11 University of Tennessee, Knoxville
i LN IWERSITY of

TENNESSEE TRACE: Tennessee Research and Creative
FHOREE Exchange
Masters Theses Graduate School

8-1998

Using geographic information systems for business logistics
analysis

Kenneth M. Bennett

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Recommended Citation

Bennett, Kenneth M., "Using geographic information systems for business logistics analysis. " Master's
Thesis, University of Tennessee, 1998.

https://trace.tennessee.edu/utk_gradthes/10171

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F10171&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

| am submitting herewith a thesis written by Kenneth M. Bennett entitled "Using geographic
information systems for business logistics analysis." | have examined the final electronic copy
of this thesis for form and content and recommend that it be accepted in partial fulfillment of
the requirements for the degree of Master of Science, with a major in Geography.

Bruce Ralston, Major Professor
We have read this thesis and recommend its acceptance:

Tom Bell, Chen Liu

Accepted for the Council:
Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Kenneth M. Bennett entitled “Using
Geographic Information Systems for Business Logistics Analysis.” I have examined the
final copy of this thesis for form and content and recommend that it be accepted in partial
fulfillment of the requirements for the degree of Master of Science, with a major in
Geography.

e S d A

Bruce Ralston, Major Professor

We have read this thesis
and recommend its acceptance:

o L BelL

Tom Bell

Chen Liu

Accepted for the Council:

Associate Vice Chancellor and
Dean of The Graduate School

USING GEOGRAPHIC INFORMATION SYSTEMS
FOR
BUSINESS LOGISTICS ANALYSIS

A Thesis
Presented for the
Master of Science
Degree
The University of Tennessee, Knoxville

Kenneth M. Bennett
August 1998

Acknowledgments

During the nearly two years I have spent at the University of Tennessee, and
throughout my life, there have been many colleagues, friends, and family members
whose influence on me has led, in one way or another, to my arrival at this moment.
While I cannot acknowledge all of them here, there are several whose names must not go
unmentioned.

First and foremost, I would like to express my deepest gratitude to Dr. Bruce
Ralston for being my teacher, mentor, and friend. For the entirety of my stay here at the
University of Tennessee, he has responded to my concerns and ambitions — both as a
student, and as a first-time father — with the utmost respect, understanding, and
generosity. I would like to thank the other members of my Thesis Committee — Drs. Bell
and Liu — for their cooperation and guidance, and Bill Dewitt, from the College of
Business, for his inspiration and support. I must also offer my appreciation to the faculty
and my fellow graduate students in the Department of Geography for their friendship and
camaraderie, and for giving me a new perspective on the world.

Perhaps the greatest debt I owe is to my family. My parents, Errol and Sharon
Bennett, long ago planted the seeds of intellectual and professional pursuit that have born
fruit with this thesis. My grandfather Al Hughes has always inspired me to think
scientifically. My brother Eric has comforted me with his solid personality and common
sense. My brother Daniel has encouraged me with his challenges, good humor, and
alacrity. Most importantly, my wife Rosario and our son Diego have given me the love

and support I have needed to achieve this goal.

Abstract

Although geographic information system (GIS) technology has been used by government
agencies and academic institutions since the early 1960s, the adoption of GIS technology
by the private sector has only begun to occur on any significant scale in the past few
years. Obstacles to its diffusion have been the high cost of necessary computer
hardware, lack of readily available spatial data, and misconceptions about what GIS 1is
and who can benefit from it. Since the late 1980s, however, certain trends have cleared
the way for growth in private sector applications of GIS. One of these trends has been
the dramatic decline in the cost of computer hardware coupled with greatly improved
performance. Another trend has been the phenomenal growth in spatial data available
from government agencies and professional spatial data providers. Lastly, corporations
have begun to find themselves overloaded with data, and are seeking innovative ways to
leverage their data resources, much of it geographically referenced, in order to gain an
information-based competitive advantage. While most private sector GIS applications
have focused on sales territory management, niche marketing, retail location analysis, and
fleet management, its potential as a tool for logistics analysis has gone relatively
unnoticed. This thesis explains the advantages of using GIS for logistics, and discusses
in detail its application to the distribution network optimization of a major U.S. drugstore
chain. Emphasis is placed on the ability of GIS to provide a better understanding of
business logistics processes through the power of visualization. It is concluded that the
inherent advantages of GIS technology for data processing, combined with its devolution
into libraries of functions and objects that may incorporated piecemeal into mainstream

information systems, will fuel the rapid diffusion of GIS throughout the private sector.
iii '

Preface

When we reason about quantitative evidence, certain methods for
displaying and analyzing data are better than others. Superior methods are
more likely to produce truthful, credible, and precise findings. The
difference between an excellent analysis and a faulty one can sometimes
have momentous consequences.

— Edward R. Tufte

v

Table of Contents
Chapter Page
1. An Introduction to GIS and LogiStiCs........ccccoueruerirmrentnicniccncesisiesesriseesisesesnees 1
INIOQUCTION ...ttt bt ettt sn s e sr e eb e e 1
The Diffusion of GIS Technologycceieoerieiieiiiieieee et 2
A Brief Overview of Business LOZIStICS.......cccoeireniriivcienenienicire e 8
Logistics, GIS, and ViSualizationccoceeeeieerieiieiineeine s eseees 10
The CVS-Revco Merger as a Sample Logistics Problem ..o 14
The CVS Distribution Network Optimization Project..........cc.cocovverernneicenennens 18
Thesis Outline and DiSClaimerc.cooeeoimerniiiiierenee e 19
2. Overview of the CVS Project’s Custom GIS Functions...........cccccceecumvecenensennennne. 21
Importation and Display of the Optimization Scenario Data......... rerereeeeeree e neas 21
Tracing Demand Region Logistics COStS.......c.uierierirvenienc it 27
Analyzing DC Location Strat€gi€scccecueeieriieneeieeieeieeeee et eee e eeeenes 32
3. Importing and Visualizing the Optimized Logistics Networkccccocreeeenncene 37
Importing the Microsoft Access Tablesccooeieeeeieeeeneeieecce e 37
Building the Component Features of the Networkcccocvericeieniniencenccenene 42
Summarizing the DC Datacooooiieiieee e 49
Summarizing the Demand Region Datacc.ocovieiiiiiiniieiininncncesceeeceeeenen. 55
Displaying the Network Featuresc..coooiioiiiiiiiiceeceeceee e 56
4. Tracing Demand Region Logistics COStScccooeimererenenenerscnrinneerreeesceneeenes 62
Tracing Logistics Costs of Individual Demand Regionsc.ccooeevveeeiencnennen. 62
Tracing Logistics Costs for the Entire Network of Demand Regions 79
5. Comparing DC LocCation Strategies..........coccerueruerueerieneeeereerirsraneneenreseeeeereeceneenee 84
Generating the SErVICE ATEASccoeoieierieeerieieeee e ettt sree e 84
Making the HIStOZTAIMccooiiiiiiieiee ettt s 93
6. CODCIUSION.......otieueeeieeieiei ettt et et eetee e stee e es e stesse st e seesenaesse seesseesenneneenseasenne 97
Advantages of GIS fOr LOZISTICSccevreruereieriieriienieeieieerieeeieeeteseeeeeneeeeeeenee e 97
Suggestions for Improving the CVS Project’s GIS Customization.................... 100
The Future of Using GIS for LOZIStICScooiiiiieiieieciiecie e 101
Emerging Trends in GIS Technologyc.coccieiiiinieiiiiincncnceeceeceeee 102
RefErences.......ccocueeieeieieieiieee et eeeeeeeeeeee e 104
APDPEIAIX. ..ottt ettt ettt et e a e ae et e e esre e esee e ene et ensan 108
VLR .ttt ettt et ste e e ese et et st st ste st sa b et ea b e et esse et e se et sbente e ensensessaabeeneanaenee 260

List of Tables

Table Page
3 1. CVS and Reveo DC IOCALIONSococevemeircvenriainiinereiesss st secstessesenssssasasenes 17
2. Custom menus added to the ArcView default menubar ..o 36
| 3. Microsoft Access tables and their pertinent feldscoo...reeeerermeerermecreveenn 38
4. Name changes of MS Access tables after export and re-import
‘ IIEO ATCVIEW ..ottt et ees e e seese e e e eeeseseneenae s sene s e en i s e e sa e caae et 40
‘ 5. Fields in the attribute tables of the project’s base themes ..o 50
6. Fields in the base theme attribute tables after summarizing
DC and Demand Regions dataccooiiniiiiniiniiie e 57

List of Figures

Figure Page
1. CVS stores and DCs before the merger with REVCO ... 15
2. Revco stores and DCs before the merger with CVS ..o 16
3. Overlapping service areas of the combined CVS-Revco NEtWOrK ...ooovevcncciennee 17
4. CVS DCs and demand regions for sample optimized network...........cocovvcvccinnnne 22
5. Prescription product flows over sample optimized NEtWOTK............coormriiniieinines 24
6. Prescription product transshipments and DC handling costs

ON SAMPIE MEEWOTK ..ottt 26

7. Demand regions displayed as pie charts ... 28

8. Sample report of total CW product logistics cost for an individual

AeMANA TEZIOMcecvereeeeeeeteececi ettt s e 29
9. View of demand regions portrayed according to total Rx

JOGISTICS COSES...o.enrueerucuecmuainmnrsesenerassaesse st s es st 31
10. Report of total and component Rx logistics costs for entire

SAMPIE MEEWOTK........vrreiiiii ittt s 31
11. Five 50-mile, nested service ranges around each DC in the

CVS SAMPLE DEEWOTKcoveirviiimiiinceimtete e 33
12. Histogram showing the percent of stores to nearest DC for

CVS and its MajOr COMPELILOTScoovrremrimeeseressriesesttisiesiss et 34

13. ArcView tables created from Microsoft Access tables..........cooeeeinniiiniiiinnnnn 40
14. A partial model of Avenue objects relating to this thesiscoovieiriiccenens 41
15. Outline of scripts launched by the Build Transport Lines menu item 44
16. Joining tables to capture flow line attributescooccoomeiiimiiiminnniii, 47
17. Display Flows drop-down menu after building the project’s

DASE THEINES ..ot eeee et eeeseeesaeseesaneansssaaaansaessmsaesaneeesanteessnsasaesansanasstasnnnnes 50

-

Figure Page
18. Outline of scripts launched by Summarize DC Data menu 1temcooeveeerenees 51
19. Display Demand Regions drop-down menu after summarizing

demand 1e@ION data.............oceiieeerieeeire ettt s e 58
20. Pie chart symbols representing demand T€ZIONSccoooerimrininerinieieienrenineenees 59
21. Making zero value flows to demand regions invisible using

AU SYMBOL.......oieiieeeec ettt 61
22. Linking tables t0 trace 10giStiCS COSESccccuvirimiirmimiiirerinrireressnnict e 63
23. Outline of scripts launched by Demand Regions Rx Only

menu item OF “R7 t00L......c.coviiiieeiieriee e eee ettt s enes e s re e srs e 64
24. ArcView GUI for a View doCUmEDt.........cocoeeiieieieniieieieccenie et 66
25. Example of linked tables after selecting a demand region

£0 traCE LOZISLICS COSES .-..nrirmrnieeeietiicirie ittt et aen s e vs s eae e enens 67
26. Demand region 229 near Charlottesville, Virginia, in the

RX product DELWOTKc.coceouriiniriiiiiiiiiiintce ettt 69
27. Selected records in dirstore.dbf table after clicking on

demand re@ion 229ccoevieiiiiiiecente sttt eas 71
28. The dirstore.dbf table linked to the DCs attribute table

by the Facility fleldsoocooioiiiie e 72
29. Records in the tranship.dbf table that are selected based on

its link with the DCs attribute table................ccooioiiniieiniiiece e 74
30. Records in the tranship.dbf table that are selected when the

servicing DC receives transshipments from two origin DCs ... 76
31. Computing picking cost at two transshipment origin DCs

for demand 1egion 229oooioiiiiiiieeeieeee et e 77
32. Report of total Rx logistics cost for demand region 229cccooeeiiiniienninnn. 79
33. Logistics costs tables support the display of the Demand

Regions theme by 10ZiStICS COSTccurmiurmimimieiriiciriciricecieiee e 81

viil

Figure Page
34. Demand Regions theme displayed by Rx 10gistics COStcocrmmmimiiniiriininennnn. 82
35. Service areas aroUNd DICScooeieieieiiiieiniie ettt 86
36. Location strategy menu and U.S. road network

theme (red lines) displayedccoovemriirieiienicicinc 88
37. Service Area attributes table with every fifth record selectedccooeveriieines 91
38. The 150-mile service area range selected foreach DC ... 92
39. Histogram showing the percent of stores falling within each range

of the nearest DC for the CVS sample DetWOrKcooovimmiieieniinineneiiinninns 94
40. Using histograms to compare the DC configuration of a CVS

sample optimized network to the DC configurations of

96

COMPELItOrS” TEEWOTKS..........oemmimrieiict et

Chapter 1

An Introduction to GIS and Logistics

Introduction

An examination of the application of geographic information system (GIS)
technology to the field of business logistics is difficult to conduct for two reasons. The
first reason is that very few profiled cases exist where a GIS has been implemented for
the expressed purposes of business logistics management. The second reason is that GIS
technology, and especially its application to mainstream business activities, is a relatively
recent phenomenon. Therefore, it will take some time for such GIS applications to be
addressed in depth in the literature (Dewitt and Ralston, 1996). Nevertheless, the
promise GIS technology holds for business logistics remains strong, and it is my
conviction that GIS technology will soon become a commonpléce tool within that
industry. The goal of this thesis is to explain why GIS has not been, but is now very
much ready to be, embraced by the business logistics industry and to illustrate a practical
example of how GIS technology can be used to develop a powerful, yet simple-to-use
tool for logistics analysis. To understand the current status of GIS in the logistics
industry, it is first necessary to explore the historical and theoretical framework

underlying the diffusion of GIS technology over the past several decades.

The Diffusion of GIS Technology

Coppock and Rhind have shown that the pioneering of GIS technology began in
North America in the late 1950s and the early 1960s with attempts to use emerging
computer technology to automate cartography and the processing of geographically
referenced data, such as those derived from census, cadastral, and land use surveys.
Innovations in automated mapping were made by national agencies such as the U.S.
National Ocean Survey, by military establishments, and by universities, notably the
Harvard Laboratory for Computer Graphics and Spatial Analysis. The early developers
of geographically referenced data processing were often large national government
agencies, such as the U.S. Bureau of the Census and the Canadian Department of
Agriculture. It was through this latter organization that Roger Tomlinson developed
what is considered to be the first true GIS, the Canadian Geographic Information System
(Coppock and Rhind, 1991). What is noteworthy here is that the origin of GIS
technology was in the public sector and academia.

For reasons which will be discussed, the employment of GIS technology
continues to be dominated by the public sector and academia, and has experienced a
rather slow adoption rate by private sector business. A 1993 survey revealed that
roughly 65% of GIS users are educational institutions and government agencies at
federal, state, and local levels, while approximately 14% are from other land and
resource intensive industries such civil, environmental, and transportation engineering

and consulting, utilities, forestry, and real estate. Only 6% of the users were businesses

in the commercial sense, and they were categorized as retail marketing and sales. A 1995

survey of GIS software sales showed only 9% going to business. Of these, a vast
majority are retail marketing and sales applications, while business logistics is not even
mentioned (Korte, 1997). Grimshaw has also noted that while GIS is already widespread
throughout the public sector, private sector business has only just started to realize its
practical applications (Grimshaw, 1994).

One of the factors inhibiting the diffusion of GIS technology into the private
sector has been its cost. Early GIS applications, like other early software applications,
were designed to run on the only computer systems then available — mainframes. The
expense of acquiring mainframe computer hardware and software, and of training staff to
use them, was prohibitively high for all but the largest of organizations (Korte, 1997).
Goodchild has argued, moreover, that GIS applications have been considered less central
to business processes than accounting, spreadsheet, and word processing applications.
And so, any organization considering the use of GIS will subject the technology to a
strict cost-benefit analysis (Goodchild, 1991). Before the dramatic decline in the cost of
computing technology in the last decade or so (Ibid.), it would have been difficult to
convince many organizations of the value in investing in the technology. Thus, it is no
surprise to find that public agencies and academic institutions formed the market
stronghold for early GIS applications. Such organizations traditionally have had less
stringent return-on-investment policies than private sector, market-driven, organizations.
Also, the research role of academic institutions leads many of them to accept “cutting

edge” technologies long before private sector accounting can justify them.

3

A second factor limiting the business world’s acceptance of GIS relates to the
accessibility of the technology and the data upon which it depends. As already noted,
early GIS applications were mainframe-based. Like other mainframe-based applications,
GIS was a centralized, “backroom” activity that was highly specialized, capital intensive,
and often slow and laborious (Dewitt et al., 1997; Szajgin, 1997). Indeed, early GIS
technology was relatively more cumbersome than currently, since the storage,
manipulation, and integration of spatial and non-spatial data is, in general, more
computationally intensive than most other data processing applications (Goodchild,
1991). Early GIS technology also suffered from a lack of readily available spatial data
(e.g. coordinatized base maps of political boundaries, road and rail networks), so
organizations using GIS often had to produce their own maps “in house” before they
could take advantage of the technology (Hamilton, 1996). These technology and data
constraints meant that only organizations whose time horizons for decision-making were
relatively long, such as government planning agencies and certain land-intensive
industries such as forestry, were willing to commit the human and capital resources
necessary to exploit the unique capability of GIS to process information spatially. Time
horizons for decision-making in the traditional business environment, on the other hand,
are much shorter (Dewitt et al., 1997). The turnaround time for information requested of
early GIS applications often would have exceeded business expectations, thus
discouraging the adoption of the technology.

A final factor inhibiting the diffusion of GIS technology in the business arena

involves various elements of social and organizational theory. Rogers has argued that the

4

complexity of a technology innovation will slow its rate of adoption among potential
users, and suggests that GIS diffusion suffers from such complexity, due to its lack of
user-friendliness and its rapidly expanding and advancing functionality. He also cites
studies showing that the decision to adopt a new technology often hinges primarily on the
observation and recommendations of industry peers who use the new technology, rather
that on media and corporate publicity about the new technology. A technology like GIS,
whose user base is dominated by the public sector, will therefore ixave difficulty, at least
initially, in bridging the personal communication gap that exists between public and
private sector employees (Rogers, 1993). Sherwood blames the U.S. business world’s
resistance to GIS technology on the lack of geographical awareness of the baby boomer
generation (i.e., 1946 - 1964) and their immediate forebears. These people, who are the
ones primarily in control of today’s businesses, had little exposure to geography in their
primary, secondary, and even post-secondary levels of schooling, because geography had
fallen into decline within educational curricula during these times, and subsequently lost
its reputation as an applied professional discipline in the non-academic world. With this
in mind, she argues that current GIS applications are associated too much with the
unrecognized discipline of geography and are too generic in their functionality. She
suggests that business users will more readily accept GIS when the functional capabilities
and the vocabulary of GIS applications are tailored to specific business tasks (Sherwood,
1995). Grimshaw has also cited the generic and complex nature of GIS applications as a
constraint to its adoption, as well as its stigma as a tool limited to geographers. He also
argues that GIS technology, like other information technology innovations, suffers from

5

corporate information strategies that view new technologies as merely a substitute for

existing data processing methods, rather than as a complement to them. Thus,
organizations that do not already use maps extensively will not see the need for GIS
technology, and will fail to appreciate the ability of GIS to leverage the wealth of
geographically referenced data existing in their current systems (Grimshaw, 1994).

In spite of these obstacles to the diffusion of GIS technology, the 1980s and early
1990s saw dramatic changes in the computer industry in general, and in GIS technology
specifically. These changes are aiding the adoption of GIS technology. Perhaps the most
significant was the dramatic order-of-magnitude declines in the cost of computing
(Coppock and Rhind, 1991). In tandem with cheaper computer technology came the
shift away from centralized, mainframe-based computing toward distributed computing
based on networks of powerful workstations (Goodchild, 1991). This time period also
saw the rapid dissemination of the desktop computer and an exponential growth in their
computational and graphical capabilities. Although desktop computers were originally
scorned as a novelty of the home consumer, information systems of the largest public and
private sector organizations are today being built around the relatively inexpensive
desktop computer, using client-server networks, relational database management systems,
and user-friendly, windows-and-mouse-based graphical user interfaces. At the same
time, vast amounts of spatial data have been produced, standardized, and enhanced with
increasing levels of accuracy, and have been made available to the public at decreasing
cost by a host of commercial data vendors and government agencies (Fung and Remsen,

1997; Johnson, 1993; Zwart, 1993). The familiar adage that 80% of all data may be

6

geographically referenced has also made its way into corporate information strategy.

Corporations once struggled with having too little data about their operations, but as
information systems have improved, many now find themselves inundated by a sea of
data they cannot easily interpret. Increasingly, corporations are looking to the unique
ability of GIS technology to process and display complex sets of data spatially in an
effort to more quickly and efficiently generate useful information (Dewitt, 1997; Rao,
1995). Finally, geography as a discipline has been experiencing a renaissance since the
early 1990s in the national education policy of the U.S., as well as at the grassroots level,
which should help to make future business managers in the U.S. more disposed to spatial
analytical techniques and GIS technology (Sherwood, 1995).

The result of GIS developers adapting their products to the new desktop regime,
and the increasing availability of vast amounts of commercial and corporate data, has
been an explosion in the use of GIS technology (Huxhold and Levinsohn, 1995; Korte,
1997). As noted earlier, a small but increasing portion of this growth has been due to
private sector businesses investing in the technology, and it is projected that the business
market will continue to fuel GIS sales, especially as the business world becomes more
aware of the opportunities to leverage their spatial data resources to remain competitive
(Tetzeli, 1993; Jacobs, 1996; Swenson, 1996). Unfortunately, only certain functional
areas of business are currently pursuing GIS technology with any vigor, while other
areas, such as business logistics, have not been as accepting. Grimshaw’s very thorough
discussion of applying GIS technology to private sector business targets marketing, sales,
and retail location as the most promising business application of GIS (Grimshaw, 1994).

7

My review of existing literature about companies that have applied GIS to business
seems, in general, to corroborate Grimshaw’s prediction. Moreover, the only periodical
devoted primarily to business applications of GIS — GIS World, Inc.’s Business
Geographics — also devotes most of its coverage to retail marketing and sales
applications.

Nevertheless, GIS technology is beginning to make some significant inroads into
one area of logistics, namely fleet management. Sears has used GIS as a tool for
scheduling and routing home deliveries (Jacobs, 1996), and Federal Express uses GIS in
its Operations Research and Spatial Applications Department to manage and optimize its
vast transportation operations (Gates, 1997). Yellow Freight Systems is another
transportation company using GIS to manage its fleet of 3,700 trucks (Tetzeli, 1993).
The U.S. Postal Service has combined GIS and global positioning system (GPS)
technology as part of an automatic vehicle tracking system (Harder, 1997). Fleet

management, however, is only a small part of what constitutes business logistics.

A Brief Overview of Business Logistics
Business logistics is defined by the Council of Logistics Management (CLM), a
professional organization of logistics managers and educators, as
the process of planning, implementing, and controlling the efficient, cost-
effective flow and storage of raw materials, in-process inventory, finished

goods and related information from point of origin to point of
consumption for the purpose of conforming to customer requirements.

Implied in this definition are a number of major logistics planning areas. Specifically,
these are 1) customer service level decisions, 2) location decisions, 3) inventory
decisions, and 4) transportation decisions. The first of these areas encompasses the latter
three, because the target level of customer service that is established will affect the other
three decision-making areas. Therefore, deciding on the level of service a customer
should receive is an important task that will impact the overall design of the logistics
system. Location decisions involve determining the number, size, and geographic
placement of manufacturing, warehouse, and retail facilities, and allocating the market
areas these facilities will serve. Inventory decisions consider different strategies for
managing inventory flow, the levels of inventory (both the cycle stock for anticipated
sales, and the safety stock for unanticipated sales) to maintain, and the deployment of
raw materials and products throughout the logistics network. Transportation decisions
include mode selection, shipment size, and routing and scheduling. All of these major
planning areas, moreover, are interrelated, and often pose trade-off situations in which a
cost decrease in one area results in a cost increase in another (Ballou, 1992). One
example is the trade-off between inventory and transportation. While shipping by rail
may be cheaper than shipping by truck, the increase in transit time and the decrease in
reliability associated with rail may necessitate larger inventories at warehouse or retail
locations, such that the inventory carrying cost may exceed the savings in transportation

cost.

Logistics, GIS, and Visualization

Logistics involves the movement of materials and goods across space in a timely
manner. Since logistics is concerned fundamentally with place as well as time, any
technology that helps to depict spatial relationships will be very useful to logistics
(Barone, 1997). As it turns out, logistics problems lend themselves well to GIS-based
analysis. The geographic distribution of facilities in a logistics network, the lines of
transportation that connect them, and the service areas resulting from the two, are easily
represented by the geometry of points, lines, and polygons a GIS employs for thematic
mapping. However, these maps are more than just a graphical representation of a
logistics network, for associated with each graphical feature are tabular, alphanumeric
data describing the real world objects or processes those features are designed to
represent. Thus, a point on a GIS map representing a warehouse can contain information
about the inventory contents and levels, the rate of materials handling cost, delivery
windows, the fixed costs, or the capacity of the facility. Likewise, a line representing a
shipment route can contain information about its mode, its capacity, and its shipping rate
and time. Moreover, this tabular information can be used to graphically enhance the map
display, by sizing the points representing warehouses according to capacity, or by color-
coding the shipment lines according to their mode, for example. Since there is
practically no limit to the amount of data an associated table may hold, the many
different ways a feature can be displayed is limited only by what is known about the

object or event it represents.

10

This ability of GIS to use maps to display information has become what has been
coined the new “map paradigm” of the information age. The premise of this bold
statement rests on the special angle GIS offers for displaying data.

One of the great insights of GIS is that there is a vast difference between

seeing data in a table of rows and columns...and seeing it presented in the

form of a map. The difference is not simply aesthetic, it’s conceptual — 1t

turns out that the way you see your data has a profound effect on the

connections you make and the conclusions you draw from (sic) them

(Harder, 1997).
The traditional tools of business, such as the spreadsheet or database, can often obscure
or misrepresent data that is linked to location. GIS, on the other hand, can link such data
to places and processes, thus making the data more easily and intuitively understood
(Ibid). In a similar vein, Buttenfield and Mackaness have argued that GIS is a technology
that is well suited to meet the rising demand for what has been called data
“visualization.” Visualization is a method of data exploration that has grown from the
needs of our information age

to access pertinent information from an overwhelming volume of

collected data; to communicate complex patterns effectively; to formalize

sound principles for presentation of data that optimize visual processing

skills; and to steer analytical computations for data modeling and

interpretation (Buttenfield and Mackaness, 1991).
The key to successful data visualization lies in the graphical user interface (GUI). As its
name implies, the GUI is the working environment graphically displayed on the
computer screen that enables the user to interact with the data. This interaction involves

more than just the viewing of data — it also involves data manipulation. Therefore, the

degree to which a GUI helps or hinders the interaction with data depends less on how

11

artistic the display is, and more on how logical and intuitive it is. If the GUI is not “user-
friendly”, as it is said, the user becomes distracted by the interface and loses sight of the
data. In other words, the tools for interacting with data that the GUI provides should be
transparent to the user, thus allowing the user to concentrate on the data themselves
(Ibid.). The ability of GIS technology to embed data in map features, and to render the
appearance of those features according to the data they contain, creates just such a logical
and intuitive GUL The GIS GUI enables the user to view data as the actual objects the
data are describing, and to query, add, delete, and analyze the data embedded in them
simply by pointing and clicking on the mouse. GIS takes these analytical capabilities a
step further by allowing the features themselves to be analyzed. In addition to the full set
of tools available to most relational database management systems, such as logical
operators, math and string functions, and a scripting language, GIS offers the unique
ability to conduct spatial analysis on graphical features, which is a powerful tool beyond
the scope of traditional database management systems (Harder, 1997). Thus, for
logistics, a GIS can be used to determine the percentage of a company’s retail market that
lies within the designated service area of a warehouse, or it can find the number of raw
materials suppliers within a day’s transit time from a manufacturing facility, to name just
a few spatial operations.

According to Dewitt et al., GIS can be an eminently useful tool of logistics
practitioners for visualizing weaknesses or problems in a logistics network, for creating

mutual understanding among the various functional areas of a business, and for

formulating solutions quickly.

Perhaps most important to logistics is the ability of GIS to integrate all

components of the logistics chain and to display their relationships in an

intuitive and understandable manner. Before companies can re-think their

logistics operations...they must first understand their current

situation...Looking at alternative configurations displayed in several forms

(maps, charts, and tables) provides those who must construct a logistics

system with a common frame of reference. GIS gives logistics an

effective decision support capability (Dewitt et al., 1997).
The most noteworthy example of a GIS application being applied in this way to a
logistics network was Proctor and Gamble’s global supply chain restructuring project that
involved the integration of GIS with integer programming, and network optimization
models (Camm et al., 1997). Although much of the spatial analysis capabilities of
current GIS technology were not employed in the project, Camm et al. cited the need to
be able to “drill down” into the data underlying the network optimization model, as well
as to provide a quick, interactive interface, as the main reasons for using GIS technology
as the front end for the modeling system.

We needed a simple interactive tool that would allow product-strategy

teams to quickly evaluate options (choices of plant locations and

capacities), make revisions, evaluate the new options, and so on. If

possible, we wanted a system that would guide users to better options in

an evolutionary fashion (Tbid.).
They credited the use of GIS with having increased user acceptance of the project’s
analytical techniques by making the modeling system’s solution algorithm transparent to
the user, while emphasizing the important spatial relationships inherent in logistics
networks of suppliers, plants, warehouses, and customers. Another surprising byproduct

of using GIS for visualization was its ability to highlight database errors that might not

have been detected otherwise. In short, the integration of GIS with the network

13

optimization model proved to be a powerful and flexible decision support system (DSS)

for the supply chain project (Ibid.).

The CVS-Revco Merger as a Sample Logistics Problem

In 1996, the drugstore chain Consumer Value Stores (CVS) acquired a much larger
competitor chain, Revco. Prior to the acquisition, CVS’s market area was limited
primarily to the northeast United States, although it enjoyed a strong presence in the mid-
Atlantic states (Figure 1). Revco, on the other hand, was distributed throughout most of
the states east of the Mississippi River, excluding the New England region (Figure 2).
The acquisition was approved by the shareholders of both companies and, contingent on
certain provisions, by the U.S. Federal Trade Commission. The resulting merger formed
the second-largest drugstore chain in the U.S. market. While both companies hailed the
merger as a profitable venture, merging them into one company actually posed several
problems that could have undermined its success. One of these problems dealt with
integrating the two different distribution networks that existed prior to the merger.

CVS had three distribution centers (DCs) serving approximately 1,400 stores,
while Revco had six DCs serving approximately 2,500 stores. Table 1 lists each
company’s respective DC locations. Even before the merger was finalized, it was
evident to CVS management that a restructuring of the resulting distribution network
would have to occur. A brief look at DC service territories revealed various overlapping

areas in the two networks, particularly around the mid-Atlantic states (Figure 3). To

14

Figure 1. CVS stores and DCs before the merger with Revco.

15

Fredericksburg, VA

- : “ ;:;0\ Y 4+
: 7'[,'; ’_4;&_
: 5 Augusta, SC

Figure 2. Revco stores and DCs before the merger with CVS.

16

Table 1. CVS and Revco DC locations

CVS Revco
Woonsocket, Rhode Island Indianapolis, Indiana
Lumberton, New Jersey Somerset, Pennsylvania
Fredericksburg, Virginia Knoxville, Tennessee

North Augusta, South Carolina
Henderson, North Carolina
Bessemer, Alabama

Heveo Network

Overlapping Service Areas of the Combined
CVS-Reveo Network
(Each Service Area Includes Five 50-Mile,
Nested Service Ranges)

Figure 3. Overlapping service areas of the combined CVS-Revco network.

17

make the new network more efficient, it was concluded that a reallocation of stores to
DCs was required, at the very least. Further, some DCs might have to be closed, others
might have to be expanded and improved, and perhaps new DCs would have to be
constructed, in order for CVS to meet the challenges of its new market share and to
accommodate future growth. In short, revamping CVS’s new logistics system was a

classic network optimization problem of the location/allocation type.

The CVS Distribution Network Optimization Project

During the summer of 1997, Dr. Charles Noon of the Department of Management
Science, and Dr. Bruce Ralston of the Department of Geography, at the University of
Tennessee, Knoxville, were contracted by CVS to work on this network optimization
project using GIS as their primary analytical tool. As part of the contract, I was hired by
CVS to help Drs. Noon and Ralston in the development of a GIS application using
ArcView 3.0a with the Network Analyst extension, a product of Environmental Systems
Research Institute (ESRI). The bulk of the work was to be done using ArcView’s
scripting language, Avenue.

In addition to our team, CVS had also contracted with Anderson Consulting to
work on this project, since Anderson had worked previously with Revco on an earlier
merger Revco had done with Alabama’s Big B drugstore chain, and were therefore quite
familiar with Revco’s operations. The Anderson consultants were responsible for
gathering the necessary data from CVS and Revco and would run the data through an
optimization program tailored to the logistics industry called Supply Chain Strategist, a

18

product of InterTrans Logistics Solutions, Inc. Our team was charged with importing the
optimized network scenarios into ArcView and graphically displaying and analyzing

them, and verifying the validity of the underlying data.

Thesis Outline and Disclaimer

Having placed the project in the context of the history of diffusion of GIS into the
business world, and the utility of GIS in the field of business logistics, the remainder of
this thesis will focus on the ArcView application we developed for CVS. The next
chapter will provide an overview of the custom GIS functions we developed for the CVS
project. Chapters 3; 4, and 5 will go into the detail of how these functions were
programmed. Chapter 3 will address the scripts written for importing and visualizing the
output of the logistics network optimization application. Chapter 4 will review the
scripts written to analyze the total logistics cost for the retail facilities using the graphical
user interface. Chapter 5 will discuss the scripts written for comparing the DC location
strategies of CVS to those of its major competitors. Chapter 6 will conclude the thests by
reemphasizing the advantages of using the visualization capabilities of GIS to analyze
and solve logistics system challenges, and by making some suggestions on how the
project might have been improved. It will also make some final comments on the future
of using GIS for logistics analysis, and on some emerging trends that foreshadow the
convergence of GIS technology with mainstream information systems.

Before continuing, it should also be noted that the underlying data of the sample
network solution used throughout this thesis have been altered and disguised in order to

19

protect the sensitive and proprietary nature of this project and CVS corporate operations,
and to comply with the non-disclosure clause of our team’s contract with CVS. Apart
from publicly available information, such as the location of the DCs and the stores, 1n no
way does this thesis reveal any proprietary information about the company, its

operations, or the project.

20

Chapter 2

Overview of the CVS Project’s Custom GIS Functions

Importation and Display of the Optimization Scenario Data

Once the project had been outlined and our basic responsibilities defined, our
team set about defining the tasks our portion of the overall project would require. Since
many different optimized network scenarios would be generated during the project, one
of the first tasks would be to automate and streamline, as much as possible, the data
importation process. Accomplishing this task required more than just writing scripts.
Since the data would be coming from several different systems (CVS, Revco, and Big B,
the last of which still had not completed its merger with Revco), it would also require
establishing with the Anderson consultants a consistent policy for data content and
formatting. The details of how this data importation was automated will be presented in
Chapter 3. Once the data had been imported, we could then begin to display and analyze
them.

One of the foremost questions regarding the display of data was: what kind of
information would a logistics manager want to see rendered by the GIS software?
Obviously, the first aspect of the network one would expect to see on a map would be the
stores and the DCs. Since the network optimization performed by Anderson Consulting
aggregated the 4,000 stores into a more manageable set of 384 demand regions based on
3-digit zip codes, a view of the demand regions would also be desired. Figure 4 is an

example of a map from the sample network solution showing the demand regions and the

21

Figure 4. CVS DCs and demand regions for sample optimized network. The gold stars represent the
DCs. The demand regions are represented by the blue dots.

22

DCs. From this starting point, it seemed logical that the next view of the network should
include information about the flow of product from the DCs to the stores based on the
allocation of demand regions to DCs determined by the optimization software. These
flowlines could be simple lines connecting the DCs to the stores, or they could be lines
displayed with graduated thicknesses that change according to the total flow volume
occurring on each one.

In addition to total product flow volumes, Anderson Consulting’s optimization of
the new CVS network also broke down product flow into three major categories:
prescription drugs and products (Rx), non-prescription products available “over-the-
counter” (OTC), and slow-selling, bulky, or seasonal products that are centrally
warehoused (CW). Given the availability of these data, a logistics manager would want
to have the choice of seeing how product volumes flow throughout the network, or might
wish to have these flows displayed by product type.

Figure 5 shows an example of how the flow of Rx products over the sample
optimized network can be displayed. Gold stars indicate the locations of the CVS DCs,
while the optimized flows of Rx product are displayed as red lines. Notice that the
volume of flow is indicated by the thickness of the line. This type of display provides a
quick and efficient overview of how the DCs are allocated to serve the demand regions
and where the largest flow volumes are occurring in the network. For example, it is
readily apparent that several of the lines in the Kentucky area cross each other, which is a
signal to the logistics manager that the network is not completely optimal. Displaying the
flow volumes with graduated line thickness offers useful insight about how transportation
fleets should be assigned. It is also important to keep in mind that the user can zoom in

23

1 by Negion

Figure 5. Prescription product flows over sample optimized network. Red lines whose thickness
indicates volume represent flows. The gold stars represent DC locations.

24

and out on any portion of the view, and can query information about individual instances
of the flow line and DC point features.

Next, it would be desirable to see where any transshipments between DCs are
taking place and what are their volumes of flow. Once again, these transshipments
should be sized to indicate flow volume, and a choice should be available of viewing total
product flow, or the flow of specific product types. Moreover, it would be helpful to
view the DCs according to their total demand, by the total handling costs incurred at the
DC, by the fixed cost of the facility, or any other data that might be available.

Figure 6 shows a view of the Rx product transshipments and the DCs sized
according to handling cost. Green lines whose thicknesses represent flow volume
indicate the transshipments. In this scenario, the Indianapolis, Indiana, DC stocks and
supplies Rx products for the Somerset, Pennsylvania, DC. Knoxville supplies Bessemer,
Alabama, N. Augusta, South Carolina, and Henderson, North Carolina. Since the
Lumberton, New Jersey, DC and the Woonsocket, Rhode Island, DC both stock Rx
products, they do not have any Rx transshipments. If this is the case, however, then this
display immediately begs the question of why the Indianapolis DC, and not the much
closer Lumberton DC, provides the transshipments to the Somerset DC. Of course, the
answer to that question may be more complicated than just a matter of distance, but the
point has been made as to how such visual displays of a logistics network lead
immediately to questions that aid in the understanding and analysis of the logistics
network.

The only component of the network that remains unmentioned is the set of
demand regions. The optimization program also generates data on each demand region’s

25

Figure 6. Prescription product transshipments and DC handling costs on sample network. Green
lines whose thickness indicates volume represent transshipments. The size of the DC
(hexagons) indicates total handling cost.

26

total demand for product, and on the demand for the different product categories. One
informative way to display all of these data simultaneously is to portray each demand
region as a pie chart in which the slices represent the composite demand for the three
product types — Rx, OTC, and CW — while the size of the pie itself represents the total
demand.

Figure 7 shows how this looks on a map of the sample network that zooms in and
centers on the Bessemer, Alabama, distribution center. OTC product volume is displayed
as a blue pie slice, while Rx product and CW product are displayed as red and green
respectively. This map also provides good evidence of one reason why Rx and CW
products are centrally warehoused. Most of the total product volume for the demand
regions displayed is composed of OTC product. The demand for Rx and CW product is

sufficiently small to warrant centralized stocking.

Tracing Demand Region Logistics Costs

Displaying data about a logistics network using graduated symbols and colors on
graphical features is helpful when the goal is to get a general sense of the relative
volumes or costs of an individual component of the network, such as the lines of flow
between DCs and demand regions, or the points representing the origin and destination
facilities of a flow. Calculating the total logistics cost for an individual demand region,
however, requires tracing the product flow from the demand region back up through the
network to the originating facility. Such a calculation involves summing the several
components of the network, such as the shipping costs on the flow line and the picking
cost at the DC. If transshipments between DCs are involved, then a crossdocking cost at

27

Figure 7. Demand Regions displayed as pie charts. Pie slices represent OTC (blue), Rx (red), and
CW (green) product volumes, while the size of the pie indicates total product volume.

28

the distributing DC and a transshipment cost on the inter-DC flow line, must be added to

the shipping and picking costs. In this situation, the value of GIS comes not so much
from its graphical capabilities, but from its relational database.

Using the DCs as the common key, shipment tables and transshipment tables can
be linked in a GIS, and information about all the related components of a particular
branch of the network can be accessed by performing a single query on the branch’s
endpoint, the demand region. Employing the unique ability of GIS to query data
embedded in an object by clicking on it, we developed a tool that would allow a logistics
manager to click on a demand region and receive an itemized report of the demand
region’s logistics costs. Once again, this type of query would be based on total products
or specific product types. Figure 8 provides an example of the report’s pop-up window
after clicking on one of the demand regions to trace total CW logistics costs.

Of course, if this logistics cost tracing could be done for a single demand region,

it could also been done for the entire set of demand regions. We decided, therefore, to

ts to Serve Demand Region 372

Trace type: CW Products Only

Demand Region: 372

Demand for CW products: 121855.17

Shipping cost from Bessemer : 1885.71

Crossdock cost at Bessemer : 1165.67

Transshipment cost from Knosville to Bessemer - 3066.85
Pick cost at origin DC: 1135.08

Total Logistics Cost for Cw Products; 7253.31

Figure 8. Sample report of total CW product logistics cost for an individual demand region.

29

build in the capability of generating a table containing the component and total logistics
cost for all of the demand regions, not only for total products, but also for specific
product types. These data would enable the application user to view the entire network of
demand regions according to their logistics costs, and would shed light on which regions
are incurring the most costs. As with the total demand data for the demand regions, this
data would be displayed using graduated pie chart symbols that would simultaneously
represent the total logistics costs and the component logistics costs for each demand
region. Figure 9 shows a view of the demand regions portraying the total and component
logistics costs for Rx products. The view is zoomed in and centered on the Somerset,
Pennsylvania, and Lumberton, New Jersey distribution centers. Notice that the
Lumberton DC stocks Rx products, therefore the demand regions it serves do not incur
crossdock or transshipment costs, unlike the Somerset DC, which gets its Rx product
from the Indianapolis DC.

Having this table of total and component logistic costs for all demand regions also
made it very easy to add a function that would generate a report of logistic costs similar
to the one for the individual demand region, but for the entire network. Once again, since
logistic cost tables can be made for each product category, as well as for all products
combined, it would be possible to generate a total logistic cost report for any of these
tables. Figure 10 provides an example of the total Rx costs report for the entire CVS

sample network.

30

Figure 9. View of demand regions portrayed according to total Rx logistics costs. Pie slices represent
shipping (blue), picking (red), transshipping (green), and crossdocking (magenta) costs for
Rx products for the demand region, while the size of the pie represents the total Rx
product logistics costs for the demand region.

| Chain-wide Rx Statistics

Total R Shipping Cost: 1725960.02
Average Per Region: 4494.69
Total Rx Pick Cost: 6714550.58
Average Per Region: 17485.81
Total Rz Transhipment Cost: 1408377.70
Average Per Region: 3667.65

~{ Total Rx Crossdock Cost: 478725.97

Average Per Region: 1246.68

Chain-wide Total Rx Logistics Cost: 10327614.29
Average Total Cost Per Region: 26894.83

Figure 10. Report of total and component Rx logistic costs for entire sample network.

31

Analyzing DC Location Strategies

Another functionality we decided to develop involved harnessing the ability of
GIS to analyze the spatial relationship between geographically referenced features. The
goal of CVS’s network optimization was to find a configuration of DCs that would
best serve the demand regions while lowering overall network costs. The value of a
given optimized network scenario would be judged against a benchmark, such as the
network costs being incurred prior to optimization. Another type of benchmark involves
using the practices of a company’s competitors within the industry as a standard for
judging changes to the organization. It was felt, therefore, that some way of measuring
each potential DC configuration against an industry benchmark would also be beneficial
to a logistics manager.

To compare each optimized scenario against the network costs of competitor
companies was not practical, since operational cost data are not publicly available from
most companies. However, data on DC and store locations are publicly available, and
with these data we could at least analyze the spatial patterns between store and DC
locations that each company’s network exhibited. Around each DC of a company’s
network, we would build a set of five 50-mile, nested distance ranges (based on road
network of major highways), effectively covering a radius of 250 miles around each DC
(Figure 11). Using a select-by-theme query process, we determined the distance of each
store from its nearest DC. Using this information, we could then generate a histogram for
each company detailing the percentage of stores located within 50, 100, 150, 200, and
250 miles of the nearest DC, and the percentage that falls outside of this service area. In
Figure 12, the histogram of DC-store distances for the sample CVS network is shown

32

Each DC is surrounded by five
50-mile, nested service area ranges.

Figure 11. Five 50-mile, nested service ranges around each DC in the CVS sample network. Gold
stars represent DC locations

33

Histrgram of £V5 Store-DL Distances

Percent of CVS Stores 1o Nearest DC 3 Percent of Eckerd Stores to Nearest DC
100 i 100
%0 : 90
20 : : 1 o oo
70 I within 50 miles | | 70 B within 50 miles
50 W51 - 100 miles | | 60 51 - 100 miles
Percent of Stores o MOt - 150 miles g Percent of Stores X W11 - 150 mies
40 0151 - 200 miles | | 40 0151 - 200 miles
30 201 - 250 miles | | 30 M 201 - 250 miles
20 W > 250 miles 20 M > 250 miles
10 10
0 i 0
Percent $ Percent
50 Mile Intervals ﬁ

Percent of Walg Stores to N t DC i Percent of Rite-Aid Stores to Nearest DC
100 f 100 1
%0 | 90
80 i 80
70 I within 50 miles t 70 4 B within 50 miles
60 B51 - 100 miles &0 B51 - 100 miles
1 Percent of Stores = 101 - 150 mies Percent of Stores | el
/ a0 03151 - 200 miles 10 0151 - 200 miles
30 W201 - 290 miles k1] B201 - 250 miles
20 B > 250 miles 20 ﬂ B > 250 miles
10 10
0 0
Percent Percent
50 Mile Intervals 50 Mile Intervals

Figure 12. Histograms showing the percent of stores to nearest DC for CVS and its major
competitors.

alongside the histograms for the networks of CVS’s major competitors: Walgreens, Rite-

Aid, and Eckerd.

This review of the custom GIS functions developed for the CVS network
optimization project illustrates the visual display resulting from the application of these
functions, and the value these displays bring to the network optimization process. These
functions were automated using ArcView’s scripting language, Avenue, so that each of
these functions can be launched with the simple click of a menu item. The following
three chapters of this thesis will address the details of the scripts controlling these
functions.

