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ABSTRACT 

The COVID-19 pandemic, a systemwide shock, has left a long-lasting and significant 

impact on transportation systems. It has contributed to a shift in travel behavior, with many 

people turning to work from home (WFH) and online shopping. This shift has led to a 

reduction in vehicular travel. However, the pandemic witnessed increased crash fatalities 

despite a reduction in overall crashes, disproportionately affecting disadvantaged 

communities (DACs). The main question arising from these pandemic-related issues is 

what we can learn to improve transportation systems and shape future travel behavior. 

Therefore, this dissertation aims to investigate how the transportation system changed 

during COVID-19 and explore the future implications while examining the travel behavior, 

technology adoption behavior, and road safety aspects in DACs compared with non-DACs 

during COVID-19. As such, this dissertation first explores the interaction between WFH, 

online shopping, and in-person shopping behaviors, revealing nuanced relationships that 

have evolved amidst the pandemic. Second, comprehensive safety data are utilized to 

dissect why crash fatalities increased during COVID-19. Third, transportation safety in 

DACs is investigated by leveraging safety data covering COVID-19 periods and the 

comprehensive DAC indicators developed by the US Department of Transportation. 

Fourth, DACs’ shopping behavior during COVID-19 is analyzed by focusing on the 

interplay of emerging online delivery components (retail, grocery, and food) and in-person 

activities. Finally, the study compares technology adoption behaviors between DACs and 

non-DACs by exploring infrastructure and socio-economic barriers. Methodologically 

speaking, this dissertation employs various state-of-the-art statistical and explainable 

artificial intelligence techniques. Overall findings indicate that compared to pre-COVID-

19, the surge in WFM and e-commerce trends was associated with a substantial reduction 

in physical shopping trips during COVID-19. Speeding and reckless behaviors were 

strongly associated with the increased road fatalities. DACs experienced heightened 

adversity than non-DACs, associated with a higher rate of fatal crashes (an increase of 8% 

to 57%). Online orders were considerably less frequent in DACs than non-DACs (2% to 

7%), emphasizing disparity in digital infrastructure. Additionally, technology adoption 

rates were significantly lower in DACs. These findings underscore the importance of better 

preparedness and planning for such communities to be equipped to handle future systemic 

shocks. 
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CHAPTER 1 INTRODUCTION 
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Although the COVID-19 pandemic, a systemwide shock, may be a once-in-a-lifetime event, it has 

long-lasting and significant impacts on various aspects of our daily lives, including transportation. 

It has contributed to a shift in travel behavior, with many people turning to work from home (WFH) 

and online shopping, leading to decreased trips taken for commuting and non-essential purposes. 

This shift is reflected in the fact that Americans drove 13% fewer miles in 2020 than in 2019, 

resulting in a positive impact on reducing air pollution and carbon emissions. Moreover, the 

decrease in the number of vehicles on the road had the potential to reduce the total number of 

crashes and fatalities during the pandemic. However, reports suggest that while there were fewer 

crashes during COVID-19, crash fatalities increased substantially. This also affected 

disadvantaged communities (DACs), such as those with lower incomes or limited access to 

transportation options, and they may have experienced different impacts than non-DACs. This has 

raised concerns about the equity implications of pandemic-related travel behavior and road safety 

changes. A graphical abstract showing the motivation of the study is provided in Figure 1-1. 

The main question arising from these pandemic-related issues is what we can learn to improve 

transportation safety and shape future travel behavior. As such, this dissertation aims to answer 

two specific research questions: 1) how the transportation system changed during COVID-19 

compared to the pre-COVID-19 periods, and 2) how DACs were affected compared with non-

DACs during COVID-19 in terms of travel behavior, technology adoption behavior, and road 

safety aspects. The overall framework of the study is presented in Figure 1-2. The study employs 

various state-of-the-art statistical and explainable artificial intelligence techniques and utilizes 

unique and comprehensive databases. It also addresses methodological issues like spatial 

heterogeneity and unobserved endogeneity. Additionally, Figure 1-3 helps visualize the design of 

the study chapters. "X" denotes the introduction or change (e.g., the onset of COVID-19), O1 and 

O2 represent the observation or measurement of the relevant output variables (e.g., traffic fatalities, 

work from home) before and during the COVID-19 pandemic, and O2' and O2" signify 

measurements for DACs and non-DACs. Chapters 2 and 3 address the first research question by 

exploring the changes that occurred during COVID-19 compared to the pre-COVID-19 periods. 

Chapters 4, 5, and 6 address the second research question by examining the differences between 

DAC and non-DACs regarding travelers’ behavior and road safety during COVID-19. By 

addressing these research questions, this dissertation creates new knowledge for the post-pandemic 

era. It provides significant implications for future transportation planning models and the 

development of more equitable traffic safety programs. 

In summary, Chapter 2 of this dissertation utilizes survey data to examine WFH, online 

shopping, and in-person shopping behavior before and during COVID-19. Generally, online 

shopping can lead to fewer shopping trips; similarly, WFH may reduce work-related trips. 

However, more WFH has the potential to generate other non-work trips, including shopping trips. 

To find answers and explore interdependencies, this study analyzes WFH and online shopping 

together to find their impacts on shopping trip generation. It further explores whether the 

relationships are similar before and during the COVID-19 pandemic. This chapter jointly analyzes 

the relationships among shopping trips, online shopping, and WFH with a conditional mixed 

process model that addresses unobserved endogeneity. The implications of the results are 

discussed with consideration of improving existing travel demand models in the post-pandemic 

era. 
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Chapter 3 adopts a comprehensive analysis of safety-critical events on roadways during 

COVID-19 by using Trips-by-Distance data and safety data from the Tennessee Integrated 

Transportation Network (TITAN), which collects police-reported crash data. This chapter 

examines the factors associated with the increased crash fatalities during COVID-19. In addition 

to crash fatalities, total monetary harm is used as an additional safety measure. Data statistics show 

that while crash fatalities increased by 8.2%, total crashes decreased by 15.3%, and the total harm 

cost was lower by about $1.76 billion during COVID-19 (2020) compared with pre-COVID-19 

conditions (2019). Several models, including generalized least squares linear, Poisson, and 

geographically weighted regression models using the differences between 2020 and 2019 values, 

are estimated to rigorously quantify the correlates of crash fatalities and crash harm. The results 

and implications of this study are discussed from the lens of traffic law enforcement and safety 

countermeasures. 

Chapter 4 uses census and safety data to understand transportation safety in DACs. The data 

periods include the COVID-19 timeframe. To identify DACs, the US department of transportation 

(USDOT) has established six comprehensive indicators: economy, environment, equity, health, 

resilience, and transportation access. These indicators are utilized to explore the associations 

between DACs and fatal crashes, providing a comprehensive understanding of safety risks in 

DACs. The study identifies the common contributing factors to safety in DACs using Zero-Hurdle 

Negative Binomial (ZINB) models. The findings and implications of the study are discussed by 

highlighting the importance of implementing more equitable safety programs in DACs. 

Chapter 5 examines the existence of a digital divide in DACs by analyzing the emerging 

components of online shopping, i.e., retail, grocery, and food, during COVID-19. These 

components of online shopping and their interactions are relatively unexplored in DACs that are 

underserved, marginalized, and overburdened by pollution. Given the limited access to digital 

resources and the disproportionate impact of COVID-19 on DACs, it is crucial to study these 

components to ensure that DACs are not left behind in the transition to digital commerce. Hence, 

this chapter aims to provide a comprehensive understanding of travel behavior changes by 

analyzing the interconnectedness of online shopping and in-person activities in both DACs and 

non-DACs. A unique household-level database is created by linking the 2021 Puget Sound 

Household Travel Survey and the US Department of Transportation's Justice40 databases, and a 

conditional mixed process model is estimated to account for unobserved endogeneity. The findings 

and implications are discussed, highlighting the importance of considering trip frequencies by 

purpose to accurately estimate the travel demand model in DACs. 

Chapter 6 explores the adoption of alternative fuel vehicles (AFVs), leading to 

decarbonization, in DACs by applying statistical and explainable artificial intelligence (XAI) 

techniques to understand the factors associated with AFV adoption in these communities. The 

study harnesses a unique and comprehensive database of surveys and public databases collected 

during COVID-19. The XAI techniques, specifically the Extreme Gradient Boosting (XGBoost) 

algorithm with Shapely Additive Explanations (SHAP), provide interpretable and understandable 

explanations of factors associated with AFV adoption in DACs. The study findings provide an 

understanding of the social and economic factors and challenges of DACs. This contributes to the 

literature on AFV adoption and suggests opportunities for improvements in DACs transitioning to 

AFVs. The results and infrastructure-level implications are discussed. 
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Overall, the main contribution of this dissertation is to understand the changes the 

pandemic brought to road safety and travel behavior and look at the future by harnessing unique 

and comprehensive databases. This can help advance knowledge of how systemwide shocks or 

other major disruptions affect transportation systems and contribute to improving the system 

overall. This is critical to managing the public health crisis, ensuring road safety, and informing 

planning and policy decisions. Importantly, the findings of this dissertation underscore the 

importance of better preparedness and planning for underserved communities to be equipped to 

handle future systemic shocks. It is crucial to guide policy and planning decisions to promote safer 

and more equitable traffic safety programs in DACs in the future. Improving the digital 

infrastructure in DACs is essential for bridging the digital divide. Additionally, the study is critical 

for promoting electrification in DACs and supporting the ongoing decarbonization efforts. 

The key analyses conducted in this dissertation are expected to result in a minimum of five 

publications in prominent transportation journals as follows: 

1. Patwary, A. L., & Khattak, A. J. Interaction Between Information and Communication 

Technologies and Travel Behavior: Using Behavioral Data to Explore Correlates of the 

COVID-19 Pandemic 

o Peer-review conference paper: Presented at the 101st Transportation Research Board 

Annual Meeting 2022, Washington D.C. 

o Journal article: Published in Transportation Research Record, 2022. 

03611981221116626. 

2. Patwary, A. L., & Khattak, A. J. Crash harm before and during the COVID-19 pandemic: 

Evidence for spatial heterogeneity in Tennessee. 

o Peer-review conference paper: Presented at the 101st Transportation Research Board 

Annual Meeting 2022, Washington D.C. 

o Journal article: Published in Accident Analysis & Prevention, 2023. 106988. 

3. Patwary, A.L., Haque A.M., Mahdinia, I., Khattak, A.J. Investigating Transportation Safety 

in Disadvantaged Communities by Integrating Crash and Environmental Justice Data 

o Peer-review conference paper: Presented at the 102nd Transportation Research 

Board Annual Meeting 2023, Washington D.C. 

o Journal article: Published in Accident Analysis & Prevention 

4. Patwary, A.L., Khattak, A.J. Interaction between the Emerging Components of Online 

Shopping and In-Person Activities: Insights from Behavioral Survey and Justice40 Initiative 

Data 

o Journal article: Under Review for Publication 

5. Patwary, A.L., Khattak, A.J. Explainable Artificial Intelligence for Decarbonization: 

Alternative Fuel Vehicle Adoption in Disadvantaged Communities 

o Peer-review conference paper: Presented at the 102nd Transportation Research 

Board Annual Meeting 2023, Washington D.C. 

o Journal article: Accepted for publication in the International Journal of Sustainable 

Transportation 
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Figure 1-1: Graphical Abstract of the Dissertation 
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Figure 1-2: Overall Framework of the Dissertation 
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Figure 1-3: Overview of the Study Design  



8 

 

CHAPTER 2 INTERACTION BETWEEN INFORMATION AND 

COMMUNICATION TECHNOLOGIES AND TRAVEL BEHAVIOR: 

USING BEHAVIORAL DATA TO EXPLORE CORRELATES OF THE 

COVID-19 PANDEMIC 
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A version of this chapter was originally published by A. Latif Patwary and Asad J. Khattak in the 

Journal of Transportation Research Record: 

 

 Patwary, A. L., & Khattak, A. J. (2022). Interaction Between Information and 

Communication Technologies and Travel Behavior: Using Behavioral Data to Explore Correlates 

of the COVID-19 Pandemic. Transportation Research Record, 03611981221116626 

2.1 Abstract  

The COVID-19 Pandemic has highlighted the importance of information and communication 

technologies (ICTs), providing virtual engagement. The question for planners and engineers is 

whether cities will see reductions in travel demand, given the increasing use of ICT technologies. 

Notably, ICTs facilitate online shopping and working-from-home (WFH). Generally, online 

shopping can lead to fewer shopping trips; similarly, WFH may reduce work-related trips. 

However, more WFH has the potential to generate other non-work trips, including shopping trips. 

To find answers and explore interdependencies, this study integrates pre-pandemic behavioral data 

with during-pandemic travel data. In our framework, WFH and online shopping are considered 

together. By harnessing the pre-pandemic 2017 National Household Travel Survey data, this study 

jointly analyzes the relationships among shopping trips, online shopping, and WFH with a 

conditional mixed process model that can address unobserved endogeneity and selection bias. The 

results suggest that pre-pandemic online shopping was associated with lower in-person shopping 

trips. Furthermore, WFH was associated with more shopping trips. The role of socio-demographic, 

locational, and travel-related factors is also explored. The during-pandemic data and analysis 

capture how COVID-19 impacts travel behavior. The results show that the relationships among 

the key variables found in pre-pandemic data are similar but differ in magnitude from the during-

pandemic periods. WFH went up from 12% to 61% during COVID-19, admittedly an unusual 

situation. In the next new normal, planners may improve travel demand models by treating WFH 

explicitly as an alternative to traveling to work in the trip generation and time-of-day models. 

2.2 Introduction 

The world is changing through the advancement of information and communication technology 

(ICT). With affordable ICT appliances and widely available internet, many activities that needed 

a fixed location and time are no longer as bounded as before (1). Therefore, partial decoupling of 

virtual and physical activity spaces is expected (2). These changes challenge the traditional belief 

that an individual’s daily activity is limited to fixed spaces and time (3). Virtual communication 

behaviors could substitute activities that previously required physical travel, as well as can 

stimulate more virtual communication (4). It can be in the form of e-commerce (e.g., online 

shopping) and teleworking (e.g., working from home), among others.  

The COVID-19 Pandemic and the ever-changing ICT landscape have further prompted 

changes in daily activity travel. During the Pandemic, ICT has played a crucial role in fulfilling 

daily necessities through working-from-home (WFH) and online shopping. The E-commerce 

surge triggers more and more individuals to buy from online stores. In the United States (US), e-

commerce sales grew by 17.3% in 2019, and sales escalated by 36.7% in the 3rd quarter of 2020. 

E-commerce comprised up to 14.3% of total retail sales, and this growth is expected to continue 
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in the coming years (5). Hence, the surge in online shopping has the potential to affect travel 

behavior. Moreover, ICT has given the option to work virtually, leading to change in the workforce 

and economy. It enables companies to permit workers to work from remote locations, which can 

bring significant changes in workers' travel behavior. It is estimated that in 2017, 5.2% of people 

were engaged in full-time remote working (6); however, this number increased to 51% in April 

and 33% in September of 2020 (7). These new routines and alternate activities are also expected 

to be continued in the post-COVID-19 periods.  

Presumably, WFH generates numerous benefits, including reduced congestion, emissions, 

office space saving costs, and flexibility (8). Moreover, policymakers are promoting WFH to 

substitute the commute for work (9). They stand on the traditional belief that WFH and online 

shopping might reduce physical shopping trips. However, the relationships among these activities 

do not provide any clear-cut results as expected. Does ICT usage substitute travel, especially in 

uncertainties like COVID-19, or can these incite new opportunities for people to engage in other 

travel-required activities? For example, Cao et al. (10) discovered that online shopping could 

increase shopping trips instead of reducing them. Besides, WFH can intervene in this relationship, 

as it has the potential to generate other non-work trips like shopping trips. Moreover, WFH and 

online shopping can also be influenced by socio-demographic behavior, location, and travel-

specific factors. However, empirical evidence indicates no significant prior work on the integration 

of these activities. It is warranted to discover the potential relationships among the mentioned ICT 

uses together and their overall policy-driven implications, as understanding these relationships is 

important for considering and planning for future travel behavior patterns. 

Therefore, this study aims to analyze WFH and online shopping together to find their 

impacts on the shopping trip generation. It further explores whether the relationships are similar 

or not before and during the COVID-19 pandemic. The study also aims to discover the exogenous 

factors that may encourage people to work from home, shop online, and make shopping trips. The 

structure of this paper is as follows: a literature review, which includes the previous works based 

on which the objectives were formulated, a conceptual framework, the methodology used, the 

results, and a discussion of the analysis.  

2.3 Literature Review 

ICT can interact with travel in four different ways: substitution, modification, neutrality, and 

complementarity (11). In general, ICT use can reduce travel costs and time (substitute). 

Nevertheless, these reductions may be used for participating in other activities where travel might 

be needed (complement). This rebound eventually offsets the initial travel reduction gains (11-13). 

A major share of research has focused on online shopping and WFH among all the ICT uses (14). 

Online shopping (also known as e-shopping) has experienced substantial growth over the years. 

Moreover, online sales soared amid the COVID-19 pandemic. This surge certainly can affect 

shopping trip generation, which accounts for nearly 20% of all US trips in 2017 (15). Therefore, 

online shopping is of interest to many engineers and planners. A long-lasting debate is going on: 

whether the relationship between online shopping and shopping trips is substitutive or 

complementary. Several studies have explored this relationship and found a complementary effect, 

implying the increase in overall trips due to increased online shopping frequency (10; 16). Wilson 

et al. (17) surveyed people in three cities in the United States and found that e-shopping for the 

last purchase replaced 79% of shopping trips. They also found that 55.5% of the shoppers made 



11 

 

new trips after obtaining information online. Other studies found the relationship to be a 

substitution (18-20). People substitute online shopping time for travel time, leading online 

shoppers to take fewer trips and travel to nearby places for shopping purposes. Moreover, online 

shopping has the potential to reduce longer shopping trips (19). Some studies found both 

substitution and complementary effects on travel. For example, Weltevreden and Rietbergen (21) 

found that more than 20% of online buyers made fewer trips to city center stores in the long run, 

whereas they also found a complementary effect in the short run. In addition, Tonn & Hemrick 

(22) noticed that certain internet users reduced trips to stores, with a minor percentage of them 

making new trips in Knoxville, US.  

WFH (also known as teleworking or telecommuting) helps to achieve travel reduction 

(substitute) and urban sustainability goals based on policy implementation (23; 24), while it is also 

found that the impact might be smaller than expected or complementary (25; 26). WFH exerts 

complex travel substitution rather than the common assumption of its reduction to overall travel 

demand. It can promote more dispersed, decentralized, and car-dependent patterns of working 

while reducing congestion (27). Importantly, WFH provides workplace and work time flexibility 

that may ease peak-hour congestion (28). There also might be an overall increase in mobility in 

terms of personal travel attributes. For example, it is observed that people with higher education 

levels are more likely to work from home and take fewer commute trips but more insignificant 

trips (20). Silva et al. (29) suggested that WFH is an approach used to get through long and costly 

travel, especially for workers living in remote areas. Overall, while the benefits of WFH in terms 

of sustainability, flexibility, or reducing commute trips have been explored, the potential for WFH 

to promote alternate activities like more online shopping or making shopping trips is less explored 

in previous studies. Furthermore, the COVID-19 pandemic may intervene in these relationships, 

as suggested by the recent literature on COVID-19 and ICT uses (30-33). Therefore, it is necessary 

to investigate the effects of COVID-19 as well. 

Online shopping and WFH are largely influenced by socio-demographic characteristics, 

regional features, and travel attributes (10; 16; 18; 21; 34). Higher education and urban locations 

tend to increase online shopping frequency. Internet use and e-shopping are largely urban 

phenomena (10). People living in urban areas buy online more frequently than those in rural areas, 

which reveals a complementary effect between traveling and buying online (34). Higher household 

income, shopping attitude, and full-time employment (FTE) have both positive and negative 

effects on online shopping. For example, Zhou and Wang (16) & Cao et al. (35) found a positive 

impact on household income, whereas Farag et al. (34) found a negative result on online shopping. 

A summary of the impacts of some key variables is presented in  

Table 2-1.  

This research contributes to the literature in two ways while filling the gaps. First, we investigate 

the ICT uses (i.e., WFH and online shopping) in terms of their association with shopping trip 

generation while controlling for other exogenous factors using pre-pandemic data in a joint 

estimation framework. Second, using the same framework, we examine whether the relationships 

among WFH, online shopping, and shopping trip generation are similar or not during the 

pandemic. 

2.4 Conceptual Framework and Hypothesis 

The interaction between online shopping and shopping trip generation is not straightforward. 
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Table 2-1: Summary of Relevant Literature 

Author Study Approach Findings Some exogenous variables and their 

impacts on Online Shopping/ Telework 

Name and 

Year 

Location and  

Data 

Analysis 

Method 

Overall Effects 

on Travel  

Household 

Income 

Education Urban 

Location 

FTE 

Zhou and 

Wang, 

2014 

US, N= 85,663, 

2009 NHTS 

Structural 

Equation 

Modelling 

(SEM) 

Complementary + + + + 

Ferrell, 

2005 

San Francisco, 

N= 14563, Area 

Travel Survey 

for the year 

2000 

Two-stage 

Least 

squares 

(2SLS) 

Regression 

Substitution + NA + + 

Cao et al., 

2012 

Minneapolis, 

N=539, Online 

survey 

SEM Complementary + + + + 

Farag et al., 

2006 

Netherlands, 

N= 2190, 

Online Survey 

SEM Complementary - NA + NA 

Weltvreden 

and 

Rietbergen, 

2007 

Netherlands, 

N= 3200, online 

survey 

Multinomi

al Logit 

Complementary, 

Substitution 

NA + + NA 

Tonn and 

Hemrick, 

2004 

Knoxville, N= 

118, 

Web Survey 

Trip 

Generation 

model 

(Regressio

n) 

Complementary, 

Substitution 

+ + NA - 

Loo and 

Wang, 

2018 

China, N= 608 

FTE employees, 

Household 

Survey 

Logit 

Regression 

Substitution + +/- NA NA 

Note: “+” and “-” denote positive and negative impacts, respectively. 
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Previous studies suggest that this relationship can be either complementary or substitutive. 

Besides, WFH can also intervene in this relationship since WFH itself can be influenced by the 

same exogenous features (e.g., socio-demographics) for defining online shopping and shopping 

trip association. On the other hand, recent developments in e-commerce suggest that online 

shopping can take many new and different forms, e.g., online shopping for durable goods or 

groceries. These components of online shopping can be interconnected with each other and also 

with physical shopping trips (36). However, such nuances could not be explored because of data 

limitations, i.e., these components were aggregated in a broad category of online shopping. To 

analyze the overall potential impacts, we identify the number of shopping trips, online shopping, 

and WFH as the outcome variables, which may be influenced by some specific person, household, 

location, and travel-related variables (Figure 2-1). 

We anticipate that the number of shopping trips will decrease with more online shopping. 

As the products are delivered to the door, there is less need for physical travel for shopping (18). 

WFH may stimulate shopping trips. While people work from home, it is expected that they will 

desire to make other non-work trips, e.g., shopping trips, as opposed to shopping online. 

Nonetheless, they can also be encouraged to buy online, as they get more free time by not 

commuting to work. We can expect that a higher-aged individual with higher education is likely 

to make more physical shopping trips (35). However, they may also be more comfortable with 

WFH (8). In contrast, young people and females may spend more time online searching for 

discounts or deals and will, therefore, prefer online shopping more than shopping in person. 

People with higher incomes are expected to shop more in-store and online than lower-

income people (16; 20; 34). People living in urban areas have higher accessibility to newer 

technologies. Therefore, they may shop more online instead of in stores. However, they may be 

less interested in working from home, as most workplaces are in urban areas. Hence, travel time 

should be lower for those from urban areas as compared to people living in rural areas (16; 34). 

Higher travel time may also play a role in more online shopping, fewer shopping trips, and WFH. 

Higher gas prices may also be linked to this association (16). Travel day may influence the 

shopping trip generation as well. If people go out on weekends, it is generally anticipated that they 

may go shopping as well (16). 

2.5 Methodology 

2.5.1 Data 

Pre-pandemic data for this study is collected from the 2017 US National Household Travel Survey 

(NHTS) (15). The survey covered 129,696 households, including 264,234 individuals over all the 

US states and the District of Columbia (DC). The survey produces four data files which are on 

household, person, vehicle, and trips. These files are merged, summarized, and averaged to 

generate person-specific variables. At first, samples are sorted out based on the person-specific 

shopping trips on each travel day. Then, the individuals who are less than 18 years old are dropped. 

Observations with missing values are also discarded. A total of 108,297 observations (N) finally 

remain after dropping the invalid observations. The cleaned dataset contains three endogenous 

variables and four types of exogenous variables: person, household, location, and travel pattern. 

Overall, the NHTS data is carefully collected, and error checking is performed using descriptive 

analysis (Table 2-2 and Table 2-3). 
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Figure 2-1: Study Framework 
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Shopping trips, online shopping, and WFH are the endogenous variables. It can be 

observed from the descriptive statistics that 59% of the sample do not make any shopping trips, 

whereas 34% make 1-2 trips, 6% make 3-4 trips, and 1% make more than four trips on a travel 

day. A travel day is specified in the NHTS user guide as a day that starts from 4:00 AM of one day 

until 3.59 AM of the next day (15). In the sample, 79% of travel days are on weekdays. It is seen 

that 83% of the sample shop 0-5 times online in a month. 12% of the respondents in the sample 

work from home. It is understood from the NHTS survey that hybrid workers (i.e., workers who 

work both from the office and home) fall into the “Yes” response category of WFH for working a 

few days a week from home. 51% are male, and 25% have a graduate or professional degree. Of 

the sample, 80% were full-time employees. Most individuals are from urban areas and affluent 

families (i.e., 74% of households have income greater than $50,000). It is not surprising that 96% 

of people sampled use the internet almost daily.  

During-pandemic data is collected from the US census bureau, which has introduced an 

experimental household pulse survey to collect data to quickly and effectively capture how the 

ongoing COVID-19 pandemic is changing people’s travel behavior (37). The survey has been 

collecting weekly data from all over the US. This study uses person-level data from week 23 (i.e., 

January 20th – February 1st, 2021) from the survey. The data are cleaned and checked for errors. 

The final dataset has a sample size of 69,905. In the sample, 60% are male, 30% have bachelor's 

degrees, and 60% are from households with an income of more than 50,000 (Table 2-2 and Table 

2-3). The data shows that 61% of people aged 18 or older live in households where at least one 

person telework to substitute the work trips during COVID-19, while, before COVID-19, only 

12% of people worked from home. However, a total of 70% of people took fewer trips to the store, 

and 53% of people made more online purchases in the last seven days of the data collection period 

due to COVID-19. Notably, the recent developments during COVID-19 highlight online grocery 

shopping as crucial as online shopping for other household and personal items. In our pre-COVID-

19 and during-COVID-19 databases, online shopping is identified as a broad category, including 

grocery shopping and shopping for other personal or household items. The substitution vs. 

complementarity framework is flexible enough to incorporate these new developments. 

2.5.2 Model 

In this paper, for the pre-pandemic data, we define shopping trips as a categorical variable, where 

the frequency of the trips is ordered, ranging from “no trips” to “>4 trips”. Online shopping is also 

defined as a categorical ordered variable, including “0-5 times” making an online purchase as the 

lowest category and “>15 times” as the highest category. WFH is a binary variable. On the other 

hand, WFH, online shopping, and shopping trips are all binary variables for the during-pandemic 

data. If we denote online shopping as OSi, and shopping trips as STi, the following empirical 

models can be estimated: 

𝑊𝐹𝐻𝑖 = 𝛼0 + 𝛼1𝑋𝑖 + 𝜇1𝑖                                        (i) 

𝑂𝑆𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛿𝑊𝐹𝐻𝑖 + 𝜇2𝑖                          (ii) 

𝑆𝑇𝑖 = 𝛾0 + 𝛾1𝑋𝑖 + 𝜑𝑂𝑆𝑖 +  𝜏𝑊𝐹𝐻𝑖 + 𝜇3𝑖              (iii) 

Where Xi signifies a vector of the explanatory variables associated with the individual which are 

hypothesized to influence WFH, online shopping, and making shopping trips, 𝜇1, 𝜇2, and 𝜇3 are 

the corresponding random error terms, and α, β, γ, δ, 𝜏 and 𝜑 are the parameters to be estimated.  
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Table 2-2: Descriptive Statistics of Categorical Variables 

Pre-pandemic Data (N=108,297) 
Variables Description Frequency % 

Shopping Trips* 

Number of shopping trips on travel day   

       No Trips 60,737 59% 

       1-2 Trips 34,888 34% 

       3-4 Trips 5,871 6% 

       >4 Trips 1,198 1% 

Online shopping* 

Number of Online Purchases in Past Month   

       0-5 times 90,240 83% 

       6-10 times 12,454 11% 

       11-15 times 4,815 4% 

       >15 times 788 1% 

WFH* 
Yes 13,197 12% 

No 95,100 88% 

Person Specific 

Age 
1= “18-30” 17,893 17% 

0= “>30” 90,404 83% 

Gender 
1= Male 55,210 51% 

0= Female 53,087 49% 

Education 

1= Graduate or professional degree 27,174 25% 

2= Bachelor's degree 30,928 29% 

3= Some college or less 50,195 46% 

Work Status 
1= Full-time 86,243 80% 

0= Part-time 22,054 20% 

Household Specific 

Household Income 
1= Household income >= 50,000 80,646 74% 

0= Household income < 50,000 24,651 26% 

Internet Use 

1= Once a week or less 2,283 2% 

2= Several times a week 2,524 2% 

3= Daily 103,490 96% 

Location Specific 

Urban 
1= Urban 86,025 79% 

0= Rural 22,272 21% 

Travel Pattern Specific 

Travel Day 
1= Weekend 22,303 21% 

0= Weekdays 85,994 79% 

During-pandemic Data (N=69,905) 

Variables Description Frequency % 

Shopping Trips* 

Whether took fewer trips to the store in last 7 

days during COVID-19 
  

Yes 49,214 70% 

No 20,691 30% 

Online Shopping* 

Whether made more purchases online in last 

7 days during COVID-19 
  

Yes 37,196 53% 

*: Endogenous Variable.                                                             Source: (NHTS, 2017; Census, 2021)  
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Table 2-2 continued 

 No 32,709 47% 

WFH* 

Whether at least 1 person in a household 

telework during COVID-19 
  

Yes 42,589 61% 

 No 27,316 39% 

Age 
1= “18-30” 6,479 10% 

0= “>30” 63,426 90% 

Gender 
1= Male 41,895 60% 

0= Female 28,010 40% 

Education 

1= Graduate or professional degree 18,299 26% 

2= Bachelor's degree 20,803 30% 

3= Some college or less 30,803 44% 

Household Income 
1= Household income >= 50,000 42,612 61% 

0= Household income < 50,000 27,293 39% 

*: Endogenous Variable.                                                             Source: (NHTS, 2017; Census, 2021) 

 

 

Table 2-3: Descriptive Statistics of Continuous Variables 

Pre-Pandemic Data (N=108,297) 

Variables Description Min. Mean Max. SD 

Household Size Count of Household member 1 2.65 13 1.29 

Travel Time Avg. travel time (minute) per trip 0.5 26.26 1200 34.59 

Gas Price USD per gallon 2.01 2.4 2.96 0.23 

During-pandemic Data (N=69,905) 

Household Size Count of Household member 1 2.74 10 1.46 

Source: (NHTS, 2017; Census, 2021) 
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The parameters δ, 𝜑, and 𝜏 are the estimate of WFH on online shopping, the estimate of online 

shopping on shopping trips, and the estimate of WFH on shopping trips, respectively. 

