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Abstract

Difficulty to obtain neutron sources of interest have driven the need for optimization

techniques to tailor a neutron generator as a replacement. A proposed solution uses

off-the-shelf neutron sources coupled with an energy-tuning assembly to mimic the

source of interest (i.e. AmLi, AmBe, thermonuclear fission spectra, etc.). These

energy-tuning assemblies have been designed with complex optimization algorithms

coupled with Monte Carlo simulations. These new system surrogate designs often

do not have an experimental counterpart for validation and comparison, and lack

non-statistical uncertainties. This work aims to improve confidence in the predictions

by providing a tool for fast uncertainty quantification to use with transport tools,

necessary for future validations. The tool, TOFFEE, has been developed to use the

sensitivity coefficients and covariance data along with the sandwich rule to assign

variance in cross-section data and subsequentially to reaction rates, neutron flux, and

k-eff.

TOFFEE is a Python framework that uses MCNP6.3 to calculate sensitivity

coefficients (generated by KSEN, PERT, etc.) and NJOY to generate a covariance

library. The tool generates new input files and calculates the cross-section uncertainty

with the sandwich rule. To test the tool, TOFFEE is used to generate cross-section

uncertainty on three models: two benchmarks, Jezebel, BeRP ball, and a newly

generated energy-tuning assembly designed with an advanced optimization algorithm.

The results presented in the example application are the uncertainty on keff for

Jezebel, the uncertainty on keff and the volumetric flux for the BeRP ball. The

v



examples are then verified by comparing them to the stochastic sampling method

for calculating uncertainty, used in the SAMPLER routine by SCALE. Lastly, the

uncertainty in the energy-dependent surface flux leaving the energy-tuning assembly is

calculated. These three examples give confidence that the tool can be used standalone

and in the optimization process of energy-tuning assemblies for source replacement.
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Chapter 1

Introduction

The scientific community has had a strong interest in understanding and capability to

model how neutrons travel through matter since the discovery of the neutron Wigner

and Breit (1992); De Gregorio (2005); Variansyah et al. (2023) and such effort led

to the discovery of fission in 1938 Hahn and Strassmann (1938). The discovery of

fission and the beginnings of World War II motivated the work on fission weapons.

During the construction of the atomic weapons, a strong theoretical understanding

of nuclear physics has been developed. For example, the United States Manhattan

Project devised much of the theory we still use for neutron physics.

Today, many complex nuclear problems are solved with neutron transport, i.e.

reactor simulation Shaw et al. (2023), criticality safety Depriest et al. (2022),

safeguards Rising and Bolding (2022), and experiment design Conant et al. (2023).

One of the most popular methods to solve these problems uses the statistical Monte

Carlo (MC) method to simulate the reality of the neutron events. Nevertheless,

Monte Carlo simulation presents uncertainties that need to be quantified to better

understand predictions of a design. A prominent uncertainty of the Monte Carlo

Method is the uncertainty of the probability distribution functions within the nuclear

data, which are used to solve the transport problem.
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Accounting for such uncertainties is of large importance in the prediction of new

nuclear systems that have not been deployed. Being able to quantify uncertainties in

the system is helpful for designers to understand the predicted results and improve

the optimization of the design. Subsection 1.1 discusses examples of new systems

that have been designed using complex optimization methods and could benefit from

uncertainty quantification within the design process.

1.1 Complex Optimized Designs

Some neutron sources are becoming scarce or expensive to acquire Winch et al. (2017);

Yinghuai and Hosmane (2013). No nuclear weapons are tested and fewer nuclear

reactors are being built. Thus, a need has arisen to design alternative sources that

mimic advanced reactors, isotopic sources, nuclear explosions, etc. Common recent

method have been developed, as alternative source, that used neutron generators

together with optimized energy-tuning assemblies (ETA).

An example is Athena, which is an ETA that is designed to shape the deuterium-

tritium (D-T) source at the National Ignition Facility (NIF) to mimic a thermonuclear

plus prompt fission neutron spectrum Quartemont et al. (2021). Figure 1.1 shows a

3-D model of Athena. This spectrum is important for testing radiation effects on

materials and components. It is designed using the metaheuristics algorithm Gnowee

Bevins and Slaybaugh (2019); Bogetic et al. (2018) coupled with a MC transport

code. The key characteristic of this model is the shape of the neutron spectrum in

energy. For this model, the uncertainty in the neutron spectrum was calculated after

the optimization process.

Neutron sources from (alpha,n) reactions have been frequently used for nuclear

security applications, i.e. AmLi for active well coincidence counting McElroy and

Cleveland (2017, 2018); Williams and Bogetic (2020). Recently, access to those

isotopes has been limited, therefore there is a need to replace these sources with

an easy-to-access generator(D-D and D-T) coupled with an ETA to tailor the spectra

2



Figure 1.1: This figure shows a 3-D visualization of the Athena energy-tuning
assembly Quartemont et al. (2021)
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to lower neutron energies. Designing an ETA requires complex optimization due

to multiple variables and constraints that affect the path and energy of the neutrons.

Thus, the advantage of using codes like Gnowee coupled with MC is that they are

able to design an ETA optimized with a D-D neutron source to replace an AmLi

source for maximizing fissions of isotopes of interest (i.e. U-235).

Another example of a surrogate neutron source is the Fast Neutron Source (FNS)

at the University of Tennessee, Knoxville. The FNS is designed as a subcritical

multiplication experiment that replicates the neutron spectra of fast reactors. The

FNS is designed as an integral experiment facility to help improve cross-section data

availability and support advanced reactors Hines et al. (2018); Sobes et al. (2022);

Pevey et al. (2020, 2022). Figure 1.2 shows a theoretical model of the FNS. Methods

have been explored to design the FNS using a genetic algorithm and the MC code,

MCNP6.2.

All the above designs have been performed using state-of-the-art MC codes in

the nuclear community, that provide only statistical uncertainties to the simulation

results. Thus, no cross-section uncertainty analysis is considered in the process of

these designs. Most of the ETA include one or more filter or multiplying materials,

and the lack of cross-sectional uncertainties on the reactions for all the material limits

the fidelity of the alternative sources. Thus, it is important to perform simulations

and optimization with correctly propagated uncertainties of the data of the materials

used in the design of the ETA and complex nuclear systems.

1.2 Research Objective

This work aims to fill the need for a cross-section uncertainty analysis by developing

a framework, TOFFEE, that calculates uncertainties for reaction rate, flux, and

keff from cross-section propagation. This is needed in the design process and is

subsequently suited for the optimization of nuclear systems.
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The goal of the framework is to provide an uncertainty on the quantity of interest

for many types of systems that could be optimized, from the sensitivities provided

by the users or routines such as the general perturbation theory of MCNP, Scale,

Serpent, etc. This framework also needs to be fast in order to calculate the uncertainty

alongside each potential model.

1.3 Thesis Outline

The work is organized in 5 chapters. Chapter 2 provides a background theory required

in the development of the uncertainty framework, TOFFEE. Chapter 3 discusses the

methodology applied to develop and use the framework. Next, the framework will be

used for several applications, i.e. benchmarks and new designs, and those applications

are reported in Chapter 4. Then, the conclusions and future work of the analysis will

be discussed in Chapter 5.
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Figure 1.2: This figure shows a visualization of the potential design for the Fast
Neutron Source at the University of Tennessee, Knoxville Pevey et al. (2020)
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Chapter 2

Background

This chapter discusses the background required to understand the fundamentals of

this thesis work. A description of the Boltzmann equation and how it applies to

neutron transport is initially given. Next, this work discusses the nuclear data that

is used in the application. The process of quantifying uncertainty is then discussed

as they are applied in this work. Then, the Monte Carlo method is described as it

is used for neutron transport. Finally, the concept of a benchmark experiment is

discussed first.

