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Abstract

The developed methodologies are proposed to serve as support for control centers

and fault analysis engineers. These approaches provide a dependable and effective

means of pinpointing and resolving faults, which ultimately enhances power grid

reliability. The algorithm uses the Least Absolute Value (LAV) method to estimate

the augmented states of the PCB, enabling supervisory monitoring of the system.

In addition, the application of statistical analysis based on projection statistics of

the system Jacobian as a virtual sensor to detect faults on transmission lines. This

approach is particularly valuable for detecting anomalies in transmission line data,

such as bad data or other outliers, and leverage points. Through the integration

of remote PCB status with virtual sensors, it becomes possible to accurately

detect faulted transmission lines within the system. This, in turn, saves valuable

troubleshooting time for line engineers, resulting in improved overall efficiency and

potentially significant cost savings for the company.

When there is a temporary or permanent fault, the generator dynamics will

be affected by the transmission line reclosing, which could impact the system’s

stability and reliability. To address this issue, an unscented Kalman filter (UKF)

and optimal performance iterated unscented Kalman filter (IUKF) dynamic state

estimation techniques are proposed. These techniques provide an estimate of

the dynamic states of synchronous generators, which is crucial for monitoring

generator states during transmission lines reclosing for temporary and permanent

fault conditions. Several test systems were employed to evaluate reclosing following

vii



faults on transmission lines, including the IEEE 14-bus system, Kundur’s two-area

model, and the reduced Western Electricity Coordinating Council (WECC) model

of UTK electrical engineering hardware test bed (HTB). The developed methods

offer a comprehensive solution to address the challenges posed by unbalanced faults

on transmission lines, such as line-to-line, line-to-line-ground, and line-to-ground

faults. Utilities must consider these faults when developing protective settings. The

effectiveness of the solution is confirmed by monitoring the reaction of dynamic

state variables following transmission lines reclosing after temporary faults and

transmission line lockout from permanent faults.
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Chapter 1

Introduction

State estimation is a very important topic in power systems, especially for control

center engineers who utilize the state estimator tool for supervisory control and

monitoring due to the increased complexities of the systems and increased load

and generation. Power systems state estimation is needed due to the increase in

the system generation and load, which makes power flow patterns more difficult to

predict or estimate. The necessity for real-time state estimation becomes imperative

for proper system monitoring and control with the aid of an Energy Management

System (EMS). At control centers, the Energy Management Systems (EMS) team

depends on the state estimator tool to estimate the real-time state variables from

available Supervisory Control and Data Acquisition (SCADA) device measurements

to predict the current or future states [2, 3]. The state estimate can enhance operation

with assessment for transient stability and voltage stability. Other supported

advanced applications include power flow sensitivities [4, 5], load forecasting, real-time

nodal prices in electricity markets, automatic gain control (AGC), security analysis,

contingency analysis, and generally ensuring that the system is operated in normal

secure states [6, 7].
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1.1 State Estimation Background

An example of power system state estimation importance could be seen from the

July 13th, 1977, blackout in New York which caused damage of about $130 million

according to the report of New York Times in 1978. The blackout was mainly due

to a lack of accurate data about the system network status, which could have been

prevented by proper application of state estimation in the EMS [6]. Long before the

implementation of power system state estimation, monitoring of the power system

network was carried out using only the (SCADA) device used in the EMS, which was

prone to errors[8, 9]. State estimation was mathematically formulated in the 1970s

which was implemented in the 1980s and then extended more in the 1990s. It now is

now the backbone of EMS monitoring and control [6].

The state estimation principle was pioneered by Fred Schweppe who introduced

the concepts to power systems for estimating the state of the system network [10,

11, 12]. This formulation was used to estimate the state of the system by taking

real-time snapshots of the measurements (power flows, power injections, voltages)

from SCADA. The state vector was estimated for a specific duration. This field of

research in the power systems industry has then been a growing topic of interest for

researchers as the modern grid had to accommodate increasing levels of renewables

and new complicated market structures [13].

1.2 Problem Description and Previous Works

A static state means a state of no interest, a state that is not changing or prone

to any kind of movement or motion according to the Oxford Learned Dictionary.

In Physics, according to Newton’s 2nd law of static equilibrium, the sum of forces

on an object is zero [14]. The power system can also be viewed as a quasi-static

system; a system that evolves slowly to establish the stability of the system during

changes in loads, generation, line flows, or bus complex phasor voltages [13, 15].
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A quasi-static state of the system can also be represented mathematically to show

the current state or operating condition of a real-time power system of different

areas connected together at a specific time interval from the measurements obtained

[4, 5, 16]. Static state estimation is the computation of the power system state vector

from measurements obtained remotely from the interconnected system network. The

static state estimator procedure can be summarized using the flow chart in Figure 1.1

below. The measurement data are post-processed using an algorithm to obtain the

estimated operating state or static state vector of the network buses. The estimated

state of the system is the vector of the complex phasor voltage [17, 18, 19]. The static

state estimator also accounts for any uncertainties in the data collected, data errors,

and detection and identification of any bad data in the system.

Network observability is a crucial aspect of power system analysis that enables the

estimation of the state of a power system network. This estimation is based on the

available measurements, which include real power injection, reactive power injection,

transmission line power flows, voltage, current, and angle measurements. Before

carrying out state estimation, the system undergoes observability analysis to ensure

that it forms a complete spanning tree using the available measurements without any

unobservable islands.

Observability testing is a critical step in the process, as it confirms that the

network is observable and free of any unobservable islands. This testing can be

conducted either offline or online, depending on the system’s requirements. The goal

of observability testing is to ensure that the network is forming a complete spanning

tree using the measurements without any unobservable island.

By ensuring that the network is observable, network observability plays a crucial

role in maintaining the stability and reliability of the power system. It enables power

system operators to detect and correct any issues that may arise, ensuring that the

system operates efficiently and effectively.
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Figure 1.1: Static State Estimator Representation.
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If unobservable islands occur in the system, which may be due to topology changes,

communication errors, and so on, then a unique estimated state of the systems cannot

be determined. Observability testing could be carried out using either a topology

approach or numerical approach using the available measurements [20, 21, 22]. The

topological method is carried out using the network topology, connectivity, location,

and type of measurements. Formation of a full-spanning tree using the measurements

helps in the computation of the phase angles that make the system observable. This

approach method does not involve any calculation as compared to the numerical

method. The numerical approach involves the calculation of unobservable states and

the bus incidence matrix, whose multiplication gives the flow in the network branches.

Using the D.C. decoupled measurement approach to compute the Jacobian with the

following assumptions: all the lines have a reactance of one per unit, the voltage

magnitudes have one per unit, and the phase angles have zero values. If the system

is observable then there will be zero flow in the branches, if unobservable then there

exist unobservable branches in the system with non-zero flow [6, 22].

After the observability testing, state estimation can now be computed using a

mathematical model, load flow, probability, and statistics. With the help of statistical

estimation procedures such as likelihood function, maximum likelihood estimation,

maximum posterior probability, and weighted least square estimate. One can estimate

future occurrence based on priori probability, and data, or use measurement samples

to estimate the state of the system. Static state estimator employ either the maximum

likelihood estimation method or the weighted least square method with the objective

of maximizing the likelihood function of a measurement set or minimizing the sum

of weighted squares of deviation of the measured value from the true value [23]. The

state estimator is trying to compute the likely state using the data measured from

the system. The measurements taken from the system are assumed to have errors

with the probability distribution function (PDF) which is Gaussian with parameters

that are known (mean and variance). The likelihood function is then maximized

using the parameters stated above to give maximum likelihood estimates (MLE) of
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the parameters. In this case, the log-likelihood function is considered because it is

monotonically increasing [23, 24].

The need for the detection of bad measurements and identification of bad

measurements or data in the system is also carried out to detect modeling errors

in the network. State estimator can be used to detect errors in measurements,

and identify and remove the errors. Errors could be due to telecommunication

failure, wrong connections, meter issues, faults in transmission lines, generator

or load pattern changes, and so on. Bad data may be single or multiple (non-

interacting, non-conforming, conforming and interacting) depending on the number

of error measurements, location, and type [6, 17, 18]. Some of the methods used

for detection and identification using the WLS approach or algorithm are: the

largest normalized residual, the chi-square distribution test, and hypothesis testing

[25, 26, 27, 28, 29, 30, 31].

The operation of static state estimation is performed at a short interval, but

with increased loads (complex loads and technological demands like the internet of

things and electric vehicles) and generation, like the integration of distributed energy

resources (DERs), it becomes computationally complicated and expensive to carry

out due to the dynamics of the system. Hence, the need to consider the time-varying

nature of the system model is necessary with the help of a dynamic state estimator

to help with the dynamic of the system properties.

The dynamic state estimator is able to estimate or compute the system state

vector at time t+1, which provides more accuracy and computes the next time

ahead as compared to the static estimator at time t only [4, 32, 33]. This approach

provides accuracy and better analysis of the system dynamics at the next sampling

time for real-time control and monitoring of power systems. The integration of

Phasor Measurement Units (PMUs) into the power system helps to achieve real-

time monitoring and control using the Global Positioning System (GPS) providing

synchronized time sampled measurements [34, 35, 36].
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Dynamic state estimation has been proposed using the Extended Kalman filter

(EKF) or the unscented Kalman filter (UKF) to compute the present and future state

of the system at t+1 for stability and security analysis [33, 37]. The observability

of the system is based on using the observability matrix in control systems with full

rank H matrix or by using the Lie derivative approach with rank n [38, 39]. The

implementation of composite load model (static load model and induction motor in

parallel) to represent the load dynamics using the generalized maximum likelihood

iterative extended Kalman filter (GM-IEKF) to account for dominant parameters

of the model, measurements and noise [40]. The implementation of EKF and UKF

in DSE may lack robustness in handling observation (loss of PMU communication

channel, cyber-attacks loss of synchronization) and innovative (impulsive noise in

the dynamic state model) outliers. These outliers undermined the performance of

EKF and UKF. The implementation of generalized maximum likelihood also known

as GM-IEKF was used to overcome these outliers due to its robustness to compute

power system states when it experiences large disturbance [41] or any of the outliers.

Application of least absolute value (LAV) based estimator (also known as linear

phasor estimator) and UKF by Ali Abur [42] was used as fast and robust DSE in the

absence of local generator PMU raw measurements, which is robust with respect to

bad data.

For the interconnected power system, the approach uses the various measurements

from each area or zone (containing a number of buses) as inputs into the LAV-based

estimator operated in each zone, the output of the linear phasor estimator is then

used as measurements and estimated inputs into the UKF to estimate the state of the

system. This approach can be carried out online and does not consume large memory.

However, it experiences delay in receiving the estimated measurements, which can be

corrected by a short-term predictor that enhances the performance of the DSE. It

however does not account for any innovation or observation outliers. The correlation

between calculated P-Q pairs and voltage phasors can be modeled using the nonlinear

unscented transformation method [33]. This helps to calculate the error covariance
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measurement matrix estimate using the current as inputs, voltage, and P-Q as the

transformed outputs.

The UKF also overcomes the limitations of EKF of low accuracy because of the

linearization output and Jacobian matrix calculation, which is not applicable to UKF

[43]. The unscented transformation utilizes the sigma point approach to approximate

a Gaussian distribution for better accuracy, efficiency, and consistency [44, 45].

The sigma point approach utilizes the so-called weighted statistical linear regression

to linearize nonlinear random variables through linear regression between selected

r points obtained from the random variable prior distribution and the nonlinear

function true evaluation.

The ability of DSE to predict the system state at time t+1 makes it useful

for forecasting-aided state estimation (FASE) when monitoring changes in the

system operation and predicting future states that could be used to replace missing

measurements to ensure the security and reliability of the system. However, FASE

does have some limitations associated with it. The use of EKF with known

linearization error limitation and inadequate complete analysis of the system[46].

1.3 Motivation and Contribution

Detection of temporary or permanent faults in the power system protection and

control world is a very interesting topic in power grid operations. The ability to

detect and identify faults help to ensure system reliability, security, and uninterrupted

power supply to the customers. Substation equipment measurements and phasor

measurements can be used to identify and detect temporary or permanent faults

from the transmission control center.

Control centers can backup a substation solution using a topology-less substation,

node-breaker model to include power circuit breaker (PCB), zero-impedance branches,

and phasor measurements to detect the status of a PCB and detection of faults on

transmission lines using virtual sensors.
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The proposed solution is state estimation based and can be used to detect fault

location using breaker status and virtual sensors to identify fault on a transmission

line. This work uses the least absolute value (LAV) robust state estimation method

to estimate the augmented states including the flows on the PCBs for supervisory

monitoring of the topology and measurement error-free system. Further statistical

analyses are executed as virtual sensors to detect or sense bad data, outliers, and

leverage points using formulations in the form of virtual sensors that can be clipped

on the transmission line to help detect faults. The virtual sensor simulation result

is expected to conform with the PCB status to detect the state of the system for

various bus configurations and the associated PCB status associated with the faulty

line. This will also help to detect lines affected by open breaker status for proper fault

isolation, hence increasing fault detection and identification accuracy. This approach

can save troubleshooting time for line engineers and save the company a lot of money.