The estimation of the above three equations (i)-(iii) can be performed using conventional 

path analysis or structural equation modeling. The individual models may produce biased and 

unreliable estimates due to a potential issue of selection and unobserved endogeneity. To overcome 

these concerns, we can propose a framework that can jointly estimate the equations. Conventional 

models become inapplicable if mixed equations are used (38). The mentioned three equations are 

mixed for the pre-pandemic data; Equation (ii) and (iii) are ordered probit models, and equation 

(i) is a binary model. Whereas these three equations are binary models for the during-pandemic 

data. The conditional mixed process model (CMP) developed by Roodman (39) provides us with 

a unique opportunity to employ this mixed structural model with different equations while 

correcting bias and unobserved endogeneity. CMP jointly estimates two or more equations with 

associations among their error processes. These are individual equations with correlated errors. 

CMP can handle all types of dependent variables, e.g., binary and ordered (39). 

The equations are restructured into the following in the CMP format:  

𝑦1
∗ = 𝜎1 + 𝜇1                     (iv) 

𝑦2
∗ = 𝜎2 + 𝜇2                      (v) 

𝑦3
∗ = 𝜎3 + 𝜇3                      (vi) 

Where, 

𝜎1 = 𝛼1𝑋𝑖, 𝜎2 = 𝛽1𝑋 + 𝛿𝑦1, 𝜎3 = 𝛾1𝑋 + 𝜑𝑦2 +  𝜏𝑦1 

𝑦 = 𝑔(𝑦∗) = (1{|𝑦1
∗ > 0}, 𝑦2

∗, 1{𝑦3
∗ > 0})′|                                   (vii) 

𝜇 = (𝜇1, 𝜇2, 𝜇3)
′~𝑁(0, ∑) and ∑ = [

1 𝜌12 𝜌13

𝜌12 1 𝜌23

𝜌13 𝜌23 1
] 

Here, 𝑦1
∗, 𝑦2

∗, 𝑎𝑛𝑑 𝑦3
∗ are latent factors for WFH, online shopping, and shopping trips, respectively. 

The terms 𝜌12, 𝜌13, and 𝜌23, respectively, are the correlation between the error terms of WFH and 

online shopping, WFH and shopping trips, and online shopping and shopping trips. Presuming that 

𝑦𝑖 = (0, 𝑦𝑖2, 0)′ is observed, a consequent likelihood function can be denoted as follows: 

𝐿𝑖(𝛼1, 𝛽1, 𝛾1, 𝛿, 𝜑, 𝜏, ∑; 𝑦𝑖|𝑥𝑖) =  ∫ ∫ ∫ ∅𝑗{𝜇1, 𝑦𝑖2 − 𝜎𝑖2, 𝜇3)
′; ∑}𝑑𝜇1𝑑𝜇2𝑑𝜇3

−𝜎3

−∞

−𝜎2

−∞

−𝜎1

−∞
         (viii) 

This modeling framework is applied to produce results for both pre-pandemic and during-

pandemic data. Survey estimation design is employed in the CMP modeling. The analysis is 

performed using the statistical software “STATA” version 17. STATA’s sampling weight option 

(pweights) is adopted to generate justifiable population-level estimates for the survey data. 

Besides, direct marginal effects are produced in the CMP post-estimation.  

2.6 Results and Discussion 

2.6.1 Pre-pandemic 

The results of the CMP modeling approach are reported in Table 2-4. Columns 1, 2, and 3 show 

the estimates for WFH, online shopping, and shopping trips, respectively. The model significance 

test indicates that the model fits the data well. We first discuss the results to explore the 

relationships among the endogenous variables. Then, we expound on the effect of exogenous 
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variables on each of the endogenous variables in the model. The signs of expected and observed 

findings are summarized in Table 2-5. 

The results indicate that structurally, WFH positively affects online shopping. Specifically, 

compared to not WFH, WFH is associated with being 18.5% less likely to shop online 0-5 times 

but 9.1% more likely to shop online 6-10 times, 7.2% more likely to shop online 11-15 times, and 

2.1% more likely to shop online for >15 times. Online shopping is negatively associated with 

shopping trips (from the lower category “no trips” to the higher category “>4 trips”). The direct 

marginal effect of online shopping in the shopping trips model is negative for making shopping 

trips. For example, compared to the base of online shopping (0-5 times), 6-10 times online 

shopping is associated with being 8.5% less likely to make 1-2 trips, 2.9% less likely to make 3-4 

trips, and 1% less likely to make more than 4 trips. Similarly, the effects are increased for the 

remaining categories of online shopping. WFH is positively associated with shopping trips (i.e., 

from making “no trips” to “>4 trips”). People who work from home are 13.3% more likely to make 

1-2 trips, 9% to make 3-4 trips, and 4% to make >4 trips. The findings suggest that online shopping 

reduces shopping trips, which is consistent with our earlier assumption. However, this claim is in 

contrast with Cao et al. (35), who found a positive association between online purchase frequency 

and physical shopping trips. Mostly, people prefer online shopping instead of making shopping 

trips because of the convenience of online shopping. The products are delivered to the doorsteps. 

Online shopping has many benefits, e.g., people can shop any time they want and compare prices 

from different online stores. Thus, comparing with the prior studies on whether the association 

between online shopping and shopping trips is a complementary or substitution effect, our study 

suggests that the relationship is substitution. However, we should acknowledge that shopping is 

usually comprised of several stages that may be completely or partially completed online. In-store 

purchases can be associated with online searches. For example, people can make trips to stores to 

compare or experience the actual goods they browse online. In addition, shopping trips are 

influenced by WFH, as we found that it stimulates shopping trips. While people are working-from-

home, they may desire to make other non-work and/or insignificant trips, and shopping trips are 

one of them. 

We shift our discussion to other factors that influence people to work from home, shop 

online, and make shopping trips. It is observed that the probability of young people aged 18-30 

buying online for the 0-5 times category is 2.5% lower than for the older people; however, this age 

group has a higher probability of buying online for other higher purchase categories. They are also 

8.6% more inclined to make no shopping trips as compared to the older population. As we 

expected, higher-aged people prefer buying online less and making shopping trips more than 

younger ones. The findings are aligned with Zhou and Wang (16) and Cao et al. (35). However, 

older people are 7% more likely to work from home than younger ones. It is also observed that a 

male is more likely to work from home compared to a female. Males are less likely to shop online 

for 6-10, 11-15, & >15 categories than females, whereas males are more likely to purchase for 

lower “0-5” times category. As we assumed earlier, males prefer less online shopping as well as 

fewer shopping trips than females, which is also consistent with the results of Ferrell (18). Young 

people and females may spend more time online searching for discounts or deals; hence, they 

prefer to shop online rather than in person. 

Our results further suggest that people with bachelor’s degrees are 1.5% more likely, and 

people with some college degrees are 4.3% less likely to work from home than people with 
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graduate or professional degrees. As we anticipated, higher education attainment motivates 

someone to work from home. Drucker & Khattak (8), among others, discovered similar findings 

(29). Higher education attainment is also associated with more online shopping. Besides, higher 

household income (>=$50,000) is associated with more online purchases for 6-10, 11-15, and >15 

categories, whereas lower household income is more associated only with the 0-5 times online 

purchase category. This claim is supported by Farag et al. (34). Compared to those who use the 

internet once a week or less, using the internet daily increases the probability of buying online for 

6-10, 11-15, and >15 categories. An increase in travel time and gas price increases the probability 

of WFH. An increase in gas price is associated with more online shopping for 6-10, 11-15, and 

>15 times categories and less for the 0-5 times category. As we anticipated earlier, higher travel 

times and higher gas prices discourage people from making shopping trips, and instead, they shop 

online and prefer to work from home. Daily internet use contributes to this association. This is also 

supported by Zhou and Wang (16).   

People are 3% less likely to telework in urban areas compared to rural areas. In urban areas, 

people are less likely to shop online for the 0-5 category than in rural areas, whereas they are more 

likely to shop online for other higher categories. As we expected, people living in urban areas are 

more reluctant to work from home compared to people from rural areas. However, they buy online 

more times compared to people from rural areas, which aligns with our earlier assumptions. Farag 

et al. (34) discovered similar findings in their study. This may be because shopping accessibility 

and internet use in rural areas are limited. Hence, people from rural areas are less encouraged to 

buy online than those in urban areas. 

2.6.2 During-pandemic 

The study attempts to shed light on the relationships among the key variables during the COVID-

19 pandemic. As COVID-19 is affecting the world economy, including the transportation sector, 

travel behavior has changed substantially. Commuting to work is a vital element of local travel 

and is related to many other aspects of local transportation. COVID-19 pushes people to telework 

as a way of substituting physical travel for work. Activities like trips to stores, which are a vital 

element of local travel, are also being substituted by online shopping. 

The CMP joint estimation results for the during-pandemic data are presented in Table 2-6. 

The model significance test suggests that the model fits the data well. The results are examined to 

explore the relationships among WFH, shopping trips, and online shopping during COVID-19 and 

compare them with the pre-COVID-19 results. Firstly, the results reveal that WFH is negatively 

associated with purchasing more online, which is consistent with the 0-5 times online purchases 

in a month but contradicts the higher categories of purchases (more than 5 times in a month) in 

pre-COVID-19 findings. However, this relationship is not statistically significant for the during-

COVID-19 data. Secondly, the findings suggest that WFH is negatively associated with the making 

of fewer shopping trips, which indicates that compared to not WFH, WFH is likely to increase the 

probability of making shopping trips by 14.2% during COVID-19. This finding is consistent with 

the pre-pandemic periods (29.6%), although the magnitude is 52% lower during COVID-19. 

Thirdly, online shopping is positively associated with fewer shopping trips; hence, it is more likely 

to reduce shopping trips. More specifically, online shopping lowers the probability of making 

shopping trips by 20.7% during COVID-19. This relationship is also aligned with the pre-

pandemic findings. Due to the pandemic and its associated stay-at-home orders, more people are 
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Table 2-4: CMP Joint Estimation Results for Before COVID-19 Data (N= 108,297) 

Variables 

(1) 

WFH 

(2) 

Online Shopping 

(3) 

Shopping Trips 

Coef. 
Mar. 

Effect 
Coef. 

Marginal Effect 
 

Coef. 

Marginal Effect 

0-5 

times 

6-10 

times 

11-15 

times 

>15 

times 

No 

Trips 

1-2 

Trips 

3-4 

Trips 

>4 

Trips 

WFH (Base: No), Yes     0.66*** -0.18 0.09 0.07 0.02 0.81***  -0.30 0.15 0.10 0.05 

Online Shopping (Base: 0-5 

times) 
                

 6-10 times           -0.36*** 0.12 -0.08 -0.03 -0.01 

 11-15 times           -0.59*** 0.19 -0.14 -0.04 -0.01 

 >15 times           -1.03*** 0.29 -0.22 -0.05 -0.02 

Person Specific                  

Age (Base: >30), “18-30” -0.49*** -0.07 0.11*** -0.03 0.02 0.01 0.00 -0.25*** 0.09 -0.06 -0.02 -0.01 

Gender (Base: Female), Male 0.05** 0.01 -0.18*** 0.04 -0.02 -0.01 -0.01 -0.17*** 0.06 -0.04 -0.02 -0.00 

Education (Base: graduate or 

prof. degree) 
               

 Bachelor's 0.07** 0.02 -0.13*** 0.03 -0.02 -0.01 -0.00 -0.01 0.01 -0.01 -0.00 -0.00 

 Some college or less -0.25*** -0.04 -0.33*** 0.08 -0.04 -0.03 -0.01 -0.09*** 0.03 -0.02 -0.01 -0.00 

Work Status (Base: Part-time), 

Fulltime 
-0.59*** -0.13 0.18*** -0.04 0.02 0.01 0.01 -0.01 0.03 -0.02 -0.01 0.00 

Household Specific                

Household Size -0.03*** -0.01             

Household Income (Base: 

<50,000), >=50,000 
0.01  0.002 0.37*** -0.08 0.05 0.03 0.00 -0.11*** 0.03 -0.02 -0.01 -0.00 

Internet (Base: Once a week or 

less) 
               

 Daily 0.002 0.00 0.93*** -0.13 0.08 0.04 0.01 -0.04 0.01 -0.01 -0.00 -0.00 
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Table 2-4 continued 

 

 
Several Times a 

Week 
-0.26** -0.04 0.28** -0.02 0.02 0.00 0.00 -0.02 0.01 -0.01 -0.00 -0.00 

Location Specific                

Urban (Base: No), Yes -0.16*** -0.01 -0.07** -0.02 0.01 0.01 0.00 -0.01 0.01 -0.01 0.00 0.00 

Travel Pattern Specific                

Travel Day (Base: Weekdays), 

Weekend 
         0.43*** -0.12 0.09 0.04 0.02 

Avg. Travel Time 0.01*** 0.00      -0.01*** 0.01 -0.01 -0.00 -0.00 

Gas Price 0.23*** 0.04 0.19*** -0.04 0.02 0.02 0.00 -0.10*** 0.04 -0.02 -0.01 -0.01 

Constant -0.99**                       

Model Fit Statistics 

Number of observations 108,297.00          

Wald chi2 (39) 3249.24 
         

Model Significance Test 0.00             

Log Pseudolikelihood -221400.85           

AIC 443925.70           

BIC 4438395.70 
                 

*** p<.01, ** p<.05, * p<.1  

 

 



23 

 

Table 2-5: Expected and Observed Signs of the Exogenous Variables 

 

Exogenous Variables 

Endogenous Variables 

WFH Online Shopping Shopping Trips 

Expected Observed Expected Observed Expected Observed 

Person Specific          

  Higher age + + - - + - 

  Gender (Male) + + - - - - 

  Education (Bachelors) + + + - + NS 

  Full Time - - + +  - NS 

Household Specific     
 

    

  Household size + - NA NA NA NA 

  Household Income + NS + + + - 

 Daily Internet Use + NS + +  - - 

Location Specific     
 

    

  Urban - - + - -  NS 

Travel Pattern Specific     
 

    

  Average Travel Time Per 

trip 

+ + NA NA - - 

  Weekend Travel Day NA NA NA NA + + 

  Gas Price + + + +  - - 

Others     
 

    

  Online Shopping NA NA NA NA - - 

  WFH NA NA +/- +/- + + 

Note: NA = Not Applicable, NS= Not Statistically Significant 
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working from home, and many of them buy online rather than making other non-essential trips, 

e.g., shopping trips. However, during COVID-19, online shopping also introduced several travel 

components that need to be acknowledged. COVID-19 saw the frequent use of the curbside pickup 

of goods ordered online, which warrants making physical trips. Moreover, the trips could be made 

to the courier office, locker facility, or other designated locations where orders are fulfilled through 

goods delivery. 

The factors that influence WFH, online shopping, and shopping trips are also explored 

during COVID-19. CMP modeling results indicate that younger age people, compared to the old 

ones, are 10.2% more likely to work from home during COVID-19, whereas they are 7.3% less 

likely to work from home before COVID-19. It may be because younger people are forced to work 

at home, as some schools or companies are encouraging WFH during COVID-19. The findings 

are similar to Tahlyan et al. (31), who indicated that older people have lower satisfaction and 

higher obstacles to WFH than younger middle-aged people during COVID-19. Unlike the pre-

pandemic periods, our findings suggest that younger people are 2.9% more likely to make 

shopping trips. However, they are more likely to shop online, like in the pre-COVID-19 periods, 

which is supported by recent research on COVID-19 and shopping behavior (32). Our results 

further indicate that compared to females, males are 1.4% more likely to work from home but 4.6% 

less likely to shop online during COVID-19 - similar to the pre-COVID-19 findings. On the other 

hand, males are 4.9% more likely to make shopping trips, which contradicts with pre-pandemic 

periods where males are less likely to buy in person than females. Compared to people with 

graduate or professional degrees, people with bachelor’s degrees are less likely to work from home, 

shop online, and more likely to make shopping trips. The pre-pandemic findings on online 

shopping and shopping trips are consistent with the during-pandemic findings; however, they 

contradict the probability of working from home. An increase in the household size increased the 

probability of working from home by 0.7% during COVID-19, whereas it decreased by 0.5% 

before COVID-19. In addition, higher-income households' probability of making more shopping 

trips increased during COVID-19, whereas it decreased before COVID-19. It has been observed 

that higher-income households are 12.3% more likely to work from home during COVID-19. They 

are also more likely to shop online, and the relationship is similar to the pre-COVID-19 period. 

The results are consistent with Wang et al. (32), who found the association between higher-income 

households and online shopping during COVID-19 is positive and similar to the previous studies 

based on before-COVID-19 normal conditions.  

While individuals work from home during COVID-19, they make more physical shopping 

trips. WFH increases the desire to do more online shopping, while more online shopping reduces 

physical shopping trips. People working from home create shopping needs for home offices and 

more space that may have affected typical shopping habits. The risk of contracting the virus, 

lockdowns, and the advancement of ICTs are some of the factors encouraging online shopping 

while people adapt to working from home. Since the pandemic has accelerated the shift to a more 

advanced digital era, ICT uses such as WFH and online shopping will have a lasting effect in the 

future with a resurgence of the economy.  Moreover, WFH will continue as a hybrid work system 

with flexible working hours and places with positive unintended consequences for future 

transportation planning (30). 

2.7 Limitations 

This study ignores the bidirectional relationship among the endogenous outcome variables. 

Besides, this study only concentrates on the national-level estimates. State-level estimation could 
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Table 2-6: CMP Joint Estimation Results for During COVID-19 Data (N= 69,905) 

Variables 

WFH Online Shopping# Shopping Trips## 

Coef. 
Marginal 

Effect 
Coef. 

Marginal 

Effect 
Coef. 

Marginal 

Effect 

Working from home   -0.133 -0.052 -0.450* -0.142 

Online Shopping#     0.636*** 0.207 

Age (Base: >30), “18-30” 0.285*** 0.102 0.156*** 0.061 -0.089** -0.029 

Gender (Base: Female), Male 0.038* 0.014 -0.119*** -0.046 -0.152*** -0.049 

Education (Base: graduate or 

prof. degree) 
      

               Bachelor's -0.208*** -0.067 -0.113*** -0.044 -0.051* -0.016 

               Some college or less -0.781*** -0.282 -0.320** -0.125 -0.072 -0.023 

Household Size 0.020** 0.007     

Household Income (Base: 

<50,000), >=50,000 
0.331*** 0.123 0.263*** 0.103 -0.160*** -0.051 

Constant 0.435***  0.503  0.751***  

Model Fit Statistics: 

 

 

Number of Observations 69,905 

F (6, 69899)        374.21 

Model Significance Test  0.00 

Log Pseudolikelihood -3.87e-8 

AIC 7.74e8 

BIC 7.74e8 

# Whether made more purchases online in last 7 days during COVID-19, ## Whether took fewer trips to the store in last 7 days during COVID-19 

*** p<.01, ** p<.05, * p<.1     
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provide different levels of estimations since travel behavior can vary across the states. In the 

analysis presented, online shopping is used as a broad category, e.g., which includes grocery 

shopping and shopping for durable goods. The correlates of online grocery shopping may differ 

from those of online durable goods shopping, and the purchase intention may work differently for 

these two components. However, such correlates could not be explored because these are not 

included in the 2017 NHTS and 2020 household pulse survey databases. Furthermore, other 

variables regarding the local built information (e.g., transport accessibility, employment 

generation) that are not part of these databases could not be introduced in the models to measure 

the spatial variation of the impacts on the outcome variables.  

2.8 Conclusions 

Are the relationships between ICT uses and travel behavior similar before and during the COVID-

19 pandemic? To answer this question, the paper focuses on two different forms of ICT use: online 

shopping and WFH. Online shopping generally reduces the urge to make shopping trips. People 

who work from home may contribute to this by making other non-work trips such as shopping 

trips. Besides, these activities may also be influenced by other exogenous factors. Previous studies 

mainly focused on one activity (either online shopping or WFH) in terms of shopping trip 

generation. This study attempts to model shopping trips with online shopping and WFH together 

by integrating pre- pandemic data with the during-pandemic data. By harnessing the pre-pandemic 

2017 NHTS data, we analyze three different models for the three endogenous variables (i.e., WFH, 

online shopping, and shopping trips) in a joint framework with a conditional mixed process 

approach that can correct the unobserved endogeneity and selection bias. The during-pandemic 

analysis captures the impacts of COVID-19 on travel behavior by exploring the US Census 

Bureau’s experimental household pulse survey database. 

Overall results suggest that online shopping and physical shopping trips can be substitutes, 

suggesting that online shopping is associated with reductions in shopping trips. In contrast, WFH 

encourages people to undertake more shopping trips in pre-pandemic periods. These associations 

are found to be similar during the pandemic but differ in magnitude. Notably, the WFH percentage 

has increased during the pandemic, as expected. People who work from home during COVID-19 

are less interested in making in-person shopping trips and more interested in shopping online than 

in pre-pandemic periods. These key relationships are correlated with socio-demographic, location, 

and individual travel-related factors. Hence, the results generated for the ICT uses are robust. Some 

explanatory factors are found to be different from the pre-COVID-19 results, e.g., younger people 

and higher household size are more likely to work from home during COVID-19 as opposed to the 

findings in pre-COVID-19 periods.  

These results should be interpreted with caution because the vaccination was still in the 

early stages during the data collection periods (week 23 - January/February 2021). Very few people 

had the choice to return to work, and many people were still reluctant to make physical shopping 

trips. Besides, pandemic-related restrictions across blue and red states were different over time. 

Restrictions in red states were not as strict as in blue states. Guess et al. (40) found that blue states 

had significantly higher scores than red states regarding behavioral/mitigation efforts. These 

include the duration of lockdowns, mask mandates, and vaccination rates. Therefore, compared to 

the pre-COVID-19 periods, the travel behavior (e.g., shopping trips) during COVID-19 might be 
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similar in red states but different in blue states. Nonetheless, the results have important policy 

implications. The findings of this study may benefit future transportation planning (e.g., trip 

generation forecasting) and policymaking with the progression of ICT. Currently, planners do not 

account fully for ICT uses (e.g., WFH and online shopping); they also do not account for 

uncertainty due to large-scale events like COVID-19. Furthermore, other complications, such as 

online shopping, have a delivery component whose impact may be large both due to volume and 

the nature of the vehicles used. These types of complex relationships between ICT uses and travel 

behavior can inform planners and decision-makers to formulate more comprehensive policy 

provisions on different levels of ICTs in different periods (e.g., uncertainty) that can be used as an 

effective travel demand management technique. For example, a reduction in commuter trips due 

to more people working from home needs to be integrated into the travel demand models, i.e., trip 

generation and time-of-day models. In addition, the study findings show that both ICT uses have 

the potential to reduce the negative effects of transport (i.e., congestion, pollution, and other related 

external factors that may compel individuals to make unnecessary trips in the event of a global 

emergency). The reduction in vehicular trips following the increased ICT uses can improve the 

accessibility of all active transportation modes, including walking and bicycling, promoting non-

motorized transport and the local built environment (41). Overall, the behavioral changes explored 

in the paper have strong implications for future economic activity, safety, traffic congestion, 

energy consumption, emissions, etc. 

Future research may emphasize the inclusion of variables that may effectively define the 

spatial variation in the parameter estimates. Future research can also conduct a bidirectional study 

to understand better the assumption that shopping trips, online shopping, and WFH influence each 

other. Newer developments in e-commerce (e.g., online grocery shopping) and the many ways in 

which online shopping and physical shopping trips interact should be investigated in future 

research with the availability of newer data. Furthermore, the changing landscape of pandemic-

related restrictions both over time (i.e., different waves of the pandemic) and across space (i.e., 

blue/red states) can be explored in future studies. 
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CHAPTER 3 CRASH HARM BEFORE AND DURING THE COVID-19 

PANDEMIC: EVIDENCE FOR SPATIAL HETEROGENEITY IN 

TENNESSEE 
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A version of this chapter was originally published by A. Latif Patwary and Asad J. Khattak in the 

Journal of Accident Analysis and Prevention: 

 

 Patwary, A. L., & Khattak, A. J. (2022). Crash Harm Before and During the COVID-19 

Pandemic: Evidence for Spatial Heterogeneity in Tennessee, Accident Analysis and Prevention, 

03611981221116626. 

3.1 Abstract 

Major concerns have been raised about road safety during the COVID-19 pandemic in the US, as 

crash fatalities have increased despite a substantial reduction in traffic. However, a comprehensive 

analysis of safety-critical events on roadways based on a broader set of traffic safety metrics and 

their correlates is needed. In addition to fatalities, this study uses changes in total monetary harm 

as additional measures of safety. A comprehensive and unique time-series database of crashes and 

socio-economic variables is created at the county level in Tennessee. Statistics show that while 

fatal crashes increased by 8.2%, total crashes decreased by 15.3%, and the total harm cost was 

lower by about $1.76 billion during COVID-19 (2020) compared with pre-COVID-19 conditions 

(2019). Several models, including generalized least squares linear, Poisson, and geographically 

weighted regression models using the differences between 2020 and 2019 values, are estimated to 

rigorously quantify the correlates of fatalities and crash harm. The results indicate that compared 

to the pre-pandemic periods, fatal crashes that occurred during the pandemic are associated with 

more speeding & reckless behaviors and varied across jurisdictions. Fatal crashes are more likely 

to happen on interstates and dark-not-lighted roads and involve commercial trucks. These same 

factors largely contribute to crash harm. In addition, a greater number of long trips per person not 

staying home during COVID-19 is found to be associated with more fatalities and crash harm. 

These results can inform policymaking to strengthen traffic law enforcement through appropriate 

countermeasures, such as the placement of warning signs and the reduction of the speed limit in 

hotspots. 

3.2 Introduction 

The novel coronavirus 2019 (COVID-19) pandemic has undoubtedly impacted the whole world 

with unparalleled destruction. However, free-flowing traffic can be considered one of the silver 

linings of the pandemic. Stay-at-home orders, voluntary isolation, working from home, and the 

fear of contracting the virus contributed to a substantial reduction in traffic flow (42; 43). In the 

US, people drove 13% fewer miles in 2020 than in 2019 (44). Active travel (walking and bicycling) 

was increased with the reduction in total trips, followed by the variation in COVID-19 case severity 

initially (45). In Tennessee, total vehicle miles traveled (VMT) have been reduced by 20% in 2020 

compared to 2019 (46). Reduced traffic flow has produced a noticeable decline in congestion and 

emissions (42). Thus, there should be a decrease in the total number of crashes after the pandemic. 

However, recent information suggests while there are fewer crashes now than in 2019, the fatality 

rate has increased (47).  

The national safety council (NSC) reported an 8% increase in fatalities across the U.S. from 

2019 to 2020, with over 4,200 fatalities (48). Tennessee experienced a more than 7% increase in 

fatalities in 2020. The increase in the fatality rate from 2019 to 2020 is the highest estimated year-
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to-year jump in the US in over 96 years (49). This unprecedented situation is raising some serious 

safety concerns. While COVID-19’s impacts on road safety are relatively unknown, some factors 

brought about by the pandemic may shed some light. For example, the combination of risky drivers 

and near-empty streets may result in faster driving, which in turn increases the likelihood of fatality 

during a crash. Researchers and policymakers are concerned that the new traffic pattern during the 

pandemic could lead to excessive speeding (42). Reports suggest that speeding cases in the U.S. 

have risen by 20%, and the number of speeding tickets has more than doubled (49; 50). It is also 

reported that fewer drivers were wearing a seatbelt on the road during the pandemic (49). 

Moreover, more seriously impaired drivers are found on roads, making the roads more vulnerable 

to fatal crashes (42). The pandemic has increased alcohol and cannabis sales (51). It is also reported 

that stress, anxiety, and depressive traits have been prevalent during the pandemic (52), and these 

have been identified for reckless driving behavior in the past (53). 

This extraordinary situation is also contributing to more economic damage. Road crashes alone 

cost about $1 trillion in the loss of life and productivity each year in the US, where each crash 

fatality costs an average of $1.4 million (54). However, this loss in value may not necessarily 

reflect the true scenarios in the wake of worsened road safety arising from reduced mobility during 

COVID-19. Hence, there should be an in-depth investigation of road crashes and the overall 

economic impacts due to COVID-19. This investigation would help us design more effective and 

safe interventions for the current and forthcoming pandemic waves and similar outbreaks. 