2.1 Transport Theory

The study of how a particle moves through matter is typically referred to as transport

theory Davison (1957). Transport theory is used to track the location, direction,

energy, and time of a particle as it moves and interacts within a medium. This can be

used to give important system information such as the effective multiplication factor

(keff ), neutron flux(ϕ), or fission rate. These characteristics are used to determine

if a nuclear system is performing as it was designed to perform. Today, transport

theory is used for many nuclear applications including reactor theory, criticality safety,

nonproliferation, and stockpile stewardship.

7



2.1.1 Boltzmann Equation

The equation that governs the transport of neutrons through a medium is the

Boltzmann equation Lewis and Miller (1984). This equation was originally used for

the transport of gas particles in a thermodynamic system. The use of the Boltzmann

equation for neutron transport can be seen before the beginning of the Manhattan

Project.

Before the discussion of the different forms of the Boltzmann equation, the

key components of the equation must first be defined. The particle density at

location r⃗, traveling in the direction Ω̂, at energy E, at time t is defined as

N(r⃗, Ω̂, E, t)dV dΩ̂dEdt. Therefore, N(r⃗, Ω̂, E, t) can be thought of as the number

of particles per unit volume, solid angle, energy, and time. Angular flux, denoted

ψ(r⃗, Ω̂, E, t), is defined as the distance traveled in the direction Ω̂, at location r⃗, at

energy E, at time t. Equation 2.1 shows the relationship between angular flux and

particle density where v is the velocity of the particle.

ψ(r⃗, Ω̂, E, t) = vN(r⃗, Ω̂, E, t) (2.1)

The scalar flux, denoted ϕ(r⃗, E, t), is the angular integrated angular flux as shown

in equation 2.2.

ϕ(r⃗, E, t) =

∫
ψ(r⃗, Ω̂, E, t)dΩ̂ (2.2)

The number of x (i.e fission, capture, etc) reactions as a function of location and

time, denoted Rx(r⃗, t), can be calculated using equation 2.3.

Rx(r⃗, t) =

∫
Σx(r⃗, E)ϕ(r⃗, E, t)dE (2.3)

The general form of the Boltzmann equation with time, spacial, energy, and

angular dependence is shown in equation 2.4 for Cartesian coordinates, where Σt
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is the total macroscopic cross-section and q is the production of particles within the

system.

1

v

∂ψ

∂t
+ Ω̂ · ∇⃗ψ(r⃗, Ω̂, E, t) + Σt(r⃗, E, t)ψ(r⃗, Ω̂, E, t) = q(r⃗, Ω̂, E, t) (2.4)

In the Boltzmann equation, the term 1
v
∂ψ
∂t

represents the total change in

particle population with respect to time, such as particle decay. The term Ω̂ ·

∇⃗ψ(r⃗, Ω̂, E, t) represents net streaming of particles out of the system. The term

Σt(r⃗, E, t)ψ(r⃗, Ω̂, E, t) represents the particles lost to collisions (reactions).

2.1.2 Source-Driven Boltzmann Equation

Equation 2.4 is a general form for any particle transport. The q term must be better

defined in order to form an equation that is specific to neutron transport. There are

three primary methods by which neutrons can be gained: an external neutron source,

reaction production, and neutron scattering.

An external neutron source, denoted qexternal(r⃗, Ω̂, E, t), is defined as some

determined amount of neutrons that are to be injected into the system with some

given parameters. This is the source of the initial population of neutrons but does

not necessarily only include source neutrons. A real-world example of this could be

a Californium-252 neutron source or a Deuterium-Deuterium neutron generator.

Reaction production refers to the production of neutrons through a reaction that

occurs within the system. The most common example of this is fission occurring

within fissile material. When fission occurs, a number of neutrons are released into the

system as part of the process. The fission production (qfission) is defined in equation

2.5, where ν is the number of neutrons released from fission, Σf is the macroscopic

fission cross-section, ω is a probability distribution that describes the angle of a

neutron released from fission and χ is a probability distribution that describes the

energy of a neutron released from fission.
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qfission(r⃗, Ω̂, E, t) = ω(Ω̂)χ(r⃗, E)

∫
ν(r⃗, E ′)Σf (r⃗, E

′)

∫
ψ(r⃗, Ω̂′, E ′, t)dΩ̂′dE ′ (2.5)

However, fission is not the only reaction that would fall into the category of reaction

production. Another example is the (n,2n) reaction.

The last production term is neutron scattering (qscattering). This might seem odd

to call neutron scattering a ”production” unless scattering is thought of as a neutron

being absorbed at one energy and produced at another. Equation 2.6 shows how

this can be applied to the production term, where Σs is the macroscopic scatter

cross-section from energy E ′ direction Ω̂′ to energy E direction Ω̂.

qscatter(r⃗, Ω̂, E, t) =

∫ ∫
Σs(r⃗, Ω̂

′ → Ω̂, E ′ → E)ψ(r⃗, Ω̂′, E ′, t)dΩ̂′dE ′ (2.6)

After combining the three production terms, a simplification of a source-driven

Boltzmann equation can be described as shown in equation 2.7.

1

v

∂ψ

∂t
+ Ω̂ · ∇⃗ψ(r⃗, Ω̂, E, t) + Σt(r⃗, E, t)ψ(r⃗, Ω̂, E, t) = qexternal(r⃗, Ω̂, E, t)

+

∫ ∫
Σs(r⃗, Ω̂

′ → Ω̂, E ′ → E)ψ(r⃗, Ω̂′, E ′, t)dΩ̂′dE ′

+ω(Ω̂)χ(r⃗, E)

∫
ν(r⃗, E ′)Σf (r⃗, E

′)

∫
ψ(r⃗, Ω̂′, E ′, t)dΩ̂′dE ′

(2.7)

2.1.3 k-Eigenvalue Boltzmann Equation

The source-driven form of the Boltzmann equation is only valid for systems where

more neutrons are absorbed than produced. This is typically referred to as a

subcritical system. In order to solve the Boltzmann equation for systems that are not

subcritical, an adjustment factor is added to reduce the production of neutrons in the

system. This factor is called the k-eigenvalue (or k-effective). The typical method to

10



use the k-eigenvalue is to apply it to ν in a steady-state (no external source) problem

as shown in equation 2.8, where k is the largest k-eigenvalue.

1

v

∂ψ

∂t
+ Ω̂ · ∇⃗ψ(r⃗, Ω̂, E, t) + Σt(r⃗, E, t)ψ(r⃗, Ω̂, E, t) =∫ ∫

Σs(r⃗, Ω̂
′ → Ω̂, E ′ → E)ψ(r⃗, Ω̂′, E ′, t)dΩ̂′dE ′

+ω(Ω̂)χ(r⃗, E)

∫
ν

k
(r⃗, E ′)Σf (r⃗, E

′)

∫
ψ(r⃗, Ω̂′, E ′, t)dΩ̂′dE ′

(2.8)

2.1.4 Perturbation Theory

Perturbation theory refers to making a change to a system characteristic and

observing the effects on other characteristics. An example of this for the k-eigenvalue

Boltzmann equation is making a small change in the fission cross-section and

determining the perturbed k-eigenvalue. This can be used to calculate the absolute

sensitivity coefficient (approximation of the derivative) as shown in equation 2.9,

where kp is the perturbed k-eigenvalue, k0 is the original k-eigenvalue, Σ′
f is the

perturbed cross-section, and Σf is the original cross-section.

dk

dΣr

=
kp − k0
Σ′
r − Σr

(2.9)

2.2 Nuclear Data

Nuclear data refers to the data that quantifies how a particle interacts with matter.