Fault conditions in a generator can be in the form of single-phase or unbalanced

current, over-speed, overload, out-of-step, or faults in the winding. These abnormal

conditions could result in damage to the generators and interrupted power supply

to the customers. Hence, the need for fault detection and isolation to prevent

unwanted damages and injuries. The proposed dynamic state estimation could help to

determine the synchronous generators’ state variables used to monitor and supervise

fault detection and isolation. This dissertation proposes a state estimation-based

protection for synchronous generators from unbalanced faults like line-to-ground

(LG), line-to-line-to-ground (LLG), or line-to-line (LL) to help monitor the state

variables associated with the generators. The approach monitors dynamic state

variables for transmission line reclosing, both for unbalanced and balanced temporary

and permanent faults. This can assist protection engineers in developing generator

protection and aid fault analysis engineers in troubleshooting transmission line faults.
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1.4 Dissertation Outline

The objective of this dissertation is to show how protection and control engineers

could help to protect generators from balanced and unbalanced faults that could

affect the normal secure operation of the synchronous generator using the estimated

or predicted states of the synchronous generators.

Chapter 2 will focus on the modeling of various state estimators that are considered

in this dissertation. The static state estimator under various algorithms, the breaker-

node modeling, least absolute variable model with optimization application and

the dynamic state estimation using the UKF to model the two-axis synchronous

generator.

Chapter 3 presents SSE and its application on the UTK HTB WECC model.

Chapter 4 focuses on the detection of transmission line fault location using the

node-breaker model to accurately detect breaker status and using the virtual sensor

to detect the faulty line from the remote end open breaker.

In Chapter 5, the dynamic state estimator will be used to show how the generators

react to balanced faults using the IEEE 14-bus system, Kundur’s two-area system,

and the UTK HTB model to simulate balanced faults.

Finally, In Chapter 6, the dynamic state estimator is extended to how generators

respond to unbalanced faults using Kundur’s two-area system and the UTK HTB

and PSCAD WECC models to simulate such faults.

The conclusion of the dissertation and future work will be covered in chapter 7.
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Chapter 2

State Estimation Protection and

Control Power System Modeling

2.1 The Swing Equation

The transient stability study and analysis of the power system during planning and

simulation is critical to ensure that the system can withstand events or disturbances,

such as faults, line outages, large load application or removal, and so on. This study

helps protection engineers develop accurate settings that could be used to mitigate

or isolate the faulty portion of the system. The synchronous generator mechanics is

governed by Newton’s second law of motion [14]. The swing equation shows the rotor

mechanics motion as it accelerates or decelerates with respect to the rotating field.

Transient stability or the new operating power angle of the rotor depends on how the

rotor changes state between the initial state or another state when there is a change

in power due to transient events, generations, or loads [47].

The swing equation of a synchronous generator is formulated using the driving

mechanical torque Tm(N.m), the developing electromagnetic torque Te(N.m).
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With losses like friction and windage ignored and running at a steady state.

Tm = Te (2.1)

The equation of motion for unbalanced conditions generates a net torque Ta(N.m)

(accelerating or decelerating) [48, 49]

Ta = Tm − Te (2.2)

Ta =
dωm

dt
= J

d2θm
dt2

= Tm − Te (2.3)

J is the turbine and generator’s combined moment of inertia.

ωm is the angular velocity of the rotor measured in rad/s .

θm measured in rad is the angular motion of the rotor with respect to the stator’s

stationary axis.

θm = ωsynmt− δm (2.4)

θm is the synchronous angular velocity of the rotor measured in rad/s.

δm is the initial rotor position at t = 0 measured in rad.

The rotor angular angular velocity ωm and angular acceleration are derived from

the derivatives of (2.4)

ωm =
dθm
dt

= ωsynm +
dδm
dt

(2.5)

d2θm
dt2

=
d2δm
dt2

(2.6)

Equation 2.6 is substituted into equation 2.3 to give
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J
d2δm
dt2

= Tm − Te (2.7)

Both sides of (2.7) are multiplied by ωm, the angular velocity to give

Jωm
d2δm
dt2

= Tmωm − Teωm (2.8)

In terms of power, equation 2.8 is presented as

Jωm
d2δm
dt2

= Pm − Pe (2.9)

Where:

Pm is the input mechanical power measured in W .

Pe is the output electrical power measured in W .

Jωm is denoted by M , the inertia constant measured joules-second per mechanical

radian [47, 3].

Equation 2.9 is simplified as

M
d2δm
dt2

= Pm − Pe (2.10)

In terms of kinetic energy Wk, 2.10 is denoted as [47]

Wk =
1

2
Mωm (2.11)

M =
2Wk

ωm

(2.12)

The per unit or normalized inertia constant H is given as [47]

H =
kinetic energy in MJ at rated speed

machine rating in MV A
=

Wk

SB
(2.13)
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M =
2H

ωsynm

SB (2.14)

Substitute (2.8) into (2.10) to give

2H

ωsynm

d2δm
dt2

=
Pm − Pe

SB

= Pm(pu) − Pe(pu) (2.15)

The simplified per-unit representation of equation 2.15 is given as [3, 47, 48, 49]

2H

ωsynm

d2δm
dt2

= Pm − Pe (2.16)

Equation 2.16 could also be written in terms of frequency f0, which is also per unitized

with the damping power PD added to the equation

H

πf0

d2δm
dt2

= Pm − Pe − PD (2.17)

2.2 The Two-Axis Synchronous Generator Model

Consider the dynamic equation associated with a synchronous generator. The

nonlinear dynamics of the generator is given as

ẋ = f(x, u, w) (2.18)

where:

x is the state vector with the dynamic state variables.

u denotes the input vector and w denotes the modeling errors.

The dynamics corresponding to the two-axis model of a synchronous generator

are given as [50, 51]

δ̇ = ω − ω0 (2.19)
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H

πf0

d2δm
dt2

= Pm − Pe −D
ω − ω0

ω0

(2.20)

T
′

doĖ
′

q = −E
′

q − (Xd −X
′

d)Id − Efd (2.21)

T
′

doĖ
′

q = −E
′

q − (Xd −X
′

d)Id − Efd (2.22)

T
′

qoĖ
′

d = −E
′

d − (Xq −X
′

q)Iq − Efd (2.23)

Vd

Vq

 =

 sin(δ) − cos(δ)

cos(δ) sin(δ)

V cos(θ)

V sin(θ)

 (2.24)

Id =
E

′
q − Vd

X ′
q

(2.25)

Iq =
E

′

d − Vd

X ′
q

(2.26)

Pe = VdId + VqIq (2.27)

Qe = −VdIq + VqId (2.28)

where the definition of the elements in the above equations are:

δ is the rotor angle,

ω is the rotor speed,

Pm is the input mechanical power,

E
′

d and E
′
q are the q-axis and d-axis transient voltages,

H is the inertia constant in sec,
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D is the damping coefficient in pu,

T
′
qo and T

′

do are the q-axis and d-axis transient time constants,

Xq and Xd are the q-axis and d-axis synchronous reactances in pu,

X
′
q and X

′

d are the q-axis and d-axis transient reactances in pu,

2.3 Balanced Three-Phase Fault

Protection engineers in the power industry develop and continuously review relay

settings to ensure coordination and isolation of faulted parts of the system whenever

a fault occurs in the system due to known or unknown factors. The balanced three-

phase fault is an uncommon fault, the simulated fault in software like ASPEN or

CAPE is used to set a relay that can send a trip signal to the associated circuit

breaker. The current transformer (CT) is used to sense the secondary current that is

used by the relay to make the decision when the received current goes beyond a set

threshold.

The exposure of a generator to an extended balanced fault could result in unwanted

damage to the generator. Hence, the generator needs to be protected from a balanced

three-phase fault with the help of the CT and relay. The type or magnitude of short

circuit current depends on the synchronous generator’s internal impedance and that

of the system attached to it [47, 52]. As the name implies, the balanced three-phase

fault occurs along all the phases or all three phases shorted to ground. The duration of

the fault could be for a few cycles (subtransient period), last longer than a few cycles

(transient period), or last longer for some cycles until a trip is issued by the relay

to change the state of the affected equipment or transmission lines. The reactances,

synchronous reactance (Xd), transient reactance (X
′

d), and the subtransient reactance

(X
′′

d ), are used to solve or analyze the network using Thevenin’s approach [47, 48].

The bus impedance matrix formulation will be discussed later in the dissertation.
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2.4 Unbalanced Faults

Contrary to the balanced three-phase fault above, unbalanced faults occur much

more frequently in power systems. Unbalanced faults in power systems are single

line-to-ground faults (LG), line-to-line (LL) faults, and double-line (LLG) faults [47].

Unbalanced faults could result in a high short circuit current magnitude that is

capable of heating the machines more severely than the balance three-phase fault.

For example, the motor rotates twice the rated speed due to the induced negative

sequence current. If the fault is not isolated within a few cycles, it could lead to rotor

structure damage [52].

Unbalanced fault currents in generators could also be due to an open bus or

conductor leading to single phasing, slow reclosing during intentional single phasing

trip test, relaying failure, unbalanced fault conditions, or unbalanced generator step-

up transformer (GSU) [53]. Thus, the need for a detailed analysis of the generator

protection, to ensure that generators or the network are protected from temporary or

permanent faults. The control center receives an alarm whenever a fault is detected

in the system. A permanent fault requires the operator to isolate the generator from

the rest of the system for troubleshooting before bringing the generator back online.

In a generator, unbalanced faults, such as, LG, LL, or LLG are not easy to analyze

because of the d − q − 0 model of the synchronous generator. This also makes the

numerical solution complicated. The following sub-section will discuss more on the

various unbalanced faults.

2.4.1 Line-to-Ground Fault

The majority of faults in power systems are LG faults. LG faults could be due to

bad weather like snow or rain storms, wind, vegetation, animals, or other human

errors like poor protection settings leading to misoperation, or deliberate attacks on

a substation or transmission tower. The Figure 2.1 below illustrates a single LG fault.

Ia, Ib, and Ic are the currents for phases a,b, and c respectively.
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a

b

c

Zf

Ib=0

Ia 

Ic=0

Figure 2.1: Single Line-to-Ground Fault.

a

b

c

Zf
Ib Ic

Ia = 0

Figure 2.2: Line-to-Line Fault.

18



a

b

c

Zf
Ib Ic

Ia = 0

Figure 2.3: Double Line-to-Ground Fault.

19



The fault current Ia goes through the fault impedance Zf .Phases a and b currents

Ib = 0, and Ic = 0 [52, 54].

2.4.2 Line-to-Line Fault

LL fault is a type of unbalanced fault that occurs across two phases. Transmission

lines faults constitute just a few percent of LL faults. LL faults could also be caused by

factors listed above in LG faults. Transmission lines may close back during temporary

faults or trips when the line locks out due to persistent faults on the line. Whenever

there is a line lockout, the line crew needs to patrol the line using a company truck,

drone, or helicopter, depending on the right of way and geographical area of the

fault location. This leads to a lot of man hours and money wasted. Later in the

dissertation, a virtual sensor solution is proposed for the accurate detection of a

remote line attached to a network breaker.

The Figure 2.2 below shows a simple explanation of of LL fault. Ia, Ib, and Ic

are the currents for phases a,b, and c respectively. The fault current Ib, and Ic goes

through the fault impedance Zf , and phase a current Ia = 0 [52, 54].

2.4.3 Double Line-to-Ground Fault

LLG fault occurs across two phases to ground. LLG faults occur in our system due to

various reasons similar to the ones listed for LG faults. The Figure 5.4 below shows

a simple explanation of the LL fault. Ia, Ib, and Ic are the currents for phases a,b,

and c respectively. The fault current Ib, and Ic goes through the fault impedance Zf

to ground, and phase a current Ia = 0 [52, 54].

2.5 The Symmetrical Components

The solution of the unbalanced network described above can be found by using

symmetrical components to represent them in three balanced circuits. This enables
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the elements of unbalanced voltages and currents to be represented with balanced

symmetrical components [47, 48].

Symmetrical components are a powerful technique that enables protection engi-

neers to design and implement effective relay settings for a wide range of equipment,

including generators, breakers, and transmission lines. By using symmetrical

components, engineers can simulate and study faults on a three-phase network, which

helps them to develop the best possible relay settings. This is particularly useful when

using power system software like ASPEN or CAPE, which can provide detailed fault

simulation data that can be used to optimize relay settings based on symmetrical

components. Overall, symmetrical components resolution is an essential tool for

any protection engineer looking to ensure the safe and reliable operation of complex

electrical systems.

The visualized time current curves (TCC) from ASPEN or CAPE also help system

protection engineers develop the proper settings using symmetrical components.

Protection or relay engineers can develop phase settings for phase relays using three-

phase fault simulation, and ground settings using single phase-to-ground simulation

results [52].

The three symmetrical components, the positive, negative, and zero sequence,

will be briefly discussed in this section. The Figures 2.4 to 2.6 below represent the

symmetrical components for positive sequence, negative sequence, and zero sequence

respectively. The elements of the positive sequence consist of balanced, three balanced

phasors of equal magnitude.

The phase sequence is 1200 out of phase with rotation counterclockwise. The

positive phasors are in order of abc, the negative sequence phasors are in order of

acb, and the zero sequence phasors are all in phase with one another. Details of

symmetrical components formulation are contained in the appendix [47, 48, 52, 53].
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Figure 2.4: Positive Sequence

Figure 2.5: Negative Sequence.

Figure 2.6: Zero Sequence.
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2.6 Static State Estimation

Static state estimation for balanced steady-state power systems is used to estimate

bus phasors (magnitude and angle). Static state estimation is accomplished using

available measurements, including bus injections (real and reactive power), line flows,

voltage magnitude, current magnitude, transformer taps, breaker status, reactors,

shunt capacitors. The following steps are involved in static state estimation: data

processing, topological processing, observability analysis, state estimation, and bad

data processing. The next subsection discusses some of the solutions used for static

state estimation for this dissertation, in more detail [20, 55, 56, 57].