Furthermore, understanding how COVID-19 has impacted road safety is imperative for the vision 

zero goals, as we seek to eliminate traffic fatalities and severe injuries while increasing safe 

mobility. Specifically, this study attempts to examine the factors associated with the increased 

crash fatalities within the state of Tennessee during COVID-19. The study also makes an effort to 

analyze how the economic harm in a crash has changed during the pandemic. 

3.3 Literature Review 

Quantifying the changes in travel and safety during the pandemic can be challenging. Positive 

impacts of the stay-at-home pandemic order may include less congestion, fewer traffic crashes and 

fatalities, fewer emissions, and less vehicular energy consumption (42; 55). Some previous studies 

showed a positive association between congestion and injury crashes (56-58). The number of 

crashes increases moderately with the increase of traffic in an uncongested roadway segment (59). 

However, when the critical traffic density is attained, the number of crashes starts to surge rapidly 

with the traffic (60; 61). Therefore, in a congestion-free environment, the number of crashes should 

decline. During the pandemic, statewide stay-at-home policies led to a 20% decline in road crashes 

in the US (44; 62). Some states experienced a higher reduction in crashes. For example, total 

crashes decreased by 50% in North Carolina compared to the pre-pandemic era (63). Although the 

number of crashes has decreased, there are contradictory reports about the number of fatalities 

during the pandemic. In some cases, minor injury crashes decreased, whereas severe and fatal 

crashes stayed the same (64). Moreover, the number of fatalities decreased in some states; Hawaii, 

Wyoming, Delaware, and Nebraska have experienced a decline of 20%, 13%, 11%, and 9%, 

respectively. In contrast, fatalities increased in some other states and contributed to the overall 8% 

increase across the US (48; 65). 
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The association between negative safety effects and reduced congestion from the pre-

pandemic era has been studied (66; 67). Since congestion is usually localized, specific time 

analysis may be needed to form a better association. Exposure tends to be a key confounding 

factor, especially for vulnerable road users’ activities. Traffic exposure can be measured in vehicle 

miles traveled (VMT), average annual daily traffic (AADT), and the number of trips in a certain 

unit of time in a certain region (60). A few earlier studies explored the cross-sectional relationship 

between VMT and fatal crashes and found both positive and negative associations (68; 69) (Table 

3-1). For example, Doucette et al. (70) found that the crash rate more than quadrupled after 

accounting for the VMT reductions during COVID-19 in Connecticut. Average speed is another 

exposure used in literature. A higher speed is associated with more fatal and severe injury crashes 

(42; 56). For instance, California experienced little to no reduction in fatalities with the decline of 

VMT because of speeding during the pandemic (56). A 10-mile-per-hour (mph) higher speed limit 

increases the chance of fatal crashes between 15% to 60% (71). However, this can largely differ 

across locations over time because traffic flows in urban areas are often limited by congestion 

rather than speed limits. It is observed that during COVID-19, the speed effect is generally the 

largest in locations with some pre-existing level of congestion (42; 56). This effect can partially 

offset the reduced traffic flow on fatal crashes. Therefore, regional differences in terms of 

topography, roadway type, lighting conditions, or weather could be explored as possible input 

variables on fatal crashes. Empty roads trigger speed-related violations (e.g., speeding, red-light 

running, failure to comply with stop signs, failure to yield to other drivers or vulnerable road users) 

(58) (Figure 3-1). For example, crashes remain low in New York City due to low traffic volume. 

Yet, an increase in severe injury and fatality rate hints at higher traffic speeds, which is supported 

by an increase of the number of speeding tickets in downtown by 108% and in school zones by 

72% during the pandemic (57). A recent study by Doucette et al. (72) on post-stay-at-home periods 

showed crash rates are slowly starting to return to previous year averages. Overall, measures like 

speeding, alcohol & drugs, other types of reckless behavior, and trips per person not staying home 

can be used to analyze the potential behavior of the drivers and their safety consequences. In 

addition, vehicle factors like the increased use of commercial trucks amid the pandemic could add 

more insights. All the relevant studies are summarized in Table 3-1.  

Literature suggests that time-series analysis models like seasonal autoregressive integrated 

moving average (ARIMA) have been used to examine potential changes in fatalities or crashes 

across time (58; 73). Linear models have been adopted to explore crash harm resulting from 

fatalities and crashes (74). Generally, count models like Poisson and negative binomial regression 

are powerful predictive tools that are being applied in crash frequency analysis (75; 76). Most of 

the crash data are over-dispersed, which is a condition suggesting the need for correction to Poisson 

regression assumptions. In that case, the negative binomial often performs better than Poisson 

regression in crash frequency analysis (77). The zero-inflated negative binomial model has also 

been used to address the overdispersion problem caused by excessive zero counts (e.g., zero 

fatalities in a month at a location) (76). Besides, geographically weighted regression (GWR) can 

better capture the inherent spatial autocorrelation and heterogeneity in the crash data (78). 

Therefore, this study will adopt Poisson/negative binomial models (depending on the dispersion 

of the data) to analyze fatalities and crashes while using the linear model to analyze crash harm. 

The spatial aspects of crash data will be explored using GWR count and linear models. 

The aforementioned studies are selected based on stay-at-home orders, congestion  
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Figure 3-1: Graphical Abstract 
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Table 3-1: Summary of the Selected Literature 

Author Study Approach Relationship 

between road 

safety and 

congestion 

Study 

relevance 

Name and 

Year 

Study Period (B 

= Before, D= 

During COVID-

19 pandemic) 

Location and 

Sample size 

Method Increase 

safety (+) or 

reduces safety 

(-) 

Relevance 

to the 

research 

topic 

Lin et al., 

2020 

D Los Angeles 

and New York, 

N= na 

Time series data (January 

to August 2020), 

Difference-in-difference 

analysis 

- High 

Doucette 

et al., 

2021 

B+D Connecticut, 

N= na 

Time Series Data, 

(January 1st to April 30th 

in 2017-2020), 

Interrupted Time-Series 

Analysis 

- High 

Hughes et 

al., 2020 

B+D California; 

N=44 counties 

Cross-sectional Data 

(Mar 2015 to May 2020), 

Poisson Regression 

-/+ Medium 

Doucette 

et al., 

2021 

B+D Connecticut; 

N= na 

Time-series data 

(January 1st-August 31st, 

2017, 2018, 2019, 2020), 

Interrupted Time-Series 

Analysis 

- High 

Inada, 

2020 

B+D Japan, N= 121 Monthly time-series data 

(Jan 2010 to May 2020), 

ARIMA 

- Medium 

Saladie et 

al., 2020 

B+D Tarragona, 

Spain; N= 152 

Time series (Feb-Apr 

2018- 2020), 

Comparative analysis 

+ Medium 

Quddus et 

al., 2010 

B UK, N= 72 Road segments data, 

Ordered Response 

Models 

- Medium 

Kononov 

et al., 

2008 

B CA, CO, TX of 

US; 5 years 

crash data 

Freeway crash data, 

Neural Networks 

+ Medium 
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reduction, and road safety criteria. Research on these topics in the pandemic era is limited, and 

most of them are descriptive-based analyses, which may be a sign of a rush to publish the papers 

during the pandemic. As such, the outcome of those studies might influence their premature 

publication. However, several potential gaps are identified in the existing literature on road safety 

issues. Existing literature considered factors like VMT, speed, or lockdown dummy in their 

estimation. However, different types of driving violations during COVID-19 have not been 

explored in the literature.  Also, whether the distance traveled from home during the pandemic has 

any impact on road safety or not needs to be investigated. In addition, analysis of the crash harm 

during COVID-19 needs to be explored. As the injury severity is high during the pandemic, it may 

provide a different level of estimation of the harm. As such, to fill the gaps in the literature, the 

study sought to investigate the impact of factors contributing to fatalities and economic harm 

within the state of Tennessee before and during the pandemic by harnessing a unique database 

integrating crash and COVID-19 travel behavior data. 

3.4 Conceptual Framework 

The study anticipates that an increase in the number of speeding-related crash cases increases the 

number of fatalities in crashes. It is believed that this assumption also holds for other types of 

violations, i.e., alcohol-drugs-involved cases and other reckless driving cases. It is also expected 

that roadway factors like dark-lighted conditions and interstate crashes are suspected to increase 

fatalities. Vehicle-specific factors like more trucking activity during COVID-19 make roads 

vulnerable and can contribute to increasing fatalities in crashes. A higher number of short trips or 

long trips per population not staying at home is associated with higher exposure and crash risk. 

Regarding the economic losses, total crash harm could increase during COVID-19 compared to 

the pre-pandemic scenario. As the fatality rate increases, the crashes' economic loss could increase 

(Figure 3-2). 

3.5 Data: Linking Crashes and Traveler Behavior 

County-level monthly data (cross-sectional time series) of the state of Tennessee covering the pre-

pandemic and during the pandemic period is used in this study. A unique database is created by 

integrating two different sources, i.e., the Tennessee Integrated Traffic Analysis Network (TITAN) 

and the Bureau of Transportation Statistics (BTS) “Trips by Distance” (79). These datasets are 

linked at the county level. To make a consistent timeline, the study considers the same months pre-

and-during the pandemic. In this study, ninety-five counties of Tennessee over 18 months (i.e., 

pre-pandemic and during-pandemic periods) constitute a sample of 1,710. The study’s pre-

pandemic refers to the periods in 2019 before the COVID-19 pandemic. In particular, January 1st 

to September 30th of 2019 is considered pre-pandemic. On the other hand, during-pandemic 

periods include the periods during the pandemic in 2020. The study uses a similar timeframe for 

the during-pandemic periods (January 1st to September 30th). The dates were chosen by following 

the COVID-19 timeline in the state of Tennessee. Specifically, the Tennessee state health operation 

center was activated in January 2020 with the declaration of COVID-19 as a public health 

emergency in the US. Tennessee started the state of emergency in March 2020 and continued 

through September 2020, which was initiated to encourage social distancing to help mitigate the 

spread of the virus (80). In addition, the use of a similar timeframe for pre-and-during pandemic   
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Figure 3-2: Study Framework 
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periods has already been documented in the literature (55; 70; 72). COVID-19-related information 

and travel information are collected from the BTS. Data on the number of people not staying at 

home is provided by the Maryland Transportation Institute and Center (MTIC) for the advanced 

transportation technology laboratory at the University of Maryland (79). MTIC collects travel 

information, such as the number of trips from anonymized “national panel of mobile device” data 

from multiple sources. The sample of mobile devices is representative of the entire population in 

a state or county. MTIC does not report data for counties having fewer than 50 devices in the 

sample on any given day to assure better data quality. MTIC defines trips as movements that last 

longer than 10 minutes at any location away from home. 

The number of crashes and the number of fatalities per month are collected from the 

TITAN database, which is maintained by the Tennessee Department of Transportation (TDOT). 

TITAN includes information for all the police-reported crashes in Tennessee. TITAN also provides 

information regarding the number of injured and non-injured persons. An additional safety 

measure, crash harm, is adopted to account for the economic value of each injury level and the 

costs for each injury/property damage. For example, two fatalities in a crash will still be coded as 

a fatal crash, but crash harm captures this in terms of monetary cost. Comprehensive crash unit 

cost values (2016 dollars) of the federal highway administration (FHWA) are used to create this 

unique variable (81). The dollar values are in the KABCO injury severity scale, whereas TITAN 

reports injury severity in three categories: fatal injury, non-fatal injury, & no injury. The study 

uses the economic values for fatal injury, non-fatal injury, & no injury types severity from the 

FHWA given values: $11.29 million for each fatal injury, an average value of $0.23 million for 

each non-fatal injury, and $0.012 million for each non-injured person involved in crashes. Crash 

harm is calculated at the county level by month and year. The following Equation (1) is applied to 

calculate the crash harm.  

𝐻𝑚𝑘𝑦 = ∑ 𝐶𝑖 ∗ 𝑁𝑖
3
𝑖=1         (1) 

Where, 

𝐻𝑚𝑘𝑦 = Crash harm of county “k” in month “m” and year “y”; (k = 1, 2, 3, ….. , 95; m = 

1, 2, ……, 9; y = 2019, 2020) 

𝐶𝑖 = cost of each injury severity type i; (i = 1-Fatal injury, 2-Non-fatal injury, 3-No injury) 

𝑁𝑖 = Number of persons involved in injury severity type i 

For example,  

Crash harm of Carter County in March 2020 = $11.295 million * number of fatally injured persons 

+ $0.23 million * number of non-fatal injured persons + $0.012 million * number of non-injured 

person involved in crashes = $11.295 * 2 + $0.23 * 34 + $0.012 * 185 = $31.61 million. 

The dataset used in this study is error-checked through descriptive analysis, and the data is 

reasonable with no extreme outliers. Table 3-2 reports the descriptive statistics of the data. It is 

divided into pre- and post-COVID-19 scenarios. The mean values per ten thousand trips (i.e., 

Mean/Trips) are also generated to compare the pre-and-post COVID-19 values. There are three 

dependent variables: number of fatalities, number of crashes, and crash harm. As expected, it is 

found that fatalities have increased by 8.2% during the pandemic compared to the pre-pandemic 

periods, whereas the number of crashes has decreased (15.3%). Moreover, the total crash harm 

was lowered by $1.76 billion during COVID-19 in Tennessee. However, if per-trip values are 

compared, it is found that the crash harm and the number of crashes are higher during COVID-19 

than in pre-COVID-19 periods.  
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Regarding the independent variables, “No. of Speeding Violations” represents the number 

of speeding cases that resulted in crashes. It shows that such cases were higher in 2020 compared 

to 2019. The frequency of alcohol and drug-related cases and reckless behavior cases per trip also 

increased in 2020. Similarly, roadway and vehicular factors per trip are also reported to be 

increased during COVID-19. These variables are explored graphically in the next section. Three 

unique COVID-19-specific independent variables are generated from the collected BTS database 

by combining the information regarding the number of trips in terms of length and population not 

staying at home, which can reflect how far a person traveled when they did not stay at home during 

COVID-19. Since these unique variables on “trips per person not staying at home” will be added 

to the modeling, the crash/fatality per trip is not modeled, i.e., it is not used as a dependent variable. 

Trips are categorized by length: trips greater than zero to less than or equal to 5 miles are 

considered short-length, trips greater than 5 miles and less than or equal to 50 miles are considered 

mid-length, and trips greater than 50 miles are considered long trips. It is observed that the rates 

of mid-length and long trips were higher during the pandemic, whereas short-length trips showed 

a decline. 

3.6 Exploratory Analysis 

Figure 3-3 illustrates the monthly trend of road crashes, fatalities, and total crash harm in 

Tennessee. The time-series graphs capture several noteworthy facts. All the values plummeted in 

the beginning phase of the pandemic (Feb’20 to Apr’20). After that, the values begin to catch up 

and eventually return to the pre-pandemic scenarios. However, the number of fatalities rises higher 

than in the pre-pandemic era, suggesting a serious concern over road safety during the COVID-19 

pandemic. 

3.6.1 Drivers’ Factors 

Drivers generally make different types of violations while driving. Literature suggests that 

speeding-involved crashes are common during COVID-19. Drug and alcohol use and reckless 

behaviors are also other top-ranked causes of car crashes. Reckless behaviors include tailgating, 

failing to stop at red lights or stop signs, braking abruptly, not using turn signals when changing 

lanes or turning, failing to use headlights at night or in extreme weather, and making illegal turns 

or lane changes. Figure 3-4 suggests that reckless driving contributed to a 50% increase in fatal 

crashes in Tennessee, while the total number of crashes decreased by 15%. The increase was 

spotted during the beginning phase of the pandemic (i.e., March 2020) and in the latter part of 

2020. Speeding-related crashes and fatalities have both increased during COVID-19. There was 

an overall increase of 15 speeding-related fatal crashes in 2020 compared to 2019. The cases 

remained high for almost all of 2020.   

3.6.2 Roadway Factors 

Roadway factors include the lighting condition of the roads and the speed limits of interstates, 

among others. It is difficult to detect a pedestrian walking or an object at night, even on a lighted 

road, due to a lack of good visual acuity and contrast sensitivity. Crashes and fatalities in the dark 

(not lighted) conditions are higher than in the day-light conditions, according to the literature (82). 

Roads such as interstates with higher speed limits can be vulnerable to fatal crashes, especially 

with the presence of reckless drivers. In Figure 3-5, it can be observed that crashes on the  
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Table 3-2: Descriptive Statistics (N = 1,710) (Monthly, Per County) 

 Pre-pandemic (Jan-2019 to Sept-2019) During-pandemic (Jan-2020 to Sept-2020) Differences 

Variable  Mean SD Min Max Total 

Mean/

Trips 

(‘10,0

00) 

Mean SD Min Max Total 

Mean/

Trips 

(‘10,0

00) 

"Mean

" Diff 

(2020-

2019) 

"Mean/Trips

" Diff (2020-

2019) 

No. of Fatalities* 1.01 2.03 0 19 867 0.044 1.06 2.63 0 29 938 0.052 0.05 0.01 

Total Crash Harm 

($Millions)* 
28.92 

66.9

5 
0.02 554.33 24723.33 0.991 26.86 67.31 0.02 

647.7

7 

22966.

45 
1.032 -2.06 0.04 

No. of Speeding 

Violations 
1.37 6.27 0 59 1172 0.012 1.54 6.87 0 56 1313 0.017 0.17 0.01 

No. of Reckless 

Driving Cases 
7.65 

22.9

7 
0 256 6537 0.22 6.52 21.72 0 232 5577 0.23 -1.13 0.01 

No. of Alcohol & 

Drugs Cases 
6.47 

10.0

5 
0 93 5486 0.243 6.48 9.82 0 5 5541 0.329 0.01 0.09 

No. of Cases 

Involving 

Commercial Units 

4.16 8.07 0 59 3558 0.15 4 7.57 0 53 3417 0.171 -0.16 0.02 

No. of Cases on 

Interstate 

Roadways 

18.09 
60.9

4 
0 459 15469 0.29 14.94 48.81 0 425 12776 0.323 -3.15 0.03 

No. of Cases on 

All Other 

Roadways 

97.36 
318.

15 
0 3030 164342 1.84 84.64 278.1 0 2797 

13954

3 
2.054 -12.72 0.21 

No. of Day-

Lighted Cases 
146.04 

12.8

9 
1 2940 124864 3.31 119 9.99 0 2475 

10174

9 
3.62 -27.04 0.31 

No. of Dark-not-

Lighted Cases 
17.77 0.89 0 212 15191 0.76 17.13 25.04 0 239 14643 0.87 -0.64 0.11 

Short-length trips 

rate 
2.85 0.53 1.62 5.13 2436.44  - 2.37 0.34 1.49 4.05 2022.4  - -0.48 - 

Mid-length trips 

rate 
2.03 0.38 1.29 4.22 1735.35 - 4 0.39 2.95 6.53 

1400.8

2 
 - 1.97 - 

Long trips rate 0.15 0.06 0.06 0.47 129.61 - 0.16 0.05 0.04 0.4 138.22  - 0.01 - 

* Dependent variables 
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interstate decreased by 17% in 2020; however, fatal crashes surged by 21% in 2020 compared to 

2019. 

3.6.3 Vehicular Factors 

Figure 3-6 presents the trends of crashes and fatalities involving commercial units in Tennessee 

during 2019-2020. It is observed that the total number of crashes involving commercial vehicles 

decreased by 7%, while fatal crashes increased by 11% in 2020 compared to 2019. Fatal crashes 

were 17 at the start of the pandemic, 24 in August 2020, and 10 in September 2020. 

3.7 Modeling 

In this study, the number of fatalities and crash harm are modeled as the dependent variables. To 

show the COVID-19 impacts solely, the first differences are calculated using the monthly county-

level data for 2019 and 2020. The first differences are the values found by subtracting 2019 values 

from 2020, as shown in Equations (2) and (3). These monthly differences account for the variation 

across counties and months and provide a better measure of the correlates of fatalities and crash 

harm. The differences can have both positive and negative values. Positive difference values show 

that 2020 values are higher than 2019, and vice-versa. In the analysis, county and month are 

indexed to confirm the panel structure of the data. 

 

𝑌 = Δ𝑦𝑖 = 𝑦𝑖,2020 − 𝑦𝑖,2019         (2) 

𝑋 = Δ𝑥𝑖 = 𝑥𝑖,2020 − 𝑥𝑖,2019        (3) 

Where, Δ𝑦𝑖 is the difference between 2020 and 2019 in the dependent variable i and Δ𝑥𝑖 is the 

difference between 2020 and 2019 in the independent variable i. 

3.7.1 Generalized Least Squares Linear Regression Model 

The difference in crash harm is a continuous variable that can be modeled using the generalized 

least squares (GLS) linear regression model. Previously, linear models were applied to estimate 

the coefficients for total crash harm in work zone crashes (74). GLS extends the ordinary least 

squares estimation by addressing the possible unequal error variances and correlations between 

different errors in the time-series data (83). Therefore, GLS can efficiently estimate regression 

coefficients, as shown in Equation (4).   

𝑌 = 𝑋𝛽 + 𝜀,  𝐸(𝜀) = 0,    𝐶𝑜𝑣 (𝜀) = 𝜔      (4) 
Where 𝑌 is the dependent variable, and 𝑋 are the independent variables for a set of units, i.e., TN 

counties over time.  𝛽 denotes the unknown regression coefficients. 𝜀 is the vector of random 

errors, and 𝜔 is the variance-covariance matrix. GLS involves minimizing (𝑌 − 𝑋𝛽)′𝜔−1(𝑌 −
𝑋𝛽) with respect to β. The resultant estimator b of the regression coefficients β can be expressed 

in Equation (5). 

b = (X′ω−1𝑋)−1𝑋′ω−1𝑌        (5) 

Equation (6) denotes the estimated covariance matrix V of b.  

𝑉 = 𝐶𝑜𝑣̂(𝑏) = (𝑋′ω−1𝑋)−1        (6) 

A notable property of GLS is that its estimate of β is unbiased (E(b) = β).  

Under the assumption of normality distributed random errors, the log-likelihood function (ℓ) can 

be written as follows in Equation (7): 
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Figure 3-3: Monthly Trends of Crashes, Fatalities, and Crash Harm in Tennessee, 2019 

(pre-pandemic) – 2020 (during pandemic)  
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Figure 3-4: Speeding and Reckless Driving- related Crashes & Fatalities in Tennessee, 2019 

(pre-pandemic) - 2020 (during-pandemic) 
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Figure 3-5: Roadway Factors’ Related Crashes and Fatalities in Tennessee, 2019 (pre-

pandemic) – 2020 (during-pandemic) 
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Figure 3-6: Involvement of Commercial Vehicle in Crashes & Fatalities in Tennessee, 2019 

(pre-pandemic) – 2020 (during-pandemic) 
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ℓ = −
𝑛

2
log(2𝜋) −

1

2
log |ω| −

1

2
[(𝑌 − 𝑋𝛽)′𝜔−1(𝑌 − 𝑋𝛽)]     (7) 

3.7.2 Poisson Regression 

The difference in the number of fatalities is a count variable. However, the variable contains both 

positive and negative count values. Since count models cannot handle negative values, a constant 

value (minimum of the difference in the count outcome variable) is added to the differences. Then, 

the transformed differences would be greater than or equal to zero. This transformation makes the 

outcome variables eligible to use the count models (84; 85). Count models, e.g., Poisson and 

negative binomial regression, are powerful predictive tools applied in crash frequency analysis 

(75; 76). The Poisson regression model can be employed to analyze count data when there is no 

overdispersion in the data.  

The Poisson distribution of a random variable Y follows the following probability density function 

in Equation (8) for a given value Y=y: 

𝑃(𝑌 = 𝑦|𝜑) =
𝑒−𝜑𝜑𝑦

𝑦!
         (8) 

Where 𝜑 is the mean rate of occurrence. This rate is determined by a set of k predictors, X = (X1, 

X2, ……., Xk). It can be expressed by Equation (9): 

𝜑 = exp (𝑋𝛽)          (9) 

Then, the Poisson regression model for observation i can be defined by Equation (10) below: 

𝑃(𝑌𝑖 = 𝑦𝑖|𝑋𝑖, 𝛽) =
𝑒−exp (𝑋𝑖𝛽)exp (𝑋𝑖𝛽)𝑦𝑖

𝑦𝑖!
      (10) 

The likelihood function for a sample size n is given by Equation (11) below: 

𝐿(𝛽; 𝑦, 𝑋) =  ∏
𝑒−exp (𝑋𝑖𝛽)exp (𝑋𝑖𝛽)𝑦𝑖

𝑦𝑖!

𝑛
𝑖=1       (11) 

Then, the log-likelihood function is generated, as shown in Equation (12). 

ℓ(𝛽) =  ∑ 𝑦𝑖𝑋𝑖𝛽
𝑛
𝑖=1 − ∑ exp (𝑋𝑖𝛽)𝑛

𝑖=1 − ∑ log (𝑦𝑖!)
𝑛
𝑖=1     (12) 

An overdispersion test on Equation (13) can be performed to reflect how much the sample 

fluctuates around a mean value. 

Var(Y) = µ + α µ2          (13) 

Where α reflects the amount of overdispersion, which is non-negative and implies the variance 

Var(Y) can exceed the mean (µ). When α approaches zero, there is no overdispersion in the data 

(i.e., expected mean = variance). A likelihood ratio test is performed in STATA (statistical 

software) to test for the significance of the overdispersion parameter (α). When α is statistically 

not significant (5% level), the Poisson distribution can appropriately model the data. 

3.7.3 Geographically Weighted Regression Models 

Geographically Weighted Regression (GWR) models are also adopted in this study to explore 

further the existence of spatial non-stationarity or heterogeneity in the correlates of the difference 

in crash fatalities, crashes, and crash harm. Spatial heterogeneity shows different mean and 

variance values at each location if there exists any (86). The GWR model allows the parameters to 

vary over space; hence, it is believed to be applicable to the current analysis. GWR models were 

applied in the literature to analyze the spatial heterogeneity of related factors in road crashes (87; 

88). Geographically weighted Poisson regression models are estimated for analyzing the difference 

in the number of fatalities. Also, a conventional geographically weighted linear regression is 
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estimated for the differences in crash harm. Fixed Gaussian kernel functions have been used to 

determine the GWR weights that estimate the geographical changes in local extent.  

The equations for the GWR models are given in Equations (14) and (15). Equation (14) describes 

the geographically weighted Poisson regression model, and Equation (15) shows the 

geographically weighted linear regression model. 

𝑌𝑖 = ∑ 𝛽𝑘𝑘 (𝑢𝑖, 𝑣𝑖)𝑋𝑘,𝑖 + 𝜀𝑖        (14) 

𝑌𝑖 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛[𝑁𝑖  exp (∑ 𝛽𝑘(𝑢𝑖, 𝑣𝑖)𝑘 𝑌𝑘,𝑖)]      (15) 

Here,  

𝑌𝑖 = dependent variable at location i; 

𝑋𝑘,𝑖 = kth independent variable at location i; 

𝜀𝑖 = Gaussian error at location i; 

(𝑢𝑖, 𝑣𝑖) = x-y coordinate of the ith location; 

𝛽𝑘(𝑢𝑖, 𝑣𝑖) = coefficients that are varying conditionals on the locations 

The equation to estimate 𝛽𝑘(𝑢𝑖, 𝑣𝑖) is as follows, i.e., Equation (16):  

𝛽́ (i) = (𝑋𝑇𝑊(𝑖)𝑋)−1𝑋𝑇𝑊(𝑖)𝑌        (16) 

Here, W(i) represents a matrix of weights specific to location i such that observations nearer 

location i are given more weight than observations that are located far away from i. The form of 

the matrix W(i) is as follows, i.e., Equation (17): 

W(i) = [

𝑤𝑖1 0 0
0 𝑤𝑖2 0
0 … 𝑤𝑖𝑛

]        (17) 

Here, 𝑤𝑖𝑛 is the weight given to the observation n for the estimate of the local parameters at i 

location. Equation (18) denotes the adopted fixed Gaussian kernel of the GWR model. 

𝑤𝑖𝑗 = exp (
−𝑑𝑖𝑗

2

𝜃2 )         (18) 

Here,  

𝑖 = regression point index; j = locational index; 

𝑤𝑖𝑗 = the weight value of observation at location j for estimating the coefficient at location i; 

𝑑𝑖𝑗= Euclidean distance between i and j; 

θ = A fixed bandwidth size defined by a distance metric; 

3.8 Results 

3.8.1 Results of the Preliminary Models 

Results of the Poisson regression models and the GLS linear regression model are presented in 

Table 3-3. Columns (1) and (2) denote the results for the three dependent variables: difference in 

the number of fatalities (model 1) and crash harm (model 2). Model significance tests show that 

the models fit the data well. The pseudo-R2 value of model (1) is 8%, and the R2 value of the crash 

harm model is 44%. The correlation among the independent variables is checked, and the values 

are less than or equal to 0.5 or -0.5, referring to no multicollinearity issues. The distributions of 

the dependent variables are shown in Figure 3-7. In model (1), the Poisson distribution is shifted 

to 7 units to the right after adding the minimum difference of fatalities (which is -7) between 2020 

and 2019 (Figure 3-7a). The general relationships between the independent variables and 

dependent variable (i.e., direction) do not change when a constant is added to the dependent 
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variable, except everything is shifted to the same constant units to the right (84). In Table 3-3, the 

Poisson coefficient sign of the independent variables indicates the direction of their effects on the 

dependent variable. The generated average marginal effect explains the probability of the 

association. The coefficient of each variable can be interpreted one by one for all three models. 