A commonly known example of nuclear data is the decay constant, which quantifies

how frequently a nuclide emits radiation. For this work, the most commonly used

nuclear data is the neutron cross-section.

2.2.1 Neutron Cross-Section Data

The neutron cross-section is a way the nuclear data evaluator can quantify the

probability of a nuclear interaction occurring. The cross-section describes the number
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of reactions that occur from a particle traveling across some surface area with respect

to particle flux. A cross-section is given for a specific reaction, such as fission which

is typically denoted as (n, fission), for a nuclide (such as Uranium-235) in which the

reaction can occur. An example of a cross-section can be seen in Figure 2.1. These

data are given (with respect to incoming particle energy) by an evaluation group such

as ENDF Brown et al. (2018), JEFF Plompen et al. (2020), etc. Cross-section data

is the primary data component of neutron transport.

2.2.2 Uncertainty in Nuclear Data

The uncertainty given to a cross-section describes the impact of the uncertainty in the

available set of experimental data. This uncertainty is given in a covariance matrix

with respect to energy. A covariance matrix is a mathematical way of showing the

correlation of the uncertainty of a function for a given vector. The diagonal of the

covariance matrix represents the variance of the function with respect to the vector.

For nuclear cross-sections, the vector is given in a group-based energy structure. The

general form of the energy vector can be seen in equation 2.10.

E⃗ = [En+1, En, ...E1, E0], En+1 < En < ... < E1 < E0 (2.10)

For this case, the energy group structure has a length of n + 1, and the covariance

matrix is a n× n matrix. The (0,0) element of the covariance matrix represents the

variance of the cross-section between energies E1 and E0. The diagonal of the matrix

represents the variance of the cross-section with respect to the energy groups. The

off-diagonal components of the cross-section covariance matrix describe the effect of

the uncertainty of one group on another.

Cross-section data has two limitations at the moment. The first issue is some key

cross-sections having large uncertainties, especially at higher energies. An example

can be seen in Figure 2.2 where the uncertainty is greater than 20 % percent for high

energy neutrons. The second limitation is the lack of available data. Some
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Figure 2.1: This figure shows the (n,γ) cross-section for Uranium-235.
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Figure 2.2: This figure shows the percent uncertainty in the (n,γ) cross-section for
Uranium-235.
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nuclides that were not present in the past experiments do not have experimental

data to support an uncertainty prediction. This means that the cross-section given by

the evaluators has no associated uncertainty even though the cross-section does have

uncertainty in reality. However, some work has been done to improve the availability

such as the BLO project Little et al. (2008) and the CIELO program Fleming et al.

(2020).

2.3 Uncertainty Quantification

Uncertainty quantification is the act of quantifying the effects of uncertainty in a

parameter on a quantity of interest. This can help better understand why the

prediction technique (such as the Boltzmann equation) deviates from experimental

results. This is useful for understanding the key contributors to uncertainty because

it can inform future experimental needs.

2.3.1 Sensitivity Vector

A sensitivity vector refers to a vector of energy-dependent sensitivity coefficients as

described in section 2.1.4. In this work, a sensitivity vector is structured such that it is

a vector that represents the structure of the cross-section covariance data. This means

that the sensitivity coefficients are calculated using equation 2.9 for changes in the

cross-section for a single energy group. The sensitivity coefficients are calculated for

each group. These coefficients Si, as shown in equation 2.11 for the energy structure

in equation 2.10, are used to form sensitivity vector S⃗.

S⃗ = [S0, S1, ..., Si, ..., Sn−1, Sn] (2.11)
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2.3.2 Sandwich Rule

The sandwich rule is a mathematical formula that allows the use of the covariance

matrix and sensitivity vector to calculate variance for a function Kiedrowski et al.

(2015). In the case of this work, the covariance matrix, C is structured as shown in

equation 2.12, where COVi,j refers to the covariance value for energy group i with

respect to energy group j.

C =


COV0,0 COV0,1 · · · COV0,n

COV1,0 COV1,1 · · · COV1,n
...

...
. . .

...

COVn,0 COVn,1 · · · COVn,n

 (2.12)

Equation 2.13 shows the sandwich rule applied using this covariance matrix and the

sensitivity vector from equation 2.11, where δ2 is variance.

δ2 = S⃗CS⃗T (2.13)

The sandwich rule for neutron transport with n cross-sections can be seen in

equation 2.14 where S⃗i represents a sensitivity vector for cross-section i and Ci,i

represents a covariance matrix for cross-section i with itself. TheCi,0 is the covariance

matrix between cross-section i and cross-section 0 and is the transpose of C0,i.

δ2 =
[
S⃗0 · · · S⃗i · · · S⃗n

]


C0,0 · · · C0,i · · · C0,n

...
. . .

Ci,0 · · · Ci,i · · · Ci,n

...
. . .

Cn,0 · · · Cn,i · · · Cn,n





S⃗0

...

S⃗i
...

S⃗n


(2.14)
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2.4 Monte Carlo Method for Neutron Transport

The Monte Carlo method is a stochastic approach to solving problems that are

difficult (or impossible) to solve analytically. It has been applied to many fields

such as financial engineering Glasserman (2004), mechanical engineering BUC and

MASÁROVÁ (2013), and computer science Chowdhury et al. (2023). This method

has been theorized and applied to neutron transport since the Manhattan Project

Metropolis et al. (1958).

The basic approach to solving the transport equation using the Monte Carlo

method is to sample the life of a neutron and keep track (tally) of the location

and events the neutron experiences (reactions). The statistical average and standard

deviation of the result are calculated based on the resulting tally with many neutron

lives being simulated. Some of the key tallies that can be calculated include keff , flux,

and reaction rate. One drawback to the Monte Carlo method for neutron transport is

the need for computational power. Historically, Monte Carlo has struggled to model

complicated systems due to limitations in computing power. With recent growth

in computing power, the Monte Carlo method is able to solve problems such as a

full-scale reactor Shaw et al. (2023).

2.5 Benchmark Experiments

A benchmark experiment is an experiment that is designed to mimic something

that is difficult to create. An example of this is a nuclear weapon. Historically,

nuclear material was very scarce, so models (such as Jezebel Favorite (2017b)) were

created to run tests without using the material. Today, the US does not test nuclear

weapons, but the characteristics of the materials are still desired to be understood.

Benchmark experiments are a way to understand these characteristics. Historically,

nuclear experiments have not been well documented, so previous data can be difficult

to verify today. Today, a benchmark experiment requires a very detailed design so that
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the experiment can be replicated in the future. The International Criticality Safety

Benchmark Evaluation Project (ICSBEP) Agency (2023) has gathered a large number

of benchmark experiments with restrictions on the completeness of documentation

required for an experiment to be added to the book. A method to predict what is

happening within these systems is needed to be able to extract the characteristics of

the involved materials. Neutron transport theory can be used to examine how our

theoretical ideas of these characteristics mimic reality.
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Chapter 3

Modeling Methodology

This chapter describes the computational methods used to quantify the cross-

sectional uncertainty for Monte Carlo evaluation. This research aims to develop

a framework as a stand-alone capability that is compatible with multiple software

that provide sensitivities. The primary goal of this work is a framework that

supports MCNP simulations. The techniques for calculating sensitivity vectors using

the methods available in MCNP-6.3 will be discussed first. Then, the method of

extracting covariance data from neutron cross-section libraries using NJOY2016 will

be described. Finally, the Python3 implementation to execute the matrix algebra and

data analysis will be examined.

