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Abstract

This work introduces improvements to the stability and generalizability of Cyclic DARTS

(CDARTS). CDARTS is a Differentiable Architecture Search (DARTS)-based approach to

neural architecture search (NAS) that uses a cyclic feedback mechanism to train search and

evaluation networks concurrently, thereby optimizing the search process by enforcing that

the networks produce similar outputs. However, the dissimilarity between the loss functions

used by the evaluation networks during the search and retraining phases results in a search-

phase evaluation network, a sub-optimal proxy for the final evaluation network utilized

during retraining. ICDARTS, a revised algorithm that reformulates the search phase loss

functions to ensure the criteria for training the networks is consistent across both phases, is

presented along with a modified process for discretizing the search network’s zero operations

that allows the retention of these operations in the final evaluation networks. We pair the

results of these changes with ablation studies of ICDARTS’ algorithm and network template.

Multiple methods were then explored for expanding the search space of ICDARTS, including

extending its operation set and implementing methods for discretizing its continuous search

cells, further improving its discovered networks’ performance. In order to balance the

flexibility of expanded search spaces with minimal compute costs, both a novel algorithm for

incorporating efficient dynamic search spaces into ICDARTS and a multi-objective version

of ICDARTS that incorporates an expected latency penalty term into its loss function are

introduced. All enhancements to the original search algorithm are verified on two challenging

scientific datasets. This work concludes by proposing and examining the preliminary results

of a preliminary hierarchical version of ICDARTS that optimizes cell structures and network

templates.
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Chapter 1

Introduction

The methods presented in this work seek to advance the state-of-the-art of NAS by

introducing a series of improvements to an existing gradient-based NAS framework. These

include algorithmic changes that improve consistency between the networks of its search and

retraining phases, leading to improved stability and more consistent results. Alongside these

changes, methods for extending its search space are explored, resulting in further performance

improvements. Novel methods for incorporating a dynamic operation space and a multi-

objective loss function into the search phase are also introduced to accommodate expansions

to the search without incurring excessive compute expense. Finally, a hierarchical version of

these methods that allows network templates to be optimized in addition to cell structures

is proposed. The best improvements are verified by deploying the search process to two

scientific image tasks.

1.1 Neural Architecture Search

Neural architecture search (NAS) algorithms automatically design network architectures

given minimal human input and limited computing resources. NAS algorithms typically

frame the automation process as a search problem over a set of decisions representing different

network architecture components. Most include a search space that defines a set of feasible

solutions, a search strategy defined by an optimizer that solves for the best architecture

for a given search space, and an evaluation strategy that estimates the performance of
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discovered architectures on unseen data. Typically, a controller selects a set of candidate

neural architectures from a search space of operation sets. These architectures are trained

and ranked according to some evaluation metric, such as validation accuracy. The rankings

of the candidate architectures provide feedback to the search strategy, which is updated and

produces a new set of candidate architectures until a terminating condition is met. One of

the earliest categories of NAS search strategies relied on an evolutionary approach to produce

optimal candidate architectures by evolving populations of networks over several generations.

More recently, NAS implementations have employed a search strategy that frames the search

process as a reinforcement learning task, with the action typically representing the generation

of candidate architectures and the reward being the candidate’s performance on a test

dataset.

Although the best implementations of both of these search strategies produce state-of-

the-art results, a significant drawback of these early RL and EA-based NAS algorithms is

their high computational expense, often exceeding the resources and capabilities of many

researchers, and limiting the progress of research on this subject, which is in part due to

these approaches generating and evaluating large numbers of candidate architectures. Several

follow-up NAS implementations have sought to address this issue, by introducing innovations

like modular search spaces and parameter-sharing methods. Modular search spaces, such as

the one presented in NASNet Zoph et al. (2017), call for optimizing smaller modules or cells

that can be copied and stacked according to some template to form the final architecture

rather than searching for entire network architectures simultaneously. NAS methods that use

parameter sharing allow weights to be shared across candidate networks by recycling weights

across transformations to an existing architecture or by representing the search space with a

large directed acyclic graph structure with subgraphs selected by the controller representing

candidate architectures.

1.2 Differentiable Neural Architecture Search

Another class of NAS methods uses a gradient-based search strategy to efficiently search for

optimal network architectures given a continuous and differentiable search space. One of the
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most prominent gradient-based NAS approaches, DARTS, borrows both the modular search

space of NASNet and the one-shot model graph parameter sharing approach of ENAS.

However, instead of using a controller to select discrete candidate architectures from the

search graph, DARTS relaxes the model graph into a continuous search space by placing a

mixture of candidate operations at each edge and optimizing a set of weights associated with

each operation using stochastic gradient descent. After the candidate operation weights

have been optimized, the final architecture is generated by ’discretizing’ the continuous

search graph by discarding all but the highest probability operations at each edge, and

the entire architecture is retrained from scratch. A disadvantage of the gradient-based

search strategy presented by DARTS was the limited correlation between the shallow and

overparameterized network optimized in the search phase and the final network architecture

generated in the retraining phase. Several follow-up publications have sought to address

this issue and build upon the DARTS algorithm. These include P-DARTS, which improves

the correlation between the search and final networks by progressively increasing the depth

of the search network while removing lower probability operations from the search graph.

Another framework, CDARTS, builds upon P-DARTS by jointly optimizing search and

final architectures using a cyclic approach that allows the networks to supply optimized

architectures and performance-based feedback to each other during the search process.

However, the abovementioned efficiency improvements limit the correlations between the

deep final networks and the shallow and overparameterized proxy networks, along with the

diversity of candidate architectures. Furthermore, most NAS approaches in literature have

been designed with traditional photographic image classification tasks in mind, with fewer

implementations existing for types of tasks, including scientific datasets.

1.3 Contributions

The contributions of this work include:

• The introduction of ICDARTS, a modified version of the CDARTS algorithm in which

the evaluation network is consistent across both the search and retraining phases,

improving the algorithm’s stability and consistency in results across multiple runs.
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• The expansion of ICDARTS’ operation space to include operations with varying

complexities.

• A novel tournament-style algorithm for incorporating dynamic operation spaces into

ICDARTS enables the algorithm to traverse large operation spaces efficiently.

• An alternative protocol for discretizing search cells that expands and adds diversity to

the space of discoverable architectures.

• The introduction of a latency loss penalty term that enables ICDARTS to balance high

performance with low compute costs.

• Experimental results demonstrating that ICDARTS extends well to real-world scientific

datasets.

1.4 Publications

• Herron, E. J., Young, S. R., and Rose, D. C. (2023). ICDARTS: Improving the Stability

and Performance of Cyclic DARTS, Submitted for publication to Journal of Machine

Learning Research (JMLR).

• Herron, E. J., Young, S. R., and Potok, T. E. (2022). ICDARTS: Improving the

Stability of Cyclic DARTS. In 2022, 21st IEEE International Conference on Machine

Learning and Applications (ICMLA), IEEE.

• Duncan, J., Fallas, F., Gropp, C., Herron, E., Mahbub, M., Olaya, P., Ponce,E.,

Samuel, T. K., Schultz, D., Srinivasan, S., Tang, M., Zenkov, V., Zhou, Q., and

Begoli, E. (2021). The sensitivity of word embeddings-based author detection models

to semantic-preserving adversarial perturbations.

• Herron, E. J., Young, S. R., and Potok, T. E. (2020). Ensembles of networks produced

from neural architecture search. In Jagode, H., Anzt, H., Juckeland, G., and Ltaief, H.,

editors, High Performance Computing, pages 223–234, Cham. Springer International

Publishing.
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1.5 Outline

Chapter 2 contains a literature review of the field of NAS. It begins by discussing the

motivations for the field and the earliest NAS methods, introduces gradient-based NAS,

and discusses ongoing challenges in the field. Chapter 3 introduces improvements to the

algorithm and operation space of CDARTS that enhance its stability and performance.

The necessity of these changes is further verified with ablation studies. Chapter 4 details

further improvements, specifically expansions to the algorithm’s search space. This chapter

introduces a novel approach for efficiently traversing large search spaces, a new method for

discretizing search networks that increases the diversity of discoverable architectures, and

a multi-objective version of ICDARTS that optimizes performance and latency. Chapter

5 discusses the results of applying the best overall improvements to ICDARTS to two

challenging scientific image datasets. Chapter 6 proposes a preliminary hierarchical version of

ICDARTS that optimizes network templates in addition to cell structures. Finally, Chapter

7 summarizes these contributions and lays out possible directions for future improvements

and study.
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Chapter 2

Background and Literature Review

This chapter discusses the motivations behind neural architecture search (NAS) algorithms

and provides an overview of the field’s history and current state-of-the-art. It begins with

a discussion of early NAS algorithms and their limitations. It then discusses methods

for improving the efficiency and performance of early NAS algorithms, including modular

search spaces and gradient-based NAS. The remainder of the chapter discusses the most

recent innovations in differentiable NAS and the methodology to ensure that these methods

efficiently discover high-quality and scalable architectures.

2.1 Motivation

Deep learning methods have succeeded in a multitude of tasks, including image recognition

(Tan and Le, 2021), object detection (Redmon and Farhadi, 2017; He et al., 2017; Wang

et al., 2020b), semantic segmentation (Nekrasov et al., 2019), speech recognition Pan et al.

(2020), and machine translation Gehring et al. (2017). The strong generalization capabilities

of deep learning models are primarily attributable to their ability to engineer an abstract

hierarchy of features given an unstructured data set by learning automatic feature extractors.

This paradigm shift has eliminated the laborious need for researchers to manually engineer

features for unstructured datasets and allowed them to pivot their focus to the design of deep

learning architectures. However, engineering these increasingly complex models is labor-

intensive and error-prone. When encountering a new task, machine learning researchers

6



Search Space A

Selection Strategy

Evaluation Strategy

Architecture
a ∈ A

Estimated
Performance

of a

Figure 2.1: The general NAS pipeline. A controller selects candidate architectures, a, from
the search space A based on the selection strategy. The evaluation strategy then ranks and
evaluates the candidate architectures. The results of the evaluation strategy are supplied as
feedback to the selection strategy, and the cycle repeats until a terminating condition is met.

Table 2.1: Timeline of Key NAS Methods Leading Up to CDARTS with Contributions

1989 • Innervator Miller et al.
(1989) - Evolutionary NAS

2017 • NAS-RL Zoph and Le
(2016) - Reinforcement
Learning Based NAS

2018 • ENAS Pham et al. (2018)
- Parameter Sharing

2018 • NASNet Zoph et al.
(2017) - Cell Search Spaces

2018 • DARTS Liu et al. (2018b)
- Gradient-based
Optimization

2019 • P-DARTS Chen et al.
(2019) - Progressive
Correlation

2020 • CDARTS Yu et al. (2020)
- Cyclic Optimization
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Figure 2.2: The continuous relaxation and discretization of the DARTS cell-level search
space. (a) shows the general structure of the cell’s directed acyclic graph, (b) the continuous
relaxation of the search graph so that a mixture of candidate operations represents each edge,
(c) the search cell following joint optimization of the probabilities of the mixed candidate
operations and network weights, and (d) the final discrete architecture.
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often deploy a state-of-the-art deep learning architecture designed for and evaluated on a

limited number of popular benchmark datasets. Since image datasets can vary widely in size,

resolution, and subject matter, a single state-of-the-art network architecture that generalizes

well to one task may perform poorly on a different dataset.

Furthermore, researchers’ knowledge of architectures suitable for specific tasks is often

limited to knowledge of models in existing literature. This fixed thinking based on limited

knowledge may blind experts to categories of architectures that have yet to be discovered.

Research into the explainability as to why particular deep learning architectures and features

are effective is ongoing. It has yet to deliver tools to propose architectures for a given dataset

Wistuba et al. (2019). As a result, the Neural Architecture Search (NAS) field has emerged

to address these concerns by automating the search process.

NAS algorithms automatically engineer network architectures while utilizing minimal

computing resources and human input. They have been successfully applied in image clas-

sification, object detection, semantic segmentation, adversarial learning, speech recognition,

and multi-objective optimization. However, much of the literature in the field concentrates on

image classification tasks. NAS algorithms typically frame the automation process as a search

problem over a set of decisions comprising a neural architecture’s different components. NAS

frameworks typically include a search space, a search strategy, and an evaluation strategy.

The search space defines the set of feasible solutions to a NAS method and is typically

represented by a set of operations and constraints on a network. The search strategy is

the protocol for searching an optimal architecture given the search space. The evaluation

strategy (also known as the performance estimation strategy) estimates the performance of a

discovered architecture on unseen data. In earlier NAS approaches, a controller selects a set

of candidate neural architectures from a search space of operation sets. These architectures

are then trained and ranked based on an evaluation metric, such as accuracy on a validation

dataset. The rankings of the candidate architectures are supplied as feedback to the search

strategy. The search strategy is cyclically updated and produces a new set of candidate

architectures at each iteration until a terminating condition is reached. Figure 2.1 depicts

this general process.
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2.2 Early Neural Architecture Search

The earliest NAS methods date back over 30 years and relied on neuro-evolutionary

approaches Miller et al. (1989). Most early evolution-based NAS approaches optimized

the architectures and weights of candidate networks Angeline et al. (1994); Stanley and

Miikkulainen (2002); Stanley et al. (2009). However, more recent solutions use gradient-

based optimization to learn the network weights, reserving the evolutionary methods for

optimizing the neural architectures Real et al. (2017); Suganuma et al. (2017); Real et al.