The first one is the “Diff. in the No. of Speeding Violations”, which is positive and 

significant for the three models. It indicates that a unit increase in the differences in speeding 

violation cases is associated with an increase in the difference in crash harm between 2020 and 

2019 by $0.87 million. Also, an increase in the differences in speeding-related cases is associated 

with increased probabilities of crash fatalities by 0.07% in 2020 during COVID-19. The findings 

are consistent with the earlier assumption. Speeding-related crashes are dangerous and fatal. 

Speeding makes the vehicles more difficult to control, especially when driving around a curve or 

encountering a road hazard or other cars. Since speeding exerts the most force upon impact and 

involves a larger mass or higher acceleration, it causes the most severe injuries and fatalities and 

eventually generates more economic harm. Less traffic during COVID-19 encouraged drivers to 

speed, eventually leading to fatalities. “Diff. in the No. of Reckless Driving Cases” is also positive 

and statistically significant in model (2). The difference in reckless driving behaviors is found to 

be associated with an increase in the probability of crash harm by $0.31 million during COVID-

19. Reckless behaviors, e.g., failing to yield to traffic and running stop signs and red lights, make 

roads more vulnerable to fatal crashes. “Diff. in the No. of Alcohol & Drugs Cases” is associated 

with an increase in the probability of the number of fatalities in crashes by 0.46%. The increase of 

one alcohol and drug-related crash is associated with an increase in crash harm differences by 

$7.42 million, indicating much greater damage during COVID-19 as a result of increased Alcohol 

and drug-related cases. 

An increase in “Diff. in the No. of Cases on Interstate Roadways” is associated with a 

0.02% increase in the probabilities of crash fatalities during COVID-19. Whereas on other roads, 

excluding interstates, the coefficient appears negative for fatalities. Interstates expose drivers to a 

higher speed limit than highways, which became deadly during COVID-19. An increase in “Diff. 

in the No. of Dark-not-Lighted Cases” is associated with an increase in total crash harm by $0.64 

million. Fatalities appear to be increased in dark-not-lighted cases. However, it was not significant 

in the fatality model. On the other hand, it is found that if the “Diff. in the No. of Cases Involving 

Commercial Units” increases by one, the chance of crash fatalities increases by 0.02%. Besides, 

crash harm increases by $0.51 million. Long-haul drivers underwent significant changes during 

the pandemic that might have affected their health and safety. Traveling at higher speeds and risky 

behaviors could lead to vulnerability to crash fatalities. 

The difference in the number of Short-length trips per person not staying at home is 

negative and statistically significant in model (1). Besides, the “Diff. in Long trips rate” is 

significant and positive in the model (2); however, the “Diff. in Mid-length trips rate” is not 

statistically significant. These results suggest that the increase in short trips per population not 

staying at home was associated with fewer crash fatalities. However, the longer trip lengths are 

associated with the increase in the probability of the differences in crash fatality, as shown by the 

increasing likelihood of crash fatalities for the long trips rate. Specifically, an increase in the 

differences in long trips per person not staying at home are associated with an increase in the 

chance of the differences in crash fatalities by 15.34% during the pandemic. Similarly, crash harm 

showed an increased association with the increase of long trips per person not staying at home  
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Figure 3-7: Histograms of the differences between 2020 and 2019 in (a) the number of 

Fatalities and (b) Crash Harm 

(a) (b) 
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Table 3-3: Estimation Results of the Preliminary Models 

  
(1) Diff. in the No. of Fatalities 

(Poisson Regression Model) 

(2) Diff. in Crash Harm (Millions) 

(Generalized Least Squares Linear 

Regression Model) 

Variables (County Level) Coef. P-value 
Marginal 

Effect 
Coef. P-value 

Diff. in the No. of Speeding Violations 0.074 0.022** 0.075 0.866 0.001*** 

Diff. in the No. of Reckless Driving Cases 0.026 0.144 0.027 0.313 0.021** 

Diff. in the No. of Alcohol & Drugs Cases 0.465 0.025** 0.468 7.42 0.000*** 

Diff. in the No. of Cases Involving Commercial 

Units  
0.041 0.164 0.041 0.515 0.015** 

Diff. in the No. of Cases on Interstate Roadways 0.021 0.052* 0.022 0.052 0.522 

Diff. in the No. of Cases on All Other Roadways -0.008 0.002*** -0.008 -0.114 0.000*** 

Diff. in the No. of Day-Lighted Cases -0.001 0.700 -0.001 0.054 0.001*** 

Diff. in the No. of Dark-not-Lighted Cases 0.004 0.781 0.004 0.641 0.000*** 

Diff. in Short-length trips rate -0.651 0.091* -0.656 -0.703 0.728 

Diff. in Mid-length trips rate  0.500 0.678 0.503 -0.731 0.781 

Diff. in Long trips rate 15.237 0.233* 15.347 30.559 0.064* 

Constant 13.516 0.000***   -0.977 0.319 

Model Fit Statistics       

𝜒2 128.62 588.45 

Model Significance Test (Prob>𝜒2) 0 0 

Overdispersion (α)  0 na  

Log-likelihood -1771.25 -3722.45 

AIC 3568.51 7470.71 

BIC 3630.27 7527.72 

Pseudo-R2/ R2 0.08 0.44 

Note: * p<0.1; ** p<.05; *** p<.01 

“na” = not applicable 
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Table 3-4: Estimation Results of the GWR Global Models 

 

    
(1) Diff. in the No. of Fatalities 

(Poisson Regression Model) 

(2) Diff in Crash Harm 

(Linear Model) 

Variables (County Level) Estimate 
t (Est/Standard 

Error) 
Estimate 

t (Est/Standard 

Error) 

Diff. in the No. of Speeding Violations 0.010 1.57* 1.334 4.754*** 

Diff. in the No. of Reckless Driving Cases 0.000 0.019 0.452 3.108*** 

Diff. in the No. of Alcohol & Drugs Cases 0.583 2.128*** 5.041 2.977*** 

Diff. in the No. of Cases Involving Commercial 

Units  
0.040 1.318 0.631 2.757*** 

Diff. in the No. of Cases on Interstate 

Roadways 
0.004 2.096** 0.205 2.349** 

Diff. in the No. of Cases on All Other 

Roadways 
-0.005 -1.953* -0.135 -6.368*** 

Diff. in the No. of Day-Lighted Cases 0.002 1.710* 0.107 6.676*** 

Diff. in the No. of Dark-not-Lighted Cases 0.008 0.154 0.26 2.265** 

Diff. in Short-length trips rate -0.409 -0.765 0.78 0.359 

Diff. in Mid-length trips rate  -0.065 -0.054 -4.395 -1.549 

Diff. in Long trips rate 3.046 0.247 40.664 2.280** 

Constant 13.539 9.821*** -1.339 -1.266 

AIC 281.74 7590.9 

BIC 355.71 7652.66 

Pseudo-R2/ R2 0.085 0.45 

Note: * p<0.1; ** p<.05; *** p<.01; “na” = not applicable 
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Table 3-5: Estimation Results of the GWR Local Models 

Variables (County Level) 

(1) Diff. in the No. of Fatalities (Poisson Regression 

Model) 
(2) Diff. in Crash Harm (Linear Model) 

Mean β Min β Max β 
*Test of Spatial 

Variability 
Mean β Min β Max β 

*Test of Spatial 

Variability 

Diff. in the No. of 

Speeding Violations 

0.007 -0.034 0.050 -1.580 0.927 -1.126 5.120 -35.686 

Diff. in the No. of Reckless 

Driving Cases 

-0.009 -0.015 0.001 0.189 -0.038 -0.468 0.800 3.015 

Diff. in the No. of Alcohol 

& Drugs Cases 

0.579 0.440 0.706 0.039 8.786 -1.835 46.291 -86.870 

Diff. in the No. of Cases 

Involving Commercial 

Units  

0.041 0.039 0.042 0.727 0.682 0.152 1.350 8.377 

Diff. in the No. of Cases on 

Interstate Roadways 

0.004 -0.004 0.010 -0.093 0.195 -0.239 1.463 -39.380 

Diff. in the No. of Cases on 

All Other Roadways 

-0.002 -0.006 0.001 -2.563 0.089 -0.161 0.980 -169.921 

Diff. in the No. of Day-

Lighted Cases 

0.001 -0.001 0.002 -0.509 0.004 -1.160 0.170 -271.109 

Diff. in the No. of Dark-

not-Lighted Cases 

0.004 -0.002 0.011 0.075 0.066 -0.480 0.525 2.008 

Diff. in Short-length trips 

rate 

-0.403 -0.485 -0.318 0.725 -0.783 -5.235 6.236 8.189 

Diff. in Mid-length trips 

rate  

0.004 -0.198 0.193 0.689 -1.468 -9.177 15.604 5.801 

Diff. in Long trips rate 3.105 2.029 4.327 0.308 16.179 -35.52 71.928 5.546 

Constant 13.537 13.497 13.580 0.536 -1.387 -4.400 2.016 4.725 

AIC 279.05 7058.71 

BIC 338.31 7270.12 

Pseudo-R2/ R2 0.10 0.59 

* Geographical variability tests of local coefficients. A negative value suggests spatial variability. “na” = not applicable 
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during COVID-19. Overall, it is observed that the increase in trip length increases the fatality risk 

in crashes during COVID-19. 

3.8.2 Results of the Spatial Models 

Table 3-4 presents the results of the GWR global models with the coefficients and significance 

level. The t-value >1.96 or < -1.96 indicates that the variables are significant at a 95% confidence 

level and indicates a p-value of <0.05. The GWR local models’ results are similar to the results of 

the discussed GLS regression and Poisson regression models. Moreover, the pseudo-R2/R2 values 

of the model (1) and (2) have slightly been improved, which are 8.5% and 45%, respectively. The 

GWR local models’ results are illustrated in Table 3-5. The table contains various distribution 

parameters such as mean, minimum, maximum, and difference of criterion (i.e., a test of spatial 

variability) for the estimates. These values help to see the distribution of parameters and their range 

of variation across space. Variables with a negative difference in criterion values indicate the 

presence of spatial variability in those variables. The local model fits the data better than the global 

and first difference regression models. The pseudo-R2/R2, AIC, and BIC are better than the 

previously analyzed models (i.e., Poisson, GLS, and GWR global models). The pseudo-R2 value 

for model (1) is now 10%. Similarly, the increased R2 value for model (2) is 59%. In addition, the 

sign of the estimates in local models is the same as observed in the global models. The range of 

variation can be explored by looking at each variable's minimum and maximum values. It appears 

that for most of the variables, the mean values of the coefficients of the local model are closer to 

their global values. For instance, the range of model (1)’s correlates for the “Diff. in the No. of 

Cases Involving Commercial Units” variable is between 0.039 and 0.042 with a mean of 0.041, 

which is closer to its global coefficient value of 0.040.  

The maps showing the spatial variation of local parameter estimates of Tennessee counties 

are illustrated in Figure 3-8 and Figure 3-9. The average value of the local parameter estimates is 

calculated for each county using the Geographic Information System (GIS) software. A darker 

shade presents the higher values of the coefficients, and lower values are presented by a lighter 

shade. The maps show that the local parameter estimates vary across the counties of Tennessee. 

Figure 3-8 and Figure 3-9 show that correlates can be partially stationary in some counties but 

change across jurisdictions. For example, Figure 3-8(a) and Figure 3-9(a) show the correlates of 

“Diff. in the No. of Speeding Violations” for the differences in fatalities and crash harm that vary 

across Tennessee. This indicates the impact of speeding, as a positively correlated variable for 

crash fatalities and crash harm, is higher in West Tennessee. Going from west to east, except for a 

few counties, the effect of speeding differences decreases significantly. One thing can be presumed 

that lack of enforcement in the counties with higher estimates could play a role. However, an 

inverse relationship between speeding and the outcome variables is observed in some counties. 

One explanation could be that speeding and other violations do not result in fatalities necessarily 

in some counties, partly because they may not have high-speed roads (e.g., freeways) or differing 

levels of traffic enforcement (which cannot be captured in these data). Several studies have found 

similar findings (89-91). According to Imprialou et al. (91), the increased design standards of some 

roadways and the longer available distances between vehicles at high-speed conditions (i.e., lower 

traffic volume) may contribute to the inverse relationship between speeding and crashes in some 

regions. In Figure 3-9(b), the difference in Alcohol & Drugs Cases shows high variability in the 

south-western regions, e.g., Shelby County, where the difference in crash harm increases with the 
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increase in the differences in Alcohol and drug-induced cases between 2020 and 2019. Differences 

in interstate-related fatalities and economic harm, in Figure 3-8(c) and Figure 3-9(d), are also 

higher in the western counties of Tennessee. Similarly, all the remaining variables in Figure 3-8 

and Figure 3-9 support these assertions. Overall, these spatial variations can be due to deviations 

in traffic, roadway conditions, socio-economics, and other unobserved factors related to spatial 

contexts. 

3.9 Discussion 

The increase in the number of crash fatalities during the pandemic is associated with the increased 

differences in the number of violations, including speeding, reckless driving, and alcohol & drugs 

cases, between 2020 and 2019. With more people staying at home during COVID-19, motorists 

have opportunities to drive on the near-empty streets. The combination of risky drivers and less 

congested roads may increase the chance of fatalities in a crash. Tefft et al. (92) indicated that 

risky driving behaviors might be attributable to a small subset of young drivers who have an 

increased propensity to drive during COVID-19, whereas safer drivers lowered their driving. The 

finding of this study is aligned with Inada et al. (58), and Hughes et al. (56), who found the number 

of fatalities is positively associated with the increased frequency of speed-related violations during 

COVID-19 in Japan and California, U.S.A., respectively. Speeds were found to increase 

substantially compared to the forecasted evolution (93). Dark-not-lighted roads bring greater 

danger during COVID-19, which is consistent with Adegbite et al. (82), who found that dark-not-

lighted roads are responsible for about 31% of intersection crashes and fatalities. Moreover, during 

COVID-19, crash fatalities happened more on interstates and with the involvement of commercial 

trucks (94). The surge in online delivery during COVID-19 increased commercial trucks' mileage 

compared to other vehicles (43). Fatigue and the urgency of delivering goods and services 

accompanied by the reckless behaviors of drivers may contribute to their increased involvement 

in road fatalities during COVID-19. The results further show that more mid-length and long trips 

per population not staying at home induces fatalities in crashes. This is relatable to Zhang et al. 

(95), who found the average person miles traveled to be positively associated with the person 

involved in crashes during COVID-19. It may be because traveling longer distances might urge 

the drivers to speed up and go to the desired places in a short time, given the less congested roads 

during COVID-19. Total crash harm was reduced during COVID-19 in 2020; however, crash harm 

per trip went up in 2020 compared to 2019. Fatalities constitute the majority of the crash harm 

costs. Since the fatalities soared during COVID-19, the economic harm per trip has increased as 

expected. Moreover, the difference in crash harm is associated with the increased differences in 

violations, interstate and commercial trucks involved crashes, dark-not-lighted road crashes, and 

the increased number of long trips per population not staying at home. In addition, GWR models 

found spatial variation in several parameter estimates, including the differences in speeding 

violations, alcohol & drugs cases, and the cases on interstate roadways, in Tennessee at the county 

level. The correlates of these variables are mostly found to be higher in the western regions than 

the eastern regions of Tennessee, suggesting different levels of enforcement, roadway conditions, 

other built-in environment, and some other unobserved factors, e.g., cultural diversities (88).  
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Figure 3-8: Spatial variation of local parameter estimates for the difference in the number 

of fatalities in Tennessee at the county level 

 

(a) Diff. in the No. of Speeding Violations 

(b) Diff. in the No. of Day-Lighted Cases 

(c) Diff. in the No. of Cases on Interstate Roadways 

(d) Diff. in the No. of Cases on All Other Roadways 
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Figure 3-9: Illustration of the spatial variation of local parameter estimates for the difference 

in crash harm across the State of Tennessee 

 

(a) Diff. in the No. of Speeding Violations 

(b) Diff. in the No. of Alcohol & Drugs Cases 

(c) Diff. in the No. of Day-Lighted Cases 

(d) Diff. in the No. of Cases on Interstate Roadways 

(e) Diff. in the No. of Cases on All Other Roadways 
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3.10 Limitations 

This research is not without limitations. Estimates in the Bureau of Transportation Statistics’ 

“Trips by Distance” database are relatively new and scantly peer-reviewed, which may potentially 

serve as a source of bias. Also, these data are experimental and may not have the highest quality 

standards. However, recent reports and studies are starting to cite this source. The inclusion of pre-

existing regional characteristics, such as weather and terrain information, could have added more 

insights into the analysis. Although this study applied a framework for spatial heterogeneity or 

non-stationarity estimation, the results of the study may not be applicable to other states because 

of differences in geography, roadway network, and socio-economics. 

3.11 Conclusion 

The COVID-19 pandemic has impacted the whole world, including the transportation sector. The 

number of fatalities in crashes has increased in the US despite a significant reduction in traffic 

flow. The emphasis of this study is to use a comprehensive set of safety measures and assess what 

happened to road safety in Tennessee during COVID-19 by exploring the contributing factors. The 

findings are based on a unique dataset linking crash data and COVID-19 travel behavior data. The 

results show that while fatalities and crash harm per trip increased on roadways, there was still a 

reduction in total crashes and total monetary harm. Additionally, several models, including 

generalized least squares linear, Poisson, and geographically weighted regression models using the 

differences between 2020 and 2019 values, are adopted to rigorously quantify correlates of crash 

fatalities and crash harm. 

The modeling results show that the difference in the number of crash fatalities between 

2020 and 2019 is associated with the increased differences in violations, including speeding, 

reckless driving, and alcohol & drugs cases. Fatal crashes are more likely to occur on interstates 

and dark-not-lighted roads and involve commercial trucks with the surge of online delivery during 

COVID-19. Importantly, these similar factors largely contribute to the overall crash harm. In 

addition, more long trips per person not staying at home during COVID-19 are associated with 

more crash fatalities and more crash harm at the county level. GWR models show that several 

correlates of fatalities and crash harm are spatially varied across the counties of Tennessee. 

Importantly, the parameter estimates for the difference in speeding cases are higher in the western 

regions of Tennessee and lower in the eastern regions. This variation suggests different levels of 

traffic enforcement, socio-economics, roadway, traffic, and other built-in environmental factors. 

The study findings may help safety practitioners better understand the factors contributing 

to crashes and fatalities, even during a safety-critical event like the COVID-19 pandemic. 

Reducing the violations identified in this study may lower the number of crashes, fatalities, and, 

eventually, the overall crash harm. Regarding traffic enforcement, more effort should be given to 

preventing risky driving behaviors, including speeding, reckless driving, and night driving, 

especially during a global emergency like COVID-19 when the traffic volume is lower and these 

behaviors are more commonplace. Proper countermeasures may help to improve road safety. 

Speeding-related violations may be reduced through speed camera enforcement, reducing the 

speed limit in hotspots, placing more warning signs, and using vehicular technology, e.g., 

intelligent speed adaptation (ISA) (96; 97). Furthermore, as suggested in the literature, automated 

vehicles (AVs) and big data applications have the potential to improve road safety in these aspects 
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(98-100). For example, the Cincinnati crash analysis reduction strategy (CARS) is a big data-

oriented approach designed to identify dangerous crash hotspot locations, unravel the persistent 

crash contributing factors, and provide flexibility to explore strategies to reduce traffic crash harms 

(101). 

Future researchers may investigate whether mobility to a specific location or for a certain 

activity is related to the increase in fatalities or not. The research can be extended with the inclusion 

of some key spatial variables, e.g., roadway traffic, weather information, terrain, etc., that may 

effectively reveal the role of the regional built environment (pre-existing characteristics) in the 

occurrence of crashes and fatalities. In addition, the use of daily time-series data for all the state 

counties of the US may provide more insights with the consideration of the weekend and weekday 

aspects. Overall, collective efforts by researchers and public and private sectors are required to 

gather more related data and develop road safety strategies concerning the new reality of the 

COVID-19 pandemic. 
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CHAPTER 4 INVESTIGATING TRANSPORTATION SAFETY IN 

DISADVANTAGED COMMUNITIES BY INTEGRATING CRASH AND 

ENVIRONMENTAL JUSTICE DATA 
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A version of this chapter was originally published by A. Latif Patwary, Antora Mohsena Haque, 

I. Mahdinia and Asad J. Khattak in the Journal of Accident Analysis and Prevention: 

 

 Patwary, A. L., Haque, A. M., I. Mahdinia, & Khattak, A. J. (2023). Investigating 

Transportation Safety in Disadvantaged Communities by Integrating Crash and Environmental 

Justice Data. Accident Analysis and Prevention, Vol. 194, 2024, p. 107366. 

4.1 Abstract 

Recent efforts to identify disadvantaged communities (DACs) on a census tract level have evoked 

possibilities of attaining transportation justice and vision zero goals in these areas. To identify 

DACs, the United States Department of Transportation (USDOT) has developed six 

comprehensive indicators: economy, environment, equity, health, resilience, and transportation 

access. The indicators are used to explore the associations between DACs (in 71,728 census tracts) 

and five years of fatal crashes, providing a comprehensive understanding of safety risks. 

Specifically, using data on DACs and linking it with census and crash data, this study aims to 

understand the complex connections between safety (captured through fatal crashes) and 

disadvantages that communities confront due to a convergence of multiple challenges and burdens 

using Zero-Hurdle Negative Binomial models. The results reveal that health, resilience, and 

transportation-disadvantaged tracts are associated with more fatal crashes. Census tracts with 

elevated traffic volume, higher levels of binge drinking, and the absence of mobile phone laws 

while driving exhibited higher rates of fatal crashes. The study also found the presence of a higher 

percentage of the population with bachelor's degrees and increased use of public transportation are 

correlated with fewer fatal crashes. Conversely, a higher fatal crash rate is observed in 

disadvantaged census tracts where a high proportion of the Hawaiian or other Pacific Islander, and 

American Indian or Alaska Native populations live. This implies that targeted interventions can 

be explored further in tracts that show high correlations with fatal crashes. The findings contribute 

to traffic safety by highlighting the risks in DACs, which can help design and implement traffic 

safety interventions. The insights gained from this study can inform decision-making and help to 

guide the development of more equitable traffic safety programs in disadvantaged communities. 

4.2 Introduction 

To achieve the Vision Zero goal, the United States Department of Transportation (USDOT) has 

formulated the National Roadway Safety Strategy (NRSS), which contains strategies to reduce 

injuries and fatalities from the US road network in a comprehensive manner. One of the core 

objectives of NRSS is to achieve safer people. Hence, USDOT needs to ensure that the 

transportation sector is not unfair to anyone. USDOT is taking initiatives to resolve 

disproportionate safety impacts that affect people of color and other minority groups who are 

historically disadvantaged and marginalized (102). Consequently, the Biden-Harris administration 

has been proactive about Environmental Justice (EJ), an initiative to achieve racial equity and 

address the climate crisis. Through the EJ initiative, 40% of the overall benefits of federal 

investments are planned to be delivered to climate and clean energy, including sustainable 

transportation and disadvantaged communities (DACs) (103). DACs need to be identified so that 

grant applicants of EJ can be assured that their projects will help DACs.  
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As part of these efforts, the USDOT has defined Disadvantaged Communities (DACs) as 

those that are affected by high poverty, low wealth, low educational attainment, insufficient local 

jobs, high inequality, and low homeownership. USDOT has also developed six categories of 

transportation disadvantages to identify census tracts that qualify as DACs and provides a mapping 

tool to visualize these areas (104). The indicators include disadvantages in terms of economy, 

environment, equity, health, resilience, and transportation access. This study uses data on these 

unique indicators at the census tract level to investigate the relationship between fatal crashes and 

disadvantages that communities confront due to a convergence of multiple challenges and burdens. 

By linking five years of fatal crash data with demographic information and developing crash-based 

count models, this study contributes to the USDOT's priority of improving safety in DACs and 

provides valuable insights into the complexity of fatal crashes in disadvantaged regions across the 

US. The use of USDOT-provided and publicly available disadvantage indicators adds to the 

intellectual merit and contribution of the paper, making it important for state and federal 

policymakers who need to allocate resources to improve disadvantaged regions. 

4.3 Literature Review 

The main focus of safety improvement studies has been analyzing the relationship between crashes 

and various features like driver behavior (105-109), vehicle features (110), roadway characteristics 

(78), traffic condition (111; 112), weather (113; 114), land use (115), and many more. Specifically, 

the findings from previous studies suggest that greater alcohol consumption per capita and driver 

distraction due to mobile phones can potentially increase fatal crashes (116-120). Also, exposure 

measures such as high average daily traffic (ADT) and vehicle miles traveled (VMT) are positively 

associated with fatal crashes (121; 122). Although these studies are helpful to many extents, 

socioeconomic factors and the minority status of the people can also play a critical role in 

understanding crash risks at the community level. 

A significant portion of the existing literature has explored factors, including population, 

race, income, residence environment, transportation mode, and education attainment (123-127). 

For example, one of the studies found that a lower percentage of high school graduation and 

university attainment impact single-vehicle crashes in the Southeast region of the US (123). The 

residence characteristics of an at-fault-drivers-based study found that the percentage of people who 

work from home and commuters who commute for less than 15 minutes is negatively associated 

with the number of at-fault drivers. An increase in population is positively associated with at-fault 

drivers (124). Whereas studies found that high fatality and severe injuries are seen in lower-income 

regions in the US (126). Similar associations are observed in other countries. For instance, Christie 

et al. (128) found in the UK that the residents of the most deprived regions are five times more 

vulnerable to fatal crashes. According to the literature, this unequal distribution of traffic crashes 

or fatalities between low-income and higher-income communities can be attributed to various 

factors, including infrastructure disparities with limited access to well-maintained roads and traffic 

control devices, and limited emergency medical services (126; 129).  

Furthermore, social and racial inequities and disproportionate vulnerability of certain 

groups (e.g., pedestrians and elderly populations) play a role in the differences in crashes and 

fatalities between different communities. Numerous studies have reported that fatalities differ 

among various racial and ethnic groups (130; 131). A recent study on all pedestrian fatalities in 

the US reported that Black and Native American pedestrians are killed more than White 
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pedestrians (79%, 83%, and 72%, respectively) in the darkness, and 65 years or older Asian 

pedestrians are 1.7 times more likely to be killed than the White pedestrians (131). Another recent 

study in Texas found that census tracts with minority status are strongly correlated with overall 

crashes, and socioeconomic status is strongly correlated with fatal crashes (132). Minority groups 

face racial discrimination in society, and it is important to realize whether these minority groups 

reside in DACs where fatal crashes occur. From 1999-2006, the Hispanic population was the 

highest among all age groups to suffer from alcohol-impaired driving deaths in the US (133). It 

was found that a 10% point increase in the state alcohol policy of environment restrictiveness is 

associated with a reduction of 10% odds of a crash being alcohol-related (134).  

There can be several reasons for the expectation of higher fatality rates in disadvantaged 

or underserved communities. First, these communities tend to have lower rates of vehicle 

ownership and higher levels of pedestrian activity (135). The increased pedestrian activity can lead 

to more conflicts between vehicles and pedestrians. Additionally, research by Jacobsen and Rutter 

(136) indicates that bicycle crashes in lower socioeconomic status urban areas often result from 

interactions with vehicular traffic and vehicles operating at high speeds. Second, DACs are 

exposed to greater risks associated with unsafe traffic conditions. For instance, Giles-Corti and 

Donovan (137) noted that individuals in low-income communities are more likely to be exposed 

to busy traffic environments with fewer supportive amenities for walking and biking. These 

neighborhoods often lack adequate pedestrian-friendly structures, e.g., sidewalks, unsafe 

intersections, and inadequate pedestrian signage (135), which expose vulnerable users to higher 

safety threats from vehicular traffic. Lower-income neighborhoods also tend to have more 

infrastructure disorder and unevenness than higher-income neighborhoods (138). Numerous 

studies have emphasized the role of sufficient bicycle infrastructure in reducing crash risks (139-

141). However, historically, disadvantaged regions in the US have had less access to bicycling 

infrastructure due to lower investment in these facilities, ultimately resulting in higher crash risks 

(142). Third, related to the lack of infrastructure, an increase in further conflicts, e.g., schools and 

drop/pick up zones, in disadvantaged communities can contribute to more crashes. For example, 

Yu et al. (143) found that the presence of schools had a higher correlation with traffic crashes only 

in areas with high poverty rates and a predominantly people-of-color population. Fourth, 

disparities in roadway characteristics, e.g., narrower roads, built environment, e.g., high population 

density, can contribute to higher crashes. For instance, Shin (144) identified a positive correlation 

between higher population density, a greater density of narrower lanes, and intersections with four 

or more ways, with increased bicycle crashes. Finally, cultural and language barriers can render 

new immigrants to be more susceptible to traffic crashes in such communities (145). 

The US government allocates funds every year for safety improvements. Most of the time, 

those funds are disproportionately allocated, and DACs do not receive equitable funding. 

Therefore, identifying DACs is necessary to assist federal and local governments in allocating 

resources for safety improvement. A state-level study consisting of 48 adjacent states of the US 

was conducted to show the association between capital expenditures and highway capital stock on 

highway fatalities. It was found that there can be a 0.056% decline in highway fatalities if states 

with lower capital stock increase their highway capital expenditure by 1% (146). However, a study 

on 50 states of the US's CO2 emissions, fatalities, and truck transport value applied direction output 

distance function and found that the transfer of resources to CO2 emission reduction is associated 

with an increase in fatalities (147).  
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Different count models, i.e., Poisson and negative binomial models, have widely been used 

to analyze vehicular crash frequency. Negative binomial models are adopted over Poisson models 

when the crash data shows overdispersion (i.e., variance is greater than mean). Previous studies 

have used zero-inflated models in case of excess zeros in the data (148). However, zero-inflated 

models may inaccurately estimate the coefficients since these models include both sampling and 

structural zeros. Researchers have argued that crashes usually result from sampling zeros, not 

structural zeros. Therefore, to accurately account for these aspects, Zero-Hurdle models should be 

adopted for crash analysis (149). Despite the potential advantages of employing Hurdle models in 

traffic safety research, their exploration has not been as extensive as anticipated. Zero-inflated 

models have often been estimated without thorough consideration, sometimes selected solely 

based on the assumption of an excessive number of zeros (150). Nonetheless, several studies have 

incorporated Hurdle models in the crash investigation (150-153). For instance, Hosseinpour et al. 

