this thesis. My grandfather A1 Hughes has always inspired me to think

scientifically. My brother Eric has comforted me with his sohd personality and common

sense. My brother Daniel has encouraged me with his challenges, good hiunor, and

alacrity. Most importantly, my wife Rosario and our son Diego have given me the love

and support I have needed to achieve this goal.

Abstract

Although geographic mformation system (GIS) technology has been used by government

agencies and academic institutions since the early 1960s, the adoption of GIS technology

by the private sector has only begim to occur on any significant scale in the past few

years. Obstacles to its diffusion have been the high cost of necessary computer

hardware, lack of readily available spatial data, and misconceptions about what GIS is

and who can benefit from it. Since the late 1980s, however, certain trends have cleared

the way for growth in private sector applications of GIS. One of these trends has been

the dramatic decline in the cost of computer hardware coupled with greatly improved

performance. Another trend has been the phenomenal growth in spatial data available

from government agencies and professional spatial data providers. Lastly, corporations

have begun to find themselves overloaded with data, and are seeking innovative ways to

leverage their data resources, much of it geographically referenced, in order to gain an

information-based competitive advantage. While most private sector GIS applications

have focused on sales territory management, niche marketing, retail location analysis, and

fleet management, its potential as a tool for logistics analysis has gone relatively

unnoticed. This thesis explains the advantages of using GIS for logistics, and discusses

in detail its application to the distribution network optimization of a major U.S. drugstore

chain. Emphasis is placed on the ability of GIS to provide a better imderstanding of

business logistics processes through the power of visualization. It is concluded that the

inherent advantages of GIS technology for data processing, combined with its devolution

into libraries of functions and objects that may incorporated piecemeal into mainstream

information systems, will fuel the rapid diffusion of GIS throughout the private sector.
iii

Preface

When we reason about quantitative evidence, certain methods for
displaying and analyzing data are better than others. Superior methods are
more likely to produce truthful, credible, and precise findings. The
difference between an excellent analysis and a feulty one can sometimes
have momentous consequences.

- Edward R. Tufl;e

IV

Table of Contents

Chapter Page

1. An Introduction to GIS and Logistics 1
Introduction 1

The Diffusion of GIS Technology 2
A Brief Overview of Business Logistics 8
Logistics, GIS, and Visualization 10
The CVS-Revco Merger as a Sample Logistics Problem 14
The CVS Distribution Network Optimization Project 18
Thesis Outline and Disclaimer 19

2. Overview of the CVS Project's Custom GIS Functions 21
Importation and Display of the Optimization Scenario Data 21
Tracing Demand Region Logistics Costs 27
Analyzing DC Location Strategies 32

3. Importing and Visualizing the Optimized Logistics Network 37
Importing the Microsoft Access Tables 37
Building the Component Features of the Network 42
Summarizing the DC Data 49
Summarizing the Demand Region Data 55
Displaying the Network Features 56

4. Tracing Demand Region Logistics Costs 62
Tracing Logistics Costs of Individual Demand Regions 62
Tracing Logistics Costs for the Entire Network of Demand Regions 79

5. Comparing DC Location Strategies 84
Generating the Service Areas 84
Making the Histogram 93

6. Conclusion 97

Advantages of GIS for Logistics 97
Suggestions for Improving the CVS Project's GIS Customization 100
The Future of Using GIS for Logistics 101
Emerging Trends in GIS Technology 102

References 104

Appendix 108

Vita 260

List of Tables

Table Page

1. CVS and Revco DC locations

2. Custom menus added to the ArcView default menubar 36

3. Microsoft Access tables and their pertinent fields 38

4. Name changes of MS Access tables after export and re-import
into ArcView 40

5. Fields in the attribute tables of the project's base themes 50

6. Fields in the base theme attribute tables after summarizing
DC and Demand Regions data 57

VI

List of Figures

Figure Page

1. CVS stores and DCs before the merger with Revco 15

2. Revco stores and DCs before the merger with CVS 16

3. Overlapping service areas of the combined CVS-Revco network 17

4. CVS DCs and demand regions for sample optimized network 22

5. Prescription product flows over sample optimized network 24

6. Prescription product transshipments and DC handling costs
on sample network 26

7. Demand regions displayed as pie charts 28

8. Sample report of total CW product logistics cost for an individual
demand region 29

9. View of demand regions portrayed according to total Rx
logistics costs ^ 1

10. Report of total and component Rx logistics costs for entire
sample network ^1

11. Five 50-mile, nested service ranges around each DC in the
CVS sample network 23

12. Histogram showing the percent of stores to nearest DC for
CVS and its major competitors 24

13. ArcView tables created from Microsoft Access tables 40

14. A partial model of Avenue objects relating to this thesis 41

15. Outline of scripts launched by the Build Transport Lines menu item 44

16. Joining tables to capture flow line attributes 47

17. Display Flows drop-down menu after building the project's
base themes 20

vu

Figure Page

18. Outline of scripts launched by Summarize DC Data menu item 51

19. Display Demand Regions drop-down menu after summarizing
demand region data 58

20. Pie chart symbols representing demand regions 59

21. Making zero value flows to demand regions invisible using
null symbol 61

22. Linking tables to trace logistics costs 63

23. Outline of scripts laxmched by Demand Regions Rx Only
menu itan or "R" tool 64

24. ArcView GUI for a View document 66

25. Example of linked tables after selecting a demand region
to trace logistics costs 67

26. Demand region 229 near Charlottesville, Virginia, in the
Rx product network 69

27. Selected records in dirstore.dbf table after clicking on
demand region 229 71

28. The dirstore.dbf table linked to the DCs attribute table

by the Facility fields 72

29. Records in the tranship.dbf table that are selected based on
its link with the DCs attribute table 74

30. Records iu the tranship.dbf table that are selected when the
servicing DC receives transshipments from two origin DCs 76

31. Computing picking cost at two transshipment origin DCs
for demand region 229 77

32. Report of total Rx logistics cost for demand region 229 79

33. Logistics costs tables support the display of the Demand
Regions theme by logistics cost 81

vm

Figure Page

34. Demand Regions theme displayed by Rx logistics cost 82

35. Service areas around DCs

36. Location strategy menu and U.S. road network
theme (red lines) displayed

37. Service Area attributes table with every fifth record selected 91

38. The 150-mile service area range selected for each DC 92

39. Histogram showing the percent of stores falling within each range
of the nearest DC for the CVS sample network 94

40. Using histograms to compare the DC configuration of a CVS
sample optimized network to the DC configurations of
competitors' networks

IX

Chapter 1

An Introduction to GIS and Logistics

Introduction

An examination of the application of geographic information system (GIS)

technology to the field of business logistics is difficult to conduct for two reasons. The

first reason is that very few profiled cases exist where a GIS has been implemented for

the expressed purposes of business logistics management. The second reason is that GIS

technology, and especially its application to mainstream business activities, is a relatively

recent phenomenon. Therefore, it will take some time for such GIS applications to be

addressed in depth in the literature (Dewitt and Ralston, 1996). Nevertheless, the

promise GIS technology holds for business logistics remains strong, and it is my

conviction that GIS technology will soon become a commonplace tool within that

industry. The goal of this thesis is to explain why GIS has not been, but is now very

much ready to be, embraced by the business logistics industry and to illustrate a practical

example of how GIS technology can be used to develop a powerful, yet simple-to-use

tool for logistics analysis. To understand the current status of GIS in the logistics

industry, it is first necessary to explore the historical and theoretical framework

underlying the diffusion of GIS technology over the past several decades.

The Diffusion of GIS Technology

Coppock and Rhind have shown that the pioneering of GIS technology began in

North America in the late 1950s and the early 1960s with attempts to use emerging

computer technology to automate cartography and the processing of geographically

referenced data, such as those derived from census, cadastral, and land use surveys.

Innovations in automated mapping were made by national agencies such as the U.S.

National Ocean Survey, by military establishments, and by universities, notably the

Harvard Laboratory for Computer Graphics and Spatial Analysis. The early developers

of geographically referenced data processing were often large national govemmait

agencies, such as the U.S. Bureau of the Census and the Canadian Department of

Agriculture. It was through this latter organization that Roger Tomlinson developed

what is considered to be the first true GIS, the Canadian Geographic Information System

(Coppock and Rhind, 1991). What is noteworthy here is that the origin of GIS

technology was in the public sector and academia.

For reasons which will be discussed, the employment of GIS technology

continues to be dominated by the public sector and academia, and has experienced a

rather slow adoption rate by private sector business. A 1993 survey revealed that

roughly 65% of GIS users are educational institutions and government agencies at

federal, state, and local levels, while approximately 14% are from other land and

resource intensive industries such civil, environmental, and transportation engineering

and consulting, utilities, forestry, and real estate. Only 6% of the users were businesses

in the commercial sense, and they were categorized as retail marketing and sales. A 1995

survey of GIS software sales showed only 9% going to business. Of these, a vast

majority are retail marketing and sales applications, while business logistics is not even

mentioned (Korte, 1997). Grimshaw has also noted that while GIS is already widespread

throughout the public sector, private sector business has only just started to realize its

practical applications (Grimshaw, 1994).

One of the factors inhibiting the diffusion of GIS technology into the private

sector has been its cost. Early GIS applications, like other early software applications,

were designed to run on the only computer systems then available - mainframes. The

expense of acquiring mainframe computer hardware and software, and of training staff to

use them, was prohibitively high for all but the largest of organizations (Korte, 1997).

Goodchild has argued, moreover, that GIS applications have been considered less central

to business processes than accounting, spreadsheet, and word processing applications.

And so, any organization considering the use of GIS will subject the technology to a

strict cost-benefit analysis (Goodchild, 1991). Before the dramatic decline in the cost of

computing technology in the last decade or so (Ibid.), it would have been difficult to

convince many organizations of the value in investing in the technology. Thus, it is no

surprise to find that public agencies and academic institutions formed the market

stronghold for early GIS applications. Such organizations traditionally have had less

stringent retum-on-investment policies than private sector, market-driven, organizations.

Also, the research role of academic institutions leads many of them to accept "cutting

edge" technologies long before private sector accounting can justify them.

3

A second factor liTniting the business world's acceptance of GIS relates to the

accessibility of the technology and the data upon which it depends. As already noted,

early GIS applications were mainframe-based. Like other mainframe-based applications,

GIS was a centralized, "backroom" activity that was highly specialized, capital intensive,

and often slow and laborious (Dewitt et al., 1997; Szajgin, 1997). Indeed, early GIS

technology was relatively more cumbersome than cmrently, since the storage,

manipulation, and integration of spatial and non-spatial data is, in general, more

computationally intensive than most other data processing applications (Goodchild,

1991). Early GIS technology also suffered from a lack of readily available spatial data

(e.g. coordinatized base maps of political boundaries, road and rail networks), so

organizations using GIS often had to produce their own maps "in house" before they

could take advantage of the technology (Hamilton, 1996). These technology and data

constraints meant that only organizations whose time horizons for decision-making were

relatively long, such as government planning agencies and certain land-intensive

indmtries such as forestry, were willing to commit the human and capital resources

necessary to exploit the unique capability of GIS to process information spatially. Time

horizons for decision-making in the traditional business environment, on the other hand,

are much shorter (Dewitt et al., 1997). The turnaround time for information requested of

early GIS applications often would have exceeded business expectations, thus

discouraging the adoption of the technology.

A final factor inhibiting the diffusion of GIS technology in the business arena

involves various elements of social and organizational theory. Rogers has argued that the

complexity of a technology innovation will slow its rate of adoption among potential

users, and suggests that GIS diffusion suffers from such complexity, due to its lack of

user-friendliness and its rapidly expanding and advancing functionality. He also cites

studies showing that the decision to adopt a new technology often hinges primarily on the

observation and recommendations of industry peers who use the new technology, rather

that on media and corporate publicity about the new technology. A technology like GIS,

whose user base is dominated by the public sector, will therefore have difficulty, at least

initially, in bridging the personal communication gap that exists between public and

private sector employees (Rogers, 1993). Sherwood blames the U.S. business world's

resistance to GIS technology on the lack of geographical awareness of the baby boomer

generation (i.e., 1946 - 1964) and their immediate forebears. These people, who are the

ones primarily in control of today's businesses, had little exposure to geography in their

primary, secondary, and even post-secondary levels of schooling, because geography had

fallen into decline within educational curricula during these times, and subsequently lost

its reputation as an applied professional discipline in the non-academic world. With this

in mind, she argues that current GIS applications are associated too much with the

unrecognized discipline of geography and are too generic in their functionality. She

suggests that business users will more readily accept GIS when the functional capabilities

and the vocabulary of GIS applications are tailored to specific business tasks (Sherwood,

1995). Grimshaw has also cited the generic and complex nature of GIS applications as a

constraint to its adoption, as well as its stigma as a tool limited to geographers. He also

argues that GIS technology, like other information technology innovations, suffers from

5

corporate information strategies that view new technologies as merely a substitute for

existing data processing methods, rather than as a complement to them. Thus,

organizations that do not already use maps extensively will not see the need for GIS

technology, and will fail to appreciate the ability of GIS to leverage the wealth of

geographically referenced data existing in their current systems (Grimshaw, 1994).

In spite of these obstacles to the diffusion of GIS technology, the 1980s and early

1990s saw dramatic changes in the computer industry in general, and in GIS technology

specifically. These changes are aiding the adoption of GIS technology. Perhaps the most

significant was the dramatic order-of-magnitude declines in the cost of computing

(Coppock and Rhind, 1991). In tandem with cheaper computer technology came the

shift away from centralized, mainframe-based computing toward distributed computing

based on networks of powerfiil workstations (Goodchild, 1991). This time period also

saw the rapid dissemination of the desktop computer and an exponential growth in then-

computational and graphical capabilities. Although desktop computers were originally

scorned as a novelty of the home consumer, information systems of the largest public and

private sector organizations are today being built around the relatively inexpensive

desktop computer, using client-server networks, relational database managment systems,

and user-friendly, windows-and-mouse-based graphical user interfaces. At the same

time, vast amounts of spatial data have been produced, standardized, and enhanced with

increasing levels of accuracy, and have been made available to the public at decreasing

cost by a host of commercial data vendors and government agaicies (Fung and Remsen,

1997; Johnson, 1993; Zwart, 1993). The familiar adage that 80% of all data may be

6

geographically referenced has also made its way into corporate information strategy.

Corporations once straggled with having too little data about their operations, but as

information systems have improved, many now find themselves inundated by a sea of

data they caonot easily interpret. Increasingly, corporations are looking to the unique

ability of GIS technology to process and display complex sets of data spatially in an

effort to more quickly and efficiently generate useful information (Dewitt, 1997; Rao,

1995). Finally, geography as a discipline has been experiencing a renaissance since the

early 1990s in the national education policy of the U.S., as well as at the grassroots level,

which should help to make future business managers in the U.S. more disposed to spatial

analytical techniques and GIS technology (Sherwood, 1995).

The result of GIS developers adapting their products to the new desktop regime,

and the increasing availability of vast amounts of commercial and corporate data, has

been an explosion in the use of GIS technology (Huxhold and Levinsohn, 1995; Korte,

1997). As noted earlier, a small but increasing portion of this growth has been due to

private sector businesses investing in the technology, and it is projected that the business

market will continue to fuel GIS sales, especially as the business world becomes more

aware of the opportunities to leverage their spatial data resomces to remain competitive

(Tetzeli, 1993; Jacobs, 1996; Swenson, 1996). Unfortunately, only certain functional

areas of business are currently pursuing GIS technology with any vigor, while other

areas, such as business logistics, have not been as accepting. Giimshaw's very thorough

discussion of applying GIS technology to private sector business targets marketing, sales,

and retail location as the most promising business application of GIS (Grimshaw, 1994).

7

My review of existing literature about companies that have applied GIS to business

seems, in general, to corroborate Grimshaw's prediction. Moreover, the only periodical

devoted primarily to business applications of GIS - GIS World, Inc.'s Business

Geographies - also devotes most of its coverage to retail marketing and sales

applications.

Nevertheless, GIS technology is beginning to make some significant inroads into

one area of logistics, namely fleet management. Sears has used GIS as a tool for

scheduling and routing home deliveries (Jacobs, 1996), and Federal Express uses GIS in

its Operations Research and Spatial Applications Department to manage and optimize its

vast transportation operations (Gates, 1997). Yellow Freight Systems is another

transportation company using GIS to manage its fleet of 3,700 trucks (Tetzeli, 1993).

The U.S. Postal Service has combined GIS and global positioning system (GPS)

technology as part of an automatic vehicle tracking system (Harder, 1997). Fleet

management, however, is only a small part of what constitutes business logistics.

A Brief Overview of Business Logistics

Business logistics is defined by the Council of Logistics Management (CLM), a

professional organization of logistics managers and educators, as

the process of planning, implementing, and controlling the efficient, cost-
effective flow and storage of raw materieils, in-process inventory, finished
goods and related information from point of origin to point of
consumption for the purpose of conforming to customer requirements.

Implied in this definition are a number of major logistics planning areas. Specifically,

these are 1) customer service level decisions, 2) location decisions, 3) inventory

decisions, and 4) transportation decisions. The first of these areas encompasses the latter

three, because the target level of customer service that is established will affect the other

three decision-making areas. Therefore, deciding on the level of service a customer

should receive is an important task that will impact the overall design of the logistics

system. Location decisions involve determining the number, size, and geographic

placement of manufacturing, warehouse, and retail facilities, and allocating the market

areas these facilities will serve. Inventory decisions consider different strategies for

managing inventory flow, the levels of inventory (both the cycle stock for anticipated

sales, and the safety stock for unanticipated sales) to maintain, and the deployment of

raw materials and products throughout the logistics network. Transportation decisions

include mode selection, shipment size, and routing and scheduling. All of these major

planning areas, moreover, are interrelated, and often pose trade-off situations in which a

cost decrease in one area results in a cost increase in another (Ballou, 1992). One

example is the trade-off between inventory and transportation. While shipping by rail

may be cheaper than shipping by truck, the increase in transit time and the decrease in

reliability associated with rail may necessitate larger inventories at warehouse or retail

locations, such that the inventory carrying cost may exceed the savings in transportation

cost.

Logistics, GIS, and Visualization

Logistics involves the movement of materials and goods across space in a timely

manner. Since logistics is concaned fundamentally with place as well as time, any

technology that helps to depict spatial relationships will be very useful to logistics

(Barone, 1997). As it turns out, logistics problems lend themselves well to GIS-based

analysis. The geographic distribution of facilities m a logistics network, the lines of

transportation that connect them, and the service areas resulting from the two, are easily

represented by the geometry of points, lines, and polygons a GIS employs for thematic

mapping. However, these maps are more than just a graphical representation of a

logistics network, for associated with each graphical feature are tabular, alphanumeric

data describing the real world objects or processes those features are designed to

represait. Thus, a point on a GIS map representing a warehouse can contain information

about the inventory contents and levels, the rate of materials handling cost, delivery

windows, the fixed costs, or the capacity of the facility. Likewise, a line representing a

shipment route can contain information about its mode, its capacity, and its shipping rate

and time. Moreover, this tabular information can be used to graphically enhance the map

display, by sizing the points representing warehouses according to capacity, or by color-

coding the shipment lines according to their mode, for example. Since there is

practically no limit to the amount of data an associated table may hold, the many

different ways a feature can be displayed is limited only by what is known about the

object or evait it represents.

10

This ability of GIS to use maps to display information has become what has been

coined the new "map paradigm" of the information age. The premise of this bold

statement rests on the special angle GIS offers for displaying data.

One of the great insights of GIS is that there is a vast difference between
seeing data in a table of rows and columns...and seeing it presented in the
form of a map. The difference is not simply aesthetic, it's conceptual - it
turns out that the way you see your data has a profound effect on the
connections you make and the conclusions you draw from (sic) them
(Harder, 1997).

The traditional tools of business, such as the spreadsheet or database, can often obscure

or misrepresait data that is linked to location. GIS, on the other hand, can link such data

to places and processes, thus making the data more easily and intuitively understood

(Ibid). In a similar vein, Buttenfield and Mackaness have argued that GIS is a technology

that is well suited to meet the rising demand for what has been called data

"visualization." Visualization is a method of data exploration that has grown from the

needs of our information age

to access pertinent information from an overwhelming volume of
collected data; to coromunicate complex patterns effectively; to formalize
sound principles for presentation of data that optimize visual processing
skills; and to steer analytical computations for data modeling and
interpretation (Buttenfield and Mackaness, 1991).

The key to successful data visualization lies in the graphical user interface (GUI). As its

name implies, the GUI is the working environment graphically displayed on the

computa- screen that enables the user to interact with the data. This interaction mvolves

more than just the viewing of data — it also involves data mampulation. Therefore, the

degree to which a GUI helps or hinders the interaction with data depends less on how

11

artistic the display is, and more on how logical and intuitive it is. If the GUI is not "user-

friendly", as it is said, the user becomes distracted by the interface and loses sight of the

data In other words, the tools for interacting with data that the GUI provides should be

transparent to the user, thus allowing the user to concentrate on the data themselves

(Ibid.). The ability of GIS technology to embed data in map features, and to render the

appearance of those features according to the data they contain, creates just such a logical

and intuitive GUI. The GIS GUI enables the user to view data as the actual objects the

data are describing, and to query, add, delete, and analyze the data embedded in them

simply by pointing and clicking on the mouse. GIS takes these analytical capabilities a

step further by allowing the features themselves to be analyzed. In addition to the full set

of tools available to most relational database management systems, such as logical

operators, math and string functions, and a scripting language, GIS offers the umque

ability to conduct spatial analysis on graphical features, which is a powerful tool beyond

the scope of traditional database management systems (Harder, 1997). Thus, for

logistics, a GIS can be used to determine the percentage of a company's retail market that

lies within the designated service area of a warehouse, or it can find the number of raw

materials suppliers within a day's transit time from a manufacturing facility, to name just

a few spatial operations.

According to Dewitt et al, GIS can be an eminently useful tool of logistics

practitioners for visualizing weaknesses or problems in a logistics network, for creating

mutual understanding among the various functional areas of a business, and for

formulating solutions quickly.

12

Perhaps most important to logistics is the ability of GIS to integrate all
components of the logistics chain and to display their relationships in an
intuitive and understandable manner. Before companies can re-think then-
logistics operations...they must fnst understand their current
situation...Looking at alternative configurations displayed in several forms
(maps, charts, and tables) provides those who must construct a logistics
system with a common frame of reference. GIS gives logistics an
effective decision support capability (Dewitt et al., 1997).

The most noteworthy example of a GIS application being applied in this way to a

logistics network was Proctor and Gamble's global supply chain restructunng project that

involved the integration of GIS with integer programming, and network optimization

models (Camm et al., 1997). Although much of the spatial analysis capabilities of

current GIS technology were not employed in the project, Camm et al. cited the need to

be able to "drill down" into the data underlying the network optimization model, as well

as to provide a quick, interactive intaface, as the main reasons for using GIS technology

as the front end for the modeling system.

We needed a simple interactive tool that would allow product-strategy
tpams to quickly evaluate options (choices of plant locations and
capacities), make revisions, evaluate the new options, and so on. If
possible, we wanted a system that would guide users to better options in
an evolutionary fashion (Ibid.).

They credited the use of GIS with having increased user acceptance of the project's

analytical techniques by making the modeling system's solution algorithm transparent to

the user, while emphasizing the important spatial relationships inherent in logistics

networks of suppliers, plants, warehouses, and customers. Another surprising byproduct

of using GIS for visualization was its ability to highlight database errors that might not

have been detected otherwise. In short, the integration of GIS with the network

13

optimization model proved to be a powerful and flexible decision support system (DSS)

for the supply chain project (Ibid.).

The CVS-Revco Merger as a Sample Logistics Problem

In 1996, the drugstore chain Consumer Value Stores (CVS) acquired a much larger

competitor chain, Revco. Prior to the acquisition, CVS's market area was limited

primarily to the northeast United States, although it enjoyed a strong presence in the mid-

Atlantic states (Figure 1). Revco, on the other hand, was distributed throughout most of

the states east of the Mississippi River, excluding the New England region (Figme 2).

The acquisition was approved by the shareholders of both companies and, contingent on

certain provisions, by the U.S. Federal Trade Commission. The resulting merger formed

the second-largest drugstore chain in the U.S. market. While both companies hailed the

merger as a profitable venture, merging them into one company actually posed several

problems that could have xmdermined its success. One of these problems dealt with

integrating the two different distribution networks that existed prior to the merger.

CVS had three distribution centers (DCs) serving approximately 1,400 stores,

while Revco had six DCs serving approximately 2,500 stores. Table 1 lists each

company's respective DC locations. Even before the merger was finalized, it was

evident to CVS management that a restructuring of the resulting distribution network

would have to occur. A brief look at DC service territories revealed various overlapping

areas in the two networks, particularly around the mid-Atlantic states (Figure 3). To

14

■Kid^

: 84,57 .. ■ : 7.
48 711 I , ■ , ;i

CVG Nelmd. Cticie Metget

y;.

m
m

«tpl 9 *
^^fl^VLJJ^oonsocket, R1

iP^Lmnbeitoa NJ

Fredericksburg, VA

H

m

ji&ii

ki

Figure 1. CVS stores and DCs before the merger with Revco.

15

l-|gixB
£ie gdi Vbi* Iheae VAndow tidO

7353 •*
4717 J

5i^:1^17i333,687DiOllPitPlS^^fl^fJilOPiP
ricvuQ N'elwoik. OiffoiB Mefye

V?: litres

★

r
r 1 s!;:r^it^.

ffN
erset

Indiana IS IN

iiili
mm

fo ••

Henderson, NCKno

mmrnm

mmm

er
. Augusta, SC

*p

Figure 2. Revco stores and DCs before the merger with CVS.

16

Table 1. CVS and Revco DC locations

CVS Revco

Woonsocket, Rhode Island
Lumberton, New Jersey
Fredericksburg, Virginia

Indianapolis, Indiana
Somerset, Pennsylvania
Knoxville, Tennessee

North Augusta, South Carolina
Henderson, North Carolina

Bessemer, Alabama

ill'a: mi
87.03 **
5735 J

Ovetlflppmg 2511 Milt 5eivice Aiqae 0) Cbsibined CVb-rievco Neltwfk

V IC«

I

y ' •n«f

mIM
\

Ovftrlapping Snririce Areas of the ('ombined
CVS-Rctco Network

(£ach Service Area Inclades Five 50-Mile,
Nested Service Ranges)

Figure 3. Overlapping service areas of the combined CVS-Revco network.

17

make the new network more efficiait, it was concluded that a reallocation of stores to

DCs was required, at the very least. Further, some DCs might have to be closed, otha:s

might have to be expanded and improved, and perhaps new DCs would have to be

constructed, in order for CVS to meet the challenges of its new market share and to

accommodate future growth. In short, revamping CVS's new logistics system was a

classic network optimization problem of the location/allocation type.

The CVS Distribution Network Optimization Project

During the summer of 1997, Dr. Charles Noon of the Department of Management

Science, and Dr. Bruce Ralston of the Department of Geography, at the University of

Tennessee, Knoxville, were contracted by CVS to work on this network optimization

project using GIS as their primary analytical tool. As part of the contract, I was hired by

CVS to help Drs. Noon and Ralston in the development of a GIS application using

Arc View 3.0a with the Network Analyst extension, a product of Environmental Systems

Research Institute (ESRI). The bulk of the work was to be done using ArcView's

scripting language. Avenue.

In addition to our team, CVS had also contracted with Anderson Consulting to

work on this project, since Anderson had worked previously with Revco on an earlia:

merger Revco had done with Alabama's Big B drugstore chain, and were therefore quite

familiar with Revco's operations. The Anderson consultants were responsible for

gathering the necessary data from CVS and Revco and would run the data through an

optimization program tailored to the logistics industry called Supply Chain Strategist, a

18

product of InterTrans Logistics Solutions, Inc. Our team was charged with importing the

optimized network scenarios into Arc View and graphically displaying and analyzing

them, and verifying the validity of the underlying data.

Thesis Outline and Disclaimer

Having placed the project in the context of the history of diffusion of GIS into the

business world, and the utility of GIS in the field of business logistics, the ranainder of

this thesis will focus on the ArcView application we developed for CVS. The next

chapta will provide an overview of the custom GIS functions we developed for the CVS

project. Chaptas 3; 4, and 5 will go into the detail of how these functions wae

programmed. Chapta 3 will address the scripts written for importing and visualizing the

output of the logistics network optimization application. Chapta 4 will review the

scripts written to analyze the total logistics cost for the retail facilities using the graphical

usa interface. Chapta 5 will discuss the scripts written for comparing the DC location

strategies of CVS to those of its major competitors. Chapta 6 will conclude the thesis by

reemphasizing the advantages of using the visualization capabilities of GIS to analyze

and solve logistics system challenges, and by making some suggestions on how the

project might have been improved. It will also make some final comments on the future

of using GIS for logistics analysis, and on some emaging trends that foreshadow the

convagence of GIS technology with mainstream information systems.

Before continuing, it should also be noted that the undalying data of the sample

network solution used throughout this thesis have been altaed and disguised in orda to

19

protect the sensitive and proprietary nature of this project and CVS corporate operations,

and to comply with the non-disclosure clause of our team's contract with CVS. Apart

from publicly available information, such as the location of the DCs and the stores, in no

way does this thesis reveal any proprietary information about the company, its

operations, or the project.

20

Chapter 2

Overview of the CVS Project's Custom GIS Functions

Importation and Display of the Optimization Scenario Data

Once the project had been outlined and our basic responsibilities defined, our

team set about defining the tasks our portion of the overall project would require. Since

many different optimized network scenarios would be generated during the project, one

of the first tasks would be to automate and streamline, as much as possible, the data

importation process. Accomplishing this task required more than just writing scripts.

Since the data would be coming fi-om several different systems (CVS, Revco, and Big B,

the last of which still had not completed its merger with Revco), it would also require

establishing with the Anderson consultants a consistent policy for data content and

formatting. The details of how this data importation was automated will be presented in

Chapter 3. Once the data had been imported, we could then begin to display and analyze

them.

One of the foremost questions regarding the display of data was: what kind of

information would a logistics manager want to see rendered by the GIS software?

Obviously, the first aspect of the network one would expect to see on a map would be the

stores and the DCs. Since the network optimization performed by Anderson Consulting

aggregated the 4,000 stores into a more manageable set of 384 demand regions based on

3-digit zip codes, a view of the demand regions would also be desired. Figure 4 is an

example of a map from the sample network solution showing the demand regions and the

21

ii;Vn-w filS 3 firt

lHlll®::aa
18.490 200kUuRi^PlilSeEllMillSPCI «f»fK S

['cniand by Htoifn

yi..:£!ws.o.c«

I

tf U.IMfWM

L J

•»

tf*jk »•

• •

*». •

SiiEIi
v>

Figure 4. CVS DCs and demand regions for sample optimized network. The gold stars represent the
DCs. The demand regions are represented by the blue dots.

22

DCs. From this starting point, it seemed logical that the next view of the network should

include information about the flow of product from the DCs to the stores based on the

allocation of demand regions to DCs determined by the optimization software. These

flowlines could be simple lines connecting the DCs to the stores, or they could be lines

displayed with graduated thicknesses that change according to the total flow volume

occurring on each one.

In addition to total product flow volumes, Anderson Consulting's optimization of

the new CVS network also broke down product flow into three major categories:

prescription drugs and products (Rx), non-prescription products available "over-the-

coimter" (OTC), and slow-selling, bulky, or seasonal products that are centrally

warehoused (CW). Given the availability of these data, a logistics manager would want

to have the choice of seeing how product volumes flow throughout the network, or might

wish to have these flows displayed by product type.

Figure 5 shows an example of how the flow of Rx products over the sample

optimized network can be displayed. Gold stars indicate the locations of the CVS DCs,

while the optimized flows of Rx product are displayed as red lines. Notice that the

volume of flow is indicated by the thickness of the line. This type of display provides a

quick and efficient overview of how the DCs are allocated to serve the demand regions

and where the largest flow volumes are occurring in the network. For example, it is

readily apparent that several of the lines in the Kentucky area cross each other, which is a

signal to the logistics manager that the network is not completely optimal. Displaying the

flow volumes with graduated line thickness offers usefiil insight about how transportation

fleets should be assigned. It is also important to keep in mind that the user can zoom in

23

:€fe: Jheme .fitaphife 14<«wo(K Lo^iMicjMbdidSetUp D«ptey£lowe tfofievtiti 0)H>iayDem^fiegpm

{♦emtjnd by Htqirn

Y CVVDCt

' : I izzi ̂ :i«20J» .4i:;;::
^•:--^l^iwca».4? • saeaaa.^sf
;; ; - w^trrmm.

80 K>e7QRn yj
JAQ^fiPTOOl j; JiMtHlJSO

8^^116.847.746

I

I
5[

V.

*

y sutc*
L"1

OC-t* ft«8wii ftM

::i::^«^^i»i(iliite Si;-;::;

Figure 5. Prescription product flows over sample optimized network. Red lines whose thickness
indicates volume represent flows. The gold stars represent DC locations.

24

and out on any portion of the view, and can query information about individual instances

of the flow line and DC point features.

Next, it would be desirable to see where any transshipments between DCs are

takiTig place and what are their volumes of flow. Once again, these transshipments

should be sized to indicate flow volume, and a choice should be available of viewing total

product flow, or the flow of specific product types. Moreover, it would be helpfixl to

view the DCs according to their total demand, by the total handling costs incurred at the

DC, by the fixed cost of the facility, or any other data that might be available.

Figure 6 shows a view of the Rx product transshipments and the DCs sized

according to handling cost. Green lines whose thicknesses represent flow volume

indicate the transshipments. In this scenario, the Indianapolis, Indiana, DC stocks and

supplies Rx products for the Somerset, Pennsylvania, DC. Knoxville supphes Bessemer,

Alabama, N. Augusta, South Carolina, and Henderson, North Carolina. Since the

Lumberton, New Jersey, DC and the Woonsocket, Rhode Island, DC both stock Rx

products, they do not have any Rx transshipments. If this is the case, however, then this

display immediately begs the question of why the Indianapolis DC, and not the much

closer Lumberton DC, provides the transshipments to the Somerset DC. Of course, the

answer to that question may be more complicated than just a matter of distance, but the

point has been made as to how such visual displays of a logistics network lead

immediately to questions that aid in the understanding and analysis of the logistics

network.

The only component of the network that remains immentioned is the set of

demand regions. The optimization program also generates data on each demand region's

25

A».:V-i-w filS V.iis.t.'('; fU, BQESf
^ £(it yiim Iheme Uf4phtM {ibitwoik >,ogtt<)ctMod^Seh4)

^ 14i6«7 -ih S?}y
- 0 emend by Reqif-n pr5E?i

:y5: X D H d or i
': n . .0 saiiMaop-viw'; ••:
.: • : ̂

': ^ ^ ^ [i! ̂ •
yA^/esote7e;e«> BeD3847ja$::

' . .
" ^iieaoMi^: i n : ̂ : n i i n'' n

■: mrtmiKr ■::.

•:5Wr "2®® laaeijjft; •
^ Y>«ininrf f^«j^9fi«

H S ^bsBi

x;

2

SI.

^ UlirtM 8M4*
LJ
or «« R»(h*Flaw

Figure 6. Prescription product transshipments and DC handling costs on sample network. Green
lines whose thickness indicates volume represent transshipments. The size of the DC
(hexagons) indicates total handling cost.

26

total demand for product, and on the demand for the different product categories. One

informative way to display all of these data simultaneously is to portray each demand

region as a pie chart in which the slices represent the composite demand for the three

product types - Rx, OTC, and CW - while the size of the pie itself represents the total

demand.

Figure 7 shows how this looks on a map of the sample network that zooms in and

centers on the Bessemer, Alabama, distribution center. OTC product volume is displayed

as a blue pie slice, while Rx product and CW product are displayed as red and green

respectively. This map also provides good evidence of one reason why Rx and CW

products are centrally warehoused. Most of the total product volume for the demand

regions displayed is composed of OTC product. The demand for Rx and CW product is

sufficiently small to warrant centralized stocking.

Tracing Demand Region Logistics Costs

Displaying data about a logistics network using graduated symbols and colors on

graphical features is helpful when the goal is to get a general sense of the relative

volumes or costs of an individual component of the network, such as the lines of flow

between DCs and demand regions, or the points representing the origin and destination

facilities of a flow. Calculating the total logistics cost for an individual demand region,

however, requires tracing the product flow fi-om the demand region back up through the

network to the originating facility. Such a calculation involves summing the several

components of the network, such as the shipping costs on the flow line and the picking

cost at the DC. If transshipments between DCs are involved, then a crossdocking cost at

27

«;:ViK»» ljl!i Vi?tv:u') O.i

r!.Sl Ob^CC. DBpkyDemrKlBewBB T»»C«B LocMnSIMetir V^-tor- U<«

t'eneni by rirgtm

• \ a :c*: n n • ̂ • ::''!' n n
O <i9«w.4

o »Si3»9 *B»«^MStAdi
Q ei04?7ooa^ tTpsowwi

iliff ^ :. n n ;;
jj :^/8a>«7S.e4^ i i ^ i' i:.!
yA^86»»/S 94, 880SM7»4
,^^aaC2»47 «Q

;;:: : %̂./-. ijzz -110000.43!: i;;;;: •!;
/\/ fKiW> -V y.tJJJ 99

0647S7.W
;ijnyfw«7B>oe laezoeojjr

i'; :^: '

:fit. n M.: nn:

V U»l(«ll «<i|tlB
I 1

DCb-* R«(i««fi llflM

CVBl'Ck

5^9:^^5500^799 S9.7S **
3R.44 t

m

XKU.

m
ATi

m
/ m

i

5^^v

Figure 7. Demand Regions displayed as pie charts. Pie slices represent OTC (blue), Rx (red), and
CW (green) product volumes, while the size of the pie indicates total product volume.

28

the distributing DC and a transshipment cost on the inter-DC flow line, must be added to

the shipping and picking costs. In this situation, the value of GIS comes not so much

from its graphical capabilities, but from its relational database.

Using the DCs as the common key, shipment tables and transshipment tables can

be linked in a GIS, and information about all the related components of a particular

branch of the network can be accessed by performing a single query on the branch's

endpoint, the demand region. Employing the unique ability of GIS to query data

embedded in an object by clicking on it, we developed a tool that would allow a logistics

manager to click on a demand region and receive an itemized report of the demand

region s logistics costs. Once again, this type of query would be based on total products

or specific product types. Figure 8 provides an example of the report's pop-up window

after clicking on one of the demand regions to trace total CW logistics costs.

Of course, if this logistics cost tracing could be done for a single demand region,

it could also been done for the entire set of demand regions. We decided, therefore, to

Total Logisitic Costs to Serve Demand Region 372

Trace type: CW Products Only
Demand Region; 372
Demand for CW products: 121855.17
Shipping cost from Bessemer: 1885.71
Crossdock cost at Bessemer: 1185.G7
Transshipment cost from Knoxville to Bessemer: 3066.85
Pick cost at origin DC: 1135.08

Total Logistics Cost for CW Products: 7253.31

I

Figure 8. Sample report of total CW product logistics cost for an individual demand region.

build in the capability of generating a table containmg the component and total logistics

cost for all of the demand regions, not only for total products, but also for specific

product types. These data would enable the application user to view the entire network of

demand regions according to their logistics costs, and would shed light on which regions

are incurring the most costs. As with the total demand data for the demand regions, this

data would be displayed using graduated pie chart symbols that would simultaneously

represent the total logistics costs and the component logistics costs for each demand

region. Figure 9 shows a view of the demand regions portraying the total and component

logistics costs for Rx products. The view is zoomed in and centered on the Somerset,

Pennsylvania, and Lumberton, New Jersey distribution centers. Notice that the

Lumberton DC stocks Rx products, therefore the demand regions it serves do not incur

crossdock or transshipment costs, unlike the Somerset DC, which gets its Rx product

from the Indianapolis DC.

Having this table of total and component logistic costs for all demand regions also

made it very easy to add a function that would generate a report of logistic costs similar

to the one for the individual demand region, but for the entire network. Once again, since

logistic cost tables can be made for each product category, as well as for all products

combined, it woxild be possible to generate a total logistic cost report for any of these

tables. Figure 10 provides an example of the total Rx costs report for the entire CVS

sample network.

30

iooBiiotMod^tSetwp n Did^Bowsi' Di!^

5«« ifHwrST n.2)'«
:<2:S3:i:;

Demflod bii llcou n

:;^: .D«w ft•
...: ;■ :|||H

MttC ft j j j:' j':' i'! T ^ !

O ain»8S4 iiaan»)B7B
o 9W«O0.76-eiO«t9Q?

iiO^ ^ ^ ^ i f r^?:

y^M«<Kt74 M. «f«2»4> *»: :•:::: ;;|i^eao^,03s; t
Rx Flow

^ eaoec;^
/V '«?«» 4? •

: 3fl5r«*7Teri7
^ birrMtl ft »9i«(is

(I ^ RAM'

□
Dr'A Pina

i. fwteiMjn tif ft V Ix; !<;:J:;';|:5S^^ :;:•:?

cvsroi

p
=•

pm
■mm

y / crton» NJ

ft0•0
m

Figure 9. View of demand regions portrayed according to total Rx logistics costs. Pie slices represent
shipping (blue), picking (red), transshipping (green), and crossdocking (magenta) costs for
Rx products for the demand region, while the size of the pie represents the total Rx
product logistics costs for the demand region.

Chain-wide Rx Statistics IB
Total Rx Shipping Cost: 1725960.02
Average Per Region: 4494.69
Total Rx Pick Cost: 6714550.58
Average Per Region: 17485.81
T otal Rx Transhipment Cost: 1408377.70
Average Per Region: 3667.65
T otal Rx Crossdock Cost: 478725.97
Average Per Region: 1246.68

Chain-wide Total Rx Logistics Cost: 10327614.29
Average Total Cost Per Region: 26894.83

2l
OK

Figure 10. Report of total and component Rx logistic costs for entire sample network.

31

Analyzing DC Location Strategies

Another fimctionality we decided to develop involved harnessing the ability of

GIS to analyze the spatial relationship between geographically referenced features. The

goal of CVS's network optimization was to find a configuration of DCs that would

best serve the demand regions while lowering overall network costs. The value of a

given optimized network scenario would be judged against a benchmark, such as the

network costs being incurred prior to optimization. Another type of benchmark involves

using the practices of a company's competitors within the industry as a standard for

judging changes to the organization. It was felt, therefore, that some way of measuring

each potential DC configmation against an industry benchmark would also be beneficial

to a logistics manager.

To compare each optimized scenario against the network costs of competitor

companies was not practical, since operational cost data are not publicly available fi-om

most companies. However, data on DC and store locations are publicly available, and

with these data we could at least analyze the spatial patterns between store and DC

locations that each company's network exhibited. Around each DC of a company's

network, we would build a set of five 50-mile, nested distance ranges (based on road

network of major highways), effectively covering a radius of 250 miles around each DC

(Figure 11). Using a select-by-theme query process, we determined the distance of each

store from its nearest DC. Using this information, we could then generate a histogram for

each company detailing the percentage of stores located within 50,100,150,200, and

250 miles of the nearest DC, and the percentage that falls outside of this service area. In

Figure 12, the histogram of DC-store distances for the sample CVS network is shown

32

Ali V.rw 111 1 V.'i

it?® View leeoK ijtaptiiM Hetw^ ioeetbiMeM'>wc UnplerMowi (AmlisrSCt Oi>i>lavl)enBrKlt<e«>>> lieoeUoA LoMtonSeoieaw SWOow Het>

Swte1ijl7 420 203 €9.04
7fi7r 1

n location '>ira?ag.v

W:t« A(84

: r-. :>r^;oa •.: wr MMtt::
n''' xr3'i®-:ii80A»e5
::: f i f»'-!iDDm»»e

; ;E3 ■«» >
$(j tlV9fltot4f

/
*1

▲
^ ; SiwAl

*

ts9f(-M Vtii

♦ Each DC u sorreiuidedby five
50-iiiflc, nested service area ranges^ Uftttfttf SM

n

0iwrf7;00 ilSOJog fOlVs 1 V.fjiw Ai«.'X >y » sqw

Figure 11. Five SO-miie, nested service ranges around each DC in the CVS sample network. Gold
stars represent DC locations

33

: Aii:V»ew filS ywviitft 11^

; Eifr ; 0>«rt itfihdow fc{^

fel::

HfsJ: <jwtn ol fV'i Strtf^ ni. l)r-?,4nr;ss

Percent of Stores

Percent of CVS Stores to Nearest DC

iro

90

BO

70

60

50

40

X

20

10

0

Percent

50 Mile Inteivals

n within 50 miles

n si 100 miles

n 101 - ISO miles

□ iSI - 300 miles
■ 201 - 250 miles
■ > 250 miles

Percent of Walgreens Stores to Nearest DC

Percent of Stores

■ wrthin 60 miles
■ 51 - 100 miles
■ 101 - 15D miles
□ 151 - 200 miles
■ 201 - 2Sn miles
H > 250 miles

•»t< s iA C-s^atx, »j'-s l>iJ '

Percent of Stores

Percent of Eckerd Stores to Nearest DC

100 ■

90 ■

80

70 -

60

SO ■

40 -

X

X

10

0

l

Percent

X Mile InfRrvalB

w4hinX miles
151 - IX miles
IIDI - 150 miles
]151 - 200 miles
1201 - 250 miles
I > 250 miles

Percent of Stores

Percent

X Mile Intervals

Percent of Rite-Aid Stores tr) Nearest DC

IX -

X -

X ■

70 -

X -

X ■

40 ■

X ■

20 ■

10
n

Percent

X Mile Intervals

■ within X miles
■ 51 - 100 miles
H 101 - 150 miles
□ 151 ■ 200 miles
■ 201 - 250 miles
H > 250 miles

Figure 12. Histograms showing the percent of stores to nearest DC for CVS and its major
competitors.

34

alongside the histograms for the networks of CVS's major competitors: Walgreens, Rite-

Aid, and Eckerd.

This review of the custom GIS functions developed for the CVS network

optimization project illustrates the visual display resulting from the application of these

functions, and the value these displays bring to the network optimization process. These

functions were automated using ArcView's scripting language. Avenue, so that each of

these functions can be launched with the simple click of a menu item. The following

three chapters of this thesis will address the details of the scripts controlling these

functions.

Before turning to those scripts, however, it will be useful to describe the GUI

developed for the CVS network optimization project. Table 2 hsts the several custom

menus that were added to ArcView's defaiilt View menubar, along with the menu items

that appear in the drop-down boxes when a particular menu is clicked. The custom

functions developed for the project are controlled using these menu items. As I address

these functions in further detail in the chapters that follow, I will refer to these menu

items by name.

35

T
a
b
l
e
 2
.
 C
u
s
t
o
m
 m
e
n
u
s
 a
d
d
e
d
 t
o
 t
h
e
 A
r
c
V
i
e
w
 d
e
f
a
u
l
t
 V
i
e
w
 m
e
m
i
b
a
r
.