2.6.1 Weighted Least Square

Consider a set of measurement sets, with the likelihood function given as

fn(z) =
n∏

k=1

f(zk) (2.29)

where k = 1, 2, 3, · · · , n, and zk is the kth measurement. And

f(zk) =
1√
2Πσk

exp− 1

2
(
zk − µk

σk

)2 (2.30)

The objective function is

Maximize log fn(z) (2.31)

OR

Minimize
n∑

k=1

(
zk − µk

σk

)2 (2.32)

23



• Weights Wkk = σ−2
k

• Measurements expectation E(zk) = hk(x), where x is the state vector and hk is

a nonlinear function of the kth measurement.

• Residual, rk = zk − E(zk)

The objective is to minimize the above function or optimize the above function

subject to constraint. The optimization could be

Minimize
n∑

k=1

Wkkr
2
k

Subject to zk = hk(x) + rk

(2.33)

The above optimization solution is known as the Weighted Least Square (WLS)

estimation for the state vector x. The measurement model for a given set of

measurements is given as

z = h(x) + e (2.34)


z1

z2
...

zn

 =


h1(x1, x2, ..., xm)

h2(x1, x2, ..., xm)
...

hn(x1, x2, ..., xm)

 (2.35)

where e is the measurement error vector, x is the state vector of the system, hk is a

nonlinear function that expresses the relationship between the kth measurement and

the state vector x. The following assumptions are made

• The expected value of error of each measurement is zero i.e. E(ek) = 0, k =

1, 2, 3, · · · , n

• The measurements errors are statistically independent i.e. E[eiej] = 0
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so

R = Covariance(e) = E[eeT ]


σ2
1 0 0 0

0 σ2
1 0 0

...
...

. . .
...

0 0 · · · σ2
n

 (2.36)

The WLS estimator then performs the function of minimizing the objective function:

J(x) =
n∑

k=1

(zk − hk(x))
2

Rkk

with Rkk =
1

Wkk

(2.37)

WLS Algorithm

The WLS state estimator is executed using the following iterative algorithm. The

first step in the WLS algorithm is to find the linear approximation of the non-linear

measurements using first-order Taylor’s expansion approximation for measurement.

z = h(x) + e (2.38)

Taylor expansion gives

z = h(x0) +H(x0)∆x+ e+H.O.T.

z − h(x0) = H(x0)∆x+ e

∆z = z − h(x0) = H(x0)∆x+ e

(2.39)

The linearized measurement could be considered as
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∆z = H∆x+ e

with

∆x = xk+1 − xk

H =
∂h(xk)

∂x

(2.40)

The gain matrix is calculated using the objective function from (9), by finding the

minimum of the optimality condition

∂J(x)

∂x
= −HT (x)R−1[z − h(x)] = 0

g(xk) = −HT (x)R−1[z − h(x)]

(2.41)

Applying Newton’s method to (13) gives the following

∆xk+1 =
g(xk)

G(xk)

G(xk) =
∂g(xk)

∂x
= HT (xk)R−1H(xk)

(2.42)

In order to achieve stability and convergence during the iteration process, it is

crucial to ensure that the maximum value of ∆x is less than or equal to a specified

value of ε. This can be achieved by ensuring that the system is observable, which

means that the gain matrix is full rank, positive definite, and symmetric.

To perform the necessary computations, Cholesky decomposition is used due to

the sparsity of the matrix. This method allows for the efficient computation of the gain

matrix, which is essential for ensuring the stability and convergence of the iteration

process. By using Cholesky decomposition, the computation time is reduced, and the

accuracy of the results is improved.

The update ∆x is calculated from

∆x̂ = G−1HTR−1∆z (2.43)
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Start by initializing index k = 0

At flat start 

initialize xk

Compute G(xk)

Compute the parameters 

on the RHS

Perform Cholesky decomposition for G(xk) 

and calculate ∆xk

If it converges

Max|∆xk |≤ε
End

Update xk+1

 

Figure 2.7: WLS Algorithm.
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2.6.2 Least Absolute Value

Different researchers have proposed in the past the use of LAV with the notion that it

is robust in handling bad data efficiently, saves computation time, has better storage,

and improves accuracy [58] relative to the WLS method. The LAV approach presented

in this review [46] considers systems with PMU measurements enough to make the

system observable. However, LAV could be vulnerable to parameter errors caused by

variations in operating conditions, data entry errors, unreported device upgrades, or

status of device changes. This could lead to the rejection of good data over bad data

[59]. As an alternative to WLS estimation and bad data rejection; LAV estimation

is implemented by minimizing the absolute value of the measurement residuals or L1

norm of the measurement residual vector [60] with the aim of estimating results that

are robust against bad data. LAV is based on the following equations:

2m∑
i=1

|ri| = cT |r| (2.44)

cT = [1, 1, ..., 1]

rri = [rr1, r
r
2, ..., r

r
m, r

i
1, r

i
1, ..., r

i
m]

rri = zm,r
i − ẑri

rii = zm,i
i − ẑii

(2.45)

cT is a vector consisting of ones and dimension (1 x 2m)

. rri and rii are real and imaginary part of the ith measurement residual.

. zm,r
i and zm,i

i are real and imaginary part of the ith measurement.

. ẑri and ẑii are real and imaginary ith estimated measurements.

.

z = Hx+ r (2.46)

LAV estimation can be solved as a linear programming problem by
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min cT |r|

st z −Hx = r
(2.47)

The above equations are rearranged with some new non-negative variables defined

min cT |r|

st My = b

y ≥ 0

(2.48)

where

cT =
[
Zn Om

]
y =

[
Xa Xb U V

]T
M =

[
H −H I −I

]
b = z

(2.49)

Zn and Om are (1 x 2n) vector of zeros and ones respectively. U and V are 1 x

n vector, Xa and Xb are also 1 x n vector. The estimated states and residual are

computed as

x = XT
a −XT

b

r = UT − V T
(2.50)

2.6.3 Static State Estimation Using Quadratic Programming

Aside from the linear programming applied earlier in the LAV approach for SSE,

quadratic programming could also be used for a modified quadratic function of the

original objective function subject to linear constraints. This approach will be used

to estimate the state of the IEEE 14-bus system as compared to the results obtained

by the previous approaches of WLS and LAV. Moreover, this approach is used to

optimize the quadratic objective function subject to the given constraints. For this

case, a linear approach was considered, and linear constraints of the power flow
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model to better estimate the state of the system. A standard quadratic programming

mathematical expression is expressed below.

min
x

1

2
xTHx+ cTx

such that

A.x ≤ b

Aeq.x = beq

lb ≤ x ≤ ub

(2.51)

where H, A, and Aeq are matrices and f, b, beq, lb, ub, and x are vectors.

min
x

f(x)

such that

c(x) ≤ 0

ceq(x) = 0

Ax ≤ b

Aeqx = beq

lb ≤ x ≤ ub

(2.52)

where

A and Aeq are matrices

b, and beq are vectors.

c(x) and ceq(x) are the inequality and equality nonlinear constraints and

f(x) is the objective function of the problem.

2.6.4 Breaker-Node Model

As previously mentioned, the substation node-breaker model consists of branches

with zero impedance or admittance, which represent the status of equipment such

as PCBs, disconnect switches, or capacitor banks. Therefore, the topology processor
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is not required for this model. To depict the relationship between flow state and

measurements, a PCB incidence matrix (M) is utilized. The incidence matrix M

includes entries of the PCB measurements. The kth PCB flow measurement in the

ith column and jth row of M can be expressed as:

Mi,j =


1 if j = k, and flow is measured at the from bus of PCB j

−1 if j = k, and flow is measured at the to bus of PCB j

0 otherwise

z = [H M ][β] + e (2.53)

where β is the augmented state of the system and the flow through the PCB. The

augmented state is expressed as

β = [xTfT ] (2.54)

H and M can be used to form a new matrix D. The measurement equation (8) could

be expressed in a more compact form as

z = Dβ + e (2.55)

where H is the jacobian of non-PCB measurements, M is the PCB incidence matrix,

x is the state vector with size (2n × 1), t is the PCB flow vector with size (2l × 1),

e is the measurement error vector, z is the measurement vector with size (2m × 1),

n, l, and m are the number of voltage phasor, PCBs, and measurements respectively.

2.7 Node-Breaker LAV Problem Formulation

Different papers in the past emphasized the use of LAV-based estimation because

of the robust handling of bad data, saving computation time, better storage, and

improving accuracy [58] against the WLS method discussed earlier in this review.

The LAV approach presented in this dissertation assumes the system contains PMU
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measurements sufficient to make the system observable. Still, LAV may be vulnerable

to parameter errors caused by variations in operating conditions, data entry errors,

unreported device upgrades, or the status of the device changed. This could lead to

the rejection of good data over bad data [59]. As an alternative to WLS estimation

and bad data rejection, LAV estimation is implemented by minimizing the absolute

value of the measurement residuals or L1 norm of the measurement residual vector

[60] with the aim of results that are robust against bad data. LAV is based on the

following equations

min

2m∑
i=1

ωi|zi −Diβ| = min
2m∑
i=1

ωi|ri|

s.t. r = z −Dβ

(2.56)

r = ra − rb, ra, rb ≥ 0

β = βa − βb, βa, βb ≥ 0
(2.57)

The expressed (2.56) above is a weighted LAV objective function where the weights

and residual are represented by ωi and ri respectively. The above equations are

rearranged with new non-negative variables to convert the linear program into a

standard form as

min CTβ

s.t. Mβ = z
(2.58)

where

CT =
[
Zn+l Zn+l Ωm Ωm

]
y =

[
βa βb ra rb

]T
M =

[
D −D Im −Im

] (2.59)
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min
[
Zn+l Zn+l Ωm Ωm

]

βa

βb

ra

rb

 (2.60)

s.t.
[
D −D Im −Im

]

βa

βb

ra

rb

 = z (2.61)

ze
zr

 =

De

Dr

 .β̂ +

 0

rr

 (2.62)

ze = De.β̂

β̂ = D−1
e .ze

(2.63)

Covariance(β̂) = Ψβ = D−1
e Cov(ze)D

−T
e

(2.64)

Ψβ =

Ψx Ψxf

Ψfx Ψf

 (2.65)

f i
norm =

|f̂ |i√
Ψf(i,i)

(2.66)

zn+l and Ωm are (1 x 2n) vectors of zeros and weights, respectively. I is the identity

matrix, u and v are 1 x n vector, Xa and Xb are also 1 x n vector. The estimated

augmented states and residuals are computed as

x = XT
a −XT

b

r = UT − V T
(2.67)
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cT = [1, 1, ..., 1]

rri = [rr1, r
r
2, ..., r

r
m, r

i
1, r

i
1, ..., r

i
m]

rri = zm,r
i − ẑri

rii = zm,i
i − ẑii

(2.68)

cT is a vector consisting of ones and dimension (1x2m). rri and rii are real and

imaginary part of the ith measurement residual. zm,r
i and zm,i

i are real and imaginary

part of the ith measurement. ẑri and ẑii are real and imaginary ith estimated

measurements.

2.8 Dynamic State estimator

2.8.1 Extended Kalman Filter

In estimating the dynamic state of the system, the correct mathematical model [4] is

vital to achieving a desired result. The dynamic state estimation typically utilizes the

Extended Kalman filter (EKF) to determine the dynamic state of the system. The

mathematical model [61] includes the modeling of the components of the power system

and the system’s nonlinearity to achieve the best estimate. The EKF algorithm [37]

will be discussed here, which depends on the prediction and filtering algorithms.

Consider the model below for EKF

ẋ = f(x, u, w)

z = h(x, u, v)
(2.69)

From (2.69) above, f(· ) is a non-linear function that represents the system

dynamics in time, and h(· ) is the non-linear measurement function. The process

and measurement noise are w and v respectively with zero mean and covariance of Q

and R. The set of discrete time equations for the EKF algorithm is expressed below
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xk = xk−1 + f(xk−1, uk−1, wk−1)∆t

zk = h(xk, vk)
(2.70)

Here, the k − 1 in the f(· ) function represents the present time index, while k is

the next or future time index and ∆t is the time step. The non-linear function h(· )

represents the measurement at time instant k, the state variables and measurement

noise are x and v respectively. The process and measurement covariance are Qk and

Rk respectively.

wk ∼ (0, Qk)

vk ∼ (0, Rk)
(2.71)

The filter is initialized using the expression

x̂+
0 = E(x0)

P+
0 = E[(x− x̂+

0 )(x− x̂+
0 )

T ]
(2.72)

x̂+
0 is the initial state, while P+

0 is the initial state of the covariance matrix. Prediction

is computed from the partial derivative matrices at x̂+
k−1, which is the current state.

Fk−1 =
∂fk−1

∂x
|x̂+

k−1

Lk−1 =
∂fk−1

∂w
|x̂+

k−1

(2.73)

where Fk−1 is the partial derivative of the function f with respect to x, which is the

Jacobian matrix at x+
k−1. Lk−1 is the partial derivative of the function f with respect

to w, which is the Jacobian matrix at x+
k−1. The next step is the time update of the

state estimate and the error covariance matrix.

P−
k = Fk−1P

+
k−1F

T
k−1 + Lk−1Q

+
k−1L

T
k−1

x̂−
k = f(x+

k−1, uk−1, 0)
(2.74)
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The – sign indicates a prior estimate and + a posterior estimate. Compute the partial

derivative of h with respect to x and v to derive the Jacobian matrices needed for

measurement update.