(152) utilized Hurdle models to analyze the total number of pedestrian-vehicle crashes at the 

segment level on Malaysian federal roads. Their findings revealed that the Hurdle models 

outperformed zero-inflated models in comparative measures, such as AIC and log-likelihood at 

convergence values. Additionally, they identified significant associations of ADT, land use, and 

area type with pedestrian-involved crashes. In another study, Son et al. (150) delved into crash 

occurrence by integrating individual vehicular data and crash records and developed various count 

models. They concluded that zero-Hurdle models handle excessive zeros more effectively than 

zero-inflated models. Overall, when it comes to addressing excessive zeros in crash modeling, 

Hurdle models can be considered a more suitable choice compared to the conventional zero-

inflated models. 

 This study's primary contribution lies in meticulously analyzing traffic safety in diverse, 

disadvantaged communities. Notably, safety is examined at the granular level of census tracts. 

Remarkably, in previous studies, these issues are lightly researched, i.e., the complex connections 

between safety (captured through fatal crashes) and disadvantages that communities confront due 

to a convergence of multiple challenges and burdens. The disadvantages are quantified using 

economic, environmental, equity, health, resilience, and transportation indicators (104). 

Harnessing the data helps us delve into an unexplored aspect of safety. Previous research has 

explored transportation fatalities based on certain sociodemographic and economic characteristics 

in selected counties, cities, and occasionally multiple states. However, a comprehensive study has 

yet to be undertaken for the entire US at a granular level, such as census tracts. This study has 

sought to fill this gap by conducting a thorough examination at the census tract level. 

4.4 Data 

Three types of datasets are used in this paper. The disadvantage indicator-based dataset is retrieved 

as a GIS shapefile from the USDOT's designated website for displaying DACs (104). Fatal crash 

information is retrieved from the Fatality Analysis Reporting System (FARS) website, and some 

socio-demographic information is collected from the US Census Bureau's website. A brief 

overview of the datasets is provided below: 

4.4.1 Disadvantage Indicator-based Dataset 

USDOT has developed an interactive GIS-based mapping tool for public use, and it is launched as 

a dashboard primarily for grant applicants who can confirm that their projects address DACs. The 
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definition of DAC is based on indicators that are collected at the US Census tract level. These 

indicators formed six broad themes of transportation disadvantages: economy, environment, 

equity, health, resilience, and transportation (Figure 4-1, Figure 4-2). These six broad themes are 

termed disadvantage indicators throughout the paper. The short definitions of them are provided 

below: 

1. Economic Disadvantage 

This theme identifies communities affected by high poverty, low wealth, low educational 

attainment, insufficient local jobs, high inequality, and low homeownership. The data source of 

this indicator includes the CDC Social Vulnerability Index, Census America Community Survey, 

and FEMA Resilience Analysis & Planning Tool. 

2. Environmental Disadvantage 

This theme identifies communities that suffer from an unbalanced pollution burden and 

substandard environmental quality. The data is gathered from the EPA EJ Screen. 

3. Equity Disadvantage 

This theme identifies communities where a high percentile of the population's English-speaking 

skill is "less than well" per the CDC Social Vulnerability Index. 

4. Health Disadvantage 

This theme identifies communities affected by adverse health outcomes, disability, and 

environmental exposures. The data is collected from the CDC Social Vulnerability Index. 

5. Resilience Disadvantage 

This theme identifies communities vulnerable to climate change hazards. The data is collected 

from the FEMA National Risk Index.  

6. Transportation Disadvantage 

This theme identifies communities affected by more prolonged and expensive ways of 

transportation. The data for this theme is collected from the CDC Social Vulnerability Index, 

Census America Community Survey, EPA Smart Location Map, and HUD Location Affordability 

Index.  

Each theme's relevant indicators are averaged to form an aggregated disadvantage indicator 

in percentiles. USDOT considers a census tract a disadvantaged community (DAC) if it surpasses 

the 50th percentile (75th percentile for resilience) across more than three of the six themes. The list 

of those indicators is provided in Table 4-1. For details on these indicators, refer to USDOT's 

website (104).  

The Disadvantage indicator-based dataset has information for 72843 census tracts but no 

tract information for the states of American Samoa, Guam, Northern Mariana, Puerto Rico, and 

the Virgin Islands. These states have 18, 57, 25, 945, and 32 census tracts and any fatal crashes 

falling in these tracts are excluded from this study. The attribute table of the GIS shapefile of the 

dataset also contains names and FIPS codes of the states, counties, tracts, and tract sizes.  

Table 4-2 shows that 47.28% of census tracts are economically disadvantaged, 49.61% are 

environmentally disadvantaged, 49.97% are equity disadvantaged, 50.04% are health 

disadvantaged, 25.19% are resilience disadvantaged, and 48.38% are transportation 

disadvantaged, and 30.43% are overall disadvantaged. The disadvantaged tracts are shown in 

Figures 4-1 and 4-2. Environmental DACs are concentrated in the southeastern and western 

regions of the US, while transportation DACs are distributed throughout the country. 
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4.4.2 Demographic Information-based Dataset 

All the latest demographic information was collected at the census tract level. Tract population, 

gender, race, means of transport to work, median income, employment, and educational attainment 

were collected from 2021 census data. Any income above $250,000 is coded as $250,000 in the 

processed data. 

4.4.3 Fatal Crash-based Dataset 

The FARS dataset contains crash-related information, e.g., geographic location (latitude-

longitude), time of the crash, number of fatalities, etc. As the fatal crash frequency is limited 

compared to the rest of the crashes each year, aggregating five years of data is deemed reasonable. 

The fatal crash information is collected from 2017 to 2021. A total of 177,409 fatal crashes 

occurred in the US in these five years. 

4.4.4 Data on Other Variables 

Several other variables can provide valuable insights into the analysis. The variables include 

percent binge drinking, alcohol consumption per capita, seat belt usage, mobile phone use law, 

total lane miles, and traffic volume. Percent binge drinking data for 2020 is available at the census 

tract level and collected from the Center for Disease Control (CDC) 's Behavioral Risk Factor 

Surveillance System (BRFSS) database (154). ADT data for 2019 is also available at the census 

tract level and collected from the National Neighborhood Data Archive (NaNDA) 's traffic volume 

database (155). The other variables are gathered from various reputable sources at the state level, 

as census tract data for these variables are unavailable. Total lane miles data for 2019 is obtained 

from the Federal Highway Administration (156). Alcohol consumption per capita is obtained from 

the National Institute of Alcohol Abuse and Alcoholism (NIAAA) of the National Institute of 

Health (NIH) (157). Mobile phone use law data by state is gathered from the Insurance Institute 

of Highway Safety (IIHS) (158). Finally, seat belt usage information for 2021 is collected from 

the National Traffic Safety Administration (159). Incorporating these state-level variables can give 

a more comprehensive understanding of the analysis. 

4.5 Methods 

4.5.1 Data Processing 

The study framework is illustrated in Figure 4-3. In the Disadvantaged indicators dataset, 

GEO_IDs are developed similarly to the GEO_IDs observed in the US Census Bureau's database 

to join the files with a common identification number. This results in a cleaned dataset for 71,728 

census tracts. The fatal crash-based dataset is then merged with this dataset, but due to some tracts 

not being present in the first dataset, less than 2% of crash data are lost. The final cleaned dataset 

includes 175,169 fatal crashes in 71,728 census tracts. ArcMap is used for spatial visualization of 

data. Point density of fatal crashes is developed, and fatality rates across races are shown spatially. 

STATA and RStudio are used for statistical analysis. 

4.5.2 Zero-Hurdle Negative Binomial Regression 

Different types of count models have been estimated to create statistical models for predicting 

roadway crashes. Zero-inflated count models are often estimated to address the issue of excessive 
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Table 4-1: List of Disadvantage Indicators under Six themes (160) 

Attribute Alias Disadvantage Indicator 

Average of Transportation Indicator Percentiles (calculated) Transportation Theme 

Total workers 16 or older in a census tract Transportation Cost Burden 

Percentage of non-transit households who have zero vehicles Transportation Cost Burden 

Percentile percentage households with no vehicle available estimate Dependency on a single form of 

transportation (i.e. no personal vehicle) 

Percentage of non-transit households who have one vehicle Transportation Cost Burden 

Percentage of non-transit households who have two vehicles Transportation Cost Burden 

Percentage of non-transit households who have 3+ vehicles Transportation Cost Burden 

Number of non-transit workers Transportation Cost Burden 

Number of transit users 16 and over Transportation Cost Burden 

Average weekday vehicle miles traveled per state Transportation Cost Burden 

Calculated Average Annual Vehicle Miles Traveled Transportation Cost Burden 

Average Annual Median Earnings Transportation Cost Burden 

Five Year average price of gas per state Transportation Cost Burden 

Five-year average gas mileage per state Transportation Cost Burden 

Calculated average number of cars per household Transportation Cost Burden 

Calculated average cost of owning a car Transportation Cost Burden 

Calculated national average annual cost of using transit Transportation Cost Burden 

Calculated average annual cost of transportation Transportation Cost Burden 

Annual Travel Time in Minutes Transportation Cost Burden 

Percentile of Mean commute time to work (in minutes) Longer commute times 

Annual Travel Time in Hours Transportation Cost Burden 

Travel Time Cost Transportation Cost Burden 

Calculated average annual cost of transportation as a % of income Transportation Cost Burden 

Percentile of Transportation Cost Burden Transportation Cost Burden 

National Walkability Index Walkability 

National Walkability Index Percentile Walkability 

Average of Health Indicator Percentiles (calculated) Health Theme 

Percentile percentage of persons aged 65 and older estimate Age (over 65) 

Adjunct variable - Percentage uninsured in the total civilian 

noninstitutionalized population estimate, 2014-2018 ACS 

Uninsured 

Percentile percentage uninsured in the total civilian 

noninstitutionalized population estimate, 2014-2018 ACS 

Uninsured 

Percentile percentage of civilian noninstitutionalized population with 

a disability estimate 

Disability 

Average of Economy Indicator Percentiles (calculated) Economy Theme 

Percentile Percentage of persons with no high school diploma (age 

25+) estimate 

Education 

Overall Renter Rate: Percent of Occupied Housing Units that are 

Renter-Occupied 

Rentership 

Percentile Overall Renter Rate: Percent of Occupied Housing Units 

that are Renter-Occupied 

Rentership 

Percentile Percentage of civilian (age 16+) unemployed estimate Unemployment Rate 

Percentile per capita income estimate Income 
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Table 4-1 continued 

 
Percentile Percentage of persons below poverty estimate Areas of Persistent 

Poverty 

GINI Index Percentile (calculated)* GINI 

Total housing units Housing Cost Burden 

Total Owner-occupied housing units Housing Cost Burden 

Owner-occupied housing units - Less than $20,000 - 30% or more Housing Cost Burden 

Owner-occupied housing units - $20,000 to $34,999 - 30% or more Housing Cost Burden 

Owner-occupied housing units - $35,000 to $49,999 - 30% or more Housing Cost Burden 

Owner-occupied housing units - $50,000 to $74,999 - 30% or more Housing Cost Burden 

Owner-occupied housing units - $75,000 or more - 30% or more Housing Cost Burden 

Renter-occupied housing units Housing Cost Burden 

Renter-occupied housing units - Less than $20,000 - 30% or more Housing Cost Burden 

Renter-occupied housing units - $20,000 to $34,999 - 30% or more Housing Cost Burden 

Renter-occupied housing units - $35,000 to $49,999 - 30% or more Housing Cost Burden 

Renter-occupied housing units - $50,000 to $74,999 - 30% or more Housing Cost Burden 

Renter-occupied housing units - $75,000 or more - 30% or more Housing Cost Burden 

Percent of Household Units with 30% or more income towards housing cost Housing Cost Burden 

Percentile Percent of Household Units with 30 percent or more income towards 

housing cost 

Housing Cost Burden 

Average of Social and Equity Indicator Percentiles (calculated) Equity Theme 

Percentile percentage of persons (age 5+) who speak English "less than well" 

estimate 

Linguistic Isolation 

Resilience Indicator (NRI) Resilience Theme 

Average of Environmental Indicators Environmental Theme 

Percentile for % pre-1960 housing (lead paint indicator) Environmental 

Percentile for Diesel particulate matter level in air Environmental 

Percentile for Air toxics cancer risk Environmental 

Percentile for Air toxics respiratory hazard index Environmental 

Percentile for Ozone level in air Environmental 

Percentile for PM2.5 level in air Environmental 

Transportation Disadvantage Indicator Transportation 

Health Disadvantage Indicator Health 

Economy Disadvantage Indicator Economy 

Equity Disadvantage Indicator Equity 

Resilience Disadvantage Indicator Resilience 

Environmental Disadvantage Indicator Environmental 

Sum of Disadvantage Indicators Overall 

Overall Disadvantage Indicator Overall 
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Figure 4-1: Disadvantage Census Tracts based on the Six Disadvantage Indicators 
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Figure 4-2: Disadvantage Census Tracts based on the Overall Disadvantage Indicator
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Table 4-2: Area and Population in Census Tracts 

Disadvantage 

Indicator 

Census Tract 

Status 

Census 

Tracts 

Census 

Tract 

(%) 

Area 

(Sq. 

Miles) 

Area 

(%) 

Population Pop. 

(%) 

Economy Disadvantaged 34,253 47.05 514.42 46.67 145,088,086 44.71 

  Not-

Disadvantaged 

38,543 52.95 587.79 53.33 179,393,640 55.29 

Environment Disadvantaged 36,008 49.46 66.5 6.03 159,076,339 49.02 

  Not-

Disadvantaged 

36,788 50.54 1035.7 93.97 165,405,387 50.98 

Equity Disadvantaged 36,067 49.55 276.29 25.07 171,885,819 52.97 

  Not-

Disadvantaged 

36,729 50.45 825.91 74.93 152,595,907 47.03 

Health Disadvantaged 36,063 49.54 815.22 73.96 145,076,075 44.71 

  Not-

Disadvantaged 

36,733 50.46 286.99 26.04 179,405,651 55.29 

Resilience Disadvantaged 18,173 24.96 497.47 45.13 98,263,387 30.28 

  Not-

Disadvantaged 

54,623 75.04 604.74 54.87 226,218,339 69.72 

Transportation Disadvantaged 35,323 48.52 615.05 55.80 159,111,566 49.04 

  Not-

Disadvantaged 

37,473 51.48 487.16 44.20 165,370,160 50.96 

Overall Disadvantaged 21,938 30.14 241.83 21.94 99,639,881 30.71 

  Not-

Disadvantaged 

50,858 69.86 860.38 78.06 224,841,845 69.29 

Total   72,796  100  1102.21 100 324,481,726 100 
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zero counts in crash prediction modeling. These models assume the presence of two types of zeros: 

sampling zeros and structural zeros. Structural zeros represent inherently safe conditions that 

naturally result in zero crashes while sampling zeros indicate potential crash situations where zero 

crashes occur merely by chance. However, considering that traffic crashes can happen under 

various conditions, assuming the existence of structural zeros may not be entirely realistic. Zero-

Hurdle models are considered more suitable for crash analysis since it is unrealistic to assume the 

existence of structural zeros in traffic safety. Structural zeros refer to crash-free conditions or 

locations, and such assumptions do not align with the reality of traffic incidents (149). The 

utilization of Zero-Hurdle models assumes that every road segment has the potential for crashes, 

acknowledging that crashes can happen at any segment. This belief in the possibility of crashes 

occurring in any segment makes the Zero-Hurdle models more suitable compared to the zero-

inflated models. 

A Zero-Hurdle negative binomial model is considered for over-dispersed count data. It 

combines two distributions: a Hurdle component and a count component. The Hurdle component 

models the probability of observing a zero count versus a non-zero count, while the count 

component models the distribution of the non-zero counts. Zero-Hurdle negative binomial 

(ZHNB) improves over the Zero-Hurdle Poisson model when the count data shows overdispersion. 

The ZHNB allows for overdispersion and can be used to measure different types of parameters 

more effectively. The probability distribution of a ZHNB random variable 𝑦𝑖 is depicted in 

Equation 1 below: 

f(𝑦𝑖|𝑋𝑖, 𝛽, 𝛼) =  {
𝑃𝑖                              , 𝑖𝑓 𝑦𝑖 = 0

(1 − 𝑃𝑖) 𝑔(𝑦𝑖|𝜇𝑖, 𝛼), 𝑖𝑓 𝑦𝑖 > 0
                                  (1) 

𝑃𝑖 =
𝑒𝛿′𝜔𝑖

1+𝑒𝛿′𝜔𝑖
                (2) 

𝑔(𝑦𝑖 = 0,1,2… |𝜇𝑖 , 𝛼) =
Γ(𝑦𝑖+𝛼−1)

Γ(𝛼−1)Γ(𝑦𝑖+1)

(1+𝛼𝜇𝑖)

1−(1+𝛼𝜇𝑖)
−𝛼−1

−𝛼−1−𝑦𝑖𝛼𝑦𝑖𝜇𝑖
𝑦𝑖

      (3) 

ln(𝜇𝑖) =  𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3 + ⋯+ 𝛽𝑘𝑥𝑖𝑘 = 𝑋𝑖𝛽     (4) 

Where α is denoted as the rate of over-dispersion parameter, 𝑋𝑖 denotes the set of independent 

variables for the NB model, β is the set of coefficients of independent variables, and 𝜇𝑖 denotes 

the mean crash frequency. Moreover, in Equation 1, 𝑃𝑖 is the logistic link function that represents 

the probability of being a sampling zero. 𝑃𝑖 can further be defined with Equation 2, where 𝛿′ is a 

vector of coefficients and 𝜔𝑖 is the covariate of i. ZHNB can capture two outcomes, as shown in 

Equation 1. 𝑦𝑖 = 0 shows the probability of zero fatal crash occurrences, and 𝑦𝑖 > 0 denotes the 

probability of at least one fatal crash occurrence. 𝑔(. ) is the negative binomial distribution 

function defined in Equation 3. Notably, Γ(. ) is the Gamma function. Finally, Equation 4 

represents the NB regression model adopted in this study. The Hurdle function of pscl package in 

"R" software program is used to estimate the ZHNB regression models. 

The maximum likelihood estimation method is generally used while estimating ZHNB 

models. For model selection, the following Equations 5 and 6 for the Akaike information criterion 

(AIC) and the Bayesian information criteria (BIC) can be applied to find the fit of the models. A 

smaller AIC/BIC value indicates a better-performed model.  

AIC = -2LL + 2K                                                                                                        (5) 

BIC = -2LL + 2(ln N) K                                                                                              (6) 
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Figure 4-3: Study Framework 
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Where LL is the log-likelihood, K is the number of estimated parameters, and N is the number of 

observations. 

This study uses the entire dataset for model estimation instead of segregating it into 

calibration and validation subsets. This presents several compelling advantages: 1) the model uses 

the entire national data to understand the role of DAC indicators, representing a comprehensive 

set of variations in the entire US. This national-level perspective ensures that the model harnesses 

the full range of data from all the census tracts, leading to more generalized results. 2) Given that 

inference (as opposed to prediction with AI methods) is a critical issue in this analysis, maximizing 

the use of the entire data is important. Splitting the data into training and validation will remove 

(say) 30% of the US census tracts, affecting the model's ability to capture key relationships with 

the available data. Since calibration in our study relies on having sufficient data nationally to 

estimate accurate probabilities for each location, removing a part of the data can lead to unstable 

or unreliable calibration estimates in those localities (161). So, restricting data will hinder the 

model's statistical power and capacity to uncover relationships across disadvantaged and non-

disadvantaged communities. Having said this, to evaluate the performance of the ZHNB models, 

we generated various metrics, including goodness-of-fit measures (i.e., AIC, BIC, Pseudo-R2), 

visual representation of the observed and predicted probabilities of crash occurrence, and overall 

model significance that shed light on model validity. Overall, this study uses the entire dataset in 

this context and does not split it into training and validation subsets, avoiding the non-coverage of 

DACs and non-DACs. 

4.6 Results and Discussion 

4.6.1 Descriptive Statistics 

Table 4-3 presents the descriptive statistics of the variables. The mean of the response variable 

"Total Fatal Crashes" is 2.44, indicating an average of 2.44 fatal crashes that occur over five years 

at the census tract level. A minimum value of zero and a maximum value of 55 indicate that there 

are census tracts where no fatal crashes occurred, and 55 fatal crashes occurred in one tract. 

Identification of these tracts can be insightful.  

Independent variables consist of demographic characteristics and disadvantage indicators. 

The Total Population of Census tracts has a minimum of 3 and a mean of 4543.82, which indicates 

that there are some tracts where a few people reside, as reported by the US census, but fatal crashes 

happened there. Population density is calculated by dividing the total population by census tract 

area. The mean population density in the dataset is 5505 persons/census tract. Race or ethnicity 

type represents the total population of each race or ethnicity in each tract, and their mean values 

indicate that Percent White is the most dominant race (60.89). All races have a minimum value of 

zero, meaning there are tracts where people of these races are absent. Considering the mean percent 

values, Percent Hawaiian or other Pacific Islander, Percent American Indian or Alaska Native, 

and Percent Other are the more minor groups compared to the Percent Asian, Percent Black, or 

Percent Hispanic populations.  

The variables under the Means of Transportation to Work represent the percentage of 

people who use these modes to reach their workplace. The mean (74.89) value of Percent Drive 

Alone shows that most people drive alone. The maximum (100) value indicates that people in some 

census tracts only drive rather than using other modes. People who choose other options are limited 
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Table 4-3: Descriptive Statistics 

Variables Mean Std. Dev. Min. Max. 

Crash Information (5 Yrs. Aggregated)     

      Total Fatal Crashes 2.44 3.18 0.00 55.00 

      Total Fatalities 2.65 3.59 0.00 67.00 

  Race or Ethnicity     

      Percent American Indian or Alaska Native 0.80 4.60 0.00 98.73 

      Percent Asian 5.21 9.39 0.00 93.77 

      Percent Black 13.23 20.67 0.00 100.00 

      Percent Hawaiian or other Pacific Islander 0.17 1.02 0.00 62.48 

      Percent Other 1.60 4.25 0.00 78.58 

      Percent White 60.89 28.80 0.00 100.00 

      Percent Hispanic 17.41 21.15 0.00 100.00 

  Means of Transportation to Work     

      Percent Drove Alone 74.89 14.96 0.00 100.00 

      Percent Carpooled 9.04 5.34 0.00 58.24 

      Percent Public Transportation 4.91 10.98 0.00 100.00 

      Percent Walked 2.67 5.01 0.00 100.00 

      Percent Taxicab/Bicycle/Motorcycle/Other 1.88 2.60 0.00 53.97 

      Percent Work from Home 6.62 5.28 0.00 95.84 

  Education     

      Percent Less than Highschool Degree 9.34 7.46 0.00 666.67 

      Percent Highschool Graduate 21.99 9.40 0.00 500.00 

      Percent College or Associate Degree 23.89 26.23 0.00 6700.00 

      Percent Bachelor's Degree or Higher 22.96 24.29 0.00 5133.33 

  Geographic Information     
      Shape Area (Sq. Miles) 48.80 546.58 0.01 85554.34 

Demographic Information     

     Total Population 4543.82 2336.62 3.00 72041.00 

     Population Density (total population/area) 5505.15 12223.75 0.03 271729.60 

Economic Information     

      Median Income (Dollars) 86904.41 41686.08 2500.00 250000.00 

      Employment Density (employed population/area) 4454.64 10059.81 0.00 245705.50 

Other Variables     

      Average daily traffic (ADT) 14732.41 23266.33 50.00 354000.00 

      Percent binge drinking 16.83 3.21 2.70 35.00 

      Alcohol consumption per capita 32.66 4.42 17.70 59.50 

      Seat belt usage percentage 90.00 4.91 75.50 97.20 

     Ban on Hand-held Mobile Phone Usage While 

                                          Driving (1=Yes, 0=No) 0.52 0.50 0.00 1.00 

     Total Lane Miles 260109.80 148957.60 3445.00 683533.00 

N (Number of Census Tracts in the Study) = 71,728 

Std. Dev. = Standard Deviation 
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compared to those who drive alone to work. According to the mean values, the Percent Drive 

Alone option is followed by Percent Carpooled, Percent Work from Home, and Percent Public 

Transportation. The mean values of the Education category represent that, on average, the tracts 

have more Percent College or Associate Degree holders (23.89) compared to the Percent 

Bachelor's Degree or Higher degree holders (22.96). The mean values of Percent Less than 

Highschool Degree and Percent Highschool Graduates indicate such degrees obtained by 9% and 

22% of the census tract population. Tracts with people of less educational qualification can indicate 

a disadvantaged community.  

The census tracts' income information shows the maximum median income is $250,000, 

and the mean median income is $86,904. Employment density is generated by dividing the total 

employed population by census tract area. The mean employment density is 4,454, indicating, on 

average, 4,454 people are employed per square mile in a census tract. Employment density refers 

to the concentration of employment opportunities within a given area. It reflects the economic 

activity and job availability in a specific region. Understanding the impact of employment density 

on fatal crashes can provide insights into how the availability and proximity of job opportunities 

may influence traffic patterns, commute patterns, and overall road safety conditions. 

The average ADT of all the census tracts is 14,732. ADT measures the traffic flow on all 

roads of a census tract, providing an estimate of the number of vehicles traveling on the roadways 

daily. The data indicates an average of 260,109 lane miles. The mean percent binge drinking is 

16.83, ranging from a minimum of 2.7 to a maximum of 35. Binge drinking is defined as 

consuming a large amount of alcohol within a short period, typically resulting in a blood alcohol 

concentration (BAC) of 0.08% or higher. It captures the percentage of individuals living in a 

census tract who drink such large amounts of alcohol quickly. Besides, the average alcohol 

consumption per capita is 32.99 gallons, ranging from a minimum of 17.7 to a maximum of 59.5 

gallons. Alcohol consumption per capita is a measure used to estimate the average amount of 

alcohol consumed by an individual. The average seat belt usage percentage in the dataset is 90, 

indicating that most people wear seat belts. This high percentage reflects positive safety behavior 

and contributes to reducing the risk of injuries in accidents. Additionally, the average ban on hand-

held mobile phone usage while driving is 0.52, indicating that approximately 52% of the analyzed 

locations have implemented regulations prohibiting mobile phone use while driving. 

4.6.2 Hurdle Models on All-Fatal Crashes in the US 

Table 4-4 reports the Hurdle model for the full dataset. Of 71,728 tracts, 20,667 (28.81%) contain 

zero observations (no fatal crash), and 51,061 (71.19%) are non-zero observations (fatal crash 

present). Fatal Crash (5 yrs.) is the response variable predicted by the full model. The Count part 

of the Hurdle model gives the distribution of the fatal crashes as a negative binomial process. The 

Zero-Hurdle part is a logistic model predicting whether a census tract will have fatalities. The 

correlations among the independent variables were examined, specifically checking for correlation 

coefficients greater than ±0.5. In cases where two variables exhibited a high correlation, one 

variable was removed from the analysis based on theoretical and empirical considerations. 

Examples of such variables include median income and population density. Notably, 

disadvantaged indicators don't exhibit high correlations. The correlation coefficients between these 

indicators are less than +0.25 or higher than -0.25, as shown in Table 4-5. However, the correlation 

between median income and economy DAC is slightly lower than -0.5. 
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The disadvantaged indicators used in the analysis are binary variables indicating a 

disadvantaged census tract. The 50th percentile indicators use the USDOT disadvantaged 

definition, where if the percentage ranking average value of the tracts is greater than and equals 

50% (75% for the resilience disadvantaged category), it is defined as a disadvantaged tract. This 

definition may distribute the disadvantaged and non-disadvantaged somewhat evenly across the 

US. To mitigate such instances and identify substantially disadvantaged communities, we defined 

highly disadvantaged tracts by ranking percentage values greater than and equal to 85%. Using 

this new definition, the 85th percentile-based model contains coefficients with similar signs of the 

key variables as we found in the 50th percentile model. The AIC value of the 85th percentile-based 

model is higher than that of the 50th percentile model. Also, the pseudo-R2 is slightly lower in the 

85th percentile model (18%) than the 50th percentile model (19%). Hence, the 50th percentile-based 

model is selected for the full dataset. The Hurdle model with 50th percentile-based disadvantage 

indicators is explained, and the 85th percentile-based model is shown for comparison. Figure 4-4 

visually shows the performance of the 50th percentile model, plotting the differences between the 

observed and predicted probabilities of crash occurrence. When the difference is minimal (i.e., 

close to zero), it signifies a strong alignment between the model and the data. In the graphical 

representation, accurate predictions (approximating zero difference) are observed for high crash 

counts, whereas a moderate level of variability is evident for low crash counts (i.e., the difference 

is less than 0.011). 

The positive coefficient of 0.0663 for health indicates that a health-wise disadvantaged 

community is associated with (exp (-0.0824) or (1.0859-1)*100)=8.59% more fatal crashes than a 

not-disadvantaged community. As per the definition of health-wise disadvantaged tracts, these 

tracts have more elderly, disabled, and uninsured people prone to crashes while driving or walking 

to cross the street. Resilience has a positive coefficient of 0.4520, which indicates that a resilience-

wise disadvantaged track is associated with 57.14% more fatal crashes. Resilience-disadvantaged 

communities are often characterized by a lack of resources, social support, and infrastructure, 

which can contribute to a higher risk of fatal crashes. For example, these communities may have 

inadequate public transportation systems, forcing residents to rely on personal vehicles that may 

not be well-maintained or safe. Transportation has a positive coefficient of 0.3316, indicating that 

transportation-wise disadvantaged tracks have 39.3% higher fatal crashes. As per the definition of 

transportation-disadvantaged indicator, people living in transportation-disadvantaged tracts bear 

high traveling costs, more commute time, and lower vehicle ownership. Moreover, the 

disproportionate focus on automobile-centered planning and design could have led to a lack of 

safe and reliable pedestrian, bicycle, and public transportation options, negatively impacting the 

safety and well-being of low-income and minority populations and senior citizens (162). As a 

result, transportation DACs may have a higher risk of fatal crashes. 