(2019); Xie and Yuille (2017a); Elsken et al. (2019), as this strategy has proven most effective

for scaling to contemporary architectures with millions of weights for supervised learning

tasks. Evolutionary NAS algorithms evolve populations of architectures. At each iteration,

a subset of architectures are sampled based on fitness (i.e., accuracy on the validation dataset)

to serve as parents to the population’s next generation. Offspring are generated by applying

mutations to the architectures of parents, typically presenting as a minor change such as the

removal or addition of a layer, a change to the layer’s hyperparameters, or adding a skip

connection. Evolution-based NAS approaches vary in their methods for selecting parents

and generating offspring. Methods for selecting parents include using a tournament-based

selection approach Real et al. (2019, 2018), sampling from a multi-objective Pareto front

Elsken et al. (2019), and removing the worst or oldest individuals Real et al. (2019); Elsken

et al. (2019). Methods for generating offspring range from random initialization to passing

learned weights from parents to children through network morphisms Elsken et al. (2018) to

allowing inheritance of parameters not affected by mutationsReal et al. (2018); Elsken et al.

(2019).

Another prominent class of NAS methods frames the search problem as a Reinforcement

Learning (RL) task. Most of these methods designate the search space as the action space

and the generation of a candidate architecture as the RL agent’s action. The agent’s reward

is the candidate’s performance on a test dataset Zoph and Le (2017); Elsken et al. (2019).

NAS-RL Zoph and Le (2016) was a pioneering RL-based method for NAS that brought

the field mainstream attention in the machine learning community by achieving state-of-

the-art results on the CIFAR-10 and Penn Treebank benchmark. This algorithm used a
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recurrent neural network policy to generate a string signifying a candidate architecture. The

initial implementation trained the policy with the REINFORCE policy gradient algorithm,

although later editions used proximal policy optimization. A follow-up to NAS-RL, Meta-

QNN Baker et al. (2016) similarly applies RL to NAS by framing the selection task as a

Markov decision process and applying Q-learning to train the policy. Case studies comparing

random search, RL, and evolution-based NAS methods found that RL and evolution-based

methods performed equally in terms of final accuracy Real et al. (2019).

Other early NAS strategies include surrogate model-based optimization (SMBO) Hutter

et al. (2011), in which a surrogate model evaluates and selects promising candidate cells

and calculates response values for these cells, which are used to update the model, Bayesian

Optimization methods Shahriari et al. (2016), and Monte Carlo Tree Search methods, which

represent and exploit the search space as a tree structure Negrinho and Gordon (2017);

Elsken et al. (2019). A significant downside to each of these categories of NAS is their high

computational expense, as each consumes hundreds of GPU hours, exceeding the resources

and capabilities of many researchers and limiting the research progress on this subject.

Modular search spaces were one solution to the high computing costs of early NAS

methods. Early NAS methods optimized candidate architectures within global search spaces.

Global search spaces allow NAS methods to discover entire neural architecture graphs

simultaneously and with a high degree of freedom. The earliest global search spaces were

chain structured, and discovered architectures were represented as an ordered sequence of

layers such that each layer had only the previous layer as its parent and took only the

output of the previous layer as input Wistuba et al. (2019); Ren et al. (2020). However,

since Xie and Yuille (2017b), the preferred structure of a global search space has shifted to

sequentially connected segments ordered according to a template. A follow-up publication

to NAS-RL Zoph et al. (2017) introduced the NASNet search space, a modular search space

designed based on the observation that many state-of-the-art networks consist of repeatedly

stacked units. Rather than simultaneously generating the entire network architecture graph,

NAS-RL’s controller generates modules or cells that are copied and stacked as part of the

complete architecture. This architecture is then trained and evaluated to supply feedback to

the controller. The complete network architecture’s structure and the placement of its cells

11



are arranged according to a pre-defined template, in which cell topologies remain consistent.

Hyperparameters, such as expected input dimensions and the number of channels associated

with convolution operations, associated with each cell may vary based on their depth in the

network.

The NASNet search space includes both normal and reduction cells. The primary

purpose of normal cells is to extract prominent features, while the reduction cells reduce

the dimensions of the inputs. Each cell consists of k nodes, defined by two inputs and

one operation. The possible inputs for each cell include the outputs of the last two cells

(allowing for skip connections between cells) and the outputs of a previous node in the cell.

The outputs of each cell are the concatenation or summation of all nodes that are not input

into any other node. The final architecture consists of multiple normal cells repeating motifs

followed by a single reduction cell. Several subsequent works have suggested eliminating the

need for reduction cells. For instance, Block-QNN replaced the reduction cells with a simple

pooling operation Zhong et al. (2018), Dpp-net replaced the reduction cells with average

pooling Dong et al. (2018), and Hierarchical-ENAS replaced reduction cells with a 3 × 3

convolution with a stride of 2.

Cell-based search spaces offer improved efficiency and flexibility by reducing the search

to a few cell motifs rather than an entire architecture. The cells can then be applied to other

tasks by stacking different numbers of cells to have the appropriate network capacity. The

search space is reduced by searching for a few cell motifs rather than an entire architecture.

The authors estimate a seven times speedup compared to the global search space of their

previous work. Since this search space significantly reduces the computational complexity

of earlier NAS approaches, it has been widely adopted in subsequent NAS literature Real

et al. (2019); Liu et al. (2018b); Zoph et al. (2017).

Another solution for improving early NAS frameworks’ computing efficiency is parameter

sharing across multiple architectures Pham et al. (2018); Cai et al. (2017); Bender et al.

(2018). One framework that leverages parameter sharing for RL-based NAS is EAS, which

employs a meta-controller that traverses the search space using network transformation

operations such as widening or inserting a layer or adding skip connections within an

existing network. Weights are recycled across transformations by leveraging the class of
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function-preserving transformation operations to explore the search space efficiently by

taking advantage of knowledge from previously explored models Cai et al. (2017). Another

NAS approach that utilizes parameter sharing is ENAS. In this method, the controller

discovers networks by searching and evaluating subgraphs within a larger directed acyclic

graph. The graph structure of the search space allows weights to be shared between

prospective architectures. ENAS achieved a 1000x speed up on the original NAS-RL and

NASNet search spaces Pham et al. (2018).

2.3 Gradient-based NAS

A more recent category of efficient architecture search strategy that has become prominent

in NAS literature is using a continuous rather than discrete search strategy to enable

gradient-based optimation. Early NAS methods optimize architectures within discrete

spaces. Differentiable Neural Network Architecture Search (DAS) Shin* et al. (2018) was

the first NAS implementation to explore a differentiable continuous search space in NAS by

applying gradient-based optimization techniques to search hyperparameters for convolutional

layers.

DARTS expands upon this concept by introducing a one-shot model that, rather than

searching for discrete architectures, relaxes the search into a continuous space that can

be optimized via gradient descent by placing a mixture of candidate operations at each

edge of the model. Following the modular search space introduced by NASNet, cells are

represented as directed acyclic graphs of N connected nodes. In order to limit GPU memory

consumption, the algorithm is partitioned into two consecutive phases: search and retraining.

In the search phase, DARTS identifies optimal architecture motifs via a shallow, fully

connected network comprised of continuous connections between nodes, x(i), represented

by a mixture of candidate operations o(i,j) at each edge e(i,j). Discrete nodes in the search

phase can be expressed as xj =
∑

i<j o
(i,j)(x(i)). DARTS achieves a continuous search space

by weighting each operation by the softmax of the corresponding α value of all possible

operations at each edge:
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ō(i,j)(xi) =
∑
o∈O

exp(α
(i,j)
o )∑

o′∈O exp(α
(i,j)
o′ )

o(xi) (2.1)

The α(i,j) values are vectors of size |O| that parameterize the candidate operation strength

for each edge in the graph. Each intermediate node of the cell is computed by taking

the sum of the outputs of the preceding nodes: xj =
∑
ô(i,j)(xi). The outputs of each

intermediate node are then concatenated to produce the cell’s output. The search network

consists of repeating cell motifs searched by optimizing the connection weights of the mixture

of candidate operations at each edge of its directed acyclic graph (DAG). The objective of

this architecture search is to find the search cells’ connection weights, α that minimize the

validation loss, Lval(w
∗
S, α) and the weights, w by minimizing the training loss Ltrain(w, a∗).

This objective may be framed as the bilevel optimization problem:

min
α
Lval(w

∗
S, α)

s.t. w∗S(α) = arg min
wS

Ltrain(wS, α)
(2.2)

After the topologies of the search cells have been optimized within the search phase,

a separate retraining phase occurs in which a deep evaluation network is constructed and

retrained to obtain its final performance. Cells are derived by discretizing the continuous

operations with the search network cells to construct the final deep network. Discretization is

accomplished by removing all operations except those on the directed edges corresponding to

the top-k best (where k = 2) α values from each previous node with o(i,j) = argmaxo∈Oα
(i,j)
o

Zoph et al. (2018); Real et al. (2019); Chen et al. (2019). The continuous relaxation and the

discretization of the DARTS cell search space are shown in Figure 2.2. The cell motifs are

then stacked to form a deeper network, as specified by a hardcoded architecture template,

which is evaluated on a separate test dataset to obtain the final performance. DARTS

achieves high-quality architectures through this approach with a reduced computational

cost Liu et al. (2019b); Elsken et al. (2019).

The DARTS algorithm is not without its disadvantages. These include the different

search and retraining steps that result in two independent networks with limited correlation

Cai et al. (2019); Yu et al. (2020), the computational expenses that remain high despite the
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improved efficiency that results from differentiable search Dong and Yang (2019), and the

local bias that exists in the differentiable cells searched by DARTS Jiang et al. (2019).

Several publications have proposed solutions to the issue of limited correlations between

the network architectures of the search and retraining phases. For example, stochastic Neural

Architecture Search (SNAS) Xie et al. (2019) argues that the inconsistency between child

and parent networks results from the nonlinearity of neural operations, which creates an

intractable bias in the loss function that leads to inconsistency between child networks and

the parent super-network. The authors’ solution is a gradient-based framework that trains

network and architecture weights jointly on the same round of backpropagation. As part of

this process, one-hot random variables are applied as masks to select operations in the search

graph. The result is a stable and more efficient NAS framework that maintains a complete

and differentiable pipeline. Progressive DARTS (P-DARTS) Chen et al. (2019) addresses the

disparity between the two networks by progressively increasing the depth of the network and

decreasing the number of candidate operations during the search phase until it reaches the

size of the target model. In addition, this method avoids high computational expense later

by gradually dropping lower-scoring candidate operations as the search process progresses.

Cyclic DARTS (CDARTS) Yu et al. (2020) builds upon the concepts introduced by

PDARTS by jointly training the search and final evaluation networks and updating the

parameters of each with a cyclic method. In each cycle, the search network is translated into

an intermediate evaluation network, providing feedback to the search network in the form

of distilled features that capture knowledge from the model’s structure and parameters.

The joint learning of the search and evaluation networks involves independent and joint

learning stages. The search and evaluation networks’ weights are initialized and pre-trained

in the learning phase. In the joint learning phase, the architecture weights (i.e., α) and

evaluation network weights are updated based on a joint loss function before updating the

search network weights based on a separate loss function and subset of the training data.

Thus, this cyclic approach allows for directly evaluating the final deep network.

Other publications have concentrated on the high compute demands that persist

despite the efficiency improvements made over previous NAS despite the introduction of

differentiable search space. Differentiable Architecture Sampler (GDAS) is a gradient-based
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architecture search framework based on Differentiable Architecture Sampling Dong and Yang

(2019). Like DARTS, the search is carried out on the cell level represented by a DAG.

Singular sub-graphs are sampled from the DAG in which each node only receives one feature

from each previous node so that only one path is trained per iteration. Features are sampled

for connecting pairs of nodes using a differentiable method. This approach allows cells to

be searched via gradient descent, avoiding the memory demands required for optimizing an

entire model, as in the case of DARTS. Partially Connected DARTS (PC-DARTS) aims to

improve computational efficiency by searching only a subset of channels of the supergraph,

bypassing the others using a shortcut. The channel subsets are assumed to be an adequate

proxy for evaluating the entire search space of architectures. Channel sampling improves

the search process by adding regularization and avoiding local optima. Edge normalization

stabilizes the search process by adding a learnable set of edge selection hyperparameters to

avoid the instability that results from sampling different combinations of channels at each

iteration.

Finally, I-DARTS points out that DARTS is a biased ”local” model since softmax-

based relaxation is applied to each edge between two nodes to select the highest probability

candidate edges Jiang et al. (2019). In DARTS, the search is limited to one edge between

each pair of nodes, and edges coming from two different nodes cannot be compared and

may be redundant since each node inherits the outputs of all previous nodes. I-DARTS

broadens the search space of DARTS by applying a single softmax to all incoming edges in

a node. This modification allows for a more extensive range of edge options, multiple edges

to be selected between two nodes, and some connections between nodes to be left out. This

approach performs exceptionally well on language tasks.

2.4 Global and Hierarchical NAS

Although much of recent NAS literature has shifted its focus towards searching architectures

at the micro or cellular level, frameworks for carrying out more efficient searches of entire

neural networks at the global level remain desirable. Modular NAS methods’ strategy of

repeatedly stacking cell motifs limits the complete network architecture’s structural diversity
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and performance. Templates that dictate the constraints of the architectures and search

spaces, including the stacking of network cells, are often designed based on assumptions

from existing literature regarding the effectiveness of particular architectures and search

spaces. At the same time, the problem of ensuring that the complete network composed

of deeper stacks of cell motifs transfers well to the target task remains persistent in NAS

literature. Another drawback of cell-based NAS is that networks comprising complex and

fragmented cell structures can be inefficient in these contexts, particularly when deploying

mobile devices and other real-world hardware targets.