Before turning to those scripts, however, it will be useful to describe the GUI
developed for the CVS network optimization project. Table 2 lists the several custom
menus that were added to ArcView’s default View menubar, along with the menu items
that appear in the drop-down boxes when a particular menu is clicked. The custom
functions developed for the project are controlled using these menu items. As I address
these functions in further detail in the chapters that follow, I will refer to these menu

items by name.

sjonpoid

11V uoiday puewa(q
Aluo
DLO U018y purwid(]
Auo
MDD uoiday pursdg
Aluo
XY uo13ay puewdq
$O1ISTIRIS S1oNpold MOL] [BIO],
IV apim-urey) Aq syuowdnyssuet], W
)
=
sonsnelg Aup s
DLO apm-uiey) MDD Aq spuswdiyssuery, e~
R |wo
sonsiels AjuQ M "
MDD pm-uiey) XY AqQ sjududiyssuer],
sousuelg | 1500 sousido| (v1og, Aq MO[]
Xy aprm-ureq) 1eio], 4q uoiday-01-D
1507) $2118130°] DLO A€
synpoid AU eje(uordoy
IV opra-utey) | 31500 sousi3oT MO Ad DLO 4q uot1day-0)-A PuBtu(] dzLieunung
AluQ) DILO dprm-urey) 1500) sons1807] Xy Ag puewa((B0, Ag Ao BlR([D(] dzLreunung
MO Aq uo13ay-0)-0(
weidolstf] e A[UO M0 spim-uey) pusma(] (IO, A 1800 paxIg Ad saur’] podsuriy, pringg
Aluo
a8ury 210)8-0A Au) X opmm-utey) SWIN[OA 1onpaid Agq 150;) Sunjpuey Adq x¥Y Aq uot1day-0)-0q SA[qR], $S200Y SN 19D
I $OQ@ Avdsia Csmoygfeiduiar | PPO ST
Snuagy wopsn’)

“1BQIUIUE MITA HNBJIP MIIAILY YY) 0) PIPPE SNUdW WI0ISN) T IqeL

Chapter 3

Importing and Visualizing the Optimized Logistics Network

Importing the Micresoft Access Tables

It has been noted earlier that Anderson Consulting collected the necessary data
from CVS and Revco and conducted the post-merger network optimization. After the
network optimization software had arrived at a solution, Anderson Consulting exported
the solution data from the optimization software into several tables within a Microsoft
Access database. For the purposes of constructing visual displays of the optimized
network, it was necessary to import five of these tables into ArcView. Table 3 provides a
listing of these tables and the fields pertinent to the display of the network solution.

The first step in using ArcView to analyze the logistics information is to input the
Microsoft Access tables. This must be done before any other steps can be carried out.
When the user starts the project in ArcView to begin the display of a new network
solution, all the custom menu items (Table 2) are disabled (“grayed out™), except for Get
MS Access Tables. Clicking this item launches a script, SQLTables.Get (Appendix),
which establishes a structured query language (SQL) connection, called an SQLCon, with
the Microsoft Access database application. An SQLCon enables the user to import an
entire table or a subset of a table based upon the query string that is passed to the host
application. The result of the query is automatically imported into the ArcView

application as an SQL virtual table from which a table document can then be made.

37

Table 3. Microsoft Access tables and their pertinent fields.

Table Name: DIRECT TO STORE
' Field Name Field Type Description
Facility Text Name of DC
DemandRegion Text Number ID of Region
Product Text Product Category Name
OptimizedValue Number Product Flow Volume
in Units
ActualRate Number Shipping Rate per Unit
Table Name: HANDLING
Field Name Field Type Description
Facility Text Name of DC
Product Text Product Category Name
HandlingRate Number Handling Rate per Unit
(applies to Picking
and Crossdocking)
Table Name: INPUT - FACILITIES
Field Name Field Type Description
Facility Text Name of DC
LatLon Text Geographic Coordinates
of DC
FixedCost Number Fixed Cost of DC
OptimizedValue Number Product Flow Volume
in Units
PICKING
Field Name Field Type Description
Facility Text Name of DC
Process Text Centralized Product
Stocking Point Indicator
Table Name: TRANSHIPMENTS
Field Name Field Type Description
OrnginFacility Text Name of Origin DC
DestinationFacility Text Name of Destination DC
Product Text Product Category Name
OptimizedValue Number Product Flow Volume
in Units
ActualRate Number Transshipping Rate per Unit

38

While this method of querying a database is quite easy, it has one drawback. The
virtual table resulting from the SQLCon is only a visual representation of the data
residing in the host database and is not tied to its own location in memory as a separate
file. As such, the virtual table is a read-only document. To give the project read and
write access to these tables, and also to dispense with the SQLCon, which is no longer
needed, SQLTables.Get takes each virtual table and exports it as a dBase file, thus giving
it its own pathname and location in memory. These files are then imported again back
into the ArcView project (Figure 13) and given new names, as listed in Table 4.

At this point it may be helpful to define several objects in the ArcView’s Avenue
scripting language which will be referenced frequently in this thesis (Figure 14). The
object hierarchy of Avenue contains five basic documents visible to the user while the
application is running. These are Tables, Views, Charts, Layouts, and ScriptEditors. Of
these, we are mainly concerned with Views and Tables.

Views are windows in which digital maps are rendered. Views are composed of
Themes, which are often referred to as map layers. The most common type of Theme in
ArcView is a feature theme, or FTheme. An FTheme is a set of similar geometric shapes
—such as points, lines, and polygons — that represent geographically referenced objects,
such as buildings, roads, or census tracts. These shapes are displayed on the screen with
graphical symbols that may be sized and colored in many ways to reveal important
information about the objects. A common way to alter a theme is to classify the data

underlying the theme. Classifying data means grouping the data according to the values

in one of the data fields. Classifications may be illustrated with graduated colors or

Table 4. Name changes of MS Access tables after export and re-import into ArcView.

MS Access Table Name ArcView Table Name
DIRECT TO STORE dirstore.dbf
HANDLING handling.dbf
INPUT - FACILITIES inputfac.dbf
PICKING picking.dbf
TRANSHIPMENTS tranship.dbf

[3%.19/-76.24
13046/ 06,09
(ER /A
13957/ 7448

Figure 13. ArcView tables created from Microsoft Access tables.

40

Avenue Object Model
Project
DocGUI Doc DocWin
View Layout Table Chart ScriptEditor
Th VTAB
eme —38 Field
FTheme FTAB
Legend Field Shape
Symbol Classification
'X} = Composed of zero or more (i.¢., a project may be composed of zero, one or more Docs)
Figure 14. A partial model of Avenue objects relating to this thesis.
41

graduated symbol sizes. Control of a theme’s symbols and classifications takes place in
the theme’s Legend.

Tables are documents built of records and fields that are common to most
relational databases. A special type of Table called an attribute table holds the data upon
which a Theme is built. The data for Tables and for Themes actually reside in memory as
files. To access these files, Avenue provides an object called a virtual table (VTAB) that
acts as an interface between the file and the programmer. A derivative of the VTAB is
the feature table (FTAB), which provides the interface between the programmer and the
file supporting the Theme object. Each FTAB automatically contains a Shape field to
hold (and hide) the theme’s geographic references. Except in the case of the SQL VTAB,
creating a new VTAB or FTAB also creates a new file which is allocated space in
memory. Further, creating anew FTAB creates a new shape, or map layer.

Lastly, Tables and Views, as well as the other types of Docs have a DocGUI,
which is the collection of menus, buttons, and tools specific to that document type. They
also have a DocWin, which is the visible window object we see on the computer screen

in which Themes are rendered and the data from VTABs and FTABs are presented.

Building the Compeonent Features of the Network

Once the tables listed in Table 4 have been created, the GUI is updated so that the
Build Transport Lines menu item is enabled, which means the transport lines can now be
created. Clicking on this menu item launches a script TransportationLines.Build

(Appendix). This script is a master script that calls other scripts that build the DCs

42

point theme, the DC-to-Region Flow line theme, and the Transshipments line theme.

Figure 15 provides an outline of the flow of these scripts and what each one does.

Building the DCs Point Theme

The first script called by the TransportationLines.Build script is the
FlowLine.Build script (Appendix) that creates a line theme connecting all the possible
origin-destination pairs that exist between DCs and demand regions.

Before the script can do this, however, the DCs theme must be built (the Demand
Regions theme is considered static for all network optimization scenarios, so it has
already been constructed and appears in the project’s view from the start). Since the
inputfac.dbf table contains the geographic coordinates of each DC in the LatLon field, the
FlowLine.Build script first acquires the VTAB for that table. Having done that, it calls
the script SpliceLatLon (Appendix), and passes the inputfac.dbf VTAB as the argument.
SpliceLatLon creates a new FTAB for a point theme, clones the fields in the inputfac.dbf
field listed in Table 3 (except for the LatLon field), and adds them to the new FTAB.
Then, for each record in the inputfac.dbf VTAB, it parses the LatLon field into its
component latitude and longitude coordinates and adds them to the Shape field of the
new record in the FTAB. At the same time, it copies the values from the other fields in
the inputfac.dbf VTAB into the new FTAB. When the script is complete, a new point
theme of the DCs has been created that contains data on each DC’s name, fixed cost, and
its optimized demand (i.e. supply) value. Just before the DCs FTAB is returned to

FlowLine.Build as an argument, it is passed to the script AddXY, which creates two new

43

TransportationLines.Build script launched by click on Build Transport Lines menu item
1) Call FiowLine.Build script
a) Call SpliceLatLon script with inputfac.dbf VTAB as argument
i) Get latitude and longitude of each DC from VTAB
ii) Build DCs point theme
iii) Call AddXY script with DCs FTAB as argument
(1) Add X and Y coordinate fields to DCs FTAB and populate them
iv) Return with DCs FTAB as argument
b) Build DC-to-Region Flow line theme using X and Y coordinate fields in
both the DCs theme and the Demand Regions theme
¢) Call FlowValues.Calculate script with Flow FTAB as argument
i) Create fields in Flow FTAB to hold volume data on Rx, CW, and OTC
product flow, as well as total product flow
ii) Select flows by commodity type from dirstore.dbf VTAB and transfer
to new flow fields in Flow FTAB; sum them to populate total product flow field
iii) Return with DCs FTAB as argument
2) Call TranshipLine.Build script with DCs FTAB as argument
a) Build Transshipments line theme using the DCs as both the beginning points and the
endpoints of the new lines
b) Call TransFlowValues.Calculate script with Transshipments FTAB as argument
i) Create fields in Transshipments FTAB to hold volume data on Rx,
CW, and OTC product transshipments, as well as total product transshipments
i) Select flows by commodity type from tranship.dbf VTAB and transfer to new flow
fields in Transshipments FTAB; sum them to populate total product transshipments
field

C) Return control to TransportationLines.Build script

3) TransportationLines.Build terminates

Figure 15. OQutline of scripts launched by the Build Transport Lines menu item.

fields in the FTAB called X- coord and Y-coord and adds the longitude and latitude

coordinates for each DC into those fields, respectively.

Building the DC-to-Region Flow Line Theme

FlowLine.Build then proceeds to build the DC-to-Region Flow FTAB (a map of
flow lines). First it finds the Facility, X-coord, and Y-coord fields in the DCs FTAB,
then it gets the Demand Regions FTAB, and finds the name field, as well as two fields
holding each demand region’s latitude and longitude. It then creates a new FTAB for a
line theme, and adds fields to hold the DC and demand region names. The script then
loops through each record of the DCs FTAB. For each DC, it loops through the Demand
Regions FTAB and creates a line connecting that DC and the current record in the
Demand Regions FTAB. The line is created by using the current DC’s coordinates as the
beginning point, and the current demand region’s location as the end point, and adding
them to the DC-to-Region Flow FTAB’s shape field. The names for the DC and the
demand region are also added to their respective fields. When this script is complete, a
new line theme representing all possible flows between DCs and demand regions in the
network has been created and added to the project. This new FTAB contains (n *
(number of demand regions)) records, where n is the number of DCs in the optimized
network.

Before returning to the TransportationLines.Build script, the FlowLine Build
script calls another script, FlowValues.Calculate (Appendix), and passes to it the newly
created DC-to-Region Flow theme. This script adds new fields to the Flow FTAB to hold

the total flow of each product type — Rx, CW, or OTC — as well as the total flow for all

45

products combined. These flow volume data originally resided in the OptimizedValue
field of the dirstore.dbf VTAB. However, the method for transferring these data to the
FTAB is more complicated than establishing a one-to-one relationship between the Flow
FTAB and the dirstore.dbf VTAB. This is because the VTAB contains three records for
each demand region, one profiling the CW product flow, the second the OTC product
flow, and the third the Rx product flow. Relating the tables based on origin and
destination would yield only one-third of the data. To be sure each record of the Flow
FTAB gets data on the flow volume of each product type, it is necessary to relate the
tables three separate times, one for each type. This is accomplished by establishing a
temporary field in both the Flow FTAB and the dirstore.dbf VTAB called ODP (that
stands for Origin-Destination-Product), which holds a string resulting from the
concatenation of the string values for the DC name, the demand region name, and the
product type.

The FlowValues.Calculate script begins by getting the dirstore.dbf VTAB,
creating the new ODP field, and calculating its value by concatenating values in the
Facility, DemandRegion, and Product field. Next, it creates a similar ODP field in the
Flow FTAB, as well as the fields to hold the individual product flow and total flow
volumes. Then for each product type, the script calculates the value for the ODP field in
the Flow FTAB by concatenating the DC field, the Store field, and a string naming the
product type, such as “Rx.” It relates the two tables by joining them based on the ODP
fields (Figure 16). Thus, the Flow FTAB will be related one-to-one with the VTAB for
the product type specified. The OptimizedValue field value is then populated in the
product volume field of the Flow FTAB using the Calculate request, and the two virtual

46

DC-to-Region Flow Attribute Table

DC Store cw Rx Flow orc Total ODP
Flow Flow Flow
Knoxville | 247 225846.23 Knoxville247Rx
Temporary Key Fields
Dirstore.dbf Table i
Facility | Demand | Product | Optimized | ActualRate ODP
Region Value
Knoxville | 247 Rx 225846.23 0.036351 | Knoxville247RX g— |

Figure 16. Joining tables to capture flow line attributes. The dirstore.dbf table is joined to the DC-
to-Region attribute table by a temporary origin-destination-product key field and the
optimized flow value is copied over to the respective flow field in the attribute table.

tables are unjoined. When the flow volume values for each product type have been
copied, the temporary ODP field in each virtual table is removed. Finally, for each
record in the Flow FTAB, the flow volumes for each product type are summed and added
to the Total Flow field in the Flow FTAB using the Calculate request on the Total Flow
field. When the FlowValues.Calculate script is finished, control passes back to the
FlowLine. Build script, which terminates by returning the DCs FTAB back to the

TransportationLines.Build script.

Building the Transshipments Line Theme

The second script called by the TransportationLines.Build script is
TranshipLine Build (Appendix), which receives the DCs FTAB as an argument. This
script is very similar to the FlowLine.Build script, in that it creates a new FTAB for the

Transshipments line theme by looping through the DCs FTAB and getting the X-coord
47

and Y-coord field values and using them as the beginning point for each line. The
difference is that for each DC in the FTAB, the script then loops back through the DCs
FTAB and uses each DC as an end point and adds a new record to the Transshipments
FTAB, except in each case where the beginning point DC is the same as the end point
DC. Thus, for an optimized network with n DCs, the new Transshipments FTAB will
contain (n * (n —1)) records.

After the new Transshipments line theme is created and added to the project,
TranshipLine.Build calls the script TransFlowValues.Calculate (Appendix), and passes
the new Transshipments line theme as an argument. This script is identical to the
FlowValues.Calculate script described above, except the tranship.dbf file is used instead
of the dirstore.dbf file. The tranship.dbf file holds data about transhipment flows of Rx
and CW product, but not OTC product. This is because the distribution of Rx and CW
products is more cost effective when they are centrally warehoused, whereas the
distribution of OTC products is cheaper when stocking points are decentralized and
dispersed. As with the dirstore.dbf file, each origin and destination pair listed in the
tranship.dbf file contains one record profiling the CW flow, and one profiling the Rx
flow, and so the Transshipments FTAB and the tranship.dbf VTAB have to be related
once for each product type using ODP fields in each table. When
TransFlowValues.Calculate finishes, both that script and the TranshipLine.Build script
return control to the TransportationLines.Build script, which then terminates.

Upon termination of this master script, the project now contains the base themes

of the DCs, the DC-to-Region Flow, and the Transshipments. Several of the custom

48

functions are also made available to the user. The DC-to-Region options under the DCs
may be displayed by fixed cost or total demand using those respective items under
Display Flows menu allow the user to display flows by product type or by total flow
using line symbols whose thickness is graduated according to volume (Figures 17 and 5).
Likewise, the Transhipment options under the Display Flows menu are enabled. The
DCs may be displayed by fixed cost or total demand using those respective items under
the Display DCs menu. However, the item that displays the DCs by handling cost is still
disabled, as are all of the items under the Display Demand Regions menu. To enable
these, the data on network flows need to be summarized for the DCs and for the demand

regions.

Summarizing the DC Data

To get a better understanding of what the Summarize DC Data and Summarize
Demand Region Data items do, it will be helpful to list the fields in the attribute tables of
each of the base themes (Table 5).

Clicking on the Summarize DC Data item under the Logistics Model Setup
launches a script CalcDCs (Appendix), which in turn calls several other scripts (Figure
18). CalcDCs first gets the FTAB of the DCs theme and passes it as an argument in a call
to the script HasCWRx (Appendix). This script determines whether ornot aDC is a
centralized warehouse for Rx or CW products. After receiving the DCs FTAB,
HasCWRXx gives it two new fields, HasRx and HasCW, then it gets the VTAB of the
picking.dbf table. It then loops through the DCs FTAB, and for each DC, it loops
through the picking.dbf VTAB. If the name of the DC in the DCs FTAB matches the

49

and by Nleging

Figure 17. Display Flows drop-down menu after building the project’s base themes.

Table S. Fields in the attribute tables of the project’s base themes.

Themes
DCs DC-to-Region Flow Transshipments Demand Regions
Facility DC Origin Demand Region
o FixedCost Store Destination
=| OptimizedValue CW Flow CW Flow
g Rx Flow Rx Flow
OTC Flow Total Flow
Total Flow

50

CalcDCs script launched by clicking on the Summarize DC Data menu item
1) Call HasCWRx script with DCs FTAB as an argument
a) Add HasRx and HasCW field to DCs FTAB
b) Get picking.dbf VTAB
¢) Check each DC in the DCs FTAB against the picking.dbf VTAB to determine if the DC
stocks Rx or CW product, and record result in HasRx and HasCW fields
2) Call SummTS script
a) Select records of Rx transshipments in tranship.dbf VTAB and sum the OptimizedValue
field for each unique origin DC - creates table summarizing Rx picked for transshipment
b) Select records of CW transshipments in tranship.dbf VTAB and sum the Optimized Value
field for each unique origin DC - creates table summarizing CW picked for
transshipment
¢) Select records of Rx transshipments in tranship.dbf VTAB and sum the OptimizedValue
field for each unique destination DC - creates table summarizing Rx crossdocked
d) Select records of CW transshipments in tranship.dbf VTAB and sum the OptimizedValue
field for each unique destination DC — creates table summarizing CW crossdocked
3) Call SummD2S script
a) Get dirstore.dbf VTAB
b) Select records of Rx shipments in dirstore.dbf VTAB and sum the Optimized Value ficld
for each unique DC - creates table summarizing Rx picked at servicing DC
¢) Select records of CW shipments in dirstore.dbf VTAB and sum the Optimized Value field
for each unique DC — creates table summarizing CW picked at servicing DC
d) Select records of OTC shipments in dirstore.dbf VTAB and sum the Optimized Value
field for each unique DC - creates table summarizing OTC picked at servicing DC
4) Call JoinSumms script
a) Joins summary tables to the DCs FTAB
b) Sum joined fields to create Rx Picked, CW Picked, and OTC Picked fields
¢) Get the handling rates for each product type and each DC from the handling dbf VTAB
and copy to DCs FTAB
d) Calculate cost for Rx, CW, and OTC picked, as well as for Rx and CW crossdocked and
copy into new cost fields
€) Sum cost fields to get Total Handling and store value in new field

Figure 18. Outline of scripts launched by Summarize DC Data menu item.

51

name of the DC in the picking.dbf VTAB, it then checks the value of the Process field in

the latter. Initially, both the HasRx and the HasCW field in the DCs FTAB are set to
zero. However, if the Process field in the picking.dbf VTAB contains the string
“MakeRx”, then the HasRx field in the DCs FTAB is set to one. Likewise, if the Process
field contains “MakeCW”’, the HasCW field is set to one. Once finished, control i1s
passed back to the CalcDCs script.

CalcDCs next calls the script SummTS (Appendix). The purpose of this script is
to determine the volume of Rx and CW products that are picked at each DC stocking
these products, and to determine the volume of Rx and CW products that are being
crossdocked at those DCs that don’t stock Rx and CW products, and therefore must have
them transshipped from other DCs. This information is important to know because
transshipped products incur extra shipping and handling costs.

SummTS begins by selecting all records in the tranship.dbf VTAB whose Product
field contains the “Rx” string. Once a subset of records has been selected, the script sums
the OptimizedValue field for each unique DC in the OriginFacility field by making the
Summarize request on the tranship.dbf VTAB. This request creates a new VTAB whose
file is RxPicked.dbf. The same summary is done for records whose product is “CW”,
which creates the file CWPicked.dbf. The summed OptimizedValue fields in these new
VTABs are changed to “RxPicked for TS” and “CWPicked for TS” respectively. This
process is then repeated for each product type, but this time over each unique DC in the
DestinationFacility. This produces two new files called Rx_X Doc.dbf and
CW_X_ Doc.dbf, which hold the data about which DCs are crossdocking transshipments
and what are the transshipment volumes. The summed OptimizedValue fields in these

52

VTABSs are changed to Rx_X_Doc and CW_X_Doc respectively. Control is then passed
back to CalcDCs.

CalcDCs then calls the script SummD2S (Appendix). This script summarizes the
flows of product from the DCs to the demand regions for each unique DC, thus providing
information about the volume of product flow that originates at the servicing DC (i.e,,
flow that does not involve a transshipment). The data for these flows are held in the
dirstore.dbf table. The structure and logic of this script is similar to the SummTS script.
Product-specific records in the dirstore.dbf VTAB are selected by issuing a query to the
VTAB of records according to the Product field value, and these selected records are
summed over the Facility field holding the DC name. After performing this procedure
once for each product type, the script returns control to CalcDCs having created three
new files, RxDirect.dbf, CWDirect.dbf, and OTCDirect.dbf. The OptimizedValue fields
in these summary VTABs are changed to Rx D2S, CW D28, and OTC D2S.

The last script called by CalcDCs is JoinSumms (Appendix). This script joins the
RxPicked.dbf, CWPicked.dbf, Rx_X_ Doc.dbf, CW_X_Doc.dbf, RxDirect.dbf,
CWDirect.dbf, and OTCDirect.dbf VTABs to the DCs FTAB based on the Facility fields
in the joined VTABs and in the DCs FTAB. Essentially, what these joined tables give to
the DCs VTAB are seven new fields: RxPicked for TS, CWPicked for TS, Rx_X_Doc,
CW_X_Doc, Rx D2S, CW D2S, and OTC D2S. Before terminating, the script sums the
volume picked for each product type and places those summed values in three new fields,
Rx Picked, CW Picked, and OTC Picked. The script then calculates the cost associated
with the volumes provided in these fields, as well as the Rx_X Doc and the CW_X_Doc
fields, and adds these values to respective cost fields that are also created by the script.

53

To calculate these costs, the script gets the handling.dbf VTAB and transfers the
handling rate for each product over to new Rx, CW, and OTC rate fields in the DCs
FTAB. As with the dirstore.dbf and tranship.dbf tables, this table has three records for
each DC, one holding the CW handling rate, the second holding the OTC handling rate,
and the third the Rx handling rate. To transfer these rates to a single record in the DCs
FTAB, it 1s necessary to loop through that FTAB, and for each DC, to loop through the
handling.dbf VTAB and copy the handling rates for each of the three records whose
Facility field name matches with the DC name in the FTAB. Once this is accomplished,
the script creates six new cost fields in the FTAB: Rx Pick Cost, Rx X Doc Cost, CW
Pick Cost, CW X Doc Cost, OTC Pick Cost, and, finally, Total Handling. The Rx Pick
Cost and Rx X Doc cost are calculated by multiplying the values in their respective
volume fields by the value in the Rx Rate field. The CW Pick Cost and CW X Doc Cost
fields are likewise calculated using the CW Rate field value. Calculating the OTC Pick
Cost is similar to the previous calculations, except that since it is not necessary to

transship OTC products, there is no OTC crossdock cost to calculate. The Total

Handling field is calculated last by summing all of the cost fields described above. At
this point the summary of the DC data is complete, and the By Total Handling item under

the Display DCs menu is enabled.

Summarizing the Demand Regions Data
The last item under the Logistics Model Setup view menu is the Summarize
Demand Region Data item. Clicking on this item launches the script SummDems

(Appendix). This script is somewhat similar to the CalcDCs script, except that it

54

summarized the network flow data over each unique demand region, rather than each
unique DC.

SummDems first gets the VTAB of the dirstore.dbf table. Then for each product
type, it queries the VTAB using the product type as the selection criteria. For example, it
first selects all records in the dirstore.dbf VTAB whose Product field contains “Rx”. The
script then summarizes this selected set over each unique demand region, yielding a new
VTAB holding the total Rx volume going to each demand region. The file for this
VTAB is called Rx2Store.dbf. In the same fashion, the CWZStore.dEf and the
OTC2Store.dbf files are created. These VTABs are then joined to the Demand Regions
FTAB using the demand region name as the common key. After the join, the Demand
Regions FTAB has three new joined fields titled after the summary tables that were
joined. To prevent null values for some of the demand regions’ product flows from
disrupting the calculations, it is necessary to create three new fields in the FTAB to which
is transferred the data in the three joined fields. These three fields are called Rx_Vol,

CW _Vol, and OTC _Vol. First the values for these fields are set to zero, then all non-null
values in the Rx2Store, CW2Store, and OTC2Store fields are copied over. After copying
the data, the joined fields are no longer necessary so they are unjoined from the Demand
Regions VTAB. Before terminating, the script creates one more field called Total

Demand, which holds the sum for the values in the three volume fields.

Displaying the Network Features
Once the summary of the DC and demand regions data is complete, the user will
notice that the attribute tables for the DCs and Demand Regions themes have several new

55

fields (Table 6). At this point, several more menu items under the Display Demand
Regions are also enabled (Figure 19), in addition to the By Handling Cost item under the
Display DCs menu. The only display items that remain disabled are the items to display
logistics costs for each demand region by product type and by all products. These items
require the application of the chain-wide-by-product, and chain-wide-by-all-products
items under the Trace Costs menu. These items will be discussed in the next chapter.

Like the fixed cost and total demand display options under the Display DC menu,
the handling cost option clones the DCs theme and changes the new theme’s legend
so that the DC symbols are graduated in size based on a natural break classification of the
Total Handling field in the DCs FTAB. The scripts run by the By Fixed Cost and By
Total Demand items operate in a similar fashion, sizing the DC symbols of the cloned
DCs by the FixedCost field and the OptimizedValue field respectively.

Likewise, the Demand Regions theme may be altered according to the Total
Demand field in the Demand Regions FTAB. The By Product Volume option under the
Display Demand Regions menu, on the other hand, creates a pie chart symbol for each
demand region (Figure 20). With these pies, the individual product volumes are
represented as pie slices, while the total demand volume is represented by the size of the
pie.

The scripts launched by the display options for the DC-to-Region and
Transshipments flows utilizes an interesting graphical manipulation to draw the spider
diagrams which result from a network optimization. As previously noted, the DC-to-

Region Flow and Transshipments themes are the base themes for the project, and they

56

Table 6. Fields in the base theme attribute tables after summarizing DC and Demand Regions data.

Themes

DCs

DC-to-Region Flow

Transshipments

Demand Regions

Facility
FixedCost
OptimizedValue
Rx Picked for TS
Rx_X_Doc

Rx D2S

CW Picked for TS
CW_X Doc
CW D2S

OTC Picked

Rx Picked

CW Picked

Rx Rate

CW Rate

OTC Rate

Rx X Doc Cost
Rx Pick Cost
CW X Doc Cost
CW Pick Cost
OTC Pick Cost
Total Handling

Fields

DC

Store

CW Flow
Rx Flow
OTC Flow
Total Flow

Origin
Destination
CW Flow
Rx Flow
Total Flow

Demand Region
OTC_Vol
Rx_Vol
CW_Vol

Total Demand

57

Figure 19. Display Demand Regions drop-down menu after summarizing demand region data.

58

Figure 20. Pie chart symbols representing demand regions. Pie slices represent product volume,
while the size of the pie represents total volume.

contain all of the possible origin-destination pairs in the optimized network. Once the
optimized flow values are added to the FTAB of these themes, it would be possible to
generate a new theme by selecting out the positive flows and building a new FTAB with
these records. However, this method has the disadvantage of creating a new file for each
theme, which takes up space in memory.

When classifying a theme according to a field in the FTAB, ArcView provides the
capability of specifying a null value in that field, and displaying records having that value
with a special null symbol. For example, if the field contains records whose values are
empty, or are flagged with a common null value, such as —9999, these records may be
displayed with a certain symbol or with a certain color. This functionality in ArcView
comes in very handy when displaying the network flows. Because we are only interested
in seeing the flows with positive values, we simply make all the zero value flows
mvisible by setting the null value to zero, and setting the null symbol to a transparent
color (Figure 21). Thus, it is possible to display the various DC-to-Region and
Transhipment flows listed under the Display Flows menu by cloning the base theme and
simply altering the legend, and at the same time avoiding the creation of a new file in
memory. See the TotalFlowTheme.Make and the TransTotalFlowTheme.Make scripts in

Appendix as examples of how this is accomplished for each flow display option.

60

Unclassified DC-to- O

Region flow theme
with all flows
visible.

DC

8351 /
O 0

@)

DC-to-Region Flow
theme classified by flow
volume, with Null value
set to zero and Null
symbol made
transparent.

O

!

¥~ Thickness of lines is graduated
according to flow volume.

@)

Figure 21. Making zero value flows to demand regions invisible using null symbol.

61

Chapter 4

Tracing Demand Region Logistics Costs

Tracing Logistics Costs of Individual Demand Regions

As was discussed in Chapter 2, the individual components of a logistics network,
such as the lines of product flow, or the origin and destination facilities of those flows,
are well suited for graphical manipulation and display. Tracing logistics costs from the
ultimate destination back up through the network to the ultimate origin, on the other
hand, involves summing the costs of different components of the network and,
consequently, associating features of different themes. Such trans-thematic events cannot
be rendered easily with graphical displays, yet ArcView does offer a way to relate the
data from each theme’s attribute table so that logistics costs can be analyzed.

ArcView uses relational databases. This means that two tables having fields with
common data types can be related to each other. This common field is often called the
key field. In the last chapter, one type of relation called a join was reviewed. Recall that
a selected set of the dirstore.dbf table was taken and joined to the DC-to-Region Flow
table based on the ODP key field. Such tabular joins merge the two tables in the project
interface while keeping separate their files in memory. Another type of relation ArcView
provides is called a link. Unlike a join, two linked tables do not actually merge. Rather,
the link establishes a relationship between the two tables in which the selected records of
the linking table will automatically select one or more of those records in the /inked table

having an identical value in the key field. Moreover, unlike with the join, ArcView

62

allows tables to be linked in a chain-like fashion, so that a table can be both the linked
and the linking table.

For the network optimization project, we make use of this linking capability to
trace the logistics costs from the demand chain up to the origin facilities. The basic logic
for all of the trace cost scripts is to link the demand regions to the shipment table using
the demand region name as the common data element, then to link the shipment table to
the DCs table, and the DCs table to the transshipment table, using the DC name as
common data element (Figure 22). The most complex of these traces occurs with
Demand Region Rx Only and Demand Region CW Only items, since these products
often involve extra crossdocking and transshipment costs, so we will use the script for Rx

cost tracing, RxTrace (Appendix) as an example here (see Figure 23 for an outline).

Demand Regions attribute table

Shape | Demand Region Rx Vol CW Vol OTC Vol | Total Demand
Point 177 162065 4369 2478562 2644996
dirstore.dbf table
Facility DemandRegion | Product | OptimizedValue | ActualRate
Somerset 177 * Rx 162065.42 0.020141
DCs attribute table
Shape Facility FixedCost OptimizedValue
Point Somerset 3349580.85 301233227.40
tranship.dbf table
OriginFacility | DestinationFacility | Product | OptimizedValue ActualRate
Indianapolis Somerset ? Rx 14613012.56 0.028512

Figure 22. Linking tables to trace logistics costs.

63

RxTrace launched by clicking on Demand Regions Rx Only menu item or “R” tool
1) Call Tables.Link script
a) Link the Demand Regions attribute table to the dirstore.dbf table by the demand region
name and link the dirstore.dbf table to the DCs attribute table, and the DCs attribute table
to the tranship.dbf table, by the DC name
2) Get the VTABs for the above tables
3) Call the system script View.SelectPoint
a) If the mouse is clicked on one or more features in the Demand Regions theme, select the
records for those demand regions in the Demand Regions attribute table
b) If the mouse is clicked anything that is not a demand region, then exit
4) If demand regions were selected, make a list of Boolean values indicating whether or not the
demand region was selected
5) For each true value in the list
a) Select the demand region in the Demand Regions FTAB
b) Reselect the selection in the dirstore.dbf VTAB that results from the link with the
Demand Regions FTAB, so that Rx product flow from servicing DC is selected
¢) Calculate the shipping cost by multiplying the Rx flow volume by the shipping rate
d) Get the selected DC in the DCs FTAB and check to see if it stocks Rx product
i) Ifit does, multiply the Rx handling rate for that DC by the flow volume in the
dirstore.dbf VTAB to get the picking cost for that demand region
ii) Ifit does not, do the same multiplication, but this is crossdocking cost
(1) Reselect from the selected set in the tranship.dbf VTAB that results from the
link with the DCs FTAB so that Rx product flow to servicing DC is selected
(a) If there is only one transshipment record selected, multiply the flow volume
in the dirstore.dbf VTAB by the transship rate in the tranship.dbf VT AB to
get the transshipment cost
(b) Else there is more than one origin DC transshipping to servicing DC, so
multiply flow volume in the dirstore.dbf VTAB by the weighted average
transship rate of the multiple origin DCs to get the transshipment cost
¢) Sum the shipping, crossdocking, transhipment, and picking costs to get the total logistics
cost for Rx products for the demand region
f) Issue the report message box to the screen with itemized and total logistics costs listed
6) Call Tables.Unlink to unlink the tables.

Figure 23. Outline of scripts launched by Demand Regions Rx Only menu item or “R” tool.
64

RxTrace is the script for a tool. Unlike a GUI button or menu item, which

immediately causes a script to run, a tool waits to receive input from the user that will be

needed to run the script (Figure 24). Before the RxTrace script receives the user input, it

first calls a script Tables.Link (Appendix), which links the Demand Regions attribute

table to the dirstore.dbf table, the dirstore.dbf table to the DCs attribute table, and the
DCs attribute table to the tranship.dbf table. Control then returns to RxTrace, which gets
the VT ABs of the dirstore.dbf and tranship.dbf tables, and the FTABs for the Demand
Regions and DCs themes. Once RxTrace has retrieved these linked virtual tables, the
script calls the ArcView system script View.SelectPoint. This script makes the mouse
cursor a selection cursor. If, when the mouse is clicked, the cursor is positioned over a
feature from the active theme, then that feature’s record in the FTAB is selected. Since
RxTrace makes the Demand Regions theme active, the script will proceed if the feature
clicked is a demand region point in the view. If the mouse is clicked on any other part of
the screen other than a Demand Regions point feature, the script terminates. If the mouse
click event takes place over more than one point in the Demand Regions theme, then the
logistics costs for each selected demand region are calculated. The script keeps track of
the number of selected points by converting the entire set of records in the Demand
Regions FTAB into a list of Boolean values where 1 means the record was selected, and
0 means the record was not selected.

For each list element equaling one, the RxTrace script selects that record in the
Demand Regions FTAB. Doing this automatically selects the records in the dirstore.dbf
VTAB whose demand region name matches the demand region name of the selected
record. This in turn selects matching records in the other linked tables (Figure 25).

65

The top row of the ArcView
GUI is the menubar. Menus
usually “pop down” to reveal a
selection of menu items.

The lowest row on
the ArcView GUI
is the toolbar.
Tools require user
interaction with the
active document.

The middle row on the ArcView GUI is a
button bar. Buttons automatically cause an
event to happen once they are clicked.

Figure 24. ArcView GUI for a View document.

66

Pont 1175 5
Pont 1176] 5
Pot 177 | 2M9% 2478662] 16206 5
Port 178 5762167! _ 6345330] 434850 1987 5
Port 1179 1653306/ 1433104 88952| 131250 E
Port 1180 NBI0; BI/HA2| 334092 1976 5
Port 1161 4420079, 42067441 214754 6501 5
Pont 162 2635535] 24455621 108379 6299 5
Port 1183 564392 GOBO247, | 207842 86303 5
Port 184 I7EB752: 3519080] 200090 2% S
|Port 1185 2708963, 2515623 114660 78480 3
Port (186 [ATEI25 M76d5| 30%61| 1709
Port 1187 2803418 2695644 100242, 3R, 5
Port {188 524345| 406880 37295 81771 5

3343660 850000 | 237253125 300000

| Henderson 1756506.600000 { 129215083 400000 H‘N:
: 7712423.000000 190604750 500000 | oW
39455€5.700000 7012902130000 | P Fin

6448591.800000 ; 520239153.000000 Henderson oW
1437164550000 ; 120057502 900000 Henderson TRx
123322 N. Augusta oW
5207364200000 ; 478645639 300000 N. Augusta Ry

s I

| Rx
oW
iAx
{Rx

Figure 25. Example of linked tables after selecting a demand region to trace logistics costs. The
Demand Regions attribute table (top left) is linked to the dirstore.dbf table (top right) by
the demand region name field. The dirstore.dbf table is linked to DCs attribute table
(bottom left) by the DC name in their Facility fields. The DCs attribute table is linked to
the tranship.dbf table by the DC name in the tranship.dbf table’s DestinationFacility
field.

67

Since each DC in the dirstore.dbf VTAB contains three records for each demand region

representing the flow of the three different product types, multiple records are selected in

the dirstore.dbf. To distinguish the servicing DC from the others, and to distinguish the

Rx product flows from the CW and OTC product flows, the selected set in the
dirstore.dbf VTAB is reselected for all records whose Product field value is “Rx”, and
whose OptimizedValue field value is greater than zero. This reselection will isolate the
Rx flow coming from the DC assigned to that demand region, which means there will be
only one selected record (the script assumes that each demand region will be assigned
only one DC). It then gets the shipping rate from the ActualRate field, the flow volume
from the OptimizedValue field, and the DC name from the Facility field, for that record.
Finally, it calculates the shipping cost by multiplying the flow volume by the shipping
rate.

To illustrate how this process of tracing logistics costs works, let us look at
demand region 229 near Charlottesville, Virginia as an example (Figure 26). Demand
Region 229 is allocated to the Henderson, North Carolina DC, as evident from the Rx
Flow lines in the figure. It will also be noted from the figure that the Henderson DC does
not stock Rx products and so must be transshipped from the Knoxville, Tennessee, DC.
When this demand region is clicked with the mouse, its record in the Demand Regions
table is selected. Because the Demand Regions VTAB is linked to the dirstore.dbf
VTARB, all of the records in that table having “229” in the DemandRegion field are
selected. Keep in mind that the dirstore.dbf table contains three records for all possible
shipments between all DCs and all demand regions, one record for each product type.
Since there are eight DCs in this sample optimized network, selecting demand region

68

P

o

o Lumberton, NJ

7,

Demand
Region 229
near
Charlottesville
Virgina

Figure 26. Demand region 229 near Charlottesville, Virginia in the Rx product network. Demand
Region 229 is allocated to the Henderson, North Carolina (Rx flow in green). The
Henderson DC does not stock Rx products, and receives Rx transshipments from the
Knoxville, Tennessee, DC (Rx transshipments in purple).

69

229 will cause 24 records in the dirstore.dbf table to be selected (Figure 27). Notice that

most of the records in Figure 27 have an OptimizedValue field value (i.e., a flow value)

of zero. In fact, only the Henderson facility has positive flow values. To ensure that only

the record for the Henderson DC serving Rx product to demand region 229 is selected,

TraceRx then reselects all records from the selected set that have an OptimizedValue
field value greater than zero and that have a Product field value of “Rx”. Doing this
operation selects the targeted record as indicated by the shaded record in the figure.
Once the proper record has been isolated, TraceRx gets the value in
OptimizedV alue field and multiplies it by the value in the ActualRate field to get the

shipping cost. Thus, the shipping cost for demand region 229 is

325,716.24 units x $0.022063 per unit = $7,186.28.

At this point, the script needs to determine if the Rx flow coming from this DC is
stocked by this DC or is transshipped to this DC from another DC. It does this by
looking to the selected DC in the DCs FTAB, which was linked to the dirstore.dbf VTAB
by the Facility fields in both of those tables. The script then gets the selected DC’s
values for the Rx Rate and the HasRx fields. If the HasRx value is 1, this DC is an Rx
product stocking point, and the script need only calculate the picking cost at this DC,
which is done by multiplying the flow volume by the Rx Rate field value. Ifitis zero,
the DC is not an Rx product stocking point, so the script must determine the crossdocking

cost at this DC, the transshipment cost, and the picking cost at the origin DC.

70

Demand Regions attribute table

Figure 27. Selected records in dirstore.dbf table after clicking on demand region 229. The desired
record (shaded) must be reselected from this set by querying for OptimizedValue field

Shape | Demand Region Rx Vol CW Vol OTC Vol | Total Demand
Point 229 325716 4074 4230348 4560138
\ Key Fields
dirstore.dbf table l

Facility DemandRegion | Product | OptimizedValue | ActualRate

(Bessemer 229 CW 0.00 0.039965
Bessemer 229 OTC 0.00 0.039965
Bessemer 229 Rx 0.00 0.042186
Henderson 229 Cw 4074.03 0.019055
Henderson 229 OTC 4230348.30 0.019055
Indianapolis | 229 OTC 0.00 0.068088
Indianapolis | 229 Rx 0.00 0.064505
Knoxville 229 CwW 0.00 0.055593
Knoxville 229 OTC 0.00 0.055593
Knoxville 229 Rx 0.00 0.058241
Lumberton | 229 Cw 0.00 0.031430
Lumberton 229 oTC 0.00 0.036669
Lumberton 229 Rx 0.00 0.033176

N. Augusta 229 CwW 0.00 0.048997

N. Augusta | 229 OTC 0.00 0.048997

N. Augusta 229 Rx 0.00 0.059885
Somerset 229 Cw 0.00 0.017667
Somerset 229 OTC 0.00 0.017667
Somerset 229 Rx 0.00 0.021593
Woonsocket | 229 Cw 0.00 0.118900

\ Woonsocket | 229 OTC 0.00 | 0.118900
Woonsocket | 229 Rx 0.00 0.107576

values greater than zero and Product field values equal to “Rx”.

71

The crossdocking cost is easily calculated, since it is simply the flow volume in
the dirstore.dbf VT AB multiplied by the Rx rate in the DCs FTAB. When the same Rx
handling rate applies to both picking and crossdocking, calculating the crossdocking cost
and the picking cost are identical.

Applying this to our example of demand region 229, note that the selected record
in the dirstore.dbf table has caused the record for the Henderson DC in the DCs attribute
table to be selected (Figure 28). Had the value in the HasRx field been one, then the
script would have calculated the picking cost using the value in the Rx Rate field for that

record, so that

3235,716.24 units x $0.009594 per unit = $3,124.92

would have been the picking cost for the demand region. However, the value in the

dirstore.dbf table
Facility DemandRegion | Product | OptimizedValue | ActualRate
Henderson 229 Rx 325716.24 0.022063
* Key Fields
DCs attribute table
Shape Facility HasRx | HasCW | Rx Rate CW Rate
Point Bessemer 0 0.009566
i Point enderson 009594 00117260
Point Indianapolis 1 1 0.034614 0.009315
Point Knoxville 1 1 0.061443 0.009315
Point Lumberton 1 1 0.070147 0.010868
Point N. Augusta 0 0 0.009540 0.011130
Point Somerset 0 0 0.009566 0.009566
Point Woonsocket 1 1 0.077275 0.009315

Figure 28. The dirstore.dbf table linked to the DCs attribute table by the Facility fields. After
reselecting the Rx product flow from Henderson to demand region 229, the record for
the Henderson DC in the DCs attribute table is automatically selected (shaded).

72

HasRx field is zero, which means the Henderson DC does not stock Rx products, and
therefore the above dollar figure becomes the crossdocking cost for the demand region.

The script then looks to the selected set in the tranship.dbf VTAB, which was
linked to the DCs by its DestinationFacility field, in order to determine from which DC
the transshipments are coming. The tranship.dbf table is similar to the dirstore.dbf table,
in that each DC-to-DC transshipment pair listed in the table contains more than one
record, one for Rx transshipments, and the other for CW transshipments. However,
unlike the dirstore.dbf table, the transship.dbf table does not necessarily list all possible
transshipment pairs. Nevertheless, to be sure the proper record is obtained, it is necessary
to reselect from this selected set only those transshipments whose OptimizedValue field
value is greater than zero, and whose Product field value is “Rx”. Once the desired
transshipment record is isolated, the transshipment cost is calculated by multiplying the
flow volume previously obtained from the dirstore.dbf VTAB by the transshipment rate,
which is held in the ActualRate field of the transhipment.dbf VTAB.

Getting back to our example, the selected record for the Henderson DC in the
DC:s attribute table automatically selects the records from the tranship.dbf table whose
DestinationFacility field values match with Henderson (Figure 29). Reselecting for
Product field values equal to “Rx” and OptimizedValue field values greater than zero, the
desired field (shaded) becomes selected. Using the ActualRate field value, the
transshipment cost associate with Rx products going from the Henderson DC to demand

region 229 becomes

325,716.24 units x $0.032707 per unit = $10,653.20.

73

DCs attribute table

Shape Facility HasCW | Rx Rate CW Rate
Point Henderson 0 0 0.009594 0.011726
—l \ Key Fields
tranship.dbf table
OriginFacility | DestinationFacility | Product | OptimizedValue | ActualRate
Knoxvﬂle Henderson 572383.99
i - 859667584

Figure 29. Records in the tranship.dbf table that are selected based on its link with the
DCs attribute table. Reselecting for OptimizedValue field values greater than zero and
Product field values equal to “Rx” yields the desired record (shaded).