Hk =
∂hk

∂x
|x̂−

k

Mk =
∂fk
∂v

|x̂−
k

(2.75)

where Hk is the partial derivative of the measurement h with respect to x, which is

the Jacobian matrix at x̂−
k . Mk is the partial derivative of the measurement h with

respect to v, which is the Jacobian matrix at x̂−
k . Measurement update calculation is

done by computing the update of the state and the covariance.

Kk = P−
k HT

k (HkP
−
k HT

k +MkRkM
T
k )

−1

x+
k = x−

k +Kk(yk − hk(x
−
k , 0))

P+
k = (I −KkHk)P

−
k

(2.76)

where:

I: Identity matrix

x+
k : Updated state estimate

P+
k : Is the updated state error covariance

Kk: Is the Kalman gain

DSE uses an extended Kalman filter (EKF) to compute the state of the system

and also forecast the state at time t+1. This is achieved by incorporating new

measurements and the predicted state (using prior state estimates) into the DSE

model known as a two-stage DSE [22]. Difficulties that could arise using this approach

are the complexity of modeling the system dynamics and computational time. The

process thus goes through a prediction (using the predicted states from the predicted

measurement) and filtering/correction (to obtain high-quality estimates at time t+1)

stages to estimate the state vector [37] computed at a sufficiently small time step
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for stability and consistency [43]. EKF linearization can be a problem if higher-

order terms are significant. This may introduce errors in the mean and covariance

of Gaussian random variables, affecting the filter’s performance. The EKF algorithm

above could be used to estimate the dynamic variables of a generator or a multi-

machine system with the consideration of both small and large disturbances.

2.8.2 Unscented Kalman Filter

The correlation between calculated P-Q pairs and voltage phasors can be modeled

using the nonlinear unscented transformation method [33]. This helps to compute

the error covariance measurement matrix estimate using the current as inputs, with

voltage and P-Q as the transformed outputs. The UKF also overcomes the limitations

with EKF of low accuracy due to the linearization and Jacobian matrix calculation,

which is not applicable to UKF [43].

The unscented transformation utilizes the sigma point approach to approximate

a Gaussian distribution for better accuracy, efficiency, and consistency [44, 45]. The

sigma point approach leverages the so-called weighted statistical linear regression to

linearize nonlinear random variables through regression between selected r points

obtained from the random variable prior distribution and the nonlinear function

true evaluation. The sigma point [45] is selected to account for important statistical

properties of the previous random variables x with mean x and covariance Pxx. The

proposed number of sigma points required is r = 2L + 1, where L represents the

dimension of x. Let us begin by considering a nonlinear function

y = f(x) (2.77)
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which is evaluated at r points (χi, γi) The term χi is the set of sigma points. The

sigma points and weights used by UKF for unscented transformation are

χ0 = x

χi = x+ (
√
(L+ λ)Pxx)i

i = 1, ..., L

(2.78)

χi+n = x− (
√

(L+ λ)Pxx)i

i = L+ 1, ..., 2L
(2.79)

wm
0 =

λ

L+ λ

wc
0 =

λ

L+ λ
+ (1− α2 + β)

wm
i = wc

i =
λ

2(L+ λ)

(2.80)

where λ = α2(L+ κ)−L is the proposed scaling factor and α is usually set to a very

small value suggested to be around 10−4 ≤ α ≤ 1 and κ is the proposed secondary

scaling parameter with values κ = 0 or κ = 3−L. The ω(s) are the weights and β is

a scalar parameter with an extra degree of freedom to provide any prior knowledge

of the random variable x distribution, which is usually set to two for the best result

[45]. The quantity (
√
(n+ λ)Pxx)i is termed as the ith row or column of the matrix

square root of Pxx usually computed numerically using Cholesky factorization. The

sigma points are propagated via a nonlinear function

γi = f(χi)

i = 0, 1, ..., 2n
(2.81)
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The resulting mean and covariance of the propagated points are

y =
2n∑
i=0

wm
i γi

Pyy =
2n∑
i=0

wc
i (γi − y)(γi − y)T

(2.82)

The UKF algorithm based on unscented transformation can be used to solve the

nonlinear problem of

xk+1 = f(xk) + qk

yk+1 = h(xk+1) + rk+1

(2.83)

where, x and y are the discrete-time state vector and measurement respectively, q

is Gaussian noise and r is the measurement of Gaussian noise, both having a mean

of zero and covariance matrices of Q and R, respectively. The calculation of sigma

points assumes initial state vector and covariance as x0 and P0, Q as process noise

covariance, and R as measurement noise covariance based on prior information of the

system. The computation of 2L + 1 sigma points is implemented using the below

expression based on the prior state

Xk−1 = [xk−1 · · ·xk−1]...

+
√

(L+ λ)
[
0

√
Pk−1

√
Pk−1

] (2.84)

In the state prediction stage, the sigma points are propagated through the function

χ∗
k|k−1 = f(χk−1) (2.85)

The predicted state mean and predicted covariance matrix are computed using

xk|k−1 =
2L∑
i=0

wm
i χ

∗
i,k|k−1

P k|k−1 =
2L∑
i=0

wc
i [(χ

∗
i,k|k−1 − xk|k−1)(χ

∗
i,k|k−1 − xk|k−1)

T ] +Q

(2.86)
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The sigma points associated with the predicted parameters above are computed using

χk|k−1 = [xk|k−1, xk|k−1 ±
√

(L+ λ)Pk|k−1] (2.87)

These estimated sigma points are now propagated through the updated measurement

function as

γk|k−1 = h(χk−1) (2.88)

The propagated points are computed using

yk|k−1 =
2L∑
i=0

wm
i γk|k−1 (2.89)

The measurement covariance and cross-covariance are computed from

Pyy =
2L∑
i=0

wc
i [(γi,k|k−1 − yk|k−1)(γi,k|k−1 − yk|k−1)

T ] +R

Pxy =
2L∑
i=0

wc
i [(χi,k|k−1 − xk|k−1)(γi,k|k−1 − yk|k−1)

T ]

(2.90)

The updated measurement of the state estimate is estimated using

Kk = PxyP
−1
yy

xk = xk|k−1 +Kk(yk − yk|k−1)

Pk = Pk|k−1 −KkPyyK
T
k

(2.91)
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Chapter 3

Static State Estimation (SSE)

Simulation and Results

The presented algorithms in chapter 2 are used to estimate or compute the static

state of the reduced UTK HTB WECC model. This model is depicted or illustrated

in Figure 3.1, and the algorithms implemented in this chapter play an essential

role in predicting its static behavior. The use of this analog 3-phase system allows

higher fidelity testing. The chapter compares and discusses results from various SSE

estimators modeled using PSSE and PSAT simulation software.

3.1 PSSE and PSAT Results

The UTKWECC model was simulated using PSSE software. The power flow function

was used to estimate the voltage phasor at the buses. These voltage phasors represent

the static states of the system, which are essential for monitoring the system’s health.

Table 3.1 is the power flow result of the WECC PSSE model. The voltage phasor

result of the system represents the static state of the WECC system.
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Figure 3.1: UTK HTB WECC Summer Model

Table 3.1: PSSE Model Result

Bus No Voltage (pu) Angle (Degree)

1 1.05 0.000

2 1.05 -0.884

3 1.05 11.225

4 1.05 1.591

5 1.05 -8.938

6 1.05 -44.881

7 1.05 -36.098

8 0.993 -24.033

9 1.023 0.511

10 1.025 -9.471

11 1.023 -43.279
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The PSSE power flow is used as the base case to validate the SE approaches

considered in this chapter. To verify the accuracy of the results obtained from PSSE,

the WECC model was also simulated using PSAT. The Table 3.2 below displays the

simulation results. It is clearly apparent that the results obtained from the PSAT are

in line with those from the PSSE. Thus, the UTK WECC model’s system phasor has

been successfully estimated using PSSE and PSAT.

3.2 Weighted Least Square (WLS) Results

In chapter 2 of the dissertation, the WLS method was explained as one of the SSE

methods used for static state estimation. Figure 3.2 shows the result of the voltage

magnitude of the estimated state and Figure 3.3 shows the angle of the estimated

state using the WLS approach for the UTK HTB WECC model.

The phasor result for the reduced WECC system is shown in Table 3.3 below.

Normally distributed random number using 10% of the standard deviation was used

as added noise into the system. The mean squared error (MSE) of the estimated states

and true states was calculated using (3.1) below. The voltage magnitude MSE is

1.16e−6 and the voltage angle MSE is 0.0799. The relative error plot of the estimated

and true state is shown in Figures 3.4, and 3.5.

MSE =

√√√√ 1

N

N∑
j=1

(xi
j − x̂i

j)
2 (3.1)

Where

xi
j is the true state of the ith element contained in the associated state vector

x̂i
j is the estimated state of the ith element of the associated state vector

N is the aggregate number of simulation steps.
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Table 3.2: PSAT Model Result

Bus No Voltage (pu) Angle (Degree)

1 1.05 0.000

2 1.05 -0.884

3 1.05 11.225

4 1.05 1.591

5 1.05 -8.938

6 1.05 -44.881

7 1.05 -36.098

8 0.993 -24.033

9 1.023 0.511

10 1.025 -9.471

11 1.023 -43.279

Figure 3.2: WLS Voltage Magnitude
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Figure 3.3: WLS Angle

Table 3.3: SSE: WLS

Bus No Voltage (pu) Angle (Degrees)

1 1.0507 0.000

2 1.0511 -0.9677

3 1.0517 10.8488

4 1.0523 1.2494

5 1.0503 -9.0612

6 1.0505 -45.1406

7 1.0517 -36.5303

8 0.9941 -24.3481

9 1.0240 0.3181

10 1.0257 -9.6223

11 1.0256 -43.7087
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Figure 3.4: WLS Voltage Relative Error

Figure 3.5: WLS Angle Relative Error
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3.3 Least Absolute Value Results

The LAV method is used to estimate the states of the WECC system. Compared to

the WLS method, LAV is a more reliable state estimator that performs better in the

presence of bad data. You can find the details of the formulation in chapter 2 of this

dissertation. To estimate the state of the WECC system, we use linear programming

with the objective of minimizing the L1 norm or absolute value of the residuals. The

computed states of the WECC system are presented in Figures 3.6 and 3.7.

Additionally, Table 3.4 provides the tabulated results from the LAV robust state

estimator, which were found to be consistent with the results obtained from PSSE

and PSAT. No bad data was detected or identified using the chi-square test and

normalized residual method. Similarly with the WLS approach, normally distributed

random numbers using 10% of the standard deviation were used as added noise into

the system. The mean squared error (MSE) of the estimated states and true states

was calculated using (3.1). The voltage magnitude MSE is 3.75e−7 and the voltage

angle MSE is 0.0177. The MSE of the LAV method is lower than that of the WLS

approach to show LAV as a robust estimator in the presence of bad data. The relative

error plot of the estimated and true state is shown in Figures 3.8 and 3.9.

3.4 Quadratic Programming Results

The quadratic programming method was also utilized to compute the static state

variables of the WECC model. The algorithm was discussed in chapter 2. The

state estimates for the WECC system were estimated using the Matlab quadratic

programming (quadprog) routine. The computed states of the voltage phasors are

shown in Figures 3.10 and 3.11 below.
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Figure 3.6: LAV Voltage Magnitude

Figure 3.7: LAV Angle in Degrees
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Table 3.4: SSE: Least Absolute Value

Bus No Voltage (pu) Angle (Degree)

1 1.0494 0.000

2 1.0496 -0.8606

3 1.0505 11.1946

4 1.0511 1.3285

5 1.0505 -9.1839

6 1.0506 -44.9253

7 1.0497 -36.1118

8 0.9923 -23.9949

9 1.0225 0.5321

10 1.0256 -9.7154

11 1.0234 -43.2918

Figure 3.8: LAV Voltage Relative Error
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Figure 3.9: LAV Angle Relative Error
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Figure 3.10: Quadratic Programming Voltage Magnitude Estimate

Figure 3.11: Quadratic Programming Angle Estimate in Degrees
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Table 3.5: SSE: Quadratic Programming

Voltage (pu) Angle (Degrees)

1 1.0490 0.000

2 1.0507 -0.9920

3 1.0528 10.9473

4 1.0505 1.3819

5 1.0503 -9.1208

6 1.0492 -45.0135

7 1.0500 -36.2179

8 0.9935 -24.1245

9 1.0243 0.3285

10 1.0251 -9.6910

11 1.0235 -43.3737

Figure 3.12: Quadratic Programming Voltage Estimate Relative Error
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Figure 3.13: Quadratic Programming Angle Estimate Relative Error

Table 3.6: Mean Squared Error

State Estimator Voltage Angle

WLS 1.6e−6 0.0799

LAV 3.75e−7 0.0177

QUAD 1.13e−6 0.0270
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The Table 3.5 also shows the tabulated results using the quadratic state estimation

approach. The results were consistent with the results from PSSE and PSAT. No

bad data was suspected or detected using the chi-square test and normalized residual

method. Similarly with the LAV approach, normally distributed random numbers

using 10% of the standard deviation were used as added noise into the system.

The calculated mean squared error (MSE) between the estimated states and the

true states was determined using the equation in reference 3.1. The voltage magnitude

MSE is 1.13 × 10−6, while the voltage angle MSE is 0.0270. The MSE obtained for

the Quadratic Programming method was lower than that of the WLS approach. This

indicates that this approach may be a better state estimator, especially as a robust

estimator in the presence of bad data, similar to the LAV state estimator. For a

visual representation, you can refer to the relative error plots of the estimated and

true state in Figures 3.12 and 3.13.