Di
sp
la
y
Fl
ow
s

Di
sp

la
y
D
C
s

C
u
s
t
o
m
 M
e
n
u
s

Di
sp
la
y
D
e
m
a
n
d

T
r
a
c
e
 C
o
s
t
s

Lo
ca
ti
on
 S
tr
at
eg
y

Lo
gi
st
ic
s
M
o
d
e
l

S
e
t
u
p

Re
gi
on
s

a
\

G
e
t
 M
S
 A
c
c
e
s
s
 T
a
b
l
e
s

Bu
il

d
Ti

an
sp

or
t
Li

ne
s

S
u
n
m
i
a
i
i
z
e
 D
C
 D
a
t
a

S
u
n
i
m
a
i
i
z
e
 D
e
m
a
n
d

Re
gi
on
 D
at
a

DC
-t
o-
Re
gi
on
 b
y
 R
x

O
n
l
y

DC
-t
o-
Re
gi
on
 b
y
 C
W

O
n
l
y

DC
-t
o-
Re
gi
on
 b
y
 O
T
C

O
n
l
y

DC
-t
o-
Re
gi
on
 b
y
To
ta
l

F
l
o
w

Tr
an
ss
hi
pm
en
ts
 b
y
 R
x

O
n
l
y

Tr
an
ss
hi
pm
en
ts
 b
y
C
W

O
n
l
y

Tr
an

ss
hi

pm
en

ts
 b
y

T
o
t
a
l
 F
l
o
w

B
y
 H
an
dl
in
g
Co
st

B
y
 F
ix

ed
 C
os

t

B
y
 T
ot

al
 D
e
m
a
n
d

B
y
 P
ro
du
ct
 V
o
l
u
m
e

B
y
 T
ot

al
 D
e
m
a
n
d

B
y
 R
x
 L
og

is
ti

cs
 C
os

t

B
y
 C
W
 L
og
is
ti
cs
 C
os
t

B
y
 O
T
C
 L
og

is
ti

cs
 C
os

t

B
y
 T
ot

al
 L
og

is
ti

cs
 C
os

t

Ch
ai

n-
wi

de
 R
x
 O
nl

y

Ch
ai

n-
wi

de
 C
W
 O
nl

y

Ch
ai

n-
wi

de
 O
T
C
 O
nl
y

C
h
a
i
n
-
w
i
d
e
 A
l
l

P
r
o
d
u
c
t
s

C
h
a
i
n
-
w
i
d
e
 R
x

St
at
is
ti
cs

C
h
a
i
n
-
w
i
d
e
 C
W

St
at
is
ti
cs

C
h
a
i
n
-
w
i
d
e
 O
T
C

St
at
is
ti
cs

C
h
a
i
n
-
w
i
d
e
 A
l
l

P
r
o
d
u
c
t
s
 S
ta
ti
st
ic
s

D
e
m
a
n
d
 R
eg
io
n
R
x

O
n
l
y

D
e
m
a
n
d
 R
eg
io
n
C
W

O
n
l
y

D
e
m
a
n
d
 R
eg

io
n
O
T
C

O
n
l
y

D
e
m
a
n
d
 R
eg

io
n
Al
l

P
r
o
d
u
c
t
s

DC
-S
to
re
 R
a
n
g
e

M
a
k
e
 H
is

to
gr

am

Chapter 3

Importing and Visualizing the Optimized Logistics Network

Importing tiie IVGcrosoft Access Tables

It has been noted earlier that Anderson Consulting collected the necessary data

from CVS and Revco and conducted the post-merger network optimization. After the

network optimization software had arrived at a solution, Anderson Consulting exported

the solution data from the optimization software into several tables within a Microsoft

Access database. For the purposes of constructing visual displays of the optimized

network, it was necessary to import five of these tables into ArcView. Table 3 provides a

listing of these tables and the fields pertinent to the display of the network solution.

The first step in using ArcView to analyze the logistics information is to input the

Microsoft Access tables. This must be done before any other steps can be carried out.

When the user starts the project in ArcView to begin the display of a new network

solution, all the custom menu items (Table 2) are disabled ("grayed out"), except for Get

MS Access Tables. Clicking this item launches a script, SQLTables.Get (Appendix),

which establishes a structured query language (SQL) coimection, called an SQLCon, with

the Microsoft Access database application. An SQLCon enables the user to import an

entire table or a subset of a table based upon the query string that is passed to the host

application. The result of the query is automatically imported into the ArcView

application as an SQL virtual table from which a table docmnent can then be made.

37

Table 3. Microsoft Access tables and their pertinent fields.

Table Name: DIRECT TO STORE

Field Name Field Type Description

Facility Text Name of DC

DemandRegion Text Number ID of Region
Product Text Product Category Name
Optimized Value Number Product Flow Voliune

in Units

ActualRate Number Shipping Rate po" Unit

HANDLING

Field Name Field Type Description

Facility Text Name of DC

Product Text Product Category Name

HandlingRate Number Handling Rate per Unit
(applies to Picking

1 and Crossdocking)

INPUT - FACILITIES

Field Name Field Type Description

Facility Text Name of DC

LatLon Text Geographic Coordinates
of DC

FixedCost Number Fixed Cost of DC

OptimizedValue Number Product Flow Volume

in Units

Field Name

PICKING

Field Type

Facility
Process

Description

Name of DC

Centralized Product

Stocking Point Indicator

TRANSHIPMENTS

Field Name Field Type Description

OriginFacility Text Name of Origin DC
DestinationFacility Text Name of Destination DC

Product Text Product Category Name

OptimizedValue Number Product Flow Volume

in Units

ActualRate Number Transshipping Rate per Unit

While this method of querying a database is quite easy, it has one drawback. The

virtual table resulting from the SQLCon is only a visual represaitation of the data

residing in the host database and is not tied to its own location in memory as a separate

file. As such, the virtual table is a read-only document. To give the project read and

write access to these tables, and also to dispense with the SQLCon, which is no longer

needed, SQLTables.Get takes each virtual table and exports it as a dBase file, thus giving

it its own pathname and location in memory. These files are then imported again back

into the ArcView project (Figme 13) and given new names, as listed in Table 4.

At this point it may be helpful to define several objects in the ArcView's Avenue

scripting language which will be referenced frequently in this thesis (Figure 14). The

object hiCTarchy of Avenue contains five basic documents visible to the user while the

application is running. These are Tables, Views, Charts, Layouts, and ScriptEditors. Of

these, we are mainly concerned with Views and Tables.

Views are windows in which digital maps are rendered. Views are composed of

Themes, which are often referred to as map layers. The most common type of Theme in

ArcView is a feature theme, or FTheme. An FTheme is a set of similar geometric shapes

- such as points, lines, and polygons - that represent geographically referenced objects,

such as buildings, roads, or census tracts. These shapes are displayed on the screen with

graphical symbols that may be sized and colored in many ways to reveal important

information about the objects. A common way to alter a theme is to classify the data

underlying the theme. Classifying data means grouping the data according to the values

in one of the data fields. Classifications may be illustrated with graduated colors or

39

Table 4. Name changes of MS Access tables after export and re-import into ArcView.

MS Access Table Name

DIRECT TO STORE

HANDLING

INPUT-FACILITIES

PICKING

TRANSHIPMENTS

ArcView Table Name

dirstore.dbf

handling, dbf
inputfac.dbf
picking, dbf
tranship.dbf

maa

HglO!
iVVr uauauiauay

Betsetnet

Be««nei_ _
Bem^
Bemny

Bwena

Bet^
; Bessemef

s * *

yiigUMM

Beaiwnef

Her^w
IndanapoKs
lni1inrM|>

Indanap
Knoxvie,

192402^.100000

746706 1 27Snn

f46130i'Z560000
22^3^014600

16411426 370000

n irtfmllt* dW HwEi

ye«$einef_
HendbjOT

Indwnap^
Knoxvie__
Lijmbalnn

N /^jgustd
Somertel

;_33.a/ 87.00
j36.197'-m"24
i 39.«

r36.K^7"^JB
; 39"w /-Ti 48
[33
rS.™ 7'-797(B

W^.a60000 [237253125 XIOOOO

175§TO"60^Ti'^21^
7712^1 OOto'!'i 90004^ 500000
394^r7D6odQT'7m
M^Vaooirno i 5202391 woomro
1497164

3349^78600^

^ *>

m

s

Figure 13. ArcView tables created from Microsoft Access tables.

Avenue Object Model

View

A.
Theme

FTheme

Symbol

Layout

Project

A

Table

VTAB

FTAB

Legend Field

DocGin Doc DocWin

Chart ScriptEditor

Field

Shape

1
Classification

= Composed of zero or more (i.e., a project may be composed of zero, one or more Docs)

Figure 14. A partial model of Avenue objects relating to this thesis.

41

graduated symbol sizes. Control of a theme's symbols and classifications takes place in

the theme's Legend.

Tables are documents built of records and fields that are common to most

relational databases. A special type of Table called an attribute table holds the data upon

which a Theme is built. The data for Tables and for Themes actually reside in memory as

files. To access these files. Avenue provides an object called a virtual table (VTAB) that

acts as an interface between the file and the programmer. A derivative of the VTAB is

the feature table (FTAB), which provides the interface between the programmer and the

file supporting the Theme object. Each FTAB automatically contains a Shape field to

hold (and hide) the theme's geographic references. Except in the case of the SQL VTAB,

creating a new VTAB or FTAB also creates a new file which is allocated space in

memory. Further, creating a new FTAB creates a new shape, or map layer.

Lastly, Tables and Views, as well as the other types of Docs have a DocGUI,

which is the collection of menus, buttons, and tools specific to that document type. They

also have a DocWin, which is the visible window object we see on the computer screen

in which Themes are rendered and the data from VTABs and FTABs are presented.

Building the Component Features of the Network

Once the tables listed in Table 4 have been created, the GUI is updated so that the

Build Transport Lines menu item is enabled, which means the transport lines can now be

created. Clicking on this menu item laimches a script TransportationLines.Build

(Appendix). This script is a master script that calls other scripts that build the DCs

42

point theme, the DC-to-Region Flow line theme, and the Transshipments line theme.

Figure 15 provides an outline of the flow of these scripts and what each one does.

Building the DCs Point Theme

The first script called by the TransportationLines .Build script is the

FlowLine.Build script (Appendix) that creates a line theme connecting all the possible

origin-destination pairs that exist between DCs and demand regions.

Before the script can do this, however, the DCs theme must be built (the Demand

Regions theme is considered static for all network optimization scenarios, so it has

already been constructed and appears in the project's view from the start). Since the

inputfac.dbf table contains the geographic coordinates of each DC in the LatLon field, the

FlowLine.Build script first acqxiires the VTAB for that table. Having done that, it calls

the script SpliceLatLon (Appendix), and passes the inputfac.dbf VTAB as the argxunent.

SpliceLatLon creates a new FTAB for a point theme, clones the fields in the inputfac.dbf

field listed in Table 3 (except for the LatLon field), and adds them to the new FTAB.

Then, for each record in the inputfac.dbf VTAB, it parses the LatLon field into its

component latitude and longitude coordinates and adds them to the Shape field of the

new record in the FTAB. At the same time, it copies the values from the other fields in

the inputfac.dbf VTAB into the new FTAB. When the script is complete, a new point

theme of the DCs has be«i created that contains data on each DCs name, fixed cost, and

its optimized demand (i.e. supply) value. Just before the DCs FTAB is returned to

FlowLine.Build as an argument, it is passed to the script AddXY, which creates two new

43

TransportationLines-Build script laimched by click on Build Transport Lines menu item

1) Call FlowLine.Build script

a) Call SpliceLatLon script with inputfac.dbf VTAB as argument

i) Get latitude and longitude of each DC from VTAB

ii) Build DCs point theme

iii) Call AddXY script with DCs FTAB as argument

(I) Add X and Y coordinate fields to DCs FTAB and populate them

iv) Return with DCs FTAB as argument

b) Build DC-to-Region Flow line theme using X and Y coordinate fields in

both the DCs theme and the Demand Regions theme

c) Call FlowValues-Calculate script with Row FTAB as argument

i) Create fields in Flow FTAB to hold volume data on Rx, CW, and OTC

product flow, as well as total product flow

ii) Select flows by commodity type from dirstore.dbf VTAB and transfer

to new flow fields in Flow FTAB; sum them to populate total product flow field

iii) Return with DCs FTAB as argument

2) Call TranshipLine.Build script with DCs FTAB as argument

a) Build Transshipments line theme using the DCs as both the begirming points and the

endpoints of the new lines

b) Call TransFlowValues.Calculate script with Transshipments FTAB as argument

i) Create fields in Transshipments FTAB to hold volume data on Rx,

CW, and OTC product transshipments, as well as total product transshipments

ii) Select flows by commodity type from tranship.dbf VTAB and transfer to new flow

fields in Transshipments FTAB; sum them to populate total product transshipments

field

c) Return control to Tran$portationLine$.Build script

3) TraiisportationLines.Build terminates

Figure IS. Outline of scripts launched by the Build Transport Lines menu Hem.

44

fields in the FTAB called X- coord and Y-coord and adds the longitude and latitude

coordinates for each DC into those fields, respectively.

Building the DC-to-Region Flow Line Theme

FlowLine.Build then proceeds to build the DC-to-Region Flow FTAB (a map of

flow lines). First it finds the Facility, X-coord, and Y-coord fields in the DCs FTAB,

then it gets the Demand Regions FTAB, and finds the name field, as well as two fields

holding each demand region's latitude and longitude. It then creates a new FTAB for a

line theme, and adds fields to hold the DC and demand region names. The script then

loops through each record of the DCs FTAB. For each DC, it loops through the Demand

Regions FTAB and creates a line connecting that DC and the cvurent record in the

Demand Regions FTAB. The line is created by using the current DCs coordinates as the

beginning point, and the current demand region's location as the end point, and adding

them to the DC-to-Region Flow FTAB's shape field. The names for the DC and the

dmand region are also added to their respective fields. When this script is complete, a

new line theme representing all possible flows between DCs and demand regions in the

network has been created and added to the project. This new FTAB contains (n ♦

(number of demand regions)) records, where n is the number of DCs in the optimized

network.

Before returning to the TransportationLines.Build script, the FlowLine.Build

script calls another script, FlowValues.Calculate (Appendix), and passes to it the newly

created DC-to-Region Flow theme. This script adds new fields to the Flow FTAB to hold

the total flow of each product type - Rx, CW, or OTC - as well as the total flow for all

45

products combined. These flow volume data originally resided in the OptimizedValue

field of the dirstore.dbf VTAB. However, the method for transferring these data to the

FTAB is more complicated than establishing a one-to-one relationship between the Flow

FTAB and the dirstore.dbf VTAB. This is because the VTAB contains three records for

each demand region, one profiling the CW product flow, the second the OTC product

flow, and the third the Rx product flow. Relating the tables based on origin and

destination would yield only one-third of the data. To be sure each record of the Flow

FTAB gets data on the flow volume of each product type, it is necessary to relate the

tables three separate times, one for each type. This is accomplished by establishing a

temporary field in both the Flow FTAB and the dirstore.dbf VTAB called ODP (that

stands for Origin-Destination-Product), which holds a string resulting from the

concatenation of the string values for the DC name, the demand region name, and the

product type.

The FlowValues.Calculate script begins by getting the dirstore.dbf VTAB,

creating the new ODP field, and calculating its value by concatenating values in the

Facility, DemandRegion, and Product field. Next, it creates a similar ODP field in the

Flow FTAB, as well as the fields to hold the individixal product flow and total flow

volumes. Then for each product type, the script calculates the value for the ODP field in

the Flow FTAB by concatenating the DC field, the Store field, and a string naming the

product type, such as "Rx." It relates the two tables by joining them based on the ODP

fields (Figure 16). Thus, the Flow FTAB will be related one-to-one with the VTAB for

the product type specified. The OptimizedValue field value is then populated in the

product voliune field of the Flow FTAB using the Calculate request, and the two virtual

46

DC-to-Region Flow Attribute Table

DC Store CW Rx Flow OTC Total ODP

Flow Flow Flow

Knoxville 247 225846.23 Knoxville247Rx

Dirstore.dbf Table

t
Temporary Key Fields

i
Facility Demand

Region
Product Optimized

Value

ActualRate ODP

Knoxville 247 Rx 225846.23 0.036351 Knoxville247Rx .,

Figure 16. Joining tables to capture flow line attributes. The dirstore.dbf table is joined to the DC-
to-Region attribute table by a temporary origin-destination-product key fleld and the
optimized flow value is copied over to the respective flow fleld in the attribute table.

tables are unjoined. When the flow volume values for each product type have been

copied, the temporary ODP field in each virtual table is removed. Finally, for each

record in the Flow FTAB, the flow volumes for each product type are summed and added

to the Total Flow field in the Flow FTAB using the Calculate request on the Total Flow

field. When the FlowValues.Calculate script is finished, control passes back to the

FlowLine.Build script, which terminates by returning the DCs FTAB back to the

TransportationLines.Build script.

Building the Transshipments Line Theme

The second script called by the TransportationLines.Build script is

TranshipLine.Build (Appendix), which receives the DCs FTAB as an argument. This

script is very similar to the FlowLine.Build script, in that it creates a new FTAB for the

Transshipments line theme by looping through the DCs FTAB and getting the X-coord

47

and Y-coord field values and using them as the beginning point for each line. The

difference is that for each DC in the FTAB, the script then loops back through the DCs

FTAB and uses each DC as an end point and adds a new record to the Transshipmaits

FTAB, except in each case where the beginning point DC is the same as the end point

DC. Thus, for an optimized network with n DCs, the new Transshipments FTAB will

contain (n * (n -1)) records.

After the new Transshipments line theme is created and added to the project,

TranshipLine.Build calls the script TransFlowValues.Calculate (Appendix), and passes

the new Transshipments line theme as an argument. This script is identical to the

FlowValues.Calculate script described above, except the tranship.dbf file is used instead

of the dirstore.dbf file. The tranship.dbf file holds data about transhipment flows of Rx

and CW product, but not OTC product. This is because the distribution of Rx and CW

products is more cost effective when they are centrally warehoused, whereas the

distribution of OTC products is cheaper when stocking points are decentralized and

dispersed. As with the dirstore.dbf file, each origin and destination pair listed in the

tranship.dbf file contains one record profiling the CW flow, and one profiling the Rx

flow, and so the Transshipments FTAB and the tranship.dbf VTAB have to be related

once for each product type using GDP fields in each table. When

TransFlowValues .Calculate finishes, both that script and the TranshipLine.Build script

return control to the TransportationLines.Build script, which then terminates.

Upon termination of this master script, the project now contains the base themes

of the DCs, the DC-to-Region Flow, and the Transshipments. Several of the custom

48

fimctions are also made available to the user. The DC-to-Region options under the DCs

may be displayed by fixed cost or total demand using those respective items under

Display Flows menu allow the user to display flows by product type or by total flow

using line symbols whose thickness is graduated according to volume (Figures 17 and 5).

Likewise, the Transhipment options under the Display Flows menu are enabled. The

DCs may be displayed by fixed cost or total demand using those respective items under

the Display DCs menu. However, the item that displays the DCs by handling cost is still

disabled, as are all of the items under the Display Demand Regions menu. To enable

these, the data on network flows need to be summarized for the DCs and for the demand

regions.

Summarizing the DC Data

To get a better understanding of what the Summarize DC Data and Summarize

Demand Region Data items do, it will be helpful to list the fields in the attribute tables of

each of the base themes (Table 5).

Clicking on the Summarize DC Data item under the Logistics Model Setup

laimches a script CalcDCs (Appendix), which in turn calls several other scripts (Figure

18). CalcDCs first gets the FTAB of the DCs theme and passes it as an argument in a call

to the script HasCWRx (Appendix). This script determines whether or not a DC is a

centralized warehouse for Rx or CW products. After receiving the DCs FTAB,

HasCWRx gives it two new fields, HasRx and HasCW, then it gets the VTAB of the

picking.dbf table. It then loops through the DCs FTAB, and for each DC, it loops

through the picking.dbf VTAB. If the name of the DC in the DCs FTAB matches the

49

Dt«(9lay£iL« Uiipiat'DentMSevern LoubonSMteOP 2^^ m

B
OC^toAa^nn ly CMy ''
DL^tofleqnn bcUl t Ofiv n

TMmNpmente ty f^ltOti^

rtarte^wwih tv W ')«4»

101 It1 / r«I^ITI *I (13 State 1;j 13.478,19; 3? ,U 7 W
4R fii S

f'cmand tv nrijit'f)

I

A/
• Kf^

^ b«Ri ifi44i«9t««s

I V.S;fi9*di

mt
•«

••

9099

99

9 9

99

' 9 Wf/fc

» ¤ •

• •

Utilm ft>w ̂hamp b«edpi» Bjrpmdurf 9am

Figure 17. Display Flows drop-down menu after building the project's base themes.

Table 5. Fields in the attribute tables of the project's base themes.

Themes

DCs DC-to-Region Flow Transshipments Demand Regions

iFdles

Facility
FixedCost

OptimizedValue

DC

Store

CW Flow

Rx Flow

OTC Flow

Total Flow

Origin
Destination

CWRow

Rx Flow

Total Flow

Demand Region

50

CalcDCs script launched by clicking on the Summarize DC Data menu item

1) Call HasCWRx script with DCs FTAB as an argument

a) Add HasRx and HasCW field to DCs FTAB

b) Getpicking.dbfVTAB

c) Check each DC in the DCs FTAB against the picking.dbf VTAB to determine if the DC

stocks Rx or CW product, and record result in HasRx and HasCW fields

2) Call SummTS script

a) Select records of Rx transshipments in tranship.dbf VTAB and sum the OptimizedValue

field for each unique origin DC - creates table summarizing Rx picked for transshipment

b) Select records of CW trarrsshipments in tranship.dbf VTAB and sum the OptimizedValue

field for each unique origin DC - creates table summarizing CW picked for

transshipment

c) Select records of Rx transshipments in tranship.dbf VTAB and sum the OptimizedValue

field for each unique destination DC - creates table summarizing Rx crossdocked

d) Select records of CW transshipments in tranship.dbf VTAB and sum the OptimizedValue

field for each imique destination DC - creates table summarizing CW crossdocked

3) Call SuminDZS script

a) Get dirstore.dbf VTAB

b) Select records of Rx shipments in dirstore.dbf VTAB and sum the OptimizedValue field

for each unique DC - creates table summarizing Rx picked at servicing DC

c) Select records of CW shipments in dirstore.dbf VTAB and sum the OptimizedValue field

for each unique DC - creates table summarizing CW picked at servicing DC

d) Select records of OTC shipments in dirstore.dbf VTAB and sum the OptimizedValue

field for each urtique DC - creates table summarizing OTC picked at servicing DC

4) Call JoinSumms script

a) Joins summary tables to the DCs FTAB

b) Sum joined fields to create Rx Picked, CW Picked, and OTC Picked fields

c) Get the handling rates for each product type and each DC fi-om the handling.dbf VTAB

and copy to DCs FTAB

d) Calculate cost for Rx, CW, and OTC picked, as well as for Rx and CW crossdocked and

copy into new cost fields

e) Sum cost fields to get Total Handling and store value in new field

Figure 18. Outline of scripts launched by Summarize DC Data menu item.

51

name of the DC in the picking.dbf VTAB, it then checks the value of the Process field in

the latter. Initially, both the HasRx and the HasCW field in the DCs FTAB are set to

zero. However, if the Process field in the picking.dbf VTAB contains the string

"MakeRx", then the HasRx field in the DCs FTAB is set to one. Likewise, if the Process

field contains "MakeCW", the HasCW field is set to one. Once finished, control is

passed back to the CalcDCs script.

CalcDCs next calls the script SummTS (Appendix). The purpose of this script is

to determine the volume of Rx and CW products that are picked at each DC stocking

these products, and to determine the volume of Rx and CW products that are being

crossdocked at those DCs that don't stock Rx and CW products, and therefore must have

them transshipped from other DCs. This information is important to know because

transshipped products incur extra shipping and handling costs.

SummTS begins by selecting all records in the tranship.dbf VTAB whose Product

field contains the "Rx" string. Once a subset of records has been selected, the script sums

the OptimizedValue field for each unique DC in the OriginFacility field by making the

Summarize request on the tranship.dbf VTAB. This request creates a new VTAB whose

file is RxPicked.dbf. The same .summary is done for records whose product is "CW",

which creates the file CWPicked.dbf. The summed OptimizedValue fields in these new

VTABs are changed to "RxPicked for TS" and "CWPicked for TS" respectively. This

process is then repeated for each product type, but this tune over each imique DC in the

DestinationFacility. This produces two new files called Rx_X_Doc.dbf and

CW_X_Doc.dbf, which hold the data about which DCs are crossdocking transshipments

and what are the transshipment volumes. The summed OptimizedValue fields in these

52

VTABs are changed to Rx X Doc and CW X Doc respectively. Control is then passed

back to CalcDCs.

CalcDCs then calls the script SumniD2S (Appendix). This script summarizes the

flows of product from the DCs to the demand regions for each umque DC, thus providing

information about the volume of product flow that originates at the servicing DC (i.e.,

flow that does not involve a transshipment). The data for these flows are held in the

dirstore.dbf table. The structure and logic of this script is similar to the SummTS script.

Product-specific records in the dirstore.dbf VTAB are selected by issuing a query to the

VTAB of records according to the Product field value, and these selected records are

summed over the Facility field holding the DC name. After performing this procedure

once for each product type, the script returns control to CalcDCs having created three

new files, RxDirect.dbf, CWDirect.dbf, and OTCDirect.dbf. The OptimizedValue fields

in these summaiy VTABs are changed to Rx D2S, CW D2S, and OTC D2S.

The last script called by CalcDCs is JoinSumms (Appendix). This script joins the

RxPicked.dbf, CWPicked.dbf, Rx_X_Doc.dbf, CW_X_Doc.dbf, RxDirect.dbf,

CWDirect.dbf, and OTCDirect.dbf VTABs to the DCs FTAB based on the Facility fields

in the joined VTABs and in the DCs FTAB. Essaitially, what these joined tables give to

the DCs VTAB are seven new fields: RxPicked for TS, CWPicked for TS, Rx X Doc,

CW X Doc, Rx D2S, CW D2S, and OTC D2S. Before terminating, the script sums the

volume picked for each product type and places those summed values in three new fields,

Rx Picked, CW Picked, and OTC Picked. The script then calculates the cost associated

with the voliunes provided in these fields, as well as the Rx X Doc and the CW_X_Doc

fields, and adds these values to respective cost fields that are also created by the script.

53

To calcxilate these costs, the script gets the handling.dbf VTAB and transfers the

handling rate for each jffoduct over to new Rx, CW, and OTC rate fields in the DCs

FTAB. As with the dirstore.dbf and tranship.dbf tables, this table has three records for

each DC, one holding the CW handling rate, the second holding the OTC handling rate,

and the third the Rx handling rate. To transfer these rates to a single record in the DCs

FTAB, it is necessary to loop through that FTAB, and for each DC, to loop through the

handling.dbf VTAB and copy the handling rates for each of the three records whose

Facility field name matches with the DC name in the FTAB. Once this is accomplished,

the script creates six new cost fields in the FTAB: Rx Pick Cost, Rx X Doc Cost, CW

Pick Cost, CW X Doc Cost, OTC Pick Cost, and, finally. Total Handling. The Rx Pick

Cost and Rx X Doc cost are calculated by multiplying the values in their respective

volume fields by the value in the Rx Rate field. The CW Pick Cost and CW X Doc Cost

fields are likewise calculated using the CW Rate field value. Calculating the OTC Pick

Cost is similar to the previous calculations, except that since it is not necessary to

transship OTC products, there is no OTC crossdock cost to calculate. The Total

Handling field is calculated last by summing all of the cost fields described above. At

this point the summary of the DC data is complete, and the By Total Handling item under

the Display DCs menu is enabled.

Summarizing the Demand Regions Data

The last item imder the Logistics Model Setup view menu is the Summarize

Demand Region Data item. Clicking on this item launches the script SummDems

(Appendix). This script is somewhat similar to the CalcDCs script, except that it

54

summarized the network flow data over each unique demand region, rather than each

unique DC.

SummDems first gets the VTAB of the dirstore.dbf table. Then for each product

type, it queries the VTAB using the product type as the selection criteria. For example, it

first selects all records in the dirstore.dbf VTAB whose Product field contains "Rx". The

script then summarizes this selected set over each unique demand region, yielding a new

VTAB holding the total Rx volume going to each demand region. The file for this

VTAB is called Rx2Store.dbf. In the same fashion, the CW2Store.dbf and the

OTC2Store.dbf files are created. These VTABs are then joined to the Demand Regions

FTAB using the demand region name as the common key. After the join, the Demand

Regions FTAB has three new joined fields titled after the summary tables that were

joiued. To prevent null values for some of the demand regions' product flows fi-om

disrupting the calculations, it is necessary to create three new fields in the FTAB to which

is transferred the data in the three joined fields. These three fields are called Rx Vol,

CW_Vol, and OTC_Vol. First the values for these fields are set to zero, then all non-null

values in the Rx2Store, CW2Store, and OTC2Store fields are copied over. After copying

the data, the joined fields are no longer necessary so they are unjoined from the Demand

Regions VTAB. Before toininating, the script creates one more field called Total

Demand, which holds the sum for the values in the three volume fields.

Displaying the Network Features

Once the summary of the DC and demand regions data is complete, the user will

notice that the attribute tables for the DCs and Demand Regions themes have several new

55

fields (Table 6). At this point, several more menu items under the Display Demand

Regions are also enabled (Figure 19), in addition to the By Handling Cost item under the

Display DCs menu. The only display items that remain disabled are the items to display

logistics costs for each demand region by product type and by all products. These items

require the apphcation of the chain-wide-by-product, and chain-wide-by-all-products

items under the Trace Costs menu. These items will be discussed in the next chapter.

Like the fixed cost and total demand display options under the Display DC menu,

the handling cost option clones the DCs theme and changes the new theme's legend

so that the DC symbols are graduated in size based on a natural break classification of the

Total Handling field in the DCs FTAB. The scripts run by the By Fixed Cost and By

Total Demand items operate in a similar fashion, sizing the DC symbols of the cloned

DCs by the FixedCost field and the OptimizedValue field respectively.

Likewise, the Demand Regions theme may be altered according to the Total

Demand field in the Demand Regions FTAB. The By Product Volume option under the

Display Demand Regions menu, on the other hand, creates a pie chart symbol for each

demand region (Figure 20). With these pies, the individual product volmnes are

represented as pie slices, while the total demand volmne is represented by the size of the

pie.

The scripts laimched by the display options for the DC-to-Region and

Transshipments flows utilizes an interesting graphical manipulation to draw the spider

diagrams which result fi-om a network optimization. As previously noted, the DC-to-

Region Flow and Transshipments themes are the base themes for the project, and they

56

Table 6. Fields in the base theme attribute tables after summarizing DC and Demand Regions data.

Themes

DCs DC-to-Region Flow Transshipments Demand Regions
Facility DC Origin Demand Region
FixedCost Store Destination OTC Vol

OptimizedValue CWFlow CWFlow Rx Vol

Rx Picked for TS Rx Flow Rx Flow CW_Vol
Rx X Doc OTC Flow Total Flow Total Demand

RxD2S Total Flow

CW Picked for TS

CW X Doc

CWD2S

OTC Picked

Rx Picked

CW Picked

RxRate

CWRate

OTC Rate

Rx X Doc Cost

Rx Pick Cost

CWXDoc Cost

CW Pick Cost

OTC Pick Cost

Total Handling

57

_ X

Twee C<«fe : LoCa^S^^ . :CW

^Q E
fgr»TNitfefejM?i iifr^iTF] m 5^ 1421J050 745

- Psmen^ fcy

I

A^
l^lOM

«

Y, U*ne4lSt«t«»

«•%

ih y

Figure 19. Display Demand Regions drop-down menn after summarizing demand region data.

58

V Aj: v«-w fir; Vr.s I.' iu 8IO£3|
|i» .:£i# "Vrm. liMoUMt. Liicalion:,rai9gtp ittndon

H Q @S§i EBd
ScdP ij 7*1W •*.::::44;53:;j: :-:-V

- I'crtenJ t-y tlfgn ri

mm

P—WjilBBglg

#

i*

• ##
*ill

#
ii

ii

irnmm^mmm

Wooofockct, RI

mm

■II

ilflBfT 1 ?1 W 40 og t w 2b 11»] i» Anw «>r 4 «,»WI

Figure 20. Pie chart symbols representing demand regions. Pie slices represent product volume,
while the size of the pie represents total volume.

59

contain all of the possible origin-destination pairs in the optimized network. Once the

optimized flow values are added to the FTAB of these themes, it would be possible to

generate a new theme by selecting out the positive flows and building a new FTAB vrith

these records. However, this method has the disadvantage of creating a new file for each

theme, which takes up space in memory.

When classifying a theme according to a field m the FTAB, ArcView provides the

capability of specifying a null value in that field, and displaying records having that value

with a special null symbol. For example, if the field contains records whose values are

empty, or are flagged with a common null value, such as -9999, these records may be

displayed with a certain symbol or with a certain color. Thus functionality in ArcView

comes in very handy when displaying the network flows. Because we are only interested

in seeing the flows with positive values, we simply make all the zero value flows

invisible by setting the null value to zero, and setting the null symbol to a transparent

color (Figure 21). Thus, it is possible to display the various DC-to-Region and

Transhipment flows listed imder the Display Flows menu by cloning the base theme and

simply altering the legend, and at the same time avoiding the creation of a new file in

memory. See the TotalFlowTheme.Make and the TransTotalFlowTheme.Make scripts in

Appendix as examples of how this is accomplished for each flow display option.

60

Unclassified DC-to-

Region flow theme
with all flows

visible.

0.
O

o
6378

Q

1754
3137

DC Flow

Values

o

4396

8351

O

DC-to-Region Flow
theme classified by flow
volume, with Null value
set to zero and Null

symbol made
transparent

DC

O

Thickness of lines is graduated
according to flow volume.

Figure 21. Making zero value flows to demand regions invisible using null symbol.

61

Chapter 4

Tracing Demand Region Logistics Costs

Tracing Logistics Costs of Individual Demand Regions

As was discussed in Chapter 2, the individual components of a logistics network,

such as the lines of product flow, or the origin and destination facilities of those flows,

are well suited for graphical manipulation and display. Tracing logistics costs from the

ultimate destination back up through the network to the ultimate origin, on the other

hand, involves summing the costs of different components of the network and,

consequently, associating features of different themes. Such trans-thematic evaits cannot

be rendered easily with graphical displays, yet Arc View does offer a way to relate the

data from each theme's attribute table so that logistics costs can be analyzed.

ArcView uses relational databases. This means that two tables having fields with

common data types can be related to each other. This common field is often called the

key field. In the last chapter, one type of relation called a join was reviewed. Recall that

a selected set of the dirstore.dbf table was taken and joined to the DC-to-Region Flow

table based on the ODP key field. Such tabular joins merge the two tables in the project

interface while keeping separate their files in memory. Another type of relation ArcView

provides is called a link. Unlike a join, two linked tables do not actually merge. Rather,

the link establishes a relationship between the two tables in which the selected records of

the linking table will automatically select one or more of those records in the linked table

having an identical value in the key field. Moreover, unlike with the join, ArcView

62

allows tables to be linked in a chain-like fashion, so that a table can be both the linked

and the linking table.

For the network optimization project, we make use of this linking capability to

trace the logistics costs from the demand chain up to the origin facilities. The basic logic

for all of the trace cost scripts is to link the demand regions to the shipment table using

the demand region name as the common data element, then to link the shipment table to

the DCs table, and the DCs table to the transshipment table, using the DC name as

common data element (Figure 22). The most complex of these traces occurs with

Demand Region Rx Only and Demand Region CW Only items, since these products

often involve extra crossdocking and transshipment costs, so we will use the script for Rx

cost tracing, RxTrace (Appendix) as an example here (see Figure 23 for an outline).

Demand Regions attribute table

Shape Demand Region Rx Vol CW Vol OTC Vol Total Demand

Point 111 , 162065 4369 2478562 2644996

dir$tore.dbf table

Facility DemandRegion Product OptimizedValue ActualRate

Somerset 111 Rx 162065.42 0.020141

DCs attribute table

Shape Facility FixedCost OptimizedValue
Point Somerset 3349580.85 301233227.40

transbip.dbf table

OriginFacility DestinadonFacility Product OptimizedValue ActualRate

Indianapolis Somerset ^ Rx 14613012.56 0.028512

t
Figure 22. Linking tables to trace logistics costs.

63

RxTrace launched by clicking on Demand Regions Rx Only menu item or "R" tool

1) Call Tables.Liiik script

a) Link the Demand Regions attribute table to the dirstore.dbf table by the demand region

name and link the dirstore.dbf table to the DCs attribute table, and the DCs attribute table

to the tranship.dbf table, by the DC name

2) Get the VTABs for the above tables

3) Call the system script View.SelectPoint

a) If the mouse is chcked on one or more features in the Demand Regions theme, select the

records for those demand regions in the Demand Regions attribute table

b) If the mouse is chcked anything that is not a demand region, then exit

4) If demand regions were selected, make a Ust of Boolean values indicating whether or not the

demand region was selected

5) For each true value in the hst

a) Select the demand region in the Demand Regions FTAB

b) Reselect the selection in the dirstore.dbf VTAB that results from the link with the

Demand Regions FTAB, so that Rx product flow from servicing DC is selected

c) Calculate the shipping cost by multiplying the Rx flow volume by the shipping rate

d) Get the selected DC in the DCs FTAB and check to see if it stocks Rx product

i) If it does, multiply the Rx handling rate for that DC by the flow volume in the

dirstore.dbf VTAB to get the picking cost for that demand region

ii) If it does not do the same multiplication, but this is crossdocking cost

(1) Reselect from the selected set in the tranship.dbf VTAB that results from the

link with the DCs FTAB so that Rx product flow to servicing DC is selected

(a) If there is only one transshipment record selected, multiply the flow volume

in the dirstore.dbf VTAB by the transsh^ rate in the tranship.dbf VTAB to

get the transshipmern cost

(b) Else there is more than one origin DC transshipping to servicing DC, so

multiply flow volume in the dirstore.dbf VTAB by the weighted average

transship rate of the multiple origin DCs to get the transshipment cost

e) Sum the shipping, crossdocking, transhipment, and picking costs to get the total logistics

cost for Rx products for the demand region

f) Issue the report message box to the screen with itemized and total logistics costs listed

6) Call Tables-Unlink to unlink the tables.

Figure 23. Outline of scripts launched by Demand Regions Rx Only menu item or "R" took

64

RxTrace is the script for a tool. Unlike a GUI button or menu item, which

immediately causes a script to run, a tool waits to receive input from the user that will be

needed to run the script (Figure 24). Before the RxTrace script receives the user input, it

first calls a script Tables.Link (Appendix), which links the Demand Regions attribute

table to the dirstore.dbf table, the dirstore.dbf table to the DCs attribute table, and the

DCs attribute table to the tranship.dbf table. Control then returns to RxTrace, which gets

the VTABs of the dirstore.dbf and tranship.dbf tables, and the FTABs for the Demand

Regions and DCs themes. Once RxTrace has retrieved these linked virtual tables, the

script calls the ArcView system script View.SelectPoint. This script makes the mouse

cursor a selection cursor. If, when the mouse is clicked, the cursor is positioned over a

feature from the active theme, then that feature's record in the FTAB is selected. Since

RxTrace makes the Demand Regions theme active, the script will proceed if the feature

clicked is a demand region point in the view. If the mouse is clicked on any other part of

the screen other than a Demand Regions point feature, the script termiaates. If the mouse

click event takes place over more than one point in the Demand Regions theme, then the

logistics costs for each selected demand region are calculated. The script keeps track of

the number of selected points by converting the entire set of records in the Demand

Regions FTAB into a list of Boolean values where 1 means the record was selected, and

0 means the record was not selected.

For each list element equaling one, the RxTrace script selects that record in the

Demand Regions FTAB. Doing this automatically selects the records in the dirstore.dbf

VTAB whose demand region name matches the demand region name of the selected

record. This in turn selects matching records in the other linked tables (Figure 25).

65

' Ai;;V:i:* liJS Vuitinri H«i

CQililR[oiPPP:PilEllPBn

The lowest row on

the ArcView GUI

is the toolbar.

Tools require user
interaction with the

active document.

• Owin^wfe CW Onb

-1 "■■*-'J(^ ^^' Jlv-IKi-'l

EMmand)R«9an ̂ Or(^

Denand 0| tOhV
jEHMModftg^utiAififqAgts

The top row of the ArcView
GUI is the menubar. Menus
usually "pop down" to reveal a
selection of menu items.

The middle row on the ArcView GUI is a
button bar. Buttons automatically cause an
event to happen once they are cUcked.

Figure 24. ArcView GUI for a View document.

filS Vt?f5:nT! 'i flri

'♦ bj' L I oiittT.': fUl

Port 174 2229550 2083029 141003! 5518
Port 1^ ^'4618 3768701 254338i 1579
Port ITS 5077109 4812103 2627581 2248

4368Port 177 2644996 247%^ i"62daj"
Port 178 S782167 6345330 434850! 1987
Port J.79 1663306 1433104j 88952 131250
Port ^ 180 9311810 8975542^ 3342921 1976!
Port ^ 181 ' 4420079 4^7^ 214754 6581!
Port 182 2G35535 24^2 105979 82994:
pint 183 5354392 5060247 207842 88303
Port _j 1B4 3768752 220290? 29182
Port 185 , 2708963 2515823 1146601 78480'
Port 186 47e7^'5~ 4476245 '309^'T ' 1709'
Port ^ 187 2803419 2695644 104242! 3532:
Port I 524946 40688OI 372951 81771
Port ;189 3492332 32U3023; 20/450! 1859

Port i Bi¥«wnw
Port ; Hftnriwsor
Port

Port

Port

Indanapofe
Knwvie

Luofcarton
N-Auguria

Port SoHwrtel
Port Woooaockd

3349560ffiOnOOi23725312530nn00i Oj ^
_ lori*

TTili'noboooo TaSw^'sb^ ' V"''
394G565.700000
6418591,800000

"1437iV4.65o6o0
3349680.850000
5207364.200000

70129029.1300001 I
KCCM1590(XiqO0r j
i2(is7^'9bduo6l '
301233227.400000!
479645699 3000001

«fQIX

Somertel

Some^
Somertei

173 CW 37-^
[173 OTC 14949

173 1184
bomerset CW
5otT>ei*et

Somertel
OTC

174

Sonmtel
Someisel

SorwsH

Sorreitel
Somertel

Somertel
Somertel
Sor^tel
Somertel
Somertel

ij :

176 i CW
176 OTC
76

CW
OTC 24789

177 162QI
CW

OTC 63453:
4348-:

T79 CW

QIX

iasatsaSL fmmst i
IlKMnjKQK Somertel

Somertel
Bmsetner

CW
indBrwpolit
isToxvie CW

iCnoxvie
Knoxvie

iCnoxvIs

Bessemer

Hendertort

Hertdetton

N. Augutta

CW

CW
Kjnoxvie N. Ausitta
N. Augiisia Bessemer CW
N Auguila Betserr»

j jrxtarnpob
I IrNkartapok
i KnojrvBe
j_KrwMvle
' Sorrtertel

N. Augutta iCW
N. Augutta
N Augusta
N Aijgusia

CW

N Auoutia

ll
CW

n

mmm

Figure 25. Example of linked tables after selecting a demand region to trace logistics costs. The
Demand Regions attribute table (top left) is linked to the dirstore.dbf table (top right) by
the demand region name field. The dirstore.dbf table is linked to DCs attribute table
(bottom left) by the DC name in their Facility fields. The DCs attribute table is linked to
the tranship.dbf table by the DC name in the tranship.dbf table's DestinationFacility

67

Since each DC in the dirstore.dbf VTAB contains three records for each demand region

representing the flow of the three different product types, multiple records are selected in

the dirstore.dbf. To distinguish the servicing DC from the others, and to distinguish the

Rx product flows from the CW and OTC product flows, the selected set in the

dirstore.dbf VTAB is reselected for all records whose Product field value is "Rx", and

whose OptimizedValue field value is greater than zero. This reselection will isolate the

Rx flow coming from the DC assigned to that demand region, which means there will be

only one selected record (the script assumes that each demand region will be assigned

only one DC). It then gets the shipping rate from the ActualRate field, the flow volume

from the OptimizedValue field, and the DC name from the Facility field, for that record.

Finally, it calculates the shipping cost by multiplying the flow voliime by the shipping

rate.

To illustrate how this process of tracing logistics costs works, let us look at

demand region 229 near Charlottesville, Virginia as an example (Figure 26). Demand

Region 229 is allocated to the Henderson, North Carolina DC, as evident from the Rx

Flow lines in the figure. It will also be noted from the figure that the Henderson DC does

not stock Rx products and so must be transshipped from the Knoxville, Tennessee, DC.

When this demand region is clicked with the mouse, its record in the Demand Regions

table is selected. Because the Demand Regions VTAB is linked to the dirstore.dbf

VTAB, all of the records in that table having "229" in the DemandRegion field are

selected. Keep in mind that the dirstore.dbf table contains three records for all possible

shipments between all DCs and all demand regions, one record for each product type.

Since there are eight DCs in this sample optimized network, selecting demand region

68

. Ajj:V-,k* filS Visfsmfi 3 Qa

^TTFl raft It^itJJillt P^«i1 8065361
K9 S

I'emenJ r-y nfo«-n

V CV^ttt

v >A
I »s' *

/..V'

;; n ;-'-^A.;i^ iw.'^waaiaaf.^^ ̂
/^mi>22«l 6647879*

::':;. ^1087069^;:

:. i 9&faB7WD.37 • am 107039

m
m • »

Lnmbcrtoii. NJ

^:i:;;;#;^;ef)i6i476:e4;:''
A/itiute/ e {>4. bH£j*i»«X tf 4
Axed62647J»< t«41t«M;67 ¤ •

J::1E»W».ljjrii»i'Btt

A-'
Demand

Region 229
near

Charlottesviile

Virgina

A/

^-U;S, lt*Ms

Hai4(rfOii,NC
V Uii'lad eM«i

r 1

rta,SC

m

Figure 26. Demand region 229 near Charlottesviile, Virginia in the Rx product network. Demand
Region 229 is alloeated to the Henderson, North Carolina (Rx flow in green). The
Henderson DC does not stock Rx products, and receives Rx transshipments from the
Knoxville, Tennessee, DC (Rx transshipments in purple).

69

229 will cause 24 records in the dirstore.dbf table to be selected (Figure 27). Notice that

most of the records in Figure 27 have an OptimizedValue field value (i.e., a flow value)

of zero. In fact, only the Henderson facility has positive flow values. To ensure that only

the record for the Henderson DC serving Rx product to demand region 229 is selected,

TraceRx then reselects aU records fi"om the selected set that have an OptimizedValue

field value greats than zero and that have a Product field value of "Rx". Doing this

operation selects the targeted record as indicated by the shaded record in the figure.

Once the proper record has been isolated, TraceRx gets the value in

OptimizedValue field and multiplies it by the value in the ActualRate field to get the

shipping cost. Thus, the shipping cost for demand region 229 is

325,716.24units x $0.022063perunit = $7,186.28.

At this point, the script needs to determine if the Rx flow coming fi-om this DC is

stocked by this DC or is transshipped to this DC fi-om another DC. It does this by

looking to the selected DC in the DCs FTAB, which was linked to the dirstore.dbf VTAB

by the Facility fields in both of those tables. The script then gets the selected DCs

values for the Rx Rate and the HasRx fields. If the HasRx value is 1, this DC is an Rx

product stocking point, and the script need only calculate the picking cost at this DC,

which is done by multiplying the flow volume by the Rx Rate field value. If it is zero,

the DC is not an Rx product stocking point, so the script must determine the crossdocking

cost at this DC, the transshipment cost, and the picking cost at the origin DC.