Keep in mind that the flow volume used for this equation is the same value used in the
other equations, and is not to be confused with the OptimizedValue field of the
tranship.dbf VTAB.

The final cost to calculate is the picking cost at the DC where the transhipment
originates. To do this, the script gets the name of the DC from the OriginFacility field in
the tranship.dbf VT AB, then it loops through the DCs FTAB until it finds the record for
the DC with a matching name. It then obtains the value in the Rx Rate field for this
record and muitiplies it by the flow volume used throughout the other equations.

In our example, Knoxville is the origin DC for Henderson’s transshipments. In
the record for Knoxville, the value stored in the Rx Rate field is $0.061443. Using this

Rx handling rate for Knoxville, the picking cost for demand region 229 becomes

325,716.24 units x $0.061443 per unit = $20,012.98.

74

With transshipments, however, it can happen that a DC not stocking a certain
product will receive transshipment from more than one other DC, so the script must take
this situation into account. It does this by first summing the flow volume in the
OptimizedValue field for all reselected transshipments going to the servicing DC. The
script then loops back through the selected set of transshipments and determines the ratio
of the transshipment flow volume to the total flow volume for each transshipment. It
then multiplies the ActualRate field value for that transshipment by the ratio. After the
rate for each selected transshipment has been factored by its proportion to the total flow
volume, the factored rates are then summed to produce the final rate. In essence, the final
rate is an average rate for the total transshipment flow volume that is weighted according
to the volumes of each component flow. This weighted average rate is then multiplied by
the total transshipment flow to get the overall transshipment cost. The same procedure is
used to find the weighted average picking rate and the overall picking cost for the
transshipments at the origin DCs. Average rates are used for both the transshipment and
picking costs because it is ultimately not possible to determine the exact origin of a
demand region’s product volume, if that product type is supplied to the demand region’s
assigned DC by more than one origin DC. Of course, these averages are weighted
because doing so yields a more accurate cost rate than just taking the simple average of
the rates.

To illustrate these calculations, let us suppose that the Henderson DC receives Rx
product transshipments not only from the Knoxville DC, but also from the Lumberton
DC. When the record for the Henderson DC is selected in the DCs attribute table, the
records for the transshipments from Knoxville and Lumberton are selected (Figure 30).

75

DCs attribute table

Shape Facility HasRx | HasCW | Rx Rate CW Rate
Point Henderson 0 0 0.009594 0.011726
\ Key Fields
tranship.dbf table
OriginFacility | DestinationFacility | Product | OptimizedValue | ActualRate
572383.99 0.038158

Knoxville

.032707

358994.62

0.069024

34

22953.57 1

Figure 30. Records in the tranship.dbf table that are selected when the servicing DC receives
transshipments from two origin DCs. Reselecting for OptimizedValue field values

These records are then reselected for Rx product flows greater than zero, which yields the
two records shaded in the figure. The Rx product flows into Henderson from these DCs

are stored in the OptimizedValue field. These flows are summed to produce the total

greater than zero and Product field values equal to “Rx” yields the records for both

Knoxville’s and Lumberton’s Rx transshipment to the Henderson DC.

inflow of Rx product as follows,

8,596,675.84 + 3,422,953.57 = 12,019,629.41 total units.

Next, the script finds the proportion of each transshipment to the total flow. The

Knoxville DC’s contribution to the total flow is

8,596,675.84 +12,019,629.41 = 0.72

76

or 72%, while the Lumberton DC’s contribution is

3,422,953.57 +12,019,629.41 = 0.28

or 28%. Next, the script multiplies the ratio for each transshipment by the transshipment

rate stored in the ActualRate field of the tranship.dbf table, and computes their sum.

Thus, the weighted average rate is

(.72 x $0.032707) + (.28 x $0.064781) = $0.023549 + $0.018139 = $0.041688.

This weighted average rate is then multiplied by the flow volume, as follows

325,716.24 units x $0.041688 per unit = $13,578.47

to produce the transshipment cost. These same ratios apply to the Rx handling rates for

the origin DCs. Multiplying the weighted average Rx handling rate by the flow volume

produces a picking cost for demand region 229 of $20, 806.75 (see Figure 31 for details).

Knoxville Rx handling rate = $0.061443
Lumberton Rx handling rate = $0.070147

Weighted average Rx handling rate (wahr) is
wahr = (.72 x $0.061443)+ (.28 x $0.070147) = $0.044239 + $0.019641 = $0.063880

Picking Cost for demand region 229 = 325,716.24 units x $0.063880 per unit = $20,806.75

Figure 31. Computing picking cost at two transshipment origin DCs for demand region 229.
77

Once these transshipment and picking costs have been calculated, RxTrace then
sums the shipping, crossdocking, transshipment, and picking costs to determine the total
logistics cost for that product type. These cost variables are initialized to zero at the
beginning of the script, so that the same summing calculation can be used for demand
regions that do not incur a crossdocking or transshipment cost for that product. Finally,
RxTrace calls a Tables.Unlink (Appendix) script that unlinks all of the tables.

In the example of demand region 229, where only the Knoxville DC supplies Rx

transshipments, the total logistics costs associated with Rx products would be

Shipping cost: $7,186.28

+ Crossdocking cost: $3,124.92

+ Transshipment cost: $10,653.20
+ Picking cost: $20,012.98

Total Rx Logistics Cost: $40,977.38

The logic of the CWTrace (Appendix) script is virtually identical to the RxTrace
script. The OTCTrace (Appendix) script, however, does not attempt to calculate the
crossdocking and transshipment costs, because it is known in advance that each DC acts
as a stocking point for OTC products. The TraceAll (Appendix) script launched by the
Demand Regions All Products item under the Trace Costs menu does nothing more than
run a combined version of the RxTrace, CWTrace, and OTCTrace scripts, which
calculates the grand total of all the logistics costs by all the products combined. Each of
these scripts issues a message box to the screen (Figure 32) which gives an itemized
report of the logistics costs for the region, including all the component costs, as well as

the total cost.

78

T otal Logisitic Costs to Serve Demand Region 229

race type: Rx Products Only

emand Region: 229

emand for Rx products: 325716.24

hipping cost from Henderson : 7186.28
1 Cross dock cost at Henderson : 3124.92
{ Transshipment cost from Knoxville to Henderson : 10653.20
1 Pick cost at origin DC: 20012.98

otal Logistics Cost for Rx Products: 40977.38

Figure 32. Report of total Rx logistics cost for demand region 229. This window pops up after
clicking on demand region 229 with the Rx cost trace tool.

The trace cost tools for individual demand regions are accessible to the user
through the Demand Region items under the Trace Cost menu, or from the drop-down
tool menu provided at the far right end of the View document’s toolbar. These tools are
labeled “R”, “C”, and “O” for the Rx, CW, and OTC product traces, and “A” for the all

products cost trace.

Tracing Logistics Costs for the Entire Network of Demand Regions

The scripts (TraceRxAll, TraceCWAII, TraceOTCAII — see Appendix) launched
by the Chain-wide Rx Only and other product specific items falling in the same section
under the Trace Costs menu vary only slightly from the TraceRx, TraceCW, and
TraceOTC scripts described above. These scripts trace the logistics cost for each demand
region in the Demand Regions theme and add the result as a new record to anew VTAB
created to hold these values. When the costs for all the demand regions have been

79

calculated, a new table made from the VTAB is created and joined to the Demand
Regions attribute table. Because there are 384 demand regions to be calculated, these
scripts take several minutes to complete. To create a similar VTAB holding each demand
region’s logistics costs for all products, the TraceAllAll (Appendix) does not recompute
the logistics costs for each product type. Rather, it sums each demand region’s cost
values stored in the three product-specific logistics cost tables previously created.
Utilizing these tables, calculating the total logistics costs for all products at each demand
region takes only a few moments. Of course the Chain-wide All Products item remains
disabled until the product specific cost calculations have been completed.

Once the total logistics cost tables for each product type, and for all products, has
been added to the project and joined to the Demand Regions attribute table, the display-
by-logistics-cost options listed under the Display Demand Regions menu are enabled
(Figure 33). Clicking these items launches a script that clones the Demand Regions
theme, and creates a pie chart legend for each demand region (Figure 34). The logic of
these scripts (see the DRRxLogTheme.Make and similar scripts in Appendix) is similar
to the ProdDemR egTheme. Make (Appendix) launched by the By Product Volume item
that makes a pie chart legend for the demand regions. However, instead of representing
volume by product type, the pie slices represent the component logistics costs, such as the
shipping and picking costs, while the size of the pie represents the total logistics cost.

With the total logistics cost for each product grouping already made, a report of

the total logistics costs for the entire network of demand regions can be generated. The

80

Ielala a claiglaialiglg

19354652
210134.03
4042055

Figure 33. Logistics costs tables support the display of the Demand Regions theme by logistics cost.
Note that the By Logistics Cost menu items are now enabled.

81

Figure 34. Demand Regions theme displayed by Rx logistics cost . The slices represent the shipping
cost (blue), the picking cost (red), the transshipment cost (green), and the crossdocking
cost (magenta), while the size of the pie represents the total Rx logistics cost.

82

Chain-wide Rx Statistics item, for example, launches the script RxStatistics.Generate
(Appendix). This script takes each field in the Rx Logistics Costs table representing
the component costs and the total costs, and sums them over all the records in the table.
These totals are then reported to the user in a pop-up message box. The
CWStatistics.Generate, OTCStatistics.Generate, and the AllStatistics.Generate (see

Appendix) are identical in their operation to the RxStatistics.Generate script.

83

o

Chapter 5

Comparing DC Location Strategies

Generating the Service Areas

All of the custom functions reviewed so far demonstrate several of the powerful
capabilities GIS technology incorporates, such as generating geometric shapes which
represent real world events and their geographic location, embedding data about those
events into the graphical features, changing the graphical display of thematic features to
illustrate their attributes, and relating tables to enhance thematic data or to analyze trans-
thematic events. While this list of capabilities is impressive in itself, none of the previous
functions demonstrates what is perhaps the most powerful and most distinguishing
capability of GIS technology — namely the analysis of spatial relationships between
thematic features.

In the review of the CVS project’s custom GIS functions, the importance of

establishing a benchmark by which to judge organizational change and performance was

addressed. In the case of a logistics network optimization that seeks to minimize costs, it
would make sense to compare the total costs of the optimized network to the costs
mcurred by the network before optimization. Such a comparison, however, offers only a
measure of the internal performance improvement of the company. It is common practice
for many companies to undertake benchmark comparisons between itself and other
companies within the industry. Applying this idea to CVS’s network optimization
project, it would be desirable, for example, to compare the optimized and pre-optimized

network logistics costs of CVS against the network costs incurred by CVS’s major
84

competitors. Unfortunately, such operational data are jealously guarded by nearly all
companies and are not made available to the public. That is why the cost and flow data
in this thesis have been altered.
Data about the location of competitor DCs and stores, on the other hand, does
reside in the public domain. By gathering the geographical reference data on the
competing companies, it is possible to analyze the placement of each company’s DCs
among its network of stores by determining which of the DCs is closest for each store,
and what that distance is. The store records can then be grouped by the range of distance
within which the closest DC lies. For the purposes of this project, we chose five 50-mile
ranges nested within each other to form a 250-mile service area around each DC (Figure

35). This grouping schema enables us to report the percentage of stores falling within 50

miles of the nearest DC, the percentage falling within 100 miles, and so on.

To set up the analysis, it is first necessary to create the themes for the DCs and
stores of CVS’s competitors, and to add them to a new view called Location Strategy. |
This is done manually by matching the zip code of each store to a theme of U.S. 5-digit
zip code boundaries that is geocoded for address-matching. Similarly, the competitors’
DCs are located by matching the city name of each DC to a theme of U.S. cities. The
CVS stores will already have been address-matched and added to the view. The CVS
DCs theme changes with each new optimization scenario, and is added automatically to
the Location Strategy view when the new DCs theme is first added to the project by the
SpliceLatLon script. The naming convention for these themes requires that each store
theme be named after the company, followed by the identifying word “Stores”, and each
DC theme be name after the company, followed by the identifying word “DCs”.

35

Figure 35. Service areas around DCs. Each service area has a 250-mile radius and is composed of
five, 50-mile ranges nested within each other. Each of these ranges is a separate polygon
having its own record in the Service Area FTAB.

86

This analysis also requires a line theme representing the road network over which
a particular area will be serviced. This is because the algorithm ESRI’s Network Analyst
extension employs to find service areas on a network uses the costs associated with
traversing network links to determine the geographic extent of the service area. These
costs may be in distance units or time units. For the sake of processing speed and
memory utilization, we selected a 1:2,000,000-scale road theme produced by ESRI that
includes only interstate and state highways and major through-roads. In the road network
we selected, the distance for each link was calculated in miles and located in a field
called Miles. Once all the DC and store themes are in the Location Strategy view, and
that view has been made the active window, then the items under the Location Strategy
menu are enabled (Figure 36).

Clicking on the DC Range menu item launches a script Stores.SelectByRange
(Appendix). This script prompts the user to select the line theme that will be used for
generating the service areas. The user is then asked to select the DCs theme around
which the service areas will be generated. The script uses the line theme to define and
build a network file that the FindServiceArea algorithm will use. Although the 250-mile
extent of the five, 50-mile nested service areas is an arbitrary set of distance costs, it was
hard-coded into the script in order to ensure the comparability of different drugstore
chains and their DC location strategies. Finally, passing the DCs FTAB and the set of
distance costs as arguments, the script calls the FindServiceArea function which operates

on the network.

87

. The location

displayed

Figure 36. Location strategy menu and U.S. road network theme (red lines)

The

distance cost values used

tive.

de ac

1eW 1S ma

strategy menu items are disabled until the Location Strategy v

iles field that holds the

ithm to calculate the service areas.

ins aM

bute table contai

S. Roads attr
by the Network Analyst algor

U

88

The result of the FindServiceArea function is two themes. One is a line theme
representing the portion of the road network falling within the service area extent. The
other 1s a polygon theme which defines the two-dimensional geographic extent covered
by the service area. The latter, called the Service Area theme, is used to perform a
SelectByFTab operation on the stores FTAB from the respective company. Before doing
this, the script adds to the stores FTAB a new field called DC Range whose value
indicates the range in which each store’s closest DC lies. This field’s value for each
record is then initialized to zero.

The SelectByFTab request is made on the FTAB of one theme, and selects all
those features in that theme that have a defined spatial relationship to another theme. In
this project, the SelectByFTab request is made on the stores FTAB, and selects all those
point features in the stores theme that intersect the features of the service area theme.
However, we want to be careful to distinguish between those stores falling within the first
50-mile range of the nearest DC from those falling within the second, and the third, etc.
To accomplish this, the script must first select the records in the service area FTAB
representing the 0 — 50 mile range polygons for each DC.

The Service Area FTAB contains 5 polygon records (representing the 0-50 mile,
50-100 mile, 100-150 mile, 150-200 mile, and 200-250 miles service ranges respectively)
for each DC. The number of records in the Service Area FTAB, therefore, will always be
(5 * n), where n is the number of DCs in the company’s logistics network. Since the
records in the Service Area FTAB are sorted by DC and not by range value, selecting out
each unique distance range, such as the 50-mile range, for each DC requires selecting

every fifth record in the Service Area FTAB by looping through it. The record number

89

from which the loop is started determines which unique distance range is being selected.

Starting on record zero in the Service Area FTAB (which is the 50-mile range of the first
DC) will select all the 50-mile range records for all the DCs. Starting on record one (the
100-mile range of the first DC) will likewise select all the 100-mile range records for all
the DCs, and so on (Figure 37).

Each time the SelectByFTab request is made on the stores FTAB using the
currently selected range value, the resulting selection of stores is passed as an argument
in a call to a script DC.Range (Appendix), as is the current range value. The DC.Range
script receives the stores FTAB and the range value and then populates the DC Range
field for the selected set of stores with the current range value. For example, after
making the RequestByFTab request using the selected set of 50-mile ranges in the
Service Area FTAB, the resulting selection of stores is passed to the DC.Range script and
each selected record is given a value of 50 for the DC Range fields, meaning that the
closest DC for these stores is within 50 miles. DC.Range then returns control to the
Stores.SelectByRange script. This same procedure is repeated for the 100-mile, 150-
mile, 200-mile, and 250 mile ranges (Figure 38). After the last SelectByFTab request is
made, those store records that still have a DC Range value of zero are, by default, more
than 250 miles away from the nearest DC, and so the value of their DC Range field is
calculated to 251. At this point, the Stores.SelectByRange script terminates.

Since many of the service areas overlap, the situation can arise where a store will
be within one range of one DC, and within another range of another DC, and therefore
will be selected more than once. To ensure that the DC Range field holds the distance
value to the closest DC, the DC Range field value for a store is calculated only if its value

90

ofjojmio ojmiamisielisiwwiwin W NININININ =i -

Figure 37. Service Area attributes table with every fifth record selected. This example shows the

150-mile service area range, which extends from 100 to 150 miles away from each DC.
Note that the records are sorted by DC and not by range value.

91

ing polygons are

Figure 38. The 150-mile service area range selected for each DC. The selected r

shown in yellow. The gold stars are the DCs around which the service area ranges are

centered

92

is zero, which means the store has not yet been selected. If it already has a value greater

than zero, it means the distance range to the nearest DC has already been determined.

Making the Histogram

Once the DC Range field has been populated, a histogram of the percent of stores
falling within each distinct range from the nearest DC may be created. The making of the
histogram is initiated by clicking on the Make Histogram item under the Location
Strategy menu. The stores theme that is currently active is the theme for which a
histogram is created. The Make Histogram item launches a script DC.HistPct (Appendix)
which gets the FTAB of the active stores theme. It then creates a file in memory to hold
the histogram data and generates a new VTAB from that file. The VTAB is given three
new fields, a Range field to hold the range label, a Count field to hold the count of stores
falling within that range, and a Percent field to hold the percentage that count is
compared to the total store count. Next, a record for each unique range value, including
the range value of 251, is added to the VTAB and its label is set in the Range field.

The script then loops through the stores FTAB, getting the value of the DC Range
field for each record, and incrementing the Count field of the corresponding record in the
histogram VTAB. Once the count of stores falling within each range is complete, the
script calculates the value of the Percent field for each range by taking the value in the
Count field, dividing it by the total number of stores in the stores FTAB, and multiplying
by 100. With the histogram VTAB complete, the script makes a histogram chart from it.
The chart is titled and then added to the project (Figure 39). Once charts for all the

companies have been created, the changes in CVS’s DC configuration with each new

93

Percent of CVS Stores to Nearest DC

B within 50 miles
W51 - 100 miles
M 101 - 150 miles
3151 - 200 miles
B201 - 250 miles
> 250 miles

Percent of Stores

Percent

50 Mile Intervals

Figure 39. Histogram showing the percent of stores falling within each range of the nearest DC for
the CVS sample network.

94

optimization scenario may be judged against the DC network configurations of one or
more industry competitors (Figure 40).

By analyzing these charts, and the maps from which they were generated, a
logistics manager may be able to arrive at a better understanding of how the location and
number of DCs affect the kind of distances which must be traversed to supply the
network of stores, and therefore affect the shipping costs for drugstore products.
Combining this information with reports about the industry’s logistics trends and publicly
available statistics on competitor companies, such as asset utilization, operating costs, or
imventory carrying costs, will also give a logistics manager an idea of where a proposed

network stands in relation to the industry in general.

95

AW iew G

Y Histegram of TVS Store-DC Dist s AT X H 5453

Percent of CVS Stores 1o Nearest DC f Percent of Eckerd Stores to Nearest DC
100 100
0 i %0
B0 f 80
70 M within 50 miles (70 B within 50 miles
50 W51 - 100 miles | | 60 W51 - 100 miles
50 W 101 - 150 miles § 50 M 101 - 150 miles
Percent of Stores 0 0151 - 200 miles } Percent of Stores 4 E151 - 200 miles
30 201 - 250 miles | | 30 201 - 250 miles
20 M > 250 miles {\ 2 B > 250 miles
10 i 10
0 f 0
Percent i Percent
50 Mile Intervals f 50 Mile Intervals

Percent of Walgreens Stores to Nearest DC Percent of Rite-Aid Stores to Nearest DC

100 { 100
90 90
80 80
70 B within 50 miles | | 70 4 M within 50 miles
) W51 - 100 miles | | 60 W51 - 100 miles
Percent of Stores o S101 - 150 s Percent of Stores g1 - (S
: R 0151 - 200 miles 40 0151 - 200 miles
30 W201 - 250 miles 30 W 201 - 250 miles
2 B > 250 miles 2 ‘:_ [> 250 miles
10 10
0 0
Percent Percent
50 Mile Intervals 50 Mile Intervals

Figure 40. Using histograms to compare the DC configuration of a CVS sample optimized network
to the DC configurations of competitors’ networks.

96

Chapter 6

Conclusion

Advantages of GIS for Logistics

The purpose of this thesis has been to highlight the unique advantages GIS
technology offers the business logistics industry for analyzing complex logistics systems,
or “supply chains.” One of these advantages is the ability to visualize data.
Visualization has become an important area in the fields of information and computer
science over the past several decades, and its rise has been fueled largely by the previous
success of those same fields. As information systems have become more powerful and
sophisticated since their arrival to mainstream business in the 1960s, the volume of data
companies have collected about their operations has become staggering. Consequently,
corporate information strategies are moving their emphasis away from data collection
toward data exploration, in an effort to leverage corporate information resources to
remain competitive in the accelerating, global economy of the 1990s and beyond. The
ability of GIS technology to not only graphically display geographically-referenced data,
but also to allow more intuitive interaction with the data, gives GIS users the ability to
filter pertinent information from vast databases, to effectively communicate complex
data sets, to optimize the processing of data, and to guide the analytical methods of data

modeling and interpretation.

97

The other advantage of GIS technology is its ability to process spatial data. Itis
increasingly recognized that GIS is not just useful for automated mapping, and thus
limited to “map intensive” industries. A large portion of corporate data resources contain
references to geographic location, and therefore can take advantage of GIS technology
and visualization. So, more and more companies are beginning to explore ways to
“mine” these data out of their databases. This trend has been encouraged by the growth,
and consequent decline in cost, of spatial data resources offered by both commercial data
companies and by government agencies, making it much easier for companies to acquire
the base maps necessary for referencing their internal data. While the early thrust of
business GIS applications has been in the areas of sales territory management, niche
marketing, and retail location analysis, other corporate functional areas are beginning to
see the advantage of GIS technology. My argument has been that business logistics,
especially because it is an inherently spatial discipline, represents an ideal application for
GIS technology, and in Chapter 1 I cited several instances in which GIS technology has
been successfully applied to this area.

As a practical example of a GIS application to logistics, I have reviewed the CVS
distribution network optimization project for which I worked, and the custom GIS
application developed for the project using ESRI’s ArcView GIS software. This review
began with a discussion of the graphical displays the application can produce in order to
demonstrate the power GIS technology possesses for communicating information about
large, complex sets of data, such as occurs with the logistics networks of major
corporations. I have also explained in detail the Avenue scripts controlling the project’s

98

custom functions. The customization process fell naturally into three sections, and so my
review of the scripts was likewise broken into three chapters — Chapters 3, 4, and 5.

In Chapter 3, I reviewed the ArcView Avenue scripts responsible for importing
and visualizing the results of an exogenous logistics optimization application. This
section of the thesis emphasized the ease with which logistics network data, if organized
i a predefined and consistent format, can be brought into the ArcView application. It
also highlighted the options for displaying information about the network features —such
as DCs, demand regions, and the product flows that occur between them — that resulted
from summarizing tabular data for the network DCs and demand regions.

In Chapter 4, I reviewed the scripts that give the custom GIS application a simple
and intuitive interface between the user and the underlying network data. I demonstrated
how, with the click of the mouse, the user could access complete logistics cost data, both
for an individual demand region and for the network as a whole. It provided a good
example of how information may be embedded in objects, thus allowing the user to focus
on the geographical distribution of the information, rather that on the processing of the
data. This chapter also emphasized the ability of GIS to manipulate data about trans-
thematic events using the table linking capabilities of a relational database.

Finally, in Chapter‘5, I discussed the scripts employing theme-on-theme spatial
analysis that enabled the application to create histograms that could be used for
comparing the DC configuration of an optimized logistics network with those of industry
competitors. These histograms, combined with the thematic mapping of the network
based on the logistics cost tables produced by the network-wide trace cost functions,

.99

make it possible for a logistics manager to understand quickly how different network
optimization scenarios will affect the total logistics costs of the retail facilities throughout

the chain, and how a solution compares to industry benchmarks.

Suggestions for Improving the CVS Project’s GIS Customization

Although there was a considerable amount of thought and programming that went
into the development of CVS’s ArcView customization, it could have better
demonstrated the potential of GIS for business logistics if the GIS portion of the project
had been granted more scope. The use of GIS for CVS’s network optimization project
was limited to the display and analysis of the optimization results. Given the
opportunity, ESRI’s ArcView software, or some other GIS software, might have been
integrated with a linear program solver to create a seamless application in which the
optimization, display, and analysis of solutions could be performed in a single working
environment, thus avoiding the confusion and time delays associated with having
separate and geographically dispersed groups working on different aspects of the project.
A single working environment would also avoid the necessity of going through a third
application, such as Microsoft Access, to transfer the data between applications, and may
have resulted in a more efficiently organized database needing less data querying and
summarization to extract useful feature attribute information. The application of GIS to
CVS’s logistics operations might also have been broadened to include other aspects of
logistics analysis, such as inventory monitoring, retail store location, and demand
forecasting using geo-demographic data.

100

The Future of Using GIS for Logistics Analysis

It is possible to speculate about the reasons why GIS, in the CVS customization
and in general, does not get applied more comprehensively to business information
processes. The notions that GIS is a tool of use only to geographers, that current GIS
applications are too complex and generic for traditional business information processes,
and that widespread ignorance of spatial analysis retards the growth of GIS technology,
were already touched upon in the first chapter. What seems to be true is that,
increasingly, computer technology is user-driven, rather than application-driven, and
therefore tends to focus more on minimizing implementation time and maximizing ease
of use, rather than on application robustness and flexibility. As a result of this “plug and
play” mentality, the last decade has witnessed a boom in user-friendly, desktop
applications targeted to the information needs of specific niche industries, including
business logistics. Today, applications such as InterTrans Logistics Solutions’ Supply
Chain Strategist and Caps Logistics’ ToolKit are giving the power of the operations
research consultant to a desktop computer sitting on the logistics manager’s desk.

Because of the increasing supply of specialized, user-friendly, logistics software,
it may be difficult for GIS technology to penetrate the field of business logistics if it
remains a complex, generic application. To rectify this situation, it has been suggested
that the GIS industry needs to develop applications that are tailored to specific business
industries. Zwart has analyzed GIS industry trends and argues that GIS technology is
also becoming user-oriented, and that many applications — in particular desktop mapping
systems that have limited, more intuitive functionality — have been directed to particular

101

market/user segments and have contributed to the growth of GIS outside of the

traditional, land-based industries (Zwart, 1993). It appears, however, that business

logistics has not been targeted. Ralston has corroborated this assertion by pointing out

the lack of comprehensive logistics algorithms in contemporary GIS applications, and he
argues that until they are included, the logistics industry will find GIS of limited use

(cited in Black, 1997).

Emerging Trends in GIS Technology

There are several trends, however, suggesting that GIS technology is converging
with mainstream information systems, and that using GIS technology to analyze and
visualize business activities, and thereby to leverage corporate data, will become
commonplace in the future. As the desktop computer running a version of Microsoft
Corp.’s Windows operating system becomes the de facto standard for business
computing environments, most GIS technology developers are moving to make their
applications compliant with Microsoft’s object-linking-and-embedding (OLE)
automation model (Francica, 1998). OLE compatibility will result in easier and quicker
integration of GIS objects, such as thematic maps, into other business applications, such
as spreadsheets or word processors, and vice versa.

Progress has also been made in building spatial data processing capabilities
directly into database management systems, as evidenced by the introduction of ESRI’s
spatial data engine (SDE), Oracle’s spatial data option (SDO) and Spatial Cartridge
server extension, and Informix’s Spatial Datablade module (Szajgin, 1997; Francica,

102

1998). As spatial data objects and processing capabilities become more widely
understood and incorporated into mainstream information technologies, GIS applications
as comprehensive, stand-alone tools are likely to devolve into GIS function and object
libraries, such as ESRI’s MapObjects, that will enable IS managers and application
developers to selectively embed GIS functionality into their systems (Cooke and
Montgomery, cited in Hughes, 1997).

Another trend is occurring on the academic side of GIS. As GIS technology
becomes more advanced, and as it moves into the mainstream of information processing,
academic geographers have begun a sophisticated dialog on the uses of GIS, both inside
and outside the academic setting, and on the role academic geographers have to play in
the diffusion of GIS technology in society. Johnson has discussed at length the increased
interest of the business world in GIS technology, and mentions several GIS courses with
a business orientation. He argues that academic geographers should assume a leading
role in the teaching of GIS for business, and suggests it is time to consider developing a
national curriculum on GIS in business (Johnson, 1996). When GIS and spatial analysis
are formally taught as business tools in academic institutions, misunderstandings about
GIS should give way to a rapid expansion of GIS technology into business information

systems, including those of business logistics.

103

REFERENCES

104

References

Ballou, R. H. 1992. Business Logistics Management, Third Edition (Englewood Cliffs,
New Jersey: Prentice Hall).

Barone, A. 1997. “Basically Visual,” WWS/World Wide Shipping, Vol. 60, No. 5, pp.
20-21.

Black, W. R. 1997. “Conference Report: Transport Geography Sessions at the
Association of American Geographers Annual Meeting, 1 April 1997, Fort Worth,
Texas,” Journal of Transport Geography, Vol. 5, No. 3, pp. 221-223.

Buttenfield, B. P. and Mackaness, W. A. 1991. “Visualizaton,” in D. Maguire, M.
Goodchild and D. Rhind, eds., Geographical Information Systems: Principles and
Applications (Essex, England: Longman Scientific & Technical).

Camm, J. D., Chorman, T. E., Franz, A. D., Sweeney, D. J., and Wegryn, G. W. 1997.
“Blending OR/MS, Judgement, and GIS: Restructuring P&G’s Supply Chain,”
Interfaces, Vol. 27, No. 1, pp. 128-142.

Coppock, J. T. and Rhind, D. W. 1991. “The History of GIS,” in D. Maguire, M.
Goodchild and D. Rhind, eds., Geographical Information Systems: Principles and
Applications (Essex, England: Longman Scientific & Technical).

Dewitt, W. J. and Ralston, B. A. 1996. “GIS: Existing and Potential Applications for
Logistics and Transportation,” in Business Geographics for Educators and Researchers,
30 May 1996 Proceedings (Washington D.C.: Association of American Geographers
and GIS World, Inc.)

Dewitt, W. J,, Ralston, B. A., and Langley, J.C. 1997. “The Impact of GIS on Supply
Chains,” in Brace, G., ed., Logistics Technology International 1997 (London: Sterling
Publishing Group).

Francica, J. R. 1998. “Corporate GIS: Spatial Information Technology is Now in the
Mainstream,” Business Geographics, Vol. 6, No. 3, pp. 34-35.

Fung, D. S. and Remsen, A. P. 1997. “Geographic Information Systems Technology for
Business Applications,” Journal of Applied Business Research, Vol. 13, No. 3, pp. 17-
24,

Gates, L. 1997. “GIS Puts Supply Chains on the Map,” Software Magazine, Vol. 17, No.
10, pp. 69-73.

105

Goodchild, M. F. 1991. “The Technological Setting of GIS,” in D. Maguire, M.
Goodchild and D. Rhind, eds., Geographical Information Systems: Principles and
Applications (Essex, England: Longman Scientific & Technical).

Grimshaw, D. J. 1994. Bringing Geographical Information Systems Into Business
(Essex, England: Longman Scientific & Technical).

Hamilton, D. 1996. “A Mappable Feast,” CIO, Vol. 9, No. 11, pp. 64-66.

Harder, C. 1997. ArcView GIS Means Business (Redlands, California: Environment
Systems Research Institute, Inc.).

Hughes, J. R. 1997. “GIS Industry Outlook: The Dawn of a New Decade,” GIS World,
Vol. 10, No. 12, pp. 40-47.

Huxhold, W. E. and Levinsohn, A. G. 1995. Managing Geographic Information System
Projects (New York: Oxford University Press).

Jacobs, A. 1996. “GIS Technology Makes Inroads,” Computerworid, Vol. 30, No. 24, p.
71.

Johnson, M. 1993. “GIS Popularity Growing,” Computerworld, Vol. 27, No. 12, pp. 41-
42.

Johnson, M. L. 1996. “GIS in Business: Issues to Consider in Curriculum Decision-
Making,” Journal of Geography, Vol. 95, No. 3, pp. 98-105.

Korte, G. 1997. The GIS Book (Santa Fe, New Mexico: OnWord Press).

Rao, S.S. 1995. “Corporate Treasure Maps,” CIO, Vol. §, No. 18, pp. S1-S6.

Rogers, E. M. 1993. “The Diffusion of Innovations Model,” in I. Masser and H. Onsrud,
eds., Diffusion and Use of Geographic Information Technologies (Dordrecht, The
Netherlands: Kluwer Academic Publishers).

Sherwood, N. 1995. ““Business Geographics’ - A U.S. Perspective,” in P. Longley and
G. Clarke, eds., GIS for Business and Service Planning (New York: John Wiley &
Sons, Inc.).

Szajgin, J. 1997. “Blending GIS and IT,” Business Geographics, Vol. 5, No. 1, pp. 36-
39.

Swenson, J. 1996. “GIS Software Goes Corporate,” InformationWeek, No. 582, p. 103.

106

Tetzeli, R. 1993. “Mapping for Dollars,” Fortune, Vol. 128, No. 9, pp. 90-96.

Tufte, E. R. 1997. Visual Explanations: Images and Quantities, Evidence and Narrative
(Cheshire, Connecticut: Graphics Press).

Zwart, P. R. 1993. “Embodied GIS - A Concept for GIS Diffusion,” in I. Masser and H.

Onsrud, eds., Diffusion and Use of Geographic Information Technologies (Dordrecht,
The Netherlands: Kluwer Academic Publishers).

107

Appendix

Thkhkhkhkdkhhkdhhhkdkhkhhhkhdhdkdkhohdhdhhhdhhkdhhkdhhdhhhdhkdkhhkdhkkhkhdhhdhdkdhkdkdhdhdkid

' Scriptname: AddXY

' Filename: addxy.ave

t

' Description: Adds two new fields, named X-coord and Y-coord,

! to the table of the first active theme in the

! TOC and fills the respective fields with the X,Y
! coordinates of the selected points (or all points
! if no selection is defined) in a point theme. If
! instead the active theme is a polygon theme, then
! the X,Y coordinates of the polygon centroid are

! calculated. If the theme is projected, the output
! coordinates will also be projected.

' Requires: An active point or polygon theme. This script
! does minimal error checking and assumes that
! there is an active theme.

' Called by: SplicelatLon
' Calls: Nil

' SELF: Nil

' Returns: an FTab

Thkkdkhkdhhkhkhkhhkhkdkdkddkhhkdddhhkhkdkdk gk k ko dk ok ok ok ok ok d d ok dokok dod ks oo ek o e ke g gk ok ok ok ke ok

theView = av.GetActiveDoc

'must be global to work in Calc exp below

_theProjection = theView.GetProjection

project flag = _theProjection.IsNull.Not ‘'true if projected
theTheme = theView.GetActiveThemes.Get (0)

'Check if point or polygon theme
if (((theTheme.GetSrcName.GetSubName = "point") or
(theTheme.GetSrcName.GetSubName = "polygon")) .Not) then
MsgBox.Info ("Active theme must be polygon or point theme”,
exit
end

" ll)

'get the theme table and current edit state
theFTab = theTheme.GetFTab

theFields = theFTab.GetFields

edit_state = theFTab.IsEditable

'make sure table is editable and that fields can be added
if (theFtab.CanEdit) then
theFTab.SetEditable (true)
if ((theFTab.CanAddFields).Not) then
MsgBox.Info("Can't add fields to the table."+NL+
"Check write permission."”,
"Can't add X,Y coordinates")

exit
end
else
MsgBox.Info("Can't modify the feature table."+NL+

109

"Check write permission.","Can't add X,Y coordinates"™)
exit
end

'Check if fields named "X-coord" and Y-coord" exist
X _exists (theFTab.FindField ("X-coord") = NIL).Not
y_exists (theFtab.FindField ("Y-coord") = NIL).Not
if (x_exists or y exists) then
if (MsgBox.YesNo("Overwrite existing fields?",
"X-coord, Y-coord fields already exist", false)) then
'if ok to overwrite, delete the fields as they
'may not be defined
'as required by this script (eg., created from
'‘another script).
if (x_exists) then
theFTab.RemoveFields ({theFTab.FindField ("X-coord") })
end
if (y_exists) then
theFTab.RemoveFields ({theFTab.FindField ("Y-coord") }})
end
else
exit
end 'if (MsgBox...)
end 'if
X = Field.Make ("X-coord",#FIELD DECIMAL,18,5)
y = Field.Make ("Y—coord",#FIELD_DECIMAL,18,5)
theFTab.AddFields ({x,y})

'Get point coordinates or polygon centroid coordinates
if (theTheme.GetSrcName.GetSubName = "point") then
if (project_flag) then
'Projection defined
theFTab.Calculate (" [Shape] .ReturnProjected
(_theProjection) .GetX", x)
theFTab.Calculate (" [Shapel .ReturnProjected
(_theProjection) .GetY", y)
else
'No projection defined
theFTab.Calculate (" [Shape] .GetX", x)
theFTab.Calculate (" [Shape] .GetY", vy)
end 'if
else 'polygon case

if (project_flag) then
theFTab.Calculate (" [Shape] .ReturnCenter.ReturnProjected

(_theProjection) .GetX", x)
theFTab.Calculate (" [Shape] .ReturnCenter.ReturnProjected
{_theProjection).GetY", y)
else
theFTab.Calculate (" [Shape] .ReturnCenter.GetX", x)
theFTab.Calculate (" [Shape] .ReturnCenter.GetY", vy)
end ' if
end
'Return editing state to pre-script running state
theFTab.SetEditable(edit_state)

return theFTab
110

Phohkdhddhdkdkdkhkhhkdkhkhhdhdkdkhhhhhdhdhdhhhhkbhkhhhkkrrrhbdhkhkhhhhdhddhkhhkddr

' Scriptname: AllStatistics.Generate

' Filename: Allstati.ave

' Author: Kenneth Bennett

' Date: May 6, 1998

' Description: Script sums each of the fields in the

! All Logistics Costs table and reports
! it to the user.

' Requires: All Logistics Costs table exists

' Called by: View menu item click

! ("Trace Costs: Chain-wide All-Products
! Statistics")

' Calls: Nil

' SELF: Nil

' Returns: Nil

Thdhkddddhhhhkdkkdhhhddbdhhhhddhdrhbhhhkkhhhbdbdrhrhhhdhhhdhhhhkrrhrkhddri

Scriptname = "AllStatistics.Generate"
' Ensure two decimal places in each number
Script.The.SetNumberFormat ("d.dd")
' Get the table
theTable = av.GetProject.FindDoc("All Logistics Costs")
if (theTable = Nil) then
MsgBox.Error("All Logistics Costs table not found.",
Scriptname)
exit
end
' Get the VTab for the table
theVTab = theTable.GetVTab
' Get the number of records
num = theVTab.GetNumRecords

' Get the list of fields in the VTab

theFieldList = theVTab.GetFields

' Set the field variables

shipFld
pickFld
tranFld
xdocFld
totlFld

theFieldList.Get (1
theFieldList.Get (2
theFieldlList.Get (3
theFieldList.Get (4
theFieldList.Get (5

)
)
)
)
)

' Initialize summing variables

shipSum =
pickSum
tranSum
xdocSum
totlSum =

It
[eNeNeNeNe)

' Loop through the VTab and sum each fld

for each rec in theVTab
shipSum = shipSum + theVTab.ReturnValue (shipFld, rec

pickSum = pickSum

xdocSum = xdocSum

theVtab.ReturnValue (pickFld, rec

theVTab.ReturnValue (xdocFld, rec

()

+ ()

tranSum = tranSum + theVTab.ReturnValue(tranFld, rec)
+ ()

+ ()

totlSum = totlSum

end

theVTab.ReturnValue (totlFld, rec

' Calculate the per store average for each field

shipAvg = shipSum / num
pickAvg = pickSum / num
tranAvg = tranSum / num
xdocAvg = xdocSum / num
totlAvg = totlSum / num

reportString =

Issue the report

"Total All-Products Shipping Cost:"++
shipSum.AsString+nl+

"Average Per Region:"++shipAvg.AsString+nl+

"Total All-Products Pick Cost:"++
pickSum.AsString+nl+

"Average Per Region:"++pickAvg.AsString+nl+

"Total All-Products Transhipment Cost:"++
tranSum.AsString+nl+

"Average Per Region:"++tranAvg.AsString+nl+

"Total All-Products Crossdock Cost:"++
xdocSum.AsString+nl+

"Average Per Region:"++xdocAvg.AsString+nl+nl+

"Chain-wide Grand Total Logistics Cost:"++
totlSum.AsString+nl+

"Average Grand Total Cost Per Region:"++
totlAvg.AsString+nl

MsgBox.Report (reportString,

return Nil

"Chain-wide All-Products Statistics")

112

Thhkkdkhhkdkdrdhdhkdkhdhhhkhhkhkdkhkhkkhhbdbdhbhhhhdhbdbhdhhhbdhdhhhhkdhkrhhhbddhrdrhdhddhiddx

' Scriptname: AllTraceAll
' Filename: alltrace.ave
' Description: Script sums the data stored in the Rx, CW, and

! OTC Logistics costs tables to create a new
! table of total logistics costs

' Requires: Demand Regions theme, and the Rx, CW, and OTC
! Logistics Costs tables must exist

' Called by: View menu click event
("Trace Costs: Chain-wide All Products"™)

' Calls: Tables.Link, Tables.Unlink
' SELF: Nil
' Returns: Nil

Thdkdkhhdhhhdhkhhhhdhdhdhhkhhbhhdhohhhhdhhdhhbhkdbhbhkhhddbhbhdhhbbhhkhkhdkhkhkdkkkhk

Scriptname = "AllTraceAll"

' Set the number format for the script
Script.The.SetNumberFormat ("d.dd")

theDirectory = av.GetProject.GetWorkDir.AsString
theView = av.GetProject.FindDoc("Demand by Region")

if (theView = Nil) then
MsgBox.Error ("ERROR: Demand by Region view does not exist.",

Scriptname)
exit
elseif (not (theView.Is(View))) then
MsgBox.Error ("ERROR: Demand by Region doc is not a view.",
Scriptname)
exit
end

theTheme = theView.FindTheme ("Demand Regions™)
if (theTheme = Nil) then
MsgBox.Error ("ERROR: Demand Regions theme does not exist.",
Scriptname)
exit
end
theStoreVTab = theTheme.GetFTab

' Get the store field from the Demand Regions FTab

thestorefld = theStoreVTab.FindField("Demand Region")
if (thestorefld = Nil) then
MsgBox.Error ("ERROR: Demand Region name field not found.",
Scriptname)

113

exit
end

' Get the Rx, CW, and OTC cost tables

rxTable av.GetProject.FindDoc{("Rx Logistics Costs")
cwTable = av.GetProject.FindDoc("CW Logistics Costs")
otcTable = av.GetProject.FindDoc("OTC Logistics Costs")
if((rxTable = Nil) OR (cwTable = Nil) OR (otcTable = Nil)) then
MsgBox.Error("One or more logistics cost tables are missing."
+nl+"Bailing out of program...", "ERROR")
exit
end

'check if table exists
sumallcst_exists = (av.GetProject.FindDoc
{("AllLgCst.dbf") = NIL).Not
skip = 0
if (sumallcst_exists) then
thedoc = av.GetProject.FindDoc("AllLgCst.dbf")
if (MsgBox.YesNo{"Overwrite existing logistics cost table?",
"The Table AllLgCst already exists",false)) then
if (sumallcst exists) then
av.GetProject.RemoveDoc (thedoc)
end
else
skip = 1
end
end
'create a newtable
if (skip = 0) then
flnm = theDirectory + "/AllLgCst.dbf"
newVTab = VTab.MakeNew(flnm.AsFileName, dBase)
storefld = Field.Make ("DemRegion",#FIELD_CHAR,16, 0)

directfld = Field.Make ("AlDrctCst",#FIELD_DECIMAL,16,2)
pickfld = Field.Make ("AlPickCst",#FIELD DECIMAL,616,2)
transfld = Field.Make ("AlTranCst",#FIELD_DECIMAL,16,2)
xdocfld = Field.Make ("AlXdocCst",#FIELD DECIMAL,16,2)
totfld = Field.Make ("AlTothst",#FIELD_DECIMAL,16,2)

newFldList = {storefld, directfld,pickfld,
transfld, xdocfld, totfld}
newVTab.AddFields (newFldList)
storefld.SetAlias ("Demand Region")
directfld.SetAlias ("All Direct Cost")
pickfld.SetAlias ("All Pick Cost")
transfld.SetAlias ("All Tranship Cost")
xdocfld.SetAlias ("All Crossdock Cost")
totfld.SetAlias("All Total Cost")

' Get the VTabs of the tables to be summed
rxVTab = rxTable.GetVTab

cwVTab = cwTable.GetVTab
otcVTab = otcTable.GetVTab

Get the count of one of them, since they should
114

' be same size and set for zero-based indexing

count = rxVTab.GetNumRecords
count (count - 1).SetFormat("d")

' Get their bitmaps

il

rxBitMap rxVTab.GetSelection
cwBitMap = cwVTab.GetSelection
otcBitMap = otcVTab.GetSelection

' Clear each bitmap

rxBitMap.ClearAll
cwBitMap.ClearAll
otcBitMap.ClearAll

'Create field lists for each production category
rxList = {"Rx Direct Cost", "Rx Pick Cost",

"Rx Tranship Cost",
"Rx Crossdock Cost", "Rx Total Cost"}

{"CW Direct Cost", "CW Pick Cost",
"CW Tranship Cost",
"CW Crossdock Cost", "CW Total Cost"}

cwList

otclist = {"OTC Direct Cost”, "OTC Pick Cost"”,
"OTC Tranship Cost",
"OTC Crossdock Cost", "OTC Total Cost"}

' Remove the Demand Region name fld from the
' newVTab field list

newFldList.Remove (0)

listCount = rxList.Count
listCount = (listCount - 1).SetFormat ("d")

' Get the name field to be added to each new
' record of the newVTab

nameFld = rxVTab.FindField("Demand Region")
if (nameFld = nil) then

MsgBox.Error ("Could not find name field from tables."+nl+

"Quitting program...", "ERROR")
exit
end

' Loop through each record of each bitmap and for each

' field, grab the value from each table, sum them,

' add that new value to the All Logistics Costs table.