As shown in Table 3.6, the accuracy of the static state estimators used by

power utility companies to estimate their system’s static states is confirmed. Among

these estimators, LAV and Quadratic Programming are more reliable than the WLS

estimator for estimating over erroneous data. Additionally, LAV and Quad have

significantly faster computational speeds compared to the typical computational speed

of the WLS estimator.
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Chapter 4

Transmission Line Trip Detection

and Identification Using

Node-Breaker Approach

Power utility companies rely on the efficient functioning of their electrical transmission

infrastructure for uninterrupted power supply to customers. The status of breakers

and timely fault detection in transmission lines are critical for ensuring seamless

power delivery. However, despite efforts to control and monitor breaker status, it

is not uncommon for operators to have erroneous status of breakers at the control

center.

Field experience reveals that communication failure and other factors can

impede the operators from accurately verifying the breaker status at the substation.

Moreover, in some instances, operators may observe current flow across the breaker,

but the status indicates that it is open rather than closed. These scenarios suggest

alternative or backup solutions to correctly identify and validate the breaker status,

even in the event of communication failure.

In this chapter, we will explore three distinct scenarios, each utilizing different

bus configurations to accurately simulate specific events that occur at the substation.
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In each of these scenarios, a fault is simulated on the transmission line between the

nodes. The relay is responsible for monitoring the line’s health and is expected to

trip the breaker during the fault, while other breakers will remain closed unless there

is a breaker failure or differential event.

By collecting measurements from these events, we will be able to estimate

the states and flows across the breakers at the substation, which facilitates the

identification of the associated transmission line. This analysis will provide a more

detailed understanding of the behavior of the transmission lines under different

conditions and will help in designing more efficient and reliable power systems.

The early detection and location of faults in transmission lines is critical to ensure

the smooth functioning of the power grid. One innovative solution to achieve this

is by using a virtual sensor. This sensor is designed to analyze the topology and

measurements of the system to identify any potential leverage points or outliers that

could indicate a fault in the transmission line. By leveraging this technology, power

grid operators can quickly and accurately identify and locate faults, allowing them to

take prompt action to restore power and prevent further damage.

To identify these leverage points, the projection statistics algorithm is used. This

algorithm uses the Jacobian matrix of the system to identify leverage data points from

the rest of the measurement data. After calculating the projection statistics, they are

compared with the cutoff values used to identify the leverage points associated with

the measurement data.

If the calculated projection statistics are greater than the cutoff value, then a

leverage measurement is identified. This identified measurement corresponds to the

faulty transmission line, which might have momentarily tripped or reclosed. By using

this method, the transmission control center can quickly identify the fault location,

making it easier and faster to take corrective actions and avoid potential power

outages.
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4.1 Simulation and Results

This study provides a comprehensive analysis of the various bus configurations that

are commonly employed in power systems. Specifically, we will be examining the

main-transfer, breaker, and half bus configuration, and the double breaker-double

bus configuration. To accurately model these configurations, we will be utilizing the

PSSE power system simulation tool. This tool allows us to create a node-breaker

model for a substation with zero-impedance branches, which will enable us to obtain

precise and reliable results.

The different bus configurations are the main-transfer bus, breaker and half, and

double breaker, double bus configurations. These configurations are illustrated in

Figures 4.1 - 4.3. We use various trip scenarios to simulate events at the substations

and transmission lines, which help us model the system bus configuration. To identify

faulty lines, we utilize robust state estimation, virtual sensors, and node-breaker

models. We also take into account the associated breaker status, which helps us

make accurate predictions and recommendations.

4.1.1 Case I: Main Bus Transfer Bus

In this scenario, a fault is introduced on the transmission line connecting node 2 and

node 3 using the main and transfer buses. During the fault event, the local or remote

line breaker is expected to open for fault isolation. In the event of a permanent fault,

which is a type of electrical fault that persists even after the fault has been removed, it

is expected that both breakers will trip. This is a safety measure that helps to prevent

further damage to the electrical system and protect against potential hazards.

In this particular case, the breaker located between nodes 2 and 3 should trip

when a fault occurs on the transmission line. This breaker is designed to detect and

respond to faults by opening the circuit and interrupting the flow of electricity. Figure

4.4, which provides a visual representation of the expected behavior of the breakers

during a fault event.
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Figure 4.1: Main and Transfer Bus Configuration.

Figure 4.2: Breaker-and-a-Half Bus Configuration.
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Figure 4.3: Double Breaker - Double Bus Configuration.

Figure 4.4: Case I: Open breaker between node 2 - 3.
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Figure 4.5: Case II: Open breaker between node 2-3, and 2-4.
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During the NB simulation, the breaker located between nodes 2 and 3 tripped

when a fault occurred on the transmission line between these nodes. Although control

center operators can observe analog measurements of the flow across the breaker,

they are unable to confirm the open or closed status of the transmission line. This

may be due to issues with telemetry or communication, as mentioned earlier in this

chapter. When the breaker 2 − 3 trips, it disconnects the transmission line from

the rest of the system. Table 4.1 displays the estimated flow across the breaker,

with the status of the breaker indicated as 1 or 0 to represent closed or open breakers

respectively. A threshold value of 3 was made, which approximates to be equivalent to

a 1% probability of false alarm. When the flow is below the set threshold, the breaker

associated with the transmission line is assumed to be open. On the other hand, when

the flow exceeds the threshold of 3, the breaker is assumed to be closed. Random

Gaussian measurement error was used as input measurement noise to estimate the

flow across the circuit breakers.

4.1.2 Case II: Main Bus Transfer Bus

Here, the breakers associated with two (2) transmission lines are simulated to be open

when a fault is introduced into the system that causes the breakers to trip. In this

scenario, two breakers are open between nodes 2 and 3 and buses 2 and 4 to simulate

a fault event on the transmission lines by tripping the breaker associated with both

nodes as shown below. The breakers are assumed to have tripped instantaneously to

isolate the faulty line from the rest of the system. The scenario is represented with

the Figure 4.5. As shown in Table 4.2, When the flow is below the set threshold,

the breaker associated with the transmission line is assumed to be open. Random

Gaussian measurement error was used as input measurement noise to estimate the

flow across the circuit breakers.
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Table 4.1: Case I PCB Status

From Bus To Bus Flow Status

2 1 6.8169 1

2 3 0.1102 0

2 4 5.1269 1

2 5 5.3126 1

6 5 10.6229 1

6 11 9.3398 1

6 12 6.7960 1

6 13 6.5317 1

7 4 5.1274 1

7 8 8.8459 1

7 9 9.3046 1

9 4 7.8016 1

9 7 6.1989 1
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Table 4.2: Case II PCB Status

From Bus To Bus Flow Status

2 1 5.1695 1

2 3 0.4596 0

2 4 2.5271 0

2 5 3.0164 1

6 5 5.9626 1

6 11 3.2610 1

6 12 3.1594 1

6 13 3.4248 1

7 4 3.9507 1

7 8 5.7600 1

7 9 6.2244 1

9 4 5.1955 1

9 7 3.0168 1
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4.1.3 Case III: Breaker and Half Bus with Open Breakers

In this scenario, the breaker-and-a-half is made up of two normally energized buses

with three breakers connected between the buses. A bus fault is simulated on one

of the buses to open the breakers associated with the bus. An additional breaker is

open to isolate the line between buses 2 and 3 as shown below. The breakers are

assumed to have tripped on a permanent fault to isolate the fault from the system.

The scenario is represented with Figure 4.6 to show the simulated bus fault. The

result of the node-breaker estimated flow across the breaker is shown in Table 4.3,

the breaker status is shown as either closed (1) or opened (0).

4.1.4 Case IV: Double Breaker-Double Bus

The final scenario considered in this chapter is the double breaker-double breaker bus

configuration. This bus configuration takes advantage of the two normally energized

buses and two connected circuit breakers for the circuits. Hence, any of the PCBs can

be removed for maintenance or replacement without interrupting the circuit. This

means that a fault on any of the breakers does not affect the other circuit. However,

for this study, the two breakers on both circuits are assumed to be open due to a fault

that instantaneously tripped both breakers to isolate the transmission line between

buses 2 and 3. The breakers are assumed to have tripped on a permanent fault to

isolate the fault from the system. The scenario is represented in Figure 4.7 to show

the simulated bus fault. The result of the node-breaker estimated flow across the

breaker is shown in Table 4.4, the breaker status is shown as either closed (1) or

opened (0).
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Figure 4.6: Case III: bus fault with open breakers

Figure 4.7: Case IV: Open breaker between node 2 - 3.
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Table 4.3: Case III PCB Status

From Bus To Bus Flow Status

2 3 2.4336 0

2 4 2.0553 0

2 5 2.7312 0

2 1 2.2038 0

6 5 11.8817 1

6 11 4.4365 1

6 12 12.2170 1

6 13 6.4052 1

7 4 4.5774 1

7 8 5.4610 1

7 9 5.2564 1

9 4 3.1897 1

9 7 6.8994 1
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Table 4.4: Case IV PCB Status

From Bus To Bus Flow Status

2 1 4.1329 1

2 3 2.8018 0

2 4 3.6643 1

2 5 3.6766 1

6 5 4.9801 1

6 11 4.1921 1

6 12 4.1307 1

6 13 4.1224 1

7 4 3.3969 1

7 8 4.6964 1

7 9 4.8154 1

9 4 4.4203 1

9 7 3.9231 1
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4.2 Virtual Sensor

As systems become increasingly complex and automated, it is essential that they

are able to perform at a high level and provide excellent quality of service. These

growing complexities come with new challenges, including the need for innovative

ideas, controllers, designs, and sensors to ensure system reliability and efficiency [62].

This is particularly true for fault detection and identification on transmission lines,

where the proposed node-breaker model can be used to model a transmission or

distribution substation. To achieve this, the proposed virtual sensor will use real-

time measurement sensors to detect faults and trigger a trip. This can be done by

either rolling the lockout relay or sending a trip command to the PCBs associated

with the transmission line. The main goal is to ensure that the system is capable of

detecting and responding to true faults while avoiding false alarms.

The proposed virtual sensor is a technology that functions similarly to the SEL

fault indicator, which is a device that is attached to transmission lines to identify and

locate faults. The virtual sensor (VS), also known as a soft sensor, is an inferential

statistical model that utilizes the transmission line sensor to predict and recommend

actions [63]. The VS model relies on the supervisory control and data acquisition

(SCADA) system’s measurements to analyze and make conclusions through the local

remote terminal unit (RTU) at the substation. This type of transmission line virtual

sensor is data-driven, which means it’s designed for monitoring and protection [64, 65].

Statistical inferential analysis will be utilized to draw conclusions and predictions

about the transmission line or the system’s condition. The analysis will incorporate

different models to provide a comprehensive understanding of the system. Projection

statistics, chi-square, normalized residual, and auto-regression analysis are among

the models that will be examined. These models will help to analyze data sets,

identify patterns and trends, and provide useful insights to improve the system’s

performance. By utilizing these models, we can develop a better understanding of
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the system and its potential issues, allowing for more effective decision-making and

proactive maintenance.

4.2.1 Projection Statistics Algorithm

Projection statistics is a robust method of identifying leverage measurement [66, 67,

41]. The projection statistics algorithm is given as

PSi = max
Hk

|HT
i ∗Hk|
Sm

for k = 1, 2, 3, ...,m
(4.1)

Sm = γ.lomedilomedj ̸=1|HT
i .Hk +HT

j .Hk| 1 ≤ i, j, k ≤ m
(4.2)

where γ= 1.1926 and lomedi{x} is low median expressed as

[
(m+ 1)

2

]
- th order of

the m numbers in x [67], where x = x1, x2, ..., xm and [x] represents the integer of x .

For instance, if m =8, then the low median will be 4.

The denominator Sm in (4.2) represents the dispersion of the numerator about

the origin in (4.1). The projection statistics algorithm is expected to follow the chi-

square distribution. The degree of sparsity in the Jacobian matrix Hi corresponds

to the degree of freedom (DOF) of the chi-square distribution for the measurement

i.A leverage point can be identified when the value of PSi, which is the leverage

measurement, exceeds a certain cutoff threshold. This threshold serves as a point of

reference to distinguish normal data points from those that exhibit a higher degree

of leverage.

PSi > η

η = χ2
k,0.975

(4.3)
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Table 4.5: Projection Statistics: Case I

Meas. PSi ωi

I2−1(real) 8.7968 11.1433

I2−1(imag) 8.5292 11.1433

I2−3(real) 18.5748 11.1433

I2−3(imag) 16.4445 11.1433

I2−4(real) 9.0203 11.1433

I2−5(imag) 9.1595 11.1433

I2−4(imag) 7.0943 11.1433

Table 4.6: Projection Statistics: Case II

Meas. PSi ωi

V3(real) 702.9838 7.3778

V2(real) 702.9838 7.3778

V3(imag) 9.4179 5.0239

V2(imag) 1.6674 5.0239

I2−3(real) 1405.9704 11.1433

I2−3(imag) 1677.0116 11.1433

I2−4(real) 702.9859 14.4494

I2−4(imag) 1118.0077 11.1433
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Table 4.7: Projection Statistics: Case III

Meas. PSi ωi

V3(real) 41.2385 7.3778

V2(real) 61.8352 7.3778

V3(imag) 7.5757 5.0239

V2(imag) 1.3344 5.0239

I2−3(real) 61.3204 11.1433

I2−3(imag) 976.0201 11.1433

I2−4(real) 702.9859 14.4494

I2−4(imag) 1118.0077 11.1433
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As mentioned earlier, leverage measurement i can be identified as a leverage point

if the associated PSi is greater than the cutoff ωi. The PS virtual sensor information

is given in Table 4.5 for case I where the line between nodes 2 and 3 tripped due to

fault. As shown in the Table 4.5, the tripped line measurements (real and imaginary)

are expected to show up as leverage measurements with the value s of PSi greater

than the cutoff ωi. Measurements, I2−3 (real) and I2−3 (imaginary) show up as the

leverage measurements to validate the measurement of the trip line as the leverage

measurements sensed by the VS on the line.