70

Demand Regions attribute table

Shape Demand Region Rx Vol CW Vol OTC Vol Total Demand

Point 229 325716 4074 4230348 4560138

Key Fields

dir$tore.dbf table 1
Facility DemandRefdon Product OptimizedValue ActualRate

Bessemer 229 CW 0.00 0.039965

Bessemer 229 OTC 0.00 0.039965

Bessemer 229 Rx 0.00 0.042186

Henderson 229 CW 4074.03 0.019055

Henderson 229 OTC 4230348.30 0.019055

229 Rx 325716.24 0.022063

Indianapolis 229 CW 0.00 0.068088

Indianapolis 229 OTC 0.00 0.068088

Indianapolis 229 Rx 0.00 0.064505

Knoxville 229 CW 0.00 0.055593

Knoxville 229 OTC 0.00 0.055593

Knoxville 229 Rx 0.00 0.058241

Lumberton 229 CW 0.00 0.031430

Lumberton 229 OTC 0.00 0.036669

Lumberton 229 Rx 0.00 0.033176

N. Augusta 229 CW 0.00 0.048997

N. Augusta 229 OTC 0.00 0.048997

N. Augusta 229 Rx 0.00 0.059885

Somerset 229 CW 0.00 0.017667

Somerset 229 OTC 0.00 0.017667

Somerset 229 Rx 0.00 0.021593

Woonsocket 229 CW 0.00 0.118900

Wootjsocket 229 OTC 0.00 0.118900

Woonsocket 229 Rx 0.00 0.107576

Figure 27. Selected records in dirstore.dbf table after clicking on demand region 229. The desired
record (shaded) must be reselected from this set by querying for OptimizedValue field
values greater than zero and Product field values equal to "Rx".

71

The crossdocking cost is easily calculated, since it is simply the flow volume in

the dirstore.dbf VTAB multiplied by the Rx rate in the DCs FTAB. When the same Rx

handling rate applies to both picking and crossdocking, calculating the crossdocking cost

and the picking cost are identical.

Applying this to our example of demand region 229, note that the selected record

in the dirstore.dbf table has caused the record for the Henderson DC in the DCs attribute

table to be selected (Figure 28). Had the value in the HasRx field been one, then the

script would have calculated the picking cost using the value in the Rx Rate field for that

record, so that

325,716.24 units x $0.009594 per unit = $3,124.92

would have been the picking cost for the demand region. However, the value in the

dirstore.dbf table

Facility DemandRegion Product OptimizedValue ActualRate

Henderson 229 Rx 325716.24 0.022063

DCs attribute table

Key Fields

Shape Facility HasRx HasCW RxRate CWRate

Point Bessemer 0 0 0.009566 0.009566

Point Henderson mmMmm 0 009594 0.011726

Point Indianapolis 1 I 0.034614 0.009315

Point Knoxville 1 1 0.061443 0.009315

Point Lumberton 1 I 0.070147 0.010868

Point N. Augusta 0 0 0.009540 0.011130

Point Somerset 0 0 0.009566 0.009566

Point Woonsocket 1 1 0.077275 0.009315

Figure 28, The dirstore.dbf table linked to the DCs attribute table by the Facility fields. After
reselecting the Rx product flow from Henderson to demand region 229, the record for
the Henderson DC in the DCs attribute table is automatically selected (shaded).

72

HasRx field is zero, which means the Henderson DC does not stock Rx products, and

therefore the above dollar figure becomes the crossdocking cost for the demand region.

The script then looks to the selected set in the tranship.dbf VTAB, which was

linked to the DCs by its DestinationFacility field, in order to determine from which DC

the transshipments are coming. The tranship.dbf table is similar to the dirstore.dbf table,

in that each DC-to-DC transshipment pair listed in the table contains more than one

record, one for Rx transshipments, and the other for CW transshipments. However,

unlike the dirstore.dbf table, the transship.dbf table does not necessarily list all possible

transshipment pairs. Nevertheless, to be sure the proper record is obtained, it is necessary

to reselect from this selected set only those transshipmraits whose OptimizedValue field

value is greater than zero, and whose Product field value is "Rx". Once the desired

transshipment record is isolated, the transshipment cost is calculated by multiplying the

flow volmne previously obtained from the dirstore.dbf VTAB by the transshipment rate,

which is held in the ActualRate field of the transhipment.dbf VTAB.

Getting back to our example, the selected record for the Henderson DC in the

DCs attribute table automatically selects the records from the tranship.dbf table whose

DestinationFacility field values match with Henderson (Figure 29). Reselecting for

Product field values equal to "Rx" and OptimizedValue field values greater than zero, the

desired field (shaded) becomes selected. Using the ActualRate field value, the

transshipment cost associate with Rx products going from the Henderson DC to demand

region 229 becomes

325,716.24 units x $0.032707 per unit = $10,653.20.

73

DCs attribute table

Shape Facility HasRx HasCW Rx Rate CWRate

Point Henderson 0 0 0.009594 0.011726

Key Fields

itranslilp.dbf table

Or^inFacUity DestinationFacility Product OptimizedValue ActualRate

Knoxville

iKjMxvfite

Henderson

::HeiKlers(xi

CW 572383.99

8596675:84

0.038158

0.032707

Figure 29. Records in the tranship.dbf table that are selected based on its link with the
DCs attribute table. Reselecting for OptimizedValue field values greater than zero and
Product field values equal to '^Rx" yields the desired record (shaded).

Keep in mind that the flow volume used for this equation is the same value used in the

other equations, and is not to be confused with the OptimizedValue field of the

tranship, dbf VTAB.

The final cost to calculate is the picking cost at the DC where the transhipment

originates. To do this, the script gets the name of the DC fi-om the OriginFacility field in

the tranship.dbf VTAB, then it loops through the DCs FTAB until it finds the record for

the DC with a matching name. It then obtains the value in the Rx Rate field for this

record and multiplies it by the flow volume used throughout the other equations.

In our example, Knoxville is the origin DC for Henderson's transshipments. In

the record for Knoxville, the value stored in the Rx Rate field is $0.061443. Using this

Rx handling rate for Knoxville, the picking cost for demand region 229 becomes

325,716.24 units x $0.061443 per unit = $20,012.98.

74

With transshipments, however, it can happen that a DC not stocking a certain

product will receive transshipment from more than one other DC, so the script must take

this situation into accovmt. It does this by first summing the flow volume in the

OptimizedValue field for all reselected transshipments going to the servicing DC. The

script then loops back through the selected set of transshipments and determines the ratio

of the transshipment flow volume to the total flow volume for each transshipment. It

then multiplies the ActualRate field value for that transshipment by the ratio. After the

rate for each selected transshipment has been factored by its proportion to the total flow

volume, the factored rates are then summed to produce the final rate. In essence, the final

rate is an average rate for the total transshipment flow volume that is weighted according

to the volumes of each component flow. This weighted average rate is then multiplied by

the total transshipment flow to get the overall transshipment cost. The same procedure is

used to find the weighted average picking rate and the overall picking cost for the

transshipments at the origin DCs. Average rates are used for both the transshipment and

picking costs because it is ultimately not possible to determine the exact origin of a

demand region's product volume, if that product type is supplied to the demand region's

assigned DC by more than one origin DC. Of course, these averages are weighted

because doing so yields a more accurate cost rate than just taking the simple average of

the rates.

To illustrate these calculations, let us suppose that the Henderson DC receives Rx

product transshipments not only from the Knoxville DC, but also from the Lumberton

DC. When the record for the Henderson DC is selected in the DCs attribute table, the

records for the transshipments from Knoxville and Lumberton are selected (Figure 30).

75

DCs attribute table

Shape Facility HasRx HasCW RxRate CWRate

Point Henderson 0 0 0.009594 0.011726

Key Fields

translup.dbf table

OriginFacUity DestinationFacility Product OptimizedValue ActualRate

Knoxville Henderson CW 572383.99 0.038158

Knoxville Henderscm 8596675.84 0.032707

Lumberton Henderson CW 358994.62 0.069024

Rx 3422953.57 0.064781

Figure 30. Records in the tranship.dbf table that are selected when the servicing DC receives
transshipments from two origin DCs. Deselecting for OptimizedValue field values
greater than zero and Product field values equal to yields the records for both
Knoxville's and Lumherton's Rx transshipment to the Henderson DC.

These records are then reselected for Rx product flows greater than zero, which yields the

two records shaded in the figure. The Rx product flows into Henderson from these DCs

are stored in the OptimizedValue field. These flows are summed to produce the total

inflow of Rx product as follows,

8,596,675.84 + 3,422,953.57 = 12,019,629.41 total units.

Next, the script finds the proportion of each transshipment to the total flow. The

Knoxville DCs contribution to the total flow is

8,596,675.84 -12,019,629.41 = 0.72

76

or 72%, while the Lumberton DCs contribution is

3,422,953.57 ̂ 12,019,629.41 = 0.28

or 28%. Next, the script multiplies the ratio for each transshipment by the transshipment

rate stored in the ActualRate field of the tranship, dbf table, and computes their sum.

Thus, the weighted average rate is

(.72 X $0.032707) + (.28 x $0.064781) = $0.023549 + $0.018139 = $0.041688.

This weighted average rate is then multiplied by the flow volume, as follows

325,716.24 units x $0.041688 per unit = $13,578.47

to produce the transshipment cost. These same ratios apply to the Rx handling rates for

the origin DCs. Multiplying the weighted average Rx handling rate by the flow volume

produces a picking cost for demand region 229 of $20, 806.75 (see Figure 31 for details).

Knoxville Rx handling rate = $0.061443
Lumberton Rx handling rate = $0.070147

Weighted average Rx handling rate (wahr) is

wahr = (.72 x $0.061443) + (.28 x $0.070147) = $0.044239 + $0.01%41 = $0.063880

Picking Cost for demand region 229 = 325,716.24 units x $0.063880 per unit = $20,806.75

Figure 31. Computing picking cost at two transshipment origin DCs for demand region 229.

77

Once these transshipment and picking costs have been calculated, RxTrace thai

sums the shipping, crossdocking, transshipment, and picking costs to determine the total

logistics cost for that product type. These cost variables are initialized to zero at the

beginning of the script, so that the same summing calculation can be used for demand

regions that do not incur a crossdocking or transshipment cost for that product. Finally,

RxTrace calls a Tables.Unlink (Appendix) script that unlinks all of the tables.

In the example of demand region 229, where only the Knoxville DC supplies Rx

transshipmaits, the total logistics costs associated with Rx products would be

Shipping cost' $7,186.28
+ Crossdocking cost: $3,124.92
+ Transshipment cost: $10,653.20

+ Picking cost: $20,012.98
Total Rx Logistics Cost: $40,977.38

The logic of the CWTrace (Appendix) script is virtually identical to the RxTrace

script. The OTCTrace (Appendix) script, however, does not attempt to calculate the

crossdocking and transshipment costs, because it is known in advance that each DC acts

as a stocking point for OTC products. The TraceAll (Appendix) script launched by the

Demand Regions All Products item under the Trace Costs menu does nothing more than

run a combined version of the RxTrace, CWTrace, and OTCTrace scripts, which

calculates the grand total of all the logistics costs by all the products combined. Each of

these scripts issues a message box to the screen (Figure 32) which gives an itemized

report of the logistics costs for the region, including all the component costs, as well as

the total cost.

78

[Total Logisitic Costs to Serve Demand Region 229

Trace type: Rx Products Only
Demand Region: 229
Derrtand for Rx products: 325716.24
Shipping cost from Henderson: 7186.28
Cross dock cost at Henderson: 3124.92
Transshipment cost from Knoxville to Henderson: 10653.20
Pick cost at origin DC: 20012.98

Total Logistics Cost for Rx Products: 40977.38

IK

Figure 32. Report of total Rx logistics cost for demand regton 229. This window pops np after
clicking on demand region 229 with the Rx cost trace tool.

The trace cost tools for individual demand regions are accessible to the user

through the Demand Region items under the Trace Cost menu, or from the drop-down

tool menu provided at the far right end of the View document's toolbar. These tools are

labeled "R", "C", and "O" for the Rx, CW, and OTC product traces, and "A" for the all

products cost trace.

Tracing Logistics Costs for the Entire Network of Demand Regions

The scripts (TraceRxAll, TraceCWAll, TraceOTCAll — see Appendix) launched

by the Chain-wide Rx Only and other product specific items falling in the same section

under the Trace Costs menu vary only slightly from the TraceRx, TraceCW, and

TraceOTC scripts described above. These scripts trace the logistics cost for each demand

region in the Demand Regions theme and add the result as a new record to a new VTAB

created to hold these values. When the costs for all the demand regions have been

calculated, a new table made from the VTAB is created and joined to the Demand

Regions attribute table. Because there are 384 demand regions to be calculated, these

scripts take several minutes to complete. To create a similar VTAB holding each demand

region's logistics costs for all products, the TraceAllAll (Appendix) does not recompute

the logistics costs for each product type. Rather, it sums each demand region's cost

values stored in the three product-specific logistics cost tables previously created.

Utilizing these tables, calculating the total logistics costs for all products at each demand

region takes only a few moments. Of course the Chain-wide All Products item remains

disabled vmtil the product specific cost calculations have been completed.

Once the total logistics cost tables for each product type, and for all products, has

been added to the project and joined to the Demand Regions attribute table, the display-

by-logistics-cost options Hsted under the Display Demand Regions menu are enabled

(Figure 33). Clicking these items launches a script that clones the Demand Regions

theme, and creates a pie chart legend for each demand region (Figure 34). The logic of

these scripts (see the DRRxLogTheme.Make and similar scripts in Appendix) is similar

to the ProdDemRegTheme.Make (Appendix) launched by the By Product Volume item

that makes a pie chart legend for the demand regions. However, instead of representing

volmne by product type, the pie slices represent the component logistics costs, such as the

shipping and picking costs, while the size of the pie represents the total logistics cost.

With the total logistics cost for each product grouping already made, a report of

the total logistics costs for the entire network of demand regions can be generated. The

80

H«llii^ XoQii^MckM

ta} a-j IMtH llilvH! ^:::llia: l3
^

DtfTi-V'? r.^'Jvf'' Ttaoe£o^: IpoatfonSira^)A^irid^
IMMl

-iofxi

/3>/,mimifLm mfMLM

£t¥'}iw^kusi;^

mn

mmmmmmmrn
012

010
013

WSSS^BSS!^ mmtmmm
012

Olb
010 2bUU24 0J bbUOb^Wi

2wn6^j
712%_78l

]
227^31^1
OT242K]
3363^T7]
5^738.21']
350^9'^ j
581^5.37]
5SiT7"63'i

013
016 107346.TJ1014 ■mi017 0 2 43510.81

1§^.()0
""ani^""3R"
12^J3
700)6^

i'ji'lie.ii
19^.K
^10f9i03
404a.»

015010 013016ni3 014017020 01501 a
016013
017020iem
018

019
020

m a

m

bfCWlppjtoCTCort

5^ P 28.346.696

m
vC <4^'Rtgi^ $Um

y ftwfncaJ
#

rra--^

tl ;8:»ac49

HPft#4 r.t«i«i

r*i

>s

a new OimrKl Fegw p* hpep tumd im prgdurl viAswit and defmnd

Figure 33. Logistics costs tables support the display of the Demand Regions theme by logistics cost.
Note that the By Logistics Cost menu items are now enabled.

81

[EpgiapiisiagiiHiiisgig
Dsriend t-y Heoit n

S««te;1i4.972.198

* ♦»
r^m

Bftx»t(^5t
^ibffj4k:C'j(*: i:-i-ii! :• J iiili-:; i

ftxX4fteCtt

• ••/v
^£•H nn ftflM

'A/

iiSSsl •f«^Sxviitt/rND*>r jnd Rtfisiff

Uftftea

o

N.Aii]^fta.SC
essontf, AL

Figure 34. Demand Regions theme displayed by Rx logistics cost. The slices represent the shipping
cost (blue), the picking cost (red), the transshipment cost (green), and the crossdocking
cost (magenta), while the size of the pie represents the total Rx logistics cost.

82

Chain-wide Rx Statistics item, for example, launches the script RxStatistics.Generate

(Appendix). This script takes each field in the Rx Logistics Costs table representing

the component costs and the total costs, and sums them over all the records in the table.

These totals are then reported to the user in a pop-up message box. The

CWStatistics.Generate, OTCStatistics.Generate, and the AllStatistics.Generate (see

Appendix) are identical iu their operation to the RxStatistics.Generate script.

8.3

Chapter 5

Comparing DC Location Strategies

Generating the Service Areas

All of the ciistom functions reviewed so far demonstrate several of the powerful

capabilities GIS technology incorporates, such as generating geometric shapes which

represent real world events and their geographic location, embedding data about those

events into the graphical featmes, changing the graphical display of thematic features to

illustrate their attributes, and relating tables to enhance thematic data or to analyze trans-

thematic events. While this hst of capabilities is impressive in itself, none of the previous

functions demonstrates what is perhaps the most powerful and most distinguishing

capability of GIS technology - namely the analysis of spatial relationships between

thematic features.

In the review of the CVS project's custom GIS functions, the importance of

establishing a benchmark by which to judge organizational change and performance was

addressed. In the case of a logistics network optimization that seeks to minimize costs, it

would make sense to compare the total costs of the optimized network to the costs

incurred by the network before optimization. Such a comparison, however, offers only a

measure of the internal performance improvement of the company. It is common practice

for many companies to imdertake benchmark comparisons between itself and other

companies within the industry. Applying this idea to CVS's network optimization

project, it would be desirable, for example, to compare the optimized and pre-optimized

network logistics costs of CVS against the network costs incurred by CVS's major

84

competitors. Unfortunately, such operational data are jealously guarded by nearly all

companies and are not made available to the public. That is why the cost and flow data

in this thesis have been alt^ed.

Data about the location of competitor DCs and stores, on the other hand, does

reside in the public domain. By gathering the geographical reference data on the

competing companies, it is possible to analyze the placement of each company's DCs

among its network of stores by determining which of the DCs is closest for each store,

and what that distance is. The store records can then be grouped by the range of distance

within which the closest DC hes. For the pmposes of this project, we chose five 50-mile

ranges nested within each other to form a 250-mile service area around each DC (Figure

35). This grouping schema enables us to report the percentage of stores felling within 50

miles of the nearest DC, the percentage felling within 100 miles, and so on.

To set up the analysis, it is first necessary to create the themes for the DCs and

stores of CVS's competitors, and to add them to a new view called Location Strategy.

This is done manually by matching the zip code of each store to a theme of U.S. 5-digit

zip code boundaries that is geocoded for address-matching. Similarly, the competitors'

DCs are located by matching the city name of each DC to a theme of U.S. cities. The

CVS stores will already have been address-matched and added to the view. The CVS

DCs theme changes with each new optimization scenario, and is added automatically to

the Location Strategy view when the new DCs theme is first added to the project by the

SphceLatLon script. The naming convention for these themes requires that each store

theme be named after the company, followed by the identifying word "Stores", and each

DC theme be name after the company, followed by the identifying word "DCs".

85

/.• Aii;ViK«GL'5Vet.s:wft:^art. . . RBEii
LA V*eA lOL-fw Utaote' Uetned' LooHbct ModdSe'i4> l>4pbw i Ditpk^ ;;Li Uitoiw l i-nyid l->'9ont

.5Jjb&j LjiiO [!'M
liaeeLo>ts Loeahon Stategp tiev>

J
•'J localign jitoi^gv

Sole 1J19J106 428

BEItSi

y^:::d)M:DCs

U

tyg|o-Sgjal*» i
j I flO- WO MM I

ICB-l5DM»e* I
f" "I iO'IT«t«

Pn M in>»t9.: .

£KftMAHl PVl

mmm

t-

V cvs^h.(«»
m§Mm§§

WrfttftkKM PM

¤

h<* t* ̂U4

I E«i(«t4 9t:«r«(

*

y suit** *»»»
m sj

Figure 35. Service areas around DCs. Each service area has a 250-niile radius and is composed of
five, 50-mile ranges nested within each other. Each of these ranges is a separate polygon
having its own record in the Service Area FTAB.

86

This analysis also requires a line theme representing the road network over which

a particular area will be serviced. This is because the algorithm ESRI's Network Analyst

extension employs to find service areas on a network uses the costs associated with

traversing network links to determine the geographic extent of the service area. These

costs may be in distance units or time units. For the sake of processing speed and

memory utilization, we selected a 1 ;2,000,000-scale road theme produced by ESRI that

includes only interstate and state highways and major through-roads. In the road network

we selected, the distance for each link was calculated in miles and located in a field

called Miles. Once all the DC and store themes are in the Location Strategy view, and

that view has been made the active window, then the items imder the Location Strategy

menu are enabled (Figure 36).

Choking on the DC Range menu item launches a script Stores.SelectByRange

(Appendix). This script prompts the user to select the line theme that will be used for

generating the service areas. The user is then asked to select the DCs theme arovmd

which the service areas will be generated. The script uses the line theme to define and

build a network file that the FindServiceArea algorithm will use. Although the 250-mile

extait of the five, 50-mile nested service areas is an arbitrary set of distance costs, it was

hard-coded into the script in order to ensure the comparability of different drugstore

chains and their DC location strategies. Finally, passing the DCs FTAB and the set of

distance costs as arguments, the script calls the FindServiceArea function which operates

on the network.

87

Aj:;V;kw RIS V«i f).i

t.<h Ve* Jh™. Uau^* NOi"- LjOBh.Honu >•» u<ii>lai>»low> UmlwjL! OnplwDepigndl-.evins luDeU«> I

mBjOBpPiSiWBiPPEgSiP
i.!ral''9v

J6SrKhm txwl>

F4kAiI6C»^

Rt« Aid b(*'6a

cw m44^

s

Waiaiktw SwTc*

A

E«li*t9 S(4F«Jt:

*

U S H4d(U

'Ixfm ihp

(Mpmm •« h«nof «MK*<hc*i lot eech ftora 1(1 #r nftwQ} PC

Figure 36. Location strategy menu and U.S. road network theme (red lines) displayed. The location
strategy menu items are disabled until the Location Strategy view is made active. The
U.S. Roads attribute table contains a Miles field that holds the distance cost values used
by the Network Analyst algorithm to calculate the service areas.

88

The result of the FindServiceArea function is two themes. One is a line theme

representing the portion of the road network felling within the service area extent. The

other is a polygon theme which defines the two-dimensional geographic extent covered

by the service area. The latter, called the Service Area theme, is used to perform a

SelectByFTab operation on the stores FTAB fi-om the respective company. Before doing

this, the script adds to the stores FTAB a new field called DC Range whose value

indicates the range in which each store's closest DC lies. This field's value for each

record is then initialized to zero.

The SelectByFTab request is made on the FTAB of one theme, and selects all

those features in that theme that have a defined spatial relationship to another theme. In

this project, the SelectByFTab request is made on the stores FTAB, and selects aU those

point features in the stores theme that intersect the features of the service area theme.

However, we want to be careful to distiuguish between those stores falling within the first

50-mile range of the nearest DC fi-om those falling within the second, and the third, etc.

To accomplish this, the script must first select the records in the service area FTAB

representing the 0-50 nule range polygons for each DC.

The Service Area FTAB contains 5 polygon records (representing the 0-50 mile,

50-100 mile, 100-150 mile, 150-200 mile, and 200-250 miles service ranges respectively)

for each DC. The number of records in the Service Area FTAB, therefore, will always be

(5 * n), where n is the number of DCs in the company's logistics network. Since the

records in the Service Area FTAB are sorted by DC and not by range value, selecting out

each unique distance range, such as the 50-mile range, for each DC requires selecting

every fifth record in the Service Area FTAB by looping through it. The record number

89

from which the loop is started determines which unique distance range is being selected.

Starting on record zero in the Service Area FTAB (which is the 50-mile range of the first

DC) will select all the 50-mile range records for all the DCs. Starting on record one (the

100-mile range of the first DC) will likewise select all the 100-mile range records for aU

the DCs, and so on (Figure 37).

Each time the SelectByFTab request is made on the stores FTAB using the

currently selected range value, the resulting selection of stores is passed as an argument

in a call to a script DC.Range (Appendix), as is the current range value. The DC.Range

script receives the stores FTAB and the range value and then populates the DC Range

field for the selected set of stores with the current range value. For example, after

making the RequestByFTab request using the selected set of 50-mile ranges in the

Service Area FTAB, the resulting selection of stores is passed to the DC.Range script and

each selected record is given a value of 50 for the DC Range fields, meaning that the

closest DC for these stores is within 50 miles. DC.Range then returns control to the

Stores.SelectByRange script. This same procedure is repeated for the 100-mile, 150-

mile, 200-mile, and 250 mile ranges (Figme 38). After the last SelectByFTab request is

made, those store records that still have a DC Range value of zero are, by default, more

than 250 miles away from the nearest DC, and so the value of their DC Range field is

calculated to 251. At this point, the Stores.SelectByRange script terminates.

Since many of the service areas overlap, the situation can arise where a store will

be within one range of one DC, and within another range of another DC, and therefore

will be selected more than once. To ensure that the DC Range field holds the distance

value to the closest DC, the DC Range field value for a store is calculated only if its value

90

Ilill lllllllllllll lllllll—
6te £<* im m Wwfftw a*

:40«(aBdM

of betYice Atea

1 Lrpit 1

Polygon 1 Besietnei i oooooooc '"~wdoooiiooT
Poipgon 1 Besaemar 50 0000000 1000000000^

Potaon 1 BgtMfTMl toaoooooooi isdoooBob''
Polygon 1 Benemer 'iw.oobudci 2000000000

Poly9on_, 1 Besaemei 2000000000 ' 250 6600000 '
Po^gon 1 2 : Hendetson oodboddb* 50 0000000

Potwon 2 Hendeison 500000000 1000000000

P^taS!! 2 Handerxan lonondnrioril iMnooooflo

Pn^igon 2 Handwson isnnnnnonoi

Po^igon
...

Henderton 200 00000001 250 0000000

PpH^on 3i Indiviapokt 00000000 ̂ 50 0000000

Po^ 3' hdiaropois 50 OOQOOQO! 100 0000000

PotMon 3J Indianapoi* L 100.0000000! 1^0000000^
*Po^^ 3 Inthanapoiit 150.0000000 [200 00000001
PoVoon] 3 Inderopokx 200 0000000; 250 0000000

Pc^y^ Knoxvie 6 OOObOOD! »oo666go
Polygon Knoxvie 500000000! 1000000000

Po^"^ <noMvl« rdooomociol 1500000000

Polygon Knnxvile isnrmnnono 200 0000000

ICnoxvAo "200 oodocioo "i^oooboob
Polygon n Lumbeiton 00000000 50 0000000

Polygon ^ 5 Ltjnbefton 500000000 100 0000000

Polygon 5 Unbgrton i lOaOOOOOOOj 1500000000
Potygqn 5 Luhberton [150.0000000 ; 200 0000000
Polygon 5 Lmbefton i 200 0000000 ! 250 0000000

Polygon 6 N. Augusts 0.0000000:: 50 000CB00

Po^gon G N. Augusts 5000000001'1066600666
Potogn 6 N.Augusta 100.0000000 i 1500O0G0OO

Po^fgon 6 N Au^jsts isnonnnnop 2600060600
Po^igon 6 N Au^ists 20oonnooan_ 250 0000000

Po^igon 7 Somertel oobbooob"" " w 6660600
Po^^ 7 Someisei WOOOOOGO : " 100 0000000
Ppijgfm. .7 Sonwrsai io6.(xiociooo[1506600600
PolyQon 1 7 1 Someital ! 150.0000000!' iooooouuxj
Polygon ! 7! Someiset I 20U WXWJJJ[J'i^.ooooDool

! 8! Woonsockef LT 5o'oo6(X]o6l

Figure 37. Service Area attributes table with every fifth record selected. This example shows the
ISO-mile service area range, which extends from 100 to ISO miles away from each DC.
Note that the records are sorted by DC and not by range value.

91

mEBmBsmmmmm
'0' »- • 'litii;: • '" "iherae- • •: fitiphiw' • llftiiwk:;

n o wm le® 1
D«(||9||£||>M tHvtwaa DMwO«m>idQ««WM::;TWi»(MU ::li>tUMn£tKrti>iy : iJ

wiV I
ri L<K»lion Suaiegi^

rm

«

RivsAid :C>4>v

iliiiil
^mRt*.Aid «t*w

Wa>gr«ifM::1>Ci

s

ft

A idSi

&(i:4M 9Mr4S

ft

A
u « tt*S(lf

Bww-Shpr

Figure 38. The ISO-mile service area range selected for each DC. The selected ring polygons are
shown in yellow. The gold stars are the DCs around which the service area ranges are
centered.

92

is zero, which means the store has not yet been selected. If it already has a value greater

than zero, it means the distance range to the nearest DC has already been determined.

Making the Histogram

Once the DC Range field has been populated, a histogram of the percent of stores

falling within each distinct range fî om the nearest DC may be created. The making of the

histogram is initiated by clicking on the Make Histogram item under the Location

Strategy menu. The stores theme that is currently active is the theme for which a

histogram is created. The Make Histogram item launches a script DC.HistPct (Appendix)

which gets the FTAB of the active stores theme. It then creates a file in memory to hold

the histogram data and generates a new VTAB fi-om that file. The VTAB is given three

new fields, a Range field to hold the range label, a Count field to hold the cotmt of stores

falling within that range, and a Pwcent field to hold the percentage that count is

compared to the total store count. Next, a record for each unique range value, including

the range value of 251, is added to the VTAB and its label is set in the Range field.

The script then loops through the stores FTAB, getting the value of the DC Range

field for each record, and incrementing the Count field of the corresponding record in the

histogram VTAB. Once the count of stores falling within each range is complete, the

script calculates the value of the Percent field for each range by taking the value in the

Coimt field, dividing it by the total number of stores in the stores FTAB, and muhiplying

by 100. With the histogram VTAB complete, the script makes a histogram chart jfrom it.

The chart is titled and then added to the project (Figure 39). Once charts for aU the

companies have been created, the changes in CVS's DC configuration with each new

93

Au'Vikw IjiS VKicun 3 mam
|6fe 6^ : Chait n ijflBliew

©IPiEDjOIBilPIOfflllWBaffl m

Histoflram of CV'S Stoie DC Oietonccs

100

90

00

70

60

50

40

30

20

10

0

Percent of Stores

Percent of CVS Stores to Nearest DC

Percent

60 MIe Intervals

BvMlhinSO miles

n si - lOOmilee

n l01 160 miles

□ 151 - 200 miles

■ 201 - 250 miles

■ > 260 miles

Figure 39. Histogram showing the percent of stores falling within each range of the nearest DC for
the CVS sample network.

94

optimization scenario may be judged against the DC network configurations of one or

more industry competitors (Figure 40).

By analyzing these charts, and the maps from which they were generated, a

logistics manager may be able to arrive at a better understanding of how the location and

number of DCs affect the kind of distances which must be traversed to supply the

network of stores, and therefore affect the shipping costs for drugstore products.

Combining this information with reports about the industry's logistics trends and pubhcly

available statistics on competitor companies, such as asset utilization, operating costs, or

inventory carrying costs, will also give a logistics manager an idea of where a proposed

network stands in relation to the industry in general.

95

wsssBmama l-lglxB

:|E:::Ei::iKliOElBB^|^H*

Percent of Stores

r. fit i",VS ••'itt-rc 1)1])i:-;

Percent of CVS Stores to Nearest DC

IX n

X n

X n

70

X

m

40

3D

73 n

10

0

H within X miles

HSI - IX miles

HiOi - 1X miles

□ 151 - 2X miles
■ 201 - 250 miles
■ > 250 miles

Percent

X Mile Inteivais

Percent of Stores

Percent of Walgreens Stores to Nearest DC
IX

X

X

70

X

X

40

30

73

10

0
Percent

■ w

W Mile Inlervak

ithin X miles
■ 51 - IDO miles
B1OI - ISO miles
□ 151 - 200 miles
■ 201 - 290 miles
■ > 250 miles

Percent of Stores

Percent of Eckerd Stores to f

IX

X ■

X -

70

X •

X -

40

30

20

10

0

! within X milee
l51 - IX miles
1101 - tXmHes
] 151 - 2X milBs
1X1 - 2X miles
1 > 2X miles

Percent

X Mile Intervals

ft' -<14^ ^

Percent of Stores

Percent of Rite-Aid Stores to Nearest

IX

X

X

70

X

X

40

X

20

10

0
Percent

X Mile Intervals

DC

■ within
■ 51
■101 -
□ 151 -
■ 201 -
■ >290

X miles

1X miles

IX mites

2X miles

2X miles

miles

Figure 40. Using histograms to compare the DC configuration of a CVS sample optimized network
to the DC configurations of competitors' networks.

96

Chapter 6

Conclusion

Advantages of GIS for Logistics

The purpose of this thesis has been to highlight the unique advantages GIS

technology offers the business logistics industry for analyzing complex logistics systems,

or "supply chains." One of these advantages is the ability to visualize data.

Visualization has become an important area in the fields of information and computer

science over the past several decades, and its rise has been fueled largely by the previous

success of those same fields. As information systems have become more powerful and

sophisticated since their arrival to mainstream business in the 1960s, the volume of data

companies have collected about their operations has become staggering. Consequently,

corporate information strategies are moving their emphasis away from data collection

toward data exploration, in an effort to leverage corporate information resources to

remain competitive in the accelerating, global economy of the 1990s and beyond. The

ability of GIS technology to not only graphically display geographically-referenced data,

but also to allow more intuitive interaction with the data, gives GIS users the ability to

filter pertinait information from vast databases, to effectively communicate complex

data sets, to optimize the processing of data, and to guide the analytical methods of data

modeling and interpretation.

97

The other advantage of GIS technology is its ability to process spatial data. It is

increasingly recognized that GIS is not just usefid for automated mapping, and thus

limited to "map intensive" industries. A large portion of corporate data resources contain

references to geographic location, and therefore can take advantage of GIS technology

and visualization. So, more and more companies are beginning to explore ways to

"mine" these data out of their databases. This trend has been encouraged by the growth,

and consequent decline in cost, of spatial data resources offered by both commercial data

companies and by government agencies, making it much easier for companies to acquire

the base maps necessary for referencing their intemal data. While the early thrust of

business GIS applications has been m the areas of sales territory management, niche

marketing, and retail location analysis, other corporate functional areas are beginning to

see the advantage of GIS technology. My argument has been that business logistics,

especially because it is an inherently spatial discipline, represents an ideal application for

GIS technology, and in Chapter 1 I cited several instances in which GIS technology has

been successfidly applied to this area.

As a practical example of a GIS application to logistics, I have reviewed the CVS

distribution network optimization project for which I worked, and the custom GIS

application developed for the project using ESRTs ArcView GIS software. This review

began with a discussion of the graphical displays the application can produce in order to

demonstrate the power GIS technology possesses for communicating information about

large, complex sets of data, such as occurs with the logistics networks of major

corporations. I have also explained in detail the Avenue scripts controlling the project's

98

custom fimctions. The customization process fell naturally into three sections, and so my

review of the scripts was likewise broken into three chapters - Chapters 3,4, and 5.

In Chapter 3,1 reviewed the ArcView Avenue scripts responsible for importing

and visualizing the results of an exogenous logistics optimization application. This

section of the thesis emphasized the ease with which logistics network data, if organized

in a predefined and consistent format, can be brought into the ArcView application. It

also highlighted the options for displaying information about the network features - such

as DCs, demand regions, and the product flows that occur between them - that resulted

fi-om summarizing tabular data for the network DCs and demand regions.

In Chapter 4,1 reviewed the scripts that give the custom GIS application a simple

and intuitive interface between the user and the underlying network data. I demonstrated

how, with the click of the mouse, the user could access complete logistics cost data, both

for an individual demand region and for the network as a whole. It provided a good

example of how information may be embedded in objects, thus allowing the user to focus

on the geographical distribution of the information, rather that on the processing of the

data. This chapter also emphasized the ability of GIS to manipulate data about trans-

thematic events using the table linking capabilities of a relational database.

Finally, in Chapter 5,1 discussed the scripts employing theme-on-theme spatial

analysis that enabled the application to create histograms that could be used for

comparing the DC configuration of an optimized logistics network with those of industry

competitors. These histograms, combined with the thematic mapping of the network

based on the logistics cost tables produced by the network-wide trace cost fimctions,

99

make it possible for a logistics manager to imderstand quickly how different network

optimization scenarios will affect the total logistics costs of the retail facilities throughout

the chain, and how a solution compares to industry benchmarks.

Suggestions for Improving the CVS Project's GIS Customization

Although there was a considerable amount of thought and programming that went

into the development of CVS's ArcView customization, it could have better

demonstrated the potential of GIS for business logistics if the GIS portion of the project

had been granted more scope. The use of GIS for CVS's network optimization project

was limited to the display and analysis of the optimization results. Given the

opportunity, ESRTs ArcView software, or some other GIS software, might have been

integrated with a linear program solver to create a seamless application in which the

optimization, display, and analysis of solutions could be performed in a single working

environmait, thus avoiding the confusion and time delays associated with having

separate and geographically dispersed groups working on different aspects of the project.

A single working environment would also avoid the necessity of going through a third

application, such as Microsoft Access, to transfer the data between applications, and may

have resulted in a more efficiently organized database needing less data querying and

summarization to extract useful feature attribute information. The application of GIS to

CVS's logistics operations might also have been broadened to include other aspects of

logistics analysis, such as inventory monitoring, retail store location, and demand

forecasting using geo-demographic data.

100

The Future of Using GIS for Logistics Analysis

It is possible to speculate about the reasons why GIS, in the CVS customization

and in general, does not get applied more comprehensively to business information

processes. The notions that GIS is a tool of use only to geographers, that current GIS

applications are too complex and generic for traditional business information processes,

and that widespread ignorance of spatial analysis retards the growth of GIS technology,

were already touched upon in the first chapter. What seems to be true is that,

increasingly, computer technology is user-driven, rather than application-driven, and

therefore tends to focus more on minimizing implementation time and maximizing ease

of use, rather than on application robustness and flexibility. As a resxdt of this "plug and

play" mentality, the last decade has wimessed a boom in user-fiiendly, desktop

applications targeted to the information needs of specific niche industries, including

business logistics. Today, applications such as InterTrans Logistics Solutions' Supply

Chain Strategist and Caps Logistics' ToolKit are giving the power of the operations

research consultant to a desktop computer sitting on the logistics manager's desk.

Because of the increasing supply of specialized, user-fiiendly, logistics software,

it may be difficult for GIS technology to penetrate the field of business logistics if it

remaias a complex, generic application. To rectify this situation, it has been suggested

that the GIS industiy needs to develop applications that are tailored to specific business

industries. Zwart has analyzed GIS industry trends and argues that GIS technology is

also becoming user-oriented, and that many applications - in particular desktop mapping

systems that have limited, more intuitive functionality - have been directed to particular

101

market/user segments and have contributed to the growth of GIS outside of the

traditional, land-based industries (Zwart, 1993). It appears, however, that business

logistics has not been targeted. Ralston has corroborated this assertion by pointing out

the lack of comprehensive logistics algorithms in contemporary GIS applications, and he

argues that until they are included, the logistics industry will find GIS of limited use

(cited in Black, 1997).

Emerging Trends in GIS Technology

There are several trends, however, suggesting that GIS technology is converging

with mainstream information systems, and that using GIS technology to analyze and

visualize business activities, and thereby to leverage corporate data, will become

commonplace in the future. As the desktop computer running a version of Microsoft

Corp.'s Windows operating system becomes the de facto standard for business

computing enviromnents, most GIS technology developers are moving to make then-

applications compliant with Microsoft's object-linking-and-embedding (OLE)

automation model (Francica, 1998). OLE compatibility Avill result in easier and quicker

integration of GIS objects, such as thematic maps, into other business applications, such

as spreadsheets or word processors, and vice versa.

Progress has also been made in building spatial data processing capabilities

directly into database management systems, as evidenced by the introduction of ESRTs

spatial data engine (SDE), Oracle's spatial data option (SDO) and Spatial Cartridge

server extension, and Informix's Spatial Datablade module (Szajgin, 1997; Francica,

102

1998). As spatial data objects and processing capabilities become more widely

understood and incorporated into mainstream information technologies, GIS applications

as comprehensive, stand-alone tools are likely to devolve into GIS function and object

libraries, such as ESRI's MapObjects, that will enable IS managers and application

developers to selectively embed GIS functionality into their systems (Cooke and

Montgomery, cited in Hughes, 1997).

Another trend is occurring on the academic side of GIS. As GIS technology

becomes more advanced, and as it moves into the mainstream of information processing,

academic geographers have begun a sophisticated dialog on the uses of GIS, both inside

and outside the academic settiug, and on the role academic geographers have to play in

the diffusion of GIS technology in society. Johnson has discussed at iCTigth the increased

interest of the business world in GIS technology, and mentions several GIS courses with

a business orientation. He argues that academic geographers should assume a leading

role in the teaching of GIS for business, and suggests it is time to consider developing a

national curriculum on GIS in business (Johnson, 1996). When GIS and spatial analysis

are formally taught as business tools in academic institutions, misunderstandings about

GIS should give way to a rapid expansion of GIS technology into business information

systems, including those of business logistics.

103

REFERENCES

104

References

Ballou, R. H. 1992. Business Logistics Management, Third Edition (Englewood Cliffs,
New Jersey: Prentice Hall).

Barone, A. 1997. "Basically Visual," WWS/World Wide Shipping, Vol. 60, No. 5, pp.
20-21.

Black, W. R. 1997. "Conference Report: Transport Geography Sessions at the
Association of American Geographers Annual Meeting, 1 April 1997, Fort Worth,
T ems," Journal of Transport Geography, Vol. 5, No. 3, pp. 221-223.

Buttenfield, B. P. and Mackaness, W. A. 1991. " Visualizaton," in D. Maguire, M.
Goodchild and D. Rhind, eds.. Geographical Information Systems: Principles and
Applications (Essex, England: Longman Scientific & Technical).

Camm, J. D., Chorman, T. E., Franz, A. D., Sweeney, D. J., and Wegryn, G. W. 1997.
"Blending OR/MS, Judgement, and GIS: Restructuring P&G's Supply Chain,"
Interfaces, Vol. 27, No. 1, pp. 128-142.

Coppock, J. T. and Rhind, D. W. 1991. "The History of GIS," in D. Maguire, M.
Goodchild and D. Rhind, eds.. Geographical Information Systems: Principles and
Applications (Essex, England: Longman Scientific & Technical).

Dewitt, W. J. and Ralston, B. A. 1996. "GIS: Existing and Potential Applications for
Logistics and Transportation," in Business Geographies for Educators and Researchers,
30 May 1996 Proceedings (Washington D.C.: Association of American Geographers
and GIS World, Inc.)

Dewitt, W. J., Ralston, B. A., and Langley, J.C. 1997. "The Impact of GIS on Supply
Chains," in Brace, G., ed.. Logistics Technology International 1997 (London: Sterling
Publishing Group).

Francica, J. R. 1998. "Corporate GIS: Spatial Information Technology is Now in the
Mainstream," Business Geographies, Vol. 6, No. 3, pp. 34-35.

Fung, D. S. and Remsen, A. P. 1997. "Geographic Information Systems Technology for
Business Applications," Jowma/ of Applied Business Research, Vol. 13, No. 3, pp. 17-
24.

Gates, L. 1997. "GIS Puts Supply Chains on the Map," Software Magazine, Vol. 17, No.
10, pp. 69-73.

105

Goodchild, M. F. 1991. "The Technological Setting of GIS," in D. Maguire, M.
Goodchild and D. Rhind, eds., Geographical Information Systems: Principles and
Applications (Essex, England: Longman Scientific & Technical).

Grimshaw, D. J. 1994. Bringing Geographical Information Systems Into Business
(Essex, England: Longman Scientific & Technical).

Hamilton, D. 1996. "A Mappable Feast," CIO, Vol. 9, No. 11, pp. 64-66.

Harder, C. 1997. ArcView GIS Means Business (Redlands, California: Environment
Systems Research Institute, Inc.).

Hughes, J. R. 1997. "GIS Industry Outlook: The Dawn of a New Decade," GIS World,
Vol. 10, No. 12, pp. 40-47.

Huxhold, W. E. and Levinsohn, A. G. 1995. Managing Geographic Information System
Projects (New York: Oxford University Press).

Jacobs, A. 1996. "GIS Technology Makes Inroads," Computerworld, Vol. 30, No. 24, p.
71.

Johnson, M. 1993. "GIS Popularity Growing," Computerworld, Vol. 27, No. 12, pp. 41-
42.

Johnson, M. L. 1996. "GIS in Business: Issues to Consider in Curriculum Decision-
Making," v/owma/ of Geography, Vol. 95, No. 3, pp. 98-105.

Korte, G. 1997. The GIS Book (Santa Fe, New Mexico: OnWord Press).

Rao, S.S. 1995. "Corporate Treasure Maps," CIO, Vol. 8, No. 18, pp. S1-S6.

Rogers, E. M. 1993. "The Diffusion of hmovations Model," in 1. Masser and H. Qnsrud,
eds.. Diffusion and Use of Geographic Information Technologies (Dordrecht, The
Netherlands: Kluwer Academic Publishers).

Sherwood, N. 1995. '"Business Geographies' - A U.S. Perspective," in P. Longley and
G. Clarke, eds., GIS for Business and Service Planning (New York: John Wiley &
Sons, Inc.).

Szajgin, J. 1997. "Blending GIS and IT," Business Geographies, Vol. 5, No. 1, pp. 36-
39.

Swenson, J. 1996. "GIS Software Goes Corporate," InformationWeek, No. 582, p. 103.

106

Tetzeli, R. 1993. "Mapping for Dollars," Fortune, Vol. 128, No. 9, pp. 90-96.

Tufte, E. R. 1997. Visual Explanations: Images and Quantities, Evidence and Narrative
(Cheshire, Connecticut: Graphics Press).

Zwart, P. R. 1993. "Embodied GIS - A Concept for GIS Diffusion," in I. Masser and H.
Onsrud, eds.. Diffusion and Use of Geographic Information Technologies (Dordrecht,
The Netherlands: Kluwer Academic Publishers).

107

Appendix

108

Scriptname: AddXY

Filename:

Description:

addxy.ave

Adds two new fields, named X-coord and Y-coord,
to the table of the first active theme in the

TOC and fills the respective fields with the X,Y
coordinates of the selected points (or all points
if no selection is defined) in a point theme. If
instead the active theme is a polygon theme, then
the X,Y coordinates of the polygon centroid are
calculated. If the theme is projected, the output
coordinates will also be projected.

An active point or polygon theme. This script
does minimal error checking and assumes that
there is an active theme.

SpliceLatLon

Nil

Requires:

Called by:

Calls:

SELF:

Returns: an FTab

theView = av.GetActiveDoc

'must be global to work in Calc exp below
_theProjection = theView.GetProjection
project_flag = _theProjection.IsNull.Not 'true if projected
theTheme = theView.GetActiveThemes.Get(0)

Nil

'Check if point or polygon theme
if (((theTheme.GetsrcName.GetSubName = "point") or

(theTheme.GetSrcName.GetSubName = "polygon")).Not) then
MsgBox.Info("Active theme must be polygon or point theme",
exit

end

'get the theme table and current edit state
theFTab = theTheme.GetFTab

theFields = theFTab.GetFields

edit state = theFTab.IsEditable

'make sure table is editable and that fields can be added

if (theFtab.CanEdit) then

theFTab.SetEditable(true)

if ((theFTab.CanAddFields).Not) then

MsgBox.Info("Can't add fields to the table."+NL+
"Check write permission.",
"Can't add X,Y coordinates")

exit

end

else

MsgBox.Info("Can't modify the feature table."+NL+

109

"Check write permission. "Can't add X,Y coordinates")
exit

end

'Check if fields named "X-coord" and Y-coord" exist

x_exists = {theFTab.FindField("X-coord") = NIL).Not
y_exists = (theFtab.FindField("Y-coord") = NIL).Not
if (x_exists or y_exists) then
if (MsgBox.YesNo("Overwrite existing fields?",
"X-coord, Y-coord fields already exist", false)) then
'if ok to overwrite, delete the fields as they
'may not be defined
'as required by this script (eg., created from
'another script),
if (x_exists) then

theFTab.RemoveFields({theFTab.FindField("X-coord")})
end

if (y_exists) then
theFTab.RemoveFields({theFTab.FindField("Y-coord")})

end

else

exit

end 'if (MsgBox...)
end 'if

X = Field.Make ("X-coord",#FIELD_DECIMAL,18,5)
y = Field.Make ("Y-coord",#FIELD_DECIMAL,18,5)
theFTab.AddFields({x,y})

'Get point coordinates or polygon centroid coordinates
if (theTheme.GetSrcName.GetSubName = "point") then
if (project_flag) then
'Projection defined
theFTab.Calculate("[Shape].ReturnProjected

(_theProjection).GetX", x)
theFTab.Calculate("[Shape].ReturnProjected

(_theProjection).GetY", y)
else

'No projection defined

theFTab.Calculate("[Shape].GetX", x)
theFTab.Calculate("[Shape].GetY", y)

end 'if

else 'polygon case
if (project_flag) then

theFTab.Calculate("[Shape].ReturnCenter.ReturnProjected
(_theProjection).GetX", x)

theFTab.Calculate("[Shape].ReturnCenter.ReturnProjected
(_theProjection).GetY", y)

else

theFTab.Calculate("[Shape].ReturnCenter.GetX", x)
theFTab.Calculate("[Shape].ReturnCenter.GetY", y)

end ' if

end

'Return editing state to pre-script running state
theFTab.SetEditable(edit_state)

return theFTab

110

I*************-*-*****-*-******-*--*-*******-*-**-********-*-**-*-*-*-*****-*

' Scriptname:

' Filename:

' Author:

' Date:

' Description:
f

T

' Requires:

' Called by:
I

r

' Calls:

' SELF:

' Returns:

AllStatistics.Generate

Allstati.ave

Kenneth Bennett

May 6, 1998

Script sums each of the fields in the
All Logistics Costs table and reports
it to the user.