We found that percent binge drinking is positively correlated with fatal crashes. A 1-unit 

increase in binge drinking in a census tract is associated with a 0.45% increase in fatal crashes. 

This is consistent with Voas et al. (163), who found evidence indicating a strong correlation 

between higher levels of alcohol consumption in states and an increased proportion of drinking 

drivers involved in fatal crashes. The percentage binge drinking variable captures the proportion 

of individuals within a census tract who engage in this risky behavior. Alcohol consumption can 

significantly impair an individual's judgment, coordination, and motor skills. These impairments 

can affect a person's ability to make informed decisions, react quickly to potential hazards, and   
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Table 4-4: Hurdle Models Results 

Hurdle Count Models 50th Percentile 85th Percentile 
 Coeff. z P>|z| Coeff. z P>|z| 

Fatal Crash (5 yrs.)             

        Constant 0.2236 3.81 0 1.2580 31.09 0 

   Disadvantage Indicator       

        Environment -0.0186 -0.75 0.39 0.1723 4.27 0 

        Health 0.0824 7.05 0 0.1419 4.74 0 

        Resilience 0.4520 42.35 0 0.4856 38.69 0 

        Transportation 0.3316 28.83 0 0.1903 3.08 0 

   Race or Ethnicity       

        Percent American Indian or Alaska 

Native 
0.0062 7.16 0 0.0060 6.80 0 

        Percent Black  0.0014 4.88 0 0.0014 4.95 0 

  Means of Transportation to Work       

        Percent Public Transportation -0.0037 -3.65 0 -0.0055 -5.35 0 

        Percent Taxi/motorcycle/bicycle/other -0.0026 -1.78 0.07 -0.0059 -2.65 0.01 

   Education Information       

        Percent Bachelor degree -0.0054 -9.79 0 -0.0097 -18.52 0 

        Percent Less than highschool degree 0.0168 16.47 0 0.0187 17.93 0 

   Other Variables       

        Logarithm (ADT) 0.0789 18.16 0 0.0343 7.85 0 

        Percent binge drinking 0.0045 2.54 0.01 0.0010 0.53 0.6 

        Ban on Hand-held Mobile Phone Usage 

                                         While Driving, Yes 

 

-0.0529 

 

-5.18 

 

0 

 

-0.0585 

 

-5.67 

 

0 

        Employment Density -0.0001 -19.95 0 -0.0001 -25.01 0 

        Shape Area (Square Miles) 0.0004 24.97 0 0.0004 23.90 0 

Zero Hurdle Models             

      Constant 0.4787 9.53 0 0.4787 9.53 0 

      Population 0.0001 11.15 0 0.0001 11.25 0 

      Work from home percentage -0.0404 -26.28 0 -0.0404 -26.28 0 

Model Fit Statistics     

AIC 280304 282592 

BIC 280497 282785 

Log-likelihood at convergence -140631 -141275 

Log-likelihood at null -172552 -172552 

Pseudo R2 0.19 0.18 

Degrees of freedom 21 21 

N (number of observations) 71728 71728 

Non-zero observations 51061 51061 

Zero Observations 20667 20667 
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Table 4-5: Correlation coefficients between median income and the disadvantage indicators 

  
Median 

Income 
Transport Health Economy Equity Resilience Environment 

Median 

Income 
1.00       

Transport -0.29 1.00      

Health -0.40 0.18 1.00     

Economy -0.56 0.17 0.19 1.00    

Equity -0.07 -0.06 -0.12 0.24 1.00   

Resilience 0.04 0.03 0.03 -0.05 0.00 1.00  

Environment 0.00 -0.09 -0.12 0.21 0.24 -0.06 1.00 
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Figure 4-4: Difference between observed and predicted probabilities of crash occurrence  
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operate a vehicle safely. Binge drinkers can be more inclined to engage in dangerous activities, 

including reckless driving and speeding, increasing the likelihood of crashes and fatalities. 

Additionally, a ban on hand-held mobile phone use while driving is associated with 5.15% fewer 

fatal crashes. This is similar to the findings by Lim and Chi (164), who found mobile phone bans 

significantly reduce fatal crashes in the US. Using a hand-held mobile phone while driving can be 

a significant distraction, taking the driver's attention away from the road and impairing their ability 

to react to sudden changes or hazards. By prohibiting this behavior, drivers can focus more on their 

surroundings and maintain better control of their vehicles, reducing the risk of accidents. 

Furthermore, this study found a positive association between logarithm (ADT) and the number of 

fatal crashes. ADT measures traffic volume, representing the number of vehicles traveling on a 

specific roadway within a given period. Therefore, higher ADT values generally indicate greater 

exposure to traffic. Specifically, the analysis shows a 1% increase in ADT increases the likelihood 

of fatal crashes by 7.9%. Mohammadnazar et al. (112) found a similar association between traffic 

and crashes. With more vehicles on the road, there is an increased potential for interactions 

between vehicles, pedestrians, and cyclists, which can elevate the risk of fatal crashes. 

It is expected that disadvantaged or underserved communities are shelters for minority 

groups. Among all the race or ethnicity-based variables, only the sign and significance of Percent 

American Indian or Alaska Native and Percent Black are according to expectation. The coefficient 

of 0.0062 indicates that an additional American Indian or Alaskan person in a tract is associated 

with higher fatal crashes in the tract by 0.06%. This is consistent with previous studies (165-167). 

According to Murphy et al. (166), the fatality rate for American Indian or Alaska Native (AI/AN) 

individuals is 2.4 times higher than that of Whites. The leading causes of road fatalities in this 

population are driving while under the influence of alcohol and failing to use seat belts (165). In 

addition, the coefficient of 0.0001 for the black population suggests that the presence of a more 

racially black population in the census tract is associated with more fatal crashes by 0.01%. This 

indicates that fatal crashes are expected to be higher in communities with more minority groups. 

It is crucial to prioritize interventions that focus on road safety and invest in the minority 

communities with the highest fatality rates. 

The Percent Public Transportation variable has a negative coefficient of 0.0037, which 

indicates that additional commuters who take public transportation to work are associated with 

fewer fatal crashes of the tract by 0.3%. Dharmaratne et al. (168) suggested a similar association 

between public transportation and crash fatalities. This makes sense because public transit is a 

safer mode that uses local roads at low speeds and has fewer chances of involvement in fatal 

crashes. Likewise, in the 85th percentile case, an increase in commuters who take a 

taxi/motorcycle/bicycle/other mode to commute is associated with a decrease in fatal crashes by 

0.26%. Although these modes may be associated with lower fatal crashes, their magnitudes are 

relatively small.  

The positive coefficient for lower educational qualification and the negative coefficient for 

higher education indicate the association with more fatal crashes in tracts with less educated people 

and fewer crashes in tracts with highly educated people. These findings are consistent with the 

research conducted by Munteanu et al. (169), which also showed that individuals with higher 

education qualifications are less likely to be involved in traffic crashes compared to those with 

lower educational attainment. Moreover, the study indicates that higher employment density is 

associated with a lower frequency of fatal crashes. Stamatiadis and Puccini (170) found lower 
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fatality crash rates in areas with higher employment rates. They suggested a lower prevalence of 

risky driving behaviors in these areas may contribute to lower rates of crashes.  

In the Zero-Hurdle model, the population has a positive coefficient. This indicates that if 

the population of an area increases, the odds of a non-zero fatal crash increases. The work-from-

home percentage has a negative coefficient of −0.0404. It implies that an increase in working from 

home population is associated with lower odds of observing a non-zero fatal crash count. However, 

although working from home eliminates the need for commuting, it encourages non-work travel, 

including shopping trips, restaurant trips, and recreational trips (43). 

4.6.3 Safety in Disadvantaged Communities by Race 

Figure 4-5 represents the number of fatalities per 100,000 population per year by race. It shows 

that in the disadvantaged tracts, the highest fatality per 100,000 per year is among the Hawaiian or 

Other Pacific Islander (HPI) (54.98), followed by American Indian or Alaska Native (29.88), 

White (22.58), Black (17.37), and Hispanic (12.70) population. The lowest fatality/per 100,000 is 

observed among Asians. Figure 4-6 shows the fatality rates of the minority groups and indicates 

that the higher fatality rates are spatially distributed in the disadvantaged areas. According to the 

definition of the DAC indicators, this may be due to a lack of access to safe and reliable vehicles, 

poor road conditions, and other systematic inequalities. Therefore, these communities can be the 

target areas for safety improvement projects. Addressing the higher fatality rate in DACs may 

require a multifaceted approach that includes improving infrastructure, expanding access to safe 

vehicles, strengthening healthcare access, providing comprehensive safety education, and 

addressing systemic inequities. 

4.7 Limitations 

Any potential measurement errors and non-coverage errors are recognized. Integrating different 

data sources resulted in data loss (less than 2%). Furthermore, a small amount of census tracts (less 

than 1%) in the GIS shapefile and disadvantage indicator-based dataset did not match. Specifically, 

the disadvantage database did not have information for some of the census tracts. Those tracts were 

excluded from the analysis. Some fatal crashes (1.5%) from each year were lost during the spatial 

joining process in ArcGIS. They were on the boundaries of the tracts and were not counted. Despite 

these limitations, the study successfully identifies traffic safety risks in disadvantaged 

communities. 

4.8 Conclusions 

This study comprehensively investigates traffic safety by exploring the role of different 

disadvantaged community indicators, socio-demographics, and built environments using unique 

and high-quality data. The data collected by the US Department of Transportation on 

disadvantaged communities at the census tract level was linked with fatal crash data from FARS. 

The analysis, conducted at the census tract level with five years of data, estimated inference-based 

Zero-Hurdle negative binomial models. The study controls commonly known confounding factors 

by including diverse variables. The analysis was done at a disaggregated and granular spatial level, 

capturing local variations. 
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Figure 4-5: Fatalities per 100,000 population per year across different races in the US 
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Figure 4-6: Fatality Rate of (a) HPI (b) Black and (c) AIA Population in the US 
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The findings revealed several important insights. Firstly, health, resilience, and 

transportation-disadvantaged tracts are associated with more fatal crashes in the US, highlighting 

the impact of multiple dimensions of disadvantage on safety outcomes. Specifically, census tracts 

with health, resilience, and transportation disadvantages have an 8.59%, 57.14%, and 39.30% 

higher rate of fatal crashes, respectively. Additionally, higher rates of fatal crashes were associated 

with census tracts characterized by high traffic volume. Also, higher levels of binge drinking, and 

no mobile phone law are associated with increased fatal crashes. The study also found that a higher 

percentage of the population with bachelor's degrees and increased public transportation use 

correlate with fewer fatal crashes. Conversely, a higher proportion of Black, American Indian or 

Alaska Native populations were associated with a greater number of fatal crashes. Subsequently, 

in the DACs, the highest fatality per 100,000 is among the Hispanic or other Pacific Islander, and 

American Indian or Alaska Native populations. This implies that a comprehensive approach is 

required to address the elevated fatalities in DACs, including infrastructure improvements, 

increased access to safe vehicles, improved healthcare access, comprehensive safety education, 

and addressing systemic inequalities. 

This study contributes new knowledge about safety in diverse contexts characterized by 

disadvantaged communities, socio-demographics, and built environments. The results generated 

in this study can support national-level planning. The findings provide valuable information for 

policymakers, helping them allocate resources effectively, invest in more equitable safety 

measures, and prioritize improvements in DACs. Since transportation and housing costs are 

becoming increasingly burdensome for low and medium-income households, investments should 

be devoted to improving access to a range of high-quality, safe, and affordable mobility options, 

i.e., transit, shared mobility, and active transportation options within disadvantaged communities. 

Specifically, since we found more use of public transportation improves overall safety, 

investments can be directed to enhancing access to public transportation options, including bus 

stops and transit stations, to reduce the reliance on private vehicles in DACs. Moreover, 

disadvantaged communities should be supported in playing an active and direct role in 

transportation planning, engagement, and decision-making processes, ensuring historically 

excluded voices are centered in the transportation decision-making process. This will not only 

involve community members in the planning and design of road safety interventions but also will 

ensure that solutions are culturally sensitive and address local concerns. Notably, implementing 

policies, e.g., banning hand-held mobile phone use while driving and enhancing traffic 

enforcement, are crucial for reducing traffic safety risks in DACs. Ultimately, this research aims 

to enhance safety and equity in transportation and guide policymakers toward evidence-based 

decision-making. Future studies can incorporate spatial analysis to observe whether the relations 

vary over space. Besides, future research should be conducted on different types of crashes, e.g., 

pedestrian-involved, large truck-involved, and rear-end crashes in DACs. Moreover, future studies 

can include more socio-demographic information on the drivers. This can assist policymakers in 

deciding which disadvantaged community might need transportation improvement on a priority 

basis, which can ultimately take the United States one step closer to the vision zero goals. 

4.9 Acknowledgments 

The authors would like to thank the Collaborative Sciences Center for Road Safety for providing 

financial support for this article's research, authorship, and/or presentation/publication. 



83 

 

CHAPTER 5 INTERACTION BETWEEN THE EMERGING 

COMPONENTS OF ONLINE SHOPPING AND IN-PERSON ACTIVITIES: 

INSIGHTS FROM BEHAVIORAL SURVEY AND JUSTICE40 

INITIATIVE DATA 
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A version of this chapter was originally submitted by A. Latif Patwary and Asad J. Khattak for 

publication: 

 

 Patwary, A. L., & Khattak, A. J. (2023). Interaction between the Emerging Components of 

Online Shopping and In-Person Activities: Insights from Behavioral Survey and Justice40 

Initiative Data. 

5.1 Abstract 

The rise of technological advancements has led to the commonplace practice of online shopping 

for retail, grocery, and food. However, little research has been conducted on the interplay of these 

components in disadvantaged communities (DACs) that face issues of marginalization and limited 

access to digital resources. This study aims to provide a comprehensive understanding of travel 

behavior changes by analyzing the interconnectedness of the emerging components of online 

shopping (retail, grocery, and food) and in-person activities in both DACs and non-DACs. A 

unique household-level database is created by linking the 2021 Puget Sound Household Travel 

Survey and the US Department of Transportation's Justice40 databases, and a conditional mixed 

process model is estimated to account for unobserved endogeneity. The findings suggest that 

households living in DACs are less likely to order online retail goods and groceries than non-DAC 

households. Additionally, the probability of making more restaurant trips decreases for households 

living in DACs. The study highlights the digital divide that exists in DACs and the differences in 

online and in-person shopping activities across socioeconomic levels. Policymakers can address 

these disparities to promote equity and equal access to goods and services for all. Besides, planners 

may need to improve the travel demand models by accounting for the emerging components of 

online shopping and the trip frequencies by purpose in DACs. 

5.2 Introduction 

The advancement in information and communication technologies (ICTs) makes many activities 

easily accessible from home that previously needed a fixed location. In the US, the share of people 

having smartphones has increased by about 70% in 2021 (171). A combination of the internet, 

smartphones, tablets, laptops, smart service providers, innovations, and widely improved wireless 

communications allows individuals to access goods and amenities anytime from anywhere. 

Therefore, the partial decoupling of virtual access and physical trips to access the service will 

likely continue in the future (1; 2). Virtual interactions can take different forms, including online 

shopping, working from home, telemedicine, etc. 

The COVID-19 pandemic, with the technological landscape and the types of services 

provided by connectivity, have significantly changed our travel behavior (172-175). In the US, 

vehicle miles traveled (VMT) has decreased as fewer people were traveling, especially during 

2020 at the peak of COVID-19. However, freight activity has shown an upsurge during the 

pandemic. Demand for freight truck drivers to restock goods at the beginning of the pandemic has 

been followed by unstable delivery demands because of the slowing and then the resurgence of 

the economy and the surge in online delivery of goods and services. E-commerce sales raised by 

17% in 2019, and sales surged by 37% in the third quarter of 2020 (5). On average, online retail 

sales have increased by 15-30% each year in the past decade (176) and are expected to continue to 
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grow in the coming years because of its convenience, much wider choices, and price flexibility 

over traditional physical stores (177). 

This surge in online shopping can significantly affect an individual's travel behavior. 

Numerous prior studies have examined the relationship between online shopping and the in-store 

shopping behavior of consumers (10; 16). It is either found online shopping reduces shopping trips 

(substitution) or increases (complementary). However, the many ways online and physical 

shopping interact may go beyond the traditional substitution and complementarity framework. 

Most studies draw conclusions after accounting for online shopping as a single category. The 

shopping behavior during COVID-19 shows that online shopping may have several components. 

For instance, grocery shopping behavior differs from shopping for other personal or household 

items, which drove many purchases during the pandemic. Online grocery sales were predicted to 

be worth $200 billion in 2022 (178). Purchasing and delivering prepared meals is another 

component of online shopping that emerged fully in the wake of the pandemic, and it is predicted 

to grow from 6% in 2018 to 13% in 2025 (179).  

People who live in an urban area generally have higher accessibility to online and in-store 

shopping and dining in physical restaurants. However, the effects are relatively unknown if the 

area is disadvantaged in terms of lacking the required infrastructure, operations, and investments. 

Meanwhile, the disadvantaged communities (DACs) that are underserved, marginalized, and 

polluted are receiving 40% of the benefits of federal investments (180). It is important to 

understand how these disadvantaged communities' online shopping components and physical 

shopping behavior are interconnected. Therefore, this study aims to investigate the relationships 

between the online and in-person activity engagements for the three shopping components (i.e., 

food, grocery, and retail) across DACs and non-DACs. It further attempts to explore the correlates 

of the socio-demographics, locational, and travel attributes on shopping behavior at the household 

level.  

5.3 Literature Review 

Virtual shopping behaviors can potentially substitute physical activities that previously required 

physical travel. This may as well stimulate more physical travel (4; 181). Numerous studies have 

investigated the relationship between online shopping and physical trips (10; 16; 182). In addition 

to the well-known online delivery of durable goods, the emergence of newer components of online 

shopping (i.e., food and grocery) has received wider attention during the COVID-19 pandemic. 

This section provides a synthesis of previous studies on the three components of online shopping 

and their influencing factors, including socio-demographics, spatial, and travel-related factors. 

5.3.1 Online/Retail Shopping 

Online shopping is of interest to many policymakers, engineers, and planners. Past research mainly 

analyzed online shopping as a single activity or focused on shopping for durable goods and 

services that are bought less frequently, e.g., clothing, household items, kitchen utensils, 

electronics, books, and other special items (36). Regarding the decoupling of virtual and fixed 

activity space, there is a long-ongoing debate on the association between online shopping for 

durable goods and physical shopping trips. Some studies suggested it as substitutive, and others 

found it complementary. Sim and Koi (183) found that 12% of online shoppers reduced their 

shopping trips while investigating the travel behavior of 1500 consumers in Singapore. It may be 
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because some people do not need to make physical trips to stores while they can shop online. On 

the other hand, Cao et al. (10) suggested that online shopping increases shopping trips in 

Minneapolis using survey data from 539 individuals. However, some other studies also found both 

substitution and complementary effects. For example, Zhou and Wang (16) analyzed the 

bidirectional relationship between online shopping and shopping trips using the 2009 National 

Household Travel Survey (NHTS) database with a structural equation model. They found that 

more online shopping encourages more shopping trips, and frequent shopping trips tend to reduce 

online shopping frequencies. While analyzing the factors affecting this relationship, studies listed 

some related contributing factors, including income, household size, the number of household 

vehicles, household race, urban location, and car sharing status, among others (10; 16; 184). 

However, it is important to examine online shopping after dissecting its distinctive components 

(food and grocery shopping).  

5.3.2 Food and Grocery Shopping 

The history of food and grocery shopping online dates back to the early 1990s, when Pizza hut 

began its Pizza delivery services and Peapod (the first company that introduced online grocery 

shopping) started its online delivery (178). Over the years, many platforms, e.g., Uber-Eats and 

Grub hub, Amazon Whole Food Market, Walmart+, Instacart, etc., have emerged with the 

advancement of ICT applications. While the literature on prepared meals/food shopping is quite 

limited, a recent study suggests that a large household is 15% more likely and a higher-income 

household is 12% more likely to receive prepared meal deliveries. However, these activities did 

not reduce the total number of personal trips (185).  

A few studies have analyzed in-store and online grocery shopping behaviors (186-190). 

Research has been conducted on the underlying motives, situations, and other related factors of 

consumers' online grocery shopping behavior (187). Customers usually order groceries online to 

save time and if any item or specialized items are unavailable at the grocery store (191). Income, 

age, household location, and structure are found to affect the frequency of online grocery shopping 

(188). Households having more members with a greater share of older individuals tend to buy 

groceries from online stores more, as it is easier to order more supplies and not carry them from a 

grocery store for such a large household (192). Recently, Kim and Wang (178) analyzed the factors 

affecting the components of online shopping, including retail, grocery, and food. They found that 

the factors affecting different online delivery types differ with the trip mode. However, they 

ignored the interconnection between different types of delivery and associated physical travel 

behaviors. For instance, they ignored that more food shopping could result in less grocery shopping 

online. Dias et al.  (36) also attempted to jointly analyze the components of online shopping using 

a multivariate probit model. However, they only used a few household attributes, e.g., household 

income, household size, and homeownership. Other variables that represent transportation 

accessibility, employment, emissions, and inequalities in terms of wealth, development, and 

infrastructure investment, of the community they live in, and their travel attributes are ignored. 

Besides, their study sample size is small and could not capture the COVID-19 shocks and online 

food & grocery shopping surge.  

Overall, from the above-mentioned studies in this review, it is evident that there remain a 

few clear gaps in the literature. One major gap is how online shopping and travel behavior changes 

in a DAC have not been investigated. It is important to explore these since DACs may not access 
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online ordering services due to the digital divide. Moreover, most studies considered online 

shopping as a single activity without drawing any clear distinction and interaction between 

different shopping activities. Therefore, while filling the gaps, this study intends to contribute to 

the literature by analyzing the three components of online shopping (retail, grocery & food) and 

associated in-person travel for these activities across the DACs and non-DACs. It harnesses the 

most recent 2021 Puget Sound Household Travel Survey and US DOT's Justice40 databases with 

a conditional mixed process model that accounts for unobserved endogeneity.  

5.4 Conceptual Framework 

The interaction between the components of online shopping (retail, food, and grocery) and related 

travel behavior is not straightforward. Furthermore, disadvantaged communities, in terms of 

equity, environment, transportation access, health, economy, and resilience, may intervene in those 

interactions. The study framework in Figure 5-1 is depicted from the relationship found in the 

literature among the endogenous variables (in-person and online shopping for retail, grocery, and 

food purposes) (36; 178). These relationships are established through hypothesis testing of 

different combinations of endogenous variables (36). The framework is also supported by the 

recursive nature of different multivariate models (193). Importantly, the literature suggests that 

more online retail shopping (i.e., durable goods shopping) is associated with more in-person 

grocery shopping and in-person eating food at restaurants (36). Ordering prepared food online is 

associated with fewer physical trips for retail shopping to stores (36). The relationship between 

online and in-person shopping for retail goods can be either complementary or substitutive (10; 

16; 36; 43). The complementary aspect indicates more in-person shopping is associated with a 

higher propensity for online shopping and vice versa for substitution. Besides, more in-person 

grocery shopping frequency is related to lower frequencies of online shopping. Additionally, 

according to the literature, these endogenous variables are expected to be associated with some 

exogenous features. Household attributes, e.g., higher income, large households, more household 

vehicles, and non-white households, are anticipated to be positively associated with online 

shopping (16; 36; 178). Urban location and tech-savviness are also expected to have a positive 

association. Finally, households living in DACs are generally expected to have a lower frequency 

of deliveries due to limited infrastructure investments, limited access to technology and other 

emerging online services. 

5.5 Methodology 

5.5.1 Data 

The data sources of this study are the 2021 Puget Sound Household Travel Survey (194) and the 

US Department of Transportation's Justice40 database (195). A combined dataset of households is 

created after linking these databases. The travel survey collects information on socio-

demographics, online delivery frequencies, locational, and travel information at the household and 

person level of the residents covering the Greater Puget Sound area from April-June of 2021. The 

survey is a standard web-based online survey (rSurvey) designed to collect complete household 

travel diary information from invited participants. The survey provides data on grocery, food, & 

retail delivery frequencies and the trip counts for a pre-assigned travel day. 

The survey data comes with household, person, trip, days, and vehicle data files, which are  
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Figure 5-1: Study Framework 
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merged to produce household-level data. Data is cleaned by removing rows having missing 

information, e.g., skip logic, prefer not to answer. The final cleaned dataset has a sample size of 

2,501 households. Table 5-1 reports the descriptive statistics of the cleaned data. The endogenous 

variables are food, grocery, retail deliveries on travel day, and the number of physical trips for 

retail, grocery, and restaurant on travel day. Exogenous variables include household structure, 

household employment, Household vehicle count, household income, race, Seattle city home, and 

tech-savviness. Table 5-1 shows that 27% of households receive retail delivery at least once, 

whereas only 4% receive food and grocery deliveries each. 11% of households take in-person retail 

trips on travel day at least once. On the other hand, 25% of households took grocery trips, and 13% 

took restaurant trips at least once on the travel day. 28% of the sample households have an income 

of less than $50,000, and 41% have an income higher than or equal to $100,000. Moreover, 51% 

are white population, and only 23% live in Seattle city. 40% of households have multiple workers, 

and 46% have two or more adults without children. 6% use a car share program. The household's 

participation in a car-sharing program (such as ZipCar, Car2Go, or GIG) is reflected in their car-

sharing status. This status can show a connection with their travel habits and opinions towards new 

technologies, e.g., newer forms of online shopping. Therefore, it is considered a proxy for the 

household's tech literacy (i.e., tech-savviness). 

The PHTS cleaned dataset is linked with the US DOT's Justice40 disadvantaged community 

(DAC) database. According to USDOT, DACs are the ones that are affected by high poverty, low 

wealth, low educational attainment, insufficient local jobs, high inequality, and low 

homeownership. This definition was developed to provide Justice40-based grant programs to the 

underserved communities of the US. The GIS-based mapping tool displays DACs at the census 

tract level for public use. The definition of DAC is based on six indicators that cover six broad 

themes of transportation disadvantages: economy, environment, equity, health, resilience, and 

transportation. The indicators are explained briefly below: 

• Economic Disadvantaged: This indicator detects census tracts that are affected by high 

poverty, low wealth, low educational attainment, insufficient local jobs, high inequality, 

and low homeownership. 

• Environmental Disadvantaged: This indicator detects census tracts that possess an 

unbalanced pollution burden and below-standard environmental quality. 

• Equity Disadvantaged: This indicator detects those census tracts where a high percentile 

of the population possesses a "less than well" English speaking skill. 

• Health Disadvantaged: This indicator detects the census tracts affected by adverse health 

outcomes, disability, and environmental exposures.  

• Resilience Disadvantaged: This indicator detects those census tracts that are vulnerable to 

climate change hazards. 

• Transportation Access Disadvantaged: This theme identifies communities affected by more 

prolonged and expensive ways of transportation. 

Table 5-2 illustrates disadvantaged indicators for transportation and economy major 

categories. This shows a glimpse of how the major categories are calculated. Each major 

disadvantaged indicator is an aggregated index based on the theme’s relevant indicators. A census 

tract is considered overall disadvantaged if it surpasses the 50th percentile (75th for resilience) 

across more than three of the six aggregated theme-based indicators. The disadvantaged indicator-

based dataset has information for 72,843 census tracts. In the Seattle, Washington study area, 620   
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Table 5-1: Descriptive Statistics of the Data 

Variables Description Freq. % 

OS_Retail* 

Frequencies of retail delivery for durable goods on 

travel day 

1 = No 1304 64% 

2 = 1 time 560 27% 

3 = 2 times 150 7% 

4 = 3+ times 37 2% 

OS_Grocery* 

Grocery delivery frequencies on travel day 

1 = No 1946 94% 

2 = 1 time 81 4% 

3 = 2 times 13 1% 

4 = 3+ times 11 1% 

OS_Food* 

Food delivery frequencies on travel day 

1 = No 1936 94% 

2 = 1 time 86 4% 

3 = 2 times 20 1% 

4 = 3+ times 9 1% 

IP_Retail* 

Retail trip counts on travel day 

1 = No 1656 81% 

2 = 1 Trip 236 11% 

3 = 2 Trips 96 5% 

4 = 3+ Trips 63 3% 

IP_Grocery* 

Grocery trip counts on travel day 

1 = No 1353 66% 

2 = 1 Trip 514 25% 

3 = 2 Trips 136 7% 

4 = 3+ Trips 48 2% 

IP_Food* 

Restaurant trip counts on travel day 

1 = No 1649 80% 

2 = 1 Trip 269 13% 

3 = 2 Trips 102 5% 

4 = 3+ Trips 31 2% 

Household Employment 

0 = No workers 493 24% 

1 = Single worker 824 40% 

2 = Multiple workers 734 36% 

Household Structure 

0 = Single adult 566 27% 

1 = Two or more adults without 

children 
936 46% 

2 = Two or more adults with 

children 
549 27% 
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Table 5-1 continued 

 

Household Vehicle Count 

0 = No Vehicle 171 8% 

1 = Single Vehicle 838 41% 

2 = Multiple Vehicles 1042 51% 

Household Income 

0 = <$25,000 228 11% 

1 = $25,000-$49,999 356 17% 

2 = $50,000-$74,999 326 16% 

3 = $75,000-$99,999 294 15% 

4 = >=$100,000 847 41% 

Household Race 
0 = Others 833 41% 

1 = White 1218 59% 

Home in Seattle City 
0 = No 1587 77% 

1 = Yes 464 23% 

Tech-savviness 
0 = No 1933 94% 

1 = Yes 118 6% 
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tract's DAC information is linked at the household level (Figure 5-2). The descriptive statistics for 

the DAC categories in Table 5-3 suggest that 32% of the households in the sample live in the 

transportation DACs. 45% live in economic DACs, and 35% in the overall DACs. It is important 

to analyze the shopping behaviors in the DACs. This can help inform policies and initiatives aimed 

at promoting more inclusive economic growth, where all communities have access to the goods, 

services, and opportunities they need to thrive. The following chapters will analyze the cleaned 

dataset and discuss the results. 