More leverage measurements are expected from Case II due to more tripped

transmission lines. The measurements associated with nodes 2, 3, and 4 are expected

to show up as leverage measurements as shown in Table 4.6. The table shows that

both the real and the imaginary measurements PS are greater than the cutoff. This

table also validates the VS sensor of sensing tripped lines measurements as leverage

measurements.

Case III, which is the breaker-and-a-half bus configuration, is a unique case with a

bus fault simulated at the bus to trip all the breakers and transmission lines associated

with the breakers. Table 4.7 shows the result of the VS projection statistics to

sense leverage measurements of the tripped lines. The table 4.7 validates that the

tripped lines measurements show up as leverage measurements. Real and imaginary

measurements associated with buses 2,3, and 4 have PS greater than the cutoff to

validate the measurements as leverage measurements.
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Chapter 5

Dynamic State Estimation:

Balanced Fault Simulation

Performing static state estimation at short intervals becomes computationally

complicated and expensive when there are increased loads and generation due to

the dynamics of the system. Therefore, it is necessary to use a dynamic state

estimator that considers the time-varying nature of the system model. Dynamic

state estimators can compute the system state vector at the next time step, providing

greater accuracy and analysis for real-time control and monitoring of power systems.

This approach is useful for estimating the next sampling time and integrating

Phasor Measurement Units (PMUs) into power system operations. Using the Global

Positioning System (GPS), synchronized time-sampled measurements can be used for

real-time monitoring and control [4, 32, 33, 34, 35, 36].

The dynamic state estimation is carried out using Kundur’s two-area model, and

the reduced University of Tennessee, Knoxville (UTK) Hardware Test Bed (HTB)

WECC model to simulate several fault events. Different faults were simulated on the

different models to see how the dynamic states reacted to fault events. Balanced and

unbalanced faults were simulated to study the effect of faults on the systems and how

the dynamic states of synchronous generators react to these faults.
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Similar to the UTK HTB model, the simulation can be scaled to a large-scale

simulation. This chapter will focus on different case studies using the data from

the system to estimate the dynamic states to comparing the true and the estimated

states.

5.1 UTK HTB Reduced WECC System

The University of Tennessee WECC Hardware Test Bed model is a transmission

network that approximates the true large-scale WECC model using converters that

emulate generators and loads. Figure 5.1 shows the different interconnections modeled

on the HTB to simulate the large-scale models with integrated real-time protection,

control, and communication. Figures 5.2 and 5.3 show the power flow of the reduced

HTBWECCmodel in MW. The summer model was selected and used for the dynamic

state estimation. The data from the model was used as input measurements for the

dynamic simulation. Different cases were used to test the HTB model from using

the HTB measurements to estimate the dynamic states to comparing the states of

the HTB with the dynamic state estimator using the robust unscented Kalman filter

(UKF).

To conduct the initial simulation using the HTB WECC model, the parameter

data obtained from the HTB simulation was used. The generator’s active power

(Pe), reactive power (Qe), and terminal voltage (VT ) are input measurements for the

estimator. This helps in accurately estimating the dynamic states of the generator

in the interconnection system. The reclosing protection system was tested on

transmission lines to assess its response to fault conditions. The simulation included

one-shot, two-shot, and lock-out reclosing protection events, and demonstrated the

impact of transmission line faults on the dynamic states of generators. The results

provide insights into how generators behave in response to transmission line faults.
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Figure 5.1: UTK HTB WECC Summer Model

Figure 5.2: UTK HTB WECC Summer Model
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Figure 5.3: UTK HTB WECC Winter Model
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5.1.1 Unscented Kalman Filter

xk+1 = g(xk, k) + ωk

zk = h(xk, k) + ϑk

(5.1)

g(xk, k) is the noise-free dynamics evaluated at time k step

h(xk, k) is the noise-free measurement evaluated at time k step

xk ∈ Rn is the discrete state vector at time step k

zk ∈ Rm is the discrete measurement vector at time step k

ωk ∼ N(0, Qk) is the process noise at time step k

ϑk ∼ N(0, Rk) is the measurement noise at time step k

Qk is the covariance matrix of ωk

Rk is the covariance matrix of ϑk

The UKF is initialized as follows

x̂+
0 = E(x0) (5.2)

P+
0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )

T ] (5.3)

Time updates are used to propagate the state estimate and covariance from one

measurement time to another. To propagate from time step (k-1) to k, sigma points

are chosen as

x̂i
k−1 = x̂+

k−1 + xi
∗ i = 1, ..., 2L

xi
∗ = (

√
(LP+

k−1)
T
i i = 1, ..., L

xn+i
∗ = −(

√
(LP+

k−1)
T
i i = 1, ..., L

(5.4)

where (
√
LP )i is termed as the ith row of the matrix square root of (

√
LP )i usually

computed numerically using Cholesky factorization. The nonlinear system equation

f(·) is used to transform the sigma points into x̂i
k vectors
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x̂i
k = g(x̂i

k−1, k − 1) (5.5)

Combining the x̂i
k vectors to obtain the a priori state estimate at time k

x̂−
k =

1

2L

2L∑
i=1

x̂i
k (5.6)

Estimate the a priori error covariance with the measurement noise Qk−1 added

P−
k =

1

2L

2L∑
i=1

(x̂i
k − x̂−

k )(x̂
i
k − x̂−

k )
T +Qk−1 (5.7)

For optimal performance, the new sigma point is calculated as

x̂i
k = x̂+

k−1 + xi
∗ i = 1, ..., 2L

xi
∗ = (

√
(LP−

k )Ti i = 1, ..., L

xn+i
∗ = −(

√
(LP−

k )Ti i = 1, ..., L

(5.8)

Use the nonlinear measurement h(.) equation to transform the sigma point into ẑik

vectors

ẑik = h(x̂i
k, k) (5.9)

Combine the ẑik vectors to obtain the predicted measurement at time k

ẑ−k =
1

2L

2L∑
i=1

ẑik (5.10)

Estimate the covariance and cross-covariance

Pz =
1

2L

2L∑
i=1

(ẑik − ẑk)(ẑ
i
k − ẑk)

T +Rk

Pxz =
1

2L

2L∑
i=1

(x̂i
k − x̂k)(ẑ

i
k − ẑk)

T

(5.11)
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The measurement update of the state estimate is performed using

Kk = PxzP
−1
z

(5.12)

x̂+
k = x̂−

k +Kk(zk − ẑk)

P+
k = P−

k −KkPzK
T
k

(5.13)

5.1.2 Case I: UTK HTB WECC System

To estimate the true dynamic states of the interconnection system, the HTB

WECC model’s parameters and measurements (identified as ”WECC summer”) were

exported into the UKF dynamic state estimator. The generator active power (Pe),

reactive power (Qe), and terminal voltage (VT ) are used as measurements within the

estimator. This allows for the accurate estimation of the generator’s dynamic states.

A three-phase-ground fault is applied to one of the transmission lines, specifically

L2−8 at 0.6 seconds. This type of fault causes a current to flow from each of the

three phases to the ground. As a result, the line trips and remains disconnected

for the remaining 1.4 seconds of the simulation. This fault is considered permanent,

which means it requires a manual reset or intervention to restore the line to normal

operation. Figures 5.4 to 5.8 showcase the estimated dynamic states that align with

the two-axis model given in (2.2). These dynamic states are crucial to understanding

the dynamic behavior of the system.

Figure 5.4 shows the rotor angles δ of the generators. The plot illustrates that

the rotor angles diverge from the steady state to form islands during the fault. The

graph in Figure 5.5 displays the rotor speeds (ω) of the generators. The plot clearly

illustrates that when the fault occurred, the rotor speed deviated from the steady

state, causing the formation of groups of generators (or ’islands’) with similar rotor

angles. Figure 5.6 displays the field voltage Efd of the generator.
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Figure 5.5: Rotor Speeds
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Figure 5.7: d-axis Transient Voltage
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Figure 5.8: q-axis Transient Voltage
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The d-axis transient voltage E
′

d of the generator can be seen in Figure 5.7, while

the q-axis transient voltage E
′
q is illustrated in Figure 5.8.

5.1.3 Case II: WECC System without Reclosing

In this case, the true states of the generators are compared with the estimated states

obtained from the dynamic estimator. The transmission line between the generators

trips and there is no reclosing, which results in the system’s inability to return to

a steady state. Additionally, measurements from the generators were collected and

processed to estimate the states of the generators. The generator’s active and reactive

power, denoted by Pe and Qe, respectively, are used as measurements, as well as the

generator terminal voltage VT .

At one second of the simulation, a three-phase-ground fault is applied to the

transmission line L2−8. As a result, the line is tripped and remains disconnected for

the remaining 4 seconds of the simulation. This fault is considered to be permanent,

which means that it requires manual intervention or reset to restore the line to normal

operation.

Added noise in the form of a normally distributed random number is now

introduced. The accuracy of the estimated states against the true states is evaluated

by calculating the Mean Squared Error (MSE) using (5.14). The MSE error of the

dynamic states is summarized in Table 5.1, comparing the true and estimated values.

This allowed us better to understand the differences between the estimated and true

states, giving us valuable insights into the performance of our system.

The different generator states are shown in Figures 5.9 - 5.13. The red dashed line

indicates the estimated dynamic states, while the blue solid line indicates the true

dynamic states of the system. Figure 5.9 shows the rotor angles δ of the generators.

The plot illustrates that the rotor angles diverges from the steady state to form islands

of generators during the fault. The MSE for all the generators is calculated and shown

in Table 5.1. To replicate real-world conditions, noise is introduced into the system
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to evaluate the performance of the dynamic simulator in estimating the dynamic

rotor angle. The calculated Mean Squared Error (MSE) value provides a quantitative

measure of the accuracy of the simulator’s performance. This assessment is crucial

for ensuring the reliability and effectiveness of the estimator in practical applications.

The plot in Figure 5.10 shows the rotor speeds (ω) of the generators. The plot

clearly illustrates that when the fault occurred, the rotor speed deviated from the

steady state, causing the formation of groups of generators (or ’islands’) with similar

rotor angles, as seen in other graphs. The MSE of the rotor speeds (ω) is also

calculated as shown in Table 5.1. Figure 5.11 displays the field voltage Efd of the

generator. The d-axis transient voltage E
′

d of the generator can be seen in Figure

5.12, while the q-axis transient voltage E
′
q is illustrated in Figure 5.13 as the final

estimated state. The MSE for Efd, E
′

d, and E
′
q are also calculated as shown in Table

5.1.

To further analyze the behavior of synchronous generators, their relative rotor

angles are simulated and plotted, with generator one used as the reference angle.

The results of this simulation can be seen in Figure 5.14, which provides a visual

representation of the relative angles between the generators.

MSE =

√√√√ 1

N

N∑
j=1

(xi
j − x̂i

j)
2 (5.14)

where

xi
j is the true state of the ith element of the associated state vector

x̂i
j is the estimated state of the ith element of the associated state vector

N is the aggregate number of simulation steps.
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Figure 5.9: True vs. Estimated Rotor Angle

Figure 5.10: True vs. Estimated Rotor Speed
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Figure 5.11: True vs. Estimated Efd

Figure 5.12: True vs. Estimated Edp
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Figure 5.13: True vs. Estimated Eqp

Table 5.1: Mean Squared Error: WECC System without Reclosing

States MSE

δ 0.0012

ω 0.0031

Efd 0.00836

Edp 1.060e−5

Eqp 3.852e−6
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Figure 5.14: True vs. Estimated Rotor Relative Angles
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5.1.4 Case III: WECC System with Reclosing

In this case, the transmission line reclosing is simulated to see how the dynamic

states of the generators react to the temporary fault on a transmission line. The

true states of the generators are compared with the estimated states obtained from

the dynamic estimator. The transmission line between the generators trips and

recloses after the fault is cleared, which allows the system to return to a steady

state. Measurements from the generators are collected and processed to estimate

the states of the generators. The generator’s active and reactive power, denoted by

Pe and Qe respectively, are used as measurements as well as the generator terminal

voltage VT .

At two seconds of the simulation, a three-phase-ground fault is applied to the

transmission line L2−8. As a result, the line is tripped after a few cycles and recloses

for the remaining time of the simulation. This fault is considered to be temporary,

which means that it only occurs for a few cycles and does not require a manual reset

to restore the line to normal operation.

This type of reclose is a single-shot reclose. When a transmission line fails to

reclose after the second attempt, it may experience a two-shot reclose or lockout.

This means that the reclose scheme will attempt to close the line twice before it

locks out to prevent further damage or danger. In the subsequent sections of this

chapter, we will delve deeper into this specific reclose scheme and its significance in

maintaining a safe and reliable power transmission system.

Again to replicate real-world conditions, noise was introduced into the system to

evaluate the performance of the dynamic simulator in estimating the dynamic rotor

angle. The MSE provides a quantitative measure of the accuracy of the simulator’s

performance. This assessment is crucial for ensuring the reliability and effectiveness of

the simulator in practical applications. The accuracy of the estimated states against

the true states was evaluated by calculating the (5.14). Finally, the MSE error of the

dynamic states is summarized in Table 5.2 comparing the true and estimated values.
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This allowed us better to understand the differences between the estimated and true

states, giving us valuable insights into the performance of our system.