Furthermore, some experimental evidence, such as that unveiled in Wang et al. (2019),

suggests that global search spaces may be preferable to cell-based spaces for non-image-

related tasks, such as text classification. Hence, NAS solutions that balance the freedom

of global search spaces and the high compute costs they require are essential. Global NAS

allows for a high degree of freedom and diversity regarding the types of networks that can

be discovered. Despite the innovations mentioned in the previous section, search spaces are

limited by their high demand for computing resources. Search time and memory demands

must be suppressed to conduct searches with minimal search space constraints, such as a

global search space.

As discussed in previous sections, early NAS was carried out over global search spaces.

Many early evolution and reinforcement learning-based NAS algorithms were prohibitively

expensive, a challenge that eventually led to the introduction of cell-based search spaces

and gradient-based optimization strategies. ProxylessNAS Cai et al. (2019) was among the

first gradient-based NAS methods to search for complete architectures over a substantial

candidate set rather than repeating cells by directly learning these architectures on target

tasks and hardware. ProxylessNAS is formulated as a path-level pruning process in which an

over-parameterized network containing all candidate paths is directly trained, and redundant

paths are pruned at the end of training to get a compact architecture. The architecture

parameters are binarized to limit the GPU memory consumption required by including all

candidate paths so that only one path is active at run time. This strategy reduces the

memory required for training by one order of magnitude to that of a compressed model,

and the binarized parameters are trained with a gradient-based approach. ProxylessNAS
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achieved state-of-the-art performance on a more extensive search space under computational

costs similar to regular training and was the first NAS method to learn architectures for

deployment to specialized hardware targets.

Other global NAS solutions strove to improve efficiency by curbing the parameters

required by discovered architectures by introducing multi-objective loss functions. MNASNet

Tan et al. (2019) is a reinforcement learning-based framework for mobile CNN design

formulated as a multi-objective optimization problem. This method seeks to optimize

a reward function by maximizing the searched networks’ accuracy while maintaining a

real-world inference latency beneath a fixed constant. Its factorized hierarchical search

space partitions the network into blocks for which separate layers are searched and stacked

repeatedly. This solution allows for greater flexibility and diversity in layer type without

requiring an enormous search space size. Later work Saito and Shirakawa (2019) introduced

a penalty term into a dynamic structure optimization method intended to control the

complexity of the discovered models. The dynamic structure optimization framework

initially used gradient methods to jointly optimize architecture distribution parameters and

weights. The authors note that a drawback of the multi-objective optimization strategy

of MNASNet and related work is the high computational expense, as this method is

based on hyperparameter optimization. Therefore, a penalty term for the layer weights

is incorporated into the method’s loss-based objective function to limit the complexity of

the model. Experiments showed that this penalty term effectively controlled the model’s

complexity and maintained its performance by removing units that were not significant to

improving the performance.

The Differential Neural Architecture Search (DNAS) framework presented in Wu et al.

(2018) expands upon the progress made by ProxylessNAS and MNASNet by using a gradient-

based approach to find hardware-efficient convolutional neural networks. The Gumbel

Softmax technique is leveraged to optimize the architecture distribution using gradient-based

techniques such as SGD. A layerwise search is carried out over a large super-network, defined

by a fixed macro-architecture template, in which one of nine candidate block operations is

selected per layer. These candidate blocks are inspired by MobileNetV2 Sandler et al. (2018)

and ShiftNet Yan et al. (2018) and vary based on expansion ratio, kernel, and use of group
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convolution. A ’skip’ block option is also included to allow a reduction in the network’s

depth. The method also takes a multi-objective approach by leveraging a loss function that

is a combination of both cross-entropy loss and the network’s latency loss on a target device,

which is calculated by summing the latencies of operators in the network from previously

calculated values in a lookup table. FBNets, the family of networks discovered by DNAS,

surpass the state-of-the-art models in terms of accuracy and are dramatically smaller and

faster than MobileNetV2. FBNets additionally maintain equal accuracy and exceed the

accuracy and latency improvements of MNASNet while requiring 420x lower search costs.

Some disadvantages of DNAS are that all network layer candidates must remain in

memory as part of the supergraph during the search, and the search space must remain

relatively small as the search cost grows linearly with the number of options per layer. A

follow-up to DNAS, DMaskingNAS Wan et al. (2020), presents a variant with increased

memory and compute efficiency. This solution uses masks that require negligible amounts of

memory to represent the channel and input resolution options. In addition, feature maps are

reused for all options in the supergraph so that the memory costs remain roughly constant

with increasing search spaces. As a result, the search space of DMaskingNAS vastly exceeds

that of previous frameworks, including in the search the number of channels, kernel sizes,

number of layers, bottleneck types, input resolutions, and expansion rate. In addition,

DMaskingNAS expands the search space up to 1014 times that of the original DNAS and adds

support for search over input resolution and the number of filters. As a result, the searched

models, known as FBNetV2s, boast performance exceeding all previous automatically and

manually designed models.

Hierarchical NAS methods seek to bridge the gap between cell-based and global search

spaces. The key idea behind this category of NAS is for architecture motifs to exist at

different levels of hierarchy such that lower-level motifs can be supplied as building blocks

of the higher-level motifs. Alternatively, hierarchical NAS might be understood as a NAS

approach comprised of an inner search level in which cells or micro features are searched,

followed by an outer level in which global features, such as the backbone of the network

architecture template, are optimized.
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Hierarchical-EAS was one of the first NAS approaches to jointly explore optimizing cells

and their arrangement in the complete neural architecture using a hierarchical search space

and evolutionary search. The search space was made up of three levels: (1) the set of

primitive candidate operations, (2) a directed acyclic graph of possible connections between

primitive operations, and (3) the connections between the structures of the second level.

The second level of this search space could be considered analogous to the cell-based search

space, and the third level to the architecture Liu et al. (2017). Another hierarchical search

algorithm, HiNAS Zhang et al. (2019), used a gradient-based approach to design architectures

for image denoising. This algorithm could efficiently search for inner cell structures and the

whole architecture by stacking the cells at different widths. The inner cell search space

was based directly on the continuous relaxation strategy of DARTS. In contrast, a separate

search space formed by a super-network of cells with different widths at each layer was used

for the outer layer width search. The final architecture was a compact network with only

one cell per layer.

Multiple hierarchical NAS models have based their network-level search spaces on the

skip-connect heavy backbone structure of Dense Convolutional Networks (DenseNets) Huang

et al. (2016). In this feed-forward convolutional architecture, each layer receives the features

of all preceding layers as input, while the feature maps output by that layer are passed

as input to all subsequent layers. The benefits of DenseNets include avoiding vanishing

gradients, encouraging feature reuse, and improving upon the state-of-the-art of many

object recognition benchmarks. SuperResolutionNAS Chu et al. (2019) presents a cell-based

hierarchical elastic search approach that uses a hybrid evolution and reinforcement learning-

based controller to optimize architectures for the super-resolution domain. The algorithm

evaluates architectures based on multiple objectives, each derived using incomplete training:

(1) a quantitative test set performance, (2) a quantitative measure of the computational cost

based on the number of mult-adds, and (3) the number of parameters. The micro search space

comprises a variety of candidate operations and parameters such as 2D convolutions, grouped

convolutions, inverted bottleneck blocks, repeated blocks, in-cell residual connections, and

different kernel sizes and numbers of channels. The macro search space resembles that

of DenseNets, and its purpose is to discover the ’backbone’ of connections between the

20



cells. Another publication O’Neill et al. (2021) unveiled an evolutionary NAS method that

searches the space of all possible networks between a standard feed-forward convolutional

neural network and DenseNet. The estimation and ranking time of the networks are reduced

through the use of a low-fidelity performance estimator. This approach can discover networks

with greater accuracy than DenseNet and demonstrates that removing some skip connections

in DenseNet can be beneficial.

Other hierarchical NAS frameworks base their network-level search spaces on Convolu-

tional Neural Fabrics. Also known as super-network ”fabrics” or fabric-like search spaces,

these structures embed many potential network architectures. Layers of these networks

are locally connected at different scales and channels, and the only hyperparameters are

the number of channels and layers. Individual child architectures are sampled as paths,

and the weights between paths are shared as in one-shot algorithms. Auto-DeepLab was

one example of a hierarchical NAS algorithm that leveraged ”fabric-like” spaces Liu et al.

(2019a). This framework represented a two-level hierarchical, continuous, and differentiable

joint search approach for simultaneously searching cell and network-level architectures for

semantic segmentation. The inner cell level search space was consistent with ENAS and its

derivatives. The network-level search space was formulated as a simple L-layer trellis that

began with a two-layer stem structure that downsampled the spatial resolution by a factor

of two at each level of that dimension. This search space was general enough to cover many

architecture designs, including U-like networks, completing the search efficiently within a few

GPU days, outperforming several state-of-the-art models. Another NAS implementation,

block-wisely Self-supervised Neural Architecture Search (BossNAS), introduced HyTra, a

fabric-like search space for its self-supervised neural architecture search method. HyTra’s

search space comprised a 2-dimensional fabric parameterized by the scale of the inputs and

depth of the search network. At each fabric node, the algorithm selects between residual

bottleneck and vision transformer operations Li et al. (2021a).

In summary, the neural architecture search field was developed to discover neural

network architectures for specific tasks automatically. The earliest NAS methods relied on

evolution and reinforcement learning-based search strategies. Although these strategies could

successfully discover state-of-the-art networks, they lacked efficiency, requiring thousands
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of GPU hours. Hence, modular search spaces and gradient-based search strategies that

leveraged parameter sharing, such as the DARTS method, were developed. Since gradient-

based NAS methods like DARTS require searching a large over-parameterized proxy model

with limited correlation to the final network, follow-up implementations such as PDARTS

and CDARTS strive to address this discrepancy. Meanwhile, a diverging branch of NAS

approaches continues to concentrate on searching within global and hierarchical search

spaces that balance high search space flexibility with reasonable compute costs by pursuing

alternate methods for reducing computational overhead using methods like multi-objective

loss functions and higher performance operations like MBConv blocks. This results in a gap

in the literature in which innovations that have improved the performance and efficiency

of one branch remain unadopted by the other. Furthermore, these implementations have

primarily been developed for convolutional neural networks with traditional photographic

image classification tasks in mind.
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Chapter 3

ICDARTS

This chapter introduces ICDARTS Herron et al. (2022a), a version of the CDARTS algorithm

that has been modified to improve its stability. It also proposes additional experiments,

including an ablation study and improvements to its search space. In the original CDARTS,

the search and evaluation network weights were trained on separate datasets. Hence, the

objective of the joint loss function was to overcome the discrepancies between the continuous

search and discrete evaluation networks while ensuring that networks trained on separate

datasets performed similarly on a per-example basis. In ICDARTS, the joint training phase

of CDARTS is modified to eliminate the evaluation network weights’ dependency on those of

the search network. This change results in a consistent loss function associated with training

the evaluation network across both the search and retraining phases.

Additionally, the objective functions of the search phase networks are modified so that

both networks’ weights are only optimized on the training dataset. Meanwhile, the search

network training criteria are revised so that the update of its weights depends on both the

training loss and feature distillation loss, defined as the distance between the logits of the

two networks. This change reduces the burden of the feature distillation loss in producing

similarity between the outputs of the search and evaluation networks since the search and

evaluation network weights are trained on the same dataset. The result of all of these changes

is a modified version of CDARTS with improved stability and consistency in performance.
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Figure 3.1: Overview of the CDARTS NAS algorithm, including search (left) and evaluation
(right) networks with examples of continuous and discretized cells.
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3.1 CDARTS

This subsection reviews the CDARTS algorithm presented in (Xu et al., 2020).

3.1.1 CDARTS Architecture

Figure 3.1 overviews the CDARTS algorithm, illustrates the search and evaluation network

templates, and shows examples of continuous and discretized cell structures. In both DARTS

and CDARTS, the architectures of the search and evaluation networks are composed of cell

motifs represented by directed acyclic graphs (DAG), which serve as the building blocks of

both networks. As discussed in (Liu et al., 2018a) and (Liu et al., 2019b), each cell graph

consists of N nodes, each of which denote some feature representation. Each directed edge

i, j within the graph represents a particular operation, o(i,j), that is applied to a node, xi, to

produce xj. The operation space of DARTS consists of operations with (e.g., convolution)

and without (e.g., maximum and average pooling operations, skip connections, and zero

operations) learned weights. DARTS achieves a continuous search space by weighting the

candidate operations at each edge by their corresponding α values:

ō(i,j)(xi) =
∑
o∈O

exp(α
(i,j)
o )∑

o′∈O exp(α
(i,j)
o′ )

o(xi) (3.1)

These α(i,j) values consist of vectors of size |O| that parameterize the candidate operation

strength for each edge in the graph. Each cell accepts inputs from two previous cells, ck−2

and ck−1. Each node’s output is computed by taking the weighted sum of the outputs of the

preceding nodes and outputs of the two previous cells: xj =
∑
ô(i,j)(xi). The outputs of each

node in a cell are concatenated to produce the final output of the cell. Two types of cells are

optimized during the search phase: normal and reduction. The normal cells produce outputs

with the exact spatial dimensions as their inputs. In contrast, the reduction cells produce

outputs with spatial dimensions that have been reduced by a factor of two by applying a

stride of 2 two in its operations (Zoph et al., 2018).