5.5.2 Model 

The components of online shopping and household trips are defined as categorical ordered 

variables. The frequency of the deliveries is ordered, including "no delivery," "1 time", "2 times", 

and "3+ times". The in-person retail shopping trips, grocery shopping trips, and restaurant dine-in 

trips on travel day have four categories: "no trips" as the lowest category and "3+ times" as the 

highest category. We designate online food shopping as Y1, online grocery shopping as Y2, online 

retail shopping as Y3, in-person retail trips as Y4, grocery trips as Y5, and restaurant trips as Y6. 

The following empirical models can be represented mathematically: 

𝑌1𝑖 = 𝛼0 + 𝛼1𝑋𝑖 + 𝛿𝑌4𝑖 + 𝜇1𝑖                                                   (i) 

𝑌2𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛿′𝑌5𝑖 + 𝛿′′𝑌6𝑖 + 𝜇2𝑖                                   (ii) 

𝑌3𝑖 = 𝛾0 + 𝛾1𝑋𝑖 + 𝜇3𝑖                                 (iii) 

𝑌4𝑖 = 𝜏0 + 𝜏1𝑋𝑖 + 𝑟𝑌3𝑖 + 𝜇4𝑖                                   (iv) 

𝑌5𝑖 = 𝜑0 + 𝜑1𝑋𝑖 + 𝜔𝑌1𝑖 + 𝜇4𝑖                  (v) 

𝑌6𝑖 = 𝜗0 + 𝜗1𝑋𝑖 + 𝜔′𝑌1𝑖 + 𝜇4𝑖                                    (vi) 

Where Xi indicates a vector of exogenous variables allied with the household. These 

variables are hypothesized to have correlations with online food, grocery, retail shopping, and the 

household trips for the same activities on travel day. 𝜇1, 𝜇2, 𝜇3, 𝜇4, 𝜇5 and 𝜇6 are the related 

random error terms, and α, β, γ, δ, 𝛿′, 𝛿′′, r, 𝜑, 𝜔, 𝜏, 𝜗 and 𝜔′ are the parameters to be estimated. 

The parameters δ, 𝛿′, 𝛿′′, r, 𝜔, and 𝜔′ represent the correlations of 1) retail shopping trips with 

online retail shopping, 2) grocery shopping trips with online grocery shopping, 3) restaurant trips 

with online grocery shopping, 4) food delivery with retail shopping trips, 5) online retail shopping 

with grocery shopping trips, and 6) online retail shopping with restaurant trips. 

Equations (i) through (vi) are ordered probit regression models that can be jointly estimated using 

conventional path analysis or structural equation modeling (SEM). However, unobserved 

endogeneity can lead to biased and unreliable estimates. Unobserved endogeneity occurs when a 

variable that affects both the dependent and independent variables is not included in the analysis. 

This is more difficult to detect and correct than observed endogeneity, which occurs when a 

measured variable influences both dependent and independent variables. For example, household 

employment can influence online shopping and household factors, and it can be included in the 

analysis. In the case of unobserved factors, for instance, the lifestyle of a household may influence 

shopping behavior. Households with a busy lifestyle may be more likely to shop online because it 

is more convenient. However, this factor may not be observable, leading to unobserved 

endogeneity. To address unobserved endogeneity, the conditional mixed process model (CMP) 

proposed by Roodman (39) can be used. The CMP considers the correlations between the error 

processes of two or more equations and provides a new perspective for adopting structural models 

with different equations to correct associated unobserved endogeneity issues. 
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Table 5-2: List of Disadvantaged Indicators under Transportation and Economy Themes 

(160) 

Major Disadvantaged 

Category 
Percentile of Disadvantaged Indicators 

Transportation Access 

Disadvantaged 

(Average of the percentiles) 

Percentile percentage households with no vehicle available estimate 

Percentile of Mean commute time to work (in minutes) (longer commute 

times) 

Percentile of Transportation Cost Burden: 

• Total workers 16 or older in a census tract 

• Percentages of non-transit households who have 0/1/2/3+ vehicles 

• Number of non-transit workers 

• Number of transit users 16 and over 

• Average weekday vehicle miles traveled per state 

• Calculated Average Annual Vehicle Miles Traveled 

• Average Annual Median Earnings 

• Five Year average price of gas per state 

• Five Year average gas mileage per state 

• Calculated average number of cars per household 

• Calculated average cost of owning a car 

• Calculated national average annual cost of using transit 

• Calculated average annual cost of transportation 

• Annual Travel Time in Minutes 

• Annual Travel Time in Hours 

• Travel Time Cost 

• Calculated average annual cost of transportation as a percent of 

income 

Percentile of National Walkability Index 

Economy Disadvantaged 

(Average of the percentiles) 

Percentile Percentage of persons with no high school diploma (age 25+) 

estimate 

Percentile Overall Renter Rate: Percent of Occupied Housing Units that are 

Renter-Occupied 

Percentile Percentage of civilian (age 16+) unemployed estimate 

Percentile per capita income estimate 

Percentile Percentage of persons below poverty estimate 

GINI Index Percentile (calculated) 

Percentile Percent of Household Units with 30 percent or more income 

towards housing cost 
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Table 5-3: Descriptive Statistics of the Disadvantaged Indicators 

Disadvantaged Indicators Status 
Sample 

Household Freq. 

Freq. 

(%) 

Census 

Tract Pop. 

(%) 

Transportation 

Disadvantaged 

0 = No 1386 68% 65% 

1= Yes 665 32% 35% 

Economic Disadvantaged 
0 = No 1126 55% 70% 

1= Yes 925 45% 30% 

Equity Disadvantaged 
0 = No 624 30% 35% 

1= Yes 1427 70% 65% 

Health Disadvantaged 
0 = No 1399 68% 74% 

1= Yes 652 32% 26% 

Environment 

Disadvantaged 

0 = No 597 29% 35% 

1= Yes 1454 71% 65% 

Resilient Disadvantaged 
0 = No 80 4% 2% 

1= Yes 1971 96% 98% 

Overall Disadvantaged 
0 = No 1129 55% 65% 

1= Yes 922 45% 35% 
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Figure 5-2: Households across the overall disadvantaged and non-disadvantaged 

communities of the Greater Seattle area in the sample (Generated by the Authors) 
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In the CMP format, the above-mentioned equations are restructured as follows:  

𝑦1
∗ = 𝜎1 + 𝜇1                     (vii) 

𝑦2
∗ = 𝜎2 + 𝜇2                      (viii) 

𝑦3
∗ = 𝜎3 + 𝜇3                      (ix) 

𝑦4
∗ = 𝜎4 + 𝜇4                      (x) 

𝑦5
∗ = 𝜎5 + 𝜇5                      (xi) 

𝑦6
∗ = 𝜎6 + 𝜇6                      (xii) 

 

Where, 

𝜎1 = 𝛼1𝑋𝑖 + 𝛿𝑌4𝑖, 𝜎2 = 𝛽1𝑋𝑖 + 𝛿′𝑌5𝑖 + 𝛿′′𝑌6𝑖, 𝜎3 = 𝛾1𝑋𝑖, 𝜎4 = 𝜏1𝑋𝑖 + 𝑟𝑌3𝑖, 𝜎5

= 𝜑1𝑋𝑖 + 𝜔𝑌1𝑖, 𝜎6 = 𝜗1𝑋𝑖 + 𝜔′𝑌1𝑖 

𝑦 = 𝑔(𝑦∗) = (𝑂𝐽[𝑐𝐽−1 < 𝑦1
∗, 𝑦2

∗, 𝑦3
∗, 𝑦4

∗, 𝑦5
∗ < 𝑐𝐽])

′
                                   (xiii) 

𝜇 = (𝜇1, 𝜇2, 𝜇3, 𝜇4, 𝜇5, 𝜇6)
′~𝑁(0, ∑ ) and ∑ =

[
 
 
 
 
 

1 𝜌12 𝜌13 𝜌14 𝜌15 𝜌16

𝜌12 1 𝜌23 𝜌24 𝜌25 𝜌26

𝜌13 𝜌23 1 𝜌34 𝜌35 𝜌36

𝜌14 𝜌24 𝜌34 1 𝜌45 𝜌46

𝜌15 𝜌25 𝜌35 𝜌45 1 𝜌56

𝜌16 𝜌26 𝜌36 𝜌46 𝜌56 1 ]
 
 
 
 
 

 

 

Here, 𝑦1
∗, 𝑦2

∗, 𝑦3
∗, 𝑦4

∗, 𝑦5
∗ 𝑎𝑛𝑑 𝑦6

∗ are latent factors for online food, grocery, retail shopping, 

and in-person restaurant, grocery, and retail trips, respectively. Equation (xiii) represents a 

mapping or transformation from the set of latent variables 𝑦∗ to a set of observed variables y. 

Where, assume y has J outcomes denoted as O1 ,.., OJ and CJ-1, CJ are the cut points for defining 

the regions into which y* may fall. The terms 𝜌12, 𝜌13, 𝜌23, 𝜌14, 𝜌24, 𝜌34, 𝜌15, 𝜌25, 𝜌45, 𝜌16, 𝜌26, 

𝜌36, 𝜌46, and 𝜌56 represent the correlations between the error terms of the online shopping and in-

person shopping variables. Suppose that 𝑦𝑖 = (0, 𝑦𝑖2, 0)′ is observed for y2 and subsequently for 

other dependent variables, where yi2 is the observed component of y2, while the other two 

components (i.e., 0,0) of y2 are unobserved. Now, a likelihood function can be expressed as follows 

in equation (xiv). The function would involve integrating the unobserved components of 𝑦𝑖. The 

integral over the latent variables has been approximated using a Monte Carlo integration.  

 

𝐿𝑖(𝛼1, 𝛽1, 𝛾1, 𝜏1, 𝜑1, 𝜗1, 𝛿, 𝛿′, 𝛿′′, 𝑟, 𝜑, 𝜔, 𝜗, 𝜔′, ∑; 𝑦𝑖|𝑥𝑖) =

 ∫ ∫ ∫ ∫ ∫ ∫ ∅𝑗
−𝜎6

−∞

−𝜎5

−∞

−𝜎4

−∞
{𝜇3, 𝑦𝑖2, 𝑦𝑖1, 𝑦𝑖4, 𝑦𝑖5 −

−𝜎3

−∞

−𝜎2

−∞

−𝜎1

−∞

𝜎𝑖2, 𝜎𝑖1, 𝜎𝑖4, 𝜎𝑖5 𝜇6)
′; ∑}𝑑𝜇1𝑑𝜇2𝑑𝜇3 𝑑𝜇4𝑑𝜇5𝑑𝜇6         (xiv)                                                                                  

5.6 Results and Discussion 

The analysis of the CMP model is carried out using “STATA” version 16 statistical software. After 

estimation, direct marginal effects are derived. The joint estimation results of the CMP model are 

displayed in Table 5-4 and Table 5-5. The coefficient estimation with significance level and 

marginal effects are reported. The estimations for the online delivery components, i.e., retail, 

grocery, and food, are shown in columns (i), (ii), and (iii), respectively. Columns (iv), (v), and (vi) 

report the estimates for the number of retail, grocery, and restaurant trips on travel day, 

respectively. The Wald X2 test of the CMP model shows the model provides a better fit for the 
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study data. This section will first discuss shopping behavior in disadvantaged communities while 

exploring the components of online shopping. Second, the discussion will be continued to 

understand the interactions of the online shopping components (i.e., endogenous variables). 

Finally, the results for the exogenous variables will be discussed.  

5.6.1 Shopping Behavior in Disadvantaged Communities 

Two DAC indicators, i.e., economic DACs and transportation DACs, are found to be statistically 

significant, and the associations vary across the endogenous variables. These results are reported 

in Table 5-4. The relationship between online retail shopping and the economic DAC is statistically 

significant and negative. The results suggest that households living in an economic DAC are less 

likely to order online for retail goods than those not living in such DACs. Specifically, compared 

to the non-DAC households, DAC households are 2% and 1% less likely to order retail goods “1 

time” and “2 times”, respectively. They also receive fewer grocery deliveries compared to non-

DACs. Households in non-DACs are generally expected to order more than DACs because of their 

increased access to technologies, electronic devices, and emerging online delivery services. In 

contrast, people in DACs have limited access to technologies, infrastructure, and investments. 

Moreover, these DACs are affected by high poverty, inequality, and unemployment; hence, the 

people from these communities are less aligned to order online (195). Research shows individuals 

living in DACs may experience difficulties with online shopping due to a lower rate of internet 

access (e.g., digital divide) (196). Besides, due to lower incomes, they may struggle to afford the 

expenses associated with online shopping, such as computer or mobile devices and shipping fees 

(43; 197; 198). Furthermore, individuals unfamiliar with the internet or have limited experience 

with online shopping may struggle with the process and find it confusing or overwhelming, which 

can discourage them from engaging in online shopping (199). In some DACs, individuals may live 

in areas where delivery services are either unreliable or unavailable, which can decrease the appeal 

of online shopping (200). Additionally, a lack of trust in online shopping is found to demotivate 

people to order online (201). There may be individuals in DACs who have these concerns about 

online shopping. As a result, they may opt to shop at physical stores where they can physically 

inspect and try out products before making a purchase, as suggested by Zhu & Wang (16) and 

Patwary & Khattak (43). 
Similarly, the results suggest that the probability of in-person retail shopping trips 

decreases in transportation DACs. However, it is not statistically significant. The association 

between restaurant trips and transportation DAC indicator is statistically significant. The 

probability of making more restaurant trips on travel day decreases if a household lives in a 

transportation DAC. Several reasons may contribute to these findings. Households in 

disadvantaged areas have a lower average income (Figure 5-3), making it challenging to pay for 

restaurant meals (36). Besides, higher food insecurity makes it difficult for residents to pay for 

meals at restaurants regularly (202). The availability of restaurants is usually limited in DACs, 

making it less convenient for residents to dine out (202). Average trip length and duration are 

higher in a transportation DAC than in a non-DAC (195). Therefore, people in DACs tend to make 

fewer number of trips.  

Equity conditions in terms of household income and race may contribute to these findings. 

Figure 5-3 suggests that the percentage of lower-income households is higher than that of higher-

income households in a disadvantaged community. Also, it shows that more white people live in 
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DACs than the non-white population. The correlates of household income in Table 5-4 suggest 

that lower-income households are less inclined to receive food, grocery, and retail deliveries 

(details on household income correlates are discussed in later sections). The impact of COVID-19 

on low-wage industries may have hindered the ability of people from DACs to participate in online 

ordering due to widespread job losses, leading to a reduction in disposable income for a significant 

number of individuals from these communities. This may indicate the presence of a digital divide. 

Since physical stores are becoming less popular, lower-income people may find it challenging to 

access goods and services. Therefore, updating existing policies for lower-income people (e.g., 

food stamps and paratransit) is important in the wake of a digital divide and digital poverty.  

5.6.2 Key Relationships among the Endogenous Variables 

The results on the key relationships between the endogenous variables in Table 5-5 suggest that 

the effect of in-person shopping trips on online retail shopping is negative and statistically 

significant.  Marginal effects indicate that compared to the base of retail shopping trips (i.e., no 

delivery), a "1-time" retail shopping trip on a travel day is associated with being 3% less likely to 

receive “1 time” and 1% less likely to receive retail deliveries for higher categories. Consequently, 

the effects of other higher categories of retail shopping trips on grocery shopping confirm similar 

assertions, and the effect increases (e.g., 16% less likely for “3+ times”). This is consistent with 

Patwary and Khattak (43), who also found the relationship between online shopping and physical 

shopping trips is substitutive. Making more physical shopping trips reduces the frequency of online 

retail shopping. It is probably because people travel to physical stores to compare or experience 

the actual goods they browsed online. Also, in-person shopping offers the chance for social 

interaction and the instant gratification of being able to take the purchased items home right away. 

Also, in-person shopping trips provide greater flexibility in choosing departure time (203). 

The effect of online retail shopping on grocery shopping trips is positive and statistically 

significant. The findings show that households having "3+ times" online retail shopping is 25%, 

12%, and 11% less inclined to make grocery shopping trips for "1 time", "2-times" and "3+ times" 

categories, respectively, than the households that do not order online retail goods. It may be 

because more people are opting for online grocery purchases instead of physical store visits. This 

shift in consumer behavior is likely due to a combination of convenience, a wider selection of 

products, and the ability to compare prices easily (204; 205). A rapid growth in online grocery 

shopping has been observed during COVID-19. With this new trend, physical grocery stores may 

experience a drop-in customer foot traffic and fewer trips to the store. 

Moreover, restaurant trips (i.e., dine-in) and grocery shopping are negatively associated 

and statistically significant. For example, compared to the base category (i.e., no restaurant trips), 

households that make "3+ times" restaurant trips for dine-in are 7%, 2%, and 2% less likely to 

order groceries online for "1 time", "2 times" and "3+ times" grocery shopping categories, 

respectively. Previous studies have observed similar trends (36; 206). This is probably because 

dining out can be an alternative to cooking meals at home, and purchasing groceries out can be an 

alternative to cooking meals at home and purchasing groceries, leading to a reduction in online 

grocery shopping (206). Individuals who frequently dine at restaurants may feel less of a need to 

shop for groceries and prepare food at home, which can result in fewer online grocery purchases 

(36). Moreover, dining out offers a change of pace and a social atmosphere that some people may 

find attractive, further contributing to a preference for restaurant trips over online grocery  
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Figure 5-3: The distribution of key exogenous factors in economic DAC
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Table 5-4: CMP Joint Estimation Results of the Exogenous Variables (N= 2,051) 

Variables 

(i) Package Delivery Freq. (ii) Grocery Delivery Freq. (iii) Food Delivery Freq. 

Coef. 

Marginal Effect 

Coef. 

Marginal Effect 

Coef. 

Marginal Effect 

No  
1 

time 

2 

times 

3+ 

times 
No  

1 

time 

2 

times 

3+ 

times 
No  

1 

time 

2 

times 

3+ 

times 

Household income 

(<$25,000) 
                              

  $25,000-$49,999                 

  $50,000-$74,999 0.27 -0.09 0.06 0.03 0.01            

  $75,000-$99,999 0.37 -0.13 0.07 0.04 0.01      0.31 -0.05 0.03 0.01 0.001 

  >=$100,000 0.44 -0.16 0.09 0.05 0.02            

Household Employment (No 

workers) 
                

  Single worker           0.32 -0.03 0.02 0.01 0.00 

  Multiple workers      0.27 -0.04 0.02 0.01 0.01 0.42 -0.04 0.03 0.01 0.00 

Household vehicle count (no 

vehicle) 
                

  single vehicle           -0.26 0.03 -0.02 -0.01 0.00 

  multiple vehicles 0.21 -0.07 0.04 0.02 0.01      -0.37 0.05 -0.03 -0.01 -0.01 

Household Str. (Single adult)                 

  
Two or more adults 

without children 
0.16 -0.06 0.03 0.02 0.01 0.34 -0.04 0.03 0.01 0.01 -0.25 0.02 -0.01 -0.01 0.00 

  
Two or more adults 

with children 
0.35 -0.13 0.07 0.04 0.02 0.54 -0.07 0.04 0.01 0.01 0.33 -0.04 0.03 0.01 0.00 

Household Race (Others), 

White 
          -0.24 0.03 -0.02 -0.01 0.00 

Seattle Home (No), Yes      0.34 -0.05 0.03 0.01 0.01       

Tech savviness (No), Yes 0.50 -0.19 0.08 0.07 0.04 0.47 -0.08 0.05 0.02 0.02 0.65 -0.10 0.06 0.03 0.01 

Economy DAC (No), Yes -0.08 0.03 -0.02 -0.01 0.00 -0.04 0.02 -0.01 -0.01 0.00       

Transport DAC (Base: No), 

Yes 
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Table 5-4 Continued 

Variables 

(iv) Retail Shopping Trips (v) Grocery Shopping Trips (vi) Restaurant Trips 

Coef. 

Marginal Effect 

Coef. 

Marginal Effect 

Coef. 

Marginal Effect 

No  
1 

time 

2 

times 

3+ 

times 
No  

1 

time 

2 

times 

3+ 

times 
No  

1 

time 

2 

times 

3+ 

times 

Household income 

(<$25,000) 
                

  $25,000-$49,999                 

  $50,000-$74,999                 

  $75,000-$99,999                 

  >=$100,000                 

Household Employment (No 

workers) 
                

  Single worker -0.36 0.11 -0.05 -0.03 -0.03 -0.33 0.11 -0.04 -0.04 -0.03       

  Multiple workers -0.59 0.17 -0.07 -0.05 -0.05 -0.36 0.13 -0.05 -0.04 -0.04       

Household vehicle count (no 

vehicle) 
                

  single vehicle           0.22 -0.06 0.03 0.02 0.01 

  multiple vehicles 0.30 -0.08 0.04 0.02 0.02      0.26 -0.07 0.04 0.02 0.01 

Household Structure (Single 

adult) 
                

  
Two or more adults 

without children 
0.28 -0.07 0.03 0.02 0.02 0.31 -0.11 0.04 0.03 0.04       

  
Two or more adults 

with children 
0.23 -0.06 0.03 0.02 0.01 0.45 -0.15 0.05 0.04 0.06       

Household Race (Others), 

White 
          0.21 -0.06 0.03 0.02 0.01 

Seattle Home (No), Yes           0.12 -0.04 0.02 0.01 0.01 

Tech-savviness (No), Yes                 

Economy DAC (No), Yes                 

Transport DAC (No), Yes -0.03 0.007 
-

0.003 

-

0.002 

-

0.002 
          -0.16 0.041 -0.02 -0.01 -0.01 

Model Fit Statistics                       

Number of observations  2,594              
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Table 5-4 continued 

Wald chi2 (39)  327.4              

Model Significance Test  0              

Log Likelihood  -7274              

AIC  14666              

BIC   15011                         

*** p<.01, ** p<.05, * p<.1            

 

Table 5-5: CMP Joint Estimation Results of the Endogenous Relationships (N= 2,051) 

Variables 

(i) Package Delivery Freq. (ii) Grocery Delivery Freq. (iii) Food Delivery Freq. 

Coef. 

Marginal Effect 

Coef. 

Marginal Effect 

Coef. 

Marginal Effect 

No  
1 

time 

2 

times 

3+ 

times 
No  

1 

time 

2 

times 

3+ 

times 
No  

1 

time 

2 

times 

3+ 

times 

Package Delivery 

Freq (No Delivery) 
                              

  1 time                  

  2 times                  

  3+ times                  

Grocery Delivery Freq 

(No Delivery) 
                 

  1 time                  

  2 times                  

  3+ times                  

Food Delivery Freq 

(No Delivery) 
                 

  1 time                  

  2 times                  

  3+ times                  

Retail Shopping Trips 

(No Trips) 
                 

  1 time -0.15 0.05 -0.03 -0.02 -0.01            

  2 times -0.23 0.08 -0.05 -0.03 -0.01            
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Table 5-5 continued 

 
  3+ times -0.84 0.25 -0.16 -0.06 -0.02            

Grocery Shopping 

Trips (No Trips) 
                 

  1 time       0.01 -0.001 0.001 0.001 0.001       

  2 times       -0.03 0.003 -0.00 -0.001 -0.001       

  3+ times       0.05 -0.01 0.004 0.001 0.001       

Restaurant Trips (No 

Trips) 
                 

  1 time       -0.88 0.08 -0.05 -0.013 -0.015       

  2 times       -1.32 0.09 -0.06 -0.014 -0.016       

  3+ times           -1.67 0.1 -0.07 -0.015 -0.016           

Correlation Terms                  

Online Grocery 

Shopping 
0.31                

Food Delivery 0.36     0.58           

Retail Trips 0.36     0.13     0.32      

Grocery 0.81     0.18     0.15      

Restaurant Trips -0.062         0.63         -0.19         
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Table 5-5 continued 

 

Variables 

(iv) Retail Shopping Trips (v) Grocery Shopping Trips (vi) Restaurant Trips 

Coef. 

Marginal Effect 

Coef. 

Marginal Effect 

Coef. 

Marginal Effect 

No  
1 

time 

2 

times 

3+ 

times 
No  

1 

time 

2 

times 

3+ 

times 
No  

1 

time 

2 

times 

3+ 

times 

Package Delivery Freq 

(No Delivery) 
                 

  1 time      -0.81 0.29 -0.12 -0.08 -0.09  0.18 -0.05 0.03 0.01 

  2 times      -1.50 0.43 -0.21 -0.11 -0.11  0.26 -0.08 0.04 0.03 

  3+ times      -2.07 0.48 -0.25 -0.12 -0.11  0.49 -0.15 0.07 0.05 

Grocery Delivery Freq 

(Base: No Delivery) 
                 

  1 time                 

  2 times                 

  3+ times                 

Food Delivery Freq 

(Base: No Delivery) 
                 

  1 time -0.30 0.07 -0.04 -0.02 -0.02 -0.30           

  2 times -0.87 0.16 -0.09 -0.04 -0.03 -0.87           

  3+ times -1.33 0.19 -0.11 -0.05 -0.03 -1.33           

Retail Shopping Trips 

(Base: No Trips) 
                 

  1 time                  

  2 times                  

  3+ times                  

Grocery Shopping 

Trips (Base: No Trips) 
                 

  1 time                  

  2 times                  

  3+ times                  
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Table 5-5 continued 

 
Restaurant Trips 

(Base: No Trips) 
                 

  1 time                  

  2 times                  

  3+ times                               

Correlation Terms                  

Online Grocery 

Shopping 
                 

Food Delivery                  

Retail Trips                  

Grocery 0.14                

Restaurant Trips 0.22         -0.07                   

 



106 

 

shopping. However, food delivery and retail shopping trips are inversely related. For example, 

compared to the households that do not buy food online, households that buy food online "3+ 

times" are 11%, 5%, and 3% less interested in making "1 time", "2 times", and "3+ times", 

respectively. It may be the households that are comfortable ordering food online may want to go 

outside at least fewer times, making fewer in-person trips. 

5.6.3 Correlations of Exogenous Variables 

The discussion is shifted to the exogenous factors that influence households to shop in-person and 

online for groceries, food, and retail goods on travel day (Table 5-4). It has been observed that 

household income is a significant exogenous factor and is positively correlated with online and in-

person retail shopping. Compared to the lower income households (<$25,000), the higher income 

households (>=$100,000) are 9%, 5%, and 2% more likely to buy retail products online for "1 

time", "2 time", and "3+ times" delivery frequencies, respectively, on travel day. Besides, higher 

household income is associated with more prepared meal deliveries on the travel day. These results 

are as we anticipated earlier and are consistent with the previous studies (10; 34; 36; 182). For 

example, Dias et al. (36) found a positive correlation between a higher-income household and 

online shopping frequency, including retail and food deliveries. Farag et al. (34) and Cao et al. 

(10) also found similar results while investigating the effects of income on online shopping 

frequencies. Research during COVID-19 also showed a positive association between household 

income and online shopping (32; 43). Higher-income households have the income or flexibility to 

shop online more often. Lower-income people may not be able to transition to the virtual means 

of purchasing compared to higher-income households. The findings from household employment 

also support this. The results suggest that multiple-worker households order more groceries and 

prepared meals than single-worker households. In contrast, they are less inclined to buy retail and 

groceries from physical stores. 

The household structure is found to be a significant factor. Compared to single adult 

households, the probability of buying retail products online for households with two or more adults 

with children increases by 7%, 4%, and 2% for the "1 time", "2 time", and "3+ times" delivery 

frequencies. Consequently, an increase in household size is associated with more grocery shopping 

and retail shopping. It is consistent with our earlier assumptions. Larger households are expected 

to consume more across all components of online shopping; therefore, they buy online more than 

smaller households. This is in line with the prior studies (36; 207). Moreover, the household race 

is statistically significant. White households are less likely to opt for online ordering of prepared 

meals compared to non-white households and are more inclined towards traveling for in-person 

dining experiences. This is similar to Kim and Wang (178), who suggested white people receive 

more durable goods and grocery deliveries.  

Household vehicle count is also found to be an important exogenous factor that can affect 

the components of online shopping. Multiple-vehicle households are less inclined to order 

prepared meals online. The more vehicles owned by a household, the less likely they are to order 

prepared meals and groceries. Having more cars in a household generally led to a reduced number 

of online deliveries and more in-person trips. More cars make households flexible enough to travel 

to stores when necessary. Besides, when a household lives in an urban area like Seattle city, they 

are 3% more likely to receive grocery shopping (i.e., "1-time" category), and at the same time, 3% 

more likely to make restaurant trips than the ones who live outside the Seattle city. Those who live 

in an urban city have more accessibility to physical stores and more online delivery coverage. 
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Therefore, they have an increased propensity to receive online deliveries. Faster internet and early 

access to newer technologies in urban areas may further encourage buying online more than in 

rural areas (34).  

Moreover, the estimates of tech-savviness support these findings. Tech-savvy households 

are found to be associated with buying more online compared to non-tech-savvy households. For 

example, tech enthusiast households are 8%, 5%, and 6% more likely to order online for retail, 

groceries, and prepared meals, respectively. This is similar to the findings of Patwary and Khattak 

(43), who found that individuals with daily internet use are highly associated with online shopping. 