All Logistics Costs table exists

View menu item click

("Trace Costs: Chain-wide All-Products

Statistics")

Nil

Nil

Nil

Scriptname = "AllStatistics.Generate"

' Ensure two decimal places in each number

Script.The.SetNumberFormat("d.dd")

' Get the table

theTable = av.GetProject.FindDoc("All Logistics Costs")
if (theTable = Nil) then

MsgBox.Error("All Logistics Costs table not found.",
Scriptname)

exit

end

' Get the VTab for the table

theVTab = theTable.GetVTab

' Get the number of records

num = theVTab.GetNumRecords

' Get the list of fields in the VTab

theFieldList = theVTab.GetFields

' Set the field variables

111

shipFld = theFieldList.Get(1)
pickFld = theFieldList.Get(2)

tranFld = theFieldList.Get(3)

xdocFld = theFieldList.Get(4)

totlFld = theFieldList.Get(5)

' Initialize summing variables

shipSum = 0
pickSum = 0
tranSum = 0

xdocSum = 0

totlSum = 0

' Loop through the VTab and sum each fid

for each rec in theVTab

shipSum = shipSum + theVTab.ReturnValue(shipFld, rec)
pickSum = pickSum + theVtab.ReturnValue(pickFld, rec)
tranSum = tranSum + theVTab.ReturnValue(tranFld, rec)

xdocSum = xdocSum + theVTab.ReturnValue(xdocFld, rec)

totlSum = totlSum + theVTab.ReturnValue(totlFld, rec)

end

' Calculate the per store average for each field

shipAvg = shipSum / num
pickAvg = pickSxjm / num
tranAvg = tranSum / num
xdocAvg = xdocSum / num
totlAvg = totlSum / num

' Issue the report

reportString = "Total All-Products Shipping Cost:"++
shipSum.AsString+nl+

"Average Per Region:"++shipAvg.AsString+nl+
"Total All-Products Pick Cost:"++

pickSum.AsString+nl+
"Average Per Region:"++pickAvg.AsString+nl+
"Total All-Products Transhipment Cost:"++

tranSum.AsString+nl+
"Average Per Region:"++tranAvg.AsString+nl+
"Total All-Products Crossdock Cost:"++

xdocSum.AsString+nl+
"Average Per Region:"++xdocAvg.AsString+nl+nl+
"Chain-wide Grand Total Logistics Cost:"++

totlSum.AsString+nl+
"Average Grand Total Cost Per Region:"++

totlAvg.AsString+nl

MsgBox.Report(reportString,
"Chain-wide All-Products Statistics")

return Nil

112

Scriptname: AllTraceAll

Filename: alltrace.ave

Description: Script sums the data stored in the Rx, CW, and

OTC Logistics costs tables to create a new
table of total logistics costs

Requires: Demand Regions theme, and the Rx, CW, and OTC
Logistics Costs tables must exist

Called by: View menu click event
("Trace Costs: Chain-wide All Products")

Calls: Tables.Link, Tables.Unlink

SELF: Nil

Returns: Nil

Scriptname = "AllTraceAll"

Set the number format for the script

Script.The.SetNumberFormat("d.dd")

theDirectory = av.GetProject.GetWorkDir.AsString

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then

MsgBox.Error("ERROR: Demand by Region view does not exist.",
Scriptname)

exit

elseif (not (theView.Is(View))) then

MsgBox.Error("ERROR: Demand by Region doc is not a view.",
Scriptname)

exit

end

theTheme = theView.FindTheme("Demand Regions")
if (theTheme = Nil) then

MsgBox.Error("ERROR: Demand Regions theme does not exist.",
Scriptname)

exit

end

theStoreVTab = theTheme.GetFTab

' Get the store field from the Demand Regions FTab

thestorefld = theStoreVTab.FindField("Demand Region")
if (thestorefld = Nil) then

MsgBox.Error("ERROR: Demand Region name field not found.",
Scriptname)

113

exit

end

' Get the Rx, CW, and OTC cost tables

rxTable = av.GetProject.FindDoc{"Rx Logistics Costs")
cwTable = av.GetProject.FindDoc("CW Logistics Costs")
otcTable = av.GetProject.FindDoc("OTC Logistics Costs")
if((rxTable = Nil) OR (cwTable = Nil) OR (otcTable = Nil)) then

MsgBox.Error("One or more logistics cost tables are missing."
+nl+"Bailing out of program...", "ERROR")

exit

end

' chec)c if table exists

sumallcst_exists = (av.GetProject.FindDoc
("AllLgCst.dbf") = NIL).Not

s)cip = 0
if (sumallcst_exists) then

thedoc = av.GetProject.FindDoc("AllLgCst.dbf")
if (MsgBox.YesNo("Overwrite existing logistics cost table?",
"The Table AllLgCst already exists",false)) then
if (sumallcst_exists) then

av.GetProject.RemoveDoc(thedoc)
end

else

skip = 1
end

end

'create a newtable

if (skip = 0) then
flnm = theDirectory + "/AllLgCst.dbf"
newVTab = VTab.MakeNew(flnm.AsFileName, dBase)

storefld = Field.Make ("DemRegion",#FIELD_CHAR,16, 0)
directfld = Field.Make ("AlDrctCst",#FIELD_DECIMAL,16,2)
pickfld = Field.Make ("AlPickCst",#FIELD_DECIMAL,16,2)
transfid = Field.Make ("AlTranCst",#FIELD_DECIMAL,16,2)
xdocfld = Field.Make ("AlXdocCst",#FIELD_DECIMAL,16,2)
totfld = Field.Make ("AlTotlCst",#FIELD_DECIMAL,16,2)
newFldList = {storefld, directfld,pickfld,

transfld,xdocfld,totfld)

newVTab.AddFields(newFldList)

storefld.SetAlias("Demand Region")
directfld.SetAlias("All Direct Cost")

pickfld.SetAlias("All Pick Cost")
transfld.SetAlias("All Tranship Cost")
xdocfld.SetAlias("All Crossdock Cost")

totfld.SetAlias("All Total Cost")

' Get the VTabs of the tables to be summed

rxVTab = rxTable.GetVTab

cwVTab = cwTable.GetVTab

otcVTab = OtcTable.GetVTab

' Get the count of one of them, since they should

114

' be same size and set for zero-based indexing

count = rxVTab.GetNiunRecords

count = (count - 1).SetFormat("d")

' Get their bitmaps

rxBitMap = rxVTab.GetSelection
cwBitMap = cwVTab.GetSelection
otcBitMap = otcVTab.GetSelection

' Clear each bitmap

rxBitMap.ClearAll
cwBitMap.ClearAll
OtcBitMap.ClearAll

'Create field lists for each production category

rxList = {"Rx Direct Cost", "Rx Pick Cost",

"Rx Tranship Cost",
"Rx Crossdock Cost", "Rx Total Cost"}

cwList = {"CW Direct Cost", "CW Pick Cost",

"CW Tranship Cost",
"CW Crossdock Cost", "CW Total Cost"}

otcList = {"OTC Direct Cost", "OTC Pick Cost",

"OTC Tranship Cost",
"OTC Crossdock Cost", "OTC Total Cost"}

' Remove the Demand Region name fid from the
' newVTab field list

newFldList.Remove(0)

listCount = rxList.Count

listCount = (listCount - 1).SetFormat("d")

' Get the name field to be added to each new

' record of the newVTab

nameFld = rxVTab.FindField("Demand Region")
if (nameFld = nil) then

MsgBox.Error("Could not find name field from tables."+nl+
"Quitting program... "ERROR")

exit

end

' Loop through each record of each bitmap and for each
' field, grab the value from each table, sum them, and
' add that new value to the All Logistics Costs table.

av.ShowStopButton

115

for each rec in 0..count

'Make sure each bitmap is clear
rxBitMap.ClearAll
cwBitMap.ClearAll
otcBitMap.ClearAll
'Set the same record for each bitmap
rxBitMap.Set(rec)
cwBitMap.Set(rec)
OtcBitMap.Set(rec)

' Add a new record to the All Logistics Cost Table
' and add the name to the name field

newRec = newVTab.AddRecord

regionName = rxVTab.ReturnValue(nameFld, rec)
newVTab.SetValue(storefld, newRec, regionName)
' Set control for double loop in case fields not found

stopLoop = FALSE

'Loop through the field lists and grab the values
'from each table, sum them, and copy the new value
'to the All Logistics Cost table
for each fid in 0..1istCount

rxFld = rxVTab.FindField(rxList.Get(fid))
cwFld = cwVTab.FindField(cwList.Get(fid))
otcFld = otcVTab.FindField(otcList.Get(fid))
if ((rxFld = Nil) OR (cwFld = Nil) OR (otcFId = Nil)) then

stopLoop = TRUE

break

end

' Get the field values from tables

rxVal = rxVTab.ReturnValue(rxFld, rec)
cwVal = cwVTab.ReturnValue(cwFld, rec)
otcVal = OtcVTab.ReturnValue(OtcFld, rec)
' Sum them

totVal = rxVal + cwVal + otcVal

' Add the new value to the new table

newVTab.SetValue(newFldList.Get(fid), newRec, totVal)
end ' inner for loop
if (stopLoop) then
MsgBox.Error("A field in Rx, CW, or OTC table not found."

+nl+"Quitting the building of All Logistics
Costs table.","ERROR")

exit

end

rxBitMap.Clear(rec)
cwBitMap.Clear(rec)

OtcBitMap.Clear(rec)
rxVTab.UpdateSelection
cwVTab.UpdateSelection
OtcVTab.UpdateSelection

end 'outer for loop
end 'if skip = 0

' Set the new table to uneditable and write to file

116

newVTab.SetEditable(FALSE)

newVTab.Flush

checkTable = av.GetProject.FindDoc("All Logistics Costs")
if (checkTable <> Nil) then

av.GetProj ect.RemoveDoc(checkTable)
end

' Bring the new table into the project

newTable = Table.Make(newVTab)

newTable.SetName("All Logistics Costs")
av.GetProject.AddDoc(newTable)

' Join the newTable to the Demand Regions table

theStoreVTab.Join(thestorefld, newVTab, storefld)
MsgBox.Info("Tracing of all-products logistics cost for"+nl+

"each demand region is complete.",
"Trace Costs: Chain-wide All-Products")

return Nil

117

, *** + + * + * + *********************** + ***** + * + **** + * + * + *** + + **********

' Scriptname: CalcDCs

' Filename: calcdcs.ave

' Description: Script to generate the cross doc and pick info

' Requires: Nil

' Called By: Menu item click event ("Sum DCs")

' Calls: HasCWRx, SummTS, SummD2S, JoinSumms

' SELF: Nil

' Returns: Nil »

t ************ + ******■*■*■*.**** + * + ** + + + + * + * + ******************** + *****

Scriptname = "CalsDCs"

'Get the Demand by Region view and the CVS DCs FTab

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then

MsgBox.Error("ERROR: Demand by Region view does not exist.",
Scriptname)

exit

elseif (not (theView.Is(View))) then
MsgBox.Error("ERROR: Demand by Region doc is not a view.",

Scriptname)
exit

end

theTheme = theView.FindTheme("CVS DCs")
theFTab = theTheme.GetFTab
editstate = theFTab.IsEditable
if (editstate.Not) then

theFTab.SetEditable(true)
end

' Create fields Has Rx and Has CW, from Pick table

av.Run("HasCWRx", {theView, theFTab})

' Summarize table transship.dbf for CW and Rx for origin and dest

av.Run("SummTS", Nil)

' Summarize table dirstore.dbf for all three categories
' (Rx, OTC, CW)

av.Run("SummD2S", Nil)

' Join all of the summaries to the DCs theme table

118

av. Run (" JoinSuitims", {theView, theFTab})

'Need to create total picked for OTC = summarized value
'Need to create total picked for CW = sum on transship for
'origin + Has CW * sum on direct to store
'Need to create total picked for Rx = sum on transship for
'origin + Has Rx * sum on direct to store
'Need to create total cross docked for CW = sum transship
'for dest

'Need to create total cross docked for Rx = sum transship
'for dest

'Need to create handling costs at warehouse = handling
' rate * total picked for CW
'Need to create cross dock costs at warehouse = handling
'rate * totol cross dock.

' First tally the total CW and RX picked

rx_exists = (theFTab.FindField("Rx Picked") = NIL).Not
cw_exists = (theFTab.FindField("CW Picked") = NIL).Not
recalc = 1

if (rx_exists or cw_exists) then
if (MsgBox.YesNo("Overwrite existing fields?",
"The Rx and CW Picked fields already exist", false)) then
'if ok to overwrite, delete the fields as they may not
'be defined as required by this script (eg., created from
'another script),
if (rx_exists) then

theFTab.RemoveFields({theFTab.FindField("Rx Picked")})

end

if (cw_exists) then
theFTab.RemoveFields({theFTab.FindField("CW Picked")))

end

else

recalc = 0

end 'if (MsgBox...)

end 'if

if (recalc = 1) then

rx = Field.Make ("Rx Picked",#FIELD_DECIMAL,16, 2)
CW = Field.Make ("CW Picked",#FIELD_DECIMAL,16, 2)
theFTab.AddFields({rx,cw})

hasrx = theFTab.FindField("HasFbi")
hascw = theFTab.FindField("HasCW")

rxts = theFTab.FindField("RxPicked for TS")

rxd2s = theFTab.FindField("Rx D2S")

cwts = theFTab.FindField("CWPicked for TS")

cwd2s = theFTab.FindField("CW D2S")

for each i in theFTab

hasrxval = theFTab.ReturnValue(hasrx, i)

hascwval = theFTab.ReturnValue(hascw, i)

if (hasrxval = 0) then

theval = 0

else

theval = theFTab.ReturnValue(rxts, i) +

theFTab.ReturnValue(rxd2s, i)

119

end

theFTab.SetValue(rx, i, theval)

if (hascwval = 0) then

theval = 0

else

theval = theFtab.ReturnValue(cwts, i) +
theFTab.ReturnValue(cwd2s, i)

end

theFTab.SetValue(cw, i, theval)

end

end

rx_exists = (theFTab.FindField("Rx Rate") = NIL).Not
cw_exists = (theFTab.FindField("CW Rate") = NIL).Not
otc exists = (theFtab.FindField("OTC Rate") = NIL).Not
recalc = 1

if (rx_exists or cw_exists or otc_exists) then
if (MsgBox.YesNo("Overwrite existing fields?",
"The Handling Rate fields already exist", false)) then
'if ok to overwrite, delete the fields as they
'may not be defined
'as required by this script (eg., created from
'another script),
if (rx_exists) then

theFTab.RemoveFields({theFTab.FindField("Rx Rate")})

end

if (cw_exists) then
theFTab.RemoveFields({theFTab.FindField("CW Rate")))

end

if (otc_exists) then
theFTab.RemoveFields({theFTab.FindField("OTC Rate")})

end

else

recalc = 0

' exit

end 'if (MsgBox...)
end 'if

if (recalc = 1) then

rx = Field.Make ("Rx Rate",#FIELD_DECIMAL,9, 6)
CW = Field.Make ("CW Rate",#FIELD_DECIMAL, 9, 6)
otc = Field.Make("OTC Rate", #FIELD_DECIMAL, 9, 6)
theFTab.AddFields({rx,CW, otc})

' Get the handling table

theDCFld = theFTab.FindField("Facility")
theRateTab = av.FindDoc("handling.dbf").GetVTab
theFacFld = theRateTab.FindField("Facility")
theProdFld = theRateTab.FindField("Product")

theRateFld = theRateTab.FindField("HandlingRate")
for each i in theFTab

found = 0

theDC = theFTab.ReturnValue(theDCFld, i)

for each j in theRateTab
if (found = 3) then

break

120

end

theFacility = theRateTab.ReturnValue(theFacFld, j)
if (theDC <> theFacility) then

continue

end

theProduct = theRateTab.ReturnValue(theProdFld, j)
if (theProduct = "CW") then

theRate = theRateTab.ReturnValue(theRateFld, j)
theFTab.SetValue(cw, i, theRate)

found = found+1

continue

end

if (theProduct = "Rx") then
theRate = theRateTab.ReturnValue(theRateFld, j)
theFTab.SetValue(rx, i, theRate)

found = found+1

continue

end

if (theProduct = "OTC") then
theRate = theRateTab.ReturnValue(theRateFld, j)
theFTab.SetValue(otc, i, theRate)

found = found + 1

continue

end 'end if

end 'end for on j
end 'end for on i

end

' Now add the cost fields

rxpcost exists = (theFTab. FindField ("Rx Piclc Cost")= NIL) .Not
rxxdoccost exists = (theFTab.FindField("Rx X Doc Cost") = NIL).Not
cwpcost exists = (theFTab.FindField("CW Pick Cost") = NIL).Not
cwxdoccost exists =(theFTab.FindField("CW X Doc Cost") = NIL).Not
otcpcost exists = (theFTab.FindField("OTC Pick Cost") = NIL).Not
totcost exists = (theFTab.FindField("Total Handling") = NIL).Not
recalc = 1

if (rxpcost exists or rxxdoccost_exists or cwpcost_exists or
cwxdoccost exists or otcpcost_exists or totcost_exists) then
if (MsgBox.YesNo("Overwrite existing fields?",
"The Handling Cost fields already exist", false)) then
'if ok to overwrite, delete the fields as they
'may not be defined
'as required by this script (eg., created from
'another script).
if (rxpcost_exists) then

theFTab.RemoveFields({theFTab.FindField("Rx Pick Cost")})

end

if (rxxdoccost_exists) then
theFTab.RemoveFields({theFTab.FindField("Rx X Doc Cost")})

end

if (cwpcost_exists) then
theFTab.RemoveFields({theFTab.FindField("CW Pick Cost")})

end

if (cwxdoccost_exists) then
theFTab.RemoveFields({theFTab.FindField("CW X Doc Cost")})

121

end

if (otcpcost_exists) then
theFTab.RenioveFields({theFTab.FindField("OTC Pick Cost")})

end

if (totcost_exists) then
theFTab.RemoveFields({theFTab.FindField("Total Handling")})

end

else

recalc = 0

end 'if {MsgBox...)
end 'if

if (recalc = 1) then

rxx = Field.Make ("Rx X Doc Cost", #FIELD_DECIMAIj, 16, 2)
rxd = Field.Make ("Rx Pick Cost",#FIELD_DECIMAL, 16, 2)
cwx = Field.Make ("CW X Doc Cost",#FIELD_DECIMAL,16, 2)
cwd = Field.Make ("CW Pick Cost",#FIELD_DECIMAL,16, 2)
otc = Field.Make ("OTC Pick Cost", #FIELD_DECIMAL, 16, 2)
tot = Field.Make ("Total Handling",#FIELD_DECIMAL,16, 2)
theFTab.AddFields({rxx,rxd,cwx, cwd, otc, tot})

' There may be blank entries because of no matches on a join.
' We cannot change the values of those entries because they belong
' to another table.

theBitMap = theFTab.GetSelection

expr = "(([RX_X_Doc].IsNull.Not) and ([Rx Rate].IsNull.Not))"
theFTab.Query(expr, theBitMap, #VTAB_SELTYPE_NEW)
theval = "[RX_X_Doc] * [RX Rate]"
theFTab.Calculate(theval,rxx)

expr = "(([RX Picked].IsNull.Not) and ([Rx Rate].IsNull.Not))"
theFTab.Query(expr, theBitMap, #VTAB_SELTYPE_NEW)
theval = "[RX Picked] * [RX Rate]"
theFTab.Calculate(theval,rxd)

expr = "(([CW_X_Doc].IsNull.Not) and ([CW Rate].IsNull.Not))"
theFTab.Query(expr, theBitMap, #VTAB_SELTYPE_NEW)
theval = "[CW_X_Doc] * [CW Rate]"
theFTab.Calculate(theval,cwx)

expr = "(([CW Picked].IsNull.Not) and ([OTC Rate].IsNull.Not))"
theFTab.Query(expr, theBitMap, #VTAB_SELTYPE_NEW)
theval = "[CW Picked] * [OTC Rate]"
theFTab.Calculate(theval,cwd)

expr = "(([OTC Picked].IsNull.Not) and ([OTC Rate].IsNull.Not))"
theFTab.Query(expr, theBitMap, #VTAB_SELTYPE_NEW)
theval = "[OTC Picked] * [OTC Rate]"
theFTab.Calculate(theval,otc)

theFTab.GetSelection.ClearAll

theval = "[Rx X Doc Cost] + [Rx Pick Cost] + [CW X Doc Cost]
+ [CW Pick Cost] + [OTC Pick Cost]"

theFTab.Calculate(theval,tot)

122

end

' Reset edit state to false

theFTab.SetEditable(false)

MsgBox.Info{"Summary of DC Data Complete", "NOTICE")

return Nil

123

Scriptname: ColorPalette.SelectColor

File Name: colorpal.ave

Author: Kenneth Bennett

Date: February 10, 1998

Description: Makes a palette from ArcView's default
color palette and then asks a user to select
a color. AV's default.avp file must be in the
working directory for this script to work.

Requires: Nil

Called by: FlowLines.Build

Calls: Nil

SELF: Nil

Return: a Color object

+ ******** + **************** + ********************* + ** + ********■*■***

Scriptname = "ColorPalette.SelectColor"

Check to see if the default AVP file is
in the project working directory

theWorkDirString = av.GetProject.GetWorkDir.AsString
theDefPalFile = (theWorkDirString + "\Default.avp") .AsFileName
exists = File.Exists(theDefPalFile)
if (exists.not) then

MsgBox.Error("ArcView's default palette is not in"+NL+
"the project's working directory."+NL+
"Please load file Default.avp into working"+NL+
"directory and rerun script.", Scriptname)

exit

end

' Create a palette using ArcView's default palette file

thePalette = Palette.MakeFromFile(theDefPalFile)

' Create a color list that corresponds index-wise to the symbollist
' of the Color Palette

theColorList = {"Transparent", "White", "Light Grey", "Medium
Grey", "Dark Grey", "Black", "Light Pink", "Dark
Pink", "Candy Red", "Red", "Lt Red-Brown", "Dark
Red-Brown", "Lt Pastel Green", "Dk Pastel Green",
"Lt Fluorescent Green", "Dk Fluorescent Green",
"Green", "Dark Green", "Lt Pastel Purple",
"Dk Pastel Purple", "Blue", "Dark Blue", "Navy
Blue", "Metallic Blue", "Lt Pastel Blue",

124

"Dk Pastel Blue", "Lt Sky Blue", "Dk Sky Blue",
"Lt Ocean Blue", "Dk Ocean Blue", "Lt Pastel Mauve",

"Dk Pastel Mauve", "Lt Fluorescent Purple",
"Dk Fluorescent Purple", "Purple", "Dark Purple",
"Lt Pastel Yellow", "Dk Pastel Yellow", "Yellow",

"Mustard", "Lt Olive Green", "Dk Olive Green",

"Peach", "Lt Orange", "Dk Orange", "Lt Fuchsia",
"Dk Fuchsia", "Pea Green", "Desert Green",

"Lt Stone Grey", "Medium Purple", "Dk Stone Grey",
"Brown", "Chocolate", "Fluorescent Lime Green",
"Turquois", "Light Blue", "Medium Blue", "Light
Purple", "Blue-Purple"}

' Have the user select a color from this list

theListSel = MsgBox.ListAsString(theColorList,
"Select A Color:", Scriptname)

if (theListSel = Nil) then

MsgBox.Error{"No color was selected. Exiting...", Scriptname)
exit

end

' Get the index number for that color string in theColorList

index = theColorList.Find(theListSel)

' Use that index to grab the corresponding color in Color Palette

theColorPaletteList = thePalette.GetList(#PALETTE_LIST_COLOR)
'MsgBox.Info(theColorPaletteList.Count.AsString, Scriptname)
chosenColor = theColorPaletteList.Get(index)

' Return the chosen color object

Return chosenColor

125

, ********** + **** + + + ****•************ + + **** + ****************■*■*******

Scriptname:

Filename:

Author:

Date:

Description:

Requires:

Called by:

Calls:

SELF:

Returns:

CWFlowTheme.Make

cwflowth.ave

Kenneth Bennett

May 3, 1998

Script generates a Flow theme based on the CW
Flow field in the DC-to-Region Flow theme table.
Zero value flows are made invisible using null
value and symbol.

DC-to-Region flow theme must exist

View menu item click event
("Display Flows: DC-to-Region by CW Only")

Nil

Nil

Nil

******** + * + ** + ** + ***■** + **** + ** + **■*•****************

Scriptname = "CWFlowTheme.Make"

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then

MsgBox.Error("ERROR: Demand by Region view does not exist.",
Scriptname)

exit

end

if (not (theView.Is(View))) then
MsgBox.Error("ERROR: Demand by Region doc is not a view.",

Scriptname)
exit

end

theTheme = theView.FindTheme("DC-to-Region Flow")
if (theTheme = Nil) then

MsgBox.Error("ERROR: Theme called DC-to-Region Flow
does not exist.", Scriptname)

exit
end

catString = "CW Flow"

checkTheme = theView.FindTheme(catString)
if (checkTheme <> nil) then

theView.DeleteTheme(checkTheme)
theTable = av.GetProject.FindDoc("Attributes of"++catString)
if (theTable <> NIL) then

av.GetProject.RemoveDoc(theTable)
126

end

end

' Clone the DC-to-Region Flow theme

newTheme = theTheme.Clone

newLegend = newTheme.GetLegend
newLegend.SetLegendType{#LEGEND_TYPE_SYMBOL)

' Make zero the null value

newLegend.SetNullValue(catString, 0)

' Select a color from the color palette to be used
' in drawing the new line theme

theColor = av.Run{"ColorPalette.SelectColor", Nil)

' Classify the legend with into five natural breaks
' and weight the line thickness by the flow volume

newLegend.Natural(newTheme, catString, 5)
theSymbolList = newLegend.GetSymbols
thickness = 1

count = 0

for each s in theSymbolList
s.SetSize(thickness)

thickness = thickness + 1

end

theSymbolList.UniformColor(theColor)

' Make the null symbol transparent

nullSym = Symbol.Make(#SYMBOL_PEN)
theNullColor = Color.GetBlue

theNullColor.SetTransparent(TRUE)

nullSym.SetColor(theNullColor)
newLegend.SetNullSymbol(nullSym)
newLegend.DisplayNoDataClass(FALSE)
newTheme.SetLegend(newLegend)
newTheme.SetName (catString)
newTheme.SetActive(FALSE)

newTheme.SetVisible(TRUE)
theView.AddTheme (newTheme)

newTheme.UpdateLegend
theView.Invalidate

theNullColor.SetTransparent(FALSE)

return Nil

127

,**++***+********+*+*+**+**++*+*******************************

Scriptname:

Filename:

Author:

Date;

Description:

Requires:

Called by:

Calls:

SELF:

Returns:

CWStatistics.Generate

cwstatis.ave

Kenneth Bennett

May 6, 1998

Script sums each of the fields in the
CW Logistics Costs table and reports
it to the user.

CW Logistics Costs table exists

View menu item click

("Trace Costs: Chain-wide CW Statistics")

Nil

Nil

Nil

* + * + + **********•*•************* + + + + ** + ******************** + ***

criptname = "CWStatistics.Generate"

Ensure two decimal places in each number

Script.The.SetNumberFormat("d.dd")

Get the table

theTable = av.GetProject.FindDoc("CW Logistics Costs")
if (theTable = Nil) then

MsgBox.Error("CW Logistics Costs table not found.",
Scriptname)

exit

end

' Get the VTab for the table

theVTab = theTable.GetVTab

' Get the number of records

num = theVTab.GetNumRecords

' Get the list of fields in the VTab

theFieldList = theVTab.GetFields

' Set the field variables

shipFld = theFieldList.Get(1)
128

pickFld = theFieldList.Get(2)
tranFld = theFieldList.Get(3)

xdocFld = theFieldList.Get(4)

totlFld = theFieldList.Get(5)

' Initialize summing variables

shipSum = 0
pickSum - 0
tranSum = 0

xdocSum = 0

totlSum = 0

' Loop through the VTab and sum each fid

for each rec in theVTab

shipSum = shipSum + theVTab.ReturnValue(shipFld, rec)
pickSum = pickSum + theVtab.ReturnValue(pickFld, rec)
tranSum = tranSum + theVTab.ReturnValue(tranFld, rec)

xdocSum = xdocSum + theVTab.ReturnValue(xdocFld, rec)

totlSum = totlSum + theVTab.ReturnValue(totlFld, rec)

end

' Calculate the per store average for each field

shipAvg = shipSum / num
pickAvg = pickSum / num
tranAvg = tranSum / num
xdocAvg = xdocSvim / num
totlAvg = totlSum / num

' Issue the report

reportString "Total CW Shipping Cost;"++shipSum.AsString+nl +
"Average Per Region:"++shipAvg.AsString+nl+
"Total CW Pick Cost:"++pickSum.AsString+nl +
"Average Per Region:"++pickAvg.AsString+nl+
"Total CW Transhipment Cost:"++tranSum.AsString
+nl+"Average Per Region:"++tranAvg.AsString+nl+
"Total CW Crossdock Cost:"++xdocSum.AsString+nl+
"Average Per Region:"++xdocAvg.AsString+nl+nl+
"Chain-wide Total CW Logistics Cost:"++
totlSum.AsString+nl+"Average Total Cost Per
Region:"++totlAvg.AsString+nl

MsgBox.Report(reportString, "Chain-wide CW Statistics")

return Nil

129

1 -ir*-***

Scriptname:

Filename:

Description:

Requires:

Called by:

Calls:

SELF:

Returns:

DC.HistPct

dc_histp.ave

Generates a histogram for the DC Range field in
the stores theme table. A new Chart document
is created to display the histogram. A temporary
file is created to store interval counts and
other information used to create the histogram.

View is the active document and stores theme is
the active theme. DC Range field has been
added to the stores theme table and has been
populated using the DC-Store Range menu click
event under the Location Strategy menu set.

Menu click event ("Make Histogram")

Nil

Nil

Nil

criptname = "DC.HistPct"

Get the view and the stores theme, and verify

theView = av.GetProject.FindDoc("Location Strategy")
if (theView = Nil) then ^

MsgBox.Error("ERROR: Location Strategy view does not exist.",
Scriptname)

exit

end

if (not (theView.Is(View))) then
msgBox.Error("Selected document is not a view.",Scriptname)
exit

end

theThemeList = theView.GetActiveThemes
thePointThemeList = {}

storeTheme = Nil

for each t in theThemeList
if (t.GetFTab.GetSrcName.GetSubName = "Point") then

thePointThemeList. Add(t)

end

end

numThemes = thePointThemeList.Count

if (numThemes = 1) then
StoreTheme = thePointThemeList.Get(0)

elseif (numThemes > 1) then
StoreTheme = MsgBox.List(thePointThemeList,

130

"Select a stores theme:", Scriptname)

else

MsgBox.Error("Store theme not selected. Exiting...",
Scriptname)

exit

end

' checic if a store theme was selected

if (storeTheme = nil) then
msgBox.Error("Store theme not selected. Exiting...",

Scriptname)

exit

end

storeFTab = storeTheme.GetFTab

' Verify that the FTab has the required DC Range field

theField = storeFTab.FindField{"DC Range")
if (theField = Nil) then

MsgBox.Error("DC Range field not found. Make sure that the"
+NL+"correct store theme has been selected and

that"+NL+"the DC Range field has been added and
calculated.", Scriptname)

exit

end

' Set the number of intervals to six

numlntervals = 6

' Create a temporary storeFTabab to hold interval counts

histoFilePath = "c:\cvs\cvsac\thesis\charts".AsFileName

histoFilePath.SetCWD

histVTab = VTab.MakeNew(Filename.GetCWD.MakeTmp
("histo","dbf"), dBASE)

labelField = Field.Make("Range", #FIELD_CHAR, 28, 0)
countField = Field.Make("Count", #FIELD_LONG, 12, 0)
percentField = Field.Make("Percent", #FIELD_DECIMAL, 6, 2)
histVTab.AddFields({labelField, countField, percentField})

nuitiReads - 0

' Determine number of records to process

if (StoreFTab.GetSelection.Count = 0) then

iter = StoreFTab

n = StoreFTab. GetNvimRecords

else

iter = StoreFTab.GetSelection

n = iter.Count

end

maxNumReads = n

131

' Set the minimum and maximum values and the interval size

minimum = 0

maximum - 251

intervalSize = 50

' Populate the histogram VTab with interval labels,
' initializing interval counts to 0

oldlow = -1

for each i in 0..(numlntervals - 1)
rec = histVTab.AddRecord

low = oldlow + 1

high = (minimum + ((i + 1) * intervalSize))
if (i = 0) then

histVTab.SetValueString(labelField, rec,
("within"++intervalSize.AsString++"miles"))

elseif (i = (numlntervals - 1)) then

histVTab.SetValueString(labelField, rec,
(">"++(low - 1).AsString++"miles"))

else

histVTab.SetValueString(labelField, rec,
(low.AsString++" - "++high.AsString++"miles"))

end

oldlow = high

histVTab.SetValueNumber(countField, rec, 0)
histVTab.SetValueNumber(percentField, rec, 0)

end ' for loop

' Loop through records again, incrementing
' the appropriate counter based on the
' interval in which the value falls

for each rec in iter

numReads = numReads + 1

av. SetStatus (nurtiReads / maxNuitiReads * 100)
curval = storeFTab.ReturnValueNumber(theField, rec)
index = ((curval - minimum) / intervalSize) - 1

if (index = -1) then
MsgBox.Info("ERROR: Record(s) still have DC Range

value of zero!", Scriptname)
exit

end

if ((index mod 1) <> 0) then 'curval is 251

(ie, not a multiple of 50), assign to last interval
index = index.Ceiling

end

if (index = numlntervals) then

index = numlntervals - 1

end

histVTab.SetValueNumber(countField, index,
histVTab.ReturnValueNumber

132

(countField, index) + 1)

end 'for loop

' Loop through histVTab and calculate the percent field

for each j in histVTab
cnt = histVTab.ReturnValue(countField, j)
p = (cnt / maxNumReads) * 100
histVTab.SetValueNumber(percentField, j, p)

end 'for loop

' Ma)ce a Chart document and display it

newChart = Chart.make(histVTab, {percentField})
newChart.SetRecordLabelField(labelField)

storeName = storeTheme.GetName.AsTokens(". ").Get(0)

newChart.GetTitle.SetName("Percent of"++storeName++

"Stores to Nearest DC")

newChart.SetName("Histogram of"++storeName++
"Store-DC Distances")

xax = newChart.GetXAxis

yax = newChart.GetYAxis
xax.SetName("50 Mile Intervals")

yax.SetName ("Percent of Stores")
xax.SetLabelVisible(true)

yax.SetLabelVisible(true)
yax.SetBoundsMin(0)
yax.SetBoundsMax(100)
yax.SetBoundsUsed(true)
yax.SetMajorGridSpacing(10)
yax.SetMajorGridVisible(false)
yax.SetMinorGridSpacing(5)
yax.SetMinorGridVisible(false)
yax.SetTickLabelsVisible(true)
av.GetProj ect.AddDoc(newChart)
newChart.GetWin.Open

Return Nil

133

Scriptname: DC.Range

Filename: dc_range.ave

Description: Script grabs the selected records of the
stores theme and populates the DC Range field
selected records with the service range

distance. This script is used to set up the
stores attribute tables for charting.

Requires: Service area theme has been created and stores
with selected ranges have been selected.

Called by: Stores.SelByRange

Calls: Nil

SELF: the stores FTab, the range field, and
the range name

Returns: Nil

Scriptname = "DC.Range"
theFTab = SELF.Get(0)

derange = SELF.Get(1)
rangeName = SELF.Get(2)
storeTheme = SELF.Get(3)

' Get the select set of the stores theme

theSelSet = theFTab.GetSelection

derange = theFTab.FindField("DC Range")

av.ShowStopButton
av.ShowMsg("Editing DC Range field...")
numSelRecs = theFTab.GetNumSelRecords

n = 0

edit state = theFTab.IsEditable

theFTab.SetEditable(true)

' Loop through the selected records and calculate
' the selected records to the range Name if it has
' not already been done so.

for each rec in theSelSet

rangeval = theFTab.ReturnValue(derange, rec)
if (rangeval = 0) then

theFTab.SetValue(derange, rec, rangeName)

n = n + 1

else

134

n = n + 1

continue

end 'if

progress = (n/numSelRecs) * 100
doMore = av.SetStatus(progress)
if (not doMore) then

break

end 'if

end 'for loop

theFTab.SetEditable(FALSE)

theFTab.SetEditable(edit_state)
storeTheme.ClearSelection

return Nil

135

Scriptname:

Filename:

Author:

Date:

Description:

Requires:

Called by:

Calls:

SELF:

Returns:

DCFixedCostTheme.Make

dcfixedc.ave

Kenneth Bennett

May 3, 1998

Script generates a CVS DCs theme based
on the Fixed Cost field in the CVS DCs theme
table. The theme is classified into three sizes
based on fixed cost value and uses the triangle
as the symbol

CVS DCs theme must exist

View menu item click event

("Display DC: by Fixed Cost")

Nil

Nil

Nil

+ * + ******** + + ************ + * + + + * + + *********•*•************** + **** + *■*•

Scriptname = "DCFixedCostTheme.Make"

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then

MsgBox.Error("ERROR: Demand by Region view does not exist.",
Scriptname)

exit

end
if (not (theView.Is(View))) then

MsgBox.Error("ERROR: Demand by Region doc is not a view.",
Scriptname)

exit

end
theTheme = theView.FindTheme("CVS DCs")
if (theTheme = Nil) then

MsgBox.Error("ERROR: Theme called CVS DCs does not exist.",
Scriptname)

exit

end

checkTheme = theView.FindTheme("CVS DCs by Fixed Cost")
if (checkTheme <> nil) then

theView.DeleteTheme(checkTheme)
theTable = av.GetProject.FindDoc("Attributes of CVS

DCs by Fixed Cost")
if (theTable <> NIL) then

av.GetProject.RemoveDoc(theTable)
end

136

end

' Clone the CVS DCs theme

fixTheme = theTheme.Clone

fixTheme.SetNameC'CVS DCs by Fixed Cost")

' Change the legend to weight the symbol size
' by the fixed cost and classify into 3
' groups using a natural break

fixLegend = fixTheme.GetLegend
fixLegend.SetLegendType(#LEGEND_TYPE_SYMBOL)
fixLegend.Natural(fixTheme, "FixedCost", 3)
fixLegend.DisplayNoDataClass(FALSE)
' Get the project working directory
theDir = av.GetProject.GetWorkDir.AsString
thePath = theDir+"\default.avp"
theSymbolList = fixLegend.GetSymbols
index = 0

increment = 0

for each s in theSymbolList
thePalette = Palette.MakeFromFile(thePath.AsFileName)

' Grab the Marker palette and get the outlined
' triangle symbol, which is the 9th symbol in the palette
chosenMarker = thePalette.GetList

(#PALETTE_LIST_MARKER).Get(9)
chosenMarker.SetSize(12 + increment)

theSymbolList.Set(index, chosenMarker)
index = index + 1

increment = increment + 4

end

theSymbolList.UniformColor(Color.GetYellow)

fixTheme.UpdateLegend
fixTheme.SetVisible(TRUE)

theView.AddTheme (fixTheme)

theView.Invalidate

return Nil

137

Scriptname:

Filename:

Author:

Date:

Description:

Requires:

Called by:

Calls:

SELF:

Returns:

DCHandCostTheme.Make

dchandco.ave

Kenneth Bennett

May 3, 1998

Script generates a CVS DCs theme based on
the total Handling field in the CVS DCs theme
table. The theme is classified into three sizes

based on total handling cost and uses the hexagon
as the symbol

CVS DCs theme must exist

View menu item click event

("Display DC: by Handling Cost")

Nil

Nil

Nil

Scriptname = "DCHandCostTheme.Make"

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then

MsgBox.Error{"ERROR: Demand by Region view does not exist.",
Scriptname)

exit

end

if (not (theView.Is(View))) then

MsgBox.Error("ERROR: Demand by Region doc is not a view.",
Scriptname)

exit

end

theTheme = theView.FindTheme("CVS DCs")

if (theTheme = Nil) then
MsgBox.Error("ERROR: Theme called CVS DCs does not exist.",

Scriptname)

exit

end

checkTheme = theView.FindTheme("CVS DCs by Handling Cost")
if (checkTheme <> nil) then

theView.DeleteTheme(checkTheme)

theTable = av.GetProject.FindDoc("Attributes of CVS
DCs by Handling Cost")

if (theTable <> NIL) then

av.GetProject.RemoveDoc(theTable)
end

138

end

' Clone the CVS DCs theme

handTheme = theTheme.Clone

handTheme.SetName("CVS DCs by Handling Cost")

' Change the legend to weight the symbol size
' by the total handling cost and classify into 3
' groups using a natural break

handLegend = handTheme.GetLegend
handLegend.SetLegendType(#LEGEND_TYPE_SYMBOL)
handLegend.Natural(handTheme, "Total Handling", 3)
handLegend.DisplayNoDataClass(FALSE)
' Get the project working directory
theDir = av.GetProject.GetWorkDir.AsString
thePath = theDir+"\default.avp"
theSymbolList = handLegend.GetSymbols
index = 0

increment = 0

for each s in theSymbolList
thePalette = Palette.MakeFromFile(thePath.AsFileName)

' Grab the Marker palette and get the outlined
' hexagon symbol, which is the 11th symbol in the palette
chosenMarker = thePalette.GetList

(#PALETTE_LIST_MARKER).Get(11)
chosenMarker.SetSize(12 + increment)

theSymbolList.Set(index, chosenMarker)
index = index + 1

increment = increment + 4

end

theSymbolList.UniformColor(Color.GetYellow)

handTheme.UpdateLegend
handTheme.SetVisible(TRUE)

theView.AddTheme (handTheme)

theView.Invalidate

return Nil

139

Scriptname:

Filename:

Author:

Date:

Description:

DCTotDemandTheme.Make

dctotdem.ave

Kenneth Bennett

Requires:

Called by:

Calls:

SELF:

Returns:

May 3, 1998

Script generates a CVS DCs theme based on the
OptimizedValue field in the CVS DCs theme table.
The theme is classified into three sizes based
on the optimized value (demand) and uses the
square as the symbol

CVS DCs theme must exist

View menu item click event

("Display DC: by Total Demand")

Nil

Nil

Nil

****++**+*+*********************+*+*+****++*++*******************

Scriptname = "DCTotDemandTheme.Make"

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then

MsgBox.Error("ERROR: Demand by Region view does not exist.",
Scriptname)

exit

end

if (not (theView.Is(View))) then
MsgBox.Error("ERROR: Demand by Region doc is not a view.",

Scriptname)

exit

end

theTheme = theView.FindTheme("CVS DCs")
if (theTheme = Nil) then

MsgBox.Error("ERROR: Theme called CVS DCs does not exist.",
Scriptname)

exit

end

checkTheme = theView.FindTheme("CVS DCs by Total Demand")
if (checkTheme <> nil) then

theView.DeleteTheme(checkTheme)

theTable = av.GetProject.FindDoc("Attributes of CVS
DCs by Total Demand")

if (theTable <> NIL) then
av.GetProject.RemoveDoc(theTable)

end

140

end

' Clone the CVS DCs theme

demandXheme = theXheme.Clone

demandXheme.SetName("CVS DCs by Xotal Demand")

' Change the legend to weight the symbol size
' by the optimized value and classify into 3
' groups using a natural break

demandLegend = demandXheme.GetLegend
demandLegend.SetLegendXype(#LEGEND_XYPE_SYMBOL)
demandLegend.Natural(demandXheme, "OptimizedValue", 3)
demandLegend.DisplayNoDataClass(FALSE)
' Get the project working directory
theDir = av.GetProject.GetWorkDir.AsString
thePath = theDir+"\default.avp"
theSymbolList = demandLegend.GetSymbols
index = 0

increment = 0

for each s in theSymbolList
thePalette = Palette.MakeFromFile(thePath.AsFileName)

' Grab the Marker palette and get the outlined
' square symbol, which is the 8th symbol in the palette
chosenMarker = thePalette.GetList

(#PALEXXE_LISX_MARKER).Get(8)
chosenMarker.SetSize(12 + increment)

theSymbolList.Set(index, chosenMarker)
index = index + 1

increment = increment + 4

end

theSymbolList.UniformColor(Color.GetYellow)

demandXheme.UpdateLegend
demandXheme.SetVisible(XRUE)

theView.AddXheme (demandXheme)

theView.Invalidate

return Nil

141

,*+****+******■****+++*+++***++*+********************************

Scriptname:

Filename;

Author:

Date:

Description:

Requires:

Called by:

Calls:

SELF:

Returns:

DRAllLogTheme.Make

dralllog.ave

Kenneth Bennett

May 6, 1998

Creates a pie chart theme of the Demand
Regions where the pie slices represent
logistics component costs for all products
and the size of the whole pie represents
the grand total logistics cost for each
demand region.