In order to generate the evaluation networks, the continuous search cells are discretized

by removing all but the edges with top k = 2 alpha values for each node, such that o(i,j) =
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arg maxo∈O α
(i,j)
o . These cells are then copied and stacked to produce a deeper network

specified by a template (again, see 3.1) (Zoph et al., 2018; Real et al., 2019; Liu et al.,

2018a). In addition to the network structure pictured in 3.1, both networks include an

auxiliary head structure, which combines the output of the final normal cell with that of

both reduction cells to get the network’s final output (Yu and Peng, 2020).

3.1.2 CDARTS Algorithm

As discussed in (Liu et al., 2019b), the DARTS algorithm searches optimal cell structures

for the entire evaluation network by using stochastic gradient descent to optimize connection

weights within the continuous cells that form the search network. The objective of CDARTS’

search phase is to identify the connection weights, α, and search network weights, ws, that

satisfy the following bilevel optimization problem:

min
α
Lval(w

∗
s , α)

s.t. w∗s(α) = arg min
ws

Ltrain(ws, α)
(3.2)

The connection weights, α, are optimized given a validation dataset, but the search

network weights, ws, are learned given a separate training dataset. Afterward, a retraining

phase takes place, in which a deeper evaluation network is generated by discretizing the cells

discovered in the search phase. The network is retrained from scratch and evaluated on a

new test dataset (Liu et al., 2019b; Yu and Peng, 2020)

CDARTS expands upon DARTS by introducing a cyclic feedback mechanism between

the search network and an intermediate version of its evaluation network during its search

phase. The intermediate evaluation network is generated at the beginning of each iteration

of the algorithm and is intended to resemble the final evaluation network of the retraining

phase. This innovation allows for the search and evaluation networks to be optimized

jointly and enables them to mirror each other in terms of performance and learned features.

The following equation represents the joint optimization process, given the search and

intermediate evaluation network weights, wS and wE and connection weights, α:
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min
α
Lval(w

∗
E, w

∗
S, α)

s.t. w∗S = arg min
wS

Ltrain(wS, α)

w∗E = arg min
wE

Ltrain(wE, α)

(3.3)

CDARTS consists of two phases: pre-training and joint learning, which are repeated

cyclically until convergence. In the pre-training phase, the weights of the search and

intermediate evaluation networks are trained for a limited number of epochs. The search

network weights wS are optimized according to the following equation:

w∗S = arg min
wS

LStrain(wS, α) (3.4)

where LStrain denotes the cross entropy loss function. The intermediate evaluation network

is then generated given the learned α weights by following the same discretization procedure

used in DARTS. The intermediate evaluation network weights wE are finally optimized on

the validation set according to the loss function:

w∗E = arg min
wE

LEval(wE, ᾱ) (3.5)

where ᾱ represents the discretized cell architetures resulting from α.

During the joint training phase, the α and wE weights are updated based on the cross

entropy losses of the search and evaluation networks and a soft-target cross-entropy loss,

which measures the distance between the logits of the search and evaluation networks. The

following equation represents this joint optimization task:

α∗, w∗E = arg min
α,wE

LSval(w
∗
S, α) + LEval(wE, ᾱ)

+λLS,Eval (w∗S, α, wE, ᾱ)

(3.6)

By minimizing the LSval(w
∗
S, α) term, the α parameter is optimized given the fixed search

network weights w∗S. The LEval(wE, ᾱ) variable serves to optimize the evaluation network

weights given ᾱ as a fixed parameter. Finally, the soft-target cross-entropy loss term,

LS,Eval (w∗S, α, wE, ᾱ) allows for the transfer of knowledge from the evaluation network to

27



the search network by applying the features learned from the evaluation network to the

α parameter of the search network. This term is formulated as:

LS,Eval (w∗S, α, wE, ᾱ) =
T 2

N

N∑
i=1

(p(wE, ᾱ)log(
p(wE, ᾱ)

q(w∗S, α)
)) (3.7)

where N is the number of training samples, T is the temperature coefficient, and p and

q are the feature logits of the search and evaluation networks, respectively. p and q are

calculated given the features of the search and evaluation networks fSi and fEi :

p(wE, ᾱ) =
exp(fEi /T )∑
j exp(fEj /T )

,

q(w∗S, α) =
exp(fSi /T )∑
j exp(fSj /T )

(3.8)

The result of this joint training phase is sufficient knowledge transfer between the search

and evaluation networks that ensures both perform similarly and learn similar features (Yu

and Peng, 2020).

3.2 ICDARTS

3.2.1 Algorithm Updates

CDARTS strives to ensure that the continuous search cells optimized within its search

network effectively translate to discretized cells within a deeper evaluation network that

performs well and learns similar features. However, when reviewing the CDARTS algorithm

and its loss functions, multiple issues were identified that limited correlation between the

networks optimized in the search and evaluation phases and introduced changes that address

each.

It was first noted that the loss function used for updating the intermediate evaluation

network during the search phase was formulated so that the network’s weights depend on both

the search network’s loss and the soft-target cross-entropy loss. This loss function contrasts

with the loss function used for training the evaluation network during the retraining phase,

which depended only on the evaluation network’s loss. In order to remove the dependence of
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Algorithm 1 ICDARTS Search Phase

Input: Datasets train and val, search and evaluation iterations SS and SE, update
iterations SU , architecture hyperparameter α, and weights wS and wE for search S and
evaluation E networks
Output: Evaluation network E
Initialize α randomly
Initialize wS
for each search step i ∈ [0, SS] do

if iModSU then
Discretize α to ᾱ by selecting the top k
Generate E with ᾱ
for each evaluation step j ∈ [0, SE] do

Calculate LEval
Update wE according to Eq. 3.5

end for
end if
Calculate LSval, L

E
val, and LS,Eval

Update α according to Eq. 3.9

Calculate LStrain and LS,Etrain
Update wS according to Eq. 3.10
Calculate LEtrain
Update wE according to Eq. 3.11

end for

the search phase evaluation network on the additional terms, CDARTS’ joint optimization

approach is modified so that the weights of the evaluation network are no longer dependent

on the loss of the search network but only that of the evaluation network.

Next, the soft-target cross-entropy loss term, λLS,Eval (wS, α, wE, ᾱ), is shifted to the

equation for updating the search network weights. This change allows this term’s retention

in the joint learning phase and better facilitates knowledge transfer from the evaluation

network’s weights to those of the search network.

A final issue with the CDARTS algorithm is that it optimizes the search and evaluation

networks’ weights on two separate datasets. This approach injects unnecessary bias into the

joint learning phase, particularly in the case of the soft-target cross-entropy loss term, where

CDARTS is attempting to get the two networks to produce the same output even though

they are trained on separate datasets. Based on this observation, the function for updating
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the evaluation network weights is modified to depend on the evaluation network’s loss on

the training dataset rather than the validation dataset.

The loss functions for training the α, wS, and wE weights are now:

α∗ = arg min
α

LSval(w
∗
S, α) + λLS,Eval (w∗S, α, w

∗
E, ᾱ) (3.9)

w∗S = arg min
wS

LStrain(wS, α) + λLS,Etrain(wS, α, wE, ᾱ) (3.10)

w∗E = arg min
wE

LEtrain(wE, ᾱ) (3.11)

Algorithm 1 presents the algorithm for the ICDARTS search phase and shows how it

incorporates the reformulations to the CDARTS loss functions as first introduced in (Herron

et al., 2022b). The result of these changes is a search phase evaluation network that is

a better proxy for the retraining phase. The search phase evaluation network no longer

depends on a loss term that will be unavailable during retraining. Additionally, the soft

target cross-entropy loss term is now used for updating the search network’s weights so that

feedback from the evaluation network is supplied to the search network, which better aligns

with the original intended purpose of this term. Finally, training the networks’ weights on

the same dataset ensures they perform similarly rather than forcing them to produce the

same output given two different datasets.

3.2.2 Enabling None Layers in Discretized Networks

The original DARTS method (Liu et al., 2019b) includes zero as a layer choice candidate

operation. This option allows the NAS method to choose a layer that will produce no output.

However, in DARTS and its derivatives, (Chen et al., 2021b; Yu and Peng, 2020), the zero

layer choice is not allowed when the network candidate operations are discretized as this

option is constant and has a gradient of zero. Thus, its corresponding α weights cannot

properly ascertain the importance of this operation. In practice, a large α value and small

α value would produce the same output for the zero layer. Since the corresponding α value
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is unlearnable, it is unclear why this operation choice is included during the search phase.

In the following section, experimental results demonstrate comparable performance without

including this operation during the search phase. Also explored is an alternative formulation

of this operation that outputs randomly generated activations during search and is replaced

with a no-op when the evaluation network is generated. The reformulation allows the alpha

weight corresponding to the zero operation to be learned without contributing to extracting

features from previous layers. This approach assumes that if a layer contributes less than

random noise, it should not be included in the final evaluation network.

Five different experiments, each using a different configuration of zero operation return

types, were conducted to assess the effectiveness of ICDARTS both with and without the zero

operation choice. These configurations are all listed in Table 3.1. The V0 configuration is the

same as the one used in the original CDARTS paper, in which the zero option is only included

in the search network but ignored at discretization so that the deep evaluation networks and

the final network used in retraining have no zero layers. However, configurations V 1 − V 4

use the same number of layer options for the continuous search network and the discrete

evaluation network. The traditional zero option returns a tensor of zeroes the size and

shape of the input, and the random option similarly returns a tensor of uniform random

values for each input. In addition to the experiments run using the CDARTS and ICDARTS

search procedures, a separate set of experiments is run in which network cell motifs are

randomly initialized eight times for each zero operation return protocol. These experiments

aim to provide baseline performance results to contrast those of architectures discovered by

both algorithms.

3.3 Ablation Studies

After incorporating the initial set of improvements to the CDARTS algorithm, two ablation

studies were carried out on the ICDARTS search space and algorithm. The first was on

the search space template of ICDARTS, including its operation choices, auxiliary heads,

stemming layers, and reduce cells. Table 3.5 contains a comprehensive listing of each ablation
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and any operations used to replace the ablation. Note that the none operation is left out of

the set of operation choices by default.

The second ablation study was of the algorithmic changes to the CDARTS algorithm that

resulted in ICDARTS. This study considered two combinations of incremental improvements

to the original algorithm. The details of both are listed in Table 3.7.

3.4 Experiments & Results

3.4.1 Datasets

For each change to the ICDARTS algorithm and search space, the architecture search phase

is conducted on the CIFAR-10 dataset, and the resulting network architecture is retrained

on CIFAR-10. The networks produced before and after the initial algorithmic changes

that resulted in the ICDARTS algorithm and the experiments on the zero operation were

additionally retrained and evaluated on the CIFAR-100 dataset. The CIFAR-10 and CIFAR-

100 image classification benchmarks consist of 10 and 100 classes, respectively, and both are

comprised of 50K training and 10K testing images of resolution 32× 32.

3.4.2 Search & Evaluation Settings

At the beginning of the search phase, the original training set is divided into two datasets

of equal size, denoted by train and val, as in (Liu et al., 2019b) and (Yu and Peng, 2020).

As previously discussed, in the ICDARTS algorithm, the train partition is used for updating

the weights of both the search and evaluation networks. At the same time, val is reserved for

updating the α weights. The search phase runs for 30 epochs, not including two epochs for

pre-training the search network and 1 for warming up the intermediate evaluation network

each time it is generated. The search and evaluation weights, wS and wE are updated using

separate SGD optimizers with learning rates of 0.08, decay rates of 3×10−4, and momentum

settings of 0.9. The α weights are updated using an Adam optimizer (Kingma and Ba, 2015)

with a learning rate of 3× 10−4, decay rate of 0, and momentum βs of 0.5, 0.999.
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Table 3.1: ICDARTS ’Zero’ Operation Return Type Configurations

Zero Return Zero Return Type
Configuration Search Evaluation Retraining

V0 zero not included not included
V1 not included not included not included
V2 random random random
V3 random random zero
V4 random zero zero

Table 3.2: CIFAR-10 Retraining Test Set Accuracies of Networks Produced by CDARTS,
ICDARTS, and Random Initialization using Different Zero Return Configurations (see Table
3.1).

Zero Return Algorithm
Configuration Random CDARTS ICDARTS

V0 96.78 (0.39) 97.17 (0.21) 96.99 (0.16)
V1 96.57 (0.32) 97.01 (0.24) 97.10 (0.19)
V2 96.52 (0.37) 96.97 (0.27) 96.92 (0.15)
V3 96.58 (0.31) 96.96 (0.28) 96.93 (0.14)
V4 96.58 (0.31) 23.68 (29.71) 90.00 (12.72)

Table 3.3: CIFAR-100 Retraining Test Set Accuracies of Networks Produced by CDARTS,
ICDARTS, and Random Initialization using Different Zero Return Configurations (see Table
3.1).