3.1 Neutronic Modeling

Today, the Monte Carlo method is one of the most popular methods of solving the

Boltzmann equation for neutron transport. Monte Carlo N-Particle (MCNP) Kulesza

et al. (2022) from Los Alamos National Lab is rooted in the origins of Monte Carlo

but is still a state-of-the-art code today. SCALE Wieselquist and Lefebvre (2021) is a

library of codes from Oak Ridge National Lab that includes several codes (MAVRIC,

KENO, Shift, etc.) that implement the Monte Carlo method for neutron transport.

OpenMC Romano et al. (2015) is an open-source Monte Carlo code that was written
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by several graduate students for MIT. Serpent Leppänen et al. (2015) is another

Monte Carlo code that is published by VVT in Finland. These are not all of the

available codes but are very popular choices for most Monte Carlo neutron transport

problems.

MCNP has roots in the first Monte Carlo programs for neutron transport

Metropolis et al. (1958). Today, it is still at the forefront of transport solutions

as a state-of-the-art Monte Carlo program. MCNP-6.3 is the latest version of MCNP

which was released on August 29th, 2023. MCNP-6.3 was chosen due to its capability

to produce k-eigenvalue and source-driven sensitivity coefficients.

MCNP-6.3 has two modes of execution this work will utilize: KCODE and SDEF.

KCODE is used to solve the k-eigenvalue form of the Boltzmann equation described

in section 2.1.3. SDEF is used to solve the source-driven Boltzmann equation as

described in section 2.1.2.

3.1.1 k-Eigenvalue Sensitivity

The method to calculate the sensitivity coefficient of keff with respect to a cross-

section is the MCNP method (referred to as card) KSEN Kiedrowski (2013). KSEN

uses an advanced form of perturbation theory called Iterative Fission Probability

to calculate the sensitivity coefficient. MCNP calculates the relative sensitivity

coefficient. Equation 2.9 is the equation for absolute sensitivity. In order to get

relative sensitivity, the equation must be normalized as shown in equation 3.1.

Sr,k =
Σr

k

dk

dΣr

(3.1)

In order to construct a sensitivity vector, KSEN must be given an energy structure.

This structure will produce a list of sensitivity coefficients within the output file that

can be used to construct a vector.
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KSEN can also be given a set of cross-sections for desired sensitivity coefficients.

These require the MT number for the cross-sections as described in MCNP documen-

tation Kulesza et al. (2022). An example KSEN card is shown below for two energy

groups, (10−11, 1) MeV and (1, 20) MeV, and two cross-sections, MT = 2 (elastic

scattering) and MT = 4 (inelastic scattering).

KSEN1 xs rxn = 2 4 erg = 1e-11 1.0 20.0

This command will report a sensitivity vector for all nuclides within the system

for the described condition. For this reason, only one KSEN card is needed for the

sensitivity vectors needed for this work. The energy discretization must match the

structure of the covariance matrix data that is provided.

3.1.2 Source-Driven Sensitivity

The method to calculate a sensitivity vector for a source-driven sensitivity coefficient

in MCNP uses the PERT card Favorite (2017a, 2021). Using the first and second-order

differential technique, the PERT card gives the second-order Taylor’s expansion. This

work will look at only the first-order perturbations because only first-order sensitivity

coefficients are used. If PERT is given the command “method=2”, only the first-order

difference of the tally value will be given. It should be noted that PERT uses density

perturbations, not cross-section perturbations. This requires the use of atomic density

as the perturbation due to its relationship with the macroscopic cross-section as shown

in equation 3.2 where Σ is the macroscopic cross-section, ρ is atomic density, and σ

is the microscopic cross-section.

Σ = ρσ (3.2)

Using this property, a PERT card can be used to get the perturbed tally, ∆f , with

respect to the initial tally, f for an atomic density perturbation factor a. The first-

order relative sensitivity coefficient can be calculated as shown in equation 3.3.
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Sr,f =
ρ

f

∆f

aρ
=

Σr

f

∆f

aΣr

(3.3)

This equation can be broken into energy discretization similar to k-eigenvalue

sensitivities. This is done by having a unique PERT card for each energy group.

PERT cards also require only one cross-section to change at a time. This requires a

unique PERT card for each nuclide, reaction, and energy group present within the

model. The two cards below are for a 2-group energy structure with a perturbation

in the elastic scattering cross-section and one nuclide that is perturbed in material 2.

PERT1:n cell = 1 rho = 1.01 mat = 2 rxn = 2 method = 2 erg = 1e-11 1.0

PERT2:n cell = 1 rho = 1.01 mat = 2 rxn = 2 method = 2 erg = 1.0 20.0

3.1.3 Stochastic Sampling

The Sampler module in SCALE uses the stochastic sampling method to produce

the cross-section uncertainty. This method uses the covariance data to randomly

perturb the cross-sections within the nuclear data and reevaluates the problem with

the updated data. This method is used in this work to compare with the sandwich

rule method for calculating the uncertainty.

3.2 Nuclear Data Processing

The cross-section data given by the evaluator is given in different energy-group

structures and at a different temperature than the problem. For these cases, a data

processing code can be used to add factors, such as Doppler broadening, heating of

the material, and resonance reconstruction. These codes can change the value of the

data and change the structure of the data (energy groups). This can be useful for

cross-sections and covariance matrices if a nonstandard case is used such as using

a custom energy group structure. Two examples of these types of applications are
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AMPX from SCALE Wiarda et al. (2015) and NJOY Kahler III and Macfarlane

(2016) from Los Alamos National Laboratory (LANL).

NJOY Kahler III and Macfarlane (2016) is an open-source nuclear data evaluation

code from Los Alamos National Laboratory. This work uses NJOY21 which is the

most recent release of the program. NJOY allows for cross-section alterations such

as resonance parameter reconstruction, Doppler broadening, and thermal scattering

adjustments.

The modules used to construct the covariance matrix for this work can be seen

in Figure 3.1. RECONR is the module to reconstruct the resonance parameters

into the resonance cross-section in a point-wise ENDF format, PENDF. BROADR

is the module that accounts for Doppler broadening in the PENDF cross-section.

THERMR adds the thermal scattering point-wise data to the cross-section. The

ERRORR module takes the original ENDF6 file and the generated PENDF file and

creates a covariance matrix. ERRORR allows for user-defined energy-group structure

to be given for the covariance matrix. The NJOY input file framework can be seen

in Appendix A.1.

3.3 TOFFEE Framework

An open-source Python Framework is developed to combine these functions to

calculate the variances for several parameters. The framework, TOol For Fast Error

Estimation (TOFFEE), reads an MCNP input file to determine the nuclides and

mode of the model. Next, a new MCNP input file is written alongside the necessary

NJOY input files for the given nuclides. Then, these files are read and the sandwich

rule is executed for all cross-sections. Finally, the variances are reported. Figure

3.1 shows a graphical representation of this Python Framework. This framework is

available here:

https://github.com/NE-UTK-Computation-Lab/Cross-Section-Uncertainty
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The framework includes a series of subroutines to manipulate software input

files, run scripts on high-performance computers, perform matrix algebra, generate

variances, and data plotting/imaging.

A Python script has been developed to allow for the reading of text from files with

the use of the built-in open function. Python is a popular high-level programming

language. It was chosen for this work because of its capabilities to read and write

text files, interact with system-level functions, and construct useful data structures

and plots. Python version 3.6.8 was used for this work.

A file manipulation capability is very useful for the framework application to

automate read and write to input and output files from MCNP and NJOY, as well

as, ENDF6 files. This is used to convert the text data from these files into useful

information for the user.