Demand Regions theme must exist

View menu item click event {"Display Demand
Regions: by Total Logistics Cost")

Nil

Nil

Nil

Scriptname = "DRAllLogTheme.Make"

Find the view and the Demand Regions theme

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then

MsgBox.Error("ERROR: Demand by Region view does not exist.",
Scriptname)

exit
end
if (not (theView.Is(View))) then

MsgBox.Error("ERROR: Demand by Region doc is not a view.",
Scriptname)

exit
end
theView.Getwin.Open
theTheme = theView.FindTheme("Demand Regions")
if (theTheme = Nil) then

MsgBox.Error("ERROR: Demand Regions theme does not exist.",
Scriptname)

exit

end
theFTab = theTheme.GetFTab

' Find the needed fields

shipFld = theFTab.FindField("All Direct Cost")
142

pickFld = theFTab.FindFieldC'All Pick Cost")
tranFld = theFTab.FindFieldC'All Tranship Cost")
xdocFld = theFTab.FindFieldC'All Crossdock Cost")
totlFld = theFTab.FindFieldC'All Total Cost")

if ((shipFld = Nil) OR (pickFld = Nil) OR (tranFld = Nil)
OR (xdocFld = Nil) OR (totlFld = Nil)) then

MsgBox.Error("ERROR: One or more required fields is missing"
+nl+"or has been renamed.", Scriptname)

exit

end

ShipFld = shipFld.AsString
pickFld = pickFld.AsString
tranFld = tranFld.AsString
xdocFld = xdocFld.AsString

totlFld = totlFld.AsString

fldStringList = {shipFld, pickFld, tranFld, xdocFld}

' Check to see if the new theme already exists
checkTheme = theView.FindTheme("Demand Regions by Total

Logistics Cost")

if (checkTheme <> Nil) then
theView.DeleteTheme(checkTheme)

theTable = av.GetProject.FindDoc("Attributes of Demand
Regions by Total Logistics Cost")

if (theTable <> Nil) then
av.GetProject.RemoveDoc(theTable)

end

end

' Clone the theme and work with the new theme

demTheme = theTheme.Clone

' Get the new Demand Region theme's legend

demLegend = demTheme.GetLegend

'Create as many fill symbols as you have fieldNames
'and place them in a list.

shipsym = RasterFill.Make
shipsym.SetStyle(#RASTERFILL_STYLE_SOLID)
shipsym.SetColor(Color. GetRed)
picksym = RasterFill.Make
picksym.SetStyle(#RASTERFILL_STYLE_SOLID)
picksym.SetColor(Color.GetWhite)
transym = RasterFill.Make
transym.SetStyle(#RASTERFILL_STYLE_SOLID)
transym. SetColor(Color.GetBlack)
xdocsym= RasterFill.Make
xdocsym.SetStyle(#RASTERFILL_STYLE_SOLID)

143

xdocsym.SetColor(Color.GetGray)

theSyms = {shipsym, picksym, transym, xdocsym}

' Make a background fill Symbol that is empty

BGsym = RasterFill.Make
BGsym.SetStyle(#RASTERFILL_STYLE_EMPTY)

' Create the New Legend

deitiLegend. PieChart (demTheme, fldStringList, theSyms, BGSym, totlFld)

' To set a size field:

theSym = demLegend.GetSymbol(demLegend.ReturnFieldNames, false)

theSym. SetMinSize(8)
theSym.SetMaxSize(24)

' Redraw the theme using the PieChart legend.

demTheme.UpdateLegend
demTheme.SetActive(FALSE)

demTheme.SetVisible(TRUE)

demTheme.SetName("Demand Regions by Total Logistics Cost")
theView.AddTheme(demTheme)

theView.Invalidate

return Nil

144

, ******* + ************** + + ***** + ***■*•**** + + ** + *++*** + *************

Scriptname: DRCWLogTheme.Make

Filename: drcwlogt.ave

Author: Kenneth Bennett

Date: May 6, 1998

Description: Creates a pie chart theme of the Demand
Regions where the pie slices represent the
CW logistics component costs and the size of the
whole pie represents the total CW logistics cost.

Requires: Demand Regions theme must exist

Called by: View menu item click event ("Display Demand
Regions: by CW Logistics Cost")

Calls: Nil

SELF: Nil

Returns: Nil

* + * + + + + + * + ***** + ************■*• + ** + * + * + ** + + * + *******************

Scriptname = "DRCWLogTheme.Make"

Find the view and the Demand Regions theme

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then

MsgBox.Error("ERROR: Demand by Region view does not exist.",
Scriptname)

exit

end

if (not (theView.Is(View))) then
MsgBox.Error("ERROR: Demand by Region doc is not a view.",

Scriptname)
exit

end

theView.GetWin.Open
theTheme = theView.FindTheme("Demand Regions")
if (theTheme = Nil) then

MsgBox.Error("ERROR: Demand Regions theme does not exist.",
Scriptname)

exit

end
theFTab = theTheme.GetFTab

' Find the needed fields

shipFld = theFTab. FindFieldC'CW Direct Cost")
pickFld = theFTab. FindFieldC'CW Pick Cost")
tranFld = theFTab.FindField("CW Tranship Cost")

145

xdocFld = theFTab.FindField("CW Crossdock Cost")

totlFld = theFTab.FindField("CW Total Cost")

if ((shipFld = Nil) OR (pickFld = Nil) OR (tranFld = Nil)
OR (xdocFld = Nil) OR (totlFld = Nil)) then

MsgBox.Error("ERROR: One or more required fields is missing"+nl+
"or has been renamed.", Scriptname)

exit

end

shipFld = shipFld.AsString
pickFld = pickFld.AsString
tranFld = tranFld.AsString
xdocFld = xdocFld.AsString
totlFld = totlFld.AsString

fldStringList = {shipFld, pickFld, tranFld, xdocFld)

' Check to see if the new theme already exists
checkTheme = theView.FindTheme{"Demand Regions by CW

Logistics Cost")

if (checkTheme <> Nil) then

theView.DeleteTheme(checkTheme)

theTable = av.GetProject.FindDoc("Attributes of Demand
Regions by CW Logistics Cost")

if (theTable <> Nil) then

av.GetProject.RemoveDoc(theTable)
end

end

' Clone the theme and work with the new theme

demTheme = theTheme.Clone

' Get the new Demand Region theme's legend

demLegend = demTheme.GetLegend

'Create as many fill symbols as you have fieldNames
'and place them in a list.

shipsym = RasterFill.Make
shipsym.SetStyle(#RASTERFILL_STYLE_SOLID)
shipsym.SetColor(Color.GetMagenta)
picksym = RasterFill.Make
picksym.SetStyle(#RASTERFILL_STYLE_SOLID)
picksym.SetColor(Color.GetCyan)
transym = RasterFill.Make
transym.SetStyle(#RASTERFILL_STYLE_SOLID)
transym.SetColor(Color.GetGreen)
xdocsym= RasterFill.Make
xdocsym.SetStyle(#RASTERFILL_STYLE_SOLID)
xdocsym.SetColor(Color.GetWhite)

146

theSyms = {shipsym, picksym, transyin, xdocsym}

' Make a background fill Symbol that is empty

BGsym = RasterFill.Make
BGsym.SetStyle(#RASTERFILL_STYLE_EMPTY)

' Create the New Legend

demLegend.PieChart(demTheme,fldStringList,theSyms,
BGSym,totlFld)

' To set a size field:

theSym = demLegend.GetSymbol(demLegend.ReturnFieldNames,
false)

theSym.SetMinSize{8)
theSym.SetMaxSize(24)

' Redraw the theme using the PieChart legend.

demTheme.UpdateLegend
demTheme.SetActive(FALSE)
demTheme.SetVisible(TRUE)

demTheme.SetName("Demand Regions by CW Logistics Cost")
theView.AddTheme(demTheme)

theView.Invalidate

return Nil

147

Scriptname: DROTCLogTheme.Make

Filename: drotclog.ave

Author: Kenneth Bennett

Date: May 5, 1998

Description: Creates a pie chart theme of the Demand
Regions where the pie slices represent the
OTC logistics component costs and the size
of the whole pie represents the total OTC
logistics cost.

Requires: Demand Regions theme must exist

Called by: View menu item click event ("Display Demand
Regions: by OTC Logistics Cost")

Calls: Nil

SELF: Nil

Returns: Nil

Scriptname = "DROTCLogTheme.Make"

Find the view and the Demand Regions theme

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then

MsgBox.Error("ERROR: Demand by Region view does not exist.",
Scriptname)

exit

end

if (not (theView.Is(View))) then
MsgBox.Error("ERROR: Demand by Region doc is not a view.",

Scriptname)

exit

end

theView.Getwin.Open

theTheme = theView.FindTheme("Demand Regions")
if (theTheme = Nil) then

MsgBox.Error("ERROR: Demand Regions theme does not exist.",
Scriptname)

exit

end

theFTab = theTheme.GetFTab

' Find the needed fields

shipFld = theFTab.FindField("OTC Direct Cost")
pickFld = theFTab.FindField("OTC Pick Cost")

148

tranFld = theFTab.FindField{"OTC Tranship Cost")
xdocFld = theFTab.FindField("OTC Crossdock Cost")

totlFld = theFTab.FindField("OTC Total Cost")

if ({shipFld = Nil) OR (pickFld = Nil) OR (tranFld = Nil)
OR (xdocFld = Nil) OR (totlFld = Nil)) then

MsgBox.Error("ERROR: One or more required fields
is niissing"+nl+"or has been renamed.",
Scriptname)

exit

end

shipFld = shipFld.AsString
pickFld = pickFld.AsString
tranFld = tranFld.AsString
xdocFld = xdocFld.AsString
totlFld = totlFld.AsString

fldStringList = {shipFld, pickFld, tranFld, xdocFld}

' Check to see if the new theme already exists
checkTheme = theView.FindTheme("Demand Regions by

OTC Logistics Cost")

if (checkTheme <> Nil) then
theView.DeleteTheme(checkTheme)

theTable = av.GetProject.FindDoc("Attributes of Demand
Regions by OTC Logistics Cost")

if (theTable <> Nil) then

av.GetProject.RemoveDoc(theTable)
end

end

' Clone the theme and work with the new theme

demTheme = theTheme.Clone

' Get the new Demand Region theme's legend

demLegend = demTheme.GetLegend

'Create as many fill symbols as you have
'fieldNames and place them in a list.

shipsym = RasterFill.Make
shipsym.SetStyle(#RASTERFILL_STYLE_SOLID)
shipsym.SetColor(Color.GetGreen)
picksym = RasterFill.Make
picksym.SetStyle(#RASTERFILL_STYLE_SOLID)
picksym.SetColor(Color.GetRed)
transym = RasterFill.Make
transym.SetStyle(#RASTERFILL_STYLE_SOLID)
transym.SetColor(Color.GetWhite)
xdocsym= RasterFill.Make
xdocsym.SetStyle(#RASTERFILL_STYLE_SOLID)

149

xdocsym.SetColor(Color.GetBlack)

theSyms = {shipsym, picksyiti, transym, xdocsym}

' Make a background fill Symbol that is empty

BGsym = RasterFill.Make
BGsym.SetStyle(#RASTERFILL_STYLE_EMPTY)

' Create the New Legend

deiiiLegend. PieChart (demTheme, fldStringList, theSyms, BGSym, totlFld)

' To set a size field:

theSym = demLegend.GetSymbol(demLegend.ReturnFieldNames, false)

theSym.SetMinSize(8)
theSym.SetMaxSize(24)

' Redraw the theme using the PieChart legend.

demTheme.UpdateLegend
demTheme.SetActive(FALSE)

demTheme.SetVisible(TRUE)

demTheme.SetName("Demand Regions by OTC Logistics Cost")
theView.AddTheme(demTheme)

theView.Invalidate

return Nil

150

I ****** + *** + ** + ** + * + ■*. + ***** + ********************** + + + ******** + **

Scriptname: DRRxLogTheme.Make

Filename: drrxlogt.ave

Author: Kenneth Bennett

Date: May 5, 1998

Description: Creates a pie chart theme of the Demand
Regions where the pie slices represent the
Rx logistics component costs and the size of the
whole pie represents the total Rx logistics cost.

Requires: Demand Regions theme must exist

Called by: View menu item click event ("Display Demand
Regions: by Rx Logistics Cost")

Calls: Nil

SELF: Nil

Returns: Nil

********* + * + + + + *•*****■*•**•** + ********** + ■* + + *** + ** + + * + ***** + *****

criptname = "DRRxLogTheme.Make"

Find the view and the Demand Regions theme

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then

MsgBox.Error("ERROR: Demand by Region view does not exist.",
Scriptname)

exit

end

if (not (theView.Is(View))) then
MsgBox.Error("ERROR: Demand by Region doc is not a view.",

Scriptname)
exit

end
theView.GetWin.Open
theTheme = theView.FindTheme("Demand Regions")
if (theTheme = Nil) then

MsgBox.Error("ERROR: Demand Regions theme does not exist.",
Scriptname)

exit

end
theFTab = theTheme.GetFTab

' Find the needed fields

shipFld = theFTab. FindFieldC'Rx Direct Cost")
pickFld = theFTab. FindFieldC'Rx Pick Cost")
tranFld = theFTab.FindField("Rx Tranship Cost")

151

xdocFld = theFTab.FindField("Rx Crossdock Cost")

totlFld = theFTab.FindField("Rx Total Cost")

if ({shipFld = Nil) OR (pickFld = Nil) OR {tranFld = Nil)
OR (xdocFld = Nil) OR (totlFld = Nil)) then

MsgBox.Error("ERROR: One or more required fields is missing"+nl+
"or has been renamed.", Scriptname)

exit

end

shipFld = shipFld.AsString
pickFld = pickFld.AsString
tranFld = tranFld.AsString
xdocFld = xdocFld.AsString
totlFld = totlFld.AsString

fIdStringList = {shipFld, pickFld, tranFld, xdocFld}

' Check to see if the new theme already exists
checkTheme = theView.FindTheme("Demand Regions by

Rx Logistics Cost")
if (checkTheme <> Nil) then

theView.DeleteTheme(checkTheme)

theTable = av.GetProject.FindDoc("Attributes of Demand
Regions by Rx Logistics Cost")

if (theTable <> Nil) then

av.GetProj ect.RemoveDoc(theTable)
end

end

' Clone the theme and work with the new theme

demTheme = theTheme.Clone

' Get the new Demand Region theme's legend

demLegend = demTheme.GetLegend

'Create as many fill symbols as you have
'fieldNames and place them in a list.

shipsym = RasterFill.Make
shipsym.SetStyle(#RASTERFILL_STYLE_SOLID)
shipsym.SetColor(Color.GetBlue)
picksym = RasterFill.Make
picksym.SetStyle(#RASTERFILL_STYLE_SOLID)
picksym.SetColor(Color.GetRed)
transym = RasterFill.Make
transym.SetStyle(#RASTERFILL_STYLE_SOLID)
transym. SetColor(Color.GetGreen)
xdocsym= RasterFill.Make
xdocsym.SetStyle(#RASTERFILL_STYLE_SOLID)
xdocsym. SetColor(Color.GetMagenta)

152

theSyms = {shipsym, picksym, transym, xdocsym}

' Make a background fill Symbol that is empty

BGsym = RasterFill.Make
BGsym.SetStyle(#RASTERFILL_STYLE_EMPTY)

' Create the New Legend

demLegend.PieChart(demTheme,fldStringList,theSyms,BGSym,totlFld)

' To set a size field:

theSym = demLegend.GetSymbol(demLegend.ReturnFieldNames, false)

theSym.SetMinSize(8)
theSym.SetMaxSize(24)

' Redraw the theme using the PieChart legend.

demTheme.UpdateLegend
demTheme.SetActive(FALSE)

demTheme.SetVisible(TRUE)

demTheme.SetName("Demand Regions by Rx Logistics Cost")
theView.AddTheme(demTheme)

theView.Invalidate

return Nil

153

* + *****•*•** + * + *** + ■*•******* + *** + **■*• + *** + + *************■*■******

Scriptname: FlowLine.Build

Filename: flowline.ave

Description: Script creates a line theme of all the
lines connecting all of the demand regions.
FTab contains fields for the DC name and
the demand region 3-digit (zip) code.

Called by: TransportationLines.Build

Calls: SpliceLatLon, FlowValues.Calculate

SELF: Nil

Returns: an FTab

Scriptname = "FlowLine.Build"
srcDcsVtab = av.GetProject.FindDoc("inputfac.dbf") .GetVTab
if (srcDcsVtab = Nil) then

MsgBox.Error("The inputfac.dbf table was not found."+NL+
"Exiting. . . Scriptname)

exit

end
theFTab = av.Run("SpliceLatLon", {srcDcsVtab})
facfld = theFTab.FindField("Facility")
if (facfld = Nil) then

MsgBox.Error("Facility field not found. Exiting...",
Scriptname)

exit

end

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then

MsgBox.Error("ERROR: Demand by Region view does not exist.",
Scriptname)

exit
elseif (not (theView.Is(View))) then

MsgBox.Error("ERROR: Demand by Region doc is not a view.",
Scriptname)

exit
end

strTheme = theView.FindTheme("Demand Regions")
strVTab = StrTheme.GetFTab
strfld = strVtab.FindField("Demand Region")
x2fld = strVtab.FindField("X")
y2fld = StrVtab.FindField("Y")
if ((strfld = Nil) OR (x2fld = Nil) OR (y2fld = Nil)) then

MsgBox.Error("Demand Region, X, or Y field in Attributes"+NL+
"of Demand Regions is missing. Exiting. . .",
Scriptname)

exit

end

154

theView = av.GetActiveDoc

dcsVTab = theView.FindTheme{"CVS DCs")•GetFTab

origfld = dcsVtab.FindField{"Facility")
xlfld = dcsVtab.FindField("X-coord")

ylfld = dcsVtab.FindField("Y-coord")
if ((origfld = Nil) OR (xlfld = Nil) OR (y2fld = Nil)) then

MsgBox.Error("Facility, X-coord, or Y-coord field"+NL+
"in CVS DCs theme is missing. Exiting...",
Scriptname)

exit

end

defName = FileName.Malce (av. GetProject. GetWorJcDir. AsString) .MalceTmp
("flolin", "dbf")

theFName = FileDialog.Put(defName, "*.dbf", "Save FTab As")
if (nil <> theFName) then

lineFTab = FTab.MalceNew(theFName, POLYLINE)

else

lineFTab = FTab .MalceNew (defName, POLYLINE)

end

'add fields to the new lineFTab

from = Field.Ma)ce("DC", #FIELD_CHAR, 20, 0)
to = Field.Malce ("Store", #FIELD_CHAR, 20, 0)

lineFTab.AddFields({from,to))

shapeF = lineFTab.FindField("shape")

av.ShowStopButton
av.ShowMsg("Building Flow Lines...")
numStores = dcsVtab.GetNumRecords

n = 0

for each i in dcsVtab

Origl = dcsVtab.ReturnValue(origfld, i)
xl = dcsVtab.ReturnValue(xlfld, i)

yl = dcsVtab.ReturnValue(ylfld, i)
for each j in strVtab

Destl = strVtab.ReturnValue(strfld, j)
x2 = strVtab.ReturnValue(x2fld, j)
y2 = StrVtab.ReturnValue(y2fld,j)

' build the line between each dc-store pair and add
' the Shape, DC and Store fields, as well as the CW units
' and the Rate and Distance fields, to lineVTab

newRec = lineFTab.AddRecord

1 = Line .Malce (xl0yl, x2@y2) .AsPolyLine
lineFTab.SetValue(shapeF, newRec, 1)
lineFTab.SetValue(from, newRec, Origl)
lineFTab.SetValue(to, newRec, Destl)

end

n = n + 1

progress = (n / numStores) * 100
doMore = av.SetStatus(progress)
if (not doMore) then

155

break

end

end

' make lineFTab into a theme

theTheme = FTheme.Make{ lineFTab)

theSymList = theTheme.GetLegend.GetSymbols
theColorPaletteList = av.GetSymbolWin.GetPalette.GetList

(#PALETTE_LIST_COLOR)
theColor = theColorPaletteList.Get(8)

theSymbol = theSymList.Get(0)
theSymbol.SetColor(theColor)
theTheme.SetName("DC-to-Region Flow")
theTheme.UpdateLegend

' Add the theme to the view

theView.AddTheme(theTheme)

theView.Invalidate

' Run the script to calculate the various DC to
' Region flow values

av.Run("FlowValues.Calculate", {theTheme))

return theFTab

156

H ★★★★★★★★★"A--*-****'*-*-*-**-*--*-********-*-"*- -*"*'"*-**'*-****-*-*****-*****'*"*"*"********

Scriptname:

Filename:

Author:

Date:

Description:

Requires:

FlowValues.Calculate

flowvalu.ave

Kenneth Bennett

May 1, 1998

Script copies the values of flows for OTC, Rx,
and CW products from the dirstore.dbf file to
the DC-to-Region FTab using an
origin-destination-product type string
concatenation. These three new fields in

the FTab are then totalled and the total value

is added to fourth new field in the FTab called

Total Flow.

dirstore.dbf file and DC-to-Region flow
theme must exist

Called by: Flowlines.Build

Calls: Nil

SELF: the DC-to-Region Flow theme

Returns; Nil

criptname = "FlowValues.Calculate"

Retrieve the theme argument

theTheme = SELF.Get(0)

' Find the dirstore.dbf file and add the new field

' concatenating the facility name, the demand region name,
' and the product category

theDirTable = av.Getproject.FindDoc("dirstore.dbf")
if (theDirTable = Nil) then

MsgBox.Error("ERROR: dirstore.dbf table does not exist."+NL+
"DC-to-Region flow values not calculated.", Scriptname)

exit

end

theVTab = theDirTable.GetVTab

theVTab.SetEditable(TRUE)

odpfld2 = Field.Make("GDP",#FIELD_CHAR,35,0)
theVTab.AddFields({odpfld2})
theval = "[Facility]+[DemandRegion]+[Product]"
theVTab.Calculate(theval,odpfld2)

' Get the Demand-to-store FTab and add the new flow fields for

157

' the three product categories, the total flow, and the
' origin-destination-product (ODP) field

theFTab = theTheme.GetFTab

theFTab.SetEditable(TRUE)

cwfld = Field.Make("CW Flow",#FIELD_DECIMAL, 16,2)
otcfld = Field.MakeC'OTC Flow",#FIELD_DECIMAL, 16,2)
rxfld = Field.MakeC'Rx Flow",#FIELD_DECIMAL, 16, 2)
totfld = Field.Make("Total Flow",#FIELD_DECIMAL, 16, 2)
odpfld = Field.Make("ODP",#FIELD_CHAR,35, 0)
theFTab.AddFields({cwfld, rxfld, otcfld, totfld, odpfld)

' Calculate the CW flow

newval2 = "[DC]+[Store]+""CW"""
theFTab.Calculate(newval2,odpfld)
theFTab.Join(odpfld,theVTab,odpfld2)
theflowval = "[OptimizedValue]"
theFTab.Calculate(theflowval,cwfld)

theFTab.Unj oinAll

' Calculate the Rx flow

, tl tl ft

newval2 = "[DC]+[Store]+""Rx'
theFTab.Calculate(newval2,odpfld)
theFTab.Join(odpfld,theVTab,odpfld2)
theflowval = "[OptimizedValue]"
theFTab.Calculate(theflowval,rxfld)

theFTab.Unj oinAll

' Calculate the OTC flow

newval2 = "[DC]+[Store]+""OTC"""
theFTab.Calculate(newval2,odpfld)
theFTab.Join(odpfld,theVTab,odpfld2)
theflowval = "[OptimizedValue]"
theFTab.Calculate(theflowval, otcfld)

theFTab.Unj oinAll

' Calculate the total flow

newval2 = "[Rx Flow] + [CW Flow] + [OTC Flow]"
theFTab.Calculate(newval2,totfld)

' Remove the ODP field from the Demand-to-Store FTab
' since it is no longer needed

theFTab.RemoveFields({odpfld})

theFTab.SetEditable(FALSE)

' Remove the ODP field from the dirstore.dbf file

theVTab.RemoveFields({odpfld2})
theVTab.SetEditable(FALSE)

return Nil

158

•k'k-ie'tr'frie'k-k

Scriptname:

Filename:

Author:

Date:

Description:

Requires:

Called by:

Calls:

SELF:

Returns:

HandValues.Calculate

handvalu.ave

Kenneth Bennett

May 1, 1998

Script copies the OptimizedValue field for
OTC, Rx, and CW products from the handling.dbf
file to the CVS DCs FTab using an
facility-product type string concatenation.
These three new fields in the FTab are then

totalled and the total value is added to

fourth new field in the FTab called

Total Handling.

handling.dbf file and CVS DCs theme must exist

SpliceLatLon

Nil

the CVS DCs FTab

Nil

Scriptname = "HandValues.Calculate"

Retrieve the theme argument

theFTab = SELF.Get(0)

' Find the dirstore.dbf file and add the new field

' concatenating the facility name, the demand region name,
' and the product category

theHandTable = av.Getproject.FindDoc("handling.dbf")
if (theHandTable = Nil) then

MsgBox.Error("ERROR: handling.dbf table does not exist."+NL+
"CVS DCs handling cost values not calculated.", Scriptname)

exit

end

theVTab = theHandTable.GetVTab

theOptFld = theVTab.FindField("OptimizedValue")
if (theOptFld <> Nil) then

theOptFld.SetAlias("OptVal")
end

theVTab.SetEditable(TRUE)

fpfld2 = Field.Make("FP",#FIELD_CHAR,35,0)
theVTab.AddFields({fpfld2})

theval = "[Facility]+[Product]"
theVTab.Calculate(theval,fpfld2)

159

' Add the new handling cost fields for
' the three product categories, the total cost,
' and the Facility-Product field

theFTab.SetEditable(TRUE)

cwfld = Field.Make("CW Handling",#FIELD_DECIMAL, 16,2)
otcfld = Field.Make("OTC Handling",#FIELD_DECIMAL, 16,2)
rxfld = Field.Make("Rx Handling",#FIELD_DECIMAL, 16, 2)
totfld = Field.Make("TotHandVal",#FIELD_DECIMAL, 16, 2)
fpfld = Field.Make("FP",#FIELD_CHAR,35, 0)
theFTab.AddFields({cwfld, rxfld, otcfld, totfld, fpfld})

' Calculate the CW flow

newval2 = "[Facility]+""CW"""
theFTab.Calculate(newval2,fpfld)
theFTab.Join(fpfld,theVTab,fpfld2)
thehandval = "[OptVal]"
theFTab.Calculate(thehandval,cwfld)

theFTab.Unj oinAll

' Calculate the Rx flow

newval2 = "[Facility]+""Rx"""
theFTab.Calculate(newval2, fpfld)
theFTab.Join(fpfld,theVTab,fpfld2)
thehandval = "[OptVal]"
theFTab.Calculate(thehandval,rxfld)

theFTab.Unj oinAll

' Calculate the OTC flow

newval2 = "[Facility]+""OTC"""
theFTab.Calculate(newval2,fpfld)
theFTab.Join(fpfld,theVTab,fpfld2)
thehandval = "[OptVal]"
theFTab.Calculate(thehandval,otcfld)

theFTab.UnjoinAll

' Calculate the total flow

newval2 = "[Rx Handling] + [CW Handling] + [OTC Handling]"
theFTab.Calculate(newval2, totfld)

' Remove the FP field from the CVS DCs FTab

' since it is no longer needed

theFTab.RemoveFields([fpfld})
theFTab.SetEditable(FALSE)

' Remove the FP field from the handling.dbf VTab

theVTab.RemoveFields({fpfld2})
theVTab.SetEditable(FALSE)

return theFTab

160

' Scriptname: HasCWRx

' Filename: hascwrx.ave

' Description: Add HasCW and HasRx fields to Attributes
' of CVS DCs theme table.

' Requires: Nil

' Called by: CalcDCs

' Calls: Nil

' SELF: the Demand by Regions View and the CVS DCs FTab

' Returns: Nil

Scriptname = "HasCWRx"

' First get the Demand by Region view and the CVS DCs Ftab
' for Attibutes of DC2S

theView = SELF.Get(0)

theFTab = SELF.Get(1)

' Add two fields to DCs attribute table HasRx and HasCW

edit state = theFTab.IsEditable

' Make sure table is editable and that fields can be added

if (theFtab.CanEdit) then
theFTab.SetEditable(true)

if ((theFTab.CanAddFields).Not) then
MsgBox.Info("Can't add fields to the table."+NL+

"Check write permission.",
"Can't add HasRx and HasCW")

exit

end

else

MsgBox.Info("Can't modify the feature table."+NL+
"Check write permission "Can't add HasRx and HasCW")
exit

end

'Check if fields named "Has Rx" and "Has CW" exist

rx exists = (theFTab.FindField("HasRx") = NIL).Not
CW exists = (theFtab.FindField("HasCW") = NIL).Not

' If they do exist, ask if they should be overwritten.
' Otherwise, just make them and add them to CVS DCs FTab

161

if (rx_exists or cw_exists) then
if (MsgBox.YesNo("Overwrite existing fields?",
"HasRx and HasCW fields already exist", false)) then
'if ok to overwrite, delete the fields as they
'may not be defined
'as required by this script (eg., created
'from another script).
if (rx_exists) then

theFTab.RemoveFields({theFTab.FindField("HasRx")})

end

if (cw_exists) then
theFTab.RemoveFields({theFTab.FindField("HasCW")})

end

else

exit

end 'if (MsgBox...)
end 'if

rx = Field.Make ("HasRx",#FIELD_DECIMAL,1,0)
cw = Field.Make ("HasCW",#FIELD_DECIMAL,1,0)
theFTab.AddFields({rx,cw))

' Get the Facility name field of the CVS DCs FTab

theDcFld = theFTab.FindField("Facility")

' Get the Facility and Process fields of the
' picking.dbf table's FTab

thePkVTab = av.GetProject.FindDoc("picking.dbf").GetVTab
thePkDcFld = thePkVTab.FindField("Facility")
theProcess = thePkVTab.FindField("Process")

' Loop through the CVS DCs FTab and populate the HasRx
' and the HasCW fields. Assign zero if it does not
' warehouse these products, one if it does.

for each i in theFTab

rxval - 0

cwval = 0

theFTab.SetValue(rx,i,rxval)

theFTab.SetValue(cw,i, cwval)

theDC = theFTab.ReturnValue(theDcFld, i)
for each j in thePkVTab
thePk = thePkVTab.ReturnValue(thePkDcFld, j)
if (thePk <> theDC) then

continue

end

theMkStr = thePkVTab.ReturnValue(theProcess,j)
pos = theMkStr.IndexOf(" ")
nchars = theMkStr.Count

rdchars = nchars - pos - 1
theActivity = theMkStr.Right(rdchars).Trim.UCase
if (theActivity = "RX") then

rxval = 1

theFTab.SetValue(rx,i, rxval)

162

end

if (theActivity = "CW") then
cwval = 1

theFTab.SetValue{cw, i, cwval)
end

end

end

' Return the CVS DCs FTab to original edit state.

theFTab.SetEditable(edit_state)

return Nil

163

****** + + * + * + + + ** + * + + * + *******■*•*********■************** + ***********

Scriptname:

Filename:

Author:

Date:

Description:

Requires:

Called by:

Calls:

SELF:

Returns:

OTCFlowTheme.Make

otcflowt.ave

Kenneth Bennett

May 3, 1998

Script generates a Flow theme based on the
OTC Flow field in the DC-to-Region Flow theme
table. Zero value flows are made invisible
using the null value and symbol

DC-to-Region flow theme must exist

View menu item click event ("Display Flows:
DC-to-Region by OTC Only")

Nil

Nil

Nil

******* + + **★****•***** + *** + ***** + **** + + * + + ***** + + + **■*•******•*******

Scriptname = "OTCFlowTheme.Make"

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then

MsgBox.Error("ERROR: Demand by Region view does not exist.",
Scriptname)

exit
end

if (not (theView.Is(View))) then
MsgBox.Error("ERROR: Demand by Region doc is not a view.",

Scriptname)
exit

end

theTheme = theView.FindTheme("DC-to-Region Flow")
if (theTheme = Nil) then

MsgBox.Error("ERROR: Theme called DC-to-Region Flow
does not exist.", Scriptname)

exit
end

catString = "OTC Flow"

checkTheme = theView.FindTheme(catString)
if (checkTheme <> nil) then

theView.DeleteTheme(checkTheme)
theTable = av.GetProject.FindDoc("Attributes of"++catString)
if (theTable <> NIL) then

av.GetProject.RemoveDoc(theTable)
164

end

end

' Clone the DC-to-Region Flow theme

newTheme = theTheme.Clone

newLegend = newTheme.GetLegend
newLegend.SetLegendType(#LEGEND_TYPE_SYMBOL)

' Make zero the null value

newLegend.SetNullValue(catString, 0)

' Select a color from the color palette to be used
' in drawing the new line theme

theColor = av.Run{"ColorPalette.SelectColor", Nil)

' Classify the legend with into five natural breaks
' and weight the line thickness by the flow volume

newLegend.Natural(newTheme, catString, 5)
theSymbolList = newLegend.GetSymbols
thickness = 1

count = 0

for each s in theSymbolList
s.SetSize(thickness)

thickness = thickness + 1

end

theSymbolList.UniformColor(theColor)

' Make the null symbol transparent

nullSym = Symbol.Make(#SYMBOL_PEN)
theNullColor = Color.GetBlue

theNullColor.SetTransparent(TRUE)

nullSym.SetColor(theNullColor)
newLegend.SetNullSymbol(nullSym)
newLegend.DisplayNoDataClass(FALSE)
newTheme.SetLegend(newLegend)
newTheme.SetName (catString)
newTheme.SetActive(FALSE)

newTheme.SetVisible(TRUE)
theView.AddTheme (newTheme)

newTheme.UpdateLegend
theView.Invalidate

theNullColor.SetTransparent(FALSE)

return Nil

165

f •kieir'k'k'k'k'k'k

Scriptname: OTCStatistics.Generate

Filename: otcstati.ave

Author: Kenneth Bennett

Date: May 6, 1998

Description: Script sums each of the fields in the
OTC Logistics Costs table and reports
it to the user.

Requires: OTC Logistics Costs table exists

Called by: View menu item click
("Trace Costs: Chain-wide OTC Statistics")

Calls: Nil

SELF: Nil

Returns: Nil

******■*• + + ** + ** + * + ******* + **********************■*■*'*■'*■**************

criptname = "OTCStatistics.Generate"

Ensure two decimal places in each number

cript. The. SetNiunberFormat ("d. dd")

Get the table

theTable = av.GetProject.FindDoc("OTC Logistics Costs")
if (theTable = Nil) then

MsgBox.Error("OTC Logistics Costs table not found.", Scriptname)
exit

end

' Get the VTab for the table

theVTab = theTable.GetVTab

' Get the number of records

num = theVTab.GetNumRecords

' Get the list of fields in the VTab

theFieldList = theVTab.GetFields

' Set the field variables

shipFld = theFieldList.Get(1)
pickFld = theFieldList.Get(2)

166

tranFld = theFieldList.Get(3)

xdocFld = theFieldList.Get(4)

totlFld = theFieldList.Get(5)

' Initialize summing variables

shipSum = 0
pickSum = 0
tranSum = 0

xdocSum = 0

totlSum = 0

' Loop through the VTab and sum each fid

for each rec in theVTab

shipSum = shipSum + theVTab.ReturnValue(shipFld, rec)
pickSum = pickSum + theVtab.ReturnValue(pickFld, rec)
tranSum = tranSum + theVTab.ReturnValue(tranFld, rec)

xdocSum = xdocSum + theVTab.ReturnValue(xdocFld, rec)

totlSum = totlSum + theVTab.ReturnValue(totlFld, rec)

end

' Calculate the per store average for each field

shipAvg
pickAvg
tranAvg

xdocAvg
totlAvg

shipSum / num
pickSum / nvim
tranSum / num

xdocSum / num

totlSum / num

' Issue the report

reportString = "Total OTC Shipping Cost:"++shipSum.AsString+nl+
"Average Per Region:"++shipAvg.AsString+nl+
"Total OTC Pick Cost:"++pickSum.AsString+nl+
"Average Per Region:"++pickAvg.AsString+nl+
"Total OTC Transhipment Cost:"++tranSum.AsString
+nl+"Average Per Region:"++tranAvg.AsString+nl+
"Total OTC Crossdock Cost:"++xdocSum.AsString+nl+
"Average Per Region:"++xdocAvg.AsString+nl+nl+
"Chain-wide Total OTC Logistics Cost:"++
totlSum.AsString+nl+"Average Total Cost
Per Region:"++totlAvg.AsString+nl

MsgBox.Report(reportString, "Chain-wide OTC Statistics")

return Nil

167

I***

Scriptnarae: ProdDemRegTheme.Make

Filename: proddemr.ave

Author: Kenneth Bennett

Date: May 3, 1998

Description: Creates a pie chart theme of the Demand
Regions where the pie slices represent the
three product categories and the size of the
whole pie represents the total demand.

Requires: Demand Regions theme must exist

Called by: View menu item click event ("Display Demand
Regions: by Product Volume")

Calls: Nil

SELF: Nil

Returns: Nil

Scriptname = "ProdDemRegTheme.Make"

Find the view and the Demand Regions theme

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then

MsgBox.Error("ERROR: Demand by Region view does not exist.",
Scriptname)

exit

end

if (not (theView.Is(View))) then
MsgBox.Error("ERROR: Demand by Region doc is not a view.",

Scriptname)

exit

end

theView.GetWin.Open
theTheme = theView.FindTheme("Demand Regions")
if (theTheme = Nil) then

MsgBox.Error("ERROR: Demand Regions theme does not exist.",
Scriptname)

exit

end

theFTab = theTheme.GetFTab

' Find the needed fields

oFld = theFTab.FindField("OTC_Vol")
rFld = theFTab.FindField("Rx_Vol")
cFld = theFTab.FindField("CW_Vol")

168

totFld = theFTab.FindField("Total Demand")

if ((oFld = Nil) OR (rFld = Nil) OR (cFld = Nil) OR
(totFld = Nil)) then

MsgBox.Error("ERROR; Require product fields are missing.",
Scriptname)

exit

end

oFld = oFld.AsString
rFld = rFld.AsString

cFld = cFld.AsString

fldStringList = {oFld, rFld, cFld}

' Check to see if the new theme already exists
checkTheme = theView.FindTheme("Demand Regions by Product Volume")
if (checkTheme <> Nil) then

theView.DeleteTheme(checkTheme)

theTable = av.GetProject.FindDoc("Attributes of Demand
Regions by Product Volume")

if (theTable <> Nil) then
av.GetProject.RemoveDoc(theTable)

end

end

' Clone the theme and work with the new theme

demTheme = theTheme.Clone

' Get the new Demand Region theme's legend

demLegend = demTheme.GetLegend

'Create as many fill symbols as you have
'fieldNames and place them in a list.

otcsym = RasterFill.Make
otcsym.SetStyle(#RASTERFILL_STYLE_SOLID)
otcsym.SetColor(Color.GetBlue)
rxsym = RasterFill.Make
rxsym.SetStyle(#RASTERFILL_STYLE_SOLID)
rxsym.SetColor(Color.GetRed)
cwsym = RasterFill.Make
cwsym.SetStyle(#RASTERFILL_STYLE_SOLID)
cwsym.SetColor(Color.GetGreen)

theSyms = {otcsym, rxsym, cwsym)

' Make a background fill Symbol that is empty

BGsym = RasterFill.Make
BGsym.SetStyle(#RASTERFILL_STYLE_EMPTY)

169

' Create the New Legend

deitiLegend. PieChart (deitiTheme, fldStringList, theSyms, BGSym,
"Total Demand")

' To set a size field:

theSym = deitiLegend. GetSymbol (demLegend.ReturnFieldNames, false)

theSym.SetMinSize(8)
theSym.SetMaxSize(24)

' Redraw the theme using the PieChart legend.

demTheme.UpdateLegend
demTheme.SetActive(FALSE)

demTheme.SetVisible(TRUE)

demTheme.SetName("Demand Regions by Product Volume")
theView.AddTheme(demTheme)

theView.Invalidate

return Nil

170

Scriptname:

Filename:

Author:

Date:

Description:

Requires:

Called by:

Calls:

SELF:

Returns:

RxFlowTheme.Make

rxflowth.ave

Kenneth Bennett

May 3, 1998

Script generates a Flow theme based on the
Rx Flow field in the DC-to-Region Flow theme
table. Zero value flows are made invisible

using the null value and symbol

DC-to-Region flow theme must exist

View menu item click event ("Display Flows:
DC-to-Region by Rx Only")

Nil

Nil

Nil

Scriptname = "RxFlowTheme.Make"

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then
MsgBox.Error("ERROR: Demand by Region view does not exist.",

Scriptname)

exit

end

if (not (theView.Is(View))) then
MsgBox.Error("ERROR: Demand by Region doc is not a view.",

Scriptname)

exit

end

theTheme = theView.FindTheme("DC-to-Region Flow")

if (theTheme = Nil) then
MsgBox.Error("ERROR: Theme called DC-to-Region Flow

does not exist.", Scriptname)
exit

end

catString = "Rx Flow"

checkTheme = theView.FindTheme(catString)

if (checkTheme <> nil) then
theView.DeleteTheme(checkTheme)

theTable = av.GetProject.FindDoc("Attributes of"++catString)
if (theTable <> NIL) then

av.GetProject.RemoveDoc(theTable)
171

end

end

' Clone the DC-to-Region Flow theme

newTheme = theTheme.Clone

newLegend = newTheme.GetLegend

newLegend.SetLegendType(#LEGEND_TyPE_SYMBOL)

' Make zero the null value

newLegend.SetNullValue(catString, 0)

' Select a color from the color palette to be used
' in drawing the new line theme

theColor = av.Run("ColorPalette.SelectColor", Nil)

' Classify the legend with into five natural breaks
' and weight the line thickness by the flow volume

newLegend.Natural(newTheme, catString, 5)
theSymbolList = newLegend.GetSymbols
thickness = 1

count = 0

for each s in theSymbolList
s.SetSize(thickness)

thickness = thickness + 1

end

theSymbolList.UniformColor(theColor)

' Make the null symbol transparent

nullSym = Symbol.Make(#SYMBOL_PEN)
theNullColor = Color.GetBlue

theNullColor.SetTransparent(TRUE)
nullSym.SetColor(theNullColor)
newLegend.SetNullSymbol(nullSym)
newLegend.DisplayNoDataClass(FALSE)
newTheme.SetLegend(newLegend)
newTheme.SetName (catString)
newTheme.SetActive(FALSE)

newTheme.SetVisible(TRUE)

theView.AddTheme (newTheme)

newTheme.UpdateLegend
theView.Invalidate

theNullColor.SetTransparent(FALSE)

return Nil

172

Scriptname; RxStatistics.Generate

Filename: rxstatis.ave

Author: Kenneth Bennett

Date: May 6, 1998

Description: Script sums each of the fields in the
Rx Logistics Costs table and reports
it to the user.

Requires: Rx Logistics Costs table exists

Called by: View menu item click
("Trace Costs: Chain-wide Rx Statistics")

Calls: Nil

SELF: Nil

Returns: Nil

Scriptname = "RxStatistics.Generate"

Ensure two decimal places in each number

cript.The.SetNumberFormat("d.dd")

Get the table

theTable = av.GetProject.FindDoc{"Rx Logistics Costs")
if (theTable = Nil) then

MsgBox.Error("Rx Logistics Costs table not found.",
Scriptname)

exit

end

' Get the VTab for the table

theVTab = theTable.GetVTab

' Get the number of records

num = theVTab.GetNumRecords

' Get the list of fields in the VTab

theFieldList = theVTab.GetFields

' Set the field variables

shipFld = theFieldList.Get(1)
173

pickFld = theFieldList.Get(2)
tranFld = theFieldList.Get(3)

xdocFld = theFieldList.Get(4)

totlFld = theFieldList.Get(5)

' Initialize svutiming variables

shipSum = 0
pickSum = 0
tranSum = 0

xdocSum = 0

totlSum = 0

' Loop through the VTab and sum each fid

for each rec in theVTab

shipSum = shipSum + theVTab.ReturnValue(shipFld, rec)
pickSum = pickSum + theVtab.ReturnValue(pickFld, rec)
tranSum = tranSum + theVTab.ReturnValue(tranFld, rec)

xdocSum = xdocSum + theVTab.ReturnValue(xdocFld, rec)

totlSum = totlSum + theVTab.ReturnValue(totlFld, rec)

end

' Calculate the per store average for each field

shipAvg = shipSum / num
pickAvg = pickSiim / num
tranAvg = tranSum / num
xdocAvg = xdocSum / num
totlAvg = totlSum / num

' Issue the report

reportString = "Total Rx Shipping Cost:"++shipSum.AsString+nl+
"Average Per Region:"++shipAvg.AsString+nl+
"Total Rx Pick Cost:"++pickSum.AsString+nl+
"Average Per Region:"++pickAvg.AsString+nl+
"Total Rx Transhipment Cost:"++tranSum.AsString
+nl+"Average Per Region:"++tranAvg.AsString+nl+

"Total Rx Crossdock Cost:"++xdocSum.AsString+nl+
"Average Per Region:"++xdocAvg.AsString+nl+nl+
"Chain-wide Total Rx Logistics Cost:"++
totlSum.AsString+nl+"Average Total Cost
Per Region:"++totlAvg.AsString+nl

MsgBox.Report(reportString, "Chain-wide Rx Statistics")

return Nil

174

Scriptname: SpliceLatLon

Filename: splicela.ave

Description: Script takes a single Lat/Lon field and splits
them into one Lat field and one Longitude field.
It then creates the CVS DCs theme using those
lat/lon coordinates.

Called by: FlowLine.Build

Calls: AddXY

SELF: a VTab

Returns: an FTab
+ + ***************************** + * + *** + ***■*• + *********************

Scriptname = "SpliceLatLon"
aVTab = SELF.Get(0)
if (aVTab = nil) then

MsgBox.Info("Error - Table not found","")
exit

end

' Get the fields to copy from aVTab

theStrFld = aVTab.FindField("Latlon")
idV = aVTab.FindField("Facility")
fld2 = aVTab.FindField("Fixedcost")
fldS = aVTab.FindField("Minimum")
fld4 = aVTab.FindField("Maximum")
fldS = aVTab.FindField{ "Optimizedv")
optstate = aVTab.FindField("Optimizeds")
thefldList = { idV, fld2, fldS, fld4, optstate, fldS }.DeepClone

' Create an FTAB and get its fields

defName = FileName.Make(av.GetProject.GetWorkDir.AsString) .MakeTmp
("dcmod", "dbf")

theFName = FileDialog.Put(defName, "*.dbf", "Save FTab As")
if (nil <> theFName) then

myFTab = FTab.MakeNew(theFName, POINT)
else

myFTab = FTab.MakeNew(defName, POINT)
end
myFTab.AddFields(thefldList)
shapeF = myFTab.FindField("shape")
idF = myFTab.FindField("Facility")
fcostfld = myFTab.FindField("Fixedcost")
minfld = myFTab.FindField("Minimum")
maxfld = myFTab.FindField("Maximum")
optstatefld = myFTab.FindField("Optimizeds")
optfld = myFTab.FindField("Optimizedv")

175

' copy each row in the VTab to the new FTab

for each i in aVTab

' Get the values from aVTab

ystr = aVTab.ReturnValue(theStrFld, i)
thePos = ystr.IndexOf{"/")
y = ystr.Left(thePos).Trim.AsNumber
xstr = aVTab.ReturnValue(theStrFld , i)

X = xstr.Right(xstr.IndexOf("/"))•Trim.AsNumber
id = aVTab.ReturnVaxue(idV, i)

fcost = aVTab.ReturnValue(fld2, i)

minim = aVTab.ReturnValue(fldS, i)

maxim = aVTab.ReturnValue(fld4, i)

opts = aVTab.ReturnValue(optstate, i)
opt = aVTab.ReturnValue(fldS, i)

' create the next row and add values

newRec = myFTab.AddRecord
myFTab.SetValue(shapeF, newRec, x0y)
myFTab.SetValue(idF, newRec, id)
myFTab.SetValue(fcostfld, newRec, fcost)
myFTab.SetValue(minfld, newRec, minim)
myFTab.SetValue(maxfld, newRec, maxim)
myFTab.SetValue(optstatefld, newRec, opts)
myFTab.SetValue(optfld, newRec, opt)

end

' Create a palette using selected palette file

'thePalette = Palette.MakeFromFile(theDefPalFile)

thePalette = av.GetSymbolWin.GetPalette

' Now use myFTab to create a theme and add it to the active view

theTheme = FTheme.Make(myFTab)
theTheme.SetName("CVS DCs")

theLegend = theTheme.GetLegend
theSymList = theLegend.GetSymbols
theDCSymbol = theSymList.Get(0)

' Grab the Marker palette and get the outlined star symbol

theMarkerPaletteList = thePalette.GetList(#PALETTE_LIST_MARKER)
' outlined star is 34th symbol in Marker palette
chosenMarker = theMarkerPaletteList.Get(33)

' Grab the Color palette and get the color gold for the star

theColorPaletteList = thePalette.GetList(#PALETTE_LIST_COLOR)
* color gold is 39th color in Color palette
chosenColor = theColorPaletteList.Get(38)

' change the shape and color the DC symbol

chosenMarker.SetColor(chosenColor)

chosenMarker.SetSize(24)

176

theSymList.Set(0, chosenMarker)

' add the theme to the view

theTheme.UpdateLegend
theTheme.SetActive(True)

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then

MsgBox.Warning("Demand by Region view does not exist."+NL+
"CVS DCs theme not added to that view.",

Scriptname)
elseif (not (theView.Is(View))) then

MsgBox.Warning("Demand by Region view does not exist."+NL+
"CVS DCs theme not added to that view.",

Scriptname)
else

theView.AddTheme(theTheme)

end

newFTab = av.Run("AddXY", Nil)

newFTab.SetEditable(FALSE)

' Copy the CVS DCs theme and paste it
' to the Location Strategy view

locView = av.GetProject.FindDoc("Location Strategy")

if (locView = Nil) then

MsgBox.Warning("Location Strategy view does not exist."+NL+
"CVS DCs theme not copied to that view.",
Scriptname)

elseif (not (locView.Is(View))) then

MsgBox.Warning("Location Strategy view does not exist."+NL+
"CVS DCs theme not copied to that view.",
Scriptname)

else

checkTheme = locView.FindTheme("CVS DCs")

if (checkTheme <> Nil) then

locView.DeleteTheme(checkTheme)

end

dcTheme = theTheme.Clone

locView.AddTheme(dcTheme)

dcTheme.SetActive(FALSE)

end

return newFTab

177

* + *********•*********** + * + *■*• + **************************■*■*

Scriptname:

Filename:

Description;

Requires;

Called by:

Calls:

SELF:

Returns:

SQLTables.Get

sqltable.ave

Script launches an SQL connection with MS
Access and imports five tables from a selected
Access database. These five tables must have
the preset titles agreed upon by Anderson
Consulting and the UT team. Once imported, the
SQL tables are exported out again as .dbf files
so they can be re-imported into the ArcView
project in a read/write state.