av.ShowStopButton
115

for each rec in 0..count
'‘Make sure each bitmap is clear
rxBitMap.ClearAll
cwBitMap.Clearall
otcBitMap.ClearAll
'Set the same record for each bitmap
rxBitMap. Set (rec)
cwBitMap. Set (rec)
otcBitMap. Set (rec)

' Add a new record to the All Logistics Cost Table
' and add the name to the name field

newRec = newVTab.AddRecord

regionName = rxVTab.ReturnValue (nameFld, rec)
newVTab.SetValue (storefld, newRec, regionName)

' Set control for double loop in case fields not found

stopLoop = FALSE

'Loop through the field lists and grab the values
'from each table, sum them, and copy the new value
'"to the All Logistics Cost table
for each fld in 0..listCount
rxFld = rxVTab.FindField(rxList.Get (f1ld))
cwFld = cwVTab.FindField(cwlist.Get (f1ld))
otcFld = otcVTab.FindField(otcList.Get (fld))
if ((rxFld = Nil) OR (cwFld = Nil) OR (otcFld = Nil)) then
stopLoop = TRUE
break
end
' Get the field values from tables
rxVal = rxVTab.ReturnvValue (rxFld, rec)
cwVal = cwVTab.ReturnValue (cwFld, rec)
otcVal = otcVTab.ReturnValue (otcFld, rec)
' Sum them
totVal = rxVal + cwVal + otcval
' Add the new value to the new table
newVTab.SetValue (newFldList.Get (f1d), newRec, totVal)
end ' inner for loop
if (stopLoop) then
MsgBox.Error("A field in Rx, CW, or OTC table not found."
+nl+"Quitting the building of All Logistics
Costs table.","ERROR")
exit
end
rxBitMap.Clear (rec)
cwBitMap.Clear (rec)
otcBitMap.Clear (rec)
rxVTab.UpdateSelection
cwVTab.UpdateSelection
otcVTab.UpdateSelection
end ‘'outer for loop
end 'if skip = 0

Set the new table to uneditable and write to file
116

newVTab.SetEditable (FALSE)
newVTab.Flush

checkTable = av.GetProject.FindDoc("All Logistics Costs™)
if (checkTable <> Nil) then

av.GetProject.RemoveDoc (checkTable)
end

' Bring the new table into the project

newTable = Table.Make (newVTab)

newTable.SetName ("All Logistics Costs™)

av.GetProject.AddDoc(newTable)

' Join the newTable to the Demand Regions table

theStoreVTab.Join(thestorefld, newVTab, storefld)

MsgBox.Info("Tracing of all-products logistics cost for"+nl+
"each demand region is complete.",

"Trace Costs: Chain-wide All-Products")

return Nil

117

'***

' Scriptname: CalcDCs

' Filename: calcdcs.ave

' Description: Script to generate the cross doc and pick info
' Requires: Nil

' Called By: Menu item click event ("Sum DCs”)

' Calls: HasCWRx, SummTS, SummD2S, JoinSumms

' SELF: Nil

' Returns: Nil -

'***

Scriptname = "CalsDCs"
'Get the Demand by Region view and the CVS DCs FTab
theView = av.GetProject.FindDoc{"Demand by Region")

if (theView = Nil) then
MsgBox.Error ("ERROR: Demand by Region view does not exist.",

Scriptname)
exit
elseif (not (theView.Is(View))) then
MsgBox.Error ("ERROR: Demand by Region doc is not a view.",
Scriptname)
exit
end

theTheme = theView.FindTheme ("CVS DCs")
theFTab = theTheme.GetFTab
editstate = theFTab.IsEditable
if (editstate.Not) then
theFTab.SetEditable (true)
end
' Create fields Has Rx and Has CW, from Pick table
av.Run{"HasCWRx", {theView, theFTab})
' Summarize table transship.dbf for CW and Rx for origin and dest

av.Run ("SummTS"™, Nil)

' Summarize table dirstore.dbf for all three categories
' (Rx, OTC, CW)

av.Run ("SummD2S", Nil)

' Join all of the summaries to the DCs theme table

118

av.Run("JoinSumms", {theView, theFTab})

'Need to create total picked for OTC = summarized value
'Need to create total picked for CW = sum on transship for
'origin + Has CW * sum on direct to store

'Need to create total picked for Rx = sum on transship for
'origin 4+ Has Rx * sum on direct to store

'Need to create total cross docked for CW = sum transship
'for dest

'Need to create total cross docked for Rx
'for dest

'Need to create handling costs at warehouse
'rate * total picked for CW

'Need to create cross dock costs at warehouse = handling
'rate * totol cross dock.

sum transship

handling

' First tally the total CW and RX picked

IxX_exists {theFTab.FindField ("Rx Picked") NIL) .Not
cw_exists = (theFTab.FindField("CW Picked") = NIL).Not
recalc = 1
if (rx_exists or cw_exists) then
if (MsgBox.YesNo("Overwrite existing fields?",
"The Rx and CW Picked fields already exist"”, false)) then
'if ok to overwrite, delete the fields as they may not
'be defined as required by this script (eg., created from
'ancther script).
if (rx_exists) then
theFTab.RemoveFields ({theFTab.FindField ("Rx Picked")})
end
if (cw_exists) then
theFTab.RemoveFields ({theFTab.FindField("CW Picked")})
end
else
recalc = 0
end 'if (MsgBox...)
end 'if
if (recalc = 1) then
rx = Field.Make ("Rx Picked",#FIELD DECIMAL, 16, 2)
cw = Field.Make ("CW Picked",#FIELD_DECIMAL, 16, 2)
theFTab.AddFields ({rx,cw})
hasrx = theFTab.FindField ("HasRx")
hascw = theFTab.FindField ("HasCW")
rxts theFTab.FindField ("RxPicked for TS")
rxdZ2s theFTab.FindField ("Rx D2S")
cwts = theFTab.FindField("CWPicked for TS")
cwd2s = theFTab.FindField("CW D2S")
for each i in theFTab
hasrxval = theFTab.ReturnValue (hasrx, i)
hascwval = theFTab.ReturnValue (hascw, i)
if (hasrxval = 0) then
theval = 0
else
theval = theFTab.ReturnValue (rxts, i) +
theFTab.ReturnValue (rxd2s, i)

119

end
theFTab.SetValue({rx, i, theval)
if (hascwval = 0) then
theval = 0
else
theval = theFtab.ReturnValue (cwts, i) +
theFTab.ReturnvValue (cwd2s, 1)

end
theFTab.SetValue(cw, i, theval)
end
end
rx_exists = (theFTab.FindField("Rx Rate"”) = NIL).Not
cw_exists = (theFTab.FindField ("CW Rate"”) = NIL).Not
otc_exists = (theFtab.FindField ("OTC Rate") = NIL).Not

recalc =1
if (rx_exists or cw_exists or otc_exists) then
if (MsgBox.YesNo("Overwrite existing fields?",
"The Handling Rate fields already exist", false)) then
'if ok to overwrite, delete the fields as they
'may not be defined
'as required by this script (eg., created from
'another script).
if (rx_exists) then
theFTab.RemoveFields ({theFTab.FindField ("Rx Rate")})
end
if (cw_exists) then
theFTab.RemoveFields ({theFTab.FindField ("CW Rate")})
end
if (otc_exists) then
theFTab.RemoveFields ({theFTab.FindField ("OTC Rate")})

end
else
recalc = 0
'exit
end 'if (MsgBox...)
end 'if

if (recalc = 1) then
rx = Field.Make ("Rx Rate",#FIELD_DECIMAL,S, 6)
cw = Field.Make ("CW Rate",#FIELD DECIMAL,S, 6)
otc = Field.Make("OTC Rate", #FIELD DECIMAL, 9, 6)
theFTab.AddFields ({rx,cw, otc})

' Get the handling table

theDCFld = theFTab.FindField("Facility")
theRateTab = av.FindDoc("handling.dbf").GetVTab
theFacFld = theRateTab.FindField("Facility")
theProdFld theRateTab.FindField ("Product")
theRateFld = theRateTab.FindField("HandlingRate")
for each i in theFTab

found = 0

theDC = theFTab.ReturnvValue (theDCFld, i)

for each j in theRateTab

if (found = 3) then
break

120

end
theFacility = theRateTab.ReturnValue (theFacFld, j)
if (theDC <> theFacility) then

continue
end
theProduct = theRateTab.ReturnValue (theProdFld, j)
if (theProduct = "CW") then

theRate = theRateTab.ReturnValue (theRateFld, j)
theFTab.SetValue(cw, i, theRate)
found = found+l
continue

end

if (theProduct = "Rx") then
theRate = theRateTab.ReturnValue (theRateFld, 3j)
theFTab.SetValue(rx, i, theRate)
found = found+l
continue

end

if (theProduct = "OTC") then
theRate = theRateTab.ReturnValue (theRateFld, 3J)
theFTab.SetValue(otc, i, theRate)
found = found + 1
continue

end 'end if

end 'end for on j
end 'end for on i
end

' Now add the cost fields

rxpcost_exists = (theFTab.FindField("Rx Pick Cost")= NIL) .Not
rxxdoccost exists = (theFTab.FindField("Rx X Doc Cost™) = NIL).Not
cwpcost_exists = (theFTab.FindField("CW Pick Cost™) = NIL).Not
cwxdoccost_exists =(theFTab.FindField("CW X Doc Cost") = NIL).Not
otcpcost_exists = (theFTab.FindField("OTC Pick Cost") = NIL).Not
totcost_exists = (theFTab.FindField ("Total Handling") = NIL).Not

recalc =1
if (rxpcost_exists or rxxdoccost_exists or cwpcost _exists or
cwxdoccost_exiSts or otcpcost_exists or totcost_exists) then
if (MsgBox.YesNo("Overwrite existing fields?",
"The Handling Cost fields already exist”, false)) then
'if ok to overwrite, delete the fields as they
'may not be defined
'as required by this script (eg., created from
'another script).
if (rxpcost exists) then
theFTab.RemoveFields ({theFTab.FindField ("Rx Pick Cost™)})
end
if (rxxdoccost_exists} then
theFTab.RemoveFields ({theFTab.FindField ("Rx X Doc Cost™)}})
end
if (cwpcost_exists) then
theFTab.RemoveFields ({theFTab.FindField ("CW Pick Cost")})
end
if (cwzdoccost_exists) then
theFTab.RemoveFields ({theFTab.FindField ("CW X Doc Cost™)})

121

end
if (otcpcost_exists) then

theFTab.RemoveFields ({theFTab.FindField ("OTC Pick Cost")})
end

if (totcost_exists) then
theFTab.RemoveFields ({theFTab.FindField ("Total Handling")})
end

else
recalc = 0

end 'if (MsgBox...)

end 'if

if (recalc = 1) then
rxx = Field.Make ("Rx X Doc Cost",#FIELD DECIMAL,16, 2)
rxd = Field.Make ("Rx Pick Cost",#FIELD_DECIMAL, 16, 2)
cwx = Field.Make ("CW X Doc Cost",#FIELD_ DECIMAL, 16, 2)
cwd Field.Make ("CW Pick Cost",#FIELD_DECIMAL,lG, 2)
otc = Field.Make ("OTC Pick Cost", #FIELD_DECIMAL, 16, 2)
tot = Field.Make ("Total Handling",#FIELD DECIMAL,16, 2)
theFTab.AddFields ({rxx, rxd, cwx, cwd, otc, tot})

' There may be blank entries because of no matches on a join.
' We cannot change the values of those entries because they belong
' to another table.

theBitMap = theFTab.GetSelection

expr = "(([RX_X_Doc].IsNull.Not) and ([Rx Rate].IsNull.Not))"
theFTab.Query(expr, theBitMap, #VTAB SELTYPE NEW)
theval = "[RX_X Doc] * [RX Rate]"

theFTab.Calculate (theval, rxx)

expr = "(([RX Picked].IsNull.Not) and ([Rx Rate] .IsNull.Not))"
theFTab.Query (expr, theBitMap, #VTAB SELTYPE_NEW)
theval = "[RX Picked] * [RX Rate]l"”

theFTab.Calculate (theval, rxd)

expr = "(([CW_X_Doc].IsNull.Not) and ([CW Rate].IsNull.Not))"
theFTab.Query{expr, theBitMap, #VTAB_SELTYPE NEW)
theval = "{CW X Doc] * [CW Rate] "

theFTab.Calculate (theval, cwx)

expr = "(([CW Picked].IsNull.Not) and ([OTC Rate].IsNull.Not))"
theFTab.Query(expr, theBitMap, #VTAB_SELTYPE_ NEW)
theval = "[CW Picked} * [OTC Rate]"

theFTab.Calculate (theval, cwd)

expr = "(([OTC Picked].IsNull.Not) and ([OTC Rate] .IsNull.Not))"
theFTab.Query(expr, theBitMap, #VTAB SELTYPE_NEW)
theval = "[OTC Picked] * [OTC Ratel"

theFTab.Calculate (theval, otc)
theFTab.GetSelection.ClearAll

theval = "[Rx X Doc Cost] + [Rx Pick Cost] + [CW X Doc Cost]
+ [CW Pick Cost] + [OTC Pick Cost]"
theFTab.Calculate(theval, tot)

122

end
' Reset edit state to false
theFTab.SetEditable(false)

MsgBox.Info ("Summary of DC Data Complete", "NOTICE")

return Nil

] **

' Scriptname: ColorPalette.SelectColor

' File Name: colorpal.ave
' Author: Kenneth Bennett
' Date: February 10, 1998

' Description: Makes a palette from ArcView's default

! color palette and then asks a user to select

! a color. AV's default.avp file must be in the
! working directory for this script to work.

' Requires: Nil

' Called by: FlowLines.Build

' calls: Nil

' SELF: Nil
' Return: a Color object

1 **

Scriptname = "ColorPalette.SelectColor”

' Check to see if the default AVP file is
' in the project working directory

theWorkDirString = av.GetProject.GetWorkDir.AsString
theDefPalFile = (theWorkDirString + "\Default.avp").AsFileName
exists = File.Exists (theDefPalFile)
if (exists.not) then
MsgBox.Error("ArcView's default palette is not in"+NL+
"the project's working directory."+NL+
"pPlease load file Default.avp into working"+NL+
"directory and rerun script.", Scriptname)
exit
end

' Create a palette using ArcView's default palette file

thePalette = Palette.MakeFromFile (theDefPalFile)

' Create a color list that corresponds index-wise to the symbollist

' of the Color Palette

theColorlList = {“"Transparent", "White", "Light Grey", "Medium
Grey", "Dark Grey", "Black", "Light Pink", "Dark
Pink"™, "Candy Red", "Red", "Lt Red-Brown", "Dark
Red-Brown", "Lt Pastel Green", "Dk Pastel Green",
"Lt Fluorescent Green", "Dk Fluorescent Green",
"Green", "Dark Green", "Lt Pastel Purple”,
"Dk Pastel Purple", "Blue", "Dark Blue", "Navy
Blue", "Metallic Blue", "Lt Pastel Blue",

124

"Dk Pastel Blue", "Lt Sky Blue", "Dk Sky Blue",

"Lt Ocean Blue", "Dk Ocean Blue", "Lt Pastel Mauve",
"Dk Pastel Mauve", "Lt Fluorescent Purple",

"Dk Fluorescent Purple"”, "Purple", "Dark Purple”,

"I,t Pastel Yellow", "Dk Pastel Yellow", "Yellow",
"Mustard", "Lt Olive Green", "Dk Olive Green”,
"Peach", "Lt Orange", "Dk Orange", "Lt Fuchsia",
"Dk Fuchsia", "Pea Green", "Desert Green",

"Lt Stone Grey", "Medium Purple", "Dk Stone Grey",
"Brown", "Chocolate”, "Fluorescent Lime Green",
"Turquois", "Light Blue", "Medium Blue", "Light
Purple"”, "Blue-Purple"}

' Have the user select a color from this list

theListSel = MsgBox.ListAsString(theColorlist,
"Select A Color:", Scriptname)

if (thelistSel = Nil) then
MsgBox.Error{("No color was selected. Exiting...", Scriptname)
exit
end
' Get the index number for that color string in theColorList
index = theColorlList.Find(thelistSel)
' Use that index to grab the corresponding color in Color Palette
theColorPalettelist = thePalette.GetList (#PALETTE LIST_ COLOR)
'MsgBox.Info (theColorPalettelList.Count.AsString, Scriptname)
chosenColor = theColorPaletteList.Get (index)

' Return the chosen color object

Return chosenColor

125

Al ***

' Scriptname: CWFlowTheme.Make

' Filename: cwflowth.ave

' Author: Kenneth Bennett

' Date: May 3, 1998

' Description: Script generates a Flow theme based on the CW

! Flow field in the DC-to-Region Flow theme table.
! Zero value flows are made invisible using null
' value and symbol.

' Requires: DC-to-Region flow theme must exist

' Called by: View menu item click event
("Display Flows: DC-to-Region by CW Only")

' Calls: Nil
' SELF: Nil
' Returns: Nil

Tokdekdhdkhkddhhdhkhkddkhkhdhhhkdhhdbhkhkhhhdkddhdkhkdkkdhkdkhdkdhhdhhdkhdddhdhdkhkdddhdd

Scriptname = "CWFlowTheme.Make™

theView = av.GetProject.FindDoc ("Demand by Region")
if (theView = Nil) then
MsgBox.Error ("ERROR: Demand by Region view does not exist.",

Scriptname)
exit
end
if (not (theView.Is(View))) then
MsgBox.Error ("ERROR: Demand by Region doc is not a view.",
Scriptname)
exit
end

theTheme = theView.FindTheme ("DC-to-Region Flow")
if (theTheme = Nil) then
MsgBox.Error ("ERROR: Theme called DC-to-Region Flow
does not exist.", Scriptname)
exit
end

catString = "CW Flow"

checkTheme = theView.FindTheme (catString)
if (checkTheme <> nil) then
theView.DeleteTheme (checkTheme)
theTable = av.GetProject.FindDoc ("Attributes of"++catsString)
if (theTable <> NIL) then
av.GetProject.RemoveDoc (theTable)

126

end
end

' Clone the DC-to-Region Flow theme
newTheme = theTheme.Clone
newlLegend = newTheme.GetLegend

newlLegend. SetLegendType (#LEGEND_TYPE SYMBOL)

' Make zero the null value

newLegend. SetNullValue (catString, O0)

' Select a color from the color palette to be used
' in drawing the new line theme

theColor = av.Run("ColorPalette.SelectColoxr"™, Nil)

' Classify the legend with into five natural breaks
' and weight the line thickness by the flow volume

newLegend.Natural (newTheme, catString, 5)
theSymbolList = newLegend.GetSymbols
thickness =1
count = 0
for each s in theSymbolList
s.SetSize(thickness)
thickness = thickness + 1
end
theSymbolList.UniformColor (theColor)

' Make the null symbol transparent

nullSym = Symbol.Make (#SYMBOL_PEN)
theNullColor = Color.GetBlue
theNullColor.SetTransparent (TRUE)
nullSym. SetColor (theNullColor)
newLegend. SetNullSymbol (nullSym)
newlegend.DisplayNoDataClass (FALSE)
newTheme. SetLegend (newLegend)
newTheme.SetName (catString)
newTheme. SetActive (FALSE)
newTheme.SetVisible (TRUE)
theView.AddTheme (newTheme)
newTheme.UpdateLegend
theView.Invalidate
theNullColor.SetTransparent (FALSE)

return Nil

127

' ***

CWStatistics.Generate

Scriptname:

Filename: cwstatis.ave

' Author: Kenneth Bennett

' Date: May 6, 1998

' Description: Script sums each of the fields in the
! CW Legistics Costs table and reports
! it to the user.

' Requires: CW Logistics Costs table exists

' Called by: View menu item click
! ("Trace Costs: Chain-wide CW Statistics")

' Calls: Nil
' SELF: Nil
' Returns: Nil

l**

Scriptname = "CWStatistics.Generate"

' Ensure two decimal places in each number

Script.The.SetNumberFormat ("d.dd")
' Get the table
theTable = av.GetProject.FindDoc ("CW Logistics Costs")
if (theTable = Nil) then
MsgBox.Error ("CW Logistics Costs table not found.",
Scriptname)
exit
end
' Get the VTab for the table
theVTab = theTable.GetVTab
' Get the number of records
num = theVTab.GetNumRecords
' Get the list of fields in the VTab
theFieldList = theVTab.GetFields

' Set the field variables

shipFld = theFieldList.Get (1)
128

pickFld = theFieldList.Get (2)
tranFld = theFieldList.Get (3)
xdocFld = theFieldList.Get (4)
totlFld = theFieldList.Get (5)

' Initialize summing variables

shipSum =
pickSum
tranSum
xdocSum
totlSum =

it
coocoo

' Loop through the VTab and sum each fld

for each rec in theVTab

shipSum = shipSum + theVTab.ReturnValue (shipFld, rec)

pickSum = pickSum + theVtab.ReturnValue (pickFld, rec)

tranSum = tranSum + theVTab.ReturnValue (tranFld, rec)

xdocSum = xdocSum + theVTab.ReturnValue (xdocFld, rec)

totlSum = totlSum + theVTab.ReturnValue (totlFld, rec)
end

' Calculate the per store average for each field

shipAvg = shipSum / num

pickAvg = pickSum / num

tranAvg = tranSum / num

xdocAvg = xdocSum / num

totlAvg = totlSum / num

' Issue the report

reportString = "Total CW Shipping Cost:"++shipSum.AsString+nl+

"Average Per Region:"++shipAvg.AsString+nl+
"Total CW Pick Cost:"++pickSum.AsString+nl+
"Average Per Region:"++pickAvg.AsString+nl+
"Total CW Transhipment Cost:"++tranSum.AsString
+nl+"Average Per Region:"++tranAvg.AsString+nl+
"Total CW Crossdock Cost:"++xdocSum.AsString+nl+
"Average Per Region:"++xdocAvg.AsString+nl+nl+
"Chain-wide Total CW Logistics Cost:"++
totlSum.AsString+nl+"Average Total Cost Per
Region:"++totlAvg.AsString+nl

MsgBox.Report (reportString, "Chain-wide CW Statistics”)

return Nil

T ****************-k**

' Scriptname: DC.HistPct
' Filename: dc_histp.ave

' Description: Generates a histogram for the DC Range field in

' the stores theme table. A new Chart document

! is created to display the histogram. A temporary
' file is created to store interval counts and

! other information used to create the histogram.

' Requires: View is the active document and stores theme is
! the active theme. DC Range field has been

! added to the stores theme table and has been

! populated using the DC-Store Range menu click

! event under the Location Strategy menu set.

' Called by: Menu click event ("Make Histogram")
' Calls: Nil

]

' SELF: Nil

1

' Returns: Nil

'**

Scriptname = "DC.HistPct”
' Get the view and the stores theme, and verify

theView = av.GetProject.FindDoc("Location Strategy")
if (theView = Nil) then
MsgBox.Error ("ERROR: Location Strategy view does not exist.",
Scriptname)
exit
end
if (not (theView.Is(View))) then
msgBox.Error ("Selected document is not a view.", Scriptname)
exit
end

theThemelist = theView.GetActiveThemes
thePointThemeList = {}
storeTheme = Nil
for each t in theThemelist
if (t.GetFTab.GetSrcName.GetSubName = "Point") then
thePointThemelist.Add (t)
end
end

numThemes = thePointThemeList.Count
if (numThemes = 1) then

storeTheme = thePointThemelist.Get (0)
elseif (numThemes > 1) then

storeTheme = MsgBox.List (thePointThemelist,

130

"Select a stores theme:", Scriptname)

else
MsgBox.Error("Store theme not selected. Exiting...",
Scriptname)
exit
end

' check if a store theme was selected

if (storeTheme = nil) then

msgBox.Error ("Store theme not selected. Exiting...",
Scriptname)
exit
end

storeFTab = storeTheme.GetFTab
' Verify that the FTab has the required DC Range field

theField = storeFTab.FindField("DC Range")
if (theField = Nil) then
MsgBox.Error ("DC Range field not found. Make sure that the"
+NL+"correct store theme has been selected and
that"+NL+"the DC Range field has been added and
calculated.", Scriptname)
exit
end

' Set the number of intervals to six
numIntervals = 6

' Create a temporary storeFTabab to hold interval counts

histoFilePath = "c:\cvs\cvsac\thesis\charts".AsFileName
histoFilePath.SetCWD
histVTab = VTab.MakeNew(Filename.GetCWD.MakeTmp

("histo", "dbf"), dBASE)
labelField = Field.Make ("Range", #FIELD CHAR, 28, 0)
countField = Field.Make("Count", #FIELD_LONG, 12, 0)
percentField = Field.Make("Percent", #FIELD DECIMAL, 6, 2)
histVTab.AddFields({labelField, countField, percentField})

numReads = 0
' Determine number of records to process

if (storeFTab.GetSelection.Count = 0) then
iter = storeFTab
n = storeFTab.GetNumRecords
else
iter = storeFTab.GetSelection
n = iter.Count
end
maxNumReads = n

131

' Set the minimum and maximum values and the interval size

minimum = 0
maximum = 251
intervalSize = 50

' Populate the histogram VTab with interval labels,
' initializing interval counts to 0

oldlow = -1
for each i in O.. (numIntervals - 1)
rec = histVTab.AddRecord
low = oldlow + 1
high = (minimum + ((i + 1) * intervalSize))
if (i = 0) then
histVTab.SetValueString{labelField, rec,
("within"++intervalSize.AsString++"miles"))
elseif (i = (numIntervals - 1)) then
histVTab.SetValueString(labelField, rec,
(">"++(low - 1).AsString++"miles"))

else
histVTab.SetValueString(labelField, rec,
(low.AsString++" - "++high.AsString++"miles"))
end

oldlow = high

histVTab.SetValueNumber (countField, rec, 0)

histVTab.SetValueNumber (percentField, rec, 0)
end ' for loop

' Loop through records again, incrementing
' the appropriate counter based on the
' interval in which the value falls

for each rec in iter
numReads = numReads + 1
av.SetStatus (numReads / maxNumReads * 100)
curval = storeFTab.ReturnValueNumber (theField, rec)
index = ((curval - minimum) / intervalSize) - 1
if (index = -1) then
MsgBox.Info("ERROR: Record(s) still have DC Range
value of zero!", Scriptname)
exit
end
if ((index mod 1) <> 0) then 'curval is 251
(ie, not a multiple of 50), assign to last interval
index = index.Ceiling
end
if (index = numIntervals) then
index = numIntervals - 1
end
histVTab.SetValueNumber {countField, index,
histVTab.ReturnvValueNumber

132

(countField, index) + 1)
end 'for loop

' Loop through histVTab and calculate the percent field

for each j in histVTab
cnt = histVTab.ReturnValue (countField, 3)
p = (cnt / maxNumReads) * 100
histVTab.SetValueNumber (percentField, j, p)
end 'for locp

' Make a Chart document and display it

newChart = Chart.make(histVTab, {percentField})

newChart.SetRecordLabelField(labelField)

storeName = storeTheme.GetName.AsTokens (". ").Get(0)

newChart.GetTitle.SetName ("Percent of"++storeName++

"Stores to Nearest DC")

newChart. SetName ("Histogram of"++storeName++
"Store-DC Distances")

xax = newChart.GetXAxis

yax = newChart.GetYAxis

xax.SetName ("50 Mile Intervals")

yax.SetName ("Percent of Stores")

xax.SetLabelVisible(true)

yax.SetLabelVisible (true)

yax.SetBoundsMin (0)

yax.SetBoundsMax (100)

yax.SetBoundsUsed (true})

yax.SetMajorGridSpacing (10)

yax.SetMajorGridVisible (false)

yax.SetMinorGridSpacing (5)

yvax.SetMinorGridvisible (false)

yax.SetTickLabelsVisible (true)

av.GetProject.AddDoc (newChart)

newChart.GetWin.Open

Return Nil

133

Tdhkdhhkddkdhhhkdkdkddhhdkdkdhkdkkhkkdkkdkhhhkdkdkkdkkhhhkddkkdhhkhhkhkkkkhhddkdkddkkhkx

' Scriptname: DC.Range
' Filename: dc_range.ave

' Description: Script grabs the selected records of the

! stores theme and populates the DC Range field
! selected records with the service range

' distance. This script is used to set up the
' stores attribute tables for charting.

' Requires: Service area theme has been created and stores
! with selected ranges have been selected.

' Called by: Stores.SelByRange
' Calls: Nil

' SELF: the stores FTab, the range field, and
! the range name

' Returns: Nil

Thkdhhdhhdhhhhhdhhdhkhkhhkdhhkhdhkhhkhkhkhkdkhhkdrhdhhhdrhdhdhrdhdhhdhbdhhhhdhhkdkktkhsh

Scriptname = "DC.Range"
theFTab = SELF.Get (0)
dcrange = SELF.Get (1)
rangeName = SELF.Get(2)
storeTheme = SELF.Get(3)

' Get the select set of the stores theme

theSelSet = theFTab.GetSelection
dcrange = theFTab.FindField("DC Range")

av.ShowStopButton
av.ShowMsg ("Editing DC Range field...")
numSelRecs = theFTab.GetNumSelRecords

n=20

edit_state = theFTab.IsEditable
theFTab.SetEditable (true)

' Loop through the selected records and calculate
' the selected records to the range Name if it has
' not already been done so.

for each rec in theSelSet
rangeval = theFTab.ReturnValue{(dcrange, rec)
if (rangeval = 0) then
theFTab.SetValue (dcrange, rec, rangeName)
n=n++1
else

134

n=n+1
continue
end 'if

progress = (n/numSelRecs) * 100
doMore = av.SetStatus(progress)
if (not doMore) then

break
end 'if

end 'for loop
theFTab.SetEditable (FALSE)
theFTab.SetEditable (edit_state)

storeTheme.ClearSelection

return Nil

135

'***

' Scriptname: DCFixedCostTheme.Make

' Filename: dcfixedc.ave

' Author: Kenneth Bennett

' Date: May 3, 1998

' Description: Script generates a CVS DCs theme based

! on the Fixed Cost field in the CVS DCs theme

! table. The theme is classified into three sizes
! based on fixed cost value and uses the triangle
! as the symbol

' Reguires: CVS DCs theme must exist

' Called by: View menu item click event
! ("Display DC: by Fixed Cost")

' Calls: Nil
' SELF: Nil
' Returns: Nil

' ***

Scriptname = "DCFixedCostTheme.Make”

theView = av.GetProject.FindDoc("Demand by Region")
if {(theView = Nil) then
MsgBox.Error ("ERROR: Demand by Region view does not exist.",

Scriptname)
exit
end
if (not (theView.Is(View))) then
MsgBox.Error ("ERROR: Demand by Region doc is not a view.",
Scriptname)
exit
end

theTheme = theView.FindTheme ("CVS DCs")
if (theTheme = Nil) then
MsgBox.Error ("ERROR: Theme called CVS DCs does not exist.",
Scriptname)
exit
end

checkTheme = theView.FindTheme ("CVS DCs by Fixed Cost")
if (checkTheme <> nil) then
theView.DeleteTheme (checkTheme)
theTable = av.GetProject.FindDoc ("Attributes of CVS
DCs by Fixed Cost")

if (theTable <> NIL) then
av.GetProject.RemoveDoc{theTable)
end

136

end

' Clone the CVS DCs theme

fixTheme = theTheme.Clone
fixTheme.SetName {("CVS DCs by Fixed Cost")

' Change the legend to weight the symbol size
' by the fixed cost and classify into 3
' groups using a natural break

fixLegend = fixTheme.GetLegend

fixLegend. SetLegendType (#LEGEND_TYPE SYMBOL)

fixLegend.Natural (fixTheme, "FixedCost"”, 3)

fixlLegend.DisplayNoDataClass (FALSE)

' Get the project working directory

theDir = av.GetProject.GetWorkDir.AsString

thePath = theDir+"\default.avp"”

theSymbollist = fixLegend.GetSymbols

index = 0

increment = 0

for each s in theSymbolList
thePalette = Palette.MakeFromFile (thePath.AsFileName)
' Grab the Marker palette and get the outlined
' triangle symbol, which is the 9th symbol in the palette
chosenMarker = thePalette.GetList

(#PALETTE_LIST MARKER) .Get (9)

chosenMarker.SetSize (12 + increment)
theSymbolList.Set (index, chosenMarker)
index = index + 1
increment = increment + 4

end

theSymbolList.UniformColor(Color.GetYellow)

fixTheme.Updatelegend
fixTheme.SetVisible(TRUE)
theView.AddTheme (fixTheme)
theView.Invalidate

return Nil

137

T oddedk otk ok ko oKk Tk ok ok ok e koo e ke o ke gk ok e ke ket ke e e ke ok de e ok g ok e vk ok sk ke ok kS ke ok ke ke sk sk ke ke e e sk e ke ke ok

' Scriptname: DCHandCostTheme .Make

' Filename: dchandco.ave

' Author: Kenneth Bennett

' Date: May 3, 1998

' Description: Script generates a CVS DCs theme based on

! the total Handling field in the CVS DCs theme

! table. The theme is classified into three sizes
! based on total handling cost and uses the hexagon
! as the symbol

' Requires: CVS DCs theme must exist

' Called by: View menu item click event
! ("Display DC: by Handling Cost")

' Calls: Nil
' SELF: Nil
' Returns: Nil

Thdkdkhdhkdhkhhhdhhdhhhhhdhhhhhkhhkhhhhkrhddhkhdbdhdbhdhdhbhbhhdhbhdkhddddhkhdh

Scriptname = "DCHandCostTheme.Make"

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then
MsgBox.Error {"ERROR: Demand by Region view does not exist.",

Scriptname)
exit
end
if (not (theView.Is(View))) then
MsgBox.Error ("ERROR: Demand by Region doc is not a view.",
Scriptname)
exit
end

theTheme = theView.FindTheme ("CVS DCs")
if (theTheme = Nil) then
MsgBox.Error ("ERROR: Theme called CVS DCs does not exist.",
Scriptname)
exit
end

checkTheme = theView.FindTheme ("CVS DCs by Handling Cost")
if (checkTheme <> nil) then
theView.DeleteTheme (checkTheme)
theTable = av.GetProject.FindDoc("Attributes of CVS
DCs by Handling Cost™)

if (theTable <> NIL) then
av.GetProject.RemoveDec (theTable)
end

138

end
' Clone the CVS DCs theme

handTheme = theTheme.Clone
handTheme.SetName ("CVS DCs by Handling Cost")

' Change the legend to weight the symbol size
' by the total handling cost and classify into 3
' groups using a natural break

handLegend = handTheme.GetLegend

handLegend. SetLegendType (#LEGEND TYPE_SYMBOL)

handLegend.Natural (handTheme, "Total Handling", 3)

handLegend.DisplayNoDataClass (FALSE)

' Get the project working directory

theDir = av.GetProject.GetWorkDir.AsString

thePath = theDir+"\default.avp"

theSymbollist = handLegend.GetSymbols

index = 0

increment = 0

for each s in theSymbollist
thePalette = Palette.MakeFromFile(thePath.AsFileName)
' Grab the Marker palette and get the outlined
' hexagon symbol, which is the 1lth symbol in the palette
chosenMarker = thePalette.GetList

(#PALETTE LIST MARKER).Get (11)

chosenMarker.SetSize (12 + increment)
theSymbolList.Set (index, chosenMarker)
index = index + 1
increment = increment + 4

end

theSymbolList.UniformColor (Color.GetYellow)

handTheme.UpdateLegend
handTheme.SetVisible(TRUE)
theView.AddTheme (handTheme)
theView.Invalidate

return Nil

139

A ***

' Scriptname: DCTotDemandTheme.Make

' Filename: dctotdem.ave

' Author: Kenneth Bennett

' Date: May 3, 1998

' Description: Script generates a CVS DCs theme based on the

! Optimizedvalue field in the CVS DCs theme table.
! The theme is classified into three sizes based

! on the optimized value (demand) and uses the

! square as the symbol

' Requires: CVS DCs theme must exist

' Called by: View menu item click event
("Display DC: by Total Demand")

' Calls: Nil
' SELF: Nil
' Returns: Nil

l***

Scriptname = "DCTotDemandTheme.Make"

theView = av.GetProject.FindDoc ("Demand by Region")
if (theView = Nil) then
MsgBox.Error ("ERROR: Demand by Region view does not exist.",

Scriptname)
exit
end
if (not (theView.Is(View))) then
MsgBox.Error ("ERROR: Demand by Region doc is not a view.",
Scriptname)
exit
end

theTheme = theView.FindTheme ("CVS DCs")
if (theTheme = Nil) then
MsgBox.Error ("ERROR: Theme called CVS DCs does not exist.",
Scriptname)
exit
end

checkTheme = theView.FindTheme ("CVS DCs by Total Demand")
if (checkTheme <> nil) then
theView.DeleteTheme (checkTheme)
theTable = av.GetProject.FindDoc ("Attributes of CVS
DCs by Total Demand")
if (theTable <> NIL) then
av.GetProject.RemoveDoc (theTable)
end
140

end

' Clone the CVS DCs theme

demandTheme = theTheme.Clone
demandTheme. SetName ("CVS DCs by Total Demand")

' Change the legend to weight the symbol size
' by the optimized value and classify into 3
' groups using a natural break

demandLegend = demandTheme.GetLegend
demandlLegend. SetLegendType (#LEGEND TYPE_SYMBOL)

demandLegend.Natural (demandTheme, "Optimizedvalue”,

demandLegend.DisplayNoDataClass (FALSE)

' Get the project working directory

theDir = av.GetProject.GetWorkDir.AsString
thePath = theDir+"\default.avp"”
theSymbolList = demandLegend.GetSymbols
index = 0

increment = 0

for each s in theSymbollist

3)

thePalette = Palette.MakeFromFile (thePath.AsFileName)

' Grab the Marker palette and get the outlined

' square symbol, which is the 8th symbol in the palette

chosenMarker = thePalette.GetList

(#PALETTE_LIST_ MARKER) .Get (8)

chosenMarker.SetSize (12 + increment)
theSymbolList.Set (index, chosenMarker)
index = index + 1
increment = increment + 4

end

theSymbolList.UniformColor (Color.GetYellow)

demandTheme.Updatelegend
demandTheme.SetVisible(TRUE)
theView.AddTheme (demandTheme)
theView.Invalidate

return Nil

141

' ***

' Scriptname: DRAl1l1LogTheme.Make

' Filename: dralllog.ave

' Author: Kenneth Bennett

' Date: May 6, 1998

' Description: Creates a pie chart theme of the Demand

! Regions where the pie slices represent

! logistics component costs for all products
! and the size of the whole pie represents

! the grand total logistics cost for each

! demand region.

' Requires: Demand Regions theme must exist

' Called by: View menu item click event ("Display Demand
! Regicns: by Total Logistics Cost")

' Calls: Nil
' SELF: Nil
' Returns: Nil

'**

Scriptname = "DRAllLogTheme.Make™
' Pind the view and the Demand Regions theme
theView = av.GetProject.FindDoc("Demand by Region")

if (theView = Nil) then
MsgBox.Error ("ERROR: Demand by Region view does not exist.",

Scriptname)
exit
end
if (not (theView.Is(View))) then
MsgBox.Error ("ERROR: Demand by Region doc is not a view.",
Scriptname)
exit
end

theView.GetWin.Open
theTheme = theView.FindTheme ("Demand Regions")
if (theTheme = Nil) then
MsgBox.Error ("ERROR: Demand Regions theme does not exist.",
Scriptname)
exit
end
theFTab = theTheme.GetFTab

' Find the needed fields

shipFld = theFTab.FindField("All Direct Cost")
142

pickFld = theFTab.FindField("All Pick Cost")
tranFld = theFTab.FindField("All Tranship Cost")
xdocFld = theFTab.FindField("All Crossdock Cost")
totlFld = theFTab.FindField("All Total Cost")

if ((shipFld = Nil) OR (pickFld = Nil) OR (tranFld = Nil)
OR (xdocFld = Nil) OR (totlFld = Nil)) then
MsgBox.Error ("ERROR: One or more required fields is missing"
+nl+"or has been renamed.", Scriptname)

exit
end
shipFld = shipFld.AsString
pickFld = pickFld.AsString
tranFld = tranFld.AsString
xdocFld = xdocFld.AsString
totlFld = totlFld.AsString

fldStringlist = {shipFld, pickFld, tranFld, xdocFld}

' Check to see if the new theme already exists
checkTheme = theView.FindTheme ("Demand Regions by Total
Logistics Cost")
if (checkTheme <> Nil) then
theView.DeleteTheme (checkTheme)
theTable = av.GetProject.FindDoc ("Attributes of Demand
Regions by Total Logistics Cost")
if (theTable <> Nil) then
av.GetProject.RemoveDoc(theTable)
end
end

' Clone the theme and work with the new theme

demTheme = theTheme.Clone

' Get the new Demand Region theme's legend
demLegend = demTheme.GetLegend

'Create as many fill symbols as you have fieldNames
'and place them in a list.

shipsym = RasterFill.Make
shipsym.SetStyle (HRASTERFILL_STYLE_SOLID)
shipsym.SetColor (Color.GetRed)

picksym = RasterFill.Make
picksym.SetStyle (#RASTERFILL STYLE SOLID)
picksym.SetColor (Color.GetWhite)

transym = RasterFill.Make
transym.SetStyle (#RASTERFILL STYLE SOLID)
transym.SetColor (Color.GetBlack)

xdocsym= RasterFill.Make

xdocsym. SetStyle (#RASTERFILL_STYLE_ SOLID)

143

xdocsym. SetColor (Color.GetGray)
theSyms = {shipsym, picksym, transym, xdocsym}
' Make a background £fill Symbol that is empty

BGsym = RasterFill.Make
BGsym.SetStyle (#RASTERFILL_STYLE EMPTY)

' Create the New Legend
demLegend.PieChart (demTheme, f1dStringList, theSyms, BGSym, totlFld)
' To set a size field:

theSym = demLegend.GetSymbol (demLegend.ReturnFieldNames, false)

theSym.SetMinSize (8)
theSym. SetMaxSize (24)

' Redraw the theme using the PieChart legend.

demTheme.Updatelegend

demTheme.SetActive (FALSE)

demTheme. SetVisible (TRUE)

demTheme.SetName ("Demand Regions by Total Logistics Cost™)
theView.AddTheme (demTheme)

theView.Invalidate

return Nil

144

‘***

' Scriptname: DRCWLogTheme .Make

' Filename: drecwlogt.ave

' Author: Kenneth Bennett

' Date: May 6, 1998

' Description: Creates a pie chart theme of the Demand

! Regions where the pie slices represent the
! CW logistics component costs and the size of the
! whole pie represents the total CW logistics cost.

Requires: Demand Regions theme must exist

' Called by: View menu item click event ("Display Demand
! Regions: by CW Logistics Cost”)

' Calls: Nil
' SELF: Nil
' Returns: Nil

'**

Scriptname = "DRCWLogTheme.Make"
' Find the view and the Demand Regions theme

theView = av.GetProject.FindDoc{"Demand by Region")
if (theView = Nil) then
MsgBox.Error ("ERROR: Demand by Region view does not exist.”,
Scriptname)
exit
end
if (not (theView.Is(View))) then
MsgBox.Error ("ERROR: Demand by Region doc is not a view.",
Scriptname)
exit
end
theView.GetWin.Open
theTheme = theView.FindTheme ("Demand Regions")
if (theTheme = Nil) then
MsgBox.Error ("ERROR: Demand Regions theme does not exist.",
Scriptname)
exit
end
theFTab = theTheme.GetFTab

' Find the needed fields

shipFld = theFTab.FindField ("CW Direct Cost")
pickFld = theFTab.FindField("CW Pick Cost")
tranFld = theFTab.FindField("CW Tranship Cost")

145

xdocFld
totlFld

theFTab.FindField ("CW Crossdock Cost")
theFTab.FindField ("CW Total Cost")

if ((shipFld = Nil) OR (pickFld = Nil) OR (tranFld = Nil)
OR (xdocFld = Nil) OR (totlFld = Nil)) then
MsgBox.Error ("ERROR: One or more required fields is missing"+nl+
"or has been renamed.”, Scriptname)
exit
end

shipFld = shipFld.AsString

pickFld = pickFld.AsString
tranFld = tranFld.AsString
xdocFld = xdocFld.AsString
totlFld = totlFld.AsString

fldStringList = {shipFld, pickFld, tranFld, =xdocFld}

' Check to see if the new theme already exists
checkTheme = theView.FindTheme ("Demand Regions by CW
Logistics Cost")
if (checkTheme <> Nil) then
theView.DeleteTheme (checkTheme)
theTable = av.GetProject.FindDoc("Attributes of Demand
Regions by CW Logistics Cost")
if (theTable <> Nil) then
av.GetProject.RemoveDoc (theTable)
end
end

' Clone the theme and work with the new theme

demTheme = theTheme.Clone

' Get the new Demand Region theme's legend
demLegend = demTheme.GetLegend

'Create as many fill symbols as you have fieldNames
'and place them in a list.

shipsym = RasterFill.Make
shipsym.SetStyle (#RASTERFILL STYLE SOLID)
shipsym.SetColor (Color.GetMagenta)
picksym = RasterFill.Make
picksym.SetStyle (#RASTERFILL_ STYLE_SOLID)
picksym.SetColor (Color.GetCyan)

transym = RasterFill.Make
transym.SetStyle(#RASTERFILL_STYLE_SOLID)
transym.SetColor (Color.GetGreen)

xdocsym= RasterFill.Make
xdocsym.SetStyle ($RASTERFILL_STYLE SOLID)
xdocsym. SetColor (Color.GetWhite)

146

theSyms = {shipsym, picksym, transym, xdocsym)}
' Make a background fill Symbol that is empty

BGsym = RasterFill.Make
BGsym.SetStyle(#RASTERFILL_STYLE_EMPTY)

' Create the New Legend

demLegend.PieChart(demTheme,fldStringList,theSyms,
BGSym, tot1Fld)

' To set a size field:

theSym = demLegend.GetSymbol (demLegend.ReturnFieldNames,
false)

theSym. SetMinSize (8)
theSym. SetMaxSize (24)

' Redraw the theme using the PieChart legend.

demTheme . UpdateLegend

demTheme.SetActive (FALSE)

demTheme.SetVisible (TRUE)

demTheme . SetName ("Demand Regions by CW Logistics Cost")
theView.AddTheme (demTheme)

theView.Invalidate

return Nil

147

|**1\-**

' Scriptname: DROTCLogTheme .Make

' Filename: drotclog.ave

' Author: Kenneth Bennett

' Date: May 6, 1998

' Description: Creates a pie chart theme of the Demand

! Regions where the pie slices represent the
! OTC logistics component costs and the size
! of the whole pie represents the total OTC
! lecgistics cost.