The MCNP input file is used to determine the mode (KCODE or SDEF) the model

will use, and the nuclides that are present in the materials. The required sensitivity

cards are then added to the MCNP input file needed to calculate the sensitivity

coefficients. The sensitivity coefficients are then read from the output file from the

updated MCNP input file.

The material information is written to the NJOY input file to generate the

covariance matrix. The covariance matrix is read from the output file from NJOY.

Both MCNP6.3 and NJOY are used on a remote computer that requires a batch

script to execute. This requires the use of the Python module os to interact with the

system command line using the os.system function.

The matrix operations used to execute the sandwich rule come from the Python

module Numpy. These operations include transpose (numpy.transpose) and matrix

multiplication (numpy.matmul). These operations allow the calculation of the

variance for each sensitivity vector from MCNP and the covariance matrix from

NJOY.
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ENDF6 file

RECONR

BROADR

THERMR

ERRORR

Covariance Matrix

Figure 3.1: This is a graphical representation of the algorithm used with NJOY to
produce a covariance matrix.
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MCNP Input

Read Nuclides and Mode

Write MCNP Input

Execute MCNP Input

Read Sensitivity Vectors

Write NJOY Input

Execute NJOY Input

Read Covariance Matrices

Execute Sandwich Rule

Report Variances

Figure 3.2: This is a graphical representation of the Python Framework used to
calculate the variances using MCNP and NJOY.
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Python has many tools that allow for data presentation. This work utilizes several

of these tools to represent the data from the framework. The first is using the file

editing methods to write a text file with the variances sorted from greatest to least.

This is a simple representation that allows for the exact values to be easily extracted

from a text file. A similar method used is the dictionary in Python. This is a Python

structure that allows us to save all of the information within the Python data. This

is only visible using commands or an IDE but is a very simple method of structuring

the data. The framework uses the module pickle to save this for reference after the

execution of the code.

Matplotlib is a Python module that generates plots. This module is used to

generate a bar plot of the top five contributors to the variance. It is also used to

generate plots of the sensitivity vectors for each nuclide and reaction. An example of

this can be seen in Figure 3.3. Lastly, the covariance matrices are plotted as a heat

map using the matshow function. An example of this can be seen in Figure 3.4.
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Figure 3.3: This figure shows an example of the visualization of a sensitivity vector
normalized per unit lethargy generated with TOFFEE.
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Figure 3.4: This figure shows an example of the visualization of a covariance matrix
generated with TOFFEE.
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Chapter 4

Applications

4.1 Jezebel Model

Jezebel Favorite (2017b) was a solid sphere of highly enriched plutonium. It was

originally constructed to determine the critical mass of plutonium. It was designed to

support the early weapons program in the United States. Today, it is still of interest

today as a benchmark experiment.

The goal of modeling the Jezebel benchmark in this work is to quantify the

uncertainty on the fundamental benchmark. This work also aims to look at the effects

of using different cross-section libraries on both keff and uncertainty. The ENDF

VII.1 and ENDF VIII.0 cross-section libraries will be compared for this model. For

both libraries, the SCALE 56-group structure was used to construct the covariance

matrices and sensitivity vectors. This structure can be seen in the input file for

Jezebel in Appendix A.2.

The model used for Jezebel in this work is a solid sphere with a radius of 6.39061

cm. The atom density of the material used is 0.0402901 atoms
barn−cm . Table 4.1 shows the

nuclide atom densities for the material. The MCNP input can be seen in Appendix

A.2.
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Table 4.1: This table displays the atom densities used for the material of Jezebel

Nuclide Atomic Density [ atoms
barn−cm ]

Ga-69 8.2663E-4
Ga-71 5.4857E-4
Pu-239 3.7047E-2
Pu-240 1.7512E-3
Pu-241 1.1674E-4
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4.1.1 Results

The keff of Jezebel was found to be 1.00062 using the ENDF VII.1 library and 1.00056

using the ENDF VIII.0 library. The statistical standard deviation for both cases was

0.00001. The standard deviation of keff based on the ENDF VII.1 covariance library

created using NJOY was found to be 0.00561. The standard deviation using the

ENDF VIII.0 covariance library was found to be 0.01004. Both of the calculated keff

values fall well within the error bounds of the experimental value of 1.000 Mosteller

et al. (2011) given the respective to the cross-section uncertainty. Table 4.2 shows

these results as well as the difference in the calculated and experimental keff .

One of the interesting results is that the cross-sectional standard deviation grew

by a factor of about 1.8. Figure 4.1 and 4.2 shows the top contributors to the cross-

sectional uncertainty for the ENDF/B-VII.1 and ENDF/B-VIII.0 library, respectively.

It can be seen that the main difference in the uncertainties is the Pu-239 fission cross-

section. The sensitivity vectors for both ENDF VII.1 and ENDF VIII.0 visually

looked the same as can be seen in Figure 4.3 and 4.4, respectively. However, the

covariance matrices are quite different as seen in Figure 4.5 and 4.6, respectively.

The difference in the covariance matrices does seem to account for the difference

in the uncertainty between ENDF VII.1 and ENDF VIII.0.

4.2 BeRP Ball

The Beryllium Reflected Plutonium (BeRP) ball was constructed in October of

1980 at Los Alamos Nation Lab Mattingly (2009). It is a sphere of weapons-grade

plutonium surrounded by a stainless steel housing. The BeRP ball is one of the

subcritical sources that is a part of the National Critical Experiment Research Center

(NCERC). It has been used in several recent subcritical and critical benchmark

experiments Percher and Kim (2014); Walston et al. (2014).
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Table 4.2: This table is a comparison of keff with different cross-section libraries.

Method keff Statistical STD Cross-sectional STD dk
ENDF-VII.1 1.00062 0.00001 0.00561 0.00062
ENDF-VIII.0 1.00056 0.00001 0.01004 0.00056
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Figure 4.1: This figure shows the top five contributors to the uncertainty for Jezebel
using the ENDF/B-VII.1 library.
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Figure 4.2: This figure shows the top five contributors to the uncertainty for Jezebel
using the ENDF/B-VIII.0 library.
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Figure 4.3: This figure shows the sensitivity vector for the Pu-239 fission cross-
section. This is for the model of Jezebel using the ENDF/B-VII.1 library.
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Figure 4.4: This figure shows the sensitivity vector for the Pu-239 fission cross-
section. This is for the model of Jezebel using the ENDF/B-VIII.0 library.
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Figure 4.5: This figure shows the covariance matrix for the Pu-239 fission cross-
section. This is for the model of Jezebel using the ENDF/B-VII.1 library.
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Figure 4.6: This figure shows the covariance matrix for the Pu-239 fission cross-
section. This is for the model of Jezebel using the ENDF/B-VIII.0 library.
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The BeRP ball is modeled to compare the SCALE Sampler method to calculate

uncertainties with the implementation of the MCNP sensitivity method. The keff

and volumetric flux were compared.

4.2.1 Model

The model for BeRP used in this work is a simplified version of the plutonium core.

The model is a solid sphere geometry similar to the Jezebel model with a radius

of 3.7938 cm. The atom density used is 0.0496932 atoms
barn−cm . Table 4.3 shows the

atom densities for the model. The ENDF VIII.0 cross-section library was used for

both MCNP and SCALE with the 56-group structure used for the covariance and

sensitivity vectors.