Zero Return Algorithm
Configuration Random CDARTS ICDARTS

V0 81.11 (1.39) 83.66 (0.29) 83.10 (0.65)
V1 80.54 (1.05) 83.13 (0.71) 83.33 (0.19)
V2 80.63 (1.26) 83.19 (0.68) 83.19 (0.21)
V3 80.84 (1.13) 83.05 (0.72) 83.15 (0.36)
V4 80.84 (1.13) 10.98 (25.91) 63.13 (28.35)
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(a) CDARTS Evaluation Accuracies

(b) ICDARTS Evaluation Accuracies

Figure 3.2: CDARTS and ICDARTS Search Phase Evaluation Network CIFAR-10 Test
Accuracy Curves Given Different Zero Operation Configurations (see Table 3.1).
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Figure 3.3: CDARTS V0 normal and reduction cells from the network with the best overall
test accuracy.
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Figure 3.4: ICDARTS V1 normal and reduction cells from the network with the best overall
test accuracy.
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The evaluation stage involves retraining the discovered architectures for 600 epochs on

the entire training dataset and evaluating the retrained network on the test dataset. The

retraining procedure closely resembles that of the original CDARTS paper. The batch size

is set to 128, and an SGD optimizer is employed with a learning rate of 0.025, momentum

of 0.9, and weight decay of 5× 10−4. As in the search phase, this optimizer is paired with a

cosine annealing learning rate scheduler. Following the approach of (Pham et al., 2018; Zoph

et al., 2018; Liu et al., 2018a), the training dataset is augmented with a cutout regulation

length of 16 (DeVries and Taylor, 2017), the drop path rate of the evaluation network is set

to 0.3, and the auxiliary towers to 0.4. The search and evaluation phases of each experiment

discussed in this publication were each run eight times unless indicated otherwise in their

result tables.

The curves shown in Figure 3.2 depict the test set accuracies of the evaluation networks

throughout the search phases of CDARTS and ICDARTS. Each curve has been plotted

with a 95% confidence interval across the runs of each configuration. Search network pre-

training epochs are not included in these graphs. The lower standard deviation of the revised

algorithm is evidence that the revised approach gives results with improved consistency and

stability across different initializations. The accuracy disparity between the search and

retraining phases is expected due to the differences in data augmentation and the number

of epochs trained.

The evaluation network curve for the V4 search space configuration, which includes the

zero operation in the search phase evaluation network but not the search network, shows

inferior stability and difficulty learning. This outcome is likely the product of the difference

in behavior between the search and evaluation networks during the search process, which

results in a feedback loop that produces an increasing number of zero operations in the

discretized evaluation network.

Tables 3.2 and 3.3 list the average and standard deviation test set accuracies of the

evaluation networks on CIFAR-10 and CIFAR-100. Note that the reported values were

obtained at the end of the retraining cycle rather than the best test performance obtained

at any point during retraining ( as was reported in (Liu et al., 2019b) and later (Yu and

Peng, 2020)). Hence, the presented results measure a typical run’s performance rather
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than report the performance of the best outlier. The accuracy results of the architecture

produced randomly and by the CDARTS and ICDARTS algorithms show that the ICDARTS

networks achieved similar mean accuracies to that of the CDARTS network but with much

smaller variation in performance, demonstrating stability improvements and results that are

potentially more reproducible.

3.4.3 Ablation Studies

Table 3.5 and Figures 3.5 and 3.6 show the results of the ablation study of the ICDARTS

template. Note that the inference latencies listed in Table 3.5 were obtained by calculating

the average per batch inference times on the test dataset before retraining. Additionally,

the operation type and cell depth frequencies shown in Figures 3.5 and 3.6 are represented

as the totals in each evaluation network in order to account for the difference in the number

of normal and reduce cells in each network. For the cell operation choice ablations, only the

ablation of the pooling operations improved the average retraining accuracy, likely because

this resulted in less competition with better-performing operations and the selection of more

identity operations. The retraining accuracies for the rest of the ablations fell below that of

the original, with the ablation of the separable convolutions yielding the lowest accuracies

for this category of ablation.

On the other hand, each cell operation choice ablation improved average latencies, except

for the dilated convolution ablation. This trend likely occurred because removing this option

caused the algorithm to favor the computationally expensive separable convolutions. The

ablation of the separable convolution operations improved the retraining latencies by the

most significant margin, although it also produced the worst average retraining accuracy.

The ablation of the auxiliary heads also resulted in lower retraining accuracies. However,

this ablation has higher latencies, a finding that might be explained by this ablation resulting

in ICDARTS favoring a deeper cell structure.

The stemming layer ablations also offered no improvement in retraining accuracies and

worse inference latencies. The only exception was when the layer was replaced with an

identity operation so that the number of input channels was equal to that of the input

images, which resulted in a network with fewer parameters and, hence, a lower latency.
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Figure 3.5: ICDARTS Template Ablation Per Network Layer Type Frequencies
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Figure 3.6: ICDARTS Template Ablation Per Network Cell Depth Frequencies
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Finally, the accuracies from the reduce cell ablations were also worse than that of

ICDARTS. On the other hand, the average inference latencies varied, with the case in which

reduce cells were replaced with convolutions, with stride two providing the only latency

improvement.

The results of the algorithmic ablation study listed in Table 3.7 generally demonstrate

stability improvements with the addition of each modification to the original algorithm on

both routes. The inference latencies tend to slow with each change. The exception to this

pattern was route A, in which the switch to updating both network weights on the training

set was not made until the final step. However, as shown in the tables, the slower latencies

were eventually rectified with the final modification to the algorithm on both routes.

40



Table 3.4: CIFAR-10 Retraining Test Set Accuracies

Ablation Retraining Accuracy Inference Latency (batch/s)
CDARTS (No Zero) 97.13 (0.14) 0.10 (0.01)

Pooling 97.19 (0.23) 0.09 (0.02)
Identity 96.96 (0.35) 0.11 (0.02)

Dilated Convolutions 97.02 (0.26) 0.10 (0.01)
Separable Convolutions 96.15 (0.27) 0.07 (0.00)

Auxiliary Heads ∗ 96.86 (0.14) 0.11 (0.00)
Stemming (Identity) ∗ 80.01 (2.18) 0.09 (0.02)

Stemming (Convolution + Batch Norm) ∗ 96.81 (0.38) 0.11 (0.03)
Stemming (Concat) ∗ 92.40 (0.33) 0.16 (0.00)
Reduce (Avg Pooling) 96.94 (0.19) 0.12 (0.07)
Reduce (Max Pooling) 96.87 (0.06) 0.10 (0.03)
Reduce (Convolution) 96.77 (0.12) 0.09 (0.01)

Table 3.5: ICDARTS Template Ablations and Replacements

Ablation Replacement
Pooling Operations -
Identity Operation -

Dilated Convolution Operations -
Separable Convolution Operations -

Auxiliary Heads -

Stemming Layer
Identity

Convolution (k=1), Batch Norm
Concatenate Inputs

Reduce Cells
Average Pooling

Max Pooling
Convolution (k=1, stride=2)

41



Table 3.6: ICDARTS Algorithmic Ablation Study Routes with Loss Function Changes

Algorithm
Loss Function

Route A Route B

CDARTS

α→ LSval + LS,Eval
wE → LEval + LS,Eval

wS → LStrn

Ablation 1

α→ No Change
wE → No Change

wS → LStrn + LS,Etrn

α→ No Change

wE → LEtrn + LS,Etrn
wS → No Change

Ablation 2

α→ No Change

wE → LEval
wS → No Change

α→ No Change

wE → LEtrn
wS → No Change

ICDARTS

α→ No Change

wE → LS,Etrn
wS → No Change

α→ No Change
wE → No Change

wS → LStrn + LS,Etrn
Note: No Change indicates no change from the loss functions

in the previous row.

Table 3.7: ICDARTS Algorithmic Ablation CIFAR-10 Retraining Test Set Accuracies

Ablation Retraining Accuracy Inference Latency (batch/s)
CDARTS (No None) 96.94 (0.30) 0.09 (0.01)

A1 96.35 (0.48) 0.08 (0.00)
B1 96.99 (0.22) 0.09 (0.01)
A2 96.69 (0.22) 0.08 (0.00)
B2 97.05 (0.18) 0.11 (0.00)

ICDARTS 97.13 (0.14) 0.10 (0.01)
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(a) Route A

(b) Route B

Figure 3.7: ICDARTS Per Network Layer Type Frequencies for Algorithmic Ablation Study
Routes A and B. The details of each route are listed in Table 3.6.
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(a) Route A

(b) Route B

Figure 3.8: ICDARTS Per Network Cell Depth Frequencies for Algorithmic Ablation Study
Routes A and B. The details of each route are found in Table 3.6.
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Chapter 4

Expanding the Search Space of

ICDARTS

Upon completing the ablation study, several methods for expanding the limited search space

of ICDARTS were explored. This process involved experimenting with alternative operation

sets with varying complexities and cell discretization approaches that expanded the space of

architectures that could be discovered during the search phase. The work presented in this

section further culminated in a novel tournament-based approach for incorporating dynamic

search spaces in ICDARTS and a multiobjective version of ICDARTS that produces networks

that effectively balance predictive performance with lower compute costs.

4.1 Alternate Operation Spaces

Alternative operation spaces for ICDARTS were first explored by curating three additional

operation search spaces for ICDARTS. Each operation space comprised various complexities,

ranging from the most basic operations to mobile convolution blocks from current state-of-

the-art vision models. Each operation space and a brief description are listed in Table 4.1.

Note that pooling and identity operations were included in each of the four operation spaces,

as they are all simple operations yet have appeared alongside more complex operations, such

as in operation space 3. The minimum convolution operation consists of a convolution
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Table 4.1: ICDARTS Operation Spaces

Search Space Category Description Operation Parameters

1
Basic
Operations

Basic building blocks of
more complex operations.

Convolution k = 3, 5
Depthwise Convolution k = 3, 5

ReLU
Leaky ReLU

Sigmoid
Tanh

BatchNorm

2
Simple
Operations

Operations from early NAS
literature including
NASNet Zoph et al. (2017).

Minimum Convolution k = 3, 5
Standard Convolution k = 3, 5
N × 1 Convolution k = 7, 9

3
DARTS
Operations

Widely-adopted search
space used by DARTS and
its derivatives.

Identity*
Max Pooling* k = 3

Average Pooling* k = 3
Separable Convolution k = 3, 5
Dilated Convolution k = 3, 5

4
MBConv
Blocks

State-of-the-art mobile
convolution blocks.

MBConv Sandler et al. (2018) k = 3
MBConv Tan and Le (2019) k = 3; g = 1

Fused-MBConv Tan and Le (2021) k = 3; g = 1
Note: Operations marked with * are included in all search spaces.

Table 4.2: Dynamic Search Combined Operation Space

Operation Parameters Operation Parameters
ReLU - Leaky ReLU -

Sigmoid - Tanh -
Batch Norm - Identity -
Convolution k = 3, 5 Max Pooling k = 3, 5
Avg Pooling k = 3, 5 Minimum Convolution k = 3, 5

Standard Convolution k = 3, 5 N × 1 Convolution k = 7, 9
Separable Convolution k = 3, 5 Dilated Convolution k = 3, 5

MBConv k = 3, 5 MBConvV2 k = 3, 5 g = 1, 4, 6
Fused MBConv k = 3 g = 1, 4, 6
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Algorithm 2 ICDARTS Dynamic Search Algorithm

Input: Number of Tiers T , Pool of Layer Operations O, Maximum Operations per Set of
Edges Omax

Output: Optimal Operations, o for Each Set of Edges
for each t ∈ T, ...1 do

for each r ∈ 1, ..., 2t do
if t = 3 then

Randomly select Omax layer options ot,r for each set of edges given O
else

Set ot,r to ot−1,2r + ot−1,2r+1 for each set of edges
end if
Run ICDARTS to optimize ot,r for each set of edges based on learned α values
if t = 1 then

Return ot,r for each set of edges
else

Update ot,r to top 50% of ot,r by α value for each set of edges
end if

end for
end for

Figure 4.1: Tournament-Style Dynamic Search Space Algorithm for ICDARTS Overview
with Tiers
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followed by a batch norm and the standard convolution operation is defined by a ReLU

activation function followed by a convolution and batch norm.

The results from running ICDARTS with different operation spaces are shown in Table 4.1

and Figures 4.2 and 4.3. Operation space 2 achieved the highest average retraining accuracy

despite using simpler operations than the default operation space 3. However, the accuracies

of the networks produced using operation space 2 varied more than those made using the

original operation space. This outcome might be explained either by ICDARTS’ tendency to

favor slightly deeper cell architectures with this operation space than with operation space

three or by this operation space’s diverse yet competitive selection of operation choices that

appears to balance operation complexity and performance, resulting in the search algorithm

preferring cells composed of a diverse selection of simpler operations. By contrast, the cells

produced by the other operation spaces tended to favor one operation choice above all others.

The networks created with operation space 1 selected the convolution with kernel size five

operation and slightly deeper cell architectures than those produced by the original operation

space. However, these architectures yielded the worst accuracies of any operation space.

Operation space 4, which used the most complex operations and favored the MBConvV1

operation, produced the second lowest accuracies. However, the poor accuracies and inference

latencies of the network discovered using this operation space could be explained by the high

computational demands of its operations. This limitation resulted in fewer operation choices

being included in its set of operation choices. Furthermore, the networks produced using this

set of complex operations may have benefited from additional search and retraining time.