' Requires: Demand Regions theme must exist

' Called by: View menu item click event ("Display Demand
! Regions: by OTC Logistics Cost")

' Calls: Nil
' SELF: Nil
' Returns: Nil

1 1\r***

Scriptname = "DROTCLogTheme.Make"
'* Find the view and the Demand Regions theme

theView = av.GetProject.FindDoc ("Demand by Region")
if (theview = Nil) then

MsgBox.Error ("ERROR: Demand by Region view does not exist.",

Scriptname)
exit
end
if (not (theView.Is(View))) then
MsgBox.Error ("ERROR: Demand by Region doc is not a view.",
Scriptname)
exit
end

theView.GetWin.Open
theTheme = theView.FindTheme ("Demand Regions”)
if (theTheme = Nil) then
MsgBox.Error ("ERROR: Demand Regions theme does not exist.”,
Scriptname)
exit
end
theFTab = theTheme.GetFTab

' Find the needed fields

shipFld theFTab.FindField ("OTC Direct Cost™)
pickFld = theFTab.FindField("OTC Pick Cost")

148

tranFld theFTab.FindField ("OTC Tranship Cost")
xdocFld theFTab.FindField ("OTC Crossdock Cost"™)
totlFld = theFTab.FindField("OTC Total Cost")

if ((shipFld = Nil) OR (pickFld = Nil) OR (tranFld = Nil)
OR (xdocFld = Nil) OR (totlFld = Nil)) then
MsgBox.Error ("ERROR: One or more regquired fields
is missing"+nl+"or has been renamed.",

Scriptname)
exit

end
shipFld = shipFld.AsString
pickFld = pickFld.AsString
tranFld = tranFld.AsString
xdocFld = xdocFld.AsString
totlFld = totlFld.AsString

fldStringList = {shipFld, pickFld, tranFld, =xdocFld}

' Check to see if the new theme already exists
checkTheme = theView.FindTheme ("Demand Regions by
OTC Logistics Cost™)
if (checkTheme <> Nil) then
theView.DeleteTheme (checkTheme)
theTable = av.GetProject.FindDoc ("Attributes of Demand
Regions by OTC Logistics Cost")

if (theTable <> Nil) then
av.GetProject.RemoveDoc (theTable)
end
end

' Clone the theme and work with the new theme

demTheme = theTheme.Clone

' Get the new Demand Region theme's legend
demLegend = demTheme.GetlLegend

'Create as many fill symbols as you have
'fieldNames and place them in a list.

shipsym = RasterFill.Make
shipsym.SetStyle ($RASTERFILL STYLE_ SOLID)
shipsym.SetColor(Color.GetGreen)

picksym = RasterFill.Make
picksym.SetStyle (#RASTERFILL STYLE SOLID)
picksym. SetColor (Color.GetRed)

transym = RasterFill.Make
transym.SetStyle (#RASTERFILL_STYLE_SOLID)
transym.SetColor (Color.GetWhite)

xdocsym= RasterFill.Make

xdocsym. SetStyle ($RASTERFILL_STYLE SOLID)

149

xdocsym. SetColor (Color.GetBlack)
theSyms = {shipsym, picksym, transym, xdocsym}
' Make a background fill Symbol that is empty

BGsym = RasterFill.Make
BGsym.SetStyle (HRASTERFILL_STYLE EMPTY)

' Create the New Legend
demLegend.PieChart (demTheme, f1dStringList, theSyms, BGSym, totlFld)
' To set a size field:

theSym = demLegend.GetSymbol (demLegend.ReturnFieldNames, false)

theSym.SetMinSize (8)
theSym.SetMaxSize (24)

' Redraw the theme using the PieChart legend.

demTheme . UpdateLegend

demTheme. SetActive (FALSE)

demTheme.SetVisible (TRUE)

demTheme . SetName ("Demand Regions by OTC Logistics Cost")
theView.AddTheme (demTheme)

theview.Invalidate

return Nil

150

Thkkokdhdkhkhkhkhhkhdkdkhkrhokddkdhhhhhdkrdhdkkdhrrhrhdhddbhkhbrdkhhhhdhddhdhkhdddhhd

' Scriptname: DRRxLogTheme .Make

' Filename: drrxlogt.ave

' Author: Kenneth Bennett

' Date: May 6, 1998

' Description: Creates a pie chart theme of the Demand

! Regions where the pie slices represent the

! Rx logistics component costs and the size of the
! whole pie represents the total Rx logistics cost.

' Requires: Demand Regions theme must exist

' Called by: View menu item click event ("Display Demand
! Regions: by Rx Logistics Cost")

' Calls: Nil
' SELF: Nil
' Returns: Nil

'**

Scriptname = "DRRxLogTheme.Make"
' Find the view and the Demand Regions theme

theView = av.GetProject.FindDoc("Demand by Region")
if (thevView = Nil) then

MsgBox.Error ("ERROR: Demand by Region view does not exist.",

Scriptname)
exit
end
if (not (theView.Is(View))) then
MsgBox.Error ("ERROR: Demand by Region doc is not a view.",
Scriptname)
exit
end

theView.GetWin.Open
theTheme = theView.FindTheme ("Demand Regions™)
if (theTheme = Nil) then
MsgBox.Error ("ERROR: Demand Regions theme does not exist."”,
Scriptname)
exit
end
theFTab = theTheme.GetFTab

' Find the needed fields

shipFld theFTab.FindField ("Rx Direct Cost™)
pickFld theFTab.FindField ("Rx Pick Cost")
tranFld = theFTab.FindField("Rx Tranship Cost™)

151

xdocFld = theFTab.FindField("Rx Crossdock Cost")
totlFld = theFTab.FindField("Rx Total Cost")

if ((shipFld = Nil) OR (pickFld = Nil) OR (tranFld = Nil)
OR (xdocFld = Nil) OR (totlFld = Nil)) then
MsgBox.Error ("ERROR: One or more required fields is missing"+nl+
"or has been renamed."”", Scriptname)

exit
end

shipFld = shipFld.AsString
pickFld = pickFld.AsString
tranFld = tranFld.AsString
xdocFld = xdocFld.AsString
totlFld = totlFld.AsString

f1dStringlist = {shipFld, pickFld, tranFld, =xdocFld}

' Check to see if the new theme already exists
checkTheme = theView.FindTheme ("Demand Regions by
Rx Logistics Cost")
if (checkTheme <> Nil) then
theView.DeleteTheme (checkTheme)
theTable = av.GetProject.FindDoc ("Attributes of Demand
Regions by Rx Logistics Cost")
if (theTable <> Nil) then
av.GetProject.RemoveDoc (theTable)
end
end

' Clone the theme and work with the new theme

demTheme = theTheme.Clone

' Get the new Demand Region theme's legend
demLegend = demTheme.GetLegend

'Create as many £f£ill symbols as you have
'fieldNames and place them in a list.

shipsym = RasterFill.Make
shipsym.SetStyle (#RASTERFILL STYLE SOLID)
shipsym.SetColor (Coloxr.GetBlue)

picksym = RasterFill.Make
picksym.SetStyle (#RASTERFILL STYLE SOLID)
picksym.SetColor (Color.GetRed)

transym = RasterFill.Make

transym. SetStyle (#RASTERFILL_STYLE SOLID)
transym.SetColor (Color.GetGreen)

xdocsym= RasterFill.Make

xdocsym. SetStyle (#RASTERFILL STYLE SOLID)
xdocsym. SetColor (Color.GetMagenta)

152

theSyms = {shipsym, picksym, transym, xdocsym}
' Make a background fill Symbol that is empty

BGsym = RasterFill.Make
BGsym.SetStyle (#RASTERFILL STYLE EMPTY)

' Create the New Legend
demLegend.PieChart (demTheme, f1dStringlList, theSyms, BGSym, totlFld)
' To set a size field:

theSym = demLegend.GetSymbol (demLegend.ReturnFieldNames, false)

theSym. SetMinSize (8)
theSym. SetMaxSize (24)

Redraw the theme using the PieChart legend.

demTheme.UpdateLegend

demTheme. SetActive (FALSE)

demTheme.SetVisible (TRUE)

demTheme. SetName ("Demand Regions by Rx Logistics Cost")
theView.AddTheme (demTheme)

theView.Invalidate

return Nil

153

Thhkhhkhhkkkhrhkhkhhdhhhrhkdhdrrhrhrhdhhdhhhhdkdrbrhhhdbhhhkdddbdhhkkddkdbhix

' Scriptname: FlowLine.Build

flowline.ave

Filename:

' Description: Script creates a line theme of all the

! lines connecting all of the demand regions.
! FTab contains fields for the DC name and

! the demand region 3-digit (zip) code.

' Called by: TransportationlLines.Build

' Calls: SplicelatLon, FlowValues.Calculate
' SELF: Nil

' Returns: an FTab

Tdhhhhdbhkdrhhhdbdhhhhhhkhkdhdhhrhhhhdhhbhhkhkdkdkhkhrhhdddkdhdhhhdhdhddhdix

Scriptname = "FlowLine.Build"
srcDesVtab = av.GetProject.FindDoc("inputfac.dbf").GetVTab
if (srcDcsVtab = Nil) then
MsgBox.Error ("The inputfac.dbf table was not found."+NL+
"Exiting...", Scriptname)
exit
end
theFTab = av.Run("SpliceLatLon", {srcDcsVtab})
facfld = theFTab.FindField("Facility")
if (facfld = Nil) then

MsgBox.Error("Facility field not found. Exiting...",
Scriptname)
exit
end

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then
MsgBox.Error ("ERROR: Demand by Region view does not exist.”,

Scriptname)
exit
elseif (not (theView.Is(View))) then
MsgBox.Error ("ERROR: Demand by Region doc is not a view.”,
Scriptname)
exit
end

strTheme = theView.FindTheme ("Demand Regions")
strVTab = strTheme.GetFTab
strfld = strVtab.FindField("Demand Region™)
x2fld = strvtab.FindField ("X")
y2fld = strVtab.FindField("Y")
if ((strfld = Nil) OR (x2fld = Nil) OR (y2fld = Nil)) then
MsgBox.Error ("Demand Region, X, or Y field in Attributes"+NL+
"of Demand Regions is missing. Exiting...",
Scriptname)
exit
end
154

theView = av.GetActiveDoc

dcsVTab = theView.FindTheme ("CVS DCs") .GetFTab

origfld = dcsVtab.FindField("Facility")

x1fld = desVtab.FindField ("X-coord")

ylfld dcsVtab.FindField ("Y-coord")

if ((origfld = Nil) OR (x1fld = Nil) OR (y2fld = Nil)) then

MsgBox.Error ("Facility, ¥X-coord, or Y-coord field"+NL+

"in CVS DCs theme is missing. Exiting...",
Scriptname)

|

exit
end

defName = FileName.Make (av.GetProject.GetWorkDir.AsString) .MakeTmp
("flolin", "dbf")
theFName = FileDialog.Put(defName, "*.dbf", "Save FTab As")
if (nil <> theFName) then
lineFTab = FTab.MakeNew(theFName, POLYLINE)
else
lineFTab = FTab.MakeNew(defName, POLYLINE)
end

'add fields to the new lineFTab

from = Field.Make("DC", #FIELD CHAR, 20, 0)
to = Field.Make("Store", #FIELD CHAR, 20, 0)

lineFTab.AddFields ({from, to})
shapeF = lineFTab.FindField("shape”)

av.ShowStopButton
av.ShowMsg ("Building Flow Lines..."}
numStores = dcsVtab.GetNumRecords
n =20
for each i in desVtab
Origl = dcsVtab.ReturnValue(origfld, i)
x1 = desVtab.ReturnValue(x1fld, i)
vl dcsVtab.Returnvalue (y1£fld, i)
for each j in strVtab
Destl = strVtab.ReturnValue (strfld, j)
x2 = strVtab.ReturnValue (x2£f1d, j)
y2 = strVtab.ReturnValue(y2fld, j)

' build the line between each dc-store pair and add
' the Shape, DC and Store fields, as well as the CW units
' and the Rate and Distance fields, to lineVTab

newRec = lineFTab.AddRecord
1 = Line.Make(x1@yl,x2@y2) .AsPolyLine
lineFTab.SetValue(shapeF, newRec, 1)
lineFTab.SetValue(from, newRec, Origl)
lineFTab.SetValue(to, newRec, Destl)
end
n=n+1
progress = (n / numStores) * 100
doMore = av.SetStatus(progress)
if (not doMore) then
155

break
end
end

' make lineFTab into a theme

theTheme = FTheme.Make(lineFTab)

theSymList = theTheme.GetLegend.GetSymbols

theColorPalettelist = av.GetSymbolWin.GetPalette.GetList
(#PALETTE LIST_ COLOR)

theColor = theColorPalettelist.Get (8)

theSymbol = theSymList.Get (0)

theSymbol.SetColor (theColor)

theTheme. SetName ("DC-to-Region Flow")

theTheme.UpdatelLegend

' Add the theme to the view

theView.AddTheme (theTheme)

theView.Invalidate

' Run the script to calculate the various DC to

' Region flow values

av.Run("FlowValues.Calculate”, {theTheme})

return theFTab

Vs sk ek ok ok v vk ek ke ke ke ok % g ok kT K sk ok s ok ke gk e e sk ke e ke de ke ke K e e K Kk gk gk ke gk ke ok ok ke ke ke ke ok ko ke ke ke ok

' Scriptname: FlowValues.Calculate

' Filename: flowvalu.ave

' Author: Kenneth Bennett

' Date: May 1, 1998

' Description: Script copies the values of flows for OTC, Rx,

! and CW products from the dirstore.dbf file to

! the DC-to-Region FTab using an

! origin-destination-product type string

! concatenation. These three new fields in

' the FTab are then totalled and the total value
! is added to fourth new field in the FTab called
! Total Flow.

' Requires: dirstore.dbf file and DC-to-Region flow
' theme must exist

' Called by: Flowlines.Build

' Calls: Nil

' SELF: the DC-to-Region Flow theme
' Returns: Nil

Tohkdekdrdkhdkhkkhdkhkhkdhdhdhdhhdkhkhrhkrhhhkdkhkkdkhdkdhkdkdhhkddhhdhdhdhddhddhdkdddkddkhkidr

Scriptname = "FlowValues.Calculate"
' Retrieve the theme argument
theTheme = SELF.Get (0)

' Find the dirstore.dbf file and add the new field
' concatenating the facility name, the demand region name,
' and the product category

theDirTable = av.Getproject.FindDoc("dirstore.dbf")

if {(theDirTable = Nil) then
MsgBox.Error ("ERROR: dirstore.dbf table does not exist."+NL+

"DC-to-Region flow values not calculated.", Scriptname)

exit

end

theVTab = theDirTable.GetVTab

theVTab.SetEditable (TRUE)

odpfld2 = Field.Make ("ODP", #FIELD__CHAR, 35,0)

theVTab.AddFields ({odpfld2})

theval = "[Facility]+[DemandRegion]+[Product]”

thevVTab.Calculate (theval, odpfld2)

' Get the Demand-to-Store FTab and add the new flow fields for
157

' the three product categories, the total flow, and the
' origin-destination-product (ODP) field

theFTab = theTheme.GetFTab

theFTab.SetEditable (TRUE)

cwfld = Field.Make("CW Flow",#FIELD_ DECIMAL, 16,2)
otcfld = Field.Make ("OTC Flow",#FIELD DECIMAL, 16,2)
rxfld = Field.Make("Rx Flow",#FIELD DECIMAL, 16, 2)

totfld = Field.Make ("Total Flow",#FIELD DECIMAL, 16, 2)

odpfld = Field.Make ("ODP",#FIELD_ CHAR, 35, 0)

theFTab.AddFields ({cwfld, rxfld, otcfld, totfld, odpfld})

' Calculate the CW flow

newval2 = "[DC]+[Storel+""CuW"""
theFTab.Calculate (newval2,odpfld)
theFTab.Join (odpfld, theVTab, odpfld2)
theflowval = "[OptimizedValuel"
theFTab.Calculate (theflowval, cwfld)
theFTab.UnjoinAll

' Calculate the Rx flow

newval2 = "[DC]+[Storel+""Rx"""
theFTab.Calculate (newval2, odpfld)
theFTab.Join (odpfld, theVTab, odpfld2)
theflowval = "[OptimizedValuel™
theFTab.Calculate (theflowval, rxfld)
theFTab.UnjoinAll

' Calculate the OTC flow

newval2 = "[DC]+[Store]+""OTC"""
theFTab.Calculate (newval2, odpfld)
theFTab.Join (odpfld, theVTab, odpfld2)
theflowval = "[OptimizedValuel]"

theFTab.Calculate (theflowval,otcfld)
theFTab.UnjoinAll

' Calculate the total flow

newval2 = "[Rx Flow] + [CW Flow] + [OTC Flow]"
theFTab.Calculate (newval2, totfld)

' Remove the ODP field from the Demand-to-Store FTab
' since it is no longer needed

theFTab.RemoveFields ({odpfld})
theFTab.SetEditable (FALSE)

' Remove the ODP field from the dirstore.dbf file

theVTab.RemoveFields ({odpfldZ2})
theVTab.SetEditable (FALSE)

return Nil
158

Thhkdddohhhrhhkkhkkhhkkkdkdkhhkhkkdhhhrkrhkhhdhhhkddhdkhkhdhdhkrhhhddhkhrhddkddddddts

' Scriptname: HandValues.Calculate

' Filename: handvalu.ave

' Author: Kenneth Bennett

' Date: May 1, 1998

' Description: Script copies the OptimizedValue field for

! OTC, Rx, and CW products from the handling.dbf
! file to the CVS DCs FTab using an

! facility-product type string concatenation.

' These three new fields in the FTab are then

! totalled and the total value is added to

' fourth new field in the FTab called

! Total Handling.

' Requires: handling.dbf file and CVS DCs theme must exist
' Called by: SplicelatLon

' Calls: Nil

' SELF: the CVS DCs FTab

' Returns: Nil

Thdkdkhhhhhkkkkdhkhkhkhkhkdhhkhrhkhkhkhhkhkdkdhdkhddkkdkdkdkkkrhhkhhdkhkrhdkhkhdrhkdrdkhhkhdrisr

Scriptname = "HandValues.Calculate"
' Retrieve the theme argument
theFTab = SELF.Get (0)

' Find the dirstore.dbf file and add the new field
' concatenating the facility name, the demand region name,
' and the product category

theHandTable = av.Getproject.FindDoc("handling.dbf")
if (theHandTable = Nil) then
MsgBox.Error ("ERROR: handling.dbf table does not exist."+NL+
"CVS DCs handling cost values not calculated.”, Scriptname)
exit
end
theVTab = theHandTable.GetVTab
theOptFld = theVTab.FindField("OptimizedValue")
if (theOptFld <> Nil) then
theOptFld.SetAlias ("Optval")
end
theVTab.SetEditable (TRUE)
fpfld2 = Field.Make ("FP",#FIELD CHAR,35,0)
theVTab.AddFields ({fpfld2})
theval = "[Facility]+[Product]™”
theVTab.Calculate (theval, fpfld2)

159

' Add the new handling cost fields for
' the three product categories, the total cost,
' and the Facility-Product field

theFTab.SetEditable (TRUE)

cwfld = Field.Make ("CW Handling",#FIELD DECIMAL, 16,2)
otcfld = Field.Make("OTC Handling",#FIELD_DECIMAL, 16,2)
rxfld = Field.Make("Rx Handling"”,#FIELD DECIMAL, 16, 2)
totfld = Field.Make ("TotHandVal", #FIELD_DECIMAL, 16, 2)
fpfld = Field.Make("FP",#FIELD_CHAR,35, 0)
theFTab.AddFields ({cwfld, rxfld, otcfld, totfld, fpfld})

' Calculate the CW flow

newval2 = "[Facilityl+""Ccw"""
theFTab.Calculate (newval2, fpfld)
theFTab.Join (fpfld, theVTab, fpfld2)
thehandval = "{OptVall"
theFTab.Calculate (thehandval, cwfld)
theFTab.UnjoinAll

' Calculate the Rx flow

newval2 = "[Facility]+""Rx"""
theFTab.Calculate (newvalZ2, fpfld)
theFTab.Join (fpfld, thevTab, fpfld2)
thehandval = "[OptVal]"
theFTab.Calculate (thehandval, rxfld)
theFTab.UnjoinAll

' Calculate the OTC flow

newval2 = "[Facility]+""oTC"""
theFTab.Calculate (newval2, fpfld)
theFTab.Join (fpfld, theVTab, fpfl1d2)
thehandval = "[OptVall™
theFTab.Calculate (thehandval, otcfld)
theFTab.UnjoinAll

' Calculate the total flow

newval2 = "[Rx Handling] + [CW Handling] + [OTC Handling]"
theFTab.Calculate(newvalz2, totfld)

' Remove the FP field from the CVS DCs FTab
' since it is no longer needed

theFTab.RemoveFields ({fpfld})
theFTab.SetEditable (FALSE)

' Remove the FP field from the handling.dbf VTab

theVTab.RemoveFields ({fpfld2})
theVTab.SetEditable (FALSE)

return theFTab

160

l***

' Scriptname: HasCWRx
' Filename: hascwrx.ave
' Description: Add HasCW and HasRx fields to Attributes

' of CVS DCs theme table.

' Reguires: Nil

' Called by: CalcDCs

' Calls: Nil

' SELF: the Demand by Regions View and the CVS DCs FTab
' Returns: Nil

'***

Scriptname = "HasCWRx"

' First get the Demand by Region view and the CVS DCs Ftab
' for Attibutes of DC23

theView
theFTab

SELF.Get (0)
SELF.Get (1)

' pdd two fields to DCs attribute table HasRx and HasCW
edit state = theFTab.IsEditable
' Make sure table is editable and that fields can be added

if (theFtab.CanEdit) then
theFTab.SetEditable (true)
if ((theFTab.CanAddFields).Not) then
MsgBox.Info("Can't add fields to the table."+NL+
"Check write permission.”,
"Can't add HasRx and HasCW")
exit
end
else
MsgBox.Info("Can't modify the feature table."+NL+
"Check write permission.","Can't add HasRx and HasCW")
exit
end

'Check if fields named "Has Rx" and "Has CW" exist

NIL) .Not
NIL) .Not

rx_exists = (theFTab.FindField ("HasRx")
cw_eXists (theFtab.FindField ("HasCW")

' If they do exist, ask if they should be overwritten.
' Otherwise, just make them and add them to CVS DCs FTab

161

if (rx_exists or cw_exists) then
if (MsgBox.YesNo("Overwrite existing fields?",
"HasRx and HasCW fields already exist", false)) then
'if ok to overwrite, delete the fields as they
'may not be defined
'as required by this script (eg., created
'from another script).
if (rx_exists) then
theFTab.RemoveFields ({theFTab.FindField ("HasRx") })
end
if (cw_exists) then
theFTab.RemoveFields ({theFTab.FindField ("HasCW") })
end
else
exit
end 'if (MsgBox...)
end 'if

rx = Field.Make ("HasRx",#FIELD_ DECIMAL,1,0)
cw = Field.Make ("HasCW",#FIELD_DECIMAL,1,0)
theFTab.AddFields ({rx, cw})

' Get the Facility name field of the CVS DCs FTab
theDcFld = theFTab.FindField("Facility")

' Get the Facility and Process fields of the
' picking.dbf table's FTab

thePkVTab = av.GetProject.FindDoc("picking.dbf").GetVTab
thePkDcFld = thePkVTab.FindField("Facility")
theProcess = thePkVTab.FindField("Process")

' Loop through the CVS DCs FTab and populate the HasRx
' and the HasCW fields. Assign zero if it does not
' warehouse these products, one if it does.

for each 1 in theFTab
rxval 0
cwval = 0
theFTab.SetValue (rx, i, rxval)
theFTab.SetValue(cw, i, cwval)
theDC = theFTab.ReturnValue (theDcFld, i)
for each j in thePkVTab
thePk = thePkVTab.ReturnValue (thePkDcFld, 3j)
if (thePk <> theDC) then
continue
end
theMkStr = thePkVTab.ReturnValue (theProcess, j)
pos = theMkStr.IndexOf (" ")
nchars = theMkStr.Count
rdchars = nchars - pos - 1
theActivity = theMkStr.Right (rdchars).Trim.UCase
if (theActivity = "RX") then
rxval =1
theFTab.SetValue{rx,i, rxval)

162

end
if (theActivity = "CW") then
cwval = 1
theFTab.SetValue (cw, i, cwval)
end
end
end

' Return the CVS DCs FTab to original edit state.
theFTab.SetEditable(edit state)

return Nil

163

Thkkokoedkhrhkhdkhdkokhdkhhhkhdhkhhhkdhdhhkrhkdhhhkhkkkhkdkkhdhdkdkdkhkdkhkdhhkkhhddddkdddkhid

' Scriptname: OTCFlowTheme.Make

' Filename: otcflowt.ave

' Author: Kenneth Bennett

' Date: May 3, 1998

' Description: Script generates a Flow theme based on the

! OTC Flow field in the DC-~to-Region Flow theme
! table. Zero value flows are made invisible
! using the null value and symbol

' Requires: DC-to-Region flow theme must exist

' Called by: View menu item click event ("Display Flows:
! DC-to-Region by OTC Only")

' Calls: Nil
' SELF: Nil
' Returns: Nil

Thkkdhhdhhhrdrhhhdhhhkhkkhhdhhkhkhhkrrhhhhbhkhhkhddhhhdddhbdrhrrrbdddkhhdhdhhddhkhd

Scriptname = "OTCFlowTheme.Make"

theView = av.GetProject.FindDoc("Demand by Region")
if (thevView = Nil) then
MsgBox.Error ("ERROR: Demand by Region view does not exist.",

Scriptname)
exit
end
if (not (theView.Is(View))) then
MsgBox.Error ("ERROR: Demand by Region doc is not a view.",
Scriptname)
exit
end

theTheme = theView.FindTheme ("DC-to-Region Flow")
if (theTheme = Nil) then
MsgBox.Error ("ERROR: Theme called DC-to-Region Flow
does not exist.", Scriptname)
exit
end

catString = "OTC Flow"

checkTheme = theView.FindTheme (catString)
if (checkTheme <> nil) then
theView.DeleteTheme (checkTheme)
theTable = av.GetProject.FindDoc("Attributes of"++catString)
if (theTable <> NIL) then
av.GetProject.RemoveDoc{theTable)

164

end
end

' Clone the DC-to-Region Flow theme

newTheme = theTheme.Clone
newLegend = newTheme.GetLegend
newLegend. SetLegendType (#LEGEND_TYPE SYMBOL)

' Make zero the null value
newLegend. SetNullvalue (catString, 0)

' Select a color from the color palette to be used
' in drawing the new line theme

theColor = av.Run{"ColorPalette.SelectColor", Nil)

' Classify the legend with into five natural breaks
' and weight the line thickness by the flow volume

newlLegend.Natural (newTheme, catString, 5)
theSymbollList = newlegend.GetSymbols
thickness = 1
count = 0
for each s in theSymbollist
s.SetSize(thickness)
thickness = thickness + 1
end
theSymbolList.UniformColor (theColor)

' Make the null symbol transparent

nullSym = Symbol.Make (#SYMBOL PEN)
theNullColor = Color.GetBlue
theNullColor. SetTransparent (TRUE)
nullSym. SetColor (theNullColor)
newLegend. SetNullSymbol (nullSym)
newlLegend.DisplayNoDataClass (FALSE)
newTheme. SetLegend (newLegend)
newTheme.SetName (catString)
newTheme.SetActive (FALSE)
newTheme.SetVisible (TRUE)
theView.AddTheme (newTheme)
newTheme.UpdateLegend
theView.Invalidate
theNullColor.SetTransparent (FALSE)

return Nil

165

¥ ook g g ok sk de ok T e ok ok ok vk ok ok T e ok g e ok ok de ok g ke ke Tt ok s e e ke ok gk ke ok ok e ok ok ok ok ok ok ok ok ke ok ok ke gk ke ke ok ok ok e ok

' Scriptname: OTCStatistics.Generate

' Filename: otcstati.ave

' Author: Kenneth Bennett

' Date: May 6, 1998

' Description: Script sums each of the fields in the

! OTC Logistics Costs table and reports
it to the user.

' Requires: OTC Logistics Costs table exists

' Called by: View menu item click
! ("Trace Costs: Chain-wide OTC Statistics™)

' Calls: Nil
' SELF: Nil
' Returns: Nil

Voo ok dedkdede s de g d ok ok Ao e ok de e ok gk de ok e ok ok ke g ok ok T ok ok ok ok ke ok ok A sk ek gk ke ke ke ke ke ke e ke ok ek ok ke ke e ke ok

Scriptname = "OTCStatistics.Generate"

' Ensure two decimal places in each number

Script.The.SetNumberFormat ("d.dd")

' Get the table

theTable = av.GetProject.FindDoc ("OTC Logistics Costs")

if (theTable = Nil) then
MsgBox.Error ("OTC Logistics Costs table not found.", Scriptname)
exit

end

' Get the VTab for the table

theVTab = theTable.GetVTab

' Get the number of records

num = theVTab.GetNumRecords

' Get the list of fields in the VTab

theFieldList = theVTab.GetFields

' Set the field variables

shipFld theFieldList.Get (1)
pickFld = theFieldList.Get(2)

166

tranFld
xdocFld
totlFld

theFieldList.Get (3)
theFieldList.Get (4)
theFieldList.Get (5)

' Initialize summing variables

shipSum =
pickSum
tranSum
xdocSum
totlSum =

Il
[eNeoNeNeNeo

' Loop through the VTab and sum each fld

for each rec in theVTab
+ theVTab.ReturnValue(shipFld, rec)
+ theVtab.ReturnValue (pickFld, rec)
+ theVTab.ReturnValue (tranFld, rec)
+
+

shipSum = shipSum
pickSum = pickSum
tranSum = tranSum
xdocSum = xdocSum
totlSum = totlSum

end

' Calculate the per

theVTab.ReturnvValue (xdocFld, rec)
theVTab.ReturnValue (totlFld, rec)

store average for each field

shipAvg = shipSum / num

pickAvg = pickSum / num

tranAvg = tranSum / num

xdocAvg = xdocSum / num

totlAvg = totlSum / num

' Issue the report

reportString = "Total OTC Shipping Cost:"++shipSum.AsString+nl+

"Average Per Region:"++shipAvg.AsString+nl+
"Total OTC Pick Cost:"++pickSum.AsString+nl+
"Average Per Region:"++pickAvg.AsString+nl+
"Total OTC Transhipment Cost:"++tranSum.AsString
+nl+"Average Per Region:"++tranAvg.AsString+nl+
"Total OTC Crossdock Cost:"++xdocSum.AsString+nl+
"Average Per Region:"++xdocAvg.AsString+nl+nl+
"Chain-wide Total OTC Logistics Cost:"++
totlSum.AsString+nl+"Average Total Cost

Per Region:”++totlAvg.AsString+nl

MsgBox.Report (report3String,

return Nil

"Chain-wide OTC Statistics")

167

'***

' Scriptname: ProdDemRegTheme .Make

' Filename: proddemr.ave

' Author: Kenneth Bennett

' Date: May 3, 1998

' Description: Creates a pie chart theme of the Demand

! Regions where the pie slices represent the
! three product categories and the size of the
! whole pie represents the total demand.

' Requires: Demand Regions theme must exist

' Called by: View menu item click event ("Display Demand
! Regions: by Product Volume™)

' Calls: Nil
' SELF: Nil
' Returns: Nil

'**

Scriptname = "ProdDemRegTheme.Make"
' Find the view and the Demand Regions theme
theView = av.GetProject.FindDoc("Demand by Region”)

if (theView = Nil) then
MsgBox.Error ("ERROR: Demand by Region view does not exist.",

Scriptname)
exit
end
if (not (theView.Is{View))) then
MsgBox.Error ("ERROR: Demand by Region doc is not a view.”,
Scriptname)
exit
end

theView.GetWin.Open
theTheme = theView.FindTheme ("Demand Regions")
if (theTheme = Nil) then
MsgBox.Error ("ERROR: Demand Regions theme does not exist.",
Scriptname)
exit
end
theFTab = theTheme.GetFTab

' Find the needed fields

oFld = theFTab.FindField("OTC Vol")
rFld = theFTab.FindField("Rx_Vol")
cFld = theFTab.FindField("CW_Vol")

168

totFld = theFTab.FindField("Total Demand")

if ((oFld = Nil) OR (rFld = Nil) OR (cFld = Nil) OR
(totFld = Nil)} then
MsgBox.Error ("ERROR: Require product fields are missing.",

Scriptname)
exit
end
oFld = oFld.AsString
rFld = rFld.AsString
¢cFld = cFld.AsString
fldstringlList = {oFld, rFld, cFld}

' Check to see if the new theme already exists
checkTheme = theView.FindTheme ("Demand Regions by Product Volume”)
if (checkTheme <> Nil) then
theView.DeleteTheme (checkTheme)
theTable = av.GetProject.FindDoc("Attributes of Demand
Regions by Product Volume")

if (theTable <> Nil) then
av.GetProject.RemoveDoc {theTable)
end
end

' Clone the theme and work with the new theme

demTheme = theTheme.Clone

' Get the new Demand Region theme's legend
demLegend = demTheme.GetLegend

'Create as many fill symbols as you have
'fieldNames and place them in a list.

otcsym = RasterFill.Make
otcsym.SetStyle (#RASTERFILL_STYLE SOLID)
otcsym.SetColor (Color.GetBlue)

rxsym = RasterFill.Make
rxsym.SetStyle(#RASTERFILL_STYLE_SOLID)
rxsym.SetColor (Color.GetRed)

cwsym = RasterFill.Make

cwsym. SetStyle ($RASTERFILL_STYLE_SOLID)
cwsym. SetColor (Color.GetGreen)

theSyms = {otcsym, rxsym, cwsym}
' Make a background fill Symbol that is empty

BGsym = RasterFill.Make
BGsym. SetStyle (#RASTERFILL STYLE EMPTY)

169

' Create the New Legend

demLegend.PieChart (demTheme, f1dStringList, theSyms, BGSym,
"Total Demand")

' To set a size field:
theSym = demLegend.GetSymbol (demLegend.ReturnFieldNames, false)

theSym. SetMinSize (8)
theSym. SetMaxSize (24)

' Redraw the theme using the PieChart legend.

demTheme.UpdateLegend

demTheme.SetActive (FALSE)

demTheme. SetVisible (TRUE)

demTheme. SetName ("Demand Regions by Product Volume")
theView.AddTheme (demTheme)

theView.Invalidate

return Nil

170

Thkhkhhddhdkhkhhkdekdkehkhhkdkdkddkrbkhkdkkkhkkhkhkhkhhkhkdkdkdhdhkhrdkdrdhhdhdrdhdhhddhdhhidsx

' Scriptname: RxFlowTheme.Make
Filename: rxflowth.ave
Author: Kenneth Bennett

Date: May 3, 1998

Description: Script generates a Flow theme based on the
Rx Flow field in the DC-to-Region Flow theme
table. Zero value flows are made invisible
using the null value and symbol

Requires: DC-to-Region flow theme must exist

Called by: View menu item click event ("Display Flows:
DC-to-Region by Rx Only")

Calls: Nil
' SELF: Nil
' Returns: Nil

Thdkdhhhhhkdkdhhhhkdddkhhkrhhhdhdhhkhhkhhhdkddhhkhbbhkhkrhkdbhhkhkhkhrdbdhhddhkhhkdkdkhdhddiiik

Scriptname = "RxFlowTheme.Make"

theView = av.GetProject.FindDoc ("Demand by Region™)
if (theView = Nil) then
MsgBox.Error ("ERROR: Demand by Region view does not exist.",

Scriptname)
exit
. end
if (not (theView.Is(View))) then
MsgBox.Error ("ERROR: Demand by Region doc is not a view.",
Scriptname)
exit
end

theTheme = theView.FindTheme ("DC-to-Region Flow")
if (theTheme = Nil) then
MsgBox.Error ("ERROR: Theme called DC-to-Region Flow
does not exist.", Scriptname)
exit
end

catString = "Rx Flow"

checkTheme = theView.FindTheme (catString)
if (checkTheme <> nil) then
theView.DeleteTheme (checkTheme)
theTable = av.GetProject.FindDoc("Attributes of"++catString)
if (theTable <> NIL) then
av.GetProject.RemoveDoc (theTable)
171

end
end

' Clone the DC-to-Region Flow theme
newTheme = theTheme.Clone

newLegend = newTheme.GetLegend

newlegend. SetLegendType (#LEGEND _TYPE SYMBOL)

' Make zero the null value

newLegend. SetNullValue (catString, 0)

' Select a color from the color palette to be used
' in drawing the new line theme

theColor = av.Run("ColorPalette.SelectColor™, Nil)

' Classify the legend with into five natural breaks
' and weight the line thickness by the flow volume

newLegend.Natural (newTheme, catString, 5)
theSymbolList = newLegend.GetSymbols
thickness = 1
count = 0
for each s in theSymbolList
s.SetSize(thickness)
thickness = thickness + 1
end
theSymbolList.UniformColor (theColor)

' Make the null symbol transparent

nullSym = Symbol.Make (#SYMBOL PEN)
theNullColor = Color.GetBlue
theNullColor.SetTransparent (TRUE)
nullSym.SetColor (theNullColor)
newLegend.SetNullSymbol (nullSym)
newlLegend.DisplayNoDataClass (FALSE)
newTheme. SetLegend (newLegend)
newTheme.SetName (catString)
newTheme.SetActive (FALSE)

newTheme. SetVisible (TRUE)
theView.AddTheme (newTheme)
newTheme.UpdateLegend
theView.Invalidate
theNullColor.SetTransparent (FALSE)

return Nil

172

Tk hd s sk sk ok ok ko s v v ok e ok vk b d do s ok ok ok s ok ok ok ok e d ok ok ke o dk Sk sk ok ke ke gk ke ok ok ke ke ok ke ke ok o

Scriptname: RxStatistics.Generate
Filename: rxstatis.ave
Author: Kenneth Bennett

Date: May 6, 1998

Description: Script sums each of the fields in the
Rx Logistics Costs table and reports
it to the user.

Requires: Rx Logistics Costs table exists

' Called by: View menu item click
! ("Trace Costs: Chain-wide Rx Statistics")

' Calls: Nil
' SELF: Nil
' Returns: Nil

l***
Scriptname = "RxStatistics.Generate"
' Ensure two decimal places in each number

Script.The.SetNumberFormat ("d.dd")

' Get the table

theTable = av.GetProject.FindDoc("Rx Logistics Costs™)
if (theTable = Nil) then
MsgBox.Error ("Rx Logistics Costs table not found.",
Scriptname)
exit
end
' Get the VTab for the table
theVTab = theTable.GetVTab
' Get the number of records
num = theVTab.GetNumRecords
' Get the list of fields in the VTab
theFieldlList = theVTab.GetFields

' Set the field wvariables

shipFld = theFieldList.Get (1)
173

pickFld
tranFld
xdocFld
totlFld

theFieldList.Get (2
theFieldList.Get (3
theFieldList.Get (4
theFieldList.Get (5

)
)
)
)

' Initialize summing variables

shipSum =
pickSum
tranSum
xdocSum
totlSum =

won
[eNeoNeNeNea)

' Loop through the VTab and sum each fld

for each rec in theVTab

shipSum

pickSum

tranSum

xdocSum

totlSum
end

= shipSum
= pickSum
= tranSum
= xdocSum
= totlSum

' Calculate the per

theVTab.ReturnValue (shipFld, rec)
theVtab.ReturnvValue (pickFld, rec)
theVTab.ReturnValue (tranFld, rec)
theVTab.ReturnValue (xdocFld, rec)
theVTab.ReturnvValue (totlFld, rec)

+ 4+ + + +

store average for each field

shipAvg = shipSum / num

pickAvg = pickSum / num

tranAvg = tranSum / num

xdocAvg = xdocSum / num

totlAvg = totlSum / num

' Issue the report

reportString = "Total Rx Shipping Cost:"++shipSum.AsString+nl+

"Average Per Region:"++shipAvg.AsString+nl+
"Total Rx Pick Cost:"++pickSum.AsString+nl+
"Average Per Region:"++pickAvg.AsString+nl+
"Total Rx Transhipment Cost:"++tranSum.AsString
+nl+"Average Per Region:"++tranAvg.AsString+nl+
"Total Rx Crossdock Cost:"++xdocSum.AsString+nl+
"Average Per Region:"++xdocAvg.AsString+nl+nl+
"Chain-wide Total Rx Logistics Cost:"++
totlSum.AsString+nl+"Average Total Cost
Per Region:"++totlAvg.AsString+nl

MsgBox.Report (reportString, "Chain-wide Rx Statistics")

return Nil

174

Yok dhkdkdkdhdkhkhhkhkhkhhhhhkhkhdkdhkrhhhdkdkdkhdhdhdkdhdhhkdddkdohkkdkddkkhdhdkddhkdh

' Scriptname: SplicelatLon

' Filename: splicela.ave

' Description: Script takes a single Lat/Lon field and splits

! them into one Lat field and one Longitude field.

! It then creates the CVS DCs theme using those
! lat/lon coordinates.

' Called by: FlowLine.Build

' Calls: AddXY
' SELF: a VTab
' Returns: an FTab

Thdkdhhhhdhdokddhkrhhdhkhkrhrhkrrhkhhkhdbkdrhhhrdhdhrhkrbdhhdrrhhhddbhhbhdddhdhbhdhd

Scriptname = "SpliceLatLon"

aVTab = SELF.Get (0)

if (aVTab = nil) then
MsgBox.Info ("Error - Table not found",
exit

end

1" ")

' Get the fields to copy from aVTab

theStrFld = aVTab.FindField("Latlon"”)}
idV = aVTab.FindField("Facility")

£f1d2 = aVTab.FindField{ "Fixedcost")
£f1d3 = aVTab.FindField{ "Minimum")
£1d4 = aVTab.FindField("Maximum")
f1d5 = aVTab.FindField("Optimizedv")

optstate = aVTab.FindField("Optimizeds")
thefldList = { idv, fld2, £1d3, fld4, optstate, fld5 }.DeepClone

' Create an FTAB and get its fields

defName = FileName.Make (av.GetProject.GetWorkDir.AsString) .MakeTmp
("dcmod", "dbf")
theFName = FileDialog.Put(defName, "*.dbf", "Save FTab As")
if (nil <> theFName) then
myFTab = FTab.MakeNew(theFName, POINT)
else
myFTab = FTab.MakeNew(defName, POINT)
end
myFTab.AddFields (thefldList)
shapeF = myFTab.FindField("shape™)
idF = myFTab.FindField("Facility”")
fcostfld = myFTab.FindField("Fixedcost")
minfld = myFTab.FindField("Minimum")
maxfld = myFTab.FindField("Maximum")
optstatefld = myFTab.FindField("Optimizeds")
optfld = myFTab.FindField("Optimizedv")

175

' copy each row in the VTab to the new FTab

for each i in aVTab

' Get the values from aVTab
ystr = aVTab.ReturnvValue(theStrFld, i)
thePos = ystr.IndexOf("/")
y = ystr.Left (thePos).Trim.AsNumber
Xstr = aVTab.ReturnValue(theStrFld , i)
x = Xstr.Right(xstr.IndexOf("/")).Trim.AsNumber
id = aVTab.ReturnVaiue(idV, i)
fcost = aVTab.ReturnvValue(fld2, i)
minim = aVTab.ReturnValue(£f£1d3, i)
maxim = aVTab.ReturnValue(£f£1ld4, i)
opts = aVTab.ReturnValue{ optstate, i)
opt = aVTab.ReturnValue(f1d5, i)

' create the next row and add wvalues
newRec = myFTab.AddRecord
myFTab.SetValue(shapeF, newRec, xQy)
myFTab. SetValue(idF, newRec, id)
myFTab.SetValue(fcostfld, newRec, fcost)
myFTab.SetValue(minfld, newRec, minim)
myFTab.SetValue(maxfld, newRec, maxim)}
myFTab.SetValue(optstatefld, newRec, opts)
myFTab.SetValue(optfld, newRec, opt)

end

' Create a palette using selected palette file

'thePalette = Palette.MakeFromFile (theDefPalFile)
thePalette = av.GetSymbolWin.GetPalette

' Now use myFTab to create a theme and add it to the active view

theTheme = FTheme.Make(myFTab)
theTheme. SetName ("CVS DCs")
thelLegend = theTheme.GetLegend
theSymList = thelegend.GetSymbols
theDCSymbol = theSymList.Get (0)

' Grab the Marker palette and get the outlined star symbol
theMarkerPalettelist = thePalette.GetList (#PALETTE_LIST_ MARKER)
' outlined star is 34th symbol in Marker palette

chosenMarker = theMarkerPalettelist.Get (33)

' Grab the Color palette and get the color gold for the star
theColorPalettelist = thePalette.GetList (#PALETTE_LIST_COLOR)

' color gold is 39th color in Color palette

chosenColor = theColorPalettelist.Get (38)

' change the shape and color the DC symbol

chosenMarker.SetColor (chosenColor)
chosenMarker.SetSize (24)

176

theSymList.Set (0, chosenMarker)
' add the theme to the view

theTheme.Updatelegend
theTheme.SetActive (True)
theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then
MsgBox.Warning ("Demand by Region view does not exist."+NL+
"CVS DCs theme not added to that view.",
Scriptname)
elseif (not (theView.Is(View))) then
MsgBox.Warning ("Demand by Region view does not exist."+NL+
"CVS DCs theme not added to that view.",

Scriptname)
else
theView.AddTheme (theTheme)
end

newFTab = av.Run ("AddXY", Nil)
newFTab.SetEditable (FALSE)

' Copy the CVS DCs theme and paste it
' to the Location Strategy view

locView = av.GetProject.FindDoc("Location Strategy")
if (locView = Nil) then
MsgBox.Warning ("Location Strategy view does not exist."+NL+
"CVS DCs theme not copied to that view.",
Scriptname)
elseif (not (locView.Is(View))) then
MsgBox.Warning ("Location Strategy view does not exist."+NL+
"CVS DCs theme not copied to that view.",
Scriptname)
else
checkTheme = locView.FindTheme ("CVS DCs")
if (checkTheme <> Nil) then
locView.DeleteTheme (checkTheme)
end
dcTheme = theTheme.Clone
locView.AddTheme (dcTheme)
dcTheme. SetActive (FALSE)
end

return newFTab

177

'***

! Scriptname: SQLTables.Get
' Filename: sgltable.ave
' Description: Script launches an SQL connection with MS

! Access and imports five tables from a selected
! Access database. These five tables must have

! the preset titles agreed upon by Anderson

! Consulting and the UT team. Once imported, the
! SQL tables are exported out again as .dbf files
! so they can be re-imported into the ArcView

! project in a read/write state.