Menon (2018) also found that customers’ tech-savviness positively influences online shopping 

behavior. Usually, tech-savvy people have a seamless and efficient experience while shopping 

online due to their familiarity with the technology used and ability to navigate websites and apps 

easily (208). Their knowledge of online security measures and the ability to recognize potential 

scams also make them feel more secure in making online purchases (208). Additionally, these 

tech-savvy individuals often have higher expectations for technology in online shopping, such as 

personalization and advanced search options, and are more likely to choose retailers that provide 

these features. 

5.7 Limitations 

Some of the important limitations of this research should be recognized. Although the sample size 

is larger than the prior similar studies, this is still a small data sample from a regional household 

travel survey. Tract-level estimations covering different states or the whole US can provide 

different estimations, as travel behavior could vary across regions. Furthermore, the 2021 Puget 

Sound Household Travel survey is based on the one-day delivery and travel diary. However, 

covering longer periods, e.g., one-week delivery and travel diary, would provide more reliable 

estimates. Other limitations of survey research, such as errors in the coding of the survey, the 

potential for non-response bias, and non-coverage of certain populations and areas, are recognized 

while noting that the survey was conducted professionally.   

5.8 Conclusions 

This study found online shopping is different in disadvantaged communities. The COVID-19 

pandemic, with the ever-changing ICT landscape, has brought significant changes in individual 

travel and purchase behavior. Online delivery of goods and services surged, and new forms of 

online shopping, i.e., retail, grocery, and food, have emerged. However, little research has been 

conducted on the interaction of these components in DACs that face issues of marginalization and 

limited access to digital resources. This study analyzes the interaction among the three components 

of online shopping and in-person travel for these activities and explores the correlates of socio-

demographics, spatial, and technological attributes on online shopping and in-person travel. The 

study uses a unique dataset that combines the 2021 Puget Sound Household Travel Survey data 

and US DOT's Justice40 database and employs a conditional mixed process model that accounts 

for related unobserved endogeneity. 

The overall results show that in-person retail shopping is generally correlated with a 

reduction in online retail shopping frequency, while an increase in restaurant visits is similarly 

linked to a decrease in the frequency of online grocery shopping. Households living in DACs are 
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less likely to buy retail goods and groceries online compared to those in non-DACs. Furthermore, 

the chance of going to restaurants more often is lower for households located in DACs. The 

findings also highlight the disparities between DACs and non-DACs in regard to their in-person 

and online shopping habits, influenced by technology access and income inequality. Importantly, 

the findings suggest that lower-income households in DACs are less inclined to order online 

services than higher-income households. Also, tech-savvy households are found to be associated 

with purchasing more online compared to non-tech-savvy households. These results may reflect 

the wake of a digital divide and digital poverty originating from income, racial disparity, and lack 

of required infrastructure and policies.  

The findings of this study are based on the greater Seattle area of Washington state. 

Therefore, these findings should not be generalized to the context of other US states. Nonetheless, 

the results are informative and have important policy implications. Policies that make regular 

activities at hand (i.e., digital) and connect households of all socioeconomic strata should be 

undertaken so that access to all goods and services for lower-income people would be easier and 

help improve the quality of life. In addition, planners and engineers must account for the shopping 

behavior across DACs in the travel demand model. Currently, they do not fully account for online 

shopping, let alone its different components. Since DACs are overburdened by congestion and 

pollution, an updated four-step model with the inclusion of the newer components of online 

shopping may provide benefits in terms of future trip prediction and associated policies. They can 

account for trip frequencies by purpose in DACs. For instance, if lower online shopping in DACs 

increases the need for trips to physical stores, it may change the distribution of trip purposes in 

travel demand models. Additionally, planners also need to adjust assumptions about trip length 

and time of day in travel demand models. If fewer people in DACs shop online, it may increase 

the need for longer trips or trips during peak hours, which could affect the travel demand estimates 

in these models. Since decisions on online and in-person activities are taken as a cohesive lifestyle 

package, they should be reflected in transport and related policies. 

This work reflects current societal priorities, i.e., a focus on equity and disadvantaged 

communities. Several extensions for future work can be anticipated. First, efforts should be made 

to collect data on home deliveries in a large-scale survey covering all the states or at least several 

regions to better understand the interactions between retail, food, and grocery deliveries. Second, 

since e-commerce is growing rapidly, it is important to regularly conduct interactions between 

online and in-person activity with the availability of newer data. Third, future research may also 

improve the modeling results by collecting one-week delivery and travel diary data rather than 

depending on the one-day diary data. Finally, efforts need to be made to analyze shopping behavior 

at the census tract level across all the DACs in the US. 
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CHAPTER 6 EXPLAINABLE ARTIFICIAL INTELLIGENCE FOR 

DECARBONIZATION: ALTERNATIVE FUEL VEHICLE ADOPTION IN 

DISADVANTAGED COMMUNITIES 
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A version of this chapter authored by A. Latif Patwary and Asad J. Khattak is currently in the final 

review stages for potential acceptance in the International Journal of Sustainable Transportation: 

 

 Patwary, A. L., & Khattak, A. J. (2023). Explainable Artificial Intelligence for 

Decarbonization: Alternative Fuel Vehicle Adoption in Disadvantaged Communities. 

6.1 Abstract 

This paper explores the adoption of alternative fuel vehicles (AFVs), leading to decarbonization, 

in disadvantaged communities (DACs) by applying statistical and explainable artificial 

intelligence (XAI) techniques to understand the factors associated with AFV adoption in these 

communities. The study harnesses a unique and comprehensive database of surveys and public 

databases for the Puget Sound region in the US. The XAI techniques, specifically the Extreme 

Gradient Boosting (XGBoost) algorithm with Shapely Additive Explanations (SHAP), provide 

interpretable and understandable explanations of factors associated with AFV adoption in DACs. 

The study findings provide an understanding of the social and economic factors and challenges of 

DACs. The results suggest several key factors, especially a lack of access to charging 

infrastructure, consumer attitudes, and income, play a substantial role in adopting AFVs. As 

expected, AFV adoption in DACs (12.96%) is lower than non-DACs (15.30%). More public 

charging stations strongly correlate with AFV adoption in DACs. Tech-oriented households in 

DACs are more likely to adopt AFVs compared with non-DACs. The findings also point to the 

significant effects of home charging facilities while adopting AFVs in DACs. The XAI results 

emphasize the importance of social and economic factors in AFV adoption programs and provide 

insights into decision-making in DACs. This research contributes to the literature on AFV adoption 

and suggests opportunities for improvements in DACs transitioning to AFVs. The study findings 

can be used to assess the planning-level impacts of refueling or charging infrastructure in DACs 

while enabling DACs to benefit from infrastructure investments. 

6.2 Introduction 

The US transportation sector is one of the major energy-consumptive sectors and is also 

responsible for substantial environmental emissions. The US Energy Information Administration 

(EIA) states that the transportation sector consumes about 37% of all energy consumption (209). 

The energy sources vary widely, including 90% of the transportation sector's energy consumption 

being provided by petroleum, 4% by natural gas, 5% from renewable energy, and less than 1% 

from electric power (209). Since the majority comes from fossil fuels, the transport sector produces 

the highest greenhouse gas (GHG) emissions, which is about 27%, based on the US Environmental 

Protection Agency (EPA)'s 2020 estimates (210). To mitigate risks to the environment and public 

health, decarbonization is necessary. Therefore, there is an increasing focus on developing and 

promoting alternative technologies that rely less on fossil fuels and help decarbonize by reducing 

GHG emissions. Alternative fuel vehicles (AFVs) are vehicles that use full or partial alternatives 

to fossil fuels. AFVs are generally fueled by hydrogen, propane, biofuel, flex fuel, battery electric, 

and natural gas. With technological advances, hybrid electric vehicles (HEVs), plug-in hybrid 

electric vehicles (PHEVs), and battery electric vehicles (BEVs) are currently being developed and 

diffused to the automotive market to achieve better fuel economy and reduced emissions. 
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Therefore, AFVs are generally considered to be a solution to reducing the GHG effect. The total 

environment of the car fleet will be changed with the replacement of fossil fuel vehicles by AFVs 

in the future.  

The rising investments of auto manufacturers and government-sanctioned subsidies are 

boosting AFV sales. Thus, the AFV market is predicted to be about $1.3 trillion by 2030 (211). 

However, considerable effort is still needed to promote AFV adoption across the communities. 

Disadvantaged communities are not highly representative of AFV sales and adoption. For the first 

time, the federal government has declared that 40% of the overall benefits of certain federal 

investments will be for the disadvantaged communities (DACs) that are marginalized, 

underserved, and polluted (103). The major notable investments include clean energy, clean 

transit, climate change, sustainable housing, legacy pollution, and infrastructure. This initiative is 

known as Justice40 or Environmental Justice (EJ). It covers several programs, including charging 

and fueling infrastructure grants, a carbon reduction program, a low or no emissions vehicle 

program, a reconnecting communities pilot program, and a thriving communities program, among 

others. To benefit from these programs, cities in the US will need to undertake a qualitative and 

quantitative assessment to understand the community demographics, challenges, and needs. 

Therefore, knowing how AFVs can be diffused to DACs is crucial considering the EJ investments. 

Understanding the consumers' adoption of AFV across disadvantaged and non-

disadvantaged communities is complex and pivotal for the long-term success of a sustainable 

future transportation system. Identifying the underlying factors and barriers to AFV adoption in 

DACs is important for effectively formulating policies. Existing studies have explored various 

correlates of AFV adoption, including infrastructure barriers, technology proficiency, home 

ownership, and household income (212-214). The most important distinguishing factor separating 

DACs and non-DACs in terms of AFV adoption can be household income since research shows 

an incommensurately lower number of AFV sales in low-income communities (215; 216). 

Besides, insufficient infrastructure can be another major operational barrier that hinders the 

adoption of AFVs (217). However, to the best of our knowledge, the inclusion of elements 

representing disadvantaged communities in terms of equity, environment, economy, health, 

resilience, and transportation access does not exist. In this regard, this study mainly investigates 

1) are there differences in AFV adoption between DACs and non-DACs? 2) If so, what are the key 

factors/reasons for differences in adoption? 

6.3 Literature Review 

Rogers' Diffusion of Innovations theory describes innovation as an idea or practice recognized as 

new by an entity or another component of adoption (218). AFVs can be such innovations perceived 

by traditional fleet operators and diffused to market for consumers' adoption where conventional 

fossil fuel vehicles dominate. Numerous studies investigate the correlates of adopting AFVs and 

related components. Researchers generally have considered AFV adoption because it involves the 

purchase and uses through behavioral responses. This section presents a synthesis of previous 

studies on AFV adoption, focusing on the influencing factors. 

Scholars studied consumers' AFV adoption behavior from individual, household, and 

commercial fleet perspectives. The overall factors that affect the adoption of AFV can be 

categorized as socio-demographics, locational, situational, and travel-specific characteristics. 

Household income is found to be one of the major influencing factors for AFV adoption and sales. 
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Higher-income household positively affects AFV sales (219; 220). However, there are studies that 

found different or ambiguous relations between AFV adoption and household income (221-223). 

For example, Sierzchula et al. (224) argued that household income is ineffective while analyzing 

electric vehicle (EV) sales. The effect of income may be weak due to the price differences between 

AFVs and conventional vehicles (CVs) since the target group for AFVs is much wider than 

conventional fuel vehicles (225). Household size is also found relevant in analyzing AFV adoption 

and sales. Jia et al. (214) predicted the increase of BEV and PHEV counts by 197% and 149%, 

respectively, with an increase of one standard deviation in household size. A household's number 

of family members will likely affect vehicle type because of seating requirements and vehicular 

space usage (212). Moreover, the number of cars a household owns is also found to be significant 

in previous studies. Early adopters of EVs in Norway showed that consumers usually buy EVs as 

an addition to their multi-car households (226). Less driving mileage or limited charging stations 

may make them alternative household vehicles. In contrast, Hidrue et al. (227) found no substantial 

relationship between household vehicle size and EV preferences. In addition, consumers' 

participation in a car-sharing program is analyzed for AFV adoption (212; 228). Car sharing status 

indicates the regular participation of a household in a car share program, which offers an alternative 

to traditional car ownership, allowing people to reserve and use vehicles as needed, often through 

a smartphone app or online platform. This can influence an individual’s travel behavior and 

attitude toward new technologies. Notably, previous studies have found a positive association 

between participating in a car-sharing program and the likelihood of AFV adoption (212). 

Insufficient infrastructure is a major operational barrier that hinders the adoption of AFVs 

(217; 229; 230). Studies found positive associations between the number of charging stations and 

AFV adoption (231). However, the current refueling/charging infrastructure is inadequate to 

encourage the diffusion of AFVs. The refueling/charging structure is unevenly distributed in all 

areas. For example, refueling stations are common in large organizations' workplaces, and those 

organizations' employees also regard home charging facilities as highly important. However, these 

are not necessarily true for less developed locations, e.g., suburban, rural, and disadvantaged areas. 

The utility of AFVs typically increases since it encourages more people in the 

neighborhood to purchase and use them (Mau et al., 2008). In contrast, household location in an 

urban or city area usually represents the impact of households' surroundings on AFV adoption and 

sales, known as a neighbor effect. The neighbor effect has been analyzed in numerous studies 

(232; 233). Axsen and Kurani (234) revealed that most households rank social interaction as the 

highest priority in an AFV assessment project. Also, Zhu and Liu (222) found the evidence of the 

"neighbor effect" in Florida to be higher in surrounding urban and rural areas while analyzing the 

adoption of hybrid electric vehicles. Research on lower-income and disadvantaged regions for 

AFV adoption has described consumer anxieties, disproportionate distribution of infrastructure, 

land use mixing, unbalanced land use, and environmental concerns (216; 235; 236). However, 

research on DACs regarding investments in clean energy, infrastructure, climate change, and 

sustainable transportation is still limited. Also, there is a need for a more comprehensive 

understanding of the barriers that are specific to DACs in terms of US Department of 

Transportation’s (USDOT) disadvantaged indicators, i.e., transportation access, equity, 

environment, health, resilience, and economy. This study attempts to fill these gaps. Investigation 

of these aspects using explainable artificial intelligence (XAI) techniques provides new insights 

into AFV adoption in underserved areas and develop various policy incentives. 
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6.4 Conceptual Framework 

As explored in the literature review section, we expect that high household income to positively 

correlate with AFV adoption (219; 220). Higher income enables households to purchase a vehicle. 

The currently high initial cost of AFV makes it difficult for lower income households to purchase 

such vehicles. Therefore, higher income has a positive association with AFV purchase. We also 

anticipate that household size and the number of household vehicles should weigh into the 

relationship. A household's number of family members can affect vehicle type because of greater 

seating requirements and vehicular space usage (212). A multi-car family is also expected to have 

a higher probability of adopting AFV than a single-car household. Research shows consumers 

generally buy EVs as an addition to their multi-car households (226). Moreover, living in a city or 

urban location should provide more incentives (e.g., a higher concentration of charging stations 

and neighbor effect) to adopt AFV than households in rural areas (222; 234). Involvement of a 

household in a car-sharing program exposes them to newer technologies; hence, they are more 

interested in adopting AFVs (212; 228). More charging/refueling stations should encourage more 

people to adopt cleaner technologies. Disadvantaged communities should be a barrier to expanding 

AFV adoption and market diffusion because of consumer anxieties, uneven infrastructure 

distribution, mixed land use, unbalanced development, and environmental concerns (216; 235; 

236). Different types of disadvantaged communities could have distinct effects on AFV adoption. 

Equity-disadvantaged communities should see an increase in AFV adoption since high education 

and high-income disparities are critical in these areas. The overall study framework is illustrated 

in Figure 6-1. 

6.5 Methodology 

6.5.1 Data 

The data for this study are collected from three different sources, including the 2021 Puget Sound 

Household Travel Survey (PHTS) (194), the US Department of Energy's alternative fuels data 

center (AFDC) (237), and US Department of Transportation’s (USDOT) Environmental Justice 

databases (160). A unique and comprehensive dataset of households at the tract level is created 

after linking these databases. The dataset contains 2,202 households of the Puget Sound region 

(i.e., Greater Seattle: King, Kitsap, Pierce, and Snohomish counties) during April-June of 2021. 

PHTS provides socio-demographics, travel, and vehicle information at the household level. It is a 

standard web-based online survey designed to collect complete household travel diary information 

from invited participants. On the other hand, in the USDOT's EJ database, disadvantaged 

communities (DACs) are designated based on 22 indicators. These indicators are grouped into six 

major categories of disadvantages: 

• Transportation Access Disadvantaged: This category identifies communities or places that 

are transport disadvantaged in terms of access. Residents in these tracts spend more time 

and cover long distances to travel where they need to go. 

• Health Disadvantaged: It identifies tracts that are vulnerable to harmful health effects, 

disability, and environmental exposures.  

• Environmental Disadvantaged: It recognizes tracts that have extremely high levels of 

certain air pollutants and lead-based pollution.  
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Figure 6-1: Study Framework  



115 

 

• Economic Disadvantaged: It characterizes communities with high poverty, low wealth, 

high unemployment, high illiteracy rate, low homeownership, and higher inequality. 

• Resilience Disadvantaged: It identifies areas more prone to natural hazards triggered by 

climate change. 

• Equity Disadvantaged: It identifies tracts with a high percentage of the population, age 5+, 

who speak English "less than well." Government agencies use this data to report racial 

equity and social and economic status (238).  

Table 6-1 shows disadvantaged indicators for transportation and environmental major categories. 

This provides a glimpse of how the major categories are calculated. The percentile value of each 

indicator is calculated for the census tract. The average percentile for each tract is estimated within 

each major category. A tract in each category (except resilience) is assigned 1 (i.e., disadvantaged) 

if it is in the 50th percentile (i.e., percentile ranking average values >= 50%) and 0 otherwise.  

However, the 75th percentile value (i.e., >= 75%) is used for designating "resilience 

disadvantaged." This category focuses on identifying communities that are particularly vulnerable 

to hazards caused by climate change, a priority of the US administration. The USDOT used a 

higher threshold of 75% to pinpoint communities with relatively high vulnerability. A census tract 

is considered resilience disadvantaged if it ranks in the top 75% of the average scores in this 

specific category. For other categories, a threshold of 50% is applied, which is more aligned with 

identifying communities that exhibit above-median levels of disadvantage within their respective 

categories. The scores of all six categories (1 or 0) for each tract are then summed up, which range 

from zero (0) to six (6). A census tract is considered overall disadvantaged when it has a score of 

4 or higher. It can be interpreted as ranking in the top 50% of the averages in each category (75% 

for the resilience category), where higher scores indicate a higher level of disadvantage. The 

disadvantaged indicator-based dataset has information for 72,843 census tracts of the US. In the 

Seattle, Washington study area, 648 tracts' DAC information is linked at the household level. 

The response variable in this study is AFV, which is a binary variable generated by the 

authors from the fuel type variable in the vehicle data file of PHTS. Hybrid-electric, electric, flex-

fuel, biofuel, natural gas, and hydrogen fuel are considered AFVs. The households who own AFV 

are assigned 1; otherwise, zero. The descriptive statistics in Table 6-2 (green colored) show that 

14% of the households own AFV, which is slightly above the national market share of AFV sales 

(i.e., 12%) (211). HEV, PHEVs, and BEVs constitute the most AFVs in the study sample. 

Specifically, 65% of all household vehicles are HEVs and PHEVs, 23% are BEVs, and 12% belong 

to other AFVs, including hydrogen fuel, biofuel, flex fuel, natural gas, etc. All these types of AFVs 

are considered together in this study since they all provide cleaner technologies over conventional 

fossil fuel vehicles, which help lessen the growing transportation emissions.  

Table 6-2 (orange colored) represents a two-way frequency distribution of the categorical 

variables versus the overall disadvantaged category. As expected, the adoption of AFV in DACs 

is lower than that in non-DACs. Specifically, AFV adoptions in DACs and non-DACs are 

(121*100)/(813+121)= 12.96% and (194*100)/(1074+194)= 15.30%, respectively. PHTS has 

several independent variables, including household income, car share program, household size, 

household vehicle count, and home in Seattle city. Descriptive statistics suggest that more low-

income households (income <$50,000) live in DACs. However, it has been observed that with the 

increase in household income levels, fewer high-income households are found to be in DACs 

compared to non-DACs. For example, 33% of people earning over $100,000 live in the DACs, 
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Table 6-1: List of Disadvantaged Indicators under Transportation and Environment 

Themes (160) 

Major Disadvantaged 

Category 
Percentile of Disadvantaged Indicators 

Transportation Access 

Disadvantaged  

(Average of the percentiles) 

Percentile percentage households with no vehicle available estimate 

Percentile of Mean commute time to work (in minutes) (longer commute 

times) 

Percentile of Transportation Cost Burden: 

• Total workers 16 or older in a census tract 

• Percentages of non-transit households who have 0/1/2/3+ vehicles 

• Number of non-transit workers 

• Number of transit users 16 and over 

• Average weekday vehicle miles traveled per state 

• Calculated Average Annual Vehicle Miles Traveled 

• Average Annual Median Earnings 

• Five Year average price of gas per state 

• Five Year average gas mileage per state 

• Calculated average number of cars per household 

• Calculated average cost of owning a car 

• Calculated national average annual cost of using transit 

• Calculated average annual cost of transportation 

• Annual Travel Time in Minutes 

• Annual Travel Time in Hours 

• Travel Time Cost 

• Calculated average annual cost of transportation as a percent of 

income 

Percentile of National Walkability Index 

Environmental Disadvantaged 

(Average of the percentiles) 

Percentile for % pre-1960 housing (lead paint indicator) 

Percentile for Diesel particulate matter level in air 

Percentile for Air toxics cancer risk 

Percentile for Air toxics respiratory hazard index 

Percentile for Ozone level in air 

Percentile for PM2.5 level in air 
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and 47% live in non-DACs. 45% of people who have more than one vehicle live in DACs. In the 

sample, homeownership in DACs (50%) is lower compared with non-DACs (63%). Home 

ownership refers to the residence tenure status. If the household owns the residence, the variable 

is coded as 1; otherwise, 0. One of the significant advantages of owning a home in the US is the 

increased accessibility and control over the living space. Homeowners can make modifications 

and investments tailored to their preferences and needs. This autonomy extends to technological 

advancements, such as home charging facility installation. The availability and utilization of these 

facilities in owned homes can positively impact the adoption and usage of AFVs. Car sharing status 

is similar in DACs and non-DACs. Car sharing status indicates the regular participation of the 

household in a car share program (e.g., ZipCar, Car2Go, GIG). It can correlate with travel behavior 

and attitude towards new technologies, e.g., AFVs. Therefore, it is considered a surrogate measure 

of the tech-savviness of the household. The household size in the data varies from a minimum of 

one to a maximum of seven members. AFDC provides infrastructure data, i.e., the number of 

public charging station data at the census tract level. Overall, charging stations vary in all census 

tracts from a minimum of zero stations to 18 stations in a tract. However, the average number of 

charging stations in DACs (1.13) is expectedly lower than in non-DACs (1.32). 

Figure 6-2 illustrates the distribution of households across the DACs and non-DACs of the 

Greater Seattle area in the sample while considering the overall disadvantaged category. The 

census tracts shown in Figure 6-2 reflect where the respondent lived when they completed the 

survey, not necessarily where they lived when they first adopted their AFV. Notably, Seattle is the 

second-best tech city in the US. The availability of household travel data (PHTS) gives us a unique 

opportunity to explore the AFV adoption scenarios in the DAC and non-DACs (i.e., census tracts) 

of the Greater Seattle area. This will help us understand the future of AFVs, the infrastructure 

needed, and the policy to implement. Notably, the 2021 Puget Sound Household Travel Survey 

was professionally administered and used an address-based sampling technique to select and invite 

households to participate. This involves drawing a random sample of addresses from all the 

residential addresses in each of the four counties of the Puget Sound Region. A comparative table 

with the distributions of the sample survey obtained and the representative population for key 

variables is shown in Table 6-3. Household size distribution is quite similar across the sample and 

the representative population. Lower-income households (<50,000) are slightly overrepresented 

(~1% difference), and higher-income households are slightly under-represented in the study 

sample. Multi-vehicle households are also slightly underrepresented in the sample. Given the 

sophisticated sample bias correction process involved in the PHTS, this study refrains from 

introducing additional statistical adjustments to the sample to avoid further complexity. 

Nonetheless, this limitation of the study sample is acknowledged, and we will approach the 

interpretation of the modeling results with caution. 

6.6 Model 

6.6.1 XGBoost Model Specifications 

In this study, we adopted both XGBoost and binary logit models to assess the consistency of results 

between the two approaches and explore the XGBoost model's predictive power in the context of 

our research. Various machine learning (ML) techniques, such as random forests, gradient 

boosting, K-means clustering, and ensemble tree learning, have been used to analyze survey data 

related to new mobility options and alternative fuel vehicles due to their capacity for accurate   
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Table 6-2: Descriptive Statistics (N = 2,202) 

Variables Description Freq. % 

Overall Disadvantaged Community? * 

No Yes 

Freq. % Freq. % 

AFV Adoption 
No 1887 86% 1074   813   

Yes 315 14% 194 15.30% 121 12.96% 

Household 

Income 

<50,000 599 27% 255 20.11% 344 36.83% 

>=50,000 - <75,000 361 16% 186 14.67% 175 18.74% 

>=75,000 - 

<100,000 
341 16% 230 18.14% 111 11.88% 

>=100,000 901 41% 597 47.08% 304 32.55% 

Multi-vehicle  
No 1036 47% 521   515   

Yes 1166 53% 747 58.91% 419 44.86% 

Home in Seattle 

City 

No 1786 81% 1076   710   

Yes 416 19% 192 15.14% 224 23.98% 

Home Own 
No 938 43% 470   468   

Yes 1264 57% 798 62.93% 466 49.89% 

Car Share 

Program 

No 2112 96% 1217   895   

Yes 90 4% 51 4.02% 39 4.18% 

Transportation 

Disadvantaged 

No 1478 67% 983   495   

Yes 724 33% 285 22.48% 439 47.00% 

Environmental 

Disadvantaged 

No 680 31% 625   55   

Yes 1522 69% 643 50.71% 879 94.11% 

Equity 

Disadvantaged 

No 691 31% 666   25   

Yes 1511 69% 602 47.48% 909 97.32% 

Economy 

Disadvantaged 

No 1281 58% 1124   157   

Yes 921 42% 144 11.36% 777 83.19% 

Health 

Disadvantaged 

No 1521 69% 1037   484   

Yes 681 31% 231 18.22% 450 48.18% 

Resilience 

Disadvantaged 

No 83 4% 83   0   

Yes 2119 96% 1185 93.45% 934 100.00% 

Overall 

Disadvantaged 

No 1268 58% NA  NA  

Yes 934 42% NA NA NA NA 

*Note: For binary variables, the percentage is shown for the “Yes” category only 
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Figure 6-2: The distribution of households across the overall disadvantaged communities of 

the Greater Seattle area in the sample (Generated by the Authors) 
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Table 6-3: Distributions of demographics in the survey sample and representative population 

Variable Description 
Sample 

Percentage 

Representative 

Population Percentage 

Household Size 

1 Person 26% 27% 

2 Person 39% 36% 

3 Person 16% 16% 

4 Person 12% 14% 

5+ Person 7% 7% 

Household Income 

<50,000 27% 26% 

>=50,000 - <75,000 16% 14% 

>=75,000 - 

<100,000 
16% 15% 

>=100,000 41% 45% 

Multi-vehicle  
No 47% 42% 

Yes 53% 58% 
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prediction. For instance, Lee et al. (239) estimated gradient boosting ML models to explore user 

preferences regarding automated vehicles. Similarly, de Rubens (2019) estimated the K-means 

clustering model for market segmentation analysis of electric vehicle adopters. One noteworthy 

ML technique in this domain is Extreme Gradient Boosting (XGBoost), a relatively recent addition 

to the ML toolkit. We have chosen XGBoost as the machine learning technique due to its specific 

advantages in our research context. XGBoost is a powerful algorithm known for its capacity to 

handle both categorical and continuous variables, accommodate non-linear relationships, and 

deliver high predictive accuracy (240; 241). Furthermore, XGBoost is recognized for its 

explainable artificial intelligence (XAI) capabilities, making it suitable for extracting insights from 

complex survey data. It offers computational advantages, including speed and scalability, crucial 

for efficiently analyzing survey datasets. The interpretability of XGBoost models is a paramount 

advantage, allowing us to elucidate and communicate the underlying drivers of AFV adoption. 

This is in line with the demands of our study, which seeks to uncover nuanced patterns (e.g., feature 

importance, supervised clustering) for adopting alternative fuel vehicles. Researchers have used 

XGBoost to find important features in different transportation research. For example, in a previous 

study by Meng et al. (242), XGBoost was utilized to predict the frequency and duration of traffic 

accidents by leveraging important features from multiple data sources, such as road geometric 

design, historical accident data, and traffic and weather data. Importantly, researchers found that 

XGBoost performs significantly better than other approaches (243). For example, Ullah et al. (244) 

demonstrated the superior performance of XGBoost compared to various machine learning 

techniques, such as random forest, categorical boosting, and light gradient boosting machines, for 

predicting the charging time of electric vehicles. Therefore, our choice of XGBoost is well-

justified based on its computational advantages, interpretability, and empirical success in 

transportation research, which position it as a robust tool for extracting valuable insights from our 

survey data.  

The primary goal of the XGBoost algorithm is to find a function ∮(𝑋𝑖) that best analyzes 

the dependent variable 𝑦𝑖 from the explanatory variables 𝑋𝑖. It can be described with the equation 

below: 

 𝑦̂𝑖 = ∮(𝑋𝑖) = ∑ 𝑓𝑘
𝐾
𝑘=1 (𝑋𝑖), 𝑓𝑘 ∈ 𝐹       (i) 

Where K denotes the number of iterations. ∮(𝑋𝑖) represents an ensemble model consisting 

of base learners 𝑓