After evaluating the efficacy of ICDARTS on different operation spaces, the operations of

all four operation spaces and additional operations left out of the previous operation spaces

due to memory constraints were combined into one comprehensive operation space (see Table

4.2). A novel, tournament-style algorithm for incorporating dynamic operation spaces into

ICDARTS was implemented to ensure that ICDARTS could efficiently traverse this ample

operation space. This algorithm was partially inspired by other dynamic operation space

methods, including (Li et al., 2021b) and (Shaw et al., 2019). As shown in Algorithm 2 and

Figure 4.1, the algorithm begins by randomly selecting Omax operations from the set of all

operations, O, for each set of cell edges. Four independent games, or runs of ICDARTS’
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Table 4.3: ICDARTS Expanded Search CIFAR-10 Retraining Test Set Accuracies and
Inference Latencies

Operation Space Retraining Accuracy Inference Latency (s/batch)
1* 95.08 (0.39) 0.11 (0.02)
2* 97.29 (0.29) 0.10 (0.02)
3 97.13 (0.14) 0.10 (0.01)
4* 96.55 (0.21) 0.21 (0.01)

Dynamic* 97.25 (0.06) 0.10 (0.01)
Note: Results from 6 runs are indicated by *.

Figure 4.2: ICDARTS Alternative Operation Spaces Per Network Layer Type Frequencies.
The details of each operation space are listed in Table 4.1.
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search phase, then search networks given operation spaces formed by randomly selecting

from the master set of operations listed in 4.2. Upon completion of the initial tier of the

search phase, the operations corresponding to the top 50% of alpha values are retained. The

algorithm then proceeds to the next tier, forming the per-node operation sets of the two

games in this tier by combining the top operations from the first and second and third and

fourth games of the previous tier and running the ICDARTS search phase from the beginning

on both operation sets. The process repeats through the topmost tier, producing the final

evaluation network evaluated in the retraining phase.

The average accuracy and inference latency of ICDARTS using the dynamic operation

space algorithm are listed alongside those of the other operation spaces in Table 4.3.

Additional results from each tier of the search algorithm are displayed in Figures 4.4 and 4.5.

The tournament-style dynamic operation space algorithm applied to the master operation

space of 4.2 achieved an accuracy second only to that of operation space two but with one

of lowest standard deviations of any experiment performed on ICDARTS and an inference

latency on par with that of ICDARTS given the second and third operation spaces. As

shown in Figure 4.4, the cells produced by the final tier of the algorithm most favored the

tanh, MBConv, and simple, standard, and separable convolution operations. All of these

operations were among the top in their derivative operation spaces, except the tanh activation

and the standard convolutions, possibly due to the ability of these operations to pair well

with others. Figure 4.5 reveals that deeper cell architectures were favored in the lower tiers,

in which the cell operations varied most since they were randomly selected for each cell at

this level. However, as the architectures converged towards selecting the most optimal layer

operations in the higher tiers, shallower architectures were favored. This pattern suggests

that, when given a large and diverse operation space of candidate operations, the effectiveness

of layer choices may be more important than cell depth for designing an optimal network

architecture. This outcome may also explain how this operation space produced networks

with relatively low inference latencies and suggests that this algorithm may prove helpful for

discovering networks with both low inference latencies and high generalization abilities.
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4.2 Alternate Search Cells

After evaluating alternative operation spaces for ICDARTS, methods for further expanding

ICDARTS’ search space by expanding the capacity of its search cells were considered.

To explore expanding the capacity of search cells, ICDARTS run with its number of

nodes per cell decreased to 3 and increased to 5. The results are displayed in Table 4.4

and Figures 4.6 and 4.6. As was expected, ICDARTS networks that used three nodes per

cell underperformed compared to those produced by the original configuration of ICDARTS.

Networks with five nodes per cell also performed worse when retrained for the standard 600

epochs and comparatively but with more variation in results when trained for an additional

150 epochs.

Since simply increasing the number of nodes per cell failed to produce improved results,

alternative methods for expanding the capacity of ICDARTS’ cell search space were explored,

specifically, alternative methods for discretizing search cells that increased the number and

diversity of networks in its search space. As previously discussed, the search cells optimized

in CDARTS and ICDARTS were initially introduced in DARTS. In these cells, a softmax

operation is applied only to edges originating at the same node. Of these edges, only the one

with the highest softmax values can be selected as an input to a cell (see Figure 4.8a).

Allowing a maximum of one output of a previous node to be input to a current node

eliminates any potential edge candidates from the same cell that may be more suitable

than those from a different cell, thereby limiting the number of cell structures the search

algorithm can discover. Based on this observation, Jiang et al. (2019) presented the I-

DARTS approach, in which all incoming edges to a node are compared equally by applying

one softmax operation across all their weights. k edges are then selected from among these

with equal weight, regardless of whether or not they originate from different preceding nodes

(see Figure 4.8b). The advantages of this approach are that it increases the amount of cell

architectures that can be discovered and allows all incoming edges to be compared fairly.

After implementing a version of the I-DARTS cells and incorporating them into ICDARTS,

a novel variant of this discretization approach, XDARTS, was also implemented to expand

the search space of the cells further and to compensate for any noise or instability caused

51



Figure 4.3: ICDARTS Alternative Operation Spaces Per Network Cell Depth Frequencies
The details of each operation space are listed in Table 4.1.

Table 4.4: ICDARTS with Varying Numbers of Cells per Node CIFAR-10 Retraining Test
Set Accuracies and Inference Latencies

Nodes Per Cell Retraining Accuracy Inference Latency (s/batch)
3 96.91 (0.26) 0.09 (0.01)
4 97.13 (0.14) 0.10 (0.01)
5 97.05 (0.24) 0.11 (0.02)
5* 97.12 (0.27) 0.11 (0.02)

Note: * denotes networks that were retrained for 750 epochs.
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Figure 4.4: ICDARTS Dynamic Operation Space Algorithm Tiers Per Network Layer Type
Frequencies
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by selecting from a much larger and linearly increasing set of edges at each depth. The

number of which at each depth equals the number of preceding nodes times the number of

operations, rather than remaining constant at the number of candidates in its operation set,

as was the protocol with the DARTS cells. With this discretization approach, the number

of edges selected as inputs to a node equals the number of nodes preceding it. Thus, the

number of edges selected at each node grows alongside its number of prospective input edges

(see Figure 4.8c).

Table 4.5 and Figure 4.9 show that the I-DARTS cells produced results significantly worse

than the I-DARTS cells in terms of accuracy and stability, while the opposite was the case

with the XDARTS cells even though the depths and operation choices of the searched DARTS

and I-DARTS cells are similar, with the I-DARTS cells even tending to be slightly deeper than

the DARTS cells. The results from the XDARTS cells demonstrate that the stability and

performance reductions resulting from applying softmax functions over increasing numbers

of edges in the I-DARTS cells can be rectified by allowing the selection of additional edges

based on a node’s depth in its respective cell.

4.3 Multi-Objective ICDARTS

Although the networks produced using XDARTS were significantly more stable and accurate

than those produced with the original discretization method, they also had high retraining

latencies. A multiobjective version of ICDARTS was developed to address this problem by

encouraging the algorithm to prefer networks that balance accuracy with low compute costs.

Taking inspiration from Tan et al. (2019) and Wu et al. (2018), the multiobjective version

of ICDARTS combines the original multiobjective loss function with a penalty term. A novel

algorithm for estimating the latency of search networks was devised to calculate the penalty

term. The algorithm requires the architecture weights of each cell type, α, and a lookup table

of expected latency weights associated with each operation ICDARTS’ original search space.

The algorithm was designed to be used alongside the I-DARTS and XDARTS discretization

protocols due to their simplicity and equal weighting of all incoming edges to a node for

selection.
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Figure 4.5: ICDARTS Dynamic Operation Space Algorithm Tiers Per Network Cell Depth
Frequencies

Table 4.5: ICDARTS Alternative Cells CIFAR-10 Retraining Test Set Accuracies and
Inference Latencies

Cell Type Retraining Accuracy Inference Latency (s/batch)
DARTS 97.13 (0.14) 0.10 (0.01)

I-DARTS 96.87 (0.27) 0.10 (0.01)
XDARTS 97.21 (0.09) 0.17 (0.01)

Table 4.6: Multiobjective ICDARTS Operation Latency Weights

Operation Latency Weight
Avg Pool 0.06
Max Pool 0.04

Sep Conv 3x3 0.24
Sep Conv 5x5 0.36
Dil Conv 3x3 0.11
Dil Conv 5x5 0.15

Identity 0.04
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Figure 4.6: ICDARTS with Varying Numbers of Cells, N , per Node Per Network Layer
Type Frequencies.
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Figure 4.7: ICDARTS with Varying Numbers of Cells, N , per Node Per Network Cell
Depth Frequencies.

(a) DARTS (b) I-DARTS (c) XDARTS

Figure 4.8: DARTS Cell Discretization Approaches
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To derive the weights for each operation in the search space, a network previously

produced by ICDARTS was selected, and its pre-training inference latency was averaged

across twenty runs to obtain a baseline latency value. Then, using the same network, the

average latencies of networks with each operation in the ICDARTS search space repeated ten

times in the stemming layer were obtained using the same approach. The average latency of

the baseline network was then subtracted from those of the networks corresponding to each

layer choice to get the final latency weights for each operation. The resulting differences in

latencies were finally normalized to get the latency weights for each operation, which are

listed in Table 4.6.

The algorithm for calculating the latency penalty term then estimates the latencies of

each cell node by weighting the softmax of alpha values corresponding to the incoming edges

by the latency weights, factoring in the estimated latencies of previous cells when applicable.

The maximum expected latencies of each cell are then obtained by multiplying the expected

node latencies by the softmax of these values. Finally, the expected network latency is

calculated by summing the maximum estimated latencies for each cell in the search network.

This algorithm is shown in its entirety in Algorithm 3. The expected search network latency

penalty term, P , is then weighted by a penalty coefficient, δ, and added to the search

network’s loss function to create a multiobjective version of ICDARTS:

w∗S = arg min
wS

LStrain(wS, α) + λLS,Etrain(wS, α, wE, ᾱ) + δP (α) (4.1)

Table 4.7 and Figures 4.11 and 4.12 show the results from running ICDARTS using both

the XDARTS discretization strategy and the expected latency term with three different

penalty coefficients, δ. Table 4.7 shows that the penalty term successfully reduced the

inference latencies when δ was equal to 0.05 and 0.1. Surprisingly, the runs that used these δ

values achieved higher average accuracies than those using a δ value of 0.0. This outcome may

have occurred because the penalty term pressured the search algorithm to prefer shallower

cells and less computationally expensive operations, such as dilated convolutions and identity

operations, over separable convolutions. These attributes combined resulted in networks

that converged to higher accuracies within 600 retraining epochs. The results also reveal
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Algorithm 3 ICDARTS Latency Penalty Calculation Algorithm

Input: Latency Lookup Table LT ; Architecture Hyperparameters α, Number of Cell
Types NC , Number of Nodes per Cell NN , Cell Counts for Each Type C
Output: Total Expected Network Latency P
Initialize P to zero
for each i ∈ 0, ...NC do

Initialize lc to zeros
for each j ∈ 0, ...NN do

Initialize NE to j + 2
Initialize ln to zeros
for each k ∈ 0, ...NE do

Update lnk to LT

if k ≥ 2 then
Update lnk to lnk + lck−2

end if
end for
Update lcj to lcj +

∑
(lnαij)

end for
Update P to P + Ci × (

∑
(lcsoftmax(lc))

end for

an additional advantage of XDARTS cells: their ability to achieve high-quality results with

shallow cells.
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Figure 4.9: ICDARTS Per Network Layer Type Frequencies: Alternative Cells

Table 4.7: ICDARTS with XDARTS cells combined with Latency Loss Function CIFAR-10
Retraining Test Set Accuracies and Inference Latencies

Latency Coefficient, δ Retraining Accuracy (%) Inference Latency (s/batch)
0.0 97.21 (0.09) 0.17 (0.01)

0.01* 97.26 (0.10) 0.17 (0.01)
0.05* 97.27 (0.18) 0.14 (0.01)
0.1* 97.26 (0.18) 0.13 (0.01)

Note: Results from 6 runs are indicated by *.
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Figure 4.10: ICDARTS Alternative Cells Per Network Depth Frequencies
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Figure 4.11: ICDARTS with XDARTS cells using latency loss function per network layer
type frequencies. Figure 4.8 depicts each cell discretization protocol, and Algorithm 3 shows
the latency estimation algorithm.
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Figure 4.12: ICDARTS alternative operation spaces per network cell depth frequencies.
The details of each operation space are listed in Table 4.1.
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Chapter 5

ICDARTS for Alternative

Benchmarks

This chapter discusses the results of applying the best of each category of improvements to

CDARTS to two scientific datasets.

5.1 Stronglens Finding Challenge

The first scientific task used to evaluate the improvements to CDARTS was the Gravitational

Lens Finding Challenge (SGLFC) 2.0. This astrophysics dataset consists of image candidates

classified as members or non-members of a class of phenomena known as strong gravitational

lenses, depending on their properties. Strong gravitational lenses represent rare scenarios

in which a galaxy or quasar is so closely aligned with one or more galaxies that it creates

multiple, highly distorted images of the foreground object. The lenses can take different

forms depending on their sources and are often identified by visual inspection. They have

provided valuable information to scientists, including how dark matter is distributed in

galaxies, information for measuring cosmological parameters such as the Hubble constant,

and for studying the structure of quasars. Since an ever-increasing magnitude of lens data is

being generated, automated detection methods properly evaluated for predictive ability and

bias for finding these rare objects are crucial for scientific discovery Metcalf et al. (2019).
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The SGLFC was introduced for this reason. The most current version of this challenge,

SGLFC 2.0, consists of 100,000 simulated images of strong lens candidates in 4 bands. Three

bands, ’NISP J,’ ’NISP Y,’ and ’NISP H,’ consist of 66 by 66 pixel images, and the final

band, ’VIS,’ consists of 200 by 200 pixel images. Candidate images are classified as lenses

based on whether or not they satisfy a set of criteria in a provided log of lens properties.