Requires: MS Access ODBC driver must be activated. An
' Ms Access .mdb file containing five tables

! with the following names must be available.
' DIRECT TO STORE

' INPUT - FACILITIES

' HANDLING

' PICKING

' TRANSHIPMENTS

' Called by: Menu item click event ("SQLTables.Get")
' Calls: Nil

' SELF: Nil

' Returns: Nil

Tdkrhhkdkdhhkkhkdkkhdhdbrhhkkdkdkrhkrbdhhhdhdddhhhkhhdkhhdkdhkdhhdhhbrrahkdddhkhkrbhhrdhrdx

Scriptname = "SQLTables.Get"

' Set up the SQL connection to MS Access and bring SQL tables
' into ArcView

theSQL=SQLCon.Find ("MS Access")
if (theSQL = Nil) then
MsgBox.Error("MS Access database not found."+NL+
"Try reloading the MS Access ODBC driver.",
"SQIL Connection Error")
exit
end

' Query the DIRECT TO STORE table

query = "Select * from [DIRECT TO STORE]"
theDTSVTab=VTab.MakeSQL {theSQL, query)
if (theDTSVTab = Nil) then

exit
end
theDTSTable = Table.Make (theDTSVTab)
av.GetProject.AddDoc (theDTSTable)
theDTSTable.SetName ("Direct To Store”)
178

theDTSTable.GetWin.Open

query = "Select * from [INPUT - FACILITIES]"
theDCVTab = VTab.MakeSQL(theSQL, query)
theDCTable = Table.Make (theDCVTab)
av.GetProject.AddDoc{theDCTable)
theDCTable.SetName ("Input - Facilities™)
theDCTable.GetWin.Open

query = "Select * from PICKING"
thePickVTab = VTab.MakeSQL(theSQL, query)
thePickTable = Table.Make (thePickVTab)
av.GetProject.AddDoc (thePickTable)
thePickTable.SetName ("Picking")
thePickTable.GetWin.Open

query = "Select * from HANDLING"
theHandVTab = VTab.MakeSQL(theSQL, query)
theHandTable = Table.Make (theHandVTab)
av.GetProject.AddDoc (theHandTable)
theHandTable. SetName ("Handling")
theHandTable.GetWin.Open

query = "Select * from TRANSHIPMENTS"
theTransVTab = VTab.MakeSQL (theSQL, query)
theTransTable = Table.Make (theTransVTab)
av.GetProject.AddDoc (theTransTable)
theTransTable.SetName ("Transhipments")
theTransTable.GetWin.Open

' Now convert the SQL tables to readable and writable
' .dbf files by exporting the SQL tables in .dbf format
' and re-importing those .dbf files into ArcView

theProject = av.GetProject
dts = theProject.FindDoc("Direct to Store")
infac = theProject.FindDoc("Input - Facilities")

hand = theProject.FindDoc("Handling")
pick = theProject.FindDoc("Picking")
tran = theProject.FindDoc("Transhipments")

' Make a list of the tables and make sure they
' exist by looping through and checking
' for Nil values

tabList = {dts, infac, hand, pick, tran}
for each t in tablist
if (£t = Nil) then
MsgBox.Error ("One or more required tables not
available ... Exiting.", Scriptname)
exit
end 'if
end' for loop

179

' Get the VTabs for each of the above tables

dtsVTab = dts.GetVTab
infacVTab = infac.GetVTab
handVTab hand.GetVTab
pickVTab pick.GetVTab
tranVTab = tran.GetVTab

' Get the working directory of the project
theDirectory = theProject.GetWorkDir.AsString

' create a filename for each VTab to
' be exported as a dbf file

dtsname = theDirectory + "\dirstore"
infacname = theDirectory + "\inputfac"
handname = theDirectory + "\handling"
pickname theDirectory + "\picking"
tranname = theDirectory + "\tranship"”

' Export the VTabs

dtsfile = dtsVTab.Export (dtsname.AsFileName, dBase, FALSE)
infacfile = infacVTab.Export(infacname.AsFileName, dBase, FALSE)
handfile = handVTab.Export (handname.AsFileName, dBase, FALSE)
pickfile pickVTab.Export (pickname.AsFileName, dBase, FALSE)
tranfile = tranVTab.Export (tranname.AsFileName, dBase, FALSE)

' Add the tables to the project using the new VTabs

dtsTable = Table.Make(dtsfile)
dtsTable.SetName ("dirstore.dbf")
infacTable = Table.Make(infacfile)
infacTable.SetName ("inputfac.dbf")
handTable = Table.Make (handfile)
handTable.SetName ("handling.dbf")
pickTable = Table.Make(pickfile)
pickTable.SetName ("picking.dbf")
tranTable = Table.Make(tranfile)
tranTable.SetName ("tranship.dbf")

' Remove the SQL Tables from the project

theProject.RemoveDoc (dts)

theProject.RemoveDoc (infac)
theProject.RemoveDoc (hand)
theProject.RemoveDoc (pick)
theProject.RemoveDoc (tran)

' Disonnect the SQL connection
theSQL.Logout

' Make sure all former themes are removed and all
' Demand Regions table is unlinked and unjoined

180

usy3 ((3)sWSYIWOIISNeWURD *I3CISN) I T
SBWAYL3ID ‘MITA® UT 3 Yoea Io3
{} = 3asTIaWayrI=sNaY3
TTU = aWayLisNe

swayl BUTIT 3ISITI 3yl 3ab

pus

aTX®

(owreu3dTIODS’, "MOTA B 30U ST JUUMDOP PaIDITIS§,) I0II1F " xoghsu
usyl (((M3TA}SI"MaTAR) 3J0U) IT
pus

ITXS

(sweuadrtaog
‘,°3ISTXD 30U S0P MATA Abajerls uOTIEDOT :1YOUYH,) I0I1xd xogbsy
usyl (TTN = MITA®R) FT
(,AD33e13g UOTIEDOT,,)D20QpPUTi -10aL0T1d399 AR = MITIAR

M3TA 343 399 ,

L2buryAgras - saxoys, = sweuldrasg

R T T Y R T Y

TIN suIniady ,
TTN tJTdS
abuey - Da tsTTRD

(w2Bueyd 2d,) 3uUdAD YOTTD NUSK :Aq pat1RD ,
*s5Q pue saiols ay3z butjussaadax .

saweysy jutod om3 pue YIOM3IdU PROI SIBINDDOE '
ATqeuosear e HuTzussasizdsx swsy3 aUIT Y :saxTnbay ,

-anTea abuexr 1aybTy B J03 paizerndod .

aq 3,UoM 3T ‘S103s eyl I03 pajzeTndod ussqg R

sey pToT3 =bued DQ 2Y3l SdUO ‘SpPIOM IdY3o Ul .
*8J03s 3BY3 03 DJ 3ISISOTD 2yl s3ussazdax 3T 3T .
anTea abuer ay3z yatm 3T sazernded pue sways .
s@103s ay3 uT pIaT3 =buey og © ssjeTnOTED .
yotym 3dtaos abuey- ng ayl sTIed uayy adraos .
8yl ‘uoT3nads obuer yoea 103 PIIDITLS R

o1e abuer 3eyl uTYITM TTBF 3IBYI S3I03S 3Y3 .
pue 5d Yoea IoJ paida[as sT sbuer 3dDUTISTP .
yoeg -3q woxy KAeme soTTw QGZ pue ‘007 f

‘0ST ‘00T ‘0S Jo sobuex asoue3stp buTjussazdal .
suobATod paassu aaTy 3o 3utod I33uUaD IY3 .

swIoy 2@ Yoea 3IeYl yons 2qd .

yoes punoie suobftod eaze adTATISS spTIng 3driog :uotadrisnsag ,

ane*s s3I103S oWeUaTT

sbueyhgras-sazols :aweuldriog ,

L R R R S LR]

TIN uInisa

(n322(033 ayy dn ueatd,

‘, T3WdY3 SMOTJ UoTbay-o03,+TU+,-3d 3Y3

0 ‘sauswdTysueIr] a2yl ‘suoTbHey puBwaq Y, +TU+

/SO0 SAD 9Y3 uo paseq sswayi Azrersads bBururews:,
+Tu+,Aue 239T9p 031 aIns aq ‘burpsssoxd ax1035g,) Butuaem xogbsy

pus
pus
TTYUTIUn
-qeLA3I®S” (LSUOTHSY puewag JO S9INGTIIAY,)D0QpUTd-1o3loxgsys
TTYuTolun
*qelAl@D - (,suotbay puewaq Jo $93NqII33Y,,) doqpuTtd "3osloagsys *
usya {(IIN <>
(.suotbayd puewag Jo $33nqTIIVY,)d0QpPuTd-3ioslfoigays) It
asT?
¢ TTUTITUN qelLd 395 " dusylbayuagays
TTVvuTofun - qeraian -swayLbayuaaays
usy3 (TTIN <> swdyrlbayuragayly) 3T
(,SUoTHay pueula(,) dWSYIPUTI "MITASYI = sweylbaywagayl

pus
(aTqeruey) sogasoway - Ivalozgays
usay3 (TIN <> o[qelueil) 3IT
(,s3uswdTysuey] 3o s$33nQGTIIIY,)20aputi-3oaloagayly = sTqegueil
Pua
(SWayLueIy) aWaYLa3aTad "MOTASYY
uayy (TIN <> swaylruerl) 3T
(n,sauswdIysuell,) SWaYlpUTI ‘MOTARYI = SWaYLuell
pua
(sTqeIMOT3F) Dogansocway - 12alorgaya
uayl (TIN <> 91qelmoT3) 3IT
(.MOT3 uOTHaY-03-5Q FO S$93INQTIIAV,)O0QPUTd-3I0alorgdayl = STqelMOTF
pus
(SWaYLMOT3) SWSYL333Tad "MITASY3
usy3z (TIN <> SwdYIMoTF) IT
(L MOTd uoTHaY-01~2d,,) SWAYILPUTI "MITARYI = SUSIYIMOTI
pua
(aTqelop) oodsacuad -302lo1gaya
uayl (TIN <> 2T9elop) 3T
(.S2Q SAD IO S93INGTIIIV,)doQpuld- 3oalordays = aTqelap
pua
(3Wwaylop) awayLa31aTad "*M3TASY]
uayy (TIN <> Swayrop) JIT
(.S2Q SAD.)3WAYLPUTI "MITAIYI = SW3YLOP
pua
1IN uIinysx
usyl (TTN = M3TA®Y3l) JT
(Luotbay Kq puewsq,)ooqputd-ivalorgayl = M3TASYI
joalorgaen-ae = 3s2loxgsya

181

theNetThemeList.Add(t)
end
end

' Have user select a theme

aNetTheme = MsgBox.List(theNetThemeList, "Select a line theme"+NL+
"to use as network:", Scriptname)

' check that a proper network theme was selected

if (aNetTheme = nil) then
msgBox.Error ("Network theme not selected.",Scriptname)
exit

end

' make the NetDef and check it for errors
aNetDef = NetDef.Make (aNetTheme.GetFTab)
if (aNetDef.HasError) then
msgBox.Error ("NetDef has error.", Scriptname)
exit
end

' make the Network object

aNetwork = Network.Make (aNetDef)

* get the point theme (to be used for stops)
aSiteTheme = nil

theSiteThemeList = {}
for each t in aView.GetThemes

if ((t.GetFTab.GetSrcName.GetSubName = "Point") AND
(t.GetName.Contains ("DCs"))) then
theSiteThemelList.Add (t)
end
end

' Ask the user to select a site theme

aSiteTheme = MsgBox.List (theSiteThemelist, "Select a DCs theme:",
Scriptname)

' check if a stop theme was selected

if (aSiteTheme = nil) then
msgBox.Error ("Site theme not selected.",Scriptname)
exit

end

aSiteFTab = aSiteTheme.GetFTab
pointShapeField = aSiteFTab.FindField("Shape")
pointLabelField = aSiteTheme.GetLabelField

' make a point list from the site theme, validate points, and
182

' set the name of each stop

aPointList = {}
for each rec in aSiteFTab
p = aSiteFTab.ReturnValue (pointShapeField, rec)
if (aNetwork.IsPointOnNetwork(p)) then
p.SetName(aSiteFTab.ReturnValueString(pointLabelField, rec))
aPointList.Add (p)
end
end
numPoints = aPointList.Count

' Set the cost field

aCostFieldList = aNetDef.GetCostFields
aCostField = aCostFieldList.Get (1)

aCostSetting = aNetwork.SetCostField(aCostField)

' Find the service area
aCost = {50.00, 100.00, 150.00, 200.00, 250.00}
aCostList = {}

'add the list of ranges aCostList
‘once for each peint in theSiteTheme

for each s in 1..numPoints
aCostlist.Add(aCost)
end

aFromPointBool = True
aCompactAreaBool = False
aResultBool = aNetwork.FindServiceArea(aPointList,aCostList,
aFromPointBool, aCompactAreaBool)
if (not (aResultBeool)) then
msgBox.Error("Unable to compute the service area",Scriptname)
exit
end

' Write the results to new shapefiles

theWorkingDir = av.GetProject.GetWorkDir.AsString

aPathFileNamel = "c:\cvs\cvsac\thesis\shapefiles\snetwork™
.AsFileName

aPathFileName2 = "c:\cvs\cvsac\thesis\shapefiles\sarea"
.AsFileName ~

aNetwork.WriteServiceArea (aPathFileNamel, aPathFileName2)

sName = srcName.Make(aPathFileName2.AsString+".shp")
servAreaTheme = Theme.Make (sName)

aView.AddTheme (servAreaTheme)
servAreaTheme.SetVisible (FALSE)

183

' Get the FTab of the Service Area theme

servFTab = servAreaTheme.GetFTab
' Have the user select stores theme

storeTheme = nil
thePointThemelist = {}
for each t in aView.GetThemes
if (t.GetFTab.GetSrcName.GetSubName = "Point") then
thePointThemeList.Add (t)
end
end

' Get the name of the store theme

storeName = aSiteTheme.GetName.AsTokens (" ").Get (0)
storeTheme = aView.FindTheme (storeName++"Stores")

'' Ask the user to select a store theme
)

'storeTheme = MsgBox.List (thePointThemelist,
"Select a store theme:", Scriptname)

' check if a store theme was selected

if (storeTheme = nil) then
msgBox.Error("Store theme not found.",Scriptname)
exit

end

' Get the store theme FTab
storeFTab = storeTheme.GetFTab

' Add the DC_Range field to the stores FTab
' First get edit state of stores FTab, then
' set it to editable

edit state = storeFTab.IsEditable
storeFTab.SetEditable (TRUE)

' Make the new DC_Range Field

fld = storeFTab.FindField("DC Range")

if (fld <> Nil) then
storeFTab.Calculate("0", £1d)

else
fld = Field.Make ("DC Range", #FIELD_ SHORT, 5, O0)
storeFTab.AddFields ({fld})
storeFTab.Calculate ("0", fld)

end

' Stop editing and restore edit state

storeFTab.SetEditable (FALSE)

184

storeFTab.SetEditable(edit_state)
' Get the number of records in the DC theme table

numDCs = aSiteFTab.GetNumRecords
' Create a list of starting record numbers (i.e., 0 through 4
' since there are only five service area ranges).
startRecList = {0, 1, 2, 3, 4}

rangelist = {50 , 100, 150, 200, 250}

' Loop through starting Record List and each iteration select
' every fifth record in the service area theme

servBitMap = servFTab.GetSelection
dcSet = numDCs - 1
for each s in startRecList
index = s
servBitMap.ClearAll
servFTab.UpdateSelection
servBitMap. Set (index)

'Loop through servBitMap and select every fifth record
'Number of iterations is number of DCs minus one

for each d in 1l..dcSet ' sets the next n-1 number of records
index = index + 5
servBitMap. Set (index)
end ' for each DC loop
' Using the selected ranges in the service area theme
find the stores that intersect with those polygons.

t
1

storeFTab.SelectByFTab (servFTab, #FTAB_RELTYPE_INTERSECTS,
0, #VTAB_SELTYPE_NEW)

Get the range value
rangeName = rangeList.Get (s)

' Call the DC.Range script to populate the DC_Range
' field with respective range value for the selected set.

av.Run("DC.Range", {storeFTab, fld, rangeName, storeTheme})

end ' for each range loop
servBitMap.ClearAll
servFTab.UpdateSelection
' Query the stores FTab for records with zero value in
DC Range field and calculate their values to 251 to
represent the fact that they are stores that are
greater than 250 miles away from the nearest DC.

185

storeBitMap = storeFTab.GetSelection
storeBitMap.ClearAll
storeFTab.UpdateSelection
queryString = "([DC Range] = 0)"

successful = storeFTab.Query(queryString,
#VTAB_SELTYPE NEW)

if (NOT successful) then

storeBitMap,

MsgBox.Error("Query string did not compile."+NL+
"See stores theme table.",

exit
end
edit_state = storeFTab.IsEditable
storeFTab.SetEditable (TRUE)
storeFTab.Calculate (251", f1d)
storeFTab.SetEditable (edit_state)
storeBitMap.ClearAll
storeFTab.UpdateSelection
activeThemelist = aView.GetActiveThemes
for each act in activeThemelist
act.SetActive (FALSE)
end
storeTheme. SetActive (True)

' Delete the service area theme
aView.DeleteTheme (servAreaTheme)

return Nil

Scriptname)

T %k ok st e T sk e e ok ok ke ok g ok ok Tk ok ok sk ok ok ke ok ok ke ok ok s ke sk ke ke ke kb Tk %k ke Tk de ok b e e ok ke gk ok ke g ke ke ok ke ke s sk e ke ok e ke ke ok

' Scriptname: SummD2S

' Filename: summd2s .ave

' Description: Summarizes the dirstore.dbf table over the

! facility field for each product type and stores
' them in tables called RxDirect, CWDirect, and
' OTCDirect

' Requires: Nil

' Called by: CalcDCs

' Calls: Nil

' SELF: Nil

' Returns: Nil

Thdkhdkdhdhhhhhhhbhbhhhbdbdhhhhbhbhbhkhkdkdhhdrdhdhbhhbhhhkdkhdddhhhhhhhhbrbhhbhkhhhdhtdti

Scriptname = "SummD2S"
'First get Direct to Store file and the working directory

theTab = av.GetProject.FindDoc("dirstore.dbf")
theVTab = theTab.GetVTab
theDirectory = av.GetProject.GetWorkDir.AsString

' Check to see if RxDirect already exists

rx_exists = (av.GetProject.FindDoc("RxDirect.dbf") = NIL).Not
skip = 0
if (rx_exists) then
thedoc = av.GetProject.FindDoc("RxDirect.dbf")
if (MsgBox.YesNo("Overwrite existing table?",
"The Table RxDirect already exists", false)) then
'if ok to overwrite, delete the fields as they
'may not be defined
‘as required by this script (eg., created from
'another script).
if (rx_exists) then
av.GetProject.RemoveDoc(thedoc)

end
else
skip = 1
end 'if (MsgBox...)
end 'if

if (skip = 0) then
theBitMap = theVTab.GetSelection
187

expr = "{[Product].UCase = "+"RX".Quote+")"

theVTab.Query(expr, theBitMap, #VTAB SELTYPE NEW)

theSummaryField = theVTab.FindField("Facility")

flnm = theDirectory + "\RxDirect.dbf"

f1dl = theVTab.FindField("OptimizedValue")

sumFldList = {£1d1}

sumList = {#VTAB_SUMMARY_SUM}

newVTab = theVTab.Summarize(flnm.AsFileName, dBase,
theSummaryField, sumFldList, sumList)

newTable = Table.Make (newVTab)

newTable.SetName ("RxDirect.dbf")

‘newTable.GetWin.Open

thenewVTab = newTable.GetVtab

' Make sure table is editable and if so,
' remove the count field

edit state = thenewVTab.IsEditable
if (thenewVTab.CanEdit) then
thenewVTab.SetEditable (true)
thefld = thenewVTab.FindField("Count")
thenewVTab.RemoveFields ({thefld})
'thenewVTab. SetEditable (false)
else
MsgBox.Warning("Table can't be modified."+NL+
"Count field not deleted.", Scriptname)
end
thefld = thenewVTab.FindField("Sum OptimizedValue")
thefld.SetAlias ("Rx D2S")
end
theTab.GetVTab.GetSelection.Clearall
theTab.GetVTab.UpdateSelection

'Check if the summary for CW picked exists

cw_exists = (av.GetProject.FindDoc("CWDirect.dbf") = NIL).Not
skip = 0
if (cw_exists) then
thedoc = av.GetProject.FindDoc ("CWDirect.dbf")
if (MsgBox.YesNo{("Overwrite existing table?",
"The Table CWDirect already exists", false)) then
'if ok to overwrite, delete the fields as
' they may not be defined
'as required by this script (eg., created from
'another script).
if (cw _exists) then
av.GetProject.RemoveDoc (thedoc)
end
else
'exit
skip =1
end 'if (MsgBox...)
188

end 'if

if (skip = 0) then
theBitMap = theVTab.GetSelection
expr = " ([Product].UCase = "+"CW".Quote+")} "
theVTab.Query(expr, theBitMap, #VTAB_SELTYPE_NEW)
theSummaryField = theVTab.FindField("Facility")
flnm = theDirectory + "\CWDirect.dbf"
fldl = theVTab.FindField("Optimizedvalue")
sumFldList = {fldl}
sumList = {#VTAB_SUMMARY SUM}
newVTab = theVTab.Summarize (flnm.AsFileName, dBase,

theSummaryField, sumFldList, sumList)

newTable = Table.Make (newVTab)
newTable.SetName ("CWDirect.dbf")
'newTable.GetWin.Open
thenewVTab = newTable.GetVtab

' Make sure table is editable and if so,
' remove the count field

edit_state = thenewVTab.IsEditable
if (thenewVTab.CanEdit) then
thenewVTab.SetEditable (true)
thefld = thenewVTab.FindField("Count")
thenewVTab.RemoveFields ({thefld})
'thenewVTab.SetEditable (false)
else
MsgBox.Warning ("Table can't be modified."+NL+
"Count field not deleted.", Scriptname)
end

thefld = thenewVTab.FindField("Sum OptimizedvValue")
thefld.SetAlias ("CW D2S")
end
theTab.GetVTab.GetSelection.Clearall
theTab.GetVTab.UpdateSelection

'Check if the summary for OTC direct exists

otc_exists = (av.GetProject.FindDoc("OTCDirect.dbf”) = NIL).Not
skip = 0
if (otc _exists) then

thedoc = av.GetProject.FindDoc("OTCDirect.dbf")

if (MsgBox.YesNo("Overwrite existing table?",

"The Table OTCDirect already exists", false)) then
'if ok to overwrite, delete the fields as they
'may not be defined
'as required by this script (eg., created from
'another script).
if (otc exists) then

av.GetProject.RemoveDoc (thedoc)
end

189

en
if

en
th
th

re

else

skip = 1

'exit
end 'if (MsgBox...)
d 'if

(skip = 0) then

theBitMap = theVTab.GetSelection

expr = "{[Product].UCase = "+"OTC".Quote+")"

theVTab.Query{expr, theBitMap, #VTAB SELTYPE NEW)

theSummaryField = theVTab.FindField("Facility")

flnm = theDirectory + "\OTCDirect.dbf"

fldl = theVTab.FindField("OptimizedvValue")

sumFldList = {fldl}

sumList = {#VTAB_SUMMARY_SUM}

newVTab = theVTab.Summarize (flnm.AsFileName, dBase,
theSummaryField, sumFldList,

newTable = Table.Make (newVTab)

newTable.SetName ("OTCDirect.dbf")

'newTable.GetWin.Open

thenewVTab = newTable.GetVtab

' Make sure table is editable and if so,
' remove the count field

edit state = thenewVTab.IsEditable

if (thenewVTab.CanEdit) then
thenewVTab.SetEditable (true)
thefld = thenewVTab.FindField("Count")
thenewVTab.RemoveFields ({thefld})
'thenewVTab.SetEditable(false)

else
MsgBox.Warning ("Table can't be modified."+NL+

sumList)

"Count field not deleted.”, Scriptname)

end
thefld = thenewVTab.FindField("Sum OptimizedValue")
thefld.SetAlias ("OTC Picked")

d
eTab.GetVTab.GetSelection.ClearAll
eTab.GetVTab.UpdateSelection

turn Nil

190

'***

Scriptname: SummDems
Filename: summdems . ave

Description: This script is similar to CalcDCs but summarizes
the flows for demand regions instead of DCs.
Need to summarize the the dirstore.dbf table
over the demand regions for all flows greater
than zero

Requires: dirstore.dbf must exist

Called by: View menu item click event ("Sum Regions")

Calls: Nil
SELF: Nil

Returns: Nil

Tdkhddhddhdrhhdhhhkhkhkhhdkhhkddhkkhkkhkkhkhkhkhkhrdhhdhkhkddhkrhhhhkkhhkdkhkdrhdrdhhih

Scriptname = "SummDems"
'"First get direct to store file and the working directory

theTab = av.GetProject.FindDoc("dirstore.dbf")
if (theTab = Nil) then

MsgBox.Info("Could not find dirstore.dbf file. Exiting...",
"ERROR")
exit
end

theVTab = theTab.GetVTab
theDirectory = av.GetProject.GetWorkDir.AsString

'Check if the summary for Rx2Store exists

rx_exists = (av.GetProject.FindDoc ("Rx2Store.dbf") = NIL).Not
skip = 0
if (rx_exists) then
thedoc = av.GetProject.FindDoc("Rx2Store.dbf")
if (MsgBox.YesNo("Overwrite existing table?",
"The Table Rx2Store already exists", false)) then
'if ok to overwrite, delete the fields as they
'may not be defined
'as required by this script (eg., created from
'another script).
if (rx exists) then
av.GetProject.RemoveDoc (thedoc)

end
else
skip =1
'exit
end 'if (MsgBox...)
end 'if

191

if (skip = 0) then

theBitMap theVTab.GetSelection

expr = "(([Product].UCase = ""RX"") and
([OptimizedValue] > 0))"

theVTab.Query(expr, theBitMap, #VTAB_ SELTYPE NEW)

theSummaryField = theVTab.FindField("DemandRegion")

flnm = theDirectory + "\Rx2Store.dbf"

fldl = theVTab.FindField ("OptimizedValue")

sumFldList = {£f1dl}

sumList = {#VTAB SUMMARY SUM)

newVTab = theVTab.Summarize (finm.AsFileName, dBase,

theSummaryField, sumFldList, sumList)

newTable = Table.Make (newVTab)

newTable. SetName ("Rx2Store.dbf")

'newTable.GetWin.Open

thenewVTab = newTable.GetVtab

' Make sure table is editable and if so,
' remove the count field

edit_state = thenewVTab.IsEditable

if (thenewVTab.CanEdit) then
thenewVTab. SetEditable (true)
thefld = thenewVTab.FindField("Count")
thenewVTab.RemoveFields ({thefld})

' thenewVTab.SetEditable(false)

else
MsgBox.Warning("Can't modify the table."+NL+
"Check write permission.”,"Can't delete Count field!'")
exit

end

thefld = thenewVTab.FindField("Sum Optimizedvalue”)
thefld.SetAlias ("Rx2Store")
end
theTab.GetVTab.GetSelection.ClearAll
theTab.GetVTab.UpdateSelection

'Check if the summary for CW2Store exists

cw_exists = (av.GetProject.FindDoc("CW2Store.dbf") = NIL).Not
skIp =0
if (cw_exists) then
thedoc = av.GetProject.FindDoc ("CW2Store.dbf")
if (MsgBox.YesNo("Overwrite existing table?",
"The Table CW2Store already exists", false)) then
'if ok to overwrite, delete the fields as they
'may not be defined
'as required by this script (eg., created from
'another script).
if (cw_exists) then
av.GetProject.RemoveDoc (thedoc)
end
else

192

'exit

skip =1
end 'if (

end 'if
if (skip = 0) then
theBitMap = theVTab.GetSelection
expr = "(([Product].UCase = ""CW"") and
{[OptimizedValue] > 0))"
theVTab.Query(expr, theBitMap, #VTAB SELTYPE NEW)
theSummaryField = theVTab.FindField("DemandRegion")
flnm = theDirectory + "\CW2Store.dbf"
fldl = theVTab.FindField("OptimizedvValue")
sumFldList = {f1d1l}
sumlList = {#VTAB SUMMARY SUM}
newVTab = theVTab.Summarize(flnm.AsFileName, dBase,
theSummaryField, sumFldList, sumList)

newTable = Table.Make (newVTab)
newTable.SetName ("CW2Store.dbf")
'newTable.GetWin.Open
thenewVTab = newTable.GetVtab

MsgBox...)

' Make sure table is editable and if so,
' remove the count field

edit state = thenewVTab.IsEditable
if (thenewVTab.CanEdit) then
thenewVTab.SetEditable (true)
thefld = thenewVTab.FindField("Count")
thenewVTab.RemoveFields ({thefld})
! thenewVTab.SetEditable(false)
else
MsgBox.Warning("Can't modify the table."+NL+
"Check write permission.","Can't delete Count field!")
exit
end
thefld = thenewVTab.FindField("Sum OptimizedValue")
thefld.SetAlias ("CW2Store")
end
theTab.GetVTab.GetSelection.ClearAll
theTab.GetVTab.UpdateSelection

'Check if the summary for OTC d2s exists

otc exists = (av.GetProject.FindDoc("OTC2Store.dbf”) = NIL).Not
skip = 0

if (otc_exists) then

thedoc = av.GetProject.FindDoc ("OTC2Store.dbf")

if (MsgBox.YesNo ("Overwrite existing table?",

"The Table OTC2Store already exists", false)) then
'if ok to overwrite, delete the fields as they
'may not be defined
'as required by this script (eg., created from
'another script).
if (cw_exists) then

av.GetProject.RemoveDoc (thedoc)
end

else

193

'exit
skip =1
end 'if (
end 'if
if (skip = 0) then
theBitMap = theVTab.GetSelection
expr = "(([Product].UCase = ""OTC"") and
([OptimizedValue] > 0))"
theVTab.Query(expr, theBitMap, #VTAB SELTYPE NEW)
theSummaryField = theVTab.FindField ("DemandRegion™)
flnm = theDirectory + "\OTC2Store.dbf"
fldl = theVTab.FindField("OptimizedValue")
sumFldList = {fldl}
sumList = {#VTAB_SUMMARY_SUM}
newVTab = theVTab.Summarize (flnm.AsFileName, dBase,
theSummaryField, sumFldList, sumlList)
newTable = Table.Make (newVTab)
newTable. SetName ("OTC2Store.dbf")
'newTable.GetWin.Open
thenewVTab = newTable.GetVtab

MsgBox...)

' Make sure table is editable and if so,
' remove the count field

edit_state = thenewVTab.IsEditable
if (thenewVTab.CanEdit) then
thenewVTab.SetEditable (true)
thefld = thenewVTab.FindField("Count")
thenewVTab.RemoveFields ({thefld})
' thenewVTab.SetEditable (false)
else
MsgBox.Warning("Can't modify the table."+NL+
"Check write permission.”,"Can't delete Count field!")
exit
end
thefld = thenewVTab.FindField("Sum OptimizedValue")
thefld.SetAlias ("OTC2Store")
end
theTab.GetVTab.GetSelection.ClearAll
theTab.GetVTab.UpdateSelection

' Join the Rx2Store, CW2Store, and OTC2Store tables
' to the Demand Regions theme table

' Get the Demand Regions FTab

theView = av.GetProject.FindDoc{"Demand by Region")
if (thevView = Nil) then
MsgBox.Error ("ERROR: Demand by Region view does not exist."+NL+
"Summaries not joined to Demand Regions theme.",
Scriptname)
exit
end
if (not (theView.Is(View))) then

194

MsgBox.Error ("ERROR: Demand by Region doc is not a view."+NL+
"Summaries not joined to Demand Regions theme.",
Scriptname)
exit
end
theTheme = theView.FindTheme ("Demand Regions™)
if (theTheme = Nil) then
MsgBox.Error ("ERROR: Theme called Demand
Regions does not exist."+NL+
"Summaries not joined to Demand
Regions theme.", Scriptname)
exit
end
theFTab = theTheme.GetFTab

' Check to see if it already has joins

if (theFTab.IsBase.Not) then
av.GetProject.SetModified(true)

end

theFTab.UnjoinAll

' Get the join field of the Demand Regions table
fieldl = theFTab.FindField("Demand Region")

' Get the FTab and join field of the Rx2Store table
' and join it to the Demand Regions table

theVtab2 = av.FindDoc ("Rx2Store.dbf").GetVTab
field2 = theVtab2Z.FindField("DemandRegion")
theFTab.Join(fieldl, theVtab2, field2)

' Get the FTab and join field of the CW2Store table
' and join it to the Demand Regions table

theVtab2 = av.FindDoc{"CW2Store.dbf").GetVTab
field2 = theVtab2.FindField ("DemandRegion")
theFTab.Join(fieldl, theVtab2, field2)

' Get the FTab and join field of the OTC2Store table
' and jein it to the Demand Regions table

theVtab2 = av.FindDoc("OTC2Store.dbf").GetVTab
field2 = theVtab2.FindField{"DemandRegion")
theFTab.Join(fieldl, theVtab2, field2)

theFTab.SetEditable (true)

totalField = theFTab.FindField("Total Demand")

Create the Total Demand field if necessary, and calculate
195

' its value to zero

if (totalField = Nil) then
totalField = Field.Make("Total Demand", #FIELD_LONG, 12, 0)
theFTab.AddFields ({totalField})

end

theFTab.Calculate("0", totalField)

' Create the new " Vol" fields for CW, Rx, and OTIC
' if necessary and calculate their values to zero

catlist = {"OTC", "Rx", "CW"}
for each cat in catlist
newFldString = cat+"”_Vol"
newFld = theFTab.FindField(newFldString)
if (newFld = Nil) then
newFld = Field.Make (newFldString, #FIELD LONG, 12, 0)
theFTab.AddFields ({newFld})
end
theFTab.Calculate("0", newFld)
end

' Get the bitmap of the FTab and select all records in each
' joined sort field that is not null, then populate these

' values to its corresponding new field in the FTab using

' the calculate request

theBitMap = theFTab.GetSelection
theBitMap.ClearAll
theFTab.UpdateSelection
for each cat in catlist
fldName = cat+"2Store"
theField = theFTab.FindField(fldName)
if (theField <> Nil) then

expr = "(["+fldName+"].IsNull.Not}"
theFTab.Query (expr, theBitMap, #VTAB SELTYPE NEW)
calcexpr = "["+fldName+"]"

curstring = cat+" Vol"
calcfield = theFTab.FindField(curstring)
theFTab.Calculate{calcexpr, calcfield)
end
end
theBitMap.ClearAll
theFTab.UnjoinAll

' Get the fields to be totalled and calculate the
' Total Demand field

oFld = theFTab.FindField ("OTC Vol") .AsString

rFld = theFTab.FindField("Rx Vol").AsString
cFld = theFTab.FindField("CW_Vol") .AsString
calcexpr = " (["+oFld+"] + ["+rFld+"] + ["+cFld+"])"

theFTab.Calculate(calcexpr, totalField)

' Stop editing and save changes to FTab
196

theFTab.SetEditable (FALSE)

MsgBox.Info("Summary of Demand Region Data complete.",
"NOTICE")

return Nil

197

'***

Scriptname: SurmmTS

Filename: summts.ave

Description: Script summarizes the transhipment information
which is later joined to the CVS DCs theme table

Requires: Nil
Called by: CalcDCs
Calls: Nil
SELF': Nil

' Returns: Nil

|***

Scriptname = "SummTS"
' First get tranship.dbf table's VTab and the working directory

theTab = av.GetProject.FindDoc("tranship.dbf")
theVTab = theTab.GetVTab
theDirectory = av.GetProject.GetWorkDir.AsString

' Pirst do summaries over OriginFacilities field in picking.dbf
' and make pick tables called RxPicked and CWPicked.

' Check if the summary for Rx picked exists

rx_exists = (av.GetProject.FindDoc("RxPicked.dbf") = NIL) .Not
skip = 0
if (rx exists) then
thedoc = av.GetProject.FindDoc("RxPicked.dbf™)
if (MsgBox.YesNo ("Overwrite existing table?",
"The Table RxPicked already exists", false)) then
'if ok to overwrite, delete the fields as they
'may not be defined
'as required by this script (eg., created from
'another script).
if (rx_exists) then
av.GetProject.RemoveDoc (thedoc)

end
else
skip = 1
end 'if (MsgBox...)
end 'if

if (skip = 0) then
theBitMap = theVTab.GetSelection
expr = "{[Product].UCase = "+"RX".Quote+")"

198

en
th
th

'Check if the summary for CW picked exists

cw
sk
if

en

if

theVTab.Query (expr, theBitMap, #VTAB_SELTYPE NEW)
theSummaryField = theVTab.FindField("OriginFacility")

flnm = theDirectory + "\RxPicked.dbf"

f1dl = theVTab.FindField("OptimizedValue")

sumFldList = {£f1d1}
sumList = {#VIAB SUMMARY SUM}

newVTab = theVTab.SummarEze(flnm.AsFileName, dBase,
theSummaryField, sumFldList, sumlist)

newTable = Table.Make (newVTab)
newTable.SetName ("RxPicked.dbf")
'newTable.GetWin.Open
thenewVTab = newTable.GetVtab

Make sure table is editable and if so,
remove the count field

edit_state = thenewVTab.IsEditable

if (thenewVTab.CanEdit) then
thenewVTab.SetEditable (true)
thefld = thenewVTab.FindField("Count")
thenewVTab.RemoveFields ({thefld})
thenewVTab.SetEditable(false)

else

MsgBox.Warning ("Table can't be modified."+NL+

"Count field not deleted.",

end

Scri

ptname)

thefld = thenewVTab.FindField("Sum OptimizedValue")

thefld.SetAlias ("RxPicked for TS")
d
eTab.GetVTab.GetSelection.ClearAll
eTab.GetVTab.UpdateSelection

_exists = (av.GetProject.FindDoc("CWPicked.dbf")
ip =0
(cw_exists) then

thedoc = av.GetProject.FindDoc("CWPicked.dbf")

if (MsgBox.YesNo ("Overwrite existing table?",
"The Table CWPicked already exists", false))

then

'if ok to overwrite, delete the fields as they

'may not be defined

'as required by this script (eg., created from

'another script).

if {(cw_exists) then
av.GetProject.RemoveDoc (thedoc)

end

else

skip = 1
end 'if (MsgBox...)
d 'if

{skip = 0) then

theBitMap = theVTab.GetSelection

expr = "([Product].UCase = "+"CW".Quote+")"

theVTab.Query(expr, theBitMap, #VTAB_SELTYPE NEW)

199

= NIL) .Not

theSummaryField = theVTab.FindField("OriginFacility")

flnm = theDirectory + "\CWPicked.dbf"

fldl = theVTab.FindField("OptimizedValue")

sumFldList = {£1d1}

sumList = {#VTAB_SUMMARY SUM}

newVTab = theVTab.Summarize (flnm.AsFileName, dBase,
theSummaryField, sumFldList, sumList)

newTable = Table.Make (newVTab)

newTable. SetName ("CWPicked.dbf")

'newTable.GetWin.Open

thenewVTab = newTable.GetVtab

' Make sure table is editable and if so,
' remove the count field

edit state = thenewVTab.IsEditable
if (thenewVTab.CanEdit) then
thenewVTab.SetEditable (true)
thefld = thenewVTab.FindField("Count")
thenewVTab.RemoveFields ({thefld})
thenewVTab.SetEditable(false)
else
MsgBox.Warning("Table can't be modified."+NL+
"Count field not deleted.", Scriptname)
end
thefld = thenewVTab.FindField("Sum OptimizedValue"”)
thefld.SetAlias ("CWPicked for TS")
end
theTab.GetVTab.GetSelection.ClearAll
theTab.GetVTab.UpdateSelection

' Now do summaries over DestFacility field in
' picking.dbf table and make crossdock tables called
' Rx X Doc and CW _X Doc.

'Check if the summary for Rx cross doc exists

rx_exists = (av.GetProject.FindDoc("Rx_X Doc.dbf"™) = NIL).Not
skip = 0
if (rx_exists) then
thedoc = av.GetProject.FindDoc("Rx X Doc.dbf")
if (MsgBox.YesNo("Overwrite existing table?”,
"The Table Rx_X Doc already exists", false)) then
'if ok to overwrite, delete the fields as they
'‘may not be defined
‘as required by this script (eg., created from
'‘another script).
if (rx_exists) then
av.GetProject.RemoveDoc (thedoc)
end

else
skip = 1
'exit

end 'if (MsgBox...)
end ‘'if

if (skip = 0) then

theBitMap = theVTab.GetSelection

expr = "([Product].UCase = ""RX"")"

theVTab.Query (expr, theBitMap, #VTAB SELTYPE NEW)

theSummaryField = theVTab.FindField("DestinationFacility")

flnm = theDirectory + "\Rx X Doc.dbf”

f1dl = theVTab.FindField("OptimizedvValue")

sumFldList = {fldl}

sumList = {#VTAB SUMMARY_ SUM}

newVTab = theVTab.Summarize (flnm.AsFileName, dBase,
theSummaryField, sumFldList, sumList)

newTable = Table.Make (newVTab) .

newTable.SetName ("Rx_X Doc.dbf")

'newTable.GetWin.Open

thenewVTab = newTable.GetVtab

' Make sure table is editable and if so,
' remove the count field

edit_state = thenewVTab.IsEditable

if (thenewVTab.CanEdit) then
thenewVTab.SetEditable (true)
thefld = thenewVTab.FindField("Count")
thenewVTab.RemoveFields ({thefld})
thenewVTab.SetEditable (false)

else
MsgBox.Warning("Table can't be modified."+NL+

"Count field not deleted.", Scriptname)

end
thefld = thenewVTab.FindField("Sum OptimizedValue")
thefld.SetAlias("Rx_X_Doc")
end
theTab.GetVTab.GetSelection.ClearAll
theTab.GetVTab.UpdateSelection

"Check if the summary for CW picked exists

cw_exists = (av.GetProject.FindDoc
("CW_X Doc.dbf") = NIL).Not
skip = 0
if (cw exists) then
thedoc = av.GetProject.FindDoc("CW_X Doc.dbf")
if (MsgBox.YesNo("Overwrite existing table?",
"The Table CW_X Doc already exists”, false)) then
'if ok to overwrite, delete the fields as they
'may not be defined
'as required by this script (eg., created from
'another script).
if (cw_exists) then
av.GetProject.RemoveDoc (thedoc)
end
else
'exit
skip =1
201

end 'if (MsgBox...)
end 'if

if {(skip = 0) then
theBitMap = theVTab.GetSelection
expr = "([Product].UCase = ""CW""}"
theVTab.Query (expr, theBitMap, #VTAB_SELTYPE NEW)
theSummaryField = theVTab.FindField("DestinationFacility")
flnm = theDirectory + "\CW X Doc.dbf™
fldl = theVTab.FindField ("OptimizedValue")
sumFldList = {£f1dl}
sumList = {#VTAB_SUMMARY SUM}
newVTab = theVTab.Summarize (flnm.AsFileName, dBase,

theSummaryField, sumFldList, sumList)

newTable = Table.Make (newVTab)
newTable.SetName ("CW_X Doc.dbf")
'newTable.GetWin.Open
thenewVTab = newTable.GetVtab

' Make sure table is editable and if so,
' remove the count field

edit state = thenewVTab.IsEditable
if (thenewVTab.CanEdit) then
thenewVTab.SetEditable (true)
thefld = thenewVTab.FindField("Count")
thenewVTab.RemoveFields ({thefld})
thenewVTab.SetEditable(false)
else
MsgBox.Warning ("Table can't be modified."+NL+
"Count field not deleted.", Scriptname)
'exit
end
thefld = thenewVTab.FindField("Sum OptimizedValue")
thefld.SetAlias ("CW_X Doc")
end
theTab.GetVTab.GetSelection.ClearAll
theTab.GetVTab.UpdateSelection

return Nil

202

Thhkdkhkhkdhhdkhdhkdkhhkkhdhhdhdkhkdhkhkhhdkhhhhhkrddkhkdhhhdtrhrdhhdhhhkhdkdhhkdkddhkrdhkhdkht

' Scriptname: Table.Convert
' Filename: table co.ave

' Description: Script requires that certain tables be brought
! into the project from Anderson's MS Access

' database via an SQL connection. Script selects
' each table, exports it as a dbf file, then adds
! the new dbf file to the project.

' Called by: Menu Click event ("Convert Tables")

' Calls: Nil
' SELF: Nil
' Returns: Nil

Thdhdhdkhdhdhkhkdhkhkhhdhkhkhkhhdhhthkhhdhhhkdrdhddhdhhhddhdhhdhhkddkdhkhrddhhdhhbhhhkhkhhkdkhkdhthk

' First locate the SQL tables in the project
theProject = av.GetProject

dts = theProject.FindDoc("Direct to Store")
infac = theProject.FindDoc("Input - Facilities")

hand = theProject.FindDoc("Handling")
pick = theProject.FindDoc("Picking")
tran = thePrcocject.FindDoc("Transhipments")

' Make a list of the tables and make sure they
' exist by looping through and checking
' for Nil values

tabList = {dts, infac, hand, pick, tran}
for each t in tablist
if (t = Nil) then
MsgBox.Error ("One or more regquired tables not |
available ... Exiting.", "Table.Convert")
exit
end 'if
end' for loop

' Get the VTabs for each of the above tables

dtsVTab = dts.GetVTab
infacVTab = infac.GetVTab
handVTab = hand.GetVTab
pickVTab pick.GetVTab
tranVTab = tran.GetVTab

' Get the working directory of the project
theDirectory = theProject.GetWorkDir.AsString

' create a filename for each VTab to be exported as a dbf file
203

dtsname
infacname
handname
pickname
tranname

Export

dtsfile
infacfile
handfile =
pickfile
tranfile

il

Add the

dtsTable
dtsTable.S
infacTable
infacTable
handTable
handTable
pickTable
pickTable.
tranTable
tranTable

-

.

' Remove

theProject.
theProject.
theProject.
theProject.
theProject.

Get the

theCon S
theCon. Log
if (theCon
MsgBox.I
else
MsgBox.I
end

return Nil

theDirectory + "\dirstore”
theDirectory + "\inputfac"

= theDirectory + "\handling”

theDirectory + "\picking"

= theDirectory + "\tranship”

the VTabs

FALSE)
dBase, FALSE)
FALSE)
FALSE)
FALSE)

dtsVTab.Export (dtsname.AsFileName, dBase,

infacVTab.Export (infacname.AsFileName,
handVTab.Export (handname.AsFileName, dBase,
pickVTab.Export (pickname.AsFileName, dBase,
tranVTab.Export (tranname.AsFileName, dBase,

tables to the project using the new VTabs

Table.Make (dtsfile)
etName ("dirstore.dbf")
Table.Make {(infacfile)
.SetName ("inputfac.dbf")
Table.Make {handfile)
SetName ("handling.dbf")
Table.Make (pickfile)
SetName ("picking.dbf")
Table.Make (tranfile)
SetName ("tranship.dbf")

the SQL Tables from the project

RemoveDoc (dts)

RemoveDoc (infac)
RemoveDoc (hand)
RemoveDoc (pick)
RemoveDoc (tran)

SQL connection and disconnect it

QLCon.Find ("MS Access 97 Database")
out

Nil) then

nfo ("SQL connection closed.", "Table.Convert")

nfo("SQL connection not closed.", "Table.Convert")

204

Tahkkdhokokdkhhkhkhkhkhkdhkhhkrhdhhkrkrkhhhdhrrhkhhkhkhhkhkdhdbhdhdhrrhrddhdhdddbhhdhdhddhk

' Scriptname: Tables.Link
' Filename: tables l.ave
' Description: Script links the Demand Regions FTab to the

! dirstore.dbf VTab, the dirstore.dbf VTab to

' the DCs FTab, and the DCs FTab to the

! tranship.dbf VTab. These links are needed to
! run the trace scripts.