The SCALE code used is SCALE 6.3. CSAS-VI with KENO-VI is used to calculate

keff with continuous energy cross-sections. Mavric is used to calculate the volumetric

flux of the BeRP ball with continuous energy cross-sections. The Sampler module

uses both of these codes to calculate the respective cross-section uncertainties. This

requires both CSAS-VI and Mavric to be operated in a multigroup mode so the

SCALE 252-group structure was used. All of the MCNP and SCALE input files can

be seen in Appendix A.3

4.2.2 Results

The experimental value of keff of BeRP ball is 0.774 Walston et al. (2014). The keff

was found to be 0.77112 using MCNP and 0.77098 using CSAS-VI. The statistical

standard deviation was 0.00005 for MCNP and 0.00001 for CSAS-VI. The standard

deviation of keff using the MCNP method was found to be 0.00796. The standard

deviation of keff using the SCALE method was found to be 0.00423. Both of the

calculated keff values fall well within the error bounds of the experimental value

given the respective to the cross-section uncertainty. Table 4.4 shows these results as

well as the difference in the calculated and experimental keff .
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Table 4.3: This table displays the atom densities used for the material of BeRP ball.

Nuclide Atomic Density [ atoms
barn−cm ]

C-12 2.2603101e-4
Na-23 1.2836101e-5
Ga-69 3.4079597e-5
Ga-71 2.2623127e-5
Ta-181 1.1596455e-4
W-182 3.0250785e-5
W-183 1.6335000e-5
W-184 3.4969353e-5
W-186 3.2450107e-5
U-235 4.2317089e-5
U-236 9.8159972e-6
Pu-238 7.6626417e-6
Pu-239 4.6016003e-2
Pu-240 2.9011139e-3
Pu-241 2.7811478e-5
Pu-242 1.3585872e-5
Am-241 1.2556189e-4

Table 4.4: This table is a comparison of keff uncertainty using different methods of
calculation.

Method keff Statistical STD Cross-sectional STD dk Run Time
MCNP 0.77119 0.00005 0.00798 0.00281 1160

KENO-VI 0.77077 0.00005 0.00837 0.00323 7590
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All flux tallies refer to the volumetric flux per source particle. The flux was found

to be 0.0492193 cm−2 using MCNP and 0.77098 cm−2 using Mavric. The statistical

standard deviation was 0.0000836 for MCNP and 0.00001 for Mavric. The standard

deviation of the flux using the MCNP method was found to be 0.0006269. The

standard deviation of the flux using the SCALE method was found to be 0.00423.

Table 4.5 shows the results described above.

4.3 Energy-Tuning Assembly

The last model to test the MCNP Python framework is the energy-tuning assembly

designed by the author to tailor 2.5 MeV neutrons generated by a D-D, for AWCC

application which is discussed in the motivations section. This model is used as

an example of how the framework would support an optimization design driven by

cross-section uncertainties propagation for an energy-discretized surface flux out of

the ETA.

4.3.1 ETA Model for AWCC

The model used can be seen in Figure 4.7. The ETA consists of a point neutron

source with an energy of 2.5 MeV, a 5 cm x 5 cm x 8.784 cm slab of high-density

polyethylene (HDPE), and a 1 cm x 1 cm x 1 cm cube of enriched uranium. The

materials used for the HDPE and uranium can be seen in Table 4.6 and 4.7. The

input file used can be seen in Appendix A.4. The flux is discretized into a 75-group

structure as seen in the MCNP input file.

4.3.2 Results

All flux tallies refer to the surface flux per source particle. The total flux was found

to be 0.0123694 cm−2 using MCNP. The statistical standard deviation was 0.0000557

for MCNP. The standard deviation of the flux using the MCNP method was found
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to be 0.0000355. Table 4.8 shows the results described above. Figure 4.8 shows the

energy-dependent flux. The left image does contain the cross-sectional despite the

values being too small to see. The right image is a zoomed-in look at some of the

data points to show the magnitude of the uncertainties.
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Table 4.5: This table is a comparison of flux uncertainty calculation methods.

Method ϕ [cm−2] Statistical STD Cross-sectional Variance Run Time
MCNP 0.0491943 0.0000246 0.00180048 1904
Mavric 0.050457 0.000050 0.00186165 2904

Table 4.6: This table displays the atom densities used for the material of high-
density polyethylene in the energy-tuning assembly.

Nuclide Atomic Density [ atoms
barn−cm ]

H-1 0.079855
C-12 0.039929
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Table 4.7: This table displays the atom densities used for the material of uranium
in the energy-tuning assembly.

Nuclide Atomic Density [ atoms
barn−cm ]

U-234 0.000013
U-235 0.001456
U-236 0.000007
U-238 0.046468

Table 4.8: This table lists the total flux Out of the energy-tuning assembly.

Model ϕ Statistical STD Cross-sectional Variance
ETA 0.0123694 0.0000557 0.0000355
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Figure 4.7: This figure shows the design of the energy-tuning assembly designed
using Gnowee Williams and Bogetic (2020).
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Figure 4.8: This figure shows the surface flux out of the energy-tuning assembly
with cross-sectional and statistical error bars.
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Chapter 5

Conclusions

This thesis aims to demonstrate the need for an uncertainty analysis tool that

can calculate the uncertainty in neutron transport problems for the purpose of

optimization. This tool will be useful to both examine the uncertainty in a system

during the optimization process and design systems with uncertainty as the driving

objective. The goal of this work is to construct a framework, TOFFEE, that uses the

capabilities that are present within neutron transport codes, i.e. MCNP-6.3, SCALE,

Serpent, etc., to calculate these uncertainties. This framework will be useful for

many applications including uncertainty analysis and system design. The approach

to designing this framework is to examine the principles of uncertainty propagation

for neutron transport. Next, a methodology for the framework is determined to

conduct the uncertainty analysis. Then, the framework was demonstrated on several

applications that included benchmark experiments and designed experiments.

Uncertainty is incredibly important for describing advanced reactors, subcritical

experiments, and radiological source replacement design. These systems are impor-

tant for the development of many new designs. The uncertainty from nuclear data is

one of the key components of the uncertainty for these systems. This work constructs

an application that aims to fill this need.
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The framework is designed to calculate the cross-section uncertainty on transport

problems using the sandwich rule. This method is used to calculate the uncertainty

for the Monte Carlo method of neutron transport. The sandwich rule uses a sensitivity

vector and covariance matrix for a given cross-section to calculate the uncertainty.

Python is used as the programming language used to construct the framework.

MCNP-6.3 is used to calculate the sensitivity vector. NJOY2021 is used to construct

the covariance matrix library. The sandwich rule is calculated within the Python

framework. The framework is capable of producing valuable information about the

uncertainty, sensitivity, and covariance data.

The framework was able to calculate the uncertainty of these experiments despite

the difference in the characteristics required. It is capable of calculating the

uncertainty in keff for the historical experiment Jezebel. The calculated keff value

using MCNP6.3 was 1.00058 with a cross-sectional standard deviation of 0.01004.

The framework calculated the uncertainty in both keff and flux for the BeRP

ball subcritical benchmark experiment. The calculated keff value using MCNP6.3

was 0.77119 with a cross-sectional standard deviation of 0.00798. The calculated

volumetric flux value using MCNP6.3 was 0.0491943 cm−2 with a cross-sectional

standard deviation of 0.00180048.

The framework is also capable of calculating the cross-section uncertainty in the

energy-dependent flux out of a designed ETA for source replacement. The calculated

energy-integrated surface flux value using MCNP6.3 was 0.0134694 cm−1 with a cross-

sectional standard deviation of 0.0000355.