MS Access ODBC driver must be activated. An
Ms Access .mdb file containing five tables
with the following names must be available.
DIRECT TO STORE

INPUT - FACILITIES
HANDLING

PICKING
TRANSHIPMENTS

Menu item click event {"SQLTables.Get")

Nil

Nil

Nil

Scriptname = "SQLTables.Get"

Set up the SQL connection to MS Access and bring SQL tables
into ArcView

theSQL=SQLCon.Find("MS Access")
if (theSQL = Nil) then

MsgBox.Error("MS Access database not found."+NL+
"Try reloading the MS Access ODBC driver.",
"SQL Connection Error")

exit

end

' Query the DIRECT TO STORE table

query = "Select * from [DIRECT TO STORE]"
theDTSVTab=VTab.MakeSQL(theSQL, query)
if (theDTSVTab = Nil) then

exit

end
theDTSTable = Table.Make(theDTSVTab)
av.GetProj ect.AddDoc(theDTSTable)
theDTSTable.SetName("Direct To Store")

178

theDTSTable.GetWin.Open

query = "Select * from [INPUT - FACILITIES]"
theDCVTab = VTab.MakeSQL(theSQL, query)
theDCTable = Table.Make(theDCVTab)

av.GetProject.AddDoc(theDCTable)
theDCTable.SetName("Input - Facilities")
theDCTable.GetWin.Open

query = "Select * from PICKING"
thePickVTab = VTab.MakeSQL(theSQL, query)
thePickTable = Table.Make(thePickVTab)

av.GetProject.AddDoc(thePickTable)
thePickTable.SetName("Picking")
thePickTable.GetWin.Open

query = "Select * from HANDLING"
theHandVTab = VTab.MakeSQL(theSQL, query)
theHandTable = Table.Make(theHandVTab)

av.GetProj ect.AddDoc(theHandTable)
theHandTable.SetName("Handling")
theHandTable.GetWin.Open

query = "Select * from TRANSHIPMENTS"
theTransVTab = VTab.MakeSQL(theSQL, query)
theTransTable = Table.Make(theTransVTab)

av.GetProj ect.AddDoc(theTransTable)
theTransTable.SetName("Transhipments")
theTransTable.GetWin.Open

Now convert the SQL tables to readable and writable
.dbf files by exporting the SQL tables in .dbf format
and re-importing those .dbf files into ArcView

theProject = av.GetProject
dts = theProject.FindDoc("Direct to Store")
infac = theProject.FindDoc("Input - Facilities")
hand = theProject.FindDoc("Handling")
pick = theProject.FindDoc("Picking")
tran = theProject.FindDoc("Transhipments")

' Make a list of the tables and make sure they
' exist by looping through and checking
' for Nil values

tabList = (dts, infac, hand, pick, tran)
for each t in tabList

if (t = Nil) then
MsgBox.Error("One or more required tables not

available ... Exiting.", Scriptname)

exit

end 'if

end' for loop

179

' Get the VTabs for each of the above tables

dtsVTab = dts.GetVTab

infacVTab = infac.GetVTab

handVTab = hand.GetVTab

pickVTab = pick.GetVTab
tranVTab = tran.GetVTab

' Get the working directory of the project

theDirectory = theProject.GetWorkDir.AsString

' create a filename for each VTab to

' be exported as a dbf file

dtsname = theDirectory + "\dirstore"
infacname = theDirectory + "\inputfac"
handname = theDirectory + "\handling"
pickname = theDirectory + "\picking"
tranname = theDirectory + "\tranship"

' Export the VTabs

dtsfile = dtsVTab.Export(dtsname.AsFileName, dBase, FALSE)
infacfile = infacVTab.Export(infacname.AsFileName, dBase, FALSE)
handfile = handVTab.Export(handname.AsFileName, dBase, FALSE)
pickfile = pickVTab.Export(pickname.AsFileName, dBase, FALSE)
tranfile = tranVTab.Export(tranname.AsFileName, dBase, FALSE)

' Add the tables to the project using the new VTabs

dtsTable = Table.Make(dtsfile)

dtsTable.SetName("dirstore.dbf")

infacTable = Table.Make(infacfile)

infacTable.SetName("inputfac.dbf")
handTable = Table.Make(handfile)

handTable.SetName("handling.dbf")
pickTable = Table.Make(pickfile)
pickTable.SetName("picking.dbf")
tranTable = Table.Make(tranfile)

tranTable.SetName("tranship.dbf")

' Remove the SQL Tables from the project

theProj ect.RemoveDoc(dts)
theProj ect.RemoveDoc(infac)
theProj ect.RemoveDoc(hand)

theProject.RemoveDoc(pick)
theProject.RemoveDoc(tran)

' Disonnect the SQL connection

theSQL.Logout

' Make sure all former themes are removed and all

' Demand Regions table is unlinked and unjoined

180

t
h
e
P
r
o
j
e
c
t

=

a
v
.
G
e
t
P
r
o
j
e
c
t

t
h
e
V
i
e
w

=

t
h
e
P
r
o
j
e
c
t
.
F
i
n
d
D
o
c
{
"
D
e
m
a
n
d

b
y

R
e
g
i
o
n
"
)

i
f

(
t
h
e
V
i
e
w

=

N
i
l
)

t
h
e
n

r
e
t
u
r
n

N
i
l

e
n
d

d
c
T
h
e
m
e

=

t
h
e
V
i
e
w
.
F
i
n
d
T
h
e
m
e
(
"
C
V
S

D
C
s
"
)

i
f

(
d
c
T
h
e
m
e

<
>

N
i
l
)

t
h
e
n

t
h
e
V
i
e
w
.
D
e
l
e
t
e
T
h
e
m
e
(
d
c
T
h
e
m
e
)

e
n
d

d
c
T
a
b
l
e

=

t
h
e
P
r
o
j
e
c
t
.
F
i
n
d
D
o
c
(
"
A
t
t
r
i
b
u
t
e
s

o
f

C
V
S

D
C
s
"
)

i
f

(
d
c
T
a
b
l
e

<
>

N
i
l
)

t
h
e
n

t
h
e
P
r
o
j
e
c
t
.
R
e
m
o
v
e
D
o
c
(
d
c
T
a
b
l
e
)

e
n
d

f
l
o
w
T
h
e
m
e

=

t
h
e
V
i
e
w
.
F
i
n
d
T
h
e
m
e
(
"
D
C
-
t
o
-
R
e
g
i
o
n

F
l
o
w
"
)

i
f

(
f
l
o
w
T
h
e
m
e

<
>

N
i
l
)

t
h
e
n

t
h
e
V
i
e
w
.
D
e
l
e
t
e
T
h
e
m
e
(
f
l
o
w
T
h
e
m
e
)

e
n
d

f
l
o
w
T
a
b
l
e

=
 t
h
e
P
r
o
j
e
c
t
.
F
i
n
d
D
o
c
(
"
A
t
t
r
i
b
u
t
e
s

o
f

D
C
-
t
o
-
R
e
g
i
o
n

F
l
o
w
"
)

i
f

(
f
l
o
w
T
a
b
l
e

<
>

N
i
l
)

t
h
e
n

t
h
e
P
r
o
j
e
c
t
.
R
e
m
o
v
e
D
o
c
(
f
l
o
w
T
a
b
l
e
)

e
n
d

t
r
a
n
T
h
e
r
a
e

=

t
h
e
V
i
e
w
.
F
i
n
d
T
h
e
m
e
(
"
T
r
a
n
s
h
i
p
m
e
n
t
s
"
)

i
f

(
t
r
a
n
T
h
e
m
e

<
>

N
i
l
)

t
h
e
n

t
h
e
V
i
e
w
.
D
e
l
e
t
e
T
h
e
m
e
(
t
r
a
n
T
h
e
m
e
)

e
n
d

t
r
a
n
T
a
b
l
e

~
 t
h
e
P
r
o
j
e
c
t
.
F
i
n
d
D
o
c
(
"
A
t
t
r
i
b
u
t
e
s

o
f

T
r
a
n
s
h
i
p
m
e
n
t
s
"
)

i
f

(
t
r
a
n
T
a
b
l
e

<
>

N
i
l
)

t
h
e
n

t
h
e
P
r
o
j
e
c
t
.
R
e
m
o
v
e
D
o
c
(
t
r
a
n
T
a
b
l
e
)

e
n
d

t
h
e
D
e
m
R
e
g
T
h
e
m
e
 -
 t
h
e
V
i
e
w
.
F
i
n
d
T
h
e
m
e
(
"
D
e
m
a
n
d

R
e
g
i
o
n
s
"
)

i
f

(
t
h
e
D
e
m
R
e
g
T
h
e
m
e

<
>

N
i
l
)

t
h
e
n

t
h
e
D
e
m
R
e
g
T
h
e
m
e
.
 G
e
t
 F
T
a
b
.
 U
n
 j
 o
i
n
A
l
l

t
h
e
D
e
m
R
e
g
T
h
e
m
e
.
 G
e
t
F
T
a
b
.
 U
n
l
i
n
k
A
l
l

^
e
l
s
e

i
f

(
t
h
e
P
r
o
j
e
c
t
.
F
i
n
d
D
o
c
(
"
A
t
t
r
i
b
u
t
e
s

o
f

D
e
m
a
n
d

R
e
g
i
o
n
s
"
)

<
>

N
i
l
)

t
h
e
n

i
 t
h
e
P
r
o
j
e
c
t
.
F
i
n
d
D
o
c
(
"
A
t
t
r
i
b
u
t
e
s

o
f

D
e
m
a
n
d

R
e
g
i
o
n
s
"
).
G
e
t
V
T
a
b
.

U
n
j
o
i
n
A
l
l

t
h
e
P
r
o
j
e
c
t
.
F
i
n
d
D
o
c
(
"
A
t
t
r
i
b
u
t
e
s

o
f

D
e
m
a
n
d

R
e
g
i
o
n
s
"
)
.
G
e
t
V
T
a
b
.

U
n
l
i
n
)
c
A
l
l

e
n
d

e
n
d

M
s
g
B
o
x
.
W
a
r
n
i
n
g
(
"
B
e
f
o
r
e
 p
r
o
c
e
e
d
i
n
g
,
 b
e
s
u
r
e

t
o
 d
e
l
e
t
e

a
n
y
"
+
n
l
+

"
r
e
m
a
i
n
i
n
g

s
p
e
c
i
a
l
t
y
 t
h
e
m
e
s

b
a
s
e
d

o
n

t
h
e

C
V
S

D
C
s
,
"

+
n
l
+
"
t
h
e

D
e
m
a
n
d

R
e
g
i
o
n
s
,

t
h
e

T
r
a
n
s
h
i
p
m
e
n
t
s
,

o
r

t
h
e

D
C
-
"
+
n
l
+
"
t
o
-
R
e
g
i
o
n

F
l
o
w
s

t
h
e
m
e
.
"
,

"
C
l
e
a
n

U
p

T
h
e

P
r
o
j
e
c
t
"
)

r
e
t
u
r
n

N
i
l

S
c
r
i
p
t
n
a
m
e
;

S
t
o
r
e
s
.
S
e
l
B
y
R
a
n
g
e

F
i
l
e
n
a
m
e
:

s
t
o
r
e
s
_
s
.
a
v
e

D
e
s
c
r
i
p
t
i
o
n
:

S
c
r
i
p
t

b
u
i
l
d
s

s
e
r
v
i
c
e

a
r
e
a

p
o
l
y
g
o
n
s

a
r
o
u
n
d

e
a
c
h

D
C

s
u
c
h

t
h
a
t

e
a
c
h

D
C

f
o
r
m
s

t
h
e

c
e
n
t
e
r

p
o
i
n
t

o
f

f
i
v
e

n
e
s
t
e
d

p
o
l
y
g
o
n
s

r
e
p
r
e
s
e
n
t
i
n
g

d
i
s
t
a
n
c
e

r
a
n
g
e
s

o
f

5
0
,

I
C
Q
,

1
5
0
,

2
0
0
,

a
n
d

2
5
0

m
i
l
e
s

a
w
a
y

f
r
o
m

D
C
.

E
a
c
h

d
i
s
t
i
n
c
t

r
a
n
g
e

i
s

s
e
l
e
c
t
e
d

f
o
r

e
a
c
h

D
C

a
n
d

t
h
e

s
t
o
r
e
s

t
h
a
t

f
a
l
l

w
i
t
h
i
n

t
h
a
t

r
a
n
g
e

a
r
e

s
e
l
e
c
t
e
d
.

F
o
r

e
a
c
h

r
a
n
g
e

s
e
l
e
c
t
i
o
n
,

t
h
e

s
c
r
i
p
t

t
h
e
n

c
a
l
l
s

t
h
e

D
C
.
R
a
n
g
e

s
c
r
i
p
t

w
h
i
c
h

c
a
l
c
u
l
a
t
e
s

a

D
C
_
R
a
n
g
e

f
i
e
l
d
 i
n

t
h
e

s
t
o
r
e
s

t
h
e
m
e

a
n
d

p
o
p
u
l
a
t
e
s

i
t

w
i
t
h

t
h
e

r
a
n
g
e

v
a
l
u
e

i
f

i
t

r
e
p
r
e
s
e
n
t
s

t
h
e

c
l
o
s
e
s
t

D
C

t
o

t
h
a
t

s
t
o
r
e
.

I
n

o
t
h
e
r

w
o
r
d
s
,

o
n
c
e

t
h
e

D
C
_
R
a
n
g
e

f
i
e
l
d

h
a
s

b
e
e
n

p
o
p
u
l
a
t
e
d

f
o
r

t
h
a
t

s
t
o
r
e
,

i
t

w
o
n
'
t

b
e

p
o
p
u
l
a
t
e
d

f
o
r

a

h
i
g
h
e
r

r
a
n
g
e

v
a
l
u
e
.

R
e
q
u
i
r
e
s
:

A

l
i
n
e

t
h
e
m
e

r
e
p
r
e
s
e
n
t
i
n
g

a

r
e
a
s
o
n
a
b
l
y

a
c
c
u
r
a
t
e

r
o
a
d

n
e
t
w
o
r
k

a
n
d

t
w
o

p
o
i
n
t

t
h
e
m
e
s

r
e
p
r
e
s
e
n
t
i
n
g

t
h
e

s
t
o
r
e
s

a
n
d

D
C
s
.

C
a
l
l
e
d

b
y
:

M
e
n
u

c
l
i
c
k

e
v
e
n
t

(
"
D
C

R
a
n
g
e
"
)

C
a
l
l
s
:

D
C
.
R
a
n
g
e

S
E
L
F
:

N
i
l

R
e
t
u
r
n
s
:

N
i
l

S
c
r
i
p
t
n
e
u
n
e

=
 "
S
t
o
r
e
s
.
 S
e
l
B
y
R
a
n
g
e
"

G
e
t

t
h
e

v
i
e
w

a
V
i
e
w

=

a
v
.
G
e
t
P
r
o
j
e
c
t
.
F
i
n
d
D
o
c
(
"
L
o
c
a
t
i
o
n

S
t
r
a
t
e
g
y
"
)

i
f

(
a
V
i
e
w

=

N
i
l
)

t
h
e
n

M
s
g
B
o
x
.
E
r
r
o
r
(
"
E
R
R
O
R
:

L
o
c
a
t
i
o
n

S
t
r
a
t
e
g
y

v
i
e
w

d
o
e
s

n
o
t

e
x
i
s
t
.
'

S
c
r
i
p
t
n
a
m
e
)

e
x
i
t

e
n
d

i
f

(
n
o
t

(
a
V
i
e
w
.
I
s
(
V
i
e
w
)
)
)

t
h
e
n

m
s
g
B
o
x
.
E
r
r
o
r
(
"
S
e
l
e
c
t
e
d

d
o
c
u
m
e
n
t

i
s

n
o
t

a

v
i
e
w
.
"
,
S
c
r
i
p
t
n
a
m
e
)

e
x
i
t

e
n
d

'
 g
e
t

t
h
e

f
i
r
s
t

l
i
n
e

t
h
e
m
e

a
N
e
t
T
h
e
m
e

=

n
i
l

t
h
e
N
e
t
T
h
e
m
e
L
i
s
t

=

{
}

f
o
r

e
a
c
h

t

i
n

a
V
i
e
w
.
G
e
t
T
h
e
m
e
s

i
f

(
N
e
t
D
e
f
.
C
a
n
M
a
k
e
F
r
o
m
T
h
e
m
e
(
t
)
)

t
h
e
n

theNetThemeList.Add(t)

end

end

' Have user select a theme

aNetTheme = MsgBox.List(theNetThemeList, "Select a line theme"+NL+
"to use as network:", Scriptname)

' check that a proper network theme was selected

if (aNetTheme = nil) then
msgBox.Error("Network theme not selected.",Scriptname)
exit

end

' make the NetDef and check it for errors
T

aNetDef = NetDef.Make(aNetTheme.GetFTab)
if (aNetDef.HasError) then

msgBox.Error("NetDef has error.",Scriptname)
exit

end

' make the Network object

aNetwork = Network.Make(aNetDef)

' get the point theme (to be used for stops)

aSiteTheme = nil

theSiteThemeList = {}

for each t in aView.GetThemes

if ((t.GetFTab.GetSrcName.GetSubName = "Point") AND
(t.GetName.Contains("DCs"))) then

theSiteThemeList.Add(t)

end

end

' Ask the user to select a site theme

aSiteTheme = MsgBox.List(theSiteThemeList, "Select a DCs theme:",
Scriptname)

' check if a stop theme was selected

if (aSiteTheme = nil) then
msgBox.Error("Site theme not selected.",Scriptname)
exit

end

aSiteFTab = aSiteTheme.GetFTab

pointShapeField = aSiteFTab.FindField("Shape")
pointLabelField = aSiteTheme.GetLabelField

' make a point list from the site theme, validate points, and
182

' set the name of each stop

aPointList = {}

for each rec in aSiteFTab
p = aSiteFTab.ReturnValue(pointShapeField, rec)
if (aNetwork.IsPointOnNetwork(p)) then

p.SetName(aSiteFTab.ReturnValueString(pointLabelField, rec))
aPointList.Add(p)

end

end

numPoints = aPointList.Count

' Set the cost field
t

aCostFieldList = aNetDef.GetCostFields
aCostField = aCostFieldList.Get(1)

aCostSetting = aNetwork.SetCostField(aCostField)

' Find the service area

aCost = {50.00, 100.00, 150.00, 200.00, 250.00)

aCostList = {)

'add the list of ranges aCostList
'once for each point in theSiteTheme

for each s in 1..numPoints
aCostList.Add(aCost)

end

aFromPointBool = True

aCompactAreaBool = False
aResultBool = aNetwork.FindServiceArea(aPointList, aCostList,

aFromPointBool,aCompactAreaBool)

if (not (aResultBool)) then
msgBox.Error("Unable to compute the service area",Scriptname)
exit

end

' Write the results to new shapefiles

theWorkingDir = av.GetProject.GetWorkDir. AsString
aPathFileNamel = "c:\cvs\cvsac\thesis\shapefiles\snetwork"

. AsFileName

aPathFileName2 = "c:\cvs\cvsac\thesis\shapefiles\sarea"
■AsFileName

aNetwork.WriteServiceArea(aPathFileNamel,aPathFileName2)

sName = srcName.Make(aPathFileName2.AsString+".shp")
servAreaTheme = Theme.Make(sName)
aView.AddTheme(servAreaTheme)
servAreaTheme.SetVisible(FALSE)

183

' Get the FTab of the Service Area theme

servFTab = servAreaTheme.GetFTab

' Have the user select stores theme

storeTheme = nil

thePointThemeList = {}

for each t in aView.GetThemes

if (t.GetFTab.GetSrcName.GetSubName = "Point") then

thePointThemeList.Add(t)

end

end

' Get the name of the store theme

storeName = aSiteTheme.GetName.AsTokens(" ").Get{0)

StoreTheme = aView.FindTheme(storeName++"Stores")

'' Ask the user to select a store theme
I

'storeTheme = MsgBox.List(thePointThemeList,

"Select a store theme:", Scriptname)

' check if a store theme was selected

if (storeTheme = nil) then

msgBox.Error("Store theme not found.",Scriptname)
exit

end

' Get the store theme FTab

storeFTab = storeTheme.GetFTab

' Add the DC_Range field to the stores FTab
' First get edit state of stores FTab, then
' set it to editable

edit_state = storeFTab.IsEditable
StoreFTab.SetEditable(TRUE)

' Make the new DC_Range Field

fid = StoreFTab.FindField("DC Range")
if (fid <> Nil) then

StoreFTab.Calculate("0", fid)

else

fid = Field.Make("DC Range", #FIELD_SHORT, 5, 0)
StoreFTab.AddFields({fid})

StoreFTab.Calculate("0", fid)

end

' Stop editing and restore edit state

StoreFTab.SetEditable(FALSE)

184

storeFTab.SetEditable(edit_state)

' Get the number of records in the DC theme table

numDCs = aSiteFTab.GetNumRecords

' Create a list of starting record numbers (i.e., 0 through 4
' since there are only five service area ranges).

startRecList = {0, 1, 2, 3, 4}

rangeList = {50 , 100, 150, 200, 250)

' Loop through starting Record List and each iteration select
' every fifth record in the service area theme

servBitMap = servFTab.GetSelection
dcSet = numDCs - 1

for each s in startRecList

index = s

servBitMap.ClearAll
servFTab.UpdateSelection
servBitMap.Set(index)

'Loop through servBitMap and select every fifth record
'Number of iterations is number of DCs minus one

for each d in l..dcSet ' sets the next n-1 number of records

index = index + 5

servBitMap.Set(index)
end ' for each DC loop

' Using the selected ranges in the service area theme ,
' find the stores that intersect with those polygons.

StoreFTab.SelectByFTab(servFTab, #FTAB_RELTYPE_INTERSECTS,
0, #VTAB_SELTYPE_NEW)

' Get the range value

rangeName = rangeList.Get(s)

' Call the DC.Range script to populate the DC_Range
' field with respective range value for the selected set.

av.Run("DC.Range", {storeFTab, fid, rangeName, storeTheme})

end ' for each range loop
servBitMap.ClearAll
servFTab.UpdateSelection

' Query the stores FTab for records with zero value in
' DC Range field and calculate their values to 251 to
' represent the fact that they are stores that are
' greater than 250 miles away from the nearest DC.

185

storeBitMap = storeFTab.GetSelection
storeBitMap.ClearAll
StoreFTab.UpdateSelection
queryString = "{[DC Range] = 0)"
successful = StoreFTab.Query(queryString, storeBitMap,

#VTAB_SELTYPE_NEW)
if (NOT successful) then

MsgBox.Error("Query string did not compile."+NL+
"See stores theme table.", Scriptname)

exit

end

edit_state = storeFTab.IsEditable
StoreFTab.SetEditable(TRUE)

StoreFTab.Calculate("251", fid)

StoreFTab.SetEditable(edit_state)
StoreBitMap.ClearAll
StoreFTab.UpdateSelection
activeThemeList = aView.GetActiveThemes

for each act in activeThemeList

act.SetActive(FALSE)

end

storeTheme.SetActive(True)

' Delete the service area theme

aView.DeleteTheme(servAreaTheme)

return Nil

186

Scriptname: SuinraD2S

Filename: summd2s.ave

Description: Sximmarizes the dirstore.dbf table over the
facility field for each product type and stores
them in tables called RxDirect, CWDirect, and

OTCDirect

Requires: Nil

Called by: CalcDCs

Calls: Nil

SELF: Nil

Returns: Nil

Scriptname = "SummD2S"

First get Direct to Store file and the working directory

theTab = av.GetProject.FindDoc("dirstore.dbf")
theVTab = theTab.GetVTab

theDirectory = av.GetProject.GetWorkDir.AsString

' Build RxDirect.dbf table

' Check to see if RxDirect already exists

rx_exists = (av.GetProject.FindDoc("RxDirect.dbf") = NIL).Not
skip = 0
if (rx_exists) then

thedoc = av.GetProject.FindDoc("RxDirect.dbf")
if (MsgBox.YesNo("Overwrite existing table?",
"The Table RxDirect already exists", false)) then

'if ok to overwrite, delete the fields as they
'may not be defined
'as required by this script (eg., created from
'another script),
if (rx_exists) then

av.GetProj ect.RemoveDoc(thedoc)
end

else

skip = 1
end 'if (MsgBox...)

end 'if

if (skip = 0) then
theBitMap = theVTab.GetSelection

187

expr = "([Product].UCase = "+"RX".Quote+")"
theVTab.Query(expr, theBitMap, #VTAB_SELTYPE_NEW)
theSunimaryField = theVTab. FindField ("Facility")
flrim = theDirectory + "\RxDirect. dbf"
fldl = theVTab.FindField("OptimizedValue")
sumFldList = {fldl}

sumList = {#VTAB_SUMMARY_SUM}
newVTab = theVTab.Summarize(flnin.AsFileName, dBase,

theSummaryField, sumFldList, sumList)
newTable = Table.Make(newVTab)

newTable.SetName("RxDirect.dbf")

'newTable.GetWin.Open
thenewVTab = newTable.GetVtab

' Make sure table is editable and if so,

' remove the count field

edit_state = thenewVTab.IsEditable
if (thenewVTab.CanEdit) then

thenewVTab.SetEditable(true)

thefld = thenewVTab.FindField("Count")

thenewVTab.RemoveFields({thefld])

'thenewVTab.SetEditable(false)

else

MsgBox.Warning("Table can't be modified."+NL+
"Count field not deleted.", Scriptname)

end

thefld = thenewVTab.FindField("Sum_OptimizedValue")
thefld.SetAlias("Rx D2S")

end

theTab.GetVTab.GetSelection.ClearAll

theTab.GetVTab.UpdateSelection

Build CWDirect.dbf table

'Check if the summary for CW picked exists

cw_exists = (av.GetProject.FindDoc("CWDirect.dbf") = NIL).Not
skip = 0
if (cw_exists) then
thedoc = av.GetProject.FindDoc("CWDirect.dbf")
if (MsgBox.YesNo("Overwrite existing table?",
"The Table CWDirect already exists", false)) then

'if ok to overwrite, delete the fields as
they may not be defined
as required by this script (eg., created from
'another script),

if (cw_exists) then
av.GetProject.RemoveDoc(thedoc)

end

else

'exit

skip = 1
end 'if (MsgBox...)

188

end 'if

if (skip = 0) then
theBitMap = theVTab.GetSelection
expr = "([Product].UCase = "+"CW".Quote+")"
theVTab.Query(expr, theBitMap, #VTAB_SELTYPE_NEW)
theSummaryField = theVTab.FindField("Facility")
firm = theDirectory + "\CWDirect.dbf"
fldl = theVTab.FindField("OptimizedValue")
sumFldList = {fldl}

sumList = {#VTAB_SUMMARY_SUM}
newVTab = theVTab.Summarize(firm.AsFileName, dBase,

theSummaryField, simFldList, sumList)
newTable = Table.Make(newVTab)
newTable.SetName("CWDirect.dbf")

'newTable.GetWin.Open
thenewVTab = newTable.GetVtab

' Make sure table is editable and if so,
' remove the count field

edit_state = thenewVTab.IsEditable
if (thenewVTab.CanEdit) then

thenewVTab.SetEditable(true)
thefld = thenewVTab.FindField("Count")
thenewVTab.RemoveFields({thefld])
'thenewVTab.SetEditable(false)

else

MsgBox.Warning("Table can't be modified."+NL+
"Count field not deleted.", Scriptname)

end

thefld = thenewVTab.FindField("Sum_OptimizedValue")
thefld.SetAlias("CW D2S")

end

theTab.GetVTab.GetSelection.ClearAll

theTab.GetVTab.UpdateSelection

' Build OTCDirect.dbf table

'Check if the sirmmary for OTC direct exists

otc_exists = (av.GetProject.FindDoc("OTCDirect.dbf") = NIL).Not
skip = 0
if (otc_exists) then

thedoc = av.GetProject.FindDoc("OTCDirect.dbf")
if (MsgBox.YesNo("Overwrite existing table?",
"The Table OTCDirect already exists", false)) then
'if ok to overwrite, delete the fields as they
'may not be defined
'as required by this script (eg., created from
'another script).
if (otc_exists) then

av.GetProject.RemoveDoc(thedoc)
end

189

else

skip = 1
' exit

end 'if (MsgBox...)
end 'if

if (skip = 0) then
theBitMap = theVTab.GetSelection
expr = "([Product].UCase = "+"OTC".Quote+")"
theVTab.Query(expr, theBitMap, #VTAB_SELTYPE_NEW)
theSuiranaryField = theVTab.FindField("Facility")
flnm = theDirectory + "\OTCDirect.dbf"
fldl = theVTab.FindField("OptimizedValue")
suitiFldList = {fldl}

suitiList = {#VTAB_SUMMARY_SUM}
newVTab = theVTab.Summarize(flnm.AsFileName, dBase,

theSummaryField, sumFldList, sumList)
newTable = Table.Make(newVTab)

newTable.SetName("OTCDirect.dbf")

'newTable.GetWin.Open
thenewVTab = newTable.GetVtab

' Make sure table is editable and if so,

' remove the count field

edit_state = thenewVTab.IsEditable
if (thenewVTab.CanEdit) then

thenewVTab.SetEditable(true)

thefld = thenewVTab.FindField("Count")
thenewVTab.RemoveFields({thefld})

'thenewVTab.SetEditable(false)

else

MsgBox.Warning("Table can't be modified."+NL+
"Count field not deleted.", Scriptname)

end

thefld = thenewVTab.FindField("Sum_OptimizedValue")
thefld.SetAlias("OTC Picked")

end

theTab.GetVTab.GetSelection.ClearAll

theTab.GetVTab.UpdateSelection

return Nil

190

I **** + ** + ** + + ** + * + + * + *• + + * + ***********■* + ** + * + ** + *******************

Scriptname:

Filename:

Description:

Requires:

Called by:

Calls:

SELF:

Returns:

SummDems

summdems.ave

This script is similar to CalcDCs but summarizes
the flows for demand regions instead of DCs.
Need to summarize the the dirstore.dbf table
over the demand regions for all flows greater
than zero

dirstore.dbf must exist

View menu item click event ("Sum Regions")

Nil

Nil

Nil

Scriptname - "SummDems"

First get direct to store file and the working directory

theTab = av.GetProject.FindDoc("dirstore.dbf")
if (theTab = Nil) then

MsgBox.Info("Could not find dirstore.dbf file. Exiting. . .",
"ERROR")

exit

end

theVTab = theTab.GetVTab
theDirectory = av.GetProject.GetWorkDir.AsString

'Check if the summary for Rx2Store exists

rx exists = (av.GetProject.FindDoc("Rx2Store.dbf") = NIL) .Not
skip = 0
if (rx_exists) then

thedoc = av. GetProject.FindDoc("Rx2Store. dbf")
if (MsgBox.YesNo("Overwrite existing table?",
"The Table Rx2Store already exists", false)) then

'if ok to overwrite, delete the fields as they
'may not be defined
'as required by this script (eg., created from
'another script) ,
if (rx_exists) then

av.GetProject.RemoveDoc(thedoc)
end

else

skip = 1
' exit

end 'if (MsgBox...)
end 'if

191

if (skip = 0) then
theBitMap = theVTab.GetSelection
expr = "({[Product].UCase = ""RX"") and

([OptimizedValue] > 0)) "
theVTab.Query(expr, theBitMap, #VTAB_SELTYPE_NEW)
theSuinmaryField = theVTab. FindField ("DemandRegion")
flnin = theDirectory + "\Rx2Store. dbf"
fldl = theVTab.FindField("OptimizedValue")
sumFldList = [fldl]

sumList = {#VTAB_SUMMARY_SUM}
newVTab = theVTab.Summarize(flnm.AsFileName, dBase,

theSummaryField, sumFldList, sumList)
newTable = Table.Make(newVTab)

newTable.SetName("Rx2Store. dbf")
'newTable.GetWin.Open
thenewVTab = newTable.GetVtab

' Make sure table is editable and if so,
' remove the count field

edit_state = thenewVTab.IsEditable
if (thenewVTab.CanEdit) then

thenewVTab.SetEditable(true)

thefld = thenewVTab.FindField("Count")

thenewVTab.RemoveFields({thefld})
' thenewVTab.SetEditable(false)

else

MsgBox.Warning("Can't modify the table."+NL+
"Check write permission.","Can't delete Count field!")
exit

end

thefld = thenewVTab.FindField("Sum_OptimizedValue")
thefld.SetAlias("Rx2Store")

end

theTab.GetVTab.GetSelection.ClearAll

theTab.GetVTab.UpdateSelection

'Check if the summary for CW2Store exists

cw_exists = (av.GetProject.FindDoc("CW2Store.dbf") = NIL).Not
skip = 0
if (cw_exists) then
thedoc = av.GetProject.FindDoc("CW2Store.dbf")
if (MsgBox.YesNo("Overwrite existing table?",
"The Table CW2Store already exists", false)) then
'if ok to overwrite, delete the fields as they
'may not be defined
'as required by this script (eg., created from
'another script),
if (cw_exists) then

av.GetProj ect.RemoveDoc(thedoc)
end

else

192

' exit

skip = 1

end 'if (MsgBox...)
end 'if

if (skip = 0) then
theBitMap = theVTab.GetSelection
expr = "(([Product].UCase = ""CW"") and

([OptimizedValue] > 0))"
theVTab.Query(expr, theBitMap, #VTAB_SELTYPE_NEW)
theSuiranaryPield = theVTab.FindField("DemandRegion")
flniti = theDirectory + "\CW2Store. dbf"
fldl = theVTab.FindField("OptimizedValue")
sumFldList = {fldl}

sumList = {#VTAB_SUMMARY_SUM}
newVTab = theVTab.Summarize(flnm.AsFileName, dBase,

theSummaryField, sumFldList, sumList)
newTable = Table.Make(newVTab)

newTable.SetName("CW2Store.dbf")

'newTable.GetWin.Open
thenewVTab = newTable.GetVtab

' Make sure table is editable and if so,

' remove the count field

edit_state = thenewVTab.IsEditable
if (thenewVTab.CanEdit) then

thenewVTab.SetEditable(true)

thefld = thenewVTab.FindField("Count")

thenewVTab.RemoveFields({thefld])

' thenewVTab.SetEditable(false)

else

MsgBox.Warning("Can't modify the table."+NL+
"Check write permission.","Can't delete Count field!")
exit

end

thefld = thenewVTab.FindField("Sum_OptimizedValue")
thefld.SetAlias("CW2Store")

end

theTab.GetVTab.GetSelection.ClearAll

theTab.GetVTab.UpdateSelection

'Check if the summary for OTC d2s exists
otc_exists = (av.GetProject.FindDoc("0TC2Store.dbf") = NIL).Not
skip - 0
if (otc_exists) then

thedoc = av.GetProject.FindDoc("0TC2Store.dbf")
if (MsgBox.YesNo("Overwrite existing table?",
"The Table 0TC2Store already exists", false)) then
'if ok to overwrite, delete the fields as they
'may not be defined
'as required by this script (eg., created from
'another script),
if (cw_exists) then

av.GetProj ect.RemoveDoc(thedoc)
end

else

193

' exit

skip = 1
end 'if (MsgBox...)

end 'if

if (skip = 0) then
theBitMap = theVTab.GetSelection
expr = "(([Product].UCase = ""OTC"") and

([OptimizedValue] > 0))"
theVTab.Query (expr, theBitMap, #A/TAB_SELTYPE_NEW)
theSummaryField = theVTab.FindField("DemandRegion")
flnm = theDirectory + "\0TC2Store.dbf"
fldl = theVTab.FindField("OptimizedValue")
sumFldList = {fldl}

sumList = {#VTAB_SUMMARY_SUM}
newVTab = theVTab.Summarize(flnm.AsFileName, dBase,

theSummaryField, sumFldList, sumList)
newTable = Table.Make(newVTab)

newTable.SetName("0TC2Store.dbf")

'newTable.GetWin.Open
thenewVTab = newTable.GetVtab

' Make sure table is editable and if so,

' remove the count field

edit_state = thenewVTab.IsEditable
if (thenewVTab.CanEdit) then

thenewVTab.SetEditable(true)

thefld = thenewVTab.FindField("Count")

thenewVTab.RemoveFields({thefld})

' thenewVTab.SetEditable(false)

else

MsgBox.Warning("Can't modify the table."+NL+
"Check write permission.","Can't delete Count field!")
exit

end

thefld = thenewVTab.FindField("Sum_OptimizedValue")
thefld.SetAlias("0TC2Store")

end

theTab.GetVTab.GetSelection.ClearAll

theTab.GetVTab.UpdateSelection

Join the Rx2Store, CW2Store, and 0TC2Store tables
to the Demand Regions theme table

' Get the Demand Regions FTab

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then

MsgBox.Error("ERROR: Demand by Region view does not exist."+NL+
"Summaries not joined to Demand Regions theme.",
Scriptname)

exit

end

if (not (theView.Is(View))) then

194

MsgBox.Error("ERROR: Demand by Region doc is not a view."+NL+
"Summaries not joined to Demand Regions theme.",
Scriptname)

exit

end

theTheme = theView.FindTheme("Demand Regions")
if (theTheme = Nil) then

MsgBox.Error("ERROR: Theme called Demand
Regions does not exist."+NL+

"Summaries not joined to Demand
Regions theme.", Scriptname)

exit

end

theFTab = theTheme.GetFTab

' Check to see if it already has joins

if (theFTab.IsBase.Not) then

av.GetProject.SetModified(true)
end

theFTab.Unj oinAll

' Get the join field of the Demand Regions table

fieldl = theFTab.FindField("Demand Region")

' Get the FTab and join field of the Rx2Store table
' and join it to the Demand Regions table

theVtab2 = av.FindDoc("Rx2Store.dbf").GetVTab
field2 = theVtab2.FindField("DemandRegion")
theFTab.Join(fieldl, theVtab2, field2)

' Get the FTab and join field of the CW2Store table
' and join it to the Demand Regions table

theVtab2 = av.FindDoc{"CW2Store.dbf").GetVTab
field2 = theVtab2.FindField("DemandRegion")
theFTab.Join(fieldl, theVtab2, field2)

' Get the FTab and join field of the 0TC2Store table
' and join it to the Demand Regions table

theVtab2 = av.FindDoc("0TC2Store.dbf").GetVTab
field2 = theVtab2.FindField("DemandRegion")
theFTab.Join(fieldl, theVtab2, field2)

' Summarize the demand for all the products
I

theFTab.SetEditable(true)

totalField = theFTab.FindField("Total Demand")

' Create the Total Demand field if necessary, and calculate

195

' its value to zero

if (totalField = Nil) then

totalField = Field.Make("Total Demand", #FIELD_LONG, 12, 0)
theFTab.AddFields({totalField})

end

theFTab.Calculate("0", totalField)

' Create the new "_Vol" fields for CW, Rx, and OTC
' if necessary and calculate their values to zero

catList = ("OTC", "Rx", "CW"}
for each cat in catList

newFldString = cat+"_Vol"
newFld = theFTab.FindField(newFldString)

if (newFId = Nil) then

newFId = Field.Make(newFldString, #FIELD_LONG, 12, 0)
theFTab.AddFields({newFId})

end

theFTab.Calculate("0", newFId)

end

' Get the bitmap of the FTab and select all records in each
' joined sort field that is not null, then populate these
' values to its corresponding new field in the FTab using
' the calculate request

theBitMap = theFTab.GetSelection
theBitMap.ClearAll
theFTab.UpdateSelection
for each cat in catList

fldName = cat+"2Store"

theField = theFTab.FindField(fldName)

if (theField <> Nil) then

expr = "(["+fldName+"].IsNull.Not)"
theFTab.Query(expr, theBitMap, #VTAB_SELTYPE_NEW)
calcexpr = "["+fldName+"]"
curstring = cat+"_Vol"
calcfield = theFTab.FindField(curstring)
theFTab.Calculate(calcexpr, calcfield)

end

end

theBitMap.ClearAll
theFTab.Unj oinAll

' Get the fields to be totalled and calculate the

' Total Demand field

oFld = theFTab.FindField("OTC_Vol").AsString
rFld = theFTab.FindField("Rx_Vol").AsString
cFld = theFTab.FindField("CW_Vol").AsString

calcexpr = "(["+oFld+"} + ["+rFld+"] + ["+cFld+"])"
theFTab.Calculate(calcexpr, totalField)

' Stop editing and save changes to FTab

196

theFTab.SetEditable(FALSE)

MsgBox. Info ("Sxjinmary of Demand Region Data complete.",
"NOTICE")

return Nil

197

,***+*+*+****+****+******+***************+********+***************

' Scriptname: SurtimTS

' Filename: summts.ave

' Description: Script summarizes the transhipment information
' which is later joined to the CVS DCs theme table

' Requires: Nil

' Called by: CalcDCs

' Calls: Nil

' SELF: Nil

' Returns: Nil

I********.***

Scriptname = "SummTS"

' First get tranship.dbf table's VTab and the working directory

theTab = av.GetProject.FindDoc("tranship.dbf")
theVTab = theTab.GetVTab

theDirectory = av.GetProject.GetWorkDir.AsString

' First do summaries over OriginFacilities field in picking.dbf
' and make pick tables called RxPicked and CWPicked.

' Check if the summary for Rx picked exists

rx exists = {av.GetProject.FindDoc{"RxPicked.dbf") = NIL).Not
skip = 0
if (rx_exists) then

thedoc = av.GetProject.FindDocC'RxPicked.dbf")
if (MsgBox.YesNo("Overwrite existing table?",
"The Table RxPicked already exists", false)) then
'if ok to overwrite, delete the fields as they
'may not be defined
'as required by this script (eg., created from
'another script),

if (rx_exists) then
av.GetProj ect.RemoveDoc(thedoc)

end

else

skip = 1
end 'if (MsgBox...)

end 'if

if (skip = 0) then
theBitMap = theVTab.GetSelection
expr = "([Product].UCase = "+"RX".Quote+")"

198

theVTab.Query(expr, theBitMap, #VTAB_SELTYPE_NEW)
theSuitimaryField = theVTab. FindField ("OriginFacility")
flnm = theDirectory + "\RxPicked.dbf"
fldl = theVTab.FindField("OptimizedValue")
sumFldList = {fldl}

sumList = {#VTAB_SUMMARY_SUM}
newVTab = theVTab.Summarize(flnm.AsFileName, dBase,

theSummaryField, sumFldList, sumList)
newTable = Table.Make(newVTab)

newTable.SetName("RxPicked.dbf")

'newTable.GetWin.Open
thenewVTab = newTable.GetVtab

' Make sure table is editable and if so,

' remove the count field

edit_state = thenewVTab.IsEditable
if (thenewVTab.CanEdit) then

thenewVTab.SetEditable(true)

thefld = thenewVTab.FindField("Count")

thenewVTab.RemoveFields((thefld))

thenewVTab.SetEditable(false)

else

MsgBox.Warning("Table can't be modified."+NL+
"Count field not deleted.", Scriptname)

end

thefld = thenewVTab.FindField("Sum_OptimizedValue")
thefld.SetAlias("RxPicked for TS")

end

theTab.GetVTab.GetSelection.ClearAll

theTab.GetVTab.UpdateSelection

'Check if the summary for CW picked exists

cw_exists = (av.GetProject.FindDoc("CWPicked.dbf") = NIL).Not
skip = 0
if (cw_exists) then

thedoc = av.GetProject.FindDoc("CWPicked.dbf")
if (MsgBox.YesNo("Overwrite existing table?",
"The Table CWPicked already exists", false)) then
'if ok to overwrite, delete the fields as they
'may not be defined
'as required by this script (eg., created from
'another script),
if (cw_exists) then

av.GetProject.RemoveDoc(thedoc)
end

else

skip = 1
end 'if (MsgBox...)

end 'if

if (skip = 0) then
theBitMap = theVTab.GetSelection
expr = "([Product].UCase = "+"CW".Quote+")"
theVTab.Query(expr, theBitMap, #VTAB_SELTYPE_NEW)

199

theSummaryField = theVTab.FindField("OriginFacility")
flnm = theDirectory + "\CWPicked.dbf"
fldl = theVTab.FindField("OptimizedValue")
sumFldList = {fldl}

sumList = {#VTAB_SUMMARY_SUM}
newVTab = theVTab.Summarize(flnm.AsFileName, dBase,

theSummaryField, sumFldList, sumList)
newTable = Table.Make(newVTab)

newTable.SetName{"CWPicked.dbf")

'newTable.GetWin.Open
thenewVTab = newTable.GetVtab

' Make sure table is editable and if so,

' remove the count field

edit_state = thenewVTab.IsEditable
if (thenewVTab.CanEdit) then

thenewVTab.SetEditable(true)

thefld = thenewVTab.FindField("Count")

thenewVTab.RemoveFields({thefld})

thenewVTab.SetEditable(false)

else

MsgBox.Warning("Table can't be modified."+NL+
"Count field not deleted.", Scriptname)

end

thefld = thenewVTab.FindField("Sum_OptimizedValue")
thefld.SetAlias("CWPicked for TS")

end

theTab.GetVTab.GetSelection.ClearAll

theTab.GetVTab.UpdateSelection

Now do summaries over DestFacility field in
picking.dbf table and make crossdock tables called
Rx X Doc and CW X Doc.