' Requires: dirstore.dbf file, tranship.dbf file,

! Demand Regions theme, CVS DCs theme exist
' Called by: Any of the Trace scripts

' Calls: Nil

' SELF: Nil

' Returns: Nil

Thkdkhhkhddhhhhrdbhhrhhhdkhhkdbhkhkdkhkhkhkdkhhkdkhkdkdhdkhdkhrddhkdhddhdddhdhkhkkdhdkddhhkhhh

Scriptname = "Tables.Link"
' Get the tables to be linked
theView = av.GetProject.FindDoc("Demand by Region")

if (theView = Nil) then
MsgBox.Error ("ERROR: Demand by Region view does not exist.",

Scriptname)
exit
elseif (not (theView.Is(View))) then
MsgBox.Error ("ERROR: Demand by Regicn doc is not a view.",
Scriptname)
exit
end

theTheme = theView.FindTheme ("Demand Regions")
if (theTheme = Nil) then
MsgBox.Error ("ERROR: Demand Regions theme does not exist.",
Scriptname)
exit
end
theStorevVTab = theTheme.GetFTab
theD2STable = av.GetProject.FindDoc("dirstore.dbf")
if (theD2STable = Nil) then
MsgBox.Info ("ERROR: dirstore.dbf table does not exist.”,
Scriptname)
exit
end
theD2SVTab = theD2STable.GetVTab
theDCTheme = theView.FindTheme ("CVS DCs")
if (theDCTheme = Nil) then
MsgBox.Error ("ERROR: CVS DCs theme does not exist.",

205

Scriptname)
exit
end
theDCVTab = theDCTheme.GetFTab
theTSTable = av.GetProject.FindDoc("tranship.dbf")
if (theTSTable = Nil) then
MsgBox.Error ("ERROR: tranship.dbf table does not exist.",
Scriptname)
exit
end
theTSVTab = theTSTable.GetVTab

' Get the common fields and link Attributes of
' Demand Regions to dirstore.dbf

theStoreFldl = theStoreVTab.FindField("Demand Region")
theStoreFld2 = theD2SVTab.FindField ("DemandRegion")
theStoreVTab.Link (theStoreFldl, theD2SVTab, theStoreFld2)
if (theSToreVTab.IsLinked.Not) then

MsgBox.Warning ("Link was unsuccessful...exiting.",

"Tables.Link™)

exit

end 'if

' Get the common fields and link
' dirstore.dbf to Attributes of DCs

theDCF1dl theD2SVTab.FindField("Facility")
theDCF1ld2 = theDCVTab.FindField("Facility")
theD2SVTab.Link (theDCF1ldl, theDCVTab, theDCFld2)
if (theD2SVTab.IsLinked.Not) then
MsgBox.Warning ("Link was unsuccessful...exiting.",
"Tables.Link")
theStoreVTab.UnlinkAll
exit
end 'if

' Get the common fields and link
' Attributes of DCs to tranship.dbf

theFacFldl = theDCFldz2
theFacFld2 = theTSVTab.FindField("DestinationFacility")
theDCVTab.Link (theFacFldl, theTSVTab, theFacFld2)
if (theDCVTab.IsLinked.Not) then
MsgBox.Warning("Link was unsuccessful...exiting.",
"Tables.Link")
theStoreVTab.UnlinkAll
theD2SVTab.UnlinkAll
exit
end 'if

return Nil

206

'***

' Scriptname: Tables.Unlink
' Filename: tables u.ave
' Description: Script unlinks the Demand Regions FTab, the

' dirstore.dbf VTab, and the CVS DCs FTab. These
! links are needed to run the Trace scripts

' Requires: dirstore.dbf file, tranship.dbf file, Demand
! Regions theme, CVS DCs theme exist

' Called by: Any of the Trace scripts
' Calls: Nil
' SELF: Nil
' Returns: Nil

Tk kg kkhhkdkhdkhhdkhkkdkdkhhddhhkdkdhhddhhdkdhodkddh ok hkdkdhdkdkdhkkdhkddddhhkddddddhdx

Scriptname = "Tables.Unlink"
' Get the tables to be linked
theView = av.GetProject.FindDoc ("Demand by Region")

if (theView = Nil) then
MsgBox.Error ("ERROR: Demand by Region view does not exist.",

Scriptname)
exit
elseif (not (theView.Is(View))) then
MsgBox.Error ("ERROR: Demand by Region doc is not a view.",
Scriptname)
exit
end

theTheme = theView.FindTheme ("Demand Regions")
if (theTheme = Nil) then
MsgBox.Error ("ERROR: Demand Regions theme does not exist.",
Scriptname)
exit
end
theStoreVTab = theTheme.GetFTab
theD2STable = av.GetProject.FindDoc("dirstore.dbf")
if (theD2STable = Nil) then
MsgBox.Info ("ERROR: dirstore.dbf table does not exist.”,

Scriptname)
exit
end
theD2SVTab = theD2STable.GetVTab
theDCTheme = theView.FindTheme ("CVS DCs")

if (theDCTheme = Nil) then
MsgBox.Error {"ERROR: CVS DCs theme does not exist.",
Scriptname)
exit
207

end
theDCVTab = theDCTheme.GetFTab
theTSTable = av.GetProject.FindDoc ("tranship.dbf")
if (theTSTable = Nil) then
MsgBox.Error ("ERROR: tranship.dbf table does not exist.",
Scriptname)
exit
end
theTSVTab = theTSTable.GetVTab

theStoreVTab.Unlinkall
theD2SVTab.UnlinkAll
theDCVTab.Unlinkall
theTSVTab.UnlinkAll

return Nil

208

'***

' Scriptname: TotalFlowTheme.Make

' Filename: totalflo.ave

' Author: Kenneth Bennett

' Date: May 3, 1998

' Description: Script generates a Flow theme based on the Total

! Flow field in the DC-to-Region Flow theme table.
! Zero value flows are made invisible using the

! null value and symbol.
' Requires: DC-to-Region flow theme must exist

' Called by: View menu item click event ("Display Flows:

! DC-to-Region by Total Flow")

' Calls: Nil
' SELF: Nil
' Returns: Nil

'***

Scriptname = "TotalFlowTheme.Make"

theView = av.GetProject.FindDoc ("Demand by Region")
if (theView = Nil) then

MsgBox.Error ("ERROR: Demand by Region view does not exist.",

Scriptname)
exit
end
if (not (theview.Is(View))) then
MsgBox.Error ("ERROR: Demand by Region doc is not a view.",
Scriptname)
exit
end

theTheme = theView.FindTheme ("DC-to-Region Flow")
if (theTheme = Nil) then
MsgBox.Error ("ERROR: Theme called DC-to-Region
Flow does not exist.", Scriptname)
exit
end

catString = "Total Flow"
checkTheme = theView.FindTheme (catString)

if (checkTheme <> nil) then
theView.DeleteTheme (checkTheme)

theTable = av.GetProject.FindDoc("Attributes of"++catString)

if (theTable <> NIL) then
av.GetProject.RemoveDoc (theTable)

209

end
end

' Clone the DC~-to~Region Flow theme

newTheme = theTheme.Clone
newLegend = newTheme.GetLegend
newLegend. SetLegendType (#LEGEND_TYPE_SYMBOL)

' Make zero the null value
newlegend.SetNullValue (catString, O0)

' Select a color from the color palette to be used
' in drawing the new line theme

theColor = av.Run{"ColorPalette.SelectColor", Nil)

' Classify the legend with into five natural breaks
' and weight the line thickness by the flow volume

newlegend.Natural (newTheme, catString, 5)
theSymbollist = newlegend.GetSymbols
thickness = 1
count = 0
for each s in theSymbolList
s.SetSize(thickness)
thickness = thickness + 1
end
theSymbolList.UniformColor (theCclor)

' Make the null symbol transparent

nullsym = Symbol.Make (#SYMBOL PEN)
theNullColor = Color.GetBlue
theNullColor.SetTransparent (TRUE)
nullSym.SetColor (theNullColor)
newlLegend.SetNullSymbol (nullSym)
newlLegend.DisplayNoDataClass (FALSE)
newTheme. SetLegend (newLegend)
newTheme.SetName (catString)
newTheme. SetActive (FALSE)

newTheme. SetVisible (TRUE)
theView.AddTheme (newTheme)
newTheme.UpdateLegend
theView.Invalidate

theNullColor. SetTransparent (FALSE)

return Nil

210

¥k de de ok e de vk gk ek ke ke ke g ok sk ke g sk ok ok sk ok ok ok ke ok e e dr e ok gk ke ok ke ke ok de ok ke ok e gk ke ok e e ok ok ok o e ok e ok ok ke ke e e

' Scriptname: TotDemRegTheme .Make

' Filename: totdemre.ave

' Author: Kenneth Bennett

' Date: May 3, 1998

' Description: Script generates a Demand Region theme based on

! the Total Demand field in the Demand Regions

! theme table. The theme is classified into five

' sizes based on total demand and uses the outlined
! round symbol

' Requires: DC-to-Region flow theme must exist

' Called by: View menu item click event
("Display Flows: by Total Flow")

' Calls: Nil
' SELF: Nil
' Returns: Nil

1 e s g e ok ke sk de ok kg ok Tk g ek ok s ke ke okt ke ke ok e ok ok ok ok ke ke ke sk ok Sk b e ke ok e ok gk gk e ke ok b e ok ke ke ke ke ke ok ke ke de ke ke ke

Scriptname = "TotalFlowTheme.Make"

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then
MsgBox.Error ("ERROR: Demand by Region view does not exist.",

Scriptname)
exit
end
if (not (theView.Is(View))) then
MsgBox.Error ("ERROR: Demand by Region doc is not a view.",
Scriptname)
exit
end

theTheme = theView.FindTheme ("Demand Regions")
if (theTheme = Nil) then
MsgBox.Error ("ERROR: Theme called Demand Regions
does not exist.", Scriptname)
exit
end

checkTheme = theView.FindTheme ("Demand Regions by Total Demand")
if (checkTheme <> nil) then
theView.DeleteTheme (checkTheme)
theTable = av.GetProject.FindDoc
("Attributes of Demand Regions by Total Demand”)
if (theTable <> NIL) then
av.GetProject.RemoveDoc (theTable)
end
211

end
' Clone the Demand-to-Store theme

totTheme = theTheme.Clone
totTheme.SetName ("Demand Regions by Total Demand")

' Change the legend to weight the symbol size
' by the total demand and classify into five
' groups using a natural break

totLegend = totTheme.GetLegend
totLegend. SetLegendType (#LEGEND_TYPE_SYMBOL)
totLegend.Natural (totTheme, "Total Demand", 5)
totLegend.DisplayNoDataClass (FALSE)
' Get the project working directory
theDir = av.GetProject.GetWorkDir.AsString
thePath = theDir+"\default.avp"
theSymbolList = totLegend.GetSymbols
index = 0
increment = 0
for each s in theSymbolList
thePalette = Palette.MakeFromFile (thePath.AsFileName)
' Grab the Marker palette and get the outlined round marker
chosenMarker = thePalette.GetList(#PALETTE_LIST_MARKER).Get(7)
chosenMarker.SetSize (10 + increment)
theSymbolList.Set (index, chosenMarker)
index = index + 1
increment = increment + 2
end
theSymbolList.UniformColor (Color.GetBlue)

totTheme.UpdateLegend
totTheme. SetVisible(TRUE)
theView.AddTheme (totTheme)
theView.Invalidate

return Nil

212

Thddkhdhdrhdhkhkhkhdhhdkrdbhhhhhhrhkkkkhkokdkdkhkdhkdh ko hdkdhdkkdhdkoddkhkkdkdkdkhkddhhkdhdhkddhkd

' Scriptname: TotLogTheme.Make

' Filename: totlogth.ave

' Author: Kenneth Bennett

' Date: May 6, 1998

' Description: Creates a pie chart theme of the Demand

! Regions where the pie slices represent the

! shipping, pick, transhipment, and crossdock

! costs for all products, and the size of the

! whole pie represents the total logistics cost.

' Requires: Demand Regions theme and the respective logistics
! cost table must exist.

' Called by: View menu item click event ("Display Demand
! Regions: by Total Logisics Cost")

' Calls: Nil
' SELF: Nil
' Returns: Nil

Thddkkhhkhhdkhkhkdkdkdddkhkdkdkhhhkdkdkkhhbhkhhdhdhdhdddhhdbhhhdbrdkrrhhkhdrhhhdhkhkhhdhhihx

Scriptname = "TotLogTheme.Make"
' Find the view and the Demand Regions theme
theView = av.GetProject.FindDoc("Demand by Region")

if (theView = Nil) then
MsgBox.Error ("ERROR: Demand by Region view does not exist.",

Scriptname)
exit
end
if (not (theView.Is(View))) then
MsgBox.Error ("ERROR: Demand by Region doc is not a view.”,
Scriptname)
exit
end

theView.GetWin.Open
theTheme = theView.FindTheme ("Demand Regions")
if (theTheme = Nil) then
MsgBox.Error ("ERROR: Demand Regions theme does not exist.”,
Scriptname)
exit
end
theFTab = theTheme.GetFTab

' Find the needed fields

oFld = theFTab.FindField ("OTC_to_Store")
213

rFld = theFTab.FindField("Rx_to_Store™")
cFld = theFTab.FindField("CW_to_Store")
totFld = theFTab.FindField ("Total Demand")

if ((oFld = Nil) OR (rFld = Nil) OR (cFld = Nil) OR
(totFld = Nil)) then
MsgBox.Error ("ERROR: Require product fields are missing.",

Scriptname)
exit
end
oFld = oFld.AsString

rFld
cFld

rFld.AsString
cFld.AsString

fldStringList = {oFld, rFld, cFld}

' Check to see if the new theme already exists
checkTheme = theView.FindTheme
("Demand Regions by Product Volume")

if (checkTheme <> Nil) then

theView.DeleteTheme (checkTheme)

theTable = av.GetProject.FindDoc

("Attributes of Demand Regions by Product Volume")
if (theTable <> Nil) then
av.GetProject.RemoveDoc (theTable)

end

end

' Clone the theme and work with the new theme

demTheme = theTheme.Clone

' Get the new Demand Region theme's legend
demlLegend = demTheme.GetLegend

'Create as many fill symbols as you have
'fieldNames and place them in a list.

otcsym = RasterFill.Make
otcsym.SetStyle(#RASTERFILL_STYLE_SOLID)
otcsym.SetColor (Color.GetBlue)

rxsym = RasterFill.Make

rxsym.SetStyle ($#RASTERFILL_STYLE_SOLID)
rxsym.SetColor (Color.GetRed)

cwsym = RasterFill.Make

cwsym.SetStyle (#RASTERFILL_STYLE SOLID)
cwsym.SetColor (Color.GetGreen)

theSyms = {otcsym, rxsym, cwsym}

' Make a background fill Symbol that is empty

214

BGsym = RasterFill.Make
BGsym. SetStyle ($RASTERFILL_STYLE EMPTY)

' Create the New Legend

demLegend.PieChart (demTheme, f1dStringList,
theSyms,BGSym, "Total Demand")

' To set a size field:

theSym = demlLegend.GetSymbol (demLegend.ReturnFieldNames,
false)

theSym.SetMinSize (8)
theSym.SetMaxSize (24)

' Redraw the theme using the PieChart legend.

demTheme .UpdateLegend

demTheme. SetActive (FALSE)

demTheme. SetVisible (TRUE)

demTheme. SetName {"Demand Regions by Product Volume")
theView.AddTheme (demTheme)

thevView.Invalidate

return Nil

215

'***

' Scriptname: TraceAll
' Filename: traceall.ave
' Description: Traces the total logistics costs for all

! product types (OTC + Rx + CW) in the

! demand region selected by the user. The

! demand region is selected by clicking the
! mouse pointer on a demand region feature

! immediately after selecting the "A" tool

' button or the Demand Regions All Products
! item under the Trace Costs view menu. The
! costs are shown to the user via a pop up

! dialog box.

' Reguires: dirstore.dbf file, tranship.dbf file, Demand
! Regions theme, CVS DCs theme must exist.

' Called by: View menu item click event

! ("Trace Cost: Demand Regions All Products")
! or by a tool button apply event

! (button with the "A" icon in the toolbar)

' Calls: Tables.Link, Tables.Unlink
' SELF: Nil
' Returns: Nil

'***

Scriptname = "TraceAll"

' Set the number format for all numbers in the script
Script.The.SetNumberFormat ("d.dd")

' Next, link the necessary tables
av.Run("Tables.Link","")

' Now get the necessary tables

theView = av.GetProject.FindDoc ("Demand by Region™)
if (theView = Nil) then
MsgBox.Error ("ERROR: Demand by Region view does not exist.",

Scriptname)
exit
elseif (not (theView.Is(View))) then
MsgBox.Error ("ERROR: Demand by Region doc is not a view.",
Scriptname)
exit
end

theThemelist = theView.GetThemes
for each t in theThemelist

216

t.SetActive (FALSE)
end
theTheme = theView.FindTheme ("Demand Regions")
if (theTheme = Nil) then
MsgBox.Error ("ERROR: Demand Regions theme does not exist.”,
Scriptname)
exit
end
theTheme. SetActive (true)
av.Run ("View.SelectPoint","")
theStoreVTab = theTheme.GetFTab
theD2STable = av.GetProject.FindDoc("dirstore.dbf")
if (theD2STable = Nil) then
MsgBox.Info ("ERROR: dirstore.dbf table does not exist.",

Scriptname)
exit
end
theD2SVTab = theD2STable.GetVTab
theDCTheme = theView.FindTheme ("CVS DCs")

if (theDCTheme = Nil) then
MsgBox.Error ("ERROR: CVS DCs theme does not exist.",
Scriptname)
exit
end
theDCVTab = theDCTheme.GetFTab
theTSTable = av.GetProject.FindDoc("tranship.dbf")
if (theTSTable = Nil) then
MsgBox.Error ("ERROR: tranship.dbf table does not exist.",
Scriptname)
exit
end
theTSVTab = theTSTable.GetVTab

' Get the bitmap for the Demand Regions VTab

theBStMap = theStoreVTab.GetSelection
if (theBStMap.Count = 0) then
exit
end
thestorefld = theStoreVTab.FindField("Demand Region")
sellist = theBStMap.AsList
theBStMap.ClearAll
theStoreVTab.UpdateSelection
ii = -1
for each jj in sellist
ii = ii + 1
if (jj.Not) then
continue
end
theBStMap.Set (ii)
theStoreVTab.UpdateSelection
theamtl = 0

217

thetsflowl =
d2scostl = 0
pickcostl 0
xdoccostl = 0
tscostl = 0
totalCostl = 0
if (theBStMap.Get(ii)) then
store = theStoreVTab.ReturnValue (thestorefld,ii)

0

end
theBMap = theD2SVTab.GetSelection
expr = " ([OptimizedValue] > 0)" ++ "and" ++

"({Product] = ""oTCc"™)"
theD2SVTab.Query(expr, theBMap, #VTAB SELTYPE_AND)
theratefld = theD2SVTab.FindField("ActualRate")
theamtfld = theD2SVTab.FindField("OptimizedValue")
thed2sdcfld = theD2SVTab.FindField("Facility")
for each i in theBMap

if (theBMap.Get(i)) then
theD2SVTab.UpdateSelection
thefacil = theD2SVTab.ReturnValue (thed2sdcfld, i)
theamtl = theD2SVTab.ReturnValue (theamtflid, i)
d2scostl = theD2SVTab.ReturnValue (theratefld,i) * theamtl
end
'for this flow, see what is happening at the DC
theDCBMap theDCVTab.GetSelection
dcratefld = theDCVTab.FindField("OTC Rate")
dcfld = theDCVTab.FindField("Facility")
for each j in theDCBMap
if (theDCBMap.Get(j)) then
'a pick cost
thedc = theDCVTab.ReturnValue (dcfld, j)
if (thedc = thefacil) then
pickcostl = theamtl * theDCVTab.ReturnValue
(dcratefld, j)

end
end
end
end
thetsflowl = 0 'No transhipments of OTC products
totalCostl = d2scostl + xdoccostl + tscostl + pickcostl
theBStMap.Clear (ii)
theStoreVTab.UpdateSelection
theD2SVTab.UpdateSelection
theDCBMap = theDCVTab.GetSelection
theDCBMap.ClearAll
theDCVTab.UpdateSelection
theTSBMap = theTSVTab.GetSelection
theTSBMap = theTSVTab.GetSelection
theTSBMap.ClearAll
theTSVTab.UpdateSelection
end ' on jj

ii = -1
for each jj in sellist
ii = ii + 1
if (jj.Not) then
continue
end
theBStMap.Set (ii)
theStoreVTab.UpdateSelection
theamt2 = 0
thetsflow2 =
d2scost2 = 0
pickcost2 = 0
xdoccost2 = 0
tscost2 = 0
totalCost2 = 0
if (theBStMap.Get(ii)) then
store = theStoreVTab.ReturnvValue (thestorefld,ii)
end
theBMap = theD2SVTab.GetSelection
expr = "([OptimizedValue]l > 0)" ++ "and" ++
" ([Product] = ""Rx"") "
theD2SVTab.Query (expr, theBMap, #VTAB SELTYPE AND)
theratefld = theD2SVTab.FindField ("ActualRate")
theamtfld = theD2SVTab.FindField("OptimizedValue")
thed2sdcfld = theD2SVTab.FindField("Facility")
for each i in theBMap
if (theBMap.Get(i)) then
theD2SVTab.UpdateSelection
thefacil = theD2SVTab.ReturnValue (thed2sdcfld, i)
theamt2 = theD2SVTab.ReturnValue (theamtfld, i)
d2scost?2 = theD2SVTab.ReturnValue(theratefld,i) * theamtZ
end
'for this flow, see what is happening at the DC
theDCBMap = theDCVTab.GetSelection
hasrx = theDCVTab.FindField("HasRx")
dcratefld = theDCVTab.FindField("Rx Rate")
dcfld = theDCVtab.FindField{("Facility")
for each j in theDCBMap
if (theDCBMap.Get(j)) then
thedc = theDCVTab.ReturnvValue (dcfld, j)
if (thedc <> thefacil) then
continue
end
rxthere theDCVTab.Returnvalue (hasrx, j)
if (rxthere = 0) then
xdoccost?2 = theamt2 * theDCVTab.ReturnValue
(dcratefld, j)

0

'put traceback to tranship here
theTSBMap = theTSVTab.GetSelection
expr = "([OptimizedValue] > 0)" ++ "and" ++

" ([Product] = ""Rx"")"

theTSVTab.Query (expr, theTSBMap, #VTAB SELTYPE AND)
theTSVTab.UpdateSelection
thetsratefld = theTSVTab.FindField("ActualRate")
theorigfld = theTSVTab.FindField("OriginFacility")
theflowfld theTSVTab.FindField ("OptimizedValue")

219

thedcfld = theDCVTab.FindField("Facility")
'get total flow into xdoc dc
thetsflow2 = 0
for each k in theTSBMap
if (theTSBMap.Get(k)) then
thetsflow2 = thetsflow2 +
theTSVTab.Returnvalue (theflowfld, k)
end
end
'get average cost per unit
therate = 0
for each k in theTSBMap
if (theTSBMap.Get(k)) then
theratio = theTSVTab.ReturnValue (theflowfld, k)
/thetsflow2
therate = therate + theTSVTab.ReturnValue
(thetsratefld,k) * theratio
theorig = theTSVTab.ReturnValue (theorigfld, k)
end
end
tscost2 = theamt2 * therate
pickcostrate = 0
for each k in theTSBMap
if (theTSBMap.Get (k)) then
theorig = theTSVTab.ReturnValue (theorigfld, k)
theratio = theTSVTab.ReturnValue
{(theflowfld, k)/thetsflow?2
for each m in theDCVTab
thefacil2 = theDCVTab.ReturnvValue
(thedcfld, m)
if (thefacil2 = theorig) then
pickcostrate = pickcostrate +
theDCVTab.ReturnValue (dcratefld, m)

* theratio
end
end
end
end
pickcost2 = theamt2 * pickcostrate
else 'a pick cost
pickcost2 = theamt2 * theDCVTab.ReturnValue
(dcratefld, j)
end
end
end

end
totalCost2 = d2scost2 + xdoccost2 + tscost2 + pickcost2
theBStMap.Clear(ii)
theStorevVTab.UpdateSelection
theBMap.ClearAll
theD2SVTab.UpdateSelection
theDCBMap = theDCVTab.GetSelection
theDCBMap.ClearAll
theDCVTab.UpdateSelection
theTSBMap = theTSVTab.GetSelection
theTSBMap = theTSVTab.GetSelection

220

theTSBMap.ClearAll
theTSVTab.UpdateSelection
end ' on jj

ii = -1
for each jj in sellist
ii = 4ii + 1
if (jj.Not) then
continue
end
theBStMap.Set (ii)
theStoreVTab.UpdateSelection
theamt3 = 0
thetsflow3 =
d2scost3 = 0
pickcost3 = 0
xdoccost3 = 0
tscost3 = 0
totalCost3 = 0
if (theBStMap.Get(ii)) then
store = theStoreVTab.ReturnvValue(thestorefld,ii)

0

end
theBMap = theD2SVTab.GetSelection
expr = " ([OptimizedValue] > 0)" ++ "and" ++

"({[Product] = ""cw"")"
theD2SVTab.Query(expr, theBMap, #VTAB SELTYPE AND)
theratefld = theD2SVTab.FindField("ActualRate")
theamtfld = theD2SVTab.FindField("OptimizedValue")
thed2sdcfld = theD2SVTab.FindField("Facility")
for each i in theBMap

if (theBMap.Get(i)) then
theD2SVTab.UpdateSelection
thefacil = theD2SVTab.ReturnValue (thed2sdcfld,i)
theamt3 = theD2SVTab.ReturnValue (theamtfld, i)
d2scost3 = theD2SVTab.ReturnvValue (theratefld,i) * theamt3
end
'for this flow, see what is happening at the DC
theDCBMap = theDCVTab.GetSelection
hascw = theDCVTab.FindField ("HasCW")
dcratefld = theDCVTab.FindField("CW Rate")
otcratefld = theDCVTab.FindField ("OTC Rate")
dcfld = theDCVTab.FindField("Facility")
for each j in theDCBMap
if {(theDCBMap.Get(j)) then
thedc = theDCVTab.ReturnvValue (dcfld, j)
if (thedc <> thefacil) then
continue
end
cwthere = theDCVTab.ReturnvValue (hascw, j)
if (cwthere = 0) then
xdoccost3 = theamt3 * theDCVTab.ReturnValue
(dcratefld, j)

221

'put traceback to tranship here
theTSBMap = theTSVTab.GetSelection
expr = "([OptimizedValue] > 0)" ++ "and"” ++
" ([Product] - ""CW"") ”"
theTSVTab.Query (expr, theTSBMap, #VTAB_ SELTYPE_AND)
theTSVTab.UpdateSelection
thetsratefld = theTSVTab.FindField ("ActualRate")
theorigfld = theTSVTab.FindField("OriginFacility")
theflowfld = theTSVTab.FindField("OptimizedValue")
thedcfld = theDCVTab.FindField("Facility")
'get total flow into xdoc dc
thetsflow3 = 0
for each k in theTSBMap
if (theTSBMap.Get (k)) then
thetsflow3 = thetsflow3 +
theTSVTab.ReturnValue (theflowfld, k)
end
end
'get average cost per unit
therate = 0
for each k in theTSBMap
if (theTSBMap.Get{(k)) then
theratio = theTSVTab.ReturnValue (theflowfld, k)
/thetsflow3
therate = therate + theTSVTab.ReturnValue
(thetsratefld, k) * theratio
theorig = theTSVTab.ReturnValue (theorigfld, k)
end
end
tscost3 = theamt3 * therate
pickcostrate = 0
for each k in theTSBMap
if (theTSBMap.Get (k)) then
theorig = theTSVTab.ReturnvValue (theorigfld, k)
theratio = theTSVTab.ReturnValue (theflowfld, k)
/thetsflow3
for each m in theDCVTab
thefacil2 = theDCVTab.ReturnValue
(thedcfld,m)
if (thefacil2 = theorig) then
pickcostrate = pickcostrate +
theDCVTab.ReturnValue (otcratefld, m)
* theratio
end
end
end
end
pickcost3 = theamt3 * pickcostrate
else 'a pick cost
pickcost3 = theamt3 * theDCVTab.ReturnValue
(otcratefld, j)
end
end
end
end
totalCost3 = d2scost3 + xdoccost3 + tscost3 + pickcost3

222

theBStMap.Clear (ii)
theStoreVTab.UpdateSelection
theBMap.ClearAll
theD25VTab.UpdateSelection
theDCBMap = theDCVTab.GetSelection
theDCBMap.ClearAll
theDCVTab.UpdateSelection
theTSBMap = theTSVTab.GetSelection
theTSBMap = theTSVTab.GetSelection
theTSBMap.ClearAll
theTSVTab.UpdateSelection

end ' on jj
av.Run("Tables.Unlink","")

' Sum the DC~to-Region flow and the transhipment
' flow amounts, and also the cost amount for each
' component and issue the report.

theamt4 = theamtl + theamt2 + theamt3

thetsflowd = thetsflowl + thetsflow2 + thetsflow3
d2scost4 = d2scostl + d2scost2 + d2scost3
xdoccostd4d = xdoccostl + xdoccost2 + xdoccost3
tscostd = tscostl + tscost2 + tscost3

pickcostd4 = pickcostl + pickcost2 + pickcost3
totalCost4 = totalCostl + totalCost2 + totalCost3

' Make the report string

therepstr = "Trace type: All Products"+nl+"Demand Region:"++
store+nl+"Demand for all products:"++theamt4.AsString
+nl+"Shipping cost from"++thefacil++":"++
d2scost4.AsString+nl+"Total transhipment flow:"
++thetsflow4.AsString+nl+"Total transhipment cost:"
++tscost4.AsString+nl+"Total crossdock cost:"++
xdoccost4.AsString+nl+"Total pick cost:"++
pickcost4.AsString+nl+nl+"Total Logistics cost for all
products:"++totalCost4.AsString+nl

' Call up the report
MsgBox.Report (therepstr,
"Total Logistics Cost To Serve Demand Region"++

store.AsString)

return Nil

223

l**

' Scriptname: TraceCW
' Filename: tracecw.ave
' Description: Traces the total CW logistics costs for a

! demand region selected by the user. The
! demand region is selected by clicking the
! mouse pointer on a demand region feature
! immediately after selecting the "C" tool
! button or the Demand Regions CW Only item

! under the Trace Costs view menu. The costs

! are shown to the user via a pop up dialog
! box.

' Requires: dirstore.dbf file, tranship.dbf file, Demand

! Regions theme, CVS DCs theme must exist.

' Called by: View menu item click event

' ("Trace Cost: Demand Regions CW Only")

! or by a tool button apply event

! (button with the "C" icon in the toolbar)

' Calls: Tables.Link, Tables.Unlink
' SELF: Nil
' Returns: Nil

Tddkhokkkkkdkhkhkdhdkhdkdrkhhhkhkdkkdkhhkhhhrrhrdhhkdkkhhdhhdrhdhddkdhdkhdkhkdhkhd

Scriptname = "TraceCW"

' Set the number format for all numbers in the script
Script.The.SetNumberFormat ("d.dd")

' Next, link the necessary tables

av.Run ("Tables.Link","")

' Now get the necessary tables

theView = av.GetProject.FindDoc{"Demand by Region™)
if (theView = Nil) then

MsgBox.Error ("ERROR: Demand by Region view does not exist.",

Scriptname)
exit
elseif (not (theView.Is(View))) then
MsgBox.Error ("ERROR: Demand by Region doc is not a view.",
Scriptname)
exit
end

theThemeList = theView.GetThemes
for each t in theThemelist
t.SetActive (FALSE)

end
theTheme = theView.FindTheme ("Demand Regions")
if (theTheme = Nil) then
MsgBox.Error ("ERROR: Demand Regions theme does not exist.",
Scriptname)
exit
end
theTheme.SetActive (true)
av.Run("View.SelectPoint"”,"")
theStoreVTab = theTheme.GetFTab
theD2STable = av.GetProject.FindDoc("dirstore.dbf")
if (theD2STable = Nil) then
MsgBox.Info ("ERROR: dirstore.dbf table does not exist.",

Scriptname)
exit
end
theD2SVTab = theD2STable.GetVTab

theDCTheme = theView.FindTheme ("CVS DCs")
if (theDCTheme = Nil) then
MsgBox.Error ("ERROR: CVS DCs theme does not exist.",
Scriptname)
exit
end
theDCVTab = theDCTheme.GetFTab
theTSTable = av.GetProject.FindDoc("tranship.dbf")
if (theTSTable = Nil) then
MsgBox.Error ("ERROR: tranship.dbf table does not exist.",
Scriptname)
exit
end
theTSVTab = theTSTable.GetVTab

' Get the bitmap for the Demand Regions VTab

theBStMap = theStoreVTab.GetSelection
if (theBStMap.Count = 0) then

exit
end
thestorefld = theStoreVTab.FindField("Demand Region")
sellList = theBStMap.AsList
theBStMap.ClearAll
theStoreVTab.UpdateSelection
ii = -1
for each jj in sellist

ii =4ii + 1

if (jj.Not) then

centinue

end

theBStMap.Set (ii)

theStoreVTab.UpdateSelecticn

theamt = 0
thetsflow = 0
d2scost = 0
pickcost = 0
xdoccost 0

tscost = 0

225

0

therepstr = "Trace type: CW Products Only"+nl

if (theBStMap.Get(ii)) then
store = theStoreVTab.ReturnvValue (thestorefld,ii)
therepstr = therepstr + "Demand Region:" ++ store + nl

totalCost

end
theBMap = theD2SVTab.GetSelection
expr = " ([OptimizedvValue] > 0)" ++ "and" ++

" ([Product] = ""CW"") "
theD2SVTab.Query(expr, theBMap, #VTAB_SELTYPE_AND)
theratefld = theD2SVTab.FindField{"ActualRate")
theamtfld = theD2SVTab.FindField("OptimizedvValue™)
thed2sdcfld = theD2SVTab.FindField("Facility")
for each i in theBMap
if (theBMap.Get(i)) then
theD2SVTab.UpdateSelection
thefacil = theD2SVTab.ReturnValue (thed2sdcfld, i)
theamt = theD2SVTab.ReturnValue (theamtfld, i)
therepstr = therepstr+ "Demand for CW products:” ++
theamt.AsString+nl
d2scost = theD2SVTab.ReturnValue (theratefld,i) * theamt
therepstr = therepstr + "Shipping cost from" ++ thefacil ++
":"++d2scost.AsString+nl -
end
'for this flow, see what is happening at the DC
theDCBMap = theDCVTab.GetSelection
hascw = theDCVTab.FindField("HasCW")
dcratefld = theDCVTab.FindField("CW Rate")
dcfld = theDCVTab.FindField("Facility")
for each j in theDCBMap
if (theDCBMap.Get(j)) then
thedc = theDCVTab.ReturnValue (dcfld, j)
if (thedc <> thefacil) then
continue
end
cwthere = theDCVTab.ReturnvValue (hascw, j)
if (cwthere = 0) then
xdoccost = theamt * theDCVTab.ReturnValue
(dcratefld, j)
therepstr = therepstr + "Crossdock cost at" ++
thefacil ++ ":"++
xdoccost.AsString +nl
'put traceback to tranship here
theTSBMap = theTSVTab.GetSelection
expr = "([OptimizedValue] > 0}" ++ "and" ++
" ([Product] = ” "CW" ") ”
theTSVTab.Query (expr, theTSBMap, #VTAB SELTYPE AND)
theTSVTab.UpdateSelection
thetsratefld = theTSVTab.FindField("ActualRate")
theorigfld = theTSVTab.FindField("OriginFacility")
theflowfld = theTSVTab.FindField ("OptimizedValue")
thedcfld = theDCVTab.FindField("Facility")
'get total flow into xdoc dc
thetsflow = 0
for each k in theTSBMap
if (theTSBMap.Get(k)) then

226

thetsflow = thetsflow +
theTSVTab.ReturnValue (theflowfld, k)

end
end

'get average cost per unit

therate

0

for each k in theTSBMap
if (theTSBMap.Get(k)) then

theratio = theTSVTab.ReturnValue (theflowfld, k)

/thetsflow

therate = therate + theTSVTab.ReturnValue

(thetsratefld, k) * theratio

theorig = theTSVTab.ReturnValue (theorigfld, k)

end
end
tscost =

theamt * therate

if (theTSBMap.Count > 1) then
= therepstr+

therepstr

else
therepstr

end

"Weighted Average Transship Cost from"++

theTSBMap.count.AsString++
"origins to"++thefacil++
":"++tscost.AsString+nl

= therepstr+"Transshipment cost from"++

theorig++"to"++thefacil++":"++
tscost.AsString+nl

pickcostrate = 0

for each k in theTSBMap
if (theTSBMap.Get (k)) then
theorig = theTSVTab.ReturnValue (theorigfld, k)
theratio = theTSVTab.ReturnValue(theflowfld, k)

/thetsflow

for each m in theDCVTab

end
end
end
pickcest

| therepstr

else
therepstr

end

else 'a pick

pickcost

thefacil2 = theDCVTab.ReturnValue
(thedcfld, m)
if (thefacil2 = theorig) then
pickcostrate = pickcostrate +
theDCVTab.ReturnValue (dcratefld, m)
* theratio :
end

= theamt*pickcostrate

if (theTSBMap.Count > 1) then

therepstr+

"Weighted average pick cost at"++
theTSBMap.count.AsString++
"origins:"++pickcost.AsString+nl

therepstr+"Pick cost at origin DC:"++
pickcost.AsString+nl

cost
theamt * theDCVTab.ReturnValue

227

(dcratefld, j)
therepstr = therepstr+"Pick cost at "+thefacil++":"++
pickcost.AsString+nl

end
end
end

end
totalCost d2scost + xdoccost + tscost + pickcost
therepstr = therepstr+nl+"Total Logistics Cost for CW Products:"

++totalCost.AsString+nl
MsgBox.Report (therepstr,

"Total Logisitic Costs to Serve Demand Region"
++store.AsString)

av.Run("Tables.Unlink","")
theBStMap.Clear(ii)
theStoreVTab.UpdateSelection
theBMap.ClearAll
theD2SVTab.UpdateSelection
theDCBMap = theDCVTab.GetSelection
theDCBMap.ClearAll
theDCVTab.UpdateSelection
theTSBMap = theTSVTab.GetSelection
theTSBMap = theTSVTab.GetSelection
theTSBMap.ClearAll
theTSVTab.UpdateSelection

end ' on jj

return Nil

228

' ***

' Scriptname: TraceCWAll
' Filename: tracecwa.ave
' Description: Script finds the total CW logistics cost

! for each demand region and writes it to a
! new dBase file called CWLgCst.dbf. This
! file is then joined to the Demand Regions
! table.

' Requires: dirstore.dbf, tranship.dbf, Demand Regions
! theme, CVS DCs theme exists

' Called by: View menu click event
("Trace Costs: Chain-wide CW Only")

' Calls: Tables.Link, Tables.Unlink
' SELF: Nil
' Returns: Nil

Thkhkhhhdhrhkrbrhhhdhhhbhbhbhbdkddbhhhddhhhhbhkhhdkdkkdkddhbhdhdkdddhhddhdhhhdhdkhdsh

Scriptname = "TraceCWAll"
' Warn user about time to complete this script

resume = MsgBox.YesNo("This trace takes approximately 10 minutes.”
+nl+"Do you want to continue?",
"Trace Costs: Chain-wide CW Only", FALSE)
if (resume = false) then
exit
end

' Set the number format for the script
Script.The.SetNumberFormat ("d.dd")

' Get the VTabs to be used and get the working directory
av.Run("Tables.Link","")
theDirectory = av.GetProject.GetWorkDir.AsString

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then
MsgBox.Error ("ERROR: Demand by Region view does not exist.”,

Scriptname)
exit
elseif (not (theView.Is(View))) then
MsgBox.Error ("ERROR: Demand by Region doc is not a view.",
Scriptname)
exit
end

theTheme = theView.FindTheme ("Demand Regions™)
229

if (theTheme = Nil) then
MsgBox.Error ("ERROR: Demand Regions theme does not exist.”,
Scriptname)

exit
end
theStoreVTab = theTheme.GetFTab
theD2STable = av.GetProject.FindDoc{"dirstore.dbf")
if (theD2STable = Nil) then
MsgBox.Info ("ERROR: dirstore.dbf table does not exist.",

Scriptname)
exit
end
theD2SVTab = theD2STable.GetVTab

theDCTheme = theView.FindTheme ("CVS DCs")
if (theDCTheme = Nil) then
MsgBox.Error ("ERROR: CVS DCs theme does not exist.”,
Scriptname)
exit
end
theDCVTab = theDCTheme.GetFTab
theTSTable = av.GetProject.FindDoc("tranship.dbf")
if (theTSTable = Nil) then
MsgBox.Error ("ERROR: tranship.dbf table does not exist.",
Scriptname)
exit
end
theTSVTab = theTSTable.GetVTab

' Get the bitmap for the Demand Regions VTab
theBStMap = theStoreVTab.GetSelection

'check if table exists
sumcwcst_exists = (av.GetProject.FindDoc ("CWLgCst.dbf")
= NIL).Not
skip = 0
if (sumcwcst_exists) then
thedoc = av.GetProject.FindDoc ("CWLgCst.dbf")
if (MsgBox.YesNo("Overwrite existing logistics cost table?",
"The Table CWLgCst already exists",false)) then
if (sumcwcst_exists) then
av.GetProject.RemoveDoc (thedoc)
end
else
skip =1
end
end
'create a newtable
if (skip = 0) then
flnm = theDirectory + "/CWLgCst.dbf"
newVTab = VTab.MakeNew(flnm.AsFileName, dBase)
storefld = Field.Make ("DemRegion",#FIELD_CHAR,16, 0)

directfld = Field.Make ("CWDrctCst",#FIELD_DECIMAL,16,2)
pickfld = Field.Make ("CWPicszt",#FIELD_DECIMAL,16,2)
transfld = Field.Make ("CWTranCst",#FIELD DECIMAL,16,2)

xdocfld = Field.Make ("CWXdocCst",#FIELD DECIMAL,16,2)
230

totfld = Field.Make ("CWTothst",#FIELD_DECIMAL,16,2)
newVTab.AddFields ({storefld, directfld,pickfld,
transfld, xdocfld, totfld})
storefld.SetAlias ("Demand Region")
directfld.SetAlias ("CW Direct Cost")
pickfld.SetAlias ("CW Pick Cost")
| transfld.SetAlias ("CW Tranship Cost")
xdocfld.SetAlias ("CW Crossdock Cost")
totfld.SetAlias ("CW Total Cost")
| theBStMap.ClearAll
| thestorefld = theStoreVTab.FindField("Demand Region")
| numrecs = theStoreVTab.GetNumRecords
1 for each ii in theStoreVTab
| 'Clear the bitmap
| theBSTMap.ClearAll
‘ ' Set the record in the demand regions table
| theBStMap.Set (ii)
‘ theStoreVTab.UpdateSelection
theamt = 0
thetsflow = 0
d2scost = 0
pickcost = 0
xdoccost = 0
tscost = 0
| if (theBStMap.Get(ii)) then
store = theStoreVTab.ReturnValue (thestorefld,ii)
end
' Get the dirstore.dbf record selected by the link
theBMap = theD2SVTab.GetSelection
' Reselect those record with CW flow greater than zero
expr = "([Optimizedvalue] > 0)" ++ "and" ++
” ([Product] = ""CW"") "
theD2SVTab.Query{expr, theBMap, #VTAB SELTYPE AND)
theratefld = theD2SVTab.FindField("ActualRate")
theamtfld = theD2SVTab.FindField("OptimizedvValue")
thed2sdcfld = theD2SVTab.FindField("Facility")
' Loop through selected set in dirstore.dbf
for each i in theBMap
if (theBMap.Get(i)) then
theD2SVTab.UpdateSelection
thefacil = theD2SVTab.ReturnValue (thed2sdcfld,i)
theamt = theD2SVTab.ReturnValue (theamtfld, i)
d2scost = theD2SVTab.ReturnValue{theratefld,i) * theamt
end
'for this flow, see what is happening at the DC by
'getting the selected set in the CVS DCs table
theDCBMap = theDCVTab.GetSelection
hascw = theDCVTab.FindField("HasCW")
dcratefld = theDCVTab.FindField("CW Rate")
dcfld = theDCVTab.FindField("Facility")
for each j in theDCBMap
if (theDCBMap.Get(j)) then
thedc = theDCVTab.ReturnvValue (dcfld,j)
if (thedc <> thefacil) then
continue
end

231

cwthere = theDCVTab.ReturnValue (hascw, j)
if (cwthere = 0) then
xdoccost = theamt * theDCVTab.ReturnValue
(dcratefld, j)
'put traceback to tranship here
theTSBMap = theTSVTab.GetSelection
expr = "([OptimizedValue] > 0)" ++ "and" ++
1" ([Product] - ""CW"") L1
theTSVTab.Query (expr, theTSBMap, #VTAB SELTYPE_AND)
theTSVTab.UpdateSelection
thetsratefld = theTSVTab.FindField("ActualRate")
theorigfld = theTSVTab.FindField("OriginFacility")
theflowfld = theTSVTab.FindField("OptimizedValue")
thedcfld = theDCVTab.FindField("Facility")
'get total flow into xdoc dc
thetsflow = 0
for each k in theTSBMap
if (theTSBMap.Get (k)) then
thetsflow = thetsflow +
theTSVTab.ReturnValue (theflowfld, k)
end
end
'get average cost per unit
therate = 0
for each k in theTSBMap
if (theTSBMap.Get(k)) then
theratio = theTSVTab.ReturnValue (theflowfld, k)
/thetsflow
therate = therate + theTSVTab.ReturnValue
(thetsratefld, k) * theratio
theorig = theTSVTab.ReturnValue (theorigfld, k)
end
end
tscost = theamt * therate
pickcostrate = 0
for each k in theTSBMap
if (theTSBMap.Get (k)) then
theorig = theTSVTab.ReturnValue (theorigfld, k)
theratio = theTSVTab.ReturnvValue (theflowfld, k)
/thetsflow
for each m in theDCVTab
thefacil2 = theDCVTab.ReturnValue
{thedcfld,m)
if (thefacil2 = theorig) then
pickcostrate = pickcostrate +
theDCVTab.ReturnValue (dcratefld,m)
* theratio
end
end
end
end
pickcost = theamt * pickcostrate
else 'a pick cost
pickcost = theamt *
theDCVTab.ReturnValue (dcratefld, j)
end

232

end
end
end
theBStMap.Clear(ii)
theStoreVTab.UpdateSelection
newrec = newVtab.AddRecord
newVTab.SetValue(storefld, newrec,store)
newVTab. SetValue(directfld, newrec,dZ2scost)
newVTab.SetValue (pickfld, newrec, pickcost)
newVTab.SetValue (transfld, newrec,tscost)
newVTab. SetValue (xdocfld, newrec, xdoccost)
totcost = d2scost+pickcost+tscost+xdoccost
newVTab.SetValue (totfld, newrec, totcost)
end ' on ii
end 'if skip = 0
theBStMap.ClearAll
theStorevVTab.UpdateSelection
theBMap = theD2SVTab.GetSelection
theBMap.ClearAll
theD2SVTab.UpdateSelection
theBMap = theDCVTab.GetSelection
theBMap.ClearAll
theDCVTab.UpdateSelection
theBMap = theTSVTab.GetSelection
theBMap.ClearAll
theTSVTab.UpdateSelection
av.Run("Tabkles.Unlink","")

' get the new table to uneditable and write to file

newVTab.SetEditable (FALSE)
newVTab.Flush

checkTable = av.GetProject.FindDoc ("CW Logistics Costs")

if (checkTable <> Nil) then
av.GetProject.RemoveDoc (checkTable)

end

' Bring the new table into the project

newTable = Table.Make (newVTab)

newTable.SetName ("CW Logistics Costs")

av.GetProject.AddDoc (newTable)

' Join the newTable to the Demand Regions table

theStoreVTab.Join (thestorefld, newVTab, storefld)

MsgBox.Info ("Tracing of CW logistics cost for"+nli+

"each demand region is complete.”,
"Trace Costs: Chain-wide CW Only")

return Nil

233

' -k*-k**

' Scriptname: TraceOTCAll
' Filename: traceotc.ave
' Description: Script finds the total OTC logistics cost

! for each demand region and writes it to a
! new dBase file called OTCLgCst.dbf. This
! file is then joined to the Demand Regions
! table.