In conclusion, a Python framework was created to automate the process of

generating a covariance library for a specific energy group structure and conduct

a sensitivity analysis using MCNP6.3 for the purpose of conducting uncertainty

analysis. The framework was capable of producing uncertainty in all of the required

quantities of interest. The framework compared well to the alternative method in

regard to optimization. For this reason, it is believed that the Python framework
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constructed in this work is a suitable method to calculate cross-section uncertainties

for the purpose of system optimization.
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Appendix A

Input Files

A.1 NJOY Input File

moder

20 -30 /

reconr

-30 -31 /

’automated processing using ndvv.njoy.process see *.log files’ /

%%isotope_endf_value%% 0 0 /

0.001 0.0 0.01 5.0000000000000004e-08 /

0 /

broadr

-30 -31 -32 /

%%isotope_endf_value%% 1 0 0 0.0 /

0.001 1000000.0 0.01 5.0000000000000004e-08 /

293.6

0 /

heatr

-30 -32 -33 /
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%%isotope_endf_value%% 3 0 0 0 2 /

442

443

444

gaspr

-30 -33 -34 /

thermr

0 -34 -35 /

0 %%isotope_endf_value%% 16 1 1 0 0 1 221 2 /

293.6 /

0.001 10.0 /

moder

-35 21/

errorr

20 21 0 33/

%%isotope_endf_value%% 1 9 0 1/

0 293.6 /

0 33 0/

%%energy_bins_length%%/

%%energy_bins%%/

stop

A.2 Jezebel Input File

Pu239 Jezebel 17,065.5 g Pu-alloy (4.5 at% 240Pu, 1.02 wt% Ga)

1 94 0.0402901 -1 imp:n=1

2 0 1 imp:n=0

1 so 6.39061
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mode n

rand gen=2 seed=2901000001

prdmp j 500

kcode 2400000 1.0 50 1050

totnu

sdef pos=0. 0. 0. rad=d1 erg=d2

si1 0. 6.39061

sp1 -21 2

sp2 -3 0.966 2.842

c Materials

m94 94239.00c 3.7047E-02

94240.00c 1.7512E-03

94241.00c 1.1674E-04

31069.00c 8.2663E-04

31071.00c 5.4857E-04

c End Materials

print

c Pu239 Jezebel 17,065.5 g Pu-al

A.3 Berp Input Files

A.3.1 keff

very simplified MCNP input deck for FUND-NCERC-PU-HE3-MULT-001-001 to compute a multigroup weighting spectrum.

c cell cards.

100 100 4.96932E-02 -100 imp:n=1 $ BeRP ball.

970 0 +100 -999 imp:n=1 $ void between assembly and problem boundary.

999 0 +999 imp:n=0 $ outside of problem.
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c surface cards.

100 so 3.79380000e+00 $ BeRP ball.

999 so 1.50000000e+01 $ problem boundary.

c

kcode 100000 1.0 100 1100

sdef pos=0. 0. 0.

rad=d1

erg=d2

si1 0 3.79380000e+00

sp1 -21 2

si2 h 1.00000000000000E-11 2.96937332818714E-09 1.03641312841130E-08

2.99896082485731E-08 4.09909343950883E-08 4.94445050193864E-08

7.19413303032538E-08 1.04674017947447E-07 1.52000000000000E-07

2.21594897733660E-07 2.51099915574398E-07 2.84533480898340E-07

3.22418673725673E-07 3.65348221372105E-07 4.14000000000000E-07

6.41206097331274E-07 1.13000000000000E-06 3.06000000000000E-06

8.32000000000000E-06 2.26000000000000E-05 6.14000000000000E-05

1.67000000000000E-04 4.54000000000000E-04 1.23500000000000E-03

3.35000000000000E-03 9.12000000000000E-03 2.48000000000000E-02

6.76000000000000E-02 1.84000000000000E-01 3.03000000000000E-01

5.00000000000000E-01 8.23000000000000E-01 1.35300000000000E+00

1.73800000000000E+00 2.23200000000000E+00 2.86500000000000E+00

3.68000000000000E+00 4.72366552741015E+00 5.35261428518990E+00

6.07000000000000E+00 6.87289278790972E+00 7.79000000000000E+00

8.82496902584595E+00 1.00000000000000E+01 1.20000000000000E+01

1.30000000000000E+01 1.35000000000000E+01 1.40000000000000E+01

1.45000000000000E+01 1.50000000000000E+01 1.70000000000000E+01

2.00000000000000E+01

sp2 d 0.00000000E+00 8.18650845E-11 4.51194069E-10 2.09066962E-09

1.56889389E-09 1.36178437E-09 4.19327253E-09 7.36071819E-09 1.28283369E-08

2.27598005E-08 1.08686190E-08 1.31069010E-08 1.58150423E-08 1.90689469E-08

2.30150300E-08 1.24810990E-07 3.47438649E-07 2.09727143E-06 9.41892725E-06
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4.21673904E-05 1.89017851E-04 8.49590673E-04 3.80522161E-03 1.71016048E-02

7.62671485E-02 3.42367277E-01 1.52632930E+00 6.78053373E+00 2.92631491E+01

3.95363440E+01 7.71372524E+01 1.39677576E+02 2.24058616E+02 1.41941658E+02

1.50161138E+02 1.42728970E+02 1.18479736E+02 8.15821435E+01 2.62680554E+01

1.75890211E+01 1.07715140E+01 5.80464169E+00 2.80739188E+00 1.19672667E+00

5.23540941E-01 5.78899514E-02 1.35298252E-02 8.63996102E-03 5.26677206E-03

3.16021557E-03 4.41688552E-03 6.69524739E-04

c

c materials cards.

c

c BeRP ball.

c Materials

m100 6012.00c 2.2603101e-4

11023.00c 1.2836101e-5

31069.00c 3.4079597e-5

31071.00c 2.2623127e-5

73181.00c 1.1596455e-4

74182.00c 3.0250785e-5

74183.00c 1.6335000e-5

74184.00c 3.4969353e-5

74186.00c 3.2450107e-5

92235.00c 4.2317089e-5

92236.00c 9.8159972e-6

94238.00c 7.6626417e-6

94239.00c 4.6016003e-2

94240.00c 2.9011139e-3

94241.00c 2.7811478e-5

94242.00c 1.3585872e-5

95241.00c 1.2556189e-4

c End Materials
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A.3.2 Flux

very simplified MCNP input deck for FUND-NCERC-PU-HE3-MULT-001-001 to compute a multigroup weighting spectrum.

c cell cards.

100 100 4.96932E-02 -100 imp:n=1 $ BeRP ball.

970 0 +100 -999 imp:n=1 $ void between assembly and problem boundary.

999 0 +999 imp:n=0 $ outside of problem.

c surface cards.

100 so 3.79380000e+00 $ BeRP ball.