Figure 5.1 shows heatmaps of the four bands of a positive sample. 80%

Before running the improved versions of CDARTS on this dataset, the default template

of ICDARTS was modified to accommodate the increased memory demands of the much

larger dataset. First, the evaluation network depths were reduced to 14, with the reduction

cells placed at the 5th and 10th layers. The search phase was then run for 40 epochs, with

ten pretraining epochs for the search network and three warmup epochs for the evaluation

network. The network weights are updated with a learning rate of 0.8 and decay rate of

1.0× 10−5, and the alpha weights were updated with a learning rate of 3.0× 10−4 and decay

rate of 1.0×10−5. The retraining phase was run for 250 epochs, and the network was trained

with a learning rate of 0.25 and a decay rate of 3.0 × 10−5. Before training, the samples

from each band were normalized using min-max scaling. Then, in the stemming layer of

the search and evaluation networks, the four bands were combined despite their differing

dimensions by reducing the dimension of the ’VIS’ band to match that of the NISP ’J,’ ’H,’

and ’Y’ bands and the four bands were concatenated together to serve as single input with

four channels.

Three different metrics were used for evaluating the performance of ICDARTS on the

SGLFC 2.0 dataset. The first was the traditional accuracy metric, the second was the area

under the receiver operating characteristic curve (ROC AUC), and the third was the Fβ

score. The Fβ score was the recommended scoring metric for the SGLFC 2.0 dataset and is

defined as

Fβ = (1 + β2)
P ×R
β2P +R

(5.1)

where P is precision, R is recall, and β qualifies the relative performance of precision and

recall changes. To evaluate the performance of searched networks using the Fβ score, the
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maximum value the Fβ score reaches for any threshold, p:

Fβ = max
p
Fβ(p)

Since actual lenses are rarer in real-world data than in the simulated dataset, by a factor of

about 1000, β2 is set to 1.0 × 10−3 to ensure an adequately high precision or a low rate of

false positives Metcalf (2019).

Table 5.1 and Figures 5.2 and 5.3 display the results of applying CDARTS and the best

configurations of ICDARTS to the SGLFC 2.0 dataset. As reported in Table 5.1, the highest

retraining Fβ scores were achieved by running ICDARTS on a dynamic operation space,

and the lowest Fβ scores came from the CDARTS runs. The rankings of the configurations

are very different when considering the ROC AUC and accuracy scores, of which ICDARTS

obtained the best results when using the second operation set, and the worst results came

from the original configuration of ICDARTS and ICDARTS using the dynamic operation

space. These differences in performance metrics suggest that although configurations with

high retraining ROC AUC and accuracy results perform better on the simulated data, the

configurations with the highest Fβ scores should provide more reliable results on real-world

data. The standard deviations of each performance metric of the ICDARTS runs were lower

than those of the CDARTS runs, with the only exception being ICDARTS using the dynamic

operation space. The latency values from this configuration were also the highest overall.

Both of these outcomes were likely due to this configuration favoring deeper cells and various

operations, including many MBConv blocks. The configurations that produced the lowest Fβ

scores, ICDARTS and ICDARTS using operation space 2, trended towards shallower cells.

The contrast between the performances of ICDARTS on the second operation space, the

original operation space, and the dynamic operation space reveals that a diverse operation

space with more complex operations, such as MBConvs, is better suited to this problem.

66



Figure 5.1: Heatmaps taken from normalized ’VIS’ and NISP ’J,’ ’H,’ and ’Y’ bands of
one positive sample from the Stronglens Finding Challenge 2.0.

Table 5.1: Stronglens Finding Challenge Retraining Test Set Accuracies and Inference
Latencies

Configuration Retraining Fβ Retraining ROC AUC Retraining Accuracy (%) Inference Latency (s/batch)
CDARTS 0.79 (0.06) 0.73 (0.03) 70.54 (3.13) 1.40 (0.05)
ICDARTS 0.83 (0.06) 0.72 (0.02) 69.48 (2.14) 1.46 (0.00)

ICDARTS Operation Space 2 0.83 (0.05) 0.75 (0.02) 71.48 (1.38) 1.47 (0.02)
ICDARTS XDARTS Cells ε = 0.05 0.85 (0.06) 0.75 (0.02) 70.33 (1.70) 1.45 (0.13)

ICDARTS Dynamic Operation Space 0.88 (0.07) 0.72 (0.04) 68.11 (2.15) 1.93 (0.15)
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Figure 5.2: SGLFC 2.0 per network cell depth frequencies of networks searched by CDARTS
and the best configurations of ICDARTS.
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Figure 5.3: SGLFC 2.0 per network operation frequencies of networks searched by CDARTS
and the best configurations of ICDARTS.
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5.2 Electron Microscopy Dataset

CDARTS and the best overall configurations of ICDARTS were also evaluated on an electron

microscopy (EM) dataset consisting of a 1065x2048x1536 stack of images representing

a 5 square micrometer section of the brain’s hippocampus region. Graham Knott and

Marco Cantoni originally compiled this dataset at the Swiss Federal Institute of Technology

Lausanne to accelerate neuroscience research. Two sub-volumes of the dataset, consisting of

165 slices of the image stack, have been annotated with the locations of mitochondria and

synapses Lucchi et al. (2013).

To convert the stacks of images in the training and test subvolumes into training and

test datasets that could be used for optimizing CDARTS and ICDARTS networks, 32 by 32

windows were randomly cropped from the slices of the training and test subvolumes. For

the training set, 300 crops were taken per slice, and for the testing set, 60 crops were taken.

To ensure that the dataset was balanced, positive and negative samples were alternatively

selected by repeatedly cropping windows from the image slice until obtaining a sample from

the desired class. A cropped image sample was considered a positive if more than 7 of its

16 center pixels corresponded to the regions of mitochondria or synapses. Samples were

marked as negative if no positive pixels were found in its 16 center pixels. Figure 5.4 shows

some examples of positive and negative samples. Following normalization of image crops

using min-max scaling, CDARTS and the best configurations of ICDARTS were then run

on this dataset using the search and retraining settings used for the CIFAR dataset, except

for the number of input channels, which was changed from 3 to 1, the learning rate of the

search phase networks set to 0.2, and the learning rate of the evaluation phase network set

to 6.25× 10−3.

Table 5.2 and Figures 5.5 and 5.6 show the results of applying CDARTS and the best

configurations of ICDARTS to the EM dataset. Table 5.1 shows that ICDARTS using

a dynamic operation space produced the best overall results regarding average retraining

accuracies. The networks produced by this configuration were slightly deeper than those

produced by other configurations (see 5.5) and commonly preferred ReLU activations,

MBConv V1, and Fused MBConv operations. The configuration of ICDARTS that used
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XDARTS cells achieved the lowest average inference latency, likely due to this configuration’s

preference for shallower cells.

5.3 Comparing Architectures Across Tasks

This section compares the best architectures produced for the CIFAR-10, SGLFC 2.0, and

EM datasets. Figure 5.7 shows the per network cell depth frequencies of CDARTS and each

of the best ICDARTS configurations on the CIFAR-10, SGLFC 2.0, and EM. Although the

distributions of cell depth frequencies varied across configurations, the cells discovered for

the EM dataset tended to be deeper for most configurations. Likewise, Figures 5.8 and 5.9

show each search method’s per network operation frequencies on each of the three datasets.

The configurations that relied on the original operation space preferred a relatively diverse

selection of operations when searching networks for the SGLFC 2.0 and EM datasets, in

contrast to the networks searched for CIFAR-10, which overwhelmingly preferred separable

convolutions. The runs of ICDARTS on operation space two on the SGLFC 2.0 and EM

tasks overwhelmingly favored standard convolutions. By contrast, CIFAR-10 more strongly

favored identity and N×1 convolution operations. The runs of ICDARTS using the dynamic

operation space all tended to favor MBConv and activation operations. With the CIFAR-10

dataset, MBConv V1 operations were most favored, while the SGLFC 2.0 and EM tasks

preferred a more diverse selection of MB Conv V1 and Fused MBConv operations.

Figures 5.10, 5.11, and 5.12 show the normal and reduction cells from the networks with

the best overall performance on the CIFAR-10, SGLFC 2.0, and EM tasks. The cells from

the best overall network on CIFAR-10, which ICDARTS produced on the second operation

space, achieved a final retraining test accuracy of 97.62%. These cells comprise a diverse

set of operations from this operation space and an architecture of depth 3 in the case of

the reduction cell. The top-performing network on the SGLFC 2.0 dataset was discovered

by running ICDARTS with the dynamic operation space, and its final retraining Fβ score

was 96.62. These cells consisted of many MBConv operations with some batch norms and

activation operations. In addition to these features, its normal cell was four nodes deep.
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(a) Positive Samples

(b) Negative Samples

Figure 5.4: Examples of electron microscopy image samples. Images belonging to the
positive class contain significant regions corresponding to mitochondria or synapses within
their four-by-four center region, while samples belonging to the negative class contain no
positive pixels within their center region.

Table 5.2: EM Dataset Retraining Test Set Accuracies and Inference Latencies

Configuration Retraining Accuracy (%) Inference Latency (s/batch)
CDARTS 96.80 (0.58) 0.09 (0.01)
ICDARTS 97.01 (0.05) 0.09 (0.02)

ICDARTS Operation Space 2 96.93 (0.09) 0.10 (0.02)
ICDARTS XDARTS Cells δ = 0.05 96.98 (0.21) 0.08 (0.01)

ICDARTS Dynamic Operation Space 97.03 (0.09) 0.12 (0.01)
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Figure 5.5: EM dataset per network cell depth frequencies of networks searched by
CDARTS and the best configurations of ICDARTS.
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Figure 5.6: EM dataset per network operation frequencies of networks searched by
CDARTS and the best configurations of ICDARTS.
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(a) CDARTS (b) ICDARTS

(c) ICDARTS Operation Space 2 (d) ICDARTS XDARTS Cells δ = 0.05

(e) ICDARTS Dynamic Operation Space

Figure 5.7: CIFAR-10, SGLFC 2.0, and EM datasets per network cell depth frequencies of
networks searched by CDARTS and the best configurations of ICDARTS.
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(a) CDARTS (b) ICDARTS

(c) ICDARTS Operation Space 2 (d) ICDARTS XDARTS Cells δ = 0.05

Figure 5.8: CIFAR-10, SGLFC 2.0, and EM datasets per network operation frequencies of
networks searched by CDARTS and the best configurations of ICDARTS.
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Figure 5.9: CIFAR-10, SGLFC 2.0, and EM datasets per network operation frequencies of
networks searched by ICDARTS using a dynamic operation space.
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Finally, the best network on the EM dataset, which was discovered using ICDARTS with

XDARTS cells and a latency penalty coefficient of 0.05, obtained a final retraining accuracy

of 97.15%. Its normal cells were composed of a mixture of diluted convolutions, separable

convolutions, identity, and pooling operations. Meanwhile, its normal cells were composed

of mostly dilated convolutions and pooling operations. Both cell structures have a depth of

three.
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Figure 5.10: Normal and Reduction Cells from Top-performing ICDARTS Network on
CIFAR-10 Dataset: ICDARTS Operation Space 2
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Figure 5.11: Normal and Reduction Cells from Top-performing ICDARTS Network on
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Chapter 6

Hierarchical NAS

This section proposes a hierarchical version of ICDARTS that optimizes network templates

and cell structures. As previously discussed, CDARTS and ICDARTS discover networks

within a modular search space by optimizing cell structures, which are then copied and

stacked according to the specifications of a pre-determined template. The templates of the

search and evaluation networks (shown in Figure 3.1) determine the placement of each cell

structure in their respective architectures, how many times the cells are repeated, the number

of channels at each depth, and the transformations applied at the beginning and end of each

network. It also dictates that each cell accepts the outputs of the two previous cells as

inputs and that the networks include auxiliary heads that combine logits output at different

network depths. Although modular NAS methods tend to be more computationally efficient,

their reliance on repeating cells and pre-determined templates limits the flexibility of their

search spaces. Hierarchical NAS approaches address this criticism by optimizing network

templates given a set of one or more cell structures that are pre-determined or searched in

a previous step.

To incorporate hierarchical search into ICDARTS, an intermediate search phase is

introduced following the initial search phase that optimizes the template of the final network

given the set of cell structures optimized in the initial search phase. Following a similar

approach to the initial search phase, the template search space represents a large DAG with

nodes and edges corresponding to cells discovered by the initial search phase and prospective

connections between cells, respectively. Figure 6.1 compares the original and intermediate
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search phases and shows how both cyclicly optimize search and evaluation networks. The

initial cell-level search phase first leverages ICDARTS (see Algorithm 1) to cyclically optimize

the search network, Smicro and evaluation network, Emicro. The intermediate search phase

then takes the cell structures discovered in the micro-level search phase and optimizes their

connectivity and arrangement within a new evaluation network Emacro. Within Emacro,a set

of γ weights, analogous to the α weights of the original search network, Smicro, are learned

within the search network graph Smacro. The γ, wS, and wE weights are updated according

to the following loss functions:

w∗E = arg min
wE

LEval(wE, γ̄) (6.1)

γ∗ = arg min
γ

LSval(w
∗
S, γ) + λLS,Eval (w∗S, γ, w

∗
E, γ̄) (6.2)

w∗S = arg min
wS

LStrain(wS, γ) + λLS,Etrain(wS, γ, wE, γ̄) (6.3)

w∗E = arg min
wE

LEtrain(wE, γ̄) (6.4)

At each iteration, the learned weights generate a new evaluation network Emacro until

convergence. This process, shown in full in Algorithm 4, closely resembles that of the original

ICDARTS algorithm.