' Requires: dirstore.dbf, tranship.dbf, Demand Regions
' theme, CVS DCs theme exists

' Called by: View menu click event
("Trace Costs: Chain-wide OTC Only")

' Calls: Tables.Link, Tables.Unlink
' SELF: Nil
' Returns: Nil

'***

Scriptname = "TraceOTCALl"
' Warn user about time to complete this script

resume = MsgBox.YesNo("This trace takes approximately 10 minutes."
+nl+"Do you want to continue?”,
"Trace Costs: Chain-wide OTC Only", FALSE)
if (resume = false) then
exit
end

' Set the number format for the script

Script.The.SetNumberFormat {("d.dd")

' Get the VTabs to be used and get the working directory

av.Run("Tables.Link","")
theDirectory = av.GetProject.GetWorkDir.AsString

theView = av.GetProject.FindDoc("Demand by Region")
if (theview = Nil) then
MsgBox.Error ("ERROR: Demand by Region view does not exist.",

Scriptname)
exit
elseif (not (theView.Is(View))) then
MsgBox.Error ("ERROR: Demand by Region doc is not a view.",
Scriptname)
exit
end

234

theTheme = theView.FindTheme ("Demand Regions")
if (theTheme = Nil)} then
MsgBox.Error ("ERROR: Demand Regions theme does not exist.",
Scriptname)

exit
end
theStoreVTab = theTheme.GetFTab
theD2STable = av.GetProject.FindDoc("dirstore.dbf")
if (theD2STable = Nil) then
MsgBox.Info ("ERROR: dirstore.dbf table does not exist.",
Scriptname)
exit
end
theD2SVTab = theD2STable.GetVTab
theDCTheme = theView.FindTheme ("CVS DCs")
if (theDCTheme = Nil) then
MsgBox.Error ("ERROR: CVS DCs theme does not exist.",
Scriptname)
exit
end
theDCVTab = theDCTheme.GetFTab
theTSTable = av.GetProject.FindDoc("tranship.dbf")
if (theTSTable = Nil) then
MsgBox.Error ("ERROR: tranship.dbf table does not exist.",
Scriptname)
exit
end
theTSVTab = theTSTable.GetVTab

' Get the bitmap from the Demand Regions VTab

theBStMap = theStoreVTab.GetSelection
sumotccst_exists = (av.GetProject.FindDoc("OTCLgCst.dbf")
= NIL) .Not
skip = 0
if (sumotccst exists) then
thedoc = av.GetProject.FindDoc("OTCLgCst.dbf")
if (MsgBox.YesNo("Overwrite existing logistics cost table?”,
"The Table OTCLgCst already exists",false)) then
if (sumotccst_exists) then
av.GetProject.RemoveDoc (thedoc)
end
else
skip = 1
end
end
'‘create a newtable
if (skip = 0) then
flnm = theDirectory + "/OTCLgCst.dbf"

newVTab = VTab.MakeNew(flnm.AsFileName, dBase)
storefld = Field.Make ("DemRegion",#FIELD_CHAR,5, 0)
directfld = Field.Make ("OTCDrctCst",#FIELD DECIMAL,16,2)
pickfld = Field.Make ("OTCPicszt",#FIELD_DECIMAL,16,2)
transfld = Field.Make ("OTCTranCst",#FIELD DECIMAL,16,2)
xdocfld = Field.Make ("OTCXdocCst",#FIELD DECIMAL,16,2)
totfld = Field.Make ("OTCTotlCst",#FIELD DECIMAL, 16,2)

235

newVTab.AddFields ({storefld, directfld,pickfld,
transfld, xdocfld, totfld})
storefld.SetAlias ("Demand Region")
directfld.SetAlias ("OTC Direct Cost")
pickfld.SetAlias ("OTC Pick Cost")
transfld.SetAlias ("OTC Tranship Cost™)
xdocfld.SetAlias ("OTC Crossdock Cost")
totfld.SetAlias ("OTC Total Cost")
theBStMap.ClearAll
thestorefld = theStoreVTab.FindField("Demand Region")
numrecs = theStoreVTab.GetNumRecords
for each ii in theStoreVTab
theBStMap.ClearAll
theBStMap.Set (ii)
theStoreVTab.UpdateSelection
theamt = 0
thetsflow =
d2scost = 0
pickcost = 0
xdoccost = 0
tscost = 0
if (theBStMap.Get(ii)) then
store = theStoreVTab.ReturnValue(thestorefld,ii)
end
theBMap = theD2SVTab.GetSelection
expr = "([OptimizedValue] > 0)" ++ "and" ++
"([Product] = ""OTC"")"
theD2SVTab.Query (expr, theBMap, #VTAB SELTYPE_AND)
theratefld = theD2SVTab.FindField("ActualRate")
theamtfld = theD2SVTab.FindField("OptimizedValue")
thed2sdcfld = theD2SVTab.FindField("Facility")
for each i in theBMap
if (theBMap.Get(i)) then
theD2SVTab.UpdateSelection
thefacil = theD2SVTab.ReturnValue (thed2sdcfld, i)
theamt = theD2SVTab.ReturnValue (theamtfld,i)
d2scost = theD2SVTab.ReturnValue (theratefld,i) * theamt
end
'for this flow, see what is happening at the DC
theDCBMap = theDCVTab.GetSelection
dcratefld = theDCVTab.FindField("OTC Rate")
dcfld = theDCVTab.FindField("Facility")
for each j in theDCBMap
if (theDCBMap.Get(j)) then
'a pick cost
thedc = theDCVTab.ReturnValue (dcfld, j)
if (thedc <> thefacil) then
continue
end
pickcost = theamt *
theDCVTab.ReturnValue (dcratefld, j)

0

end
end
end
theBStMap.Clear(ii)
theStoreVTab.UpdateSelection

236

newrec = newVTab.AddRecord
newVTab.SetValue (storefld,newrec, store)
newVTab.SetValue (directfld, newrec,d2scost)
newVTab.SetValue (pickfld, newrec,pickcost)
newVTab.SetValue (transfld, newrec, tscost)
newVTab.SetValue (xdocfld, newrec, xdoccost)
totcost = d2scost+pickcost+tscost+xdoccost
newVTab.SetValue (totfld, newrec, totcost)
end ' on ii

end ' on if skip = 0

theBStMap.ClearAll

theStorevVTab.UpdateSelection

theBMap = theD2SVTab.GetSelection

theBMap.ClearAll

theD2SVTab.UpdateSelection

theBMap = theDCVTab.GetSelection

theBMap.ClearAll

theDCVTab.UpdateSelection

theBMap = theTSVTab.GetSelection

theBMap.ClearAll

theTSVTab.UpdateSelection

av.Run("Tables.Unlink",™")

' Set the new table to uneditable and write to file

newVTab.SetEditable (FALSE)
newVTab.Flush

checkTable = av.GetProject.FindDoc("OTC Logistics Costs™)

if (checkTable <> Nil) then
av.GetProject.RemoveDoc (checkTable)

end

' Bring the new table into the project

newTable = Table.Make(newVTab)

newTable.SetName ("OTC Logistics Costs")

av.GetProject.AddDoc (newTable)

' Join the newTable to the Demand Regions table

theStoreVTab. Join(thestorefld, newVTab, storefld)

MsgBox.Info("Tracing of OTC logistics cost for"+nl+

"each demand region is complete.”,

"Trace Costs: Chain-wide OTC Only")

return Nil

237

T ok ok dk o A ke vk de ke ok gk ke Tk e s sk sk ok sk ok ke okt sk ke ke sk e gk sk dk ke ok kb ok Tk ke ok Ko Tk ok e ke gk ok e sk ok ok sk Sk e dk de ke ke ke ke ke ke ok

' Scriptname: TraceRx
' Filename: tracerx.ave

' Description: Traces the total Rx logistics costs for a
demand region selected by the user. The
demand region is selected by clicking the
mouse pointer on a demand region feature
immediately after selecting the "R" tool
button or the Demand Regions Rx Only item
under the Trace Costs view menu. The costs
are shown to the user via a pop up dialog
box.

Requires: dirstore.dbf file, tranship.dbf file, Demand
Regions theme, CVS DCs theme must exist.

' Called by: View menu item click event

! ("Trace Cost: Demand Regions Rx Only")

! or by a tool button apply event

! (button with the "R" icon in the toolbar)

' Calls: Tables.Link, Tables.Unlink
' SELF: Nil
' Returns: Nil

Thdkdkdkdhkhhkdkhdkdkdhkddhhkhdkddhkddkdhdhdddodhdddhkdhkodkdhdd ddkdkddkdkhkhkkdkkhdkdhhkkdddhdhdk itk

Scriptname = "TraceRx"

' Set the number format for all numbers in the script
Script.The.SetNumberFormat ("d.dd")

' Next, link the necessary tables
av.Run("Tables.Link","")

' Now get the necessary tables

theView = av.GetProject.FindDoc("Demand by Region")

if (theView = Nil) then
MsgBox.Error ("ERROR: Demand by Region view does not exist.",

Scriptname)
exit
elseif (not (theView.Is(View))) then
MsgBox.Error ("ERROR: Demand by Region doc is not a view.",
Scriptname)
exit
end

theThemelist = theView.GetThemes
for each t in theThemelist
t.SetActive (FALSE)
238

end
theTheme = theView.FindTheme ("Demand Regions™)
if (theTheme = Nil) then
MsgBox.Error ("ERROR: Demand Regions theme does not exist.",
Scriptname)

exit
end
theTheme. SetActive (true)
av.Run{"View.SelectPoint",
theStoreVTab = theTheme.GetFTab
theD2STable = av.GetProject.FindDoc ("dirstore.dbf")
if (theD2STable = Nil) then

MsgBox.Info ("ERROR: dirstore.dbf table does not exist.",

"")

Scriptname)
exit
end
theD2SVTab = theD2STable.GetVTab

theDCTheme = theView.FindTheme ("CVS DCs")
if (theDCTheme = Nil) then
MsgBox.Error ("ERROR: CVS DCs theme does not exist.",
Scriptname)
exit
end
theDCVTab = theDCTheme.GetFTab
theTSTable = av.GetProject.FindDoc("tranship.dbf")
if (theTSTable = Nil) then
MsgBox.Error ("ERROR: tranship.dbf table does not exist.",
Scriptname)
exit
end
theTSVTab = theTSTable.GetVTab

' Get the bitmap for the Demand Regions VTab

theBStMap = theStoreVTab.GetSelection
if (theBStMap.Count = 0) then
exit
end
thestorefld = theStoreVTab.FindField("Demand Region")
selList = theBStMap.Aslist
theBStMap.ClearAll
theStorevVTab.UpdateSelection
ii = -1
for each jj in sellist
ii = 4ii + 1
if (jj.Not) then
continue
end
theBStMap.Set (ii)
theStoreVTab.UpdateSelection
theamt = 0

thetsflow = 0
d2scost = 0
pickcost = 0
xdoccost = 0

tscost = 0

totalCost = 0
therepstr = "Trace type: Rx Products Only"+nl
if {(theBStMap.Get(ii)) then
store = theStoreVTab.ReturnValue(thestorefld,ii)
therepstr = therepstr + "Demand Region:" ++ store + nl
end
theBMap = theD2SVTab.GetSelection
expr = "([Optimizedvalue] > 0)" ++ "and" ++ " ([Product]
= ""RX"") ”
theD2SVTab.Query(expr, theBMap, #VTAB_SELTYPE_AND)
theratefld = theD2SVTab.FindField ("ActualRate")
theamtfld = theD2SVTab.FindField("OptimizedValue")
thed2sdcfld = theD2SVTab.FindField("Facility")
for each i in theBMap
if (theBMap.Get(i)) then
theD2SVTab.UpdateSelection
thefacil = theD2SVTab.ReturnValue (thed2sdcfld, i)
theamt = theD2SVTab.ReturnValue (theamtfld, i)
therepstr = therepstr+ "Demand for Rx products:" ++
theamt.AsString+nl
d2scost = theD2SVTab.ReturnValue (theratefld,i) * theamt
therepstr = therepstr + "Shipping cost from" ++ thefacil
++":"++d2scost.AsString+nl
end
'for this flow, see what is happening at the DC
theDCBMap = theDCVTab.GetSelection
hasrx = theDCVTab.FindField("HasRx")
dcratefld = theDCVTab.FindField("Rx Rate")
dcfld = theDCVtab.FindField("Facility")
for each j in theDCBMap
if (theDCBMap.Get(j)) then
thedc = theDCVTab.ReturnValue (dcfld, j)
if (thedc <> thefacil) then
continue
end
rxthere = theDCVTab.ReturnValue (hasrx, j)
if (rxthere = 0) then
xdoccost = theamt * theDCVTab.ReturnValue
(dcratefld, j)
therepstr = therepstr + "Crossdock cost at" ++
thefacil ++ ":"++xdoccost.AsString +nl
'put traceback to tranship here
theTSBMap = theTSVTab.GetSelection
expr = " ([OptimizedvValue] > 0)" ++ "and" ++
"([Product] = ""Rx"")"
theTSVTab.Query (expr, theTSBMap, #VTAB SELTYPE_AND)
theTSVTab.UpdateSelection
thetsratefld = theTSVTab.FindField("ActualRate")
theorigfld = theTSVTab.FindField("OriginFacility")
theflowfld = theTSVTab.FindField("OptimizedValue")
thedcfld = theDCVTab.FindField("Facility")
'get total flow into xdoc dc
thetsflow = 0
for each k in theTSBMap
if (theTSBMap.Get(k)) then
thetsflow = thetsflow +

240

theTSVTab.ReturnValue (theflowfld, k)
end
end
'get average cost per unit
therate = 0
for each k in theTSBMap
if (theTSBMap.Get(k)) then
theratio = theTSVTab.ReturnValue (theflowfld, k)
/thetsflow

therate = therate +
theTSVTab.ReturnValue (thetsratefld, k)
* theratio
theorig = theTSVTab.ReturnValue (theorigfld, k)
end
end
tscost = theamt * therate
if (theTSBMap.Count > 1) then
therepstr = therepstr+
"Weighted Average Transship Cost from"
++theTSBMap.count.AsString++"origins to"
++thefacil++":"++tscost.AsString+nl

else
therepstr = therepstr+"Transshipment cost from"
++theorig++"to"++
thefacil++":"++tscost.AsString+nl

end
pickcostrate = 0
for each k in theTSBMap
if (theTSBMap.Get(k)) then
theorig = theTSVTab.ReturnvValue (theorigfld, k)
theratio = theTSVTab.ReturnValue (theflowfld, k)
/thetsflow

for each m in theDCVTab
thefacil2 = theDCVTab.ReturnValue
(thedcfld, m)
if (thefacil2 = theorig) then
pickcostrate = pickcostrate +
theDCVTab.ReturnValue
(dcratefld,m)* theratio
end
end
end
end
pickcost = theamt*pickcostrate
if (theTSBMap.Count > 1) then
therepstr = therepstr+"Weighted average pick cost at"
++theTSBMap.count.AsString++"origins:"
++pickcost.AsString+nl
else
therepstr = therepstr+"Pick cost at origin DC:"
++pickcost.AsString+nl
end
else 'a pick cost
pickcost = theamt * theDCVTab.ReturnValue
(dcratefld, j)
therepstr = therepstr+"Pick cost at "+thefacil++

241

":"t+ipickcost.AsString+nl

end
end
end
end
totalCost = d2scost + xdoccost + tscost + pickcost
therepstr = therepstr+nl+

"Total Logistics Cost for Rx Products:"++
totalCost.AsString+nl
MsgBox.Report (therepstr,
"Total Logisitic Costs to Serve Demand Region"++
store.AsString)
av.Run("Tables.Unlink","")
theBStMap.Clear(ii)
theStoreVTab.UpdateSelection
theBMap.ClearAll
theD2SVTab.UpdateSelection
theDCBMap = theDCVTab.GetSelection
theDCBMap.ClearAll
theDCVTab.UpdateSelection
theTSBMap = theTSVTab.GetSelection
theTSBMap = theTSVTab.GetSelection
theTSBMap.ClearAll
theTSVTab.UpdateSelection
end ' on jj

return Nil

Thkhhdddhkdhrdkhkkhkk ks kokkokdo ks koo sk ok ok ok %k ok o ok dodk ok ke ks kg de koo e de e ek ke ke ok

' Scriptname: TraceRxAll
' Filename: tracerxa.ave
' Description: Script finds the total Rx logistics cost

' for each demand region and writes it to a
! new dBase file called RxLgCst.dbf. This
! file is then joined to the Demand Regions
! table.

' Requires: dirstore.dbf, tranship.dbf, Demand Regions
' theme, CVS DCs theme exists

' Called by: View menu click event
("Trace Costs: Chain-wide Rx Only")

' Calls: Tables.Link, Tables.Unlink
' SELF: Nil
' Returns: Nil

Thkhkhkhhhdhhkbhhhkhrkhkhddhrrhhhdkdkdhdkdkkhhkhkdkdkdhdrhrhdhhkdddhdhkhkddkdhdhhddkdhih

Scriptname = "TraceRxAll"
' Warn user about time to complete this script

resume = MsgBox.YesNo("This trace takes approximately 10 minutes.
"+nl+"Do you want to continue?”,
"Trace Costs: Chain-wide Rx Only", FALSE)
if (resume = false) then
exit
end

' Set the number format for the script
Script.The.SetNumberFormat ("d.dd")

' Get the VTabs to be used and get the working directory
av.Run{"Tables.Link","")

theDirectory = av.GetProject.GetWorkDir.AsString

theView = av.GetProject.FindDoc("Demand by Region")

if (thevView = Nil) then
MsgBox.Error ("ERROR: Demand by Region view does not exist.",

Scriptname)
exit
elseif (not (theView.Is(View))) then
MsgBox.Error ("ERROR: Demand by Region doc is not a view.",
Scriptname)
exit
end

theTheme = theView.FindTheme ("Demand Regions")
243

if (theTheme = Nil) then
MsgBox.Error ("ERROR: Demand Regions theme does not exist.",
Scriptname)
exit
end
theStoreVTab = theTheme.GetFTab
theD2STable = av.GetProject.FindDoc{"dirstore.dbf")
if (theD2STable = Nil) then
MsgBox.Info ("ERROR: dirstore.dbf table does not exist.”,
Scriptname)
exit
end
theD2S5VTab = theD2STable.GetVTab
theDCTheme = theView.FindTheme ("CVS DCs")
if (theDCTheme = Nil) then
MsgBox.Error ("ERROR: CVS DCs theme does not exist.",
Scriptname)
exit
end
theDCVTab = theDCTheme.GetFTab
theTSTable = av.GetProject.FindDoc("tranship.dbf")
if (theTSTable = Nil) then
MsgBox.Error ("ERROR: tranship.dbf table does not exist.",
Scriptname)
exit
end
theTSVTab = theTSTable.GetVTab

' Get the bitmap for the Demand Regions VTab
theBStMap = theStoreVTab.GetSelection

'check if table exists
sumrxcst_exists = (av.GetProject.FindDoc{"RxLgCst.dbf")
= NIL).Not
skip = 0
if (sumrxcst_exists) then
thedoc = av.GetProject.FindDoc ("RxLgCst.dbf")
if (MsgBox.YesNo ("Overwrite existing logistics cost table?”,
"The Table RxLgCst already exists",false)) then
if (sumrxcst exists) then
av.GetProject.RemoveDoc (thedoc)
end
else
skip = 1
end
end
'create a newtable
if (skip = 0) then
flnm = theDirectory + "/RxLgCst.dbf"
newVTab = VTab.MakeNew(flnm.AsFileName, dBase)
storefld = Field.Make ("DemRegion",#FIELD_ CHAR,16, 0)

directfld = Field.Make ("RxDrctCst",#FIELD_DECIMAL,16,2)
pickfld = Field.Make ("RxPickCst",#FIELD_ DECIMAL,16,2)
transfld = Field.Make ("RxTranCst",#FIELD_DECIMAL,16,2)
xdocfld = Field.Make ("RdeocCst",#FIELD_DECIMAL,16,2)

244

totfld = Field.Make ("RxTothst",#FIELD_DECIMAL,16,2)
newVTab.AddFields ({storefld, directfld,pickfld,
transfld, xdocfld, totfld})
storefld.SetAlias ("Demand Region")
directfld.SetAlias ("Rx Direct Cost")
pickfld.SetAlias ("Rx Pick Cost")
transfld.SetAlias ("Rx Tranship Cost")
xdocfld.SetAlias ("Rx Crossdock Cost")
totfld.SetAlias ("Rx Total Cost")
theBStMap.ClearAll
thestorefld = theStoreVTab.FindField("Demand Region")
numrecs = theStoreVTab.GetNumRecords
for each ii in theStoreVTab
'Clear the bitmap
theBSTMap.ClearAll
' Set the record in the demand regions table
theBStMap.Set (ii)
theStoreVTab.UpdateSelection
theamt = 0
thetsflow =
d2scost = 0
pickcost = 0
xdoccost = 0
tscost = 0
if (theBStMap.Get(ii)) then
store = theStoreVTab.ReturnValue(thestorefld,ii)
end
' Get the dirstore.dbf record selected by the link
theBMap = theD2SVTab.GetSelection
' Reselect those record with Rx flow greater than zero
expr = "([OptimizedValue] > 0)" ++ "and" ++
" ([Product] = ""RX"") "
theD2SVTab.Query (expr, theBMap, #VTAB_SELTYPE AND)
theratefld = theD2SVTab.FindField("ActualRate")
theamtfld = theD2SVTab.FindField ("OptimizedValue")
thed2sdcfld = theD2SVTab.FindField("Facility")
' Loop through selected set in dirstore.dbt
for each i in theBMap
if (theBMap.Get(i)) then
theD2SVTab.UpdateSelection
thefacil = theD2SVTab.ReturnValue (thed2sdcfld,i)
theamt = theD2SVTab.ReturnValue (theamtfld, i)
d2scost = theD2SVTab.ReturnValue(theratefld,i) * theamt
end
'for this flow, see what is happening at the DC by
'getting the selected set in the CVS DCs table
theDCBMap = theDCVTab.GetSelection
hasrx = theDCVTab.FindField ("HasRx")
dcratefld = theDCVTab.FindField("Rx Rate")
dcfld = theDCVTab.FindField ("Facility")
for each j in theDCBMap
if (theDCBMap.Get(j)) then
thedc = theDCVTab.ReturnvValue (dcfld, j)
if (thedc <> thefacil) then
continue
end

0

245

rxthere = theDCVTab.ReturnValue (hasrx,j)
if (rxthere = 0} then
xdoccost = theamt *
theDCVTab.ReturnValue (dcratefld, j)
'put traceback to tranship here
theTSBMap = theTSVTab.GetSelection
expr = "([OptimizedValue] > 0)" ++ "and" ++
" ([Product] - ""Rx"") "
theTSVTab.Query (expr, theTSBMap, #VTAB_SELTYPE_ AND)
theTSVTab.UpdateSelection
thetsratefld = theTSVTab.FindField("ActualRate")
theorigfld = theTSVTab.FindField("OriginFacility")
theflowfld = theTSVTab.FindField("OptimizedValue")
thedcfld = theDCVTab.FindField("Facility")
'get total flow into xdoc dc
thetsflow = 0
for each k in theTSBMap
if (theTSBMap.Get (k)) then
thetsflow = thetsflow +
theTSVTab.ReturnValue (theflowfld, k)
end
end
'get average cost per unit
therate = 0
for each k in theTSBMap
if (theTSBMap.Get(k)) then
theratio = theTSVTab.ReturnvValue (theflowfld, k)
/thetsflow
therate = therate +
theTSVTab.ReturnValue (thetsratefld, k)
* theratio
theorig = theTSVTab.ReturnValue(theorigfld,k)
end
end
tscost = theamt * therate
pickcostrate = 0
for each k in theTSBMap
if (theTSBMap.Get (k)) then
theorig = theTSVTab.ReturnValue (theorigfld, k)
theratio = theTSVTab.ReturnValue (theflowfld, k)
/thetsflow
for each m in theDCVTab
thefacil2 = theDCVTab.ReturnValue
(thedcfld, m)
if (thefacil2 = theorig) then
pickcostrate = pickcostrate +
theDCVTab.ReturnValue (dcratefld,m)
* theratio
end
end
end
end
pickcost = theamt * pickcostrate
else 'a pick cost
pickcost = theamt *
theDCVTab.ReturnvValue (dcratefld, j)

246

end
end
end
end
theBStMap.Clear(ii)
theStoreVTab.UpdateSelection
newrec = newVtab.AddRecord
newVTab.SetValue (storefld, newrec, store)
newVTab.SetValue (directfld, newrec,d2scost)
newVTab. SetValue (pickfld, newrec,pickcost)
newVTab.SetValue (transfld, newrec, tscost)
newVTab. SetValue (xdocfld, newrec, xdoccost)
totcost = d2scost+pickcost+tscost+xdoccost
newVTab.SetValue (totfld, newrec, totcost)
end ' on ii
end 'if skip = 0
theBStMap.ClearAll
theStoreVTab.UpdateSelection
theBMap = theD2SVTab.GetSelection
theBMap.ClearAll
theD2SVTab.UpdateSelection
theBMap = theDCVTab.GetSelection
theBMap.ClearAll
theDCVTab.UpdateSelection
theBMap = theTSVTab.GetSelection
theBMap.ClearAll
theTSVTak.UpdateSelection
av.Run{"Tables.Unlink","")

' Set the new table to uneditable and write to file

newVTab.SetEditable (FALSE)
newVTab.Flush

checkTable = av.GetProject.FindDoc("Rx Logistics Costs")

if (checkTable <> Nil) then
av.GetProject.RemoveDoc (checkTable)

end

' Bring the new table into the project

newTable = Table.Make (newVTab)

newTable.SetName ("Rx Logistics Costs™")

av.GetProject.AddDoc (newTable)

' Join the newTable to the Demand Regions table

theStoreVTab.Join(thestorefld, newVTab, storefld)

MsgBox.Info("Tracing of Rx logistics cost for"+nl+

"each demand region is complete.",

"Trace Costs: Chain-wide Rx Only")

return Nil

247

1 dededoode gk sk sk sk s gk ke ek ok ke ok ke Kk ke k% ok ek ok e sk ek ke ok sk e sk s ok ok sk ke ke ok ok ok e e ok e e de ok Sk g ke e ok sk ok ok ke ok

' Scriptname: TransCWFlowTheme.Make

' Filename: transcwf.ave

' Author: Kenneth Bennett

' Date: May 3, 1998

' Description: Script generates a Flow theme based on the CW

! Flow field in Transshipment theme table. Zero
! value transshipment flows are made invisible
! using the null value and symbol

' Requires: Transshipment theme must exist

' Called by: View menu item click event
("Display Flows:Transshipments by CW Flow")

' Calls: Nil
' SELF: Nil
' Returns: Nil

Thhdkdhdhhdhddddkhhkhkrhkhrhkhkrbhkdrhkkhkdkhkhdhhkhhhhdrhdhhhdbhhbdbdbhbdhbhbhbhhbhhhkhhkhkdkdhkhhkhkd

Scriptname = "TransCWFlowTheme.Make"

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then
MsgBox.Error ("ERROR: Demand by Region view does not exist.",

Scriptname)
exit
end
if (not (theView.Is(View))) then
MsgBox.Error ("ERROR: Demand by Region doc is not a view.",
Scriptname)
exit
end

theTheme = theView.FindTheme ("Transshipments")
if (theTheme = Nil) then
MsgBox.Error ("ERROR: Theme called Transshipments
does not exist.", Scriptname)
exit
end

catString = "CW Flow"

checkTheme = theView.FindTheme ("Transshipments"++catString)
if (checkTheme <> nil) then
theView.DeleteTheme (checkTheme)
theTable = av.GetProject.FindDoc("Attributes of Transshipments"
++catString)
if (theTable <> NIL) then
248

av.GetProject.RemoveDoc(theTable)
end
end

' Clone the Transshipment theme

newTheme = theTheme.Clone
newLegend = newTheme.GetLegend

' Select a color from the color palette to
' be used in drawing the transhipment lines

theColor = av.Run("ColorPalette.SelectColor™, Nil)

' Classify the legend with three natural
' breaks and size the lines according to
' the flow volume

newLegend. SetLegendType (#LEGEND TYPE_SYMBOL)
newLegend.SetNullValue (catString, 0)
newLegend.DisplayNoDataClass (FALSE)
newLegend.Natural (newTheme, catString, 3)
theSymbolList = newlLegend.GetSymbols
thickness = 1
for each s in theSymbolList
s.SetSize(thickness)
thickness = thickness + 1
end
theSymbolList.UniformColor {theColor)

' Create a null symbol for the legend
' and set it

nullSym = Symbol.Make (#SYMBOL PEN)
nullColor = Color.GetBlue
nullColor.SetTransparent (TRUE)
nullSym.SetColor(nullCelor)
newLegend.SetNullSymbol (nullSym)
newTheme . SetLegend (newLegend)
newTheme.SetName ("Transshipments"++catString)
newTheme.SetActive (FALSE)
newTheme. SetVisible (TRUE)
theView.AddTheme (newTheme)
newTheme .UpdatelLegend
theView.Invalidate
nullColor.SetTransparent (FALSE)

return Nil

249

Fhkdkhddkhddehkhkdddkdhhhkhkdkdkdkkdkhhkhkkehkkhdkkdkddkhhkkhhdhddkhkdrhbhdhhhdhkhkdkdhkhhkhkhdhk

' Scriptname: TransFlowValues.Calculate

' Filename: transflo.ave

' Author: Kenneth Bennett

' Date: May 3, 1998

' Description: Script copies the values of transhipment

' flows for Rx and CW products from the

! dirstore.dbf file to the Transhipments FTab
using an origin-destination-product string

' concatenation. These three new fields in the
! FTab are then totalled and the total value is
' added to the fourth new field in the FTab

' called Total Flow.

Requires: tranship.dbf file and Transhipments
flow theme exist

' Called by: Transhipline.Build

' Calls: Nil

' SELF: the Transhipments theme
' Returns: Nil

Thdkhkhkdkhkokkdhkdkkddhkhkhdhhkhhkhrhhkhrdhdrhdbhbhhbdhhdbhrhhkhhhhdhdkhkhhhdhkhddhdhhdhdhdkdhh

Scriptname = "TransFlowValues.Calculate"
' Retrieve the theme argument
theTheme = SELF.Get (0)

' Find the tranship.dbf file and add the new field concatenating
' the facility name, the demand region name,
' and the product category

theTranTable = av.Getproject.FindDoc("tranship.dbf")

if (theTranTable = Nil) then
MsgBox.Error ("ERROR: tranship.dbf table does not exist."+NL+

"Transhipment flow values not calculated.", Scriptname)

exit

end

theVTab = theTranTable.GetVTab

theVTab.SetEditable (TRUE)

odpfld2 = Field.Make ("ODP",#FIELD_CHAR,35,0)

theVTab.AddFields ({odpfld2})

theval = "[OriginFacility]+[DestinationFacility]+[Product]™"

theVTab.Calculate(theval, odpfld2)

' Get the Transhipment FTab and add the new flow fields for
' the two product categories, the total flow, and the
' origin-destination-product (ODP) field

250

theFTab = theTheme.GetFTab
theFTab.SetEditable (TRUE)

cwfld = Field.Make ("CW Flow",#FIELD_DECIMAL, 16,2)
rxfld = Field.Make ("Rx Flow",#FIELD_DECIMAL, 16, 2)
totfld
odpfld Field.Make ("ODP", #FIELD CHAR,35, 0)
theFTab.AddFields ({cwfld, rxfld, totfld, odpfld})

' Calculate the CW flow

newval2 = "[Origin]+[Destination]+""CW"""
thefTab.Calculate (newval2, odpfld)
theFTab.Join (odpfld, theVTab, odpfld2)
theflowval = "[OptimizedValue]"
theFTab.Calculate (theflowval, cwfld)
theFTab.UnjoinAll

' Calculate the Rx flow

newval2 = "([Origin]+[Destination]+""Rx"""
theFTab.Calculate (newval2, odpfld)
theFTab.Join (odpfld, theVTab, odpfld2)
theflowval = "[OptimizedValue]"
theFTab.Calculate (theflowval, rxfld)
theFTab.UnjoinAll

' For each record in FTab, set null values to zero

for each rec in theFTab
cwvalue = theFTab.ReturnValue (cwfld, rec)
if (cwvalue.IsNull) then
theFTab. SetValue (cwfld, rec, 0)
end
rxvalue = theFTab.ReturnValue (rxfld, rec)
if (rxvalue.IsNull) then
theFTab.SetValue (rxfld, rec, 0)
end
end

' Calcualte the total flow

newval2 = "[Rx Flow] + [CW Flow]"
theFTab.Calculate (newval2, totfld)

' Remove the ODP field from the Transhipments FTab
' since it is no longer needed

theFTab.RemoveFields ({odpfld})
theFTab.SetEditable (FALSE)

' Remove the ODP field from the tranship.dbf file
theVTab.RemoveFields ({odpfld2})
theVTab.SetEditable (FALSE)

return Nil
251

Field.Make ("Total Flow",#FIELD DECIMAL, 16, 2)

' Scriptname:

' Filename:

' Author:

' Date

' Requires:

' Called by:

' Calls:

' SELF:

' Returns:

Scriptname

dcFTab

'dcFTab av.

if (dcFTab

exit
end

defName

theFName
if

transFTab
else

transFTab
end

' ***

' Description:

MsgBox.Info ("Error - Table not found",

TranshipLine.Build

tranship.ave

Kenneth Bennett

May 3, 1998 (Updated)

Script receives the FTab of the DCs theme from
FlowLine.Build and uses it o get X and Y
coordinates in order to build the transhipment
lines. It then calls TransFlowValues.Calculate
script to join the flow values to the

Transhipments FTab.

Demand by Region view must exist

TransportationLines.Build

TransFlowValues.Calculate

the CVS DCs FTab

Nil

' ********************************-k********************************

"TranshiplLine.Build"

SELF.Get (0)

GetActiveDoc.GetActiveThemes.Get (0) .GetFTab

nil) then

"")

' Get the facility name from the dcFTab

facfld = dcFTab.FindField("Facility")
' Give a name and path to the new transhipment FTab and create it

FileName.Make (av.GetProject.GetWorkDir.AsString)
.MakeTmp ("trnshp",
FileDialog.Put (defName,
(nil <> theFName) then

l'dbf")

"+ dbf", "Save FTab As")

FTab.MakeNew(theFName, POLYLINE)

FTab.MakeNew(defName, POLYLINE)

'Add fields to the new transFTab

252

orig = Field.Make("Origin", #FIELD_CHAR, 20, 0)

dest = Field.Make("Destination", #FIELD CHAR, 20, 0)
od = Field.Make ("O-D", #FIELD_CHAR, 40, 0)
transFTab.AddFields ({orig, dest, od})

' Now create a variable for the shape field in the transFTAB
shapeF = transFTab.FindField("Shape")

' Loop through the dcFTab and generate a line
' for each DC pair combination except when a
' DC is paired with itself

av.ShowStopButton

av.ShowMsg ("Building Transhipment Lines...")
numDC = dcFTab.GetNumRecords

n=20

for each o in dcFTab
origstring = dcFTab.ReturnValue(facfld, o)
origpnt = dcFTab.GetLabelPoint (o)
X1 = origpnt.GetX
Yl = origpnt.GetY
for each d in dcFTab
deststring = dcFTab.ReturnValue (facfld, d)
if (origstring <> deststring) then
destpnt = dcFTab.GetLabelPoint (d)
X2 = destpnt.GetX
Y2 = destpnt.GetY
newstring = origstringt+deststring
newRec = transFTab.AddRecord
1 = Line.Make (X1@QY1,X2@Y2).AsPolyLine
transFTab.SetvValue (shapeF, newRec, 1)
transFTab.SetValue(orig, newRec, origstring)
transFTab.SetValue (dest, newRec, deststring)
transFTab.SetValue (od, newRec, newstring)
end 'if
end 'internal for loop
n=n+1
progress = (n / numDC) * 100
doMore = av.SetStatus(progress)
if (not doMore) then
break
end 'if
end ' external for loop

' make transFTab into a theme and add to the view

theTheme = FTheme.Make(transFTab)
theSymList = theTheme.GetLegend.GetSymbols
theColorPaletteList = av.GetSymbolWin.GetPalette
.GetList (#PALETTE_LIST_ COLOR)
'Get the color green for the transhipment lines
theColor = theColorPaletteList.Get (15)
theSymbol = theSymList.Get (0)
theSymbol.SetColor (theColor)

253

theTheme.SetName ("Transshipments")
' Add the theme to the view

theView = av.GetProject.FindDoc("Demand
if (theView = Nil) then
MsgBox.Error ("ERROR: Demand by Region
"Transhipments theme not
Scriptname)
return Nil
elseif (not (theView.Is(View))) then
MsgBox.Error ("ERROR: Demand by Region
"Transhipments theme not
Scriptname)
return Nil
else
theView.AddTheme (theTheme)
thevView.Invalidate
end

' Run the script to calculate the
' various transhipment flow values

by Region™)

view does not exist."+NL+
added to it.",

doc is not a view."+NL+
added to it.",

av.Run("TransFlowValues.Calculate”, {theTheme})

return Nil

254

Scriptname: TransportationlLines.Build
Filename: transpor.ave
Description: This script is the master script for generating

a DCs theme and the DC-to-Region and Transhipment
transportation themes. The script first calls the
FlowLines.Build script. Then the FlowLine.Build
script calls the Splicelatlon script, which in
turn calls the AddXY script. Together, these
scripts generate the DCs theme. FlowLine.Build
then generates all the DC-to-Region Flow
transporation lines FlowlLine.Build then returns
the DC theme FTab to this script, and this script
calls the TranshipLine.Build script which then
builds the Transhipments theme. At the end, the
CVS DCs theme is shuffled to the top of the TOC.

Called by: Menu click event ("Build Transport Lines")
Calls: FlowlLine.Build, TranshipLine.Build

SELF: Nil

Returns: Nil

theFTab = av.Run{("FlowLine.Build", Nil)

av.Run{"TranshiplLine.Build"”, {theFTab})

theView = av.GetActiveDoc
theThemes = theView.GetThemes
dcTheme = theView.FindTheme ("CVS DCs")

theThemes.Shuffle (dcTheme, 0)
dcTheme. SetActive (TRUE)
theView.InvalidateTOC (Nil)

return Nil

T sk de g e Tk de de ok s e e e e T ke de ok vk ok de bk k% ek Tk e ek de do ok e Tk gk ok Kk kg ke ke ok ok ok ok %k e e ke e sk sk e e e ok e ke ok

' Scriptname: TransRxFlowTheme.Make

' Filename: transrxf.ave

' Author: Kenneth Bennett

' Date: May 3, 1998

' Description: Script generates a Flow theme based on the

! Rx Flow field in Transshipment theme table.
! Zero value transshipment flows are made
! invisible using the null value and symbol.

' Requires: Transshipment theme must exist

' Called by: View menu item click event
' ("Display Flows: Transshipments by Rx Flow")

' Calls: Nil
' SELF: Nil
' Returns: Nil

Tdhdkhkhkhkhkhkhkdhhhhhkdthdhhdbhdrbhdhhhbbddhhddbdhdhrdkdkdrdddrhbrhdhhdkhkrdrhrhdrbhhbhhkhddit

Scriptname = "TransRxFlowTheme.Make"

theView = av.GetProject.FindDoc("Demand by Region")
if (theView = Nil) then
MsgBox.Error ("ERROR: Demand by Region view does not exist.",

Scriptname)
exit
end
if (not (theView.Is(View))) then
MsgBox.Error ("ERROR: Demand by Region doc is not a view.",
Scriptname)
exit
end

theTheme = theView.FindTheme ("Transshipments")
if (theTheme = Nil) then
MsgBox.Error ("ERROR: Theme called Transshipments
does not exist.", Scriptname)
exit
end

catString = "Rx Flow"

checkTheme = theView.FindTheme ("Transshipments"++catString)
if (checkTheme <> nil) then
theView.DeleteTheme (checkTheme)
theTable = av.GetProject.FindDoc("Attributes of Transshipments”
++catString)
if (theTable <> NIL) then

256

av.GetProject.RemoveDoc (theTable)
end
end

' Clone the Transshipment theme

newTheme = theTheme.Clone
newLegend = newTheme.GetLegend

' Select a color from the color palette to
' be used in drawing the transhipment lines

theColor = av.Run("ColorPalette.SelectColor"™, Nil)

' Classify the legend with three natural
' breaks and size the lines according to
' the flow volume

newLegend. SetLegendType (§LEGEND TYPE SYMBOL)
newLegend. SetNullvValue (catString, O0)
newlegend.DisplayNoDataClass (FALSE)
newlLegend.Natural (newTheme, catString, 3)
theSymbolList = newLegend.GetSymbols
thickness = 1
for each s in theSymbolList
s.SetSize(thickness)
thickness = thickness + 1
end
theSymbolList.UniformColor{theColor)

' Create a null symbol for the legend
' and set it

nullsym = Symbol.Make (#SYMBOL_PEN)
nullColor = Color.GetBlue
nullColor.SetTransparent (TRUE)
nullSym.SetColor (nullColor)
newLegend. SetNullSymbol (nullSym)
newTheme. SetLegend (newLegend)
newTheme.SetName ("Transshipments"++catString)
newTheme. SetActive (FALSE)
newTheme. SetVisible (TRUE)
theView.AddTheme (newTheme)
newTheme .UpdateLegend
theView.Invalidate
nullColor.SetTransparent (FALSE)

return Nil

257

|***

' Scriptname: TransTotalFlowTheme.Make

' Filename: transtot.ave

' Author: Kenneth Bennett

' Date: May 3, 1998

' Description: Script generates a Flow theme based on the

! Total Flow field in Transshipment theme table.
' Zero value transshipment flows are made
! invisible using null value and symbol.

' Requires: Transshipment theme must exist

' Called by: View menu item click event
! ("Display Flows: Transshipments by Total Flow")

' Calls: Nil
' SELF: Nil
' Returns: Nil

l***

Scriptname = "TransTotalFlowTheme.Make™

theView = av.GetProject.FindDoc ("Demand by Region")
if (theView = Nil) then
MsgBox.Error ("ERROR: Demand by Region view does not exist.",

Scriptname)
exit
end
if (not (theView.Is(View))) then
MsgBox.Error ("ERROR: Demand by Region doc is not a view.",
Scriptname)
exit
end

theTheme = theView.FindTheme ("Transshipments")
if (theTheme = Nil) then
MsgBox.Error ("ERROR: Theme called Transshipments
does not exist.", Scriptname)
exit
end

catString = "Total Flow"

checkTheme = theView.FindTheme ("Transshipments”"++catString)
if (checkTheme <> nil) then
theView.DeleteTheme (checkTheme)
theTable = av.GetProject.FindDoc ("Attributes of Transshipments”
++catString)
if (theTable <> NIL) then
258

av.GetProject.RemoveDoc (theTable)
end
end

' Clone the Transshipment theme

newTheme = theTheme.Clone
newlegend = newTheme.GetLegend

' Select a color from the color palette to
' be used in drawing the transhipment lines

theColor = av.Run("ColorPalette.Selectlolor",

' Classify the legend with three natural
' breaks and size the lines according to
' the flow volume

newlegend. SetLegendType (#LEGEND TYPE SYMBOL)
newLegend.SetNullValue(catString, 0)
newLegend.DisplayNoDataClass (FALSE)
newLegend.Natural (newTheme, catString, 3)
theSymbolList = newlegend.GetSymbols
thickness =1
for each s in theSymbollist

s.SetSize (thickness)

thickness = thickness + 1
end
theSymbolList.UniformColor(theColor)

' Create a null symbol for the legend
' and set it

nullSym = Symbol.Make (#SYMBOL_PEN)
nullColor = Color.GetBlue
nullColor.SetTransparent (TRUE)
nullSym.SetColor(nullColor)
newLegend. SetNullSymbol (nullSym)
newTheme. SetLegend (newLegend)
newTheme.SetName ("Transshipments"++catString)
newTheme. SetActive (FALSE)
newTheme. SetVisible (TRUE)
theView.AddTheme (newTheme)
newTheme.UpdateLegend
theView.Invalidate
nullColor.SetTransparent (FALSE)

return Nil

259

Nil)

Vita

Kenneth Bennett was born in Chula Vista, a suburb of San Diego, California, on
February 19, 1966. He attended Hilltop High School in Chula Vista where he graduated
in 1984. He received his Bachelor of Arts degree from the University of California, Los
Angeles, in 1989, with a major in English and World Literature. After graduating from
UCLA, he spent one year traveling in Mexico and the Southwest of the United States.
From 1990 until 1993, he worked for an airfreight forwarding company, and from 1994
to 1996 as a trade journalist in such fields as import and export trade, and the private
sector financing of international energy, transportation, and communications
infrastructure. These experiences led him to an interest in the spatial distribution of
economic activity, particularly in the areas of energy and transportation. In 1996, he
entered the Department of Geography at the University of Tennessee in pursuit of a
Master of Science degree. Upon successful defense of this thesis, Kenneth Bennett will
receive his M.S. in Geography with an emphasis in the use of geographic information

systems for transportation and logistics analysis.

260

	Using geographic information systems for business logistics analysis
	Recommended Citation

	Using geographic information systems for business logistics analysis