'Check if the summary for Rx cross doc exists

rx_exists = (av.GetProject.FindDoc("Rx_X_Doc.dbf") = NIL).Not
skip = 0
if (rx_exists) then

thedoc = av.GetProject.FindDoc("Rx_X_Doc. dbf")
if (MsgBox.YesNo("Overwrite existing table?",
"The Table Rx_X_Doc already exists", false)) then
'if ok to overwrite, delete the fields as they
'may not be defined
'as required by this script (eg., created from
'another script),
if (rx_exists) then

av.GetProject.RemoveDoc(thedoc)
end

else

skip = 1
' exit

200

end 'if (MsgBox...)
end 'if

if (skip = 0) then
theBitMap = theVTab.GetSelection
expr = "([Product].UCase = ""rx"")"
theVTab.Query(expr, theBitMap, #VTAB_SELTYPE_NEW)
theSummaryField = theVTab.FindField("DestinationFacility")
flnm = theDirectory + "\Rx_X_Doc.dbf"
fldl = theVTab.FindField("OptimizedValue")
sumFldList = (fldl)

sumList = {#VTAB_SUMMARY_SUM}
newVTab = theVTab.Summarize(flnm.AsFileName, dBase,

theSummaryField, sumFldList, sumList)
newTable = Table.Make(newVTab)

newTable.SetName("Rx_X_Doc.dbf")
'newTable.GetWin.Open
thenewVTab = newTable.GetVtab

' Make sure table is editable and if so,

' remove the count field

edit state = thenewVTab.IsEditable

if (thenewVTab.CanEdit) then
thenewVTab.SetEditable(true}

thefld = thenewVTab.FindField("Count")
thenewVTab.RemoveFields({thefld})

thenewVTab.SetEditable(false)

else

MsgBox.Warning("Table can't be modified."+NL+
"Count field not deleted.", Scriptname)

end

thefld = thenewVTab.FindField("Sum_OptimizedValue")
thefld.SetAlias("Rx_X_Doc")

end

theTab.GetVTab.GetSelection.ClearAll

theTab.GetVTab.UpdateSelection

'Check if the summary for CW picked exists

cw_exists = (av.GetProject.FindDoc
("CW_X_Doc.dbf") = NIL).Not

skip = 0
if (cw_exists) then

thedoc = av.GetProject.FindDoc("CW_X_Doc.dbf")
if (MsgBox.YesNo("Overwrite existing table?",
"The Table CW_X_Doc already exists", false)) then
'if ok to overwrite, delete the fields as they
'may not be defined
'as required by this script (eg., created from
'another script),
if (cw_exists) then

av.GetProject.RemoveDoc(thedoc)
end

else

' exit

skip = 1

201

end 'if (MsgBox...)
end 'if

if (skip = 0) then
theBitMap = theVTab.GetSelection
expr = "([Product].UCase = ""CW"")"
theVTab.Query(expr, theBitMap, #VTAB_SELTYPE_NEW)
theSummaryField = theVTab.FindField("DestinationFacility")
flniti = theDirectory + "\CW_X_Doc.dbf"
fldl = theVTab.FindField("OptimizedValue")
sumFldList = {fldl}

siimList = {#VTAB_SUMMARY_SUM}
newVTab = theVTab.Summarize(flnm.AsFileName, dBase,

theSummaryField, sumFldList, sumList)
newTable = Table.Make(newVTab)

newTable.SetName("CW_X_Doc.dbf")
'newTable.GetWin.Open
thenewVTab = newTable.GetVtab

' Make sure table is editable and if so,

' remove the count field

edit_state = thenewVTab.IsEditable
if (thenewVTab.CanEdit) then

thenewVTab.SetEditable(true)

thefld = thenewVTab.FindField("Count")

thenewVTab.RemoveFields({thefld])

thenewVTab.SetEditable(false)

else

MsgBox.Warning("Table can't be modified."+NL+
"Count field not deleted.", Scriptname)

' exit

end

thefld = thenewVTab.FindField("Sum_OptimizedValue")
thefld.SetAlias("CW_X_Doc")

end

theTab.GetVTab.GetSelection.ClearAll

theTab.GetVTab.UpdateSelection

return Nil

202

Scriptname: Table.Convert

Filename: table_co.ave

Description: Script requires that certain tables be brought
into the project from Anderson's MS Access
database via an SQL connection. Script selects
each table, exports it as a dbf file, then adds
the new dbf file to the project.

Called by: Menu Click event ("Convert Tables")

Calls: Nil

SELF: Nil

Returns: Nil

First locate the SQL tables in the project
theProject = av.GetProject
dts = theProject.FindDoc("Direct to Store")
infac = theProject.FindDoc("Input - Facilities")
hand = theProject.FindDoc("Handling")
pick = theProject.FindDoc("Picking")
tran = theProject.FindDoc("Transhipments")

' Make a list of the tables and make sure they
' exist by looping through and checking
' for Nil values

tabList = {dts, infac, hand, pick, tran)
for each t in tabList

if (t = Nil) then

MsgBox.Error("One or more required tables not
available ... Exiting.", "Table.Convert")

exit

end 'if

end' for loop

' Get the VTabs for each of the above tables

dtsVTab = dts.GetVTab

infacVTab = infac.GetVTab

handVTab = hand.GetVTab

pickVTab = pick.GetVTab
tranVTab = tran.GetVTab

' Get the working directory of the project

theDirectory = theProject.GetWorkDir.AsString

' create a filename for each VTab to be exported as a dbf file

203

dtsname = theDirectory + "\dirstore"
infacname = theDirectory + "\inputfac"
handname = theDirectory + "\handling"
pickname = theDirectory + "\picking"
tranname = theDirectory + "\tranship"

' Export the VTabs

dtsfile = dtsVTab.Export (dtsname.AsFileNaitie, dBase, FALSE)
infacfile = infacVTab.Export(infacname.AsFileName, dBase, FALSE)
handfile = handVTab.Export(handname.AsFileName, dBase, FALSE)
pickfile = pickVTab.Export(pickname.AsFileName, dBase, FALSE)
tranfile = tranVTab.Export(tranname.AsFileName, dBase, FALSE)

' Add the tables to the project using the new VTabs

dtsTable = Table.Make(dtsfile)

dtsTable.SetName {"dirstore.dbf")

infacTable = Table.Make(infacfile)

infacTable.SetName ("inputfac.dbf")
handTable = Table.Make(handfile)

handTable.SetName ("handling.dbf")
pickTable = Table.Make(pickfile)
pickTable.SetName("picking.dbf")
tranTable = Table.Make(tranfile)

tranTable.SetName("tranship.dbf")

' Remove the SQL Tables from the project

theProj ect.RemoveDoc(dts)
theProject.RemoveDoc(infac)

theProject.RemoveDoc(hand)
theProj ect.RemoveDoc(pick)
theProj ect.RemoveDoc(tran)

' Get the SQL connection and disconnect it

theCon = SQLCon.Find("MS Access 97 Database")

theCon.Logout
if (theCon = Nil) then

MsgBox.Info("SQL connection closed.", "Table.Convert")
else

MsgBox.Info("SQL connection not closed.", "Table.Convert")
end

return Nil

204

Scriptname: Tables.Link
t

Filename: tables_l.ave

Description: Script links the Demand Regions FTab to the
dirstore.dbf VTab, the dirstore.dbf VTab to
the DCs FTab, and the DCs FTab to the
tranship.dbf VTab. These links are needed to
run the trace scripts.

Requires: dirstore.dbf file, tranship.dbf file.
Demand Regions theme, CVS DCs theme exist

Called by: Any of the Trace scripts

Calls: Nil

SELF: Nil

Returns: Nil

Scriptname = "Tables.Link"

Get the tables to be linked

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then
MsgBox.Error("ERROR: Demand by Region view does not exist.",

Scriptname)

exit

elseif (not (theView.Is(View))) then
lyisgBox. Error ("ERROR: Demand by Region doc is not a view.",

Scriptname)

exit

end

theTheme = theView.FindTheme("Demand Regions")
if (theTheme = Nil) then
MsgBox.Error("ERROR: Demand Regions theme does not exist.",

Scriptname)
exit

end

theStoreVTab = theTheme.GetFTab

theD2STable = av.GetProject.FindDoc("dirstore.dbf")
if(theD2STable = Nil) then

MsgBox.Info("ERROR: dirstore.dbf table does not exist.",
Scriptname)

exit

end

theD2SVTab = theD2STable.GetVTab

theDCTheme = theView.FindTheme("CVS DCs")

if (theDCTheme = Nil) then
MsgBox.Error("ERROR: CVS DCs theme does not exist.",

205

Scriptname)

exit

end

theDCVTab = theDCTheme.GetFTab

theTSTable = av.GetProject.FindDoc("tranship.dbf")
if (theTSTable = Nil) then

MsgBox.Error("ERROR: tranship.dbf table does not exist.",
Scriptname)

exit

end

theTSVTab = theTSTable.GetVTab

' Get the common fields and link Attributes of

' Demand Regions to dirstore.dbf

theStoreFldl = theStoreVTab.FindField("Demand Region")
theStoreFld2 = theD2SVTab.FindField("DemandRegion")
theStoreVTab.Link(theStoreFldl, theD2SVTab, theStoreFld2)

if (theSToreVTab.IsLinked.Not) then

MsgBox.Warning("Link was unsuccessful... exiting.",
"Tables.Link")

exit

end 'if

' Get the common fields and link

' dirstore.dbf to Attributes of DCs

theDCFldl = theD2SVTab.FindField("Facility")
theDCFld2 = theDCVTab.FindField("Facility")
theD2SVTab.Link(theDCFldl, theDCVTab, theDCFld2)

if (theD2SVTab.IsLinked.Not) then

MsgBox.Warning("Link was unsuccessful...exiting.",
"Tables.Link")

theStoreVTab.UnlinkAll

exit

end 'if

' Get the common fields and link

' Attributes of DCs to tranship.dbf

theFacFldl = theDCFld2

theFacFld2 = theTSVTab.FindField("DestinationFacility")
theDCVTab.Link(theFacFldl, theTSVTab, theFacFld2)

if (theDCVTab.IsLinked.Not) then
MsgBox.Warning("Link was unsuccessful... exiting.",

"Tables.Link")

theStoreVTab.UnlinkAll

theD2SVTab.UnlinkAll

exit

end 'i f

return Nil

206

I*++**+*******+*****************+*******+■**+**+*******************

' Scriptname: Tables.Unlink

' Filename: tables_u.ave

' Description: Script unlinks the Demand Regions FTab, the
' dirstore.dbf VTab, and the CVS DCs FTab. These
' links are needed to run the Trace scripts

' Requires: dirstore.dbf file, tranship.dbf file. Demand
' Regions theme, CVS DCs theme exist

' Called by: Any of the Trace scripts

' Calls: Nil

' SELF: Nil

' Returns: Nil

Scriptname = "Tables.Unlink"

' Get the tables to be linked

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then

MsgBox.Error("ERROR: Demand by Region view does not exist.",
Scriptname)

exit
elseif (not (theView.Is(View))) then

MsgBox.Error("ERROR: Demand by Region doc is not a view.",
Scriptname)

exit
end

theTheme = theView.FindTheme("Demand Regions")
if (theTheme = Nil) then

MsgBox.Error("ERROR: Demand Regions theme does not exist.",
Scriptname)

exit

end
theStoreVTab = theTheme.GetFTab
theD2STable = av.GetProject.FindDoc("dirstore.dbf")
if(theD2STable = Nil) then

MsgBox.Info("ERROR: dirstore.dbf table does not exist.",
Scriptname)

exit

end
theD2SVTab = theD2STable.GetVTab
theDCTheme = theView.FindTheme("CVS DCs")
if (theDCTheme = Nil) then

MsgBox.Error("ERROR: CVS DCs theme does not exist.",
Scriptname)

exit

207

end

theDCVTab = theDCTheme.GetFTab

theTSTable = av.GetProject.FindDoc("tranship.dbf")
if (theTSTable = Nil) then

MsgBox.Error("ERROR: tranship.dbf table does not exist.",
Scriptname)

exit

end

theTSVTab = theTSTable.GetVTab

theStoreVTab.UnlinkAll

theD2SVTab.UnlinkAll

theDCVTab.UnlinkAll

theTSVTab.UnlinkAll

return Nil

208

Scriptname: TotalFlowTheme.Make

Filename: totalflo.ave

Author: Kenneth Bennett

Date: May 3, 1998

Description: Script generates a Flow theme based on the Total
Flow field in the DC-to-Region Flow theme table.
Zero value flows are made invisible using the
null value and symbol.

Requires: DC-to-Region flow theme must exist

Called by: View menu item click event ("Display Flows:
DC-to-Region by Total Flow")

Calls: Nil

SELF: Nil

Returns: Nil

+++*****.******+★***+*****+***+++*+***+***************************

Scriptname = "TotalFlowTheme.Make"

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then

MsgBox.Error("ERROR: Demand by Region view does not exist.",
Scriptname)

exit

end

if (not (theView.Is(View))) then
MsgBox.Error("ERROR: Demand by Region doc is not a view.",

Scriptname)

exit

end

theTheme = theView.FindTheme("DC-to-Region Flow")
if (theTheme = Nil) then

MsgBox.Error("ERROR: Theme called DC-to-Region
Flow does not exist.", Scriptname)

exit

end

catString = "Total Flow"

checkTheme = theView.FindTheme(catString)

if (checkTheme <> nil) then
theView.DeleteTheme(checkTheme)

theTable = av.GetProject.FindDoc("Attributes of"++catString)
if (theTable <> NIL) then

av.GetProj ect.RemoveDoc(theTable)
209

end

end

' Clone the DC-to-Region Flow theme

newTheme = theTheme.Clone

newLegend = newTheme.GetLegend
newLegend.SetLegendType(#LEGEND_TYPE_SYMBOL)

' Make zero the null value

newLegend.SetNullValue(catString, 0)

' Select a color from the color palette to be used
' in drawing the new line theme

theColor = av.Run{"ColorPalette.SelectColor", Nil)

' Classify the legend with into five natural breaks
' and weight the line thickness by the flow volume

newLegend.Natural(newTheme, catString, 5)
theSymbolList = newLegend.GetSymbols
thickness = 1

count = 0

for each s in theSymbolList
s.SetSize(thickness)

thickness = thickness + 1

end

theSymbolList.UniformColor(theColor)

' Make the null symbol transparent

nullSym = Symbol.Make(#SYMBOL_PEN)
theNullColor = Color.GetBlue

theNullColor.SetTransparent(TRUE)
nullSym.SetColor(theNullColor)
newLegend.SetNullSymbol(nullSym)
newLegend.DisplayNoDataClass(FALSE)
newTheme.SetLegend(newLegend)
newTheme.SetName (catString)
newTheme.SetActive(FALSE)

newTheme.SetVisible(TRUE)
theView.AddTheme (newTheme)

newTheme.UpdateLegend
theView.Invalidate

theNullColor.SetTransparent(FALSE)

return Nil

210

Scriptname:

Filename:

Author:

Date:

Description:

Requires:

Called by:

Calls:

SELF:

Returns:

TotDemRegTheme.Make

totdemre.ave

Kenneth Bennett

May 3, 1998

Script generates a Demand Region theme based on
the Total Demand field in the Demand Regions

theme table. The theme is classified into five

sizes based on total demand and uses the outlined

round symbol

DC-to-Region flow theme must exist

View menu item click event

("Display Flows: by Total Flow")

Nil

Nil

Nil

Scriptname = "TotalFlowTheme.Make"

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then

MsgBox.Error("ERROR: Demand by Region view does not exist.",
Scriptname)

exit

end

if (not (theView.Is(View))) then

MsgBox.Error("ERROR: Demand by Region doc is not a view.",
Scriptname)

exit

end

theTheme = theView.FindTheme("Demand Regions")
if (theTheme = Nil) then

MsgBox.Error("ERROR: Theme called Demand Regions
does not exist.", Scriptname)

exit

end

checkTheme = theView.FindTheme("Demand Regions by Total Demand")
if (checkTheme <> nil) then

theView.DeleteTheme(checkTheme)

theTable = av.GetProject.FindDoc
("Attributes of Demand Regions by Total Demand")

if (theTable <> NIL) then

av.GetProject.RemoveDoc(theTable)
end

211

end

' Clone the Demand-to-Store theme

totTheme = theTheme.Clone

totTheme.SetName{"Demand Regions by Total Demand")

' Change the legend to weight the symbol size
' by the total demand and classify into five
' groups using a natural break

totLegend = totTheme.GetLegend
totLegend.SetLegendType(#LEGEND_TYPE_SYMBOL)
totLegend.Natural(totTheme, "Total Demand", 5)
totLegend.DisplayNoDataClass(FALSE)
' Get the project working directory
theDir = av.GetProject.GetWorkDir.AsString
thePath = theDir+"\default.avp"
theSymbolList = totLegend.GetSymbols
index = 0

increment = 0

for each s in theSymbolList
thePalette = Palette.MakeFromFile(thePath.AsFileName)

' Grab the Marker palette and get the outlined round marker
chosenMarker = thePalette.GetList(#PALETTE_LIST_MARKER).Get(7)
chosenMarker.SetSize(10 + increment)

theSymbolList.Set(index, chosenMarker)
index = index + 1

increment = increment + 2

end

theSymbolList.UniformColor(Color.GetBlue)

totTheme.UpdateLegend
totTheme.SetVisible(TRUE)

theView.AddTheme (totTheme)

theView.Invalidate

return Nil

212

Scriptname:

Filename:

Author:

Date:

Description:

Requires:

Called by:

Calls:

SELF:

Returns:

TotLogTheme.Make

totlogth.ave

Kenneth Bennett

May 6, 1998

Creates a pie chart theme of the Demand
Regions where the pie slices represent the
shipping, pick, transhipment, and crossdock
costs for all products, and the size of the
whole pie represents the total logistics cost.

Demand Regions theme and the respective logistics
cost table must exist.

View menu item click event ("Display Demand
Regions: by Total Logisics Cost")

Nil

Nil

Nil

Scriptname = "TotLogTheme.Make"

Find the view and the Demand Regions theme

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then

MsgBox.Error("ERROR: Demand by Region view does not exist.",
Scriptname)

exit

end

if (not (theView.Is(View))) then

MsgBox.Error("ERROR: Demand by Region doc is not a view.",
Scriptname)

exit

end

theView.GetWin.Open

theTheme = theView.FindTheme("Demand Regions")
if (theTheme = Nil) then

MsgBox.Error("ERROR: Demand Regions theme does not exist.",
Scriptname)

exit

end

theFTab = theTheme.GetFTab

' Find the needed fields

oFld = theFTab.FindField("OTC_to_Store")
213

rFld = theFTab.FindField("Rx_to_Store")
cFld = theFTab.FindField("CW_to_Store")
totFld = theFTab.FindField("Total Demand")

if ((oFld = Nil) OR (rFld = Nil) OR (cFld = Nil) OR

(totFld = Nil)) then

MsgBox.Error("ERROR: Require product fields are missing.",
Scriptname)

exit

end

oFld = oFld.AsString
rFld = rFld. AsString
cFld = cFld.AsString

fldStringList = {oFld, rFld, cFld}

' Check to see if the new theme already exists
checkTheme = theView.FindTheme

("Demand Regions by Product Volume")
if (checkTheme <> Nil) then

theView.DeleteTheme(checkTheme)

theTable = av.GetProject.FindDoc
("Attributes of Demand Regions by Product Volume")

if (theTable <> Nil) then

av.GetProj ect.RemoveDoc(theTable)

end

end

' Clone the theme and work with the new theme

demTheme = theTheme.Clone

' Get the new Demand Region theme's legend

demLegend = demTheme.GetLegend

'Create as many fill symbols as you have
'fieldNames and place them in a list.

otcsym = RasterFill.Make

otcsym.SetStyle(#RASTERFILL_STYLE_SOLID)
otcsym.SetColor(Color.GetBlue)

rxsym = RasterFill.Make
rxsym.SetStyle(#RASTERFILL_STYLE_SOLID)
rxsym.SetColor(Color.GetRed)
cwsym = RasterFill.Make

cwsym.SetStyle(#RASTERFILL_STYLE_SOLID)
cwsym. SetColor(Color.GetGreen)

theSyms - {otcsym, rxsym, cwsym}

' Make a background fill Symbol that is empty

214

BGsyiti = RasterFill .Make
BGsym.SetStyle(#RASTERFILL_STYLE_EMPTY)

' Create the New Legend

demLegend. PieChart {deitiTheme, fldStringList,
theSyms,BGSym,"Total Demand")

' To set a size field:

theSym = demLegend.GetSymbol(demLegend.ReturnFieldNames,
false)

theSym.SetMinSize(8)
theSym.SetMaxSize(24)

' Redraw the theme using the PieChart legend.

demTheme.UpdateLegend
demTheme.SetActive(FALSE)

demTheme.SetVisible(TRUE)

demTheme.SetName("Demand Regions by Product Volume")
theView.AddTheme(demTheme)

theView.Invalidate

return Nil

215

,+ + + + + * + ******** + ***•*****************************■*****************

Scriptname:

Filename;

Description;

TraceAll

traceall.ave

Requires:

Called by:

Calls:

SELF:

Returns:

Traces the total logistics costs for all
product types (OTC + Rx + CW) in the
demand region selected by the user. The
demand region is selected by clicking the
mouse pointer on a demand region feature
immediately after selecting the "A" tool
button or the Demand Regions All Products
item under the Trace Costs view menu. The
costs are shown to the user via a pop up
dialog box.

dirstore.dbf file, tranship.dbf file. Demand
Regions theme, CVS DCs theme must exist.

View menu item click event
("Trace Cost: Demand Regions All Products")
or by a tool button apply event
(button with the "A" icon in the toolbar)

Tables.Link, Tables.Unlink

Nil

Nil

Scriptname = "TraceAll"

Set the number format for all numbers in the script

Script.The.SetNumberFormat("d.dd")

' Next, link the necessary tables

av.Run("Tables.Link","")

' Now get the necessary tables

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then

MsgBox.Error("ERROR: Demand by Region view does not exist.",
Scriptname)

exit

elseif (not (theView.Is(View))) then
MsgBox.Error("ERROR: Demand by Region doc is not a view.",

Scriptname)
exit

end
theThemeList = theView.GetThemes
for each t in theThemeList

216

t.SetActive(FALSE)

end

theTheme = theView.FindTheme("Demand Regions")
if (theTheme = Nil) then

MsgBox.Error("ERROR: Demand Regions theme does not exist.",
Scriptname)

exit

end

theTheme.SetActive(true)

av.Run("View.SelectPoint",)

theStoreVTab = theTheme.GetFTab

theD2STable = av.GetProject.FindDoc("dirstore.dbf")
if(theD2STable = Nil) then

MsgBox.Info("ERROR: dirstore.dbf table does not exist.",
Scriptname)

exit

end

theD2SVTab = theD2STable.GetVTab

theDCTheme = theView.FindTheme("CVS DCs")

if (theDCTheme = Nil) then

MsgBox.Error("ERROR: CVS DCs theme does not exist.",
Scriptname)

exit

end

theDCVTab = theDCTheme.GetFTab

theTSTable = av.GetProject.FindDoc("tranship.dbf")
if (theTSTable = Nil) then

MsgBox.Error("ERROR: tranship.dbf table does not exist.",
Scriptname)

exit

end

theTSVTab = theTSTable.GetVTab

' First Get the OTC costs

' Get the bitmap for the Demand Regions VTab

theBStMap = theStoreVTab.GetSelection
if (theBStMap.Count = 0) then

exit

end

thestorefld = theStoreVTab.FindField("Demand Region")
selList = theBStMap.AsLiSt
theBStMap.ClearAll

theStoreVTab.UpdateSelection
ii = -1

for each jj in selList
ii = ii + 1

if (jj.Not) then
continue

end

theBStMap.Set(ii)
theStoreVTab.UpdateSelection
theamtl = 0

217

thetsflowl = 0

d2scostl = 0

pickcostl = 0
xdoccostl = 0

tscostl = 0

totalCostl = 0

if (theBStMap.Get(11)) then
store = theStoreVTab.ReturnValue(thestorefld, 11)

end

theBMap = theD2SVTab.GetSelectlon
expr = "([OptlmlzedValue] > 0)" ++ "and" ++

"([Product] = ""OTC"")"
theD2SVTab.Query(expr, theBMap, #VTAB_SELTYPE_AND)
theratefld = theD2SVTab.FlndFleld("ActualRate")

theamtfld = theD2SVTab.FlndFleld("OptlmlzedValue")
thed2sdcfld = theD2SVTab.FlndFleld("Facility")
for each 1 In theBMap
If (theBMap.Get(1)) then

theD2SVTab-UpdateSelectlon
thefacll = theD2SVTab.ReturnValue(thed2sdcfld,1)

theamtl = theD2SVTab.ReturnValue(theamtfld,1)

d2scostl = theD2SVTab.ReturnValue(theratefld,1) * theamtl

end

'for this flow, see what Is happening at the DC
theDCBMap = theDCVTab.GetSelectlon
dcratefld = theDCVTab.FlndFleld("OTC Rate")

dcfld = theDCVTab.FlndFleld("Facility")
for each j In theDCBMap
If (theDCBMap.Get(j)) then

'a pick cost
thedc = theDCVTab.ReturnValue(dcfld,j)
If (thedc = thefacll) then

pickcostl = theamtl * theDCVTab.ReturnValue
(dcratefld, j)

end

end

end

end

thetsflowl = 0 'No transhipments of OTC products
totalCostl = d2scostl + xdoccostl + tscostl + pickcostl
theBStMap.Clear(11)
theStoreVTab.UpdateSelectlon
theD2SVTab.UpdateSelectlon
theDCBMap = theDCVTab.GetSelectlon
theDCBMap.ClearAll
theDCVTab.UpdateSelectlon
theTSBMap = theTSVTab.GetSelectlon
theTSBMap = theTSVTab.GetSelectlon
theTSBMap.ClearAll
theTSVTab.UpdateSelectlon

end ' on jj

' Next get the Rx costs
I

218

ii - -1

for each jj in selList
ii = ii + 1

if (jj.Not) then
continue

end

theBStMap.Set(ii)
theStoreVTab.UpdateSelection
theamt2 = 0

thetsflow2 = 0

d2scost2 = 0

pickcost2 = 0
xdoccost2 = 0

tscost2 = 0

totalCost2 = 0

if (theBStMap.Get(ii)) then
store = theStoreVTab.ReturnValue(thestorefId,ii)

end

theBMap = theD2SVTab.GetSelection
expr = "([OptimizedValue] > 0)" ++ "and" ++

"([Product] = ""Rx"")"

theD2SVTab.Query(expr, theBMap, #VTAB_SELTYPE_AND)
theratefld = theD2SVTab.FindField("ActualRate")

theamtfld = theD2SVTab.FindField("OptimizedValue")
thed2sdcfld = theD2SVTab.FindField("Facility")
for each i in theBMap
if (theBMap.Get(i)) then

theD2SVTab.UpdateSelection
thefacil = theD2SVTab.ReturnValue(thed2sdcfId,i)

theamt2 = theD2SVTab.ReturnValue(theamtfld,i)

d2scost2 = theD2SVTab.ReturnValue(theratefld,i) * theamt2
end

'for this flow, see what is happening at the DC
theDCBMap = theDGVTab.GetSelection
hasrx = theDGVTab.FindField("HasRx")

dcratefld = theDGVTab.FindField("Rx Rate")

dcfld = theDGVtab.FindField("Facility")
for each j in theDGBMap
if (theDGBMap.Get(j)) then
thedc = theDGVTab.ReturnValue(dcfld,j)
if{thedc <> thefacil) then

continue

end

rxthere = theDGVTab.ReturnValue(hasrx,j)

if (rxthere = 0) then
xdoccost2 = theamt2 * theDGVTab.ReturnValue

(dcratefld,j)

'put traceback to tranship here
theTSBMap = theTSVTab.GetSelection
expr = "{[OptimizedValue] > 0)" ++ "and" ++

"([Product] = ""Rx"")"

theTSVTab.Query(expr, theTSBMap, #VTAB_SELTYPE_AND)
theTSVTab.UpdateSelection
thetsratefld = theTSVTab.FindField("ActualRate")

theorigfld = theTSVTab.FindField{"OriginFacility")
theflowfld = theTSVTab.FindField("OptimizedValue")

219

thedcfld = theDCVTab.FindField("Facility")
'get total flow into xdoc do

thetsflow2 = 0

for each k in theTSBMap
if (theTSBMap.Get(k)) then

thetsflow2 = thetsflow2 +

theTSVTab.ReturnValue(theflowfId,k)
end

end

'get average cost per unit
therate = 0

for each k in theTSBMap
if (theTSBMap.Get(k)) then

theratio = theTSVTab.ReturnValue(theflowfld,k)

/thetsflow2

therate = therate + theTSVTab.ReturnValue

(thetsratefld,k) * theratio

theorig = theTSVTab.ReturnValue(theorigfld,k)
end

end

tscost2 = theamt2 * therate

pickcostrate = 0
for each k in theTSBMap
if (theTSBMap.Get(k)) then
theorig = theTSVTab.ReturnValue(theorigfld,k)
theratio = theTSVTab.ReturnValue

(theflowfld,k)/thetsflow2
for each m in theDCVTab

thefacil2 = theDCVTab.ReturnValue

(thedcfld,m)
if (thefacil2 = theorig) then

pickcostrate = pickcostrate +
theDCVTab.ReturnValue(dcratefld,m}
* theratio

end

end

end

end

pickcost2 = theamt2 * pickcostrate
else 'a pick cost
pickcost2 = theamt2 * theDCVTab.ReturnValue

(dcratefld,j)
end

end

end

end

totalCost2 = d2scost2 + xdoccost2 + tscost2 + pickcost2
theBStMap.Clear(ii)
theStoreVTab.UpdateSelection
theBMap.ClearAll
theD2SVTab.UpdateSelection
theDCBMap = theDCVTab.GetSelection
theDCBMap.ClearAll
theDCVTab.UpdateSelection
theTSBMap = theTSVTab.GetSelection
theTSBMap = theTSVTab.GetSelection

220

theTSBMap.ClearAll
theTSVTab.UpdateSelection

end ' on j j

' Finally get the CW costs

ii = -1

for each jj in selList
ii = ii + 1

if (jj.Not) then
continue

end

theBStMap.Set (ii)
theStoreVTab.UpdateSelection
theamtS = 0

thetsflowS = 0

d2scost3 = 0

pickcostS = 0
xdoccostS = 0

tscostS - 0

totalCostS = 0

if (theBStMap.Get(ii)) then
store = theStoreVTab.ReturnValue(thestorefId,ii)

end

theBMap = theD2SVTab.GetSelection
expr = "([OptimizedValue] > 0)" ++ "and" ++

"{[Product] = ""CW"")"

theD2SVTab.Query(expr, theBMap, #VTAB_SELTYPE_AND)
theratefld = theD2SVTab.FindField("ActualRate")

theamtfld = theD2SVTab.FindField("OptimizedValue")
thed2sdcfld = theD2SVTab.FindField("Facility")

for each i in theBMap

if (theBMap.Get(i)) then
theD2SVTab.UpdateSelection
thefacil = theD2SVTab.ReturnValue(thed2sdcfId,i)

theamtS = theD2SVTab.ReturnValue(theamtfld,i)
d2scost3 = theD2SVTab.ReturnValue(theratefld,i) * theamtS

end

'for this flow, see what is happening at the DC
theDCBMap = theDCVTab.GetSelection
hascw = theDCVTab.FindField("HasCW")

dcratefld = theDCVTab.FindField("CW Rate")
otcratefld = theDCVTab.FindField("OTC Rate")

dcfld = theDCVTab.FindField("Facility")
for each j in theDCBMap
if (theDCBMap.Get(j)) then
thedc = theDCVTab.ReturnValue(dcfld,j)
if (thedc <> thefacil) then

continue

end

cwthere = theDCVTab.ReturnValue(hascw,j)
if (cwthere = 0) then

xdoccost3 = theamtS * theDCVTab.ReturnValue
(dcratefld,j)

221

'put traceback to tranship here
theTSBMap = theTSVTab.GetSelection
expr = "([OptimizedValue] > 0)" ++ "and" ++

"([Product] = ""CW"")"
theTSVTab.Query(expr, theTSBMap, #VTAB_SELTYPE_AND)
theTSVTab.UpdateSelection
thetsratefld = theTSVTab.FindField("ActualRate")

theorigfld = theTSVTab.FindField("OriginFacility")
theflowfld = theTSVTab.FindField("OptimizedValue")
thedcfld = theDCVTab.FindField("Facility")
'get total flow into xdoc dc
thetsflows = 0

for each k in theTSBMap

if (theTSBMap.Get(k)) then
thetsflowS = thetsflowS +

theTSVTab.ReturnValue(theflowfld,k)

end

end

'get average cost per unit
therate = 0

for each k in theTSBMap
if (theTSBMap.Get(k)) then

theratio = theTSVTab.ReturnValue(theflowfld,k)
/thetsflowS

therate = therate + theTSVTab.ReturnValue
(thetsratefld,k) * theratio

theorig = theTSVTab.ReturnValue(theorigfld,k)
end

end

tscostS = theamtS * therate

pickcostrate = 0
for each k in theTSBMap

if (theTSBMap.Get(k)) then
theorig = theTSVTab.ReturnValue(theorigfld,k)
theratio = theTSVTab.ReturnValue(theflowfld,k)

/thetsflowS

for each m in theDCVTab

thefacil2 = theDCVTab.ReturnValue
(thedcfld,m)

if (thefacil2 = theorig) then
pickcostrate = pickcostrate +
theDCVTab.ReturnValue(otcratefId,m)

* theratio

end

end

end

end

pickcostS = theamtS * pickcostrate
else 'a pick cost
pickcostS = theamtS * theDCVTab.ReturnValue

(otcratefld,j)

end

end

end

end

totalCostS = d2scostS + xdoccostS + tscostS + pickcostS
222

theBStMap.Clear(ii)
theStoreVTab.UpdateSelection
theBMap.ClearAll
theD2SVTab.UpdateSelection
theDCBMap = theDCVTab.GetSelection
theDCBMap.ClearAll
theDCVTab.UpdateSelection
theTSBMap = theTSVTab.GetSelection
theTSBMap = theTSVTab.GetSelection
theTSBMap.ClearAll
theTSVTab.UpdateSelection

end ' on j j
av.RunC'Tables.Unlink", "")

Sum the DC-to-Region flow and the transhipment
flow amounts, and also the cost amount for each

component and issue the report.

theamt4 = theamtl + theamt2 + theamtS

thetsflow4 = thetsflowl + thetsflow2 + thetsflowS

d2scost4 = d2scostl + d2scost2 + d2scost3

xdoccost4 = xdoccostl + xdoccost2 + xdoccostS

tscost4 = tscostl + tscost2 + tscostS

pickcost4 = pickcostl + pickcost2 + pickcostS
totalCost4 = totalCostl + totalCost2 + totalCostS

' Make the report string

therepstr = "Trace type: All Products"+nl+"Demand Region:"++
store+nl+"Demand for all products:"++theamt4.AsString
+nl+"Shipping cost from"++thefacil++":"++
d2scost4.AsString+nl+"Total transhipment flow:"
++thetsflow4.AsString+nl+"Total transhipment cost:"
++tscost4.AsString+nl+"Total crossdock cost:"++
xdoccost4.AsString+nl+"Total pick cost:"++
pickcost4.AsString+nl+nl+"Total Logistics cost for all
products:"++totalCost4.AsString+nl

' Call up the report

MsgBox.Report(therepstr,
"Total Logistics Cost To Serve Demand Region"++
store.AsString)

return Nil

223

+ **.*** + + ******** + ■*. + + + ** + *■*•***** + *** + ** + + ******** + ****

Scriptname:

Filename:

Description:

TraceCW

tracecw.ave

Requires:

Called by:

Calls:

SELF:

Returns:

Traces the total CW logistics costs for a
demand region selected by the user. The
demand region is selected by clicking the
mouse pointer on a demand region feature
immediately after selecting the "C" tool
button or the Demand Regions CW Only item
under the Trace Costs view menu. The costs
are shown to the user via a pop up dialog
box.

dirstore.dbf file, tranship.dbf file. Demand
Regions theme, CVS DCs theme must exist.

View menu item click event
("Trace Cost: Demand Regions CW Only")
or by a tool button apply event
(button with the "C" icon in the toolbar)

Tables.Link, Tables.Unlink

Nil

Nil

* + ********* + **■*•■*•************** + + **************

criptname = "TraceCW"

Set the number format for all numbers in the script

Script.The.SetNumberFormat("d.dd")

' Next, link the necessary tables

av.Run("Tables.Link","")

' Now get the necessary tables

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then

MsgBox.Error("ERROR: Demand by Region view does not exist.",
Scriptname)

exit
elseif (not (theView.Is(View))) then

MsgBox.Error("ERROR: Demand by Region doc is not a view.",
Scriptname)

exit

end
theThemeList = theView.GetThemes
for each t in theThemeList

t.SetActive(FALSE)
224

end

theTheme = theView.FindTheme("Demand Regions")

if (theTheme = Nil) then

MsgBox.Error("ERROR: Demand Regions theme does not exist.",
Scriptname)

exit

end

theTheme.SetActive(true)

av.Run("View.SelectPoint", "")

theStoreVTab = theTheme.GetFTab

theD2STable = av.GetProject.FindDoc("dirstore.dbf")
if(theD2STable = Nil) then

MsgBox.Info("ERROR: dirstore.dbf table does not exist.",
Scriptname)

exit

end

theD2SVTab = theD2STable.GetVTab

theDCTheme = theView.FindTheme("CVS DCs")

if (theDCTheme = Nil) then
MsgBox.Error("ERROR: CVS DCs theme does not exist.",

Scriptname)
exit

end

theDCVTab = theDCTheme.GetFTab

theTSTable = av.GetProject.FindDoc("tranship.dbf")
if (theTSTable = Nil) then

MsgBox.Error("ERROR: tranship.dbf table does not exist.",
Scriptname)

exit

end

theTSVTab = theTSTable.GetVTab

' Get the bitmap for the Demand Regions VTab

theBStMap = theStoreVTab.GetSelection
if (theBStMap.Count = 0) then

exit

end

thestorefld = theStoreVTab.FindField("Demand Region")
selList = theBStMap.AsList
theBStMap.ClearAll
theStoreVTab.UpdateSelection
ii = -1

for each jj in selList
ii = ii + 1

if (jj.Not) then
continue

end

theBStMap.Set(ii)
theStoreVTab.UpdateSelection
theamt = 0

thetsflow = 0

d2scost = 0

pickcost = 0
xdoccost = 0

tscost = 0

225

totalCost = 0

therepstr = "Trace type: CW Products Only"+nl
if (theBStMap.Get(ii)) then
store = theStoreVTab.ReturnValue(thestorefld, ii)
therepstr = therepstr + "Demand Region:" ++ store + nl

end

theBMap = theD2SVTab.GetSelection
expr = "([OptimizedValue] > 0)" ++ "and" ++

"([Product] = ""CW"")"

theD2SVTab.Query(expr, theBMap, #VTAB_SELTYPE_AND)
theratefld = theD2SVTab.FindField("ActualRate")

theamtfld = theD2SVTab.FindField("OptimizedValue")
thed2sdcfld = theD2SVTab.FindField("Facility")
for each i in theBMap

if (theBMap.Get(i)) then
theD2SVTab.UpdateSelection
thefacil = theD2SVTab.ReturnValue(thed2sdcfld, i)

theamt = theD2SVTab.ReturnValue(theamtfld,i)

therepstr = therepstr+ "Demand for CW products:" ++
theamt.AsString+nl

d2scost = theD2SVTab.ReturnValue(theratefld,i) * theamt

therepstr = therepstr + "Shipping cost from" ++ thefacil ++
":"++d2scost.AsString+nl

end

'for this flow, see what is happening at the DC
theDCBMap = theDCVTab.GetSelection
hascw = theDCVTab.FindField("HasCW")

dcratefld = theDCVTab.FindField("CW Rate")

dcfld = theDCVTab.FindField("Facility")
for each j in theDCBMap
if (theDCBMap.Get(j)) then
thedc = theDCVTab.ReturnValue(dcfld, j)
if (thedc <> thefacil) then

continue

end

cwthere = theDCVTab.ReturnValue(hascw,j)
if (cwthere = 0) then

xdoccost = theamt * theDCVTab.ReturnValue

(dcratefld,j)

therepstr = therepstr + "Crossdock cost at" ++
thefacil ++ ":"++

xdoccost.AsString +nl
'put traceback to tranship here

theTSBMap = theTSVTab.GetSelection
expr = "([OptimizedValue] > 0)" ++ "and" ++

"([Product] = ""CW"")"

theTSVTab.Query(expr, theTSBMap, #VTAB_SELTYPE_AND)
theTSVTab.UpdateSelection
thetsratefld = theTSVTab.FindField("ActualRate")

theorigfld = theTSVTab.FindField("OriginFacility")
theflowfld = theTSVTab.FindField("OptimizedValue")
thedcfld = theDCVTab.FindField("Facility")
'get total flow into xdoc dc
thetsflow = 0

for each k in theTSBMap
if (theTSBMap.Get(k)) then

226

thetsflow = thetsflow +

theTSVTab.ReturnValue(theflowfId,k)

end

end

'get average cost per unit
therate = 0

for each k in theTSBMap

if (theTSBMap.Get(k)) then
theratio = theTSVTab.ReturnValue(theflowfId, k)

/thetsflow

therate = therate + theTSVTab.ReturnValue

(thetsratefld,k) * theratio

theorig = theTSVTab.ReturnValue(theorigfId,k)
end

end

tscost = theamt * therate

if (theTSBMap.Count > 1) then
therepstr = therepstrt

"Weighted Average Transship Cost from"++
theTSBMap.count.AsString++
"origins to"++thefacil++
":"++tscost.AsString+nl

else

therepstr = therepstr+"Transshipment cost from"++
theorig++"to"++thefacil++":"++
tscost.AsString+nl

end

pickcostrate = 0
for each k in theTSBMap

if (theTSBMap.Get(k)) then
theorig = theTSVTab.ReturnValue(theorigfId,k)
theratio = theTSVTab.ReturnValue(theflowfId,k)

/thetsflow

for each m in theDCVTab

thefacil2 = theDCVTab.ReturnValue

(thedcfld,m)

if (thefacil2 = theorig) then
pickcostrate = pickcostrate +
theDCVTab.ReturnValue(dcratefld,m)

* theratio

end

end

end

end

pickcost = theamt*pickcostrate
if (theTSBMap.Count > 1) then
therepstr = therepstrt

"Weighted average pick cost at"++
theTSBMap.count.AsString++
"origins:"++pickcost.AsString+nl

else

therepstr = therepstr+"Pick cost at origin DC:"++
pickcost.AsString+nl

end

else 'a pick cost
pickcost = theamt * theDCVTab.ReturnValue

227

(dcratefld,j)
therepstr = therepstr+"Pick cost at "+thefacil++":"++

pickcost.AsString+nl
end

end

end

end

totalCost = d2scost + xdoccost + tscost + pickcost
therepstr = therepstr+nl+"Total Logistics Cost for CW Products:"

++totalCost.AsString+nl
MsgBox.Report(therepstr,

"Total Logisitic Costs to Serve Demand Region"
++store.AsString)

av.Run("Tables.Unlink","")

theBStMap.Clear(ii)
theStoreVTab.UpdateSelection
theBMap.ClearAll
theD2SVTab.UpdateSelection
theDCBMap = theDCVTab.GetSelection
theDCBMap.ClearAll
theDCVTab.UpdateSelection
theTSBMap = theTSVTab.GetSelection
theTSBMap = theTSVTab.GetSelection
theTSBMap.ClearAll

theTSVTab.UpdateSelection
end ' on j j

return Nil

228

' Scriptname: TraceCWAll

' Filename: tracecwa.ave

' Description: Script finds the total CW logistics cost
' for each demand region and writes it to a
' new dBase file called CWLgCst.dbf. This
' file is then joined to the Demand Regions
' table.