This chapter proposes two different versions of hierarchical search for ICDARTS. The

first version draws inspiration from Huang et al. (2016) and O’Neill et al. (2021) and has

been designed to optimize the skip connections between the cells within the original network

template. As stated above, in the original network template, each cell takes the output

of the previous cell as well as a skip connection from the cell preceding the previous cell

as inputs. This version of hierarchical search searches the set of all possible skip-connect

inputs to a given cell to determine which is most optimal. In this case, the designs of the

cell-level search phase and networks follow those of the original ICDARTS search phase

closely. The search and evaluation networks of the intermediate search phase are of the

83



Algorithm 4 ICDARTS Macro-Level Search Phase

Input: Datasets train and val, search and evaluation iterations SS and SE, update
iterations SU , architecture hyperparameter γ, and weights wS and wE for search S and
evaluation E networks
Output: Evaluation network E
Initialize γ randomly
Initialize wS
for each search step i ∈ [0, SS] do

if iModSU then
Discretize γ to γ̄ by selecting the top k
Generate E with γ̄
for each evaluation step j ∈ [0, SE] do

Calculate LEval
Update wE according to Eq. 6.1

end for
end if
Calculate LSval, L

E
val, and LS,Eval

Update γ according to Eq. 6.2

Calculate LStrain and LS,Etrain
Update wS according to Eq. 6.3
Calculate LEtrain
Update wE according to Eq. 6.4

end for

same depth. In the search network, Smacro, a set of γ weights are placed at each incoming

skip connection to a cell and initialized so that the skip connections closest to a given node

are weighted most heavily. To generate the evaluation network, Emacro, at each iteration, all

incoming connections to each node except for the one with the highest γ value and that of

the immediately preceding node are discarded. The search network, Smacro, and an example

evaluation network corresponding to this implementation of the network level search phase

are both pictured in Figure 6.2.

The second version of hierarchical search concentrates on optimizing the placement of

cells in the final architecture. The initial search phase is modified to search four normal cell

structures rather than one normal and one reduction cell structure. This change requires

re-imagining the micro-level search and evaluation network templates to specify that the four

normal cells alternate in both networks, as shown in Figure 6.3. The networks otherwise

follow the templates of the original search phase. The search network of the intermediate
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search phase is constructed so that one of each type of cell exists at each level. Each cell

takes as input the γ weighted sum of the outputs of the cells from the two previous layers,

as shown in the network on the left-hand side of Figure 6.4. All cell types except those

corresponding to the single highest γ weight at each depth are discarded to generate the

evaluation network. An example of an evaluation network generated by this version of the

hierarchical search is shown on the right side of Figure 6.4.

The initial search phases of both versions of hierarchical ICDARTS used the exact

parameters of the original ICDARTS search space. However, the macro-level search phases

of both implementations used a learning rate of 3×10−3. The second version also pre-trained

the evaluation network for two epochs in each iteration rather than one to account for the

significant structural differences between the search and evaluation networks.

The results of both configurations of hierarchical ICDARTS are shown in Tables 6.1

and 6.2, which list the average accuracies, standard deviations, and inference latencies

of the initial and intermediate evaluation networks of each configuration of hierarchical

ICDARTS. These results reveal that only the networks produced by the second configuration

of ICDARTS outperformed the default networks produced by their initial search phases.

Figures 6.5 and 6.6 show that this configuration of hierarchical ICDARTS preferred cells of

roughly the same depth but consisting of a higher proportion of separable convolutions with

a kernel size of 3, the operation of the default operation that has been most preferred on the

CIFAR-10 benchmark. The average latencies of these networks were also nearly identical to

those of the default networks produced by the initial search phase.
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Smicro Emicro

Initial Search Phase

Cell
Architectures

Feedback

Smacro Emacro

Intermediate Search Phase

Network
Architecture

Feedback

Figure 6.1: Hierarchical ICDARTS optimizes network architectures at both the cell and
network-levels by introducing an intermediate search phase and search Smacro and evaluation
Emacro networks. Cell structures in the micro level search phase are first optimized by
leveraging ICDARTS to cyclically optimize the search Smicro and evaluation Emicro networks.
Then, in the intermediate search phase, the template of the evaluation network is searched
by using a modified version of ICDARTS (see Algorithm 4) to optimize connections within a
large search graph Smacro, discretizing them at each iteration to form the evaluation network
Emacro.

Table 6.1: ICDARTS Hierarchical Search Version 1 CIFAR-10 Retraining Test Accuracies
and Inference Latencies

Network Retraining Accuracy (%) Inference Latency (s/batch)
Initial Evaluation 96.81 (0.20) 0.11 (0.01)

Intermediate Evaluation 96.60 (0.24) 0.12 (0.00)

Table 6.2: ICDARTS Hierarchical Search Version 2 CIFAR-10 Retraining Test Accuracies
and Inference Latencies

Network Retraining Accuracy (%) Inference Latency (s/batch)
Initial Evaluation 95.85 (0.30) 0.13 (0.01)

Intermediate Evaluation 95.92 (0.32) 0.13 (0.01)
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Figure 6.2: Hierarchical ICDARTS Version 1 Intermediate Search Phase Search Network,
Smacro (left), and Example Evaluation Network, Emacro (right).
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Figure 6.5: Hierarchical Search Per Network Layer Frequencies

Figure 6.6: Hierarchical Search Per Network Cell Depths
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Chapter 7

Summary and Future Work

This work proposed a set of improvements to the stability and performance of an existing

gradient-based NAS method. The first half of this chapter summarizes each iteration of

improvements, along with the results and conclusions drawn from the experimental results

of each. The closing half of the chapter discusses steps that can be taken in the future

to improve and expand upon this work, including extending it to alternative tasks and

architectures.

7.1 Summary

Chapter 3 introduced a set of algorithmic changes to the CDARTS algorithm. The algorithm

was first modified to ensure that the evaluation network of the algorithm’s search phase was

a better proxy for the network evaluated during the retraining phase by reformulating the

network’s loss function to no longer rely on a term unavailable during the retraining phase.

The soft-target cross-entropy loss term, which quantified the distance between the predictions

of the search and evaluation networks, was also shifted to the loss function used for updating

the search network’s weights. This change allowed for the flow of performance-based feedback

from the evaluation network to the search network. The final change ensured that the search

phase networks were trained on the same data to eliminate bias and support the objective of

the networks producing the same outputs. In addition to those algorithmic improvements,

different configurations of its operation set were tested to evaluate the effect of the zero
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operation that was included in the operation set of the CDARTS search network but not

of its evaluation network. Experiments showed that the algorithmic changes to CDARTS

did result in improvements to the algorithm’s stability and consistency and that the zero

operation could be removed entirely from the operation set to achieve optimal generalization

and stability results when combined with the algorithmic changes. Ablation studies further

supported the effectiveness of the algorithmic changes and provided valuable information

regarding the importance of elements of the templates of the search and evaluation networks.

Chapter 4 presented the next phase of improvements to the CDARTS algorithm:

expansions to its search phase. After testing the impact of changing the number of nodes per

cell and not finding a significant improvement by changing this variable alone, changes were

made to ICDARTS’ cell discretization protocol that expanded the space of discoverable cells.

Although this approach significantly improved the performance of the networks it discovered,

it was computationally expensive. To address this drawback, a multi-objective version of

ICDARTS incorporating a penalty term that estimates the latency of the evaluation network

given the learned connection weights and a set of normalized expected latencies corresponding

to each operation choice into its original loss function was developed. Experiments assessing

the effectiveness of the new multi-objective loss function weighted with different coefficients

found that the penalty term could successfully reduce the inference latency of ICDARTS

networks. Additional experiments evaluated the impact of alternative operation spaces,

ranging from spaces consisting of the most elementary operations to more complex state-of-

the-art mobile convolution blocks, on the performance of ICDARTS networks. The results

revealed that an operation space composed of simpler operations included in earlier NAS

operation spaces, such as NASNet, produced networks with the best overall performance.

In order to combine all the operation sets into one large operation space and efficiently

apply ICDARTS to this master operation space, a novel approach for incorporating dynamic

operation spaces into ICDARTS was implemented. The experiments on this approach

revealed that it produced high-performing and consistent networks.

Chapter 5 shows the results of applying the best overall improvements to ICDARTS to

two scientific datasets: the Strong Gravitational Lens Finding Challenge (SGLFC) 2.0 and
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a dataset of electron microscopy images. The results on SGLFC and EM verify that the

proposed methods produce similar outcomes to those produced by CIFAR-10.

Finally, Chapter 6 proposes an expansion of ICDARTS that allows for its template to

be optimized in addition to its cell structures. This expansion, referred to in this work as

hierarchical ICDARTS, adds an intermediate search phase between the original search and

retraining phase, in which the template of the evaluation network is optimized given the cell

structures optimized in the initial search phase. Two configurations of this template search

phase were implemented. The first configuration optimized the skip connections between

each cell, and the second optimized the choice of cell at each layer evaluation network.

The results showed that only the second configuration produced networks with improved

performances over the default evaluation networks produced by its initial search phase.

7.2 Future Work

The next steps of this work will involve combining all of the improvements to ICDARTS into

one and evaluating the results, improving and expanding upon the hierarchical versions

of ICDARTS, and adapting ICDARTS to global search spaces and tasks beyond image

classification. As discussed at the close of Chapter 6, the proposed hierarchical ICDARTS

solution requires additional exploration, particularly the approach that searches for optimal

skip connections. The hierarchical ICDARTS approach that showed more promise optimized

the choice of cell type at each depth and should be further evaluated on different and larger

operation spaces and combined with the additional improvements presented in Chapter

5. Improvements that enable the optimization of additional parameters, including the

placement of reduce cells, channel sizes at each layer, and network depth, remain to be

developed. The ultimate goal will be to combine the intermediate search networks of each

configuration into one master operation space that enables the optimization of all components

of the evaluation network template.

Additionally, a global, proxyless version of ICDARTS could be implemented using

the methods presented in this work. Efficient, proxyless global NAS algorithms such as

MobileNet Howard et al. (2017); Sandler et al. (2018) and the algorithms of the DNAS
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family Wu et al. (2018); Wan et al. (2020); Wu et al. (2021) are beneficial, despite their high

compute costs, since they both ensure a high degree of flexibility in the space of architectures

that can be searched and can ensure that the architecture discovered in the search phase

transfers well to the target task and hardware. A proxyless, global version of ICDARTS could

draw inspiration from existing literature and search candidate architectures from within a

layer-wise super-network similar to the ones searched in DNAS and DMaskingNAS. Skip-

connects could also be introduced into this search space to introduce functionality absent

in previous literature, including FBNet and FBNetV2, and a latency penalty term could be

similarly incorporated into this algorithm for optimal efficiency.

Furthermore, the improvements to ICDARTS introduced in this work will be augmented

to be applied to problems beyond image classification, including semantic segmentation and

NLP tasks. To adapt ICDARTS to semantic segmentation tasks, search spaces that reflect

those of NAS-UNet Weng et al. (2019), Auto-DeepLab Liu et al. (2019a), SqueezeNAS Shaw

et al. (2019), and FBNetV5 Wu et al. (2021) should be evaluated. Successful application

of this approach to semantic segmentation will likely require adapting the method to search

for separate upsampling and downsampling cells and skip connections between them as in

Weng et al. (2019).

The NAS methods presented in this work only accommodate convolutional neural

networks. However, a growing field of literature has emerged in which attention Transformer

architectures, sometimes hybridized with convolutional networks, have succeeded in NLP and

vision tasks. To adapt the contributions of this work to accommodate NLP tasks such as

sequence translation, ICDARTS could be adapted to search for the Transformer model’s

encoder and decoder cells. Existing NLP Transformer NAS implementations optimize

architectures at varying grains of complexity Wang et al. (2020a); Xu et al. (2021); So

et al. (2019). Fine-grained search spaces that optimize encoders and decoders could take

inspiration from the Evolved Transformer So et al. (2019). In addition to the layer options

already part of ICDARTS, the search space could be expanded to include multi-head

attention operations, gated linear units, and attention encoder layers. The coarse-grained

versions of the search space could be similar to those of HAT and NASBERT Wang et al.
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(2020a); Xu et al. (2021), in which block hyperparameters such as embedding dimensions,

number of multi-head attention heads, MLP ratios, and Q-K-V dimensions are optimized.

Motivated by the observation that vision Transformer models currently rank high among

state-of-the-art deep learning models for vision tasks, the NLP transformer search space

findings could also be extended to search for vision Transformer architectures. The vision

Transformer NAS approaches could resemble those used in the NLP transformer case and

draw additional inspiration from the vision transformer search protocols described in Chen

et al. (2021a). Search spaces that combine convolutions with Transformer models using

methods similar to those described in Dai et al. (2021); Li et al. (2021a); Gong et al. (2022)

might also be explored.
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