The different generator-estimated dynamic states are shown in Figures 5.15 - 5.19.

The red dashed line indicates the estimated dynamic states, while the blue solid line

indicates the true dynamic states of the system. Figure 5.15 shows the rotors’ relative

angles δ of the generators. The rotor angle of generator one(1) is used as the reference

angle. The plot illustrates a visual representation of the relative angles between the

generators.

In Table 5.2, the Mean Squared Error (MSE) values are calculated for all the

generators. Additionally, Figure 5.16 provides a visual representation of the rotor

speeds (ω) of the generators. The plot clearly shows that when a fault occurs, the rotor

speed deviation diverges from the steady state for a few cycles until the transmission

line trips. Once the transmission line recloses, the rotor speed returns to its steady

state. The MSE values for the rotor speeds (ω) are also calculated and presented in

Table 5.2.

The Figure 5.19 shows the plot of the generator’s field voltage Efd. The d-axis

transient voltage E
′

d of the generator is shown in Figure 5.17, while Figure 5.18

illustrates the q-axis transient voltage E
′
q. Additionally, Table 5.1 provides the Mean

Squared Error (MSE) values for Efd, E
′

d, and E
′
q, which can be used to evaluate the

accuracy of the dynamic state estimator.

The mean squared error (MSE) analysis of the dynamic states reveals that the

Unscented Kalman Filter (UKF) is a reliable method for estimating the dynamic

states of the generators in the model. The performance of the estimator is noteworthy,

as it can efficiently simulate real-world scenarios even in the presence of noise. The

results of the analysis demonstrate the effectiveness of the unscented Kalman filter in

providing accurate and reliable estimates of the dynamic states of the generators.
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Figure 5.15: True vs. Estimated Relative Rotor Angles

Figure 5.16: True vs. Estimated Rotor Speed
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Figure 5.17: True vs. Estimated Edp

Figure 5.18: True vs. Estimated Eqp
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Figure 5.19: True vs. Estimated Efd

Table 5.2: Mean Squared Error: WECC System with Reclosing

States MSE

δ 0.000377

ω 1.542e−06

Eqp 6.001e−5

Edp 1.743e−4

Efd 0.00672
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5.2 Kundur’s Two-Area System

5.2.1 Case I: Single-shot Reclosing Event

Kundur’s two-area oneline parameters and measurements are used to test the UKF

dynamic state estimator, as shown in Figure 5.20. The generator’s active power

(Pe), reactive power (Qe), and terminal voltage (VT ) are utilized as measurements

and input measurements respectively within the estimator. During the simulation

of a temporary fault on a transmission line, the reclosing of the transmission line

is tested. The aim is to observe how the dynamic states of the generators react to

the fault. The estimated states obtained from the dynamic estimator are compared

with the true states of the generators. After the fault is cleared, the transmission

line between the generators trips and then recloses, which allows the system to return

to a steady state. To estimate the states of the generators, measurements from the

generators are collected and processed. The generator’s active and reactive power,

denoted by Pe and Qe respectively, are used as measurements. Additionally, the

generator terminal voltage VT is used.

At 1 second of the simulation, a three-phase-ground fault is applied to the

transmission line L8−9. This fault causes a current to flow from each phase to the

ground. As a result, the line is tripped for a few cycles and reclosed to go back to a

steady state for the remaining time of the simulation. This fault is considered to be

temporary, which means that it only occurred for a few cycles and does not require a

manual reset to restore the line to normal operation. This type of reclose is a single-

shot reclose. When a transmission line fails to reclose after the second attempt, it

may experience a two-shot reclose or lockout. This means that the reclose scheme

will attempt to reclose the line twice before it locks out to prevent further damage or

danger.

Again to replicate real-world conditions, noise is introduced into the system to

evaluate the performance of the dynamic simulator in estimating the dynamic rotor
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angle. The MSE provides a quantitative measure of the accuracy of the estimator’s

performance (see 5.14). This assessment is crucial for ensuring the reliability and

effectiveness of the simulator in practical applications. The MSE error of the dynamic

states is summarized in Table 5.3, comparing the true and estimated values. The

different generator-estimated dynamic states are shown in Figures 5.21 - 5.28. The

red dashed line indicates the estimated dynamic states, while the blue solid line

indicates the true dynamic states of the system. Figures 5.22 - 5.24 show the rotors’

relative angles δ. The rotor angle of generator one is used as the reference angle. The

plot illustrates a visual representation of the relative angles between the generators.

The MSE for all the generators’ rotor angles is calculated and shown in Table 5.3.

The graph in Figure 5.25 displays the rotor speeds (ω) of the generators. The plot

clearly illustrates that when the fault occurred, the rotor speed deviation diverged

from the steady state for a few cycles when the transmission line tripped. The rotor

speed returned to steady after the transmission line reclosed. The MSE of the rotor

speeds (ω) was also calculated as shown in the Table 5.3. Figure 5.28 displays the

field voltage Efd. The d-axis transient voltage E
′

d of the generator can be seen in

Figure 5.26, while the q-axis transient voltage E
′
q is illustrated in Figure 5.27 as the

final estimated state. The MSE for Efd, E
′

d, and E
′
q were also calculated and shown

in the Table 5.3.
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Figure 5.20: Kudur Two-Area Oneline

Figure 5.21: True vs. Estimated Rotor Angles
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Figure 5.22: True vs. Estimated δ2−1

Figure 5.23: True vs. Estimated δ3−1
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Figure 5.24: True vs. Estimated δ4−1

Figure 5.25: True vs. Estimated Rotor Speed
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Figure 5.26: True vs. Estimated Edp

Figure 5.27: True vs. Estimated Eqp
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Figure 5.28: True vs. Estimated Efd

Table 5.3: Case I Mean Squared Error

States MSE

δ 2.431e−06

ω 1.989e−09

Eqp 5.489e−6

Edp 2.732e−5

Efd 0.00348
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5.2.2 Case II: Two-shot Reclosing

Sometimes, a transmission line may encounter temporary faults consecutively within

a few cycles. In such a case, the transmission line will initially open upon detecting a

fault and then close again. However, if the fault has not cleared or another fault occurs

within a short time frame, the line will open again and only close if it is a temporary

fault. There will be a fault between two temporary 3 − ϕ − G connections that will

last for two (2) cycles per fault before reclosing. This will happen two times and each

time the fault will be cleared and the system will return to normal. As this happens,

the generator dynamic states will react to the reclosing of the line and show how the

machines in different areas of the interconnection are affected by the transmission

line trip and reclose. The estimated states of the generators are compared with their

actual states using a dynamic estimator. The details of the simulation are shown

below:

At the 0.5 second of the simulation, a three-phase-ground fault is applied to the

transmission lines L8−9.As a result, the line is tripped for a few cycles and recloses to

go back to a steady state. Another three-phase-ground fault is applied at 1.5 seconds,

the transmission line L8−9 trips and recloses after the second fault to go back to a

steady or normal state. These faults are considered to be temporary, which means

that they only occur for a few cycles and do not require a manual reset to restore the

line to normal operation.

Table 5.4 summarizes the MSE error of the dynamic states, comparing the

estimated and true values. The different generator-estimated dynamic states are

shown in Figures 5.29 - 5.33. The red dashed line indicates the estimated dynamic

states, while the blue solid line indicates the true dynamic states of the system. Figure

5.29 shows the rotor angles δ of the generators. The plot illustrates that the rotor

angles diverged from the steady state when the transmission line tripped and returned

to the steady state when the fault cleared.
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Figure 5.29: True vs. Estimated Rotor Angle

Figure 5.30: True vs. Estimated Rotor Speed
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Figure 5.31: True vs. Estimated Edp

Figure 5.32: True vs. Estimated Eqp
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Figure 5.33: True vs. Estimated Efd

Table 5.4: Case II Mean Squared Error

States MSE

δ 1.358e−06

ω 5.5062e−09

Eqp 2.572e−6

Edp 6.011e−5

Efd 0.00739
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The same process was repeated for the second fault event, the fault cleared and

returned to a normal state as indicated in the plot. The MSE for all the generators’

rotor angles were calculated and shown in Table 5.4.

The graph in Figure 5.30 displays the rotor speeds (ω) of the generators. The plot

clearly illustrates that when the fault occurred, the rotor speed deviation diverged

from the steady state for a few cycles when the transmission line trips. The rotor

speed returned to steady after the transmission line recloses. The MSE of the rotor

speeds (ω) was also calculated as shown in the Table 5.4. Figure 5.33 displays the field

voltage Efd of the generator. The d-axis transient voltage E
′

d of the generator can be

seen in Figure 5.31, while the q-axis transient voltage E
′
q is illustrated in Figure 5.32.

The MSE for Efd, E
′

d, and E
′
q are also calculated and shown in the Table 5.4.

5.2.3 Case III: Permanent Fault

Performance of the estimator for a permanent fault is studied. If the relay still detects

a fault at the second attempted reclose, it will trip and lock out the line. During the

simulation, a three-phase-ground fault occurs at 0.5 seconds on transmission lines

L8−9. As a result, the line trips for a few cycles and then recloses to return to a

steady state. Another three-phase-ground fault occurs at 1.5 seconds, causing the

transmission line L8−9 to trip and attempt to reclose after the second fault to go back

to a normal state. A third fault occurs at 3.2 seconds, but the transmission line fails

to reclose due to detecting a permanent fault. The system will not attempt to reclose

the line for the third time. At this point, the line will trip and lock out to prevent

further damage or danger to the equipment.

Table 5.5 summarizes the MSE error of the dynamic states by comparing the

estimated values with the true values. The different generator-estimated dynamic

states are shown in Figures 5.34 - 5.37. Figure 5.34 shows the rotor angles δ of the

generators.tripped and locked out.
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Figure 5.34: True vs. Estimated δ

Figure 5.35: True vs. Estimated ω
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Figure 5.36: True vs. Estimated Edp

Figure 5.37: True vs. Estimated Eqp
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Table 5.5: Case III Mean Squared Error

States MSE

δ 8.981e−06

ω 6.739e−09

Eqp 2.254e−5

Edp 5.858e−5
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The plot illustrates that the rotor angles diverged from the steady state when the

transmission line tripped and returned to the steady state when the fault cleared. The

same process was repeated for the second fault event, the fault clears and returned

to a normal state as indicated in the plot. At 3.2 seconds the rotor angles of the

generators diverged without returning to a steady state because the line tripped and

locked out. The MSE for all the generators’ rotor angles were calculated and shown

in Table 5.5.

The graph in Figure 5.35 displays the rotor speeds (ω) of the generators. The

plot clearly illustrates that when the fault occurred at 0.5 and 1.5 seconds, the rotor

speed deviation diverged from the steady state for a few cycles when the transmission

line trips. The rotor speed returns to steady-state after the transmission line recloses.

At 3.2 seconds the rotor speeds and other dynamic states of the generators diverged

without returning to a steady state because the line

The MSE of the rotor speeds (ω) was also calculated as shown in Table 5.5. The

d-axis transient voltage E
′

d of the generator can be seen in Figure 5.31, while the

q-axis transient voltage E
′
q is illustrated in Figure 5.32. The MSE for Efd, E

′

d, and

E
′
q were also calculated and shown in the table 5.5.
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Chapter 6

Dynamic State Estimation:

Unbalanced Faults

Similar to balanced faults, unbalanced fault simulation and analysis are very impor-

tant to system protection engineering (SPE). SPE utilizes short-circuit software like

ASPEN or CAPE to develop settings for generation, transmission, and distribution.

Transmission lines trip or reclose due to balanced or unbalanced faults, hence, the

need to study the effect of line reclosing on the generator states for unbalanced faults.

Unbalanced faults may lead to critical heating of the machine due to negative sequence

currents induced during these faults. The induced negative sequence current makes

the machine field rotate at twice the rated frequency and could damage the rotor of the

machine [52]. Hence, it is very important for SPE to develop settings that can protect

the system from an unbalanced fault when it occurs in the system. Another effect

of unbalanced fault is the saturation of the magnetic components of the machines

[68]. With saturation, the elements or parameters of the machines vary and are not

as expected and thus, affect the estimated states of the machines.

In this chapter, the dynamic state estimation simulation is developed for

unbalanced faults, including: phase-to-ground (LG), phase-to-phase (LL), and double

phase-to-ground (LLG) using the reduced UTK HTB WECC model to simulate
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various fault events. The WECC model simulation was carried out using the

electromagnetic transient (EMT) PSCAD model of the reduced WECC model from

the UTK HTB. This chapter focuses on studying the effect of unbalanced faults and

saturation of the machines on the rotor speed and the rotor angle of the synchronous

generator. The estimated dynamic states are then compared with the true states with

Gaussian noise added to the measurements as input noise.

6.1 UTK HTB Reduced WECC System

The UTK HTB Reduced WECC model is a transmission network that represents

or emulates the large-scale WECC model with the help of converters that emulate

generators and loads. Figure 6.1 shows the interconnections modeled on the HTB

to simulate the large-scale models with integrated real-time protection, control, and

communication. The HTB has the advantage of broad time scales from milliseconds

to seconds. Figures 6.2 and 6.3 show the power flow of the reduced HTB WECC

model in MW.