' Requires: dirstore.dbf, tranship.dbf. Demand Regions
' theme, CVS DCs theme exists

' Called by: View menu click event
("Trace Costs: Chain-wide CW Only")

' Calls: Tables.Link, Tables.Unlink

' SELF: Nil

' Returns: Nil

Scriptname = "TraceCWAll"

' Warn user about time to complete this script

resume = MsgBox.YesNo("This trace takes approximately 10 minutes."
+nl+"Do you want to continue?",
"Trace Costs: Chain-wide CW Only", FALSE)

if (resume = false) then
exit

end

' Set the number format for the script

Script.The.SetNumberFormat("d.dd")

' Get the VTabs to be used and get the working directory
av.Run("Tables.Link","")

theDirectory = av.GetProject.GetWorkDir.AsString

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then

MsgBox.Error("ERROR: Demand by Region view does not exist.",
Scriptname)

exit

elseif (not (theView.Is(View))) then
MsgBox.Error("ERROR: Demand by Region doc is not a view.",

Scriptname)

exit

end

theTheme = theView.FindTheme("Demand Regions")

229

if (theTheme = Nil) then
MsgBox.Error("ERROR: Demand Regions theme does not exist.",

Scriptname)

exit

end

theStoreVTab = theTheme.GetFTab

theD2STable = av.GetProject.FindDoc{"dirstore.dbf")
if(theD2STable = Nil) then

MsgBox.Info("ERROR: dirstore.dbf table does not exist.",
Scriptname)

exit

end

theD2SVTab = theD2STable.GetVTab

theDCTheme = theView.FindTheme("CVS DCs")

if (theDCTheme = Nil) then
MsgBox.Error("ERROR: CVS DCs theme does not exist.",

Scriptname)
exit

end

theDCVTab = theDCTheme.GetFTab

theTSTable = av.GetProject.FindDoc("tranship.dbf")
if (theTSTable = Nil) then

MsgBox.Error("ERROR: tranship.dbf table does not exist.",
Scriptname)

exit

end

theTSVTab = theTSTable.GetVTab

' Get the bitmap for the Demand Regions VTab

theBStMap = theStoreA/Tab.GetSelection

'check if table exists

sumcwcst_exists = (av.GetProject.FindDoc("CWLgCst.dbf")
= NIL).Not

skip = 0
if (sumcwcst_exists) then

thedoc = av.GetProject.FindDoc("CWLgCst.dbf")
if (MsgBox.YesNo("Overwrite existing logistics cost table?",
"The Table CWLgCst already exists",false)) then
if (sumcwcst_exists) then

av.GetProject.RemoveDoc(thedoc)
end

else

skip = I
end

end

'create a newtable

if (skip = 0) then
flnm = theDirectory + "/CWLgCst.dbf"
newVTab = VTab.MakeNew(flnm.AsFileName, dBase)

storefld = Field.Make ("DemRegion",#FIELD_CHAR,16, 0)
directfld = Field.Make ("CWDrctCst",#FIELD_DECIMAL,16,2)
pickfld = Field.Make ("CWPickCst",#FIELD_DECIMAL,16, 2)
transfld = Field.Make ("CWTranCst",#F1ELD_DEC1MAL,16,2)
xdocfld = Field.Make ("CWXdocCst",#F1ELD_DEC1MAL,16,2)

230

totfld = Field.Make ("CWTotlCst",#FIELD_DECIMAL,16,2)
newVTab.AddFields{{storefld, directfld,pickfld,

transfld,xdocfld,totfld})
storefld.SetAlias("Demand Region")
directfld.SetAlias("CW Direct Cost")

pickfld.SetAlias("CW Pick Cost")
transfld.SetAlias("CW Tranship Cost")
xdocfld.SetAlias("CW Crossdock Cost")
totfld.SetAlias("CW Total Cost")

theBStMap.ClearAll
thestorefld = theStoreVTab.FindField("Demand Region")
numrecs = theStoreVTab. GetN^imRecords

for each ii in theStoreVTab

'Clear the bitmap
theBSTMap.ClearAll
' Set the record in the demand regions table
theBStMap.Set(ii)
theStoreVTab.UpdateSelection
theamt = 0

thetsflow = 0

d2scost = 0

pickcost = 0
xdoccost = 0

tscost = 0

if (theBStMap.Get(ii)) then
store = theStoreVTab.ReturnValue(thestorefld,ii)

end

' Get the dirstore.dbf record selected by the link
theBMap = theD2SVTab.GetSelection
' Reselect those record with CW flow greater than zero
expr = "([OptimizedValue] > 0)" ++ "and" ++

"([Product] = ""CW"")"
theD2SVTab.Query(expr, theBMap, #VTAB_SELTyPE_AND)
theratefld = theD2SVTab.FindField("ActualRate")
theamtfld = theD2SVTab.FindField("OptimizedValue")
thed2sdcfld = theD2SVTab.FindField("Facility")
' Loop through selected set in dirstore.dbf
for each i in theBMap
if (theBMap.Get(i)) then

theD2SVTab.UpdateSelection
thefacil = theD2SVTab.ReturnValue(thed2sdcfId, i)
theamt = theD2SVTab.ReturnValue(theamtfld,i)
d2scost = theD2SVTab.ReturnValue(theratefld,i) * theamt

end

'for this flow, see what is happening at the DC by
'getting the selected set in the CVS DCs table
theDCBMap = theDCVTab.GetSelection
hascw = theDCVTab.FindField("HasCW")

dcratefld = theDCVTab.FindField("CW Rate")

dcfld = theDCVTab.FindField("Facility")
for each j in theDCBMap
if (theDCBMap.Get(j)) then

thedc = theDCVTab.ReturnValue(dcfld, j)
if (thedc <> thefacil) then

continue

end

231

cwthere = theDCVTab.ReturnValue(hascw,j)
if (cwthere = 0) then

xdoccost = theamt * theDCVTab.ReturnValue

(dcratefld,j)
'put traceback to tranship here

theTSBMap = theTSVTab.GetSelection
expr = "([OptimizedValue] > 0)" ++ "and" ++

"([Product] = ""cw"")"

theTSVTab.Query(expr, theTSBMap, #VTAB_SELTYPE_AND)
theTSVTab.UpdateSelection
thetsratefld = theTSVTab.FindField("ActualRate")

theorigfld = theTSVTab.FindField("OriginFacility")
theflowfld = theTSVTab.FindField("OptimizedValue")
thedcfld = theDCVTab.FindField("Facility")
'get total flow into xdoc dc
thetsflow = 0

for each k in theTSBMap
if (theTSBMap.Get(k)) then

thetsflow = thetsflow +

theTSVTab.ReturnValue(theflowfld,k)
end

end

'get average cost per unit
therate = 0

for each k in theTSBMap
if (theTSBMap.Get(k)) then

theratio = theTSVTab.ReturnValue(theflowfld,k)

/thetsflow

therate = therate + theTSVTab.ReturnValue

(thetsratefld,k) * theratio

theorig = theTSVTab.ReturnValue(theorigfld,k)
end

end

tscost = theamt * therate

pickcostrate = 0
for each k in theTSBMap
if (theTSBMap.Get(k)) then
theorig = theTSVTab.ReturnValue(theorigfld,k)
theratio = theTSVTab.ReturnValue(theflowfld,k)

/thetsflow
for each m in theDCVTab

thefacil2 = theDCVTab.ReturnValue

(thedcfld,m)
if (thefacil2 = theorig) then

pickcostrate = pickcostrate +
theDCVTab.ReturnValue(dcratefld, m)

* theratio

end

end

end

end

pickcost = theamt * pickcostrate
else 'a pick cost

pickcost = theamt *

theDCVTab.ReturnValue(dcratefld, j)
end

232

end

end

end

theBStMap.Clear(ii)
theStoreVTab.UpdateSelection

newrec = newVtab.AddRecord
newVTab.SetValue(storefld,newrec, store)

newVTab.SetValue(directfld,newrec, d2scost)
newVTab.SetValue(pickfld,newrec,pickcost)
newVTab.SetValue(transfld,newrec,tscost)
newVTab.SetValue(xdocfld,newrec,xdoccost)
totcost = d2scost+pickcost+tscost+xdoccost
newVTab.SetValue(totfld,newrec,totcost)

end ' on ii

end 'if skip = 0
theBStMap.ClearAll
theStoreVTab.UpdateSelection
theBMap = theD2SVTab.GetSelection
theBMap.ClearAll
theD2SVTab.UpdateSelection
theBMap = theDCVTab.GetSelection
theBMap.ClearAll
theDCVTab.UpdateSelection
theBMap = theTSVTab.GetSelection
theBMap.ClearAll
theTSVTab.UpdateSelection
av.Run("Tables.Unlink","")

' Set the new table to uneditable and write to file

newVTab.SetEditable(FALSE)

newVTab.Flush

checkTable = av.GetProject.FindDoc("CW Logistics Costs")
if (checkTable <> Nil) then

av.GetProject.RemoveDoc(checkTable)
end

' Bring the new table into the project

newTable = Table.Make(newVTab)
newTable.SetName("CW Logistics Costs")
av.GetProject.AddDoc(newTable)

' Join the newTable to the Demand Regions table

theStoreVTab.Join(thestorefld, newVTab, storefld)

MsgBox.Info("Tracing of CW logistics cost for"+nl+
"each demand region is complete.",
"Trace Costs: Chain-wide CW Only")

return Nil

233

, ********************■*•************ + + ***** + ************************

' Scriptname: TraceOTCAll

' Filename: traceotc.ave

' Description: Script finds the total OTC logistics cost
' for each demand region and writes it to a
' new dBase file called OTCLgCst.dbf. This
' file is then joined to the Demand Regions
' table.

' Requires: dirstore.dbf, tranship.dbf, Demand Regions
' theme, CVS DCs theme exists

' Called by: View menu click event
("Trace Costs: Chain-wide OTC Only")

' Calls: Tables.Link, Tables.Unlink

' SELF: Nil

' Returns: Nil

+ + + + + + + +

Scriptname = "TraceOTCAll"

' Warn user about time to complete this script

resume = MsgBox.YesNo("This trace takes approximately 10 minutes."
+nl+"Do you want to continue?",
"Trace Costs: Chain-wide OTC Only", FALSE)

if (resume = false) then
exit

end

' Set the number format for the script

Script. The. SetNxamberFormat { "d. dd")

' Get the VTabs to be used and get the working directory
av.Run("Tables.Link", "")
theDirectory = av.GetProject.GetWorkDir.AsString

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then

MsgBox.Error("ERROR: Demand by Region view does not exist.",
Scriptname)

exit

elseif (not (theView.Is(View))) then
MsgBox.Error("ERROR: Demand by Region doc is not a view.",

Scriptname)
exit

end

234

theTherae = theView.FindTheme{"Demand Regions")
if (theTheme = Nil) then

MsgBox.Error("ERROR: Demand Regions theme does not exist.",
Scriptname)

exit

end

theStoreVTab = theTheme.GetFTab

theD2STable = av.GetProject.FindDoc{"dirstore.dbf")
if(theD2STable = Nil) then

MsgBox.Info{"ERROR: dirstore.dbf table does not exist.",
Scriptname)

exit

end

theD2SVTab = theD2STable.GetVTab

theDCTheme = theView.FindTheme{"CVS DCs")

if (theDCTheme = Nil) then

MsgBox.Error("ERROR: CVS DCs theme does not exist.",
Scriptname)

exit

end

theDCVTab = theDCTheme.GetFTab

theTSTable = av.GetProject.FindDoc("tranship.dbf")
if (theTSTable = Nil) then

MsgBox.Error("ERROR: tranship.dbf table does not exist.",
Scriptname)

exit

end

theTSVTab = theTSTable.GetVTab

' Get the bitmap from the Demand Regions VTab

theBStMap = theStoreVTab.GetSelection
sumotccst_exists = (av.GetProject.FindDoc("OTCLgCst.dbf")

= NIL).Not

skip = 0
if (sumotccst_exists) then

thedoc = av.GetProject.FindDoc{"OTCLgCst.dbf")
if (MsgBox.YesNo("Overwrite existing logistics cost table?",
"The Table OTCLgCst already exists",false)) then
if (sumotccst_exists) then

av.GetProject.RemoveDoc(thedoc)
end

else

skip = 1
end

end

'create a newtable

if (skip = 0) then
flnm = theDirectory + "/OTCLgCst.dbf"
newVTab = VTab.MakeNew(flnm.AsFileName, dBase)

storefld = Field.Make ("DemRegion",#FIELD_CHAR,5, 0)
directfld = Field.Make ("OTCDrctCst", #FIELD_DECIMAI., 16, 2)
pickfld = Field.Make ("OTCPickCst",#FIELD_DECIMAL,16,2)
transfld = Field.Make ("OTCTranCst",#FIELD_DECIMAL,16,2)
xdocfld = Field.Make ("OTCXdocCst",#FIELD_DECIMAL,16,2)
totfld = Field.Make ("OTCTotlCst",#FIELD_DECIMAL,16,2)

235

newVTab.AddFields({storefld, directfld,pickfld,
transfId,xdocfld,totfld})

storefld.SetAlias("Demand Region")
directfld.SetAlias("OTC Direct Cost")
pickfld.SetAlias("OTC Pick Cost")
transfid.SetAlias("OTC Tranship Cost")
xdocfld.SetAlias("OTC Crossdock Cost")

totfld.SetAlias("OTC Total Cost")

theBStMap.ClearAll
thestorefld = theStoreVTab.FindField("Demand Region")
numrecs = theStoreVTab.GetNumRecords

for each ii in theStoreVTab

theBStMap.ClearAll
theBStMap.Set(ii)
theStoreVTab.UpdateSelection
theamt = 0

thetsflow = 0

d2scost = 0

pickcost = 0
xdoccost = 0

tscost = 0

if (theBStMap.Get(ii)) then
store = theStoreVTab.ReturnValue(thestorefld,ii)

end

theBMap = theD2SVTab.GetSelection
expr = "([OptimizedValue] > 0)" ++ "and" ++

"([Product] = ""OTC"")"
theD2SVTab.Query(expr, theBMap, #VTAB_SELTYPE_AND)
theratefld = theD2SVTab.FindField("ActualRate")
theamtfld = theD2SVTab.FindField("OptimizedValue")
thed2sdcfld = theD2SVTab.FindField("Facility")
for each i in theBMap

if (theBMap.Get(i)) then
theD2SVTab.UpdateSelection
thefacil = theD2SVTab.ReturnValue(thed2sdcfId,i)
theamt = theD2SVTab.ReturnValue(theamtfld, i)
d2scost = theD2SVTab.ReturnValue(theratefld,i) * theamt

end

'for this flow, see what is happening at the DC
theDCBMap = theDCVTab.GetSelection
dcratefld = theDCVTab.FindField("OTC Rate")

dcfld = theDCVTab.FindField("Facility")
for each j in theDCBMap
if (theDCBMap.Get(j)) then

'a pick cost
thedc = theDCVTab.ReturnValue(dcfld,j)
if (thedc <> thefacil) then

continue

end

pickcost = theamt *
theDCVTab.ReturnValue(dcratefld,j)

end

end

end

theBStMap.Clear(ii)
theStoreVTab.UpdateSelection

236

newrec = newVTab.AddRecord

newVTab.SetValue(storefId,newrec, store)

newVTab.SetValue(directfld,newrec,d2scost)
newVTab.SetValue(pickfld,newrec, pickcost)
newVTab.SetValue(transfid,newrec,tscost)

newVTab.SetValue(xdocfId,newrec,xdoccost)
totcost = d2scost+pickcost+tscost+xdoccost
newVTab.SetValue(totfld,newrec,totcost)

end ' on ii

end ' on if skip = 0
theBStMap.ClearAll
theStoreVTab.UpdateSelection
theBMap = theD2SVTab.GetSelection
theBMap.ClearAll
theD2SVTab.UpdateSelection
theBMap = theDCVTab.GetSelection
theBMap.ClearAll
theDCVTab.UpdateSelection
theBMap = theTSVTab.GetSelection
theBMap.ClearAll
theTSVTab.UpdateSelection
av.Run("Tables.Unlink","")

' Set the new table to uneditable and write to file

newVTab.SetEditable(FALSE)

newVTab.Flush

checkTable = av.GetProject.FindDoc("OTC Logistics Costs")
if (checkTable <> Nil) then

av.GetProject.RemoveDoc(checkTable)
end

' Bring the new table into the project

newTable = Table.Make(newVTab)

newTable.SetNameC'OTC Logistics Costs")
av.GetProject.AddDoc(newTable)

' Join the newTable to the Demand Regions table

theStoreVTab.Join(thestorefld, newVTab, storefld)

MsgBox.Info("Tracing of OTC logistics cost for"+nl+
"each demand region is complete.",
"Trace Costs: Chain-wide OTC Only")

return Nil

237

Scriptname:

Filename:

Description:

Requires:

Called by:

Calls:

SELF;

Returns:

TraceRx

tracerx.ave

Traces the total Rx logistics costs for a
demand region selected by the user. The
demand region is selected by clicking the
mouse pointer on a demand region feature
immediately after selecting the "R" tool
button or the Demand Regions Rx Only item
under the Trace Costs view menu. The costs

are shown to the user via a pop up dialog
box.

dirstore.dbf file, tranship.dbf file. Demand
Regions theme, CVS DCs theme must exist.

View menu item click event

("Trace Cost: Demand Regions Rx Only")
or by a tool button apply event
(button with the "R" icon in the toolbar)

Tables.Link, Tables.Unlink

Nil

Nil

criptname = "TraceRx"

Set the number format for all numbers in the script

Script. The. SetNximberFormat ("d. dd")

' Next, link the necessary tables

av.Run("Tables.Link", "")

' Now get the necessary tables

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then

MsgBox.Error("ERROR: Demand by Region view does not exist.",
Scriptname)

exit

elseif (not (theView.Is(View))) then

MsgBox.Error("ERROR: Demand by Region doc is not a view.",
Scriptname)

exit

end

theThemeList = theView.GetThemes

for each t in theThemeList

t.SetActive(FALSE)

238

end

theTheme = theView.FindTheme("Demand Regions")
if (theTheme = Nil) then

MsgBox.Error("ERROR: Demand Regions theme does not exist.",
Scriptname)

exit

end

theTheme.SetActive(true)

av.Run("View.SelectPoint","")
theStoreVTab = theTheme.GetFTab

theD2STable = av.GetProject.FindDoc("dirstore.dbf")
if(theD2STable = Nil) then

MsgBox.Info("ERROR: dirstore.dbf table does not exist.",
Scriptname)

exit

end

theD2SVTab = theD2STable.GetVTab

theDCTheme = theView.FindTheme("CVS DCs")

if (theDCTheme = Nil) then
MsgBox.Error("ERROR: CVS DCs theme does not exist.",

Scriptname)

exit

end

theDCVTab = theDCTheme.GetFTab

theTSTable = av.GetProject.FindDoc("tranship.dbf")
if (theTSTable = Nil) then

MsgBox.Error("ERROR: tranship.dbf table does not exist.",
Scriptname)

exit

end

theTSVTab = theTSTable.GetVTab

' Get the bitmap for the Demand Regions VTab

theBStMap = theStoreVTab.GetSelection
if (theBStMap.Count = 0) then
exit

end

thestorefld = theStoreVTab.FindField("Demand Region")
selList = theBStMap.AsList
theBStMap.ClearAll
theStoreVTab.UpdateSelection
ii = -1

for each jj in selList
ii = ii + 1

if (jj.Not) then
continue

end

theBStMap.Set(ii)
theStoreVTab.UpdateSelection
theamt = 0

thetsflow = 0

d2scost = 0

pickcost = 0
xdoccost = 0

tscost = 0

239

totalCost = 0

therepstr = "Trace type: Rx Products Only"+nl
if (theBStMap.Get(ii)) then

store = theStoreVTab.ReturnValue(thestorefld,ii)

therepstr = therepstr + "Demand Region:" ++ store + nl
end

theBMap = theD2SVTab.GetSelection
expr = "([OptimizedValue] > 0)" ++ "and" ++ "([Product]

_ II

theD2SVTab.Query(expr, theBMap, #VTAB_SELTYPE_AND)
theratefld = theD2SVTab.FindField("ActualRate")

thearatfld = theD2SVTab.FindField("OptimizedValue")
thed2sdcfld = theD2SVTab.FindField("Facility")
for each i in theBMap
if (theBMap.Get(i)) then

theD2SVTab.UpdateSelection
thefacil = theD2SVTab.ReturnValue(thed2sdcfld, i)

theamt = theD2SVTab.ReturnValue(theamtfId,i)

therepstr = therepstr+ "Demand for Rx products:" ++
theamt .AsString+nl

d2scost = theD2SVTab.ReturnValue(theratefld,i) * theamt

therepstr = therepstr + "Shipping cost from" ++ thefacil
++":"++d2scost. AsString+nl

end

'for this flow, see what is happening at the DC
theDCBMap = theDCVTab.GetSelection
hasrx = theDCVTab.FindField("HasRx")

dcratefld = theDCVTab.FindField("Rx Rate")

dcfld = theDCVtab.FindField("Facility")
for each j in theDCBMap
if (theDCBMap.Get(j)) then

thedc = theDCVTab.ReturnValue(dcfld, j)
if(thedc <> thefacil) then

continue

end

rxthere = theDCVTab.ReturnValue(hasrx,j)
if (rxthere = 0) then

xdoccost = theamt * theDCVTab.ReturnValue

(dcratefld,j)

therepstr = therepstr + "Crossdock cost at" ++
thefacil ++ ":"++xdoccost.AsString +nl

'put traceback to tranship here
theTSBMap = theTSVTab.GetSelection
expr = "([OptimizedValue] > 0)" ++ "and" ++

"([Product] = ""Rx"")"

theTSVTab.Query(expr, theTSBMap, #VTAB_SELTYPE_AND)
theTSVTab.UpdateSelection
thetsratefld = theTSVTab.FindField("ActualRate")

theorigfld = theTSVTab.FindField("OriginFacility")
theflowfld = theTSVTab.FindField("OptimizedValue")
thedcfld = theDCVTab.FindField("Facility")
'get total flow into xdoc dc
thetsflow = 0

for each k in theTSBMap
if (theTSBMap.Get(k)) then

thetsflow = thetsflow +

240

theTSVTab.ReturnValue(theflowfId,k)

end

end

'get average cost per unit
therate = 0

for each k in theTSBMap
if (theTSBMap.Get(k)) then

theratio = theTSVTab.ReturnValue(theflowfId,k)
/thetsflow

therate = therate +

theTSVTab.ReturnValue(thetsratefld,k)

* theratio

theorig = theTSVTab.ReturnValue(theorigfId,k)
end

end

tscost = theamt * therate

if (theTSBMap.Count > 1) then
therepstr = therepstr+

"Weighted Average Transship Cost from"
++theTSBMap.count.AsString++"origins to"
++thefacil++":"++tscost.AsString+nl

else

therepstr = therepstr+"Transshipment cost from"
++theorig++"to"++
thefacil++":"++tscost.AsString+nl

end

pickcostrate = 0

for each k in theTSBMap
if (theTSBMap.Get(k)) then

theorig = theTSVTab.ReturnValue(theorigfId,k)
theratio = theTSVTab.ReturnValue(theflowfId,k)

/thetsflow

for each m in theDCVTab

thefacil2 = theDCVTab.ReturnValue

(thedcfld,m)

if (thefacil2 = theorig) then
pickcostrate = pickcostrate +

theDCVTab.ReturnValue

(dcratefld,m)* theratio

end

end

end

end

pickcost = theamt*pickcostrate
if (theTSBMap.Count > 1) then

therepstr = therepstr+"Weighted average pick cost at"
++theTSBMap.count.AsString++"origins:"
++pickcost. AsString+nl

else

therepstr = therepstr+"Pick cost at origin DC:"
++pickcost.AsString+nl

end

else 'a pick cost
pickcost = theamt * theDCVTab.ReturnValue

(dcratefld,j)
therepstr = therepstr+"Pick cost at "+thefacil++

241

":"++pickcost.AsString+nl
end

end

end

end

totalCost = d2scost + xdoccost + tscost + pickcost
therepstr = therepstr+nl+

"Total Logistics Cost for Rx Products;"++
totalCost.AsString+nl

MsgBox.Report(therepstr,
"Total Logisitic Costs to Serve Demand Region"++
store.AsString)

av.Run("Tables.Unlink","")
theBStMap.Clear(ii)
theStoreVTab.UpdateSelection
theBMap.ClearAll
theD2SVTab.UpdateSelection
theDCBMap = theDCVTab.GetSelection
theDCBMap.ClearAll
theDCVTab.UpdateSelection
theTSBMap = theTSVTab.GetSelection
theTSBMap = theTSVTab.GetSelection
theTSBMap.ClearAll
theTSVTab.UpdateSelection

end ' on jj

return Nil

242

I ************************** + + + *■ + *** + ***************■*•**************

' Scriptname:

' Filename:

' Description:

' Requires:

' Called by:

' Calls:

' SELF:

' Returns:

TraceRxAll

tracerxa.ave

Script finds the total Rx logistics cost
for each demand region and writes it to a
new dBase file called RxLgCst.dbf. This
file is then joined to the Demand Regions
table.

dirstore.dbf, tranship.dbf. Demand Regions
theme, CVS DCs theme exists

View menu click event
("Trace Costs: Chain-wide Rx Only")

Tables.Link, Tables.Unlink

Nil

Nil

I ****•*■*• + ******** + **********************•*• + * + *■* + *******************

Scriptname = "TraceRxAll"

' Warn user about time to complete this script

resume = MsgBox.YesNo("This trace takes approximately 10 minutes.
"+nl+"Do you want to continue?",
"Trace Costs: Chain-wide Rx Only", FALSE)

if (resume = false) then
exit

end

' Set the number format for the script

Script.The.SetNumberFormat("d.dd")

' Get the A/Tabs to be used and get the working directory
av.Run("Tables.Link","")
theDirectory = av.GetProject.GetWorkDir.AsString

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then

MsgBox.Error("ERROR: Demand by Region view does not exist.",
Scriptname)

exit
elseif (not (theView.Is(View))) then

MsgBox.Error("ERROR: Demand by Region doc is not a view.",
Scriptname)

exit

end

theTheme = theView.FindTheme("Demand Regions")
243

if (theTheme = Nil) then

MsgBox.Error("ERROR: Demand Regions theme does not exist.",
Scriptname)

exit

end

theStoreVTab = theTheme.GetFTab

theD2STable = av.GetProject.FindDoc{"dirstore.dbf")
if(theD2STable = Nil) then

MsgBox.Info("ERROR: dirstore.dbf table does not exist.",
Scriptname)

exit

end

theD2SVTab = theD2STable.GetVTab

theDCTheme = theView.FindTheme("CVS DCs")

if (theDCTheme = Nil) then

MsgBox.Error("ERROR: CVS DCs theme does not exist.",
Scriptname)

exit

end

theDCVTab = theDCTheme.GetFTab

theTSTable = av.GetProject.FindDoc("tranship.dbf")
if (theTSTable = Nil) then

MsgBox.Error("ERROR: tranship.dbf table does not exist.",
Scriptname)

exit

end

theTSVTab = theTSTable.GetVTab

' Get the bitmap for the Demand Regions VTab

theBStMap = theStoreVTab.GetSelection

'check if table exists

sumrxcst_exists = (av.GetProject.FindDoc{"RxLgCst.dbf")
= NIL).Not

skip = 0
if (sumrxcst_exists) then

thedoc = av.GetProject.FindDoc("RxLgCst.dbf")
if (MsgBox.YesNo("Overwrite existing logistics cost table?",
"The Table RxLgCst already exists",false)) then
if (sumrxcst_exists) then

av.GetProject.RemoveDoc(thedoc)

end

else

skip = 1
end

end

'create a newtable

if (skip = 0) then
flnm = theDirectory + "/RxLgCst.dbf"
newVTab = VTab.MakeNew(flnm.AsFileName, dBase)

storefld = Field.Make ("DemRegion",#FIELD_CHAR,16, 0)
directfld = Field.Make ("RxDrctCst",#FIELD_DECIMAL,16,2)
pickfld = Field.Make ("RxPickCst",#FIELD_DECIMAX,16,2)
transfld = Field.Make ("RxTranCst",#FIELD_DECIMAL,16, 2)
xdocfld = Field.Make ("RxXdocCst",#FIELD_DECIMAL, 16, 2)

244

totfld = Field.Make ("RxTotlCst",#FIELD_DECIMAL,16,2)
newVTab.AddFields({storefld, directfld,pickfld,

transfld,xdocfld,totfld})
storefld.SetAlias("Demand Region")
directfld.SetAlias("Rx Direct Cost")

pickfld.SetAlias("Rx Pick Cost")
transfld.SetAlias("Rx Tranship Cost")
xdocfld.SetAlias("Rx Crossdock Cost")
totfld.SetAlias("Rx Total Cost")

theBStMap.ClearAll
thestorefld = theStoreVTab.FindField("Demand Region")
numrecs = theStoreVTab. GetNiamRecords

for each ii in theStoreVTab

'Clear the bitmap
theBSTMap.ClearAll
' Set the record in the demand regions table
theBStMap.Set(ii)
theStoreVTab.UpdateSelection

theamt = 0

thetsflow = 0

d2scost = 0

pickcost = 0
xdoccost = 0

tscost = 0

if (theBStMap.Get(ii)) then
store = theStoreVTab.ReturnValue(thestorefId,ii)

end

' Get the dirstore.dbf record selected by the link
theBMap = theD2SVTab.GetSelection
' Reselect those record with Rx flow greater than zero
expr = "([OptimizedValue] > 0)" ++ "and" ++

"([Product] = ""Rx"")"
theD2SVTab.Query(expr, theBMap, #VTAB_SELTYPE_AND)
theratefld = theD2SVTab.FindField("ActualRate")
theamtfld = theD2SVTab.FindField("OptimizedValue")
thed2sdcfld = theD2SVTab.FindField("Facility")
' Loop through selected set in dirstore.dbf
for each i in theBMap
if (theBMap.Get(i)) then

theD2SVTab.UpdateSelection
thefacil = theD2SVTab.ReturnValue(thed2sdcfld, i)
theamt = theD2SVTab.ReturnValue(theamtfld,i)
d2scost = theD2SVTab.ReturnValue(theratefld,i) * theamt

end

'for this flow, see what is happening at the DC by
'getting the selected set in the CVS DCs table
theDCBMap = theDCVTab.GetSelection
hasrx = theDCVTab.FindField("HasRx")

dcratefld = theDCVTab.FindField("Rx Rate")

dcfld = theDCVTab.FindField("Facility")
for each j in theDCBMap
if (theDCBMap.Get(j)) then

thedc = theDCVTab.ReturnValue(dcfld,j)
if (thedc <> thefacil) then

continue

end

245

rxthere = theDCVTab.ReturnValue(hasrx,j)
if (rxthere = 0) then

xdoccost = theamt *

theDCVTab.ReturnValue(dcratefld,j)
'put traceback to tranship here

theTSBMap = theTSVTab.GetSelection
expr = "([OptimizedValue] > 0)" ++ "and" ++

"([Product] = ""Rx"")"
theTSVTab.Query(expr, theTSBMap, #VTAB_SELTYPE_AND)
theTSVTab.UpdateSelection
thetsratefld = theTSVTab.FindField("ActualRate")

theorigfld = theTSVTab.FindField("OriginFacility")
theflowfld = theTSVTab.FindField("OptimizedValue")
thedcfld = theDCVTab.FindField("Facility")
'get total flow into xdoc do
thetsflow = 0

for each k in theTSBMap
if (theTSBMap.Get(k)) then

thetsflow = thetsflow +

theTSVTab.ReturnValue(theflowfld,k)

end

end

'get average cost per unit
therate - 0

for each k in theTSBMap
if (theTSBMap.Get(k)) then

theratio = theTSVTab.ReturnValue(theflowfld,k)
/thetsflow

therate = therate +

theTSVTab.ReturnValue(thetsratefld,k)

* theratio

theorig = theTSVTab.ReturnValue(theorigfld, k)
end

end

tscost = theamt * therate

pickcostrate = 0
for each k in theTSBMap

i f (theTSBMap.Get(k)) then
theorig = theTSVTab.ReturnValue(theorigfld,k)
theratio = theTSVTab.ReturnValue(theflowfld, k)

/thetsflow

for each m in theDCVTab

thefacil2 = theDCVTab.ReturnValue
(thedcfld,m)

if (thefacil2 = theorig) then
pickcostrate = pickcostrate +
theDCVTab.ReturnValue(dcratefld,m)

* theratio

end

end

end

end

pickcost = theamt * pickcostrate
else 'a pick cost
pickcost = theamt *

theDCVTab.ReturnValue(dcratefld,j)

246

end

end

end

end

theBStMap.Clear(ii)
theStoreVTab.UpdateSelection
newrec = newVtab.AddRecord

newVTab.SetValue(storefld,newrec, store)

newVTab.SetValue(directfld,newrec, d2scost)

newVTab.SetValue(pickfld,newrec,pickcost)
newVTab.SetValue(trans fid,newrec,ts cost)

newVTab.SetValue(xdocfld,newrec,xdoccost)

totcost = d2scost+pickcost+tscost+xdoccost
newVTab.SetValue(totfld,newrec, totcost)

end ' on ii

end 'if skip = 0
theBStMap.ClearAll
theStoreVTab.UpdateSelection
theBMap = theD2SVTab.GetSelection
theBMap.ClearAll
theD2SVTab.UpdateSelection
theBMap = theDCVTab.GetSelection
theBMap.ClearAll
theDCVTab.UpdateSelection
theBMap = theTSVTab.GetSelection
theBMap.ClearAll
theTSVTab.UpdateSelection
av.Run("Tables.Unlink","")

' Set the new table to uneditable and write to file

newVTab.SetEditable(FALSE)

newVTab.Flush

checkTable = av.GetProject.FindDoc("Rx Logistics Costs")
if (checkTable <> Nil) then

av.GetProject.RemoveDoc(checkTable)
end

' Bring the new table into the project

newTable = Table.Make(newVTab)

newTable.SetName("Rx Logistics Costs")
av.GetProject.AddDoc(newTable)

' Join the newTable to the Demand Regions table

theStoreVTab.Join(thestorefId, newVTab, storefld)

MsgBox.Info("Tracing of Rx logistics cost for"+nl+
"each demand region is complete.",
"Trace Costs: Chain-wide Rx Only")

return Nil

247

Scriptname:

Filename:

Author:

Date:

Description:

Requires:

Called by:

Calls:

SELF:

Returns:

TransCWFlowTheme.Make

transcwf.ave

Kenneth Bennett

May 3, 1998

Script generates a Flow theme based on the CW
Flow field in Transshipment theme table. Zero
value transshipment flows are made invisible
using the null value and symbol

Transshipment theme must exist

View menu item click event

("Display Flows:Transshipments by CW Flow")

Nil

Nil

Nil

Scriptname = "TransCWFlowTheme.Make"

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then

MsgBox.Error("ERROR: Demand by Region view does not exist.",
Scriptname)

exit

end

if (not (theView.Is(View))) then

MsgBox.Error("ERROR: Demand by Region doc is not a view.",
Scriptname)

exit

end

theTheme = theView.FindTheme("Transshipments")

if (theTheme = Nil) then
MsgBox.Error("ERROR: Theme called Transshipments

does not exist.", Scriptname)
exit

end

catString = "CW Flow"

checkTheme = theView.FindTheme("Transshipments"++catString)
if (checkTheme <> nil) then

theView.DeleteTheme(checkTheme)

theTable = av.GetProject.FindDoc("Attributes of Transshipments"
++catString)

if (theTable <> NIL) then

248

av.GetProject.RemoveDoc(theTable)
end

end

' Clone the Transshipment theme

newTheme = theTheme.Clone

newLegend = newTheme.GetLegend

' Select a color from the color palette to
' be used in drawing the transhipment lines

theColor = av.Run("ColorPalette.SelectColor", Nil]

' Classify the legend with three natural
' breaks and size the lines according to

' the flow volume

newLegend.SetLegendType(#LEGEND_TyPE_SYMBOL)
newLegend.SetNullValue(catString, 0)
newLegend.DisplayNoDataClass(FALSE)
newLegend.NaturaKnewTheme, catString, 3)
theSymbolList = newLegend.GetSymbols
thickness = 1

for each s in theSymbolList
s.SetSize(thickness)
thickness = thickness + 1

end

theSymbolList.UniformColor(theColor)

' Create a null symbol for the legend
' and set it

nullSym = Symbol.Make(#SYMBOL_PEN)
nullColor = Color.GetBlue

nullColor.SetTransparent(TRUE)
nullSym.SetColor(nullColor)
newLegend.SetNullSymbol(nullSym)
newTheme.SetLegend(newLegend)
newTheme.SetName ("Transshipments"++catString)
newTheme.SetActive{FALSE)

newTheme.SetVisible(TRUE)

theView.AddTheme(newTheme)
newTheme.UpdateLegend
theView.Invalidate

nullColor.SetTransparent(FALSE)

return Nil

249

' Scriptname:

' Filename:

' Author:

' Date:

' Description:

' Requires:
t

' Called by:

' Calls:

' SELF:

' Returns:

TransFlowValues.Calculate

transflo.ave

Kenneth Bennett

May 3, 1998

Script copies the values of transhipment
flows for Rx and CW products from the
dirstore.dbf file to the Transhipments FTab
using an origin-destination-product string
concatenation. These three new fields in the

FTab are then totalled and the total value is

added to the fourth new field in the FTab

called Total Flow.

tranship.dbf file and Transhipments
flow theme exist

TranshipLine.Build

Nil

the Transhipments theme

Nil

Scriptname 'TransFlowValues.Calculate"

' Retrieve the theme argument
theTheme = SELF.Get(0)

' Find the tranship.dbf file and add the new field concatenating
' the facility name, the demand region name,
' and the product category

theTranTable = av.Getproject.FindDoc("tranship.dbf")
if (theTranTable = Nil) then

MsgBox.Error("ERROR: tranship.dbf table does not exist."+NL+
"Transhipment flow values not calculated.", Scriptname)

exit

end

theVTab = theTranTable.GetVTab

theVTab.SetEditable(TRUE)

odpfld2 = Field.Make("GDP",#FIELD_CHAR,35,0)
theVTab.AddFields({odpfld2})
theval = "[OriginFacility]+[DestinationFacility]+[Product]"
theVTab.Calculate(theval,odpfld2)

' Get the Transhipment FTab and add the new flow fields for
' the two product categories, the total flow, and the
' origin-destination-product (GDP) field

250

theFTab = theTheme.GetFTab

theFTab.SetEditable(TRUE)

cwfld = Field.Make("CW Flow",#FIELD_DECIMAL, 16,2)
rxfld = Field.Make("Rx Flow",#FIELD_DECIMAL, 16, 2)
totfld = Field.Make("Total Flow",#FIELD_DECIMAL, 16, 2)
odpfld = Field.Make("OOP",#FIELD_CHAR,35, 0)
theFTab.AddFields((cwfld, rxfld, totfld, odpfld})

' Calculate the CW flow

newval2 = "[Origin]+[Destination]+""CW"""
theffTab.Calculate(newval2,odpfld)
theFTab.Join(odpfld,theVTab,odpfld2)
theflowval = "[OptimizedValue]"
theFTab.Calculate(theflowval,cwfld)

theFTab.Unj oinAll

' Calculate the Rx flow

newval2 = "[Origin]+[Destination]+""Rx"""
theFTab.Calculate(newval2,odpfld)
theFTab.Join(odpfld,theVTab,odpfld2)
theflowval = "[OptimizedValue]"
theFTab.Calculate(theflowval,rxfld)

theFTab.Unj oinAll

' For each record in FTab, set null values to zero

for each rec in theFTab
cwvalue = theFTab.ReturnValue(cwfld, rec)
i f (cwvalue.IsNull) then

theFTab.SetValue(cwfld, rec, 0)

end

rxvalue = theFTab.ReturnValue(rxfld, rec)
if (rxvalue.IsNull) then

theFTab.SetValue(rxfld, rec, 0)

end

end

' Calcualte the total flow

newval2 = "[Rx Flow] + [CW Flow]"
theFTab.Calculate(newval2,totfld)

' Remove the ODP field from the Transhipments FTab
' since it is no longer needed

theFTab.RemoveFields({odpfld))
theFTab.SetEditable(FALSE)

' Remove the ODP field from the tranship.dbf file
theVTab.RemoveFields({odpfld2})
theVTab.SetEditable(FALSE)

return Nil

251

I***************************************++********************++**

Scriptname:

Filename:

Author:

Date

Description:

Requires:

Called by:

Calls:

SELF:

Returns:

TranshipLine.Build

tranship.ave

Kenneth Bennett

May 3, 1998 (Updated)

Script receives the FTab of the DCs theme from
FlowLine.Build and uses it o get X and Y
coordinates in order to build the transhipment
lines. It then calls TransFlowValues.Calculate
script to join the flow values to the
Transhipments FTab.

Demand by Region view must exist

TransportationLines.Build

TransFlowValues.Calculate

the CVS DCs FTab

Nil

Scriptname = "TranshipLine.Build"

dcFTab = SELF.Get(0)

'dcFTab = av.GetActiveDoc.GetActiveThemes.Get(0).GetFTab

if (dcFTab = nil) then
MsgBox.Info("Error - Table not found","")
exit

end

' Get the facility name from the dcFTab

facfld = dcFTab.FindField("Facility")

' Give a name and path to the new transhipment FTab and create it

defName = FileName .Malce (av. GetProject. GetWor]cDir.AsString)
.MakeTmp("trnshp", "dbf")

theFName = FileDialog.Put(defName, "*.dbf", "Save FTab As")
if (nil <> theFName) then

transFTab = FTab.MakeNew(theFName, POLYLINE)
else

transFTab = FTab.MakeNew(defName, POLYLINE)

end

'Add fields to the new transFTab

252

orig = Field.Make("Origin", #FIELD_CHAR, 20, 0)
dest = Field.Make("Destination", #FIELD_CHAR, 20, 0)
od = Field.Make("0-D", #FIELD_CHAR, 40, 0)
transFTab.AddFields({orig, dest, od})

' Now create a variable for the shape field in the transFTAB

shapeF = transFTab.FindField("Shape")

' Loop through the dcFTab and generate a line
' for each DC pair cornbination except when a
' DC is paired with itself

av.ShowStopButton
av.ShowMsg("Building Transhipment Lines...")
nuitiDC = dcFTab.GetNumRecords

n = 0

for each o in dcFTab
origstring = dcFTab.ReturnValue(facfId, o)
origpnt = dcFTab.GetLabelPoint(o)
XI = origpnt.GetX
Y1 = origpnt.GetY
for each d in dcFTab

deststring = dcFTab.ReturnValue(facfId, d)
if (origstring <> deststring) then

destpnt = dcFTab.GetLabelPoint(d)
X2 = destpnt.GetX
Y2 = destpnt.GetY
newstring = origstring+deststring
newRec = transFTab.AddRecord

1 = Line.Make(Xl@Yl,X20Y2).AsPolyLine
transFTab.SetValue(shapeF, newRec, 1)
transFTab.SetValue(orig, newRec, origstring)
transFTab.SetValue(dest, newRec, deststring)
transFTab.SetValue(od, newRec, newstring)

end 'if

end 'internal for loop
n = n + 1

progress = (n / numDC) * 100
doMore = av.SetStatus(progress)
if (not doMore) then

break

end 'if

end ' external for loop

make transFTab into a theme and add to the view

theTheme = FTheme.Make(transFTab)
theSymList = theTheme.GetLegend.GetSymbols
theColorPaletteList = av.GetSymbolWin.GetPalette

.GetList(#PALETTE_LIST_COLOR)
'Get the color green for the transhipment lines
theColor = theColorPaletteList.Get(15)

theSymbol = theSymList.Get(0)
theSymbol.SetColor(theColor)

253

theTheme.SetName("Transshipments")

' Add the theme to the view

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then
MsgBox.Error("ERROR: Demand by Region view does not exist."+NL+

"Transhipments theme not added to it.",
Scriptname)

return Nil

elseif (not (theView.Is(View))) then
MsgBox.Error("ERROR: Demand by Region doc is not a view."+NL+

"Transhipments theme not added to it.",
Scriptname)

return Nil

else

theView.AddTheme(theTheme)

theView.Invalidate

end

' Run the script to calculate the
' various transhipment flow values

av.Run("TransFlowValues.Calculate", {theTheme})

return Nil

254

Scriptname:

Filename:

Description:

TransportationLines.Build

transpor.ave

Called by:

Calls:

SELF:

Returns:

This script is the master script for generating
a DCs theme and the DC-to-Region and Transhipment
transportation themes. The script first calls the
FlowLines.Build script. Then the FlowLine.Build
script calls the SpliceLatLon script, which in
turn calls the AddXY script. Together, these
scripts generate the DCs theme. FlowLine.Build
then generates all the DC-to-Region Flow
transporation lines FlowLine.Build then returns
the DC theme FTab to this script, and this script
calls the TranshipLine.Build script which then
builds the Transhipments theme. At the end, the
CVS DCs theme is shuffled to the top of the TOC.

Menu click event ("Build Transport Lines")

FlowLine.Build, TranshipLine.Build

Nil

Nil

theFTab = av.Run("FlowLine.Build", Nil)

av.Run("TranshipLine.Build", {theFTab})

theView = av.GetActiveDoc

theThemes = theView.GetThemes

dcTheme = theView.FindTheme("CVS DCs")
theThemes.Shuffle(dcTheme, 0)

dcTheme.SetActive(TRUE)

theView.InvalidateTOC(Nil)

return Nil

255

Scriptname:

Filename:

Author:

Date:

Description:

Requires:

Called by:

Calls:

SELF:

Returns:

TransRxFlowTheme.Make

transrxf.ave

Kenneth Bennett

May 3, 1998

Script generates a Flow theme based on the
Rx Flow field in Transshipment theme table.
Zero value transshipment flows are made
invisible using the null value and symbol.

Transshipment theme must exist

View menu item click event

("Display Flows: Transshipments by Rx Flow")

Nil

Nil

Nil

Scriptname = "TransRxFlowTheme.Make"

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then

MsgBox.Error("ERROR: Demand by Region view does not exist.",
Scriptname)

exit

end

if (not (theView.Is(View))) then

MsgBox.Error("ERROR: Demand by Region doc is not a view.",
Scriptname)

exit

end

theTheme = theView.FindTheme("Transshipments")
if (theTheme = Nil) then

MsgBox.Error("ERROR: Theme called Transshipments

does not exist.", Scriptname)
exit

end

catString = "Rx Flow"

checkTheme = theView.FindTheme("Transshipments"++catString)
if (checkTheme <> nil) then

theView.DeleteTheme(checkTheme)

theTable = av.GetProject.FindDoc("Attributes of Transshipments"
++catString)

if (theTable <> NIL) then

256

aV.GetProject.RemoveDoc(theTable)
end

end

' Clone the Transshipment theme

newTheme = theTheme.Clone

newLegend = newTheme.GetLegend

' Select a color from the color palette to
' be used in drawing the transhipment lines

theColor = av.Run("ColorPalette.SelectColor", Nil)

' Classify the legend with three natural
' breaks and size the lines according to
' the flow volume

newLegend.SetLegendType(#LEGEND_TYPE_SYMBOL)
newLegend.SetNullValue(catString, 0)
newLegend.DisplayNoDataClass(FALSE)
newLegend.Natural(newTheme, catString, 3)
theSymbolList = newLegend.GetSymbols
thickness = 1

for each s in theSymbolList
s.SetSize(thickness)

thickness = thickness + 1

end

theSymbolList.UniformColor(theColor)

' Create a null symbol for the legend
' and set it

nullSym = Symbol.Make(#SYMBOL_PEN)
nullColor = Color.GetBlue

nullColor.SetTransparent(TRUE)
nullSym. SetColor(nullColor)
newLegend.SetNullSymbol(nullSym)
newTheme.SetLegend(newLegend)
newTheme.SetName ("Transshipments"++catString)
newTheme.SetActive(FALSE)

newTheme.SetVisible(TRUE)

theView.AddTheme(newTheme)
newTheme.UpdateLegend

theView.Invalidate

nullColor.SetTransparent(FALSE)

return Nil

257

,+ + + * + ******* + ***************■***•*** + *■* + ***************************

Scriptname: TransTotalFlowTheme.Make

Filename: transtot.ave

Author: Kenneth Bennett

Date: May 3, 1998

Description: Script generates a Flow theme based on the
Total Flow field in Transshipment theme table.
Zero value transshipment flows are made
invisible using null value and symbol.

Requires: Transshipment theme must exist

Called by: View menu item click event
("Display Flows: Transshipments by Total Flow")

Calls: Nil

SELF: Nil

Returns: Nil

Scriptname = "TransTotalFlowTheme.Make"

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then

MsgBox.Error("ERROR: Demand by Region view does not exist.",
Scriptname)

exit
end

if (not (theView.Is(View))) then
MsgBox.Error("ERROR: Demand by Region doc is not a view.",

Scriptname)
exit

end

theTheme = theView.FindTheme("Transshipments")
if (theTheme = Nil) then

MsgBox.Error("ERROR: Theme called Transshipments
does not exist.", Scriptname)

exit
end

catString = "Total Flow"

checkTheme = theView.FindTheme("Transshipments"++catString)
if (checkTheme <> nil) then

theView.DeleteTheme(checkTheme)
theTable = av.GetProject.FindDoc("Attributes of Transshipments"

++catString)
if (theTable <> NIL) then

258

av.GetProject.RemoveDoc(theTable)
end

end

' Clone the Transshipment theme

newTheme = theTheme.Clone

newLegend = newTheme.GetLegend

' Select a color from the color palette to
' be used in drawing the transhipment lines

theColor = av.Run("ColorPalette.SelectColor", Nil)

' Classify the legend with three natural
' breaks and size the lines according to
' the flow volume

newLegend.SetLegendType{#LEGEND_TyPE_SYMBOL)
newLegend.SetNullValue(catString, 0)
newLegend.DisplayNoDataClass(FALSE)
newLegend.Natural(newTheme, catString, 3)
theSymbolList = newLegend.GetSymbols
thickness = 1

for each s in theSymbolList
s.SetSize(thickness)

thickness = thickness + 1

end

theSymbolList.UniformColor(theColor)

' Create a null symbol for the legend
' and set it

nullSym = Symbol.Make(#SYMBOL_PEN)
nullColor = Color.GetBlue

nullColor.SetTransparent(TRUE)
nullSym.SetColor(nullColor)
newLegend.SetNullSymbol(nullSym)
newTheme.SetLegend(newLegend)
newTheme.SetName ("Transshipments"++catString)
newTheme.SetActive(FALSE)

newTheme.SetVisible(TRUE)

theView.AddTheme(newTheme)
newTheme.UpdateLegend
theView.Invalidate

nullColor.SetTransparent(FALSE)

return Nil

259

Vita

Kenneth Bennett was bom in Chula Vista, a suburb of San Diego, California, on

February 19,1966. He attended Hilltop High School in Chula Vista where he graduated

in 1984. He received his Bachelor of Arts degree from the University of California, Los

Angeles, in 1989, with a major in English and World Literature. After graduating from

UCLA, he spent one year traveling in Mexico and the Southwest of the United States.

From 1990 until 1993, he worked for an airfreight forwarding company, and from 1994

to 1996 as a trade journalist in such fields as import and export trade, and the private

sector financing of international energy, transportation, and conoanunications

infrastructure. These experiences led him to an interest in the spatial distribution of

economic activity, particularly in the areas of energy and transportation. In 1996, he

entered the Dq)artment of Geography at the University of Tennessee in pursuit of a

Master of Science degree. Upon successful defense of this thesis, Kenneth Bennett will

receive his M.S. in Geography with an emphasis in the use of geographic information

systems for transportation and logistics analysis.

260

	Using geographic information systems for business logistics analysis
	Recommended Citation

	Using geographic information systems for business logistics analysis