999 so 1.50000000e+01 $ problem boundary.

c data cards.

print 10 40 85 110

c

c general source distribution.

c

nps 3e+07

c prdmp j 500000 -1 2 $ how often to dump to the run tape and write a MCTAL file.

sdef pos=0. 0. 0.

rad=d1

erg=d2

c

c spatial distribution.

c

si1 0 3.79380000e+00

sp1 -21 2

c

c energy distribution. source definition in neutrons / sec from SENSMG.

c the normalized number of neutrons emitted in each energy group gives

c the energy distribution.

c region 1 mat 1

c total source in neuts/s: 2.7867023E+05

c 0.00000000E+00 8.18650845E-11 4.51194068E-10 2.09066962E-09
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c 1.56889389E-09 1.36178437E-09 4.19327252E-09 7.36071819E-09 1.28283369E-08

c 2.27598005E-08 1.08686190E-08 1.31069010E-08 1.58150423E-08 1.90689469E-08

c 2.30150300E-08 1.24810990E-07 3.47438649E-07 2.09727142E-06 9.41892724E-06

c 4.21673904E-05 1.89017850E-04 8.49590672E-04 3.80522160E-03 1.71016048E-02

c 7.62671483E-02 3.42367276E-01 1.52632930E+00 6.78053372E+00 2.92631489E+01

c 3.95363439E+01 7.71372523E+01 1.39677575E+02 2.24058615E+02 1.41941658E+02

c 1.50161138E+02 1.42728970E+02 1.18479736E+02 8.15821434E+01 2.62680552E+01

c 1.75890209E+01 1.07715139E+01 5.80464166E+00 2.80739187E+00 1.19672667E+00

c 5.23540941E-01 5.78899513E-02 1.35298252E-02 8.63996101E-03 5.26677205E-03

c 3.16021557E-03 4.41688551E-03 6.69524738E-04

c

si2 h 1.00000000000000E-11 2.96937332818714E-09 1.03641312841130E-08

2.99896082485731E-08 4.09909343950883E-08 4.94445050193864E-08

7.19413303032538E-08 1.04674017947447E-07 1.52000000000000E-07

2.21594897733660E-07 2.51099915574398E-07 2.84533480898340E-07

3.22418673725673E-07 3.65348221372105E-07 4.14000000000000E-07

6.41206097331274E-07 1.13000000000000E-06 3.06000000000000E-06

8.32000000000000E-06 2.26000000000000E-05 6.14000000000000E-05

1.67000000000000E-04 4.54000000000000E-04 1.23500000000000E-03

3.35000000000000E-03 9.12000000000000E-03 2.48000000000000E-02

6.76000000000000E-02 1.84000000000000E-01 3.03000000000000E-01

5.00000000000000E-01 8.23000000000000E-01 1.35300000000000E+00

1.73800000000000E+00 2.23200000000000E+00 2.86500000000000E+00

3.68000000000000E+00 4.72366552741015E+00 5.35261428518990E+00

6.07000000000000E+00 6.87289278790972E+00 7.79000000000000E+00

8.82496902584595E+00 1.00000000000000E+01 1.20000000000000E+01

1.30000000000000E+01 1.35000000000000E+01 1.40000000000000E+01

1.45000000000000E+01 1.50000000000000E+01 1.70000000000000E+01

2.00000000000000E+01

sp2 d 0.00000000E+00 8.18650845E-11 4.51194069E-10 2.09066962E-09

1.56889389E-09 1.36178437E-09 4.19327253E-09 7.36071819E-09 1.28283369E-08

2.27598005E-08 1.08686190E-08 1.31069010E-08 1.58150423E-08 1.90689469E-08

2.30150300E-08 1.24810990E-07 3.47438649E-07 2.09727143E-06 9.41892725E-06

4.21673904E-05 1.89017851E-04 8.49590673E-04 3.80522161E-03 1.71016048E-02
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7.62671485E-02 3.42367277E-01 1.52632930E+00 6.78053373E+00 2.92631491E+01

3.95363440E+01 7.71372524E+01 1.39677576E+02 2.24058616E+02 1.41941658E+02

1.50161138E+02 1.42728970E+02 1.18479736E+02 8.15821435E+01 2.62680554E+01

1.75890211E+01 1.07715140E+01 5.80464169E+00 2.80739188E+00 1.19672667E+00

5.23540941E-01 5.78899514E-02 1.35298252E-02 8.63996102E-03 5.26677206E-03

3.16021557E-03 4.41688552E-03 6.69524739E-04

c

c materials cards.

c

c BeRP ball.

c Materials

m100 6012.00c 2.2603101e-4

11023.00c 1.2836101e-5

31069.00c 3.4079597e-5

31071.00c 2.2623127e-5

73181.00c 1.1596455e-4

74182.00c 3.0250785e-5

74183.00c 1.6335000e-5

74184.00c 3.4969353e-5

74186.00c 3.2450107e-5

92235.00c 4.2317089e-5

92236.00c 9.8159972e-6

94238.00c 7.6626417e-6

94239.00c 4.6016003e-2

94240.00c 2.9011139e-3

94241.00c 2.7811478e-5

94242.00c 1.3585872e-5

95241.00c 1.2556189e-4

c End Materials

f4:n 100
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A.4 Energy Tuning Assembly Input File

AmLi source shaping

C

C

C

C ####################### BLOCK 1 #############################

C

C ###### CELLS ######

1 2008 0.119784 1 -2 3 -4 5 -6 IMP:N=1

2 2008 0.119784 1 -2 3 -4 6 -7 IMP:N=1

3 2008 0.119784 1 -2 3 -4 7 -8 IMP:N=1

4 2008 0.119784 1 -2 3 -4 8 -9 IMP:N=1

5 2008 0.119784 1 -2 3 -4 9 -10 IMP:N=1

6 2008 0.119784 1 -2 3 -4 10 -11 IMP:N=1

7 2008 0.119784 1 -2 3 -4 11 -12 IMP:N=1

8 2008 0.119784 1 -2 3 -4 12 -13 IMP:N=1

9 2008 0.119784 1 -2 3 -4 13 -14 IMP:N=1

10 2008 0.119784 1 -2 3 -4 14 -15 IMP:N=1

11 4000 0.047944 15 -16 17 -18 19 -20 IMP:N=1

100 0 -99 #1 #2 #3 #4 # 5 #6 #7 #8 #9 #10 #11 IMP:N=1

101 0 99 IMP:N=0

C

C

C ####################### BLOCK 2 #############################

C

C ###### SURFACES ######

1 py -2.5
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2 py 2.5

3 pz -2.5

4 pz 2.5

5 px 0

6 px 0.99999874

7 px 1.6238801999999999

8 px 2.56195476

9 px 3.3975858899999998

10 px 4.1827926

11 px 5.1743757200000005

12 px 6.16882774

13 px 7.15377788

14 px 7.92431155

15 px 8.78376786

16 px 9.78376786

17 py -0.5

18 py 0.5

19 pz -0.5

20 pz 0.5

99 SO 108.78376786 $outer sphere

C

C

C ####################### BLOCK 3 #############################

C

C ###### MODE ######

MODE N

C

C

67



C ###### SOURCE ######

C

sdef par=n erg=2.5 pos=0.000001 0.0 0.0

C

C ###### TALLIES ######

C

F2:N 15

SD2 1.0

E2 0.04

0.08

0.12

0.16

0.2

0.24

0.28

0.32

0.36

0.4

0.44

0.48

0.52

0.56

0.6

0.64

0.68

0.72

0.76

0.8

0.84
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0.88

0.92

0.96

1.0

1.04

1.08

1.12

1.16

1.2

1.24

1.28

1.32

1.36

1.4

1.44

1.48

1.52

1.56

1.6

1.64

1.68

1.72

1.76

1.8

1.84

1.88

1.92

1.96

2.0
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2.04

2.08

2.12

2.16

2.2

2.24

2.28

2.32

2.36

2.4

2.44

2.48

2.52

2.56

2.6

2.64

2.68

2.72

2.76

2.8

2.84

2.88

2.92

2.96

3.0

C

C ###### MATERIALS ######

C

C
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C ###### HISTORY LIMIT ######

C

C

C

C ###### RUN TIME ######

C

nps 10000000

C

print

C

C ####################### ENDING #############################

c Materials

c Uranium

m4000 92234.00c 0.000013

92235.00c 0.001456

92236.00c 0.000007

92238.00c 0.046468

c Poly (non-borated)

m2008 1001.00c 0.079855

6012.00c 0.039929

c End Materials
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