The summer model is selected and used for the dynamic state estimation. The

parameter data for the HTB was used to develop a PSCAD model. An unbalanced

fault applied to one of the transmission lines for a few cycles to trip the transmission

line and then is reclosed after the fault was cleared. The true states from the HTB

PSCAD model were exported and compared with the estimated states from the state

estimator. Different cases were used to test the HTB model from using the HTB

measurements to estimate the dynamic states to compare the states of the HTB with

the dynamic state estimator using the robust unscented Kalman filter.
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Figure 6.1: UTK HTB WECC Model

Figure 6.2: UTK HTB WECC Summer Model
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Figure 6.3: UTK HTB WECC Winter Model
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6.1.1 PSCAD Model

The WECC EMT PSCAD model of the interconnection was developed to investigate

the impact of line reclosing on the synchronous states. The PSCAD model of the

WECC interconnection is shown in Figure 6.4. The reduced model includes seven

generators and four areas, similar to the WECC model depicted in Figure 6.2. All

model parameters are the same as those used in the HTB lab. Prior to applying an

unbalanced phase-to-ground fault on transmission line L2−8, the simulation was run

for a few minutes in a steady state. The objective of developing the WECC EMT

PSCAD model of the interconnection was to analyze and understand the effect of

line reclosing on the states. The PSCAD model of the WECC interconnection is

illustrated in Figure 6.4 similar to the WECC model displayed in Figure 6.2. The

model parameters used in the simulation are identical to those utilized in the HTB lab,

ensuring accuracy and reliability. Before simulating an unbalanced phase-to-ground

fault on transmission line L2−8, the simulation was run for a few minutes in a steady

state. This approach allows for a comprehensive analysis of the effects of the fault

on the system, providing insights into the behavior of the synchronous states under

different scenarios. The generator’s measurements, such as its active power (Pe),

reactive power (Qe), and terminal voltage (VT ), were exported from the simulation.

These measurements were processed and used as inputs in the dynamic state estimator

to effectively analyze the generator’s behavior. is applied after running the simulation

in a steady state for some seconds. The applied unbalanced fault cleared after a few

cycles. As a result of the fault, the transmission line trips when the fault is applied

and then recloses upon the fault being cleared.
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Figure 6.4: WECC PSCAD Model
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6.1.2 Effect of Saturation on Synchronous Machine States

In the event of an unbalanced fault, such as a phase-to-ground fault, it may lead to

a condition known as saturation in synchronous generators. Saturation can cause

non-uniformity in the salient pole air gap of the machine, which can adversely

affect the machine’s dynamic states [68]. To mitigate this problem, an improved

saturation modeling method was implemented in the synchronous machine using the

GENTPF/GENTPJ model with multiplicative saturation [1]. The efficacy of this

method is tested during simulation and found to improve the model’s accuracy by

better tracking between the true state and the estimated state [1]. The dynamic

states of the machine were estimated using a robust iterated unscented Kalman filter

that was specifically developed for this purpose [69]. The saturation was added to the

q and d axes of the machine, this alters the differential equations with details shown

in appendix A.

GENTPF/GENTPJ

This model is designed using the block diagram, as shown in Figure 6.5 from [1],

and can be applied to both salient pole and round rotor machines. The model has a

dynamic algorithm specifically modified for synchronous machines, which incorporates

the GENTPF/GENTPJ model. Additionally, the model includes scaling between the

d-axis and q-axis inputs of the saturation function, which allows for better tracking of

dynamic states. Saturation is applied to all reactance terms in the dynamic two-axis

model of synchronous machines, making use of multiplicative saturation.

As a result, the GENTPF/GENTPJ model provides a more accurate estimation of

dynamic states, which closely tracks the true states of the WECC model. The model

considers input parameters to be unsaturated, applying saturation to all equations.

By using multiplicative saturation, the GENTPF/GENTPJ model provides a better

match to the true machine states.
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Figure 6.5: GENTPF/GENTPJ Block Diagram Excerpt from [1]
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For this study, the rotor angle and the rotor speed of the machines are estimated.

The remaining states (3-6) are pushed to future study with the saturation of the

machines, as shown in Figure 6.5.

6.1.3 The Algorithm: Iterated Unscented Kalman Filter

(IUKF)

In order to improve the performance of the dynamic state estimator, a more advanced

estimator called the iterated unscented Kalman filter is developed. This estimator is

better suited for tracking or estimating dynamic states when unbalanced faults occur

in the system. The iterated UKF algorithm includes additional steps based on the

UKF algorithm that was used in Chapter 5. Namely:

• Initialize the iteration to count the number of IUKF iteration For example if

j=2, then x̂k,0 = x̂−
k , P

−
k,0 = P−

k , x̂k,1 = x̂+
k , P

−
k,1 = P+

k

• Compute new sigma point for IUKF

x̂i
k,j = x̂+

k,j−1 + xi
∗ i = 1, ..., 2L

xi
∗ = (

√
(LP−

k,j−1)
T
i i = 1, ..., L

xn+i
∗ = −(

√
(LP−

k,j−1)
T
i i = 1, ..., L

(6.1)

• Perform state correction for IUKF

x̂−
k,j =

1

2L

2L∑
i=1

x̂i
k,j

ẑk,j = h(x̂i
k,j, k)

ẑk,j =
1

2L

2L∑
i=1

ẑik,j

Pz,j =
1

2L

2L∑
i=1

(ẑik,j − ẑk,j)(ẑ
i
k,j − ẑk,j)

T +Rk

(6.2)
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Pxz,j =
1

2L

2L∑
i=1

(x̂i
k,j − x̂k,j)(ẑ

i
k,j − ẑk,j)

T

Kk,j = Pxz,jP
−1
z,j

x̂+
k,j = x̂−

k,j +Kk,j(zk,j − ẑk,j)

Pk,j = Pk,j−1 −Kk,jPz,jK
T
k,j

(6.3)

6.1.4 Rotor Angle Results

A collection of measurements taken from the EMT simulation were processed. These

measurements, which included the active power (Pe), reactive power (Qe), and

terminal voltage (VT ), were fed as input into the robust dynamic state estimator to

estimate the dynamic states of the synchronous machines when an unbalanced fault

was applied to a transmission line. A simulation time of 20 s and fault application

time 6 s and a fault duration of 3 cycles was used. The fault is a single phase-to-ground

the protection is a single short reclosing.

Gaussian noise using 10% of the standard deviation were used as added noise into

the system. The MSE of the estimated states and true states is calculated using (6.4).

The Table 6.1 shows the results of calculated MSE between the true and the estimated

states. Figures 6.6 to 6.9 as shown above are the true and estimated states using the

measurements from the generators as input into the estimator. The black solid line

represents the true state, while the magenta broken line represents the estimated

state.
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Figure 6.6: Relative Rotor Angle δ2−1

Figure 6.7: Relative Rotor Angle δ3−1
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Figure 6.8: Relative Rotor Angle δ4−1

Figure 6.9: Relative Rotor Angle δ5−1
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6.1.5 Rotor Speed Results

The Table 6.1 shows the results of calculated MSE between the true and the estimated

states. To estimate the rotor speed of the machines, the simulation was run for

20 seconds with an unbalanced fault applied for 5 cycles. The Figures displayed

below, 6.10 through 6.13, present both the actual and estimated states obtained

by utilizing data from the generators as inputs for the estimator. The true state is

represented by the black color, while the magenta color illustrates the estimated state.

Figure 6.10 shows the comparison between the true and the estimated rotor speed of

generator number 1 of the WECC system. The simulation started in a steady state

and unbalanced line-to-line fault (AB) was applied at 4s. The line trips and recloses

when the fault is cleared after 5 cycles.

Similarly for generator 2 of the WECC system, Figure 6.11 shows the comparison

between the true and the estimated rotor speed of generator one of the WECC system.

The simulation starts in a steady state and unbalanced line-to-line fault (AB) is

applied at 6s. The line trips and recloses when the fault cleared after 5 cycles.

Generators 3 and 4 of the WECC system are simulated similarly to generator 1,

Figures 6.12 and 6.13 show the comparison between the true and the estimated rotor

speed of generator 1 of the WECC system.

The simulation starts in a steady state and unbalanced line-to-line fault (AB)

applied at 6 s. The line trips and recloses when the fault clears after 5 cycles. To

compare the accuracy of the estimated states with the true states, the mean squared

error was computed to validate the results of the estimator and also compare the

performance of the IUKF.

MSE =

√√√√ 1

N

N∑
j=1

(xi
j − x̂i

j)
2 (6.4)
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Figure 6.10: Rotor Speed ω1

Figure 6.11: Rotor Speed ω2
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Figure 6.12: Rotor Speed ω3

Figure 6.13: Rotor Speed ω4
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Table 6.1: WECC EMT Mean Squared Error

Generators δ ω

Generator 1 0.011 0.0051

Generator 2 0.0012 0.0061

Generator 3 0.00125 0.0034

Generator 4 0.0013 0.0019
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where

xi
j is the true state of the ith element of the associated state vector

x̂i
j is the estimated state of the ith element of the associated state vector

N is the aggregate number of simulation steps.

Table 6.1 shows the performance of the GENTPF/J model with the effect of

saturation. The IUKF performs better in estimating the dynamic states of the

machines.

126



Chapter 7

Conclusion

In this dissertation, static and dynamic state estimation approaches have been

developed for power systems. Using the Jacobian information with the projection

statistics algorithm, a transmission line fault detection and identification virtual

sensor was also developed to sense tripped transmission lines due to fault.

The static state estimation methods developed for the Western Electricity

Coordinating Council (WECC) system at the CURENT HTB lab. The traditional

weighted least square (WLS) method was developed with a robust state estimation

method, namely, the least absolute value (LAV) and the quadratic methods were

developed to estimate the state of the WECC system. The estimated states are

computed with Gaussian noise added to the measurements of the system. All the

state estimators developed performed very well, with the LAV performing better

with bad data present.

In this research, the breaker status and the virtual sensor are used to detect and

identify tripped transmission lines using the breaker node model and the projection

statistics algorithm. The proposed solution serves as a backup option for control

centers and fault analysis engineers. It utilizes a topology-less, node-breaker model

that incorporates a power circuit breaker (PCB), zero impedance branches, and

phasor measurement unit (PMU) measurements to detect transmission line faults.
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To accomplish this, remote breaker status information is combined with a virtual

sensor capable of detecting faults on the transmission line. This approach provides a

dependable and effective means of pinpointing and resolving faults, which ultimately

can enhance the power grid reliability.

To estimate the states of the system and the flow across the PCB, an augmented

state was developed to account for both the states of the system and the PCB. The

robust LAV state estimation method was applied with the objective of finding the

minimum residuals of the resulting linear programming. A PCB incidence matrix

was developed to capture the relationship and the flow states as detailed in Chapter

3. Also, the formulation of a virtual sensor in the form of a projection statistics

approach was developed using the Jacobian information of the system to detect

tripped or faulty transmission lines. This approach is precise for detecting anomalies

in transmission line data, such as bad data, outliers, and leverage points. Through

the integration of remote PCB status with virtual sensors, it becomes possible to

accurately detect any faulty transmission lines within the system. This, in turn,

saves valuable troubleshooting time for line engineers, resulting in improved overall

efficiency and potentially significant cost savings for the company.

This dissertation examines the effect of balanced and unbalanced faults on the

dynamic states of synchronous machines. When there is a temporary or permanent

fault, the generator’s dynamic states will be affected by the transmission line reclosing,

which could impact the system’s stability and reliability. The unscented Kalman filter

(UKF) and optimal performance iterated unscented Kalman filter (IUKF) dynamic

state estimation techniques were developed to estimate the dynamic states of the

machines during balanced and unbalanced faults on the transmission line. However,

during an unbalanced fault, the dynamic states of the machines are affected by the

magnetic saturation of the machine. Hence, an approach was developed to account

for the saturation of the machines using the GENTPJ model recommended by the

North American Electric Reliability Corporation (NERC). The developed approach
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for unbalanced fault and machine saturation helped in estimating the dynamic states

of the machines.

The developed approaches were tested on the IEEE bus system, Kundur’s two-

area model, and the reduced WECC model of the UTK electrical engineering

hardware test bed (HTB). This methodology offers a comprehensive solution to

address the challenges posed by balanced and unbalanced faults on transmission lines.

Furthermore, the study examined the response of synchronous generators to faults

that arise during the reclosing cycles of transmission lines. The effectiveness of the

solution was confirmed by monitoring the reaction of dynamic state variables during

reclosing cycles due to temporary faults and transmission line lockout resulting from

permanent faults.
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Appendix A

Summary of Equations

A.1 GENTPF/GENTPJ Model

A.1.1 Reactance Values

X
′

dsat =
X

′

d −Xl

Satd
+Xl

Xdsat =
Xd −Xl

Satd
+Xl

X
′

qsat =
X

′
q −Xl

Satq
+Xl

Xqsat =
Xq −Xl

Satq
+Xl

(A.1)

A.1.2 Time Constants

T
′

dosat =
T

′

do

Satd

T
′

qosat =
T

′
qo

Satq

(A.2)

E
′

fdsat =
E

′

fd

Satd
(A.3)
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A.1.3 Exciter Interface Signal

E
′

fdsat =
E

′

fd

Satd
(A.4)

Ψag =
√
(Vqterm + IqRa + IdXl)2 + (Vdterm + IdRa + IqXl)2 (A.5)

Satd = 1 + Sat(Ψag +Kis

√
I2d + I2q )

Satq = 1 +
Xq

Xd

Sat(Ψag +Kis

√
I2d + I2q )

(A.6)

where Ψag is the air gap flux and Kis is the stator current multiplier multiplier for

saturation calculation. The Kis values used in this dissertation range from 0.01 to

0.15.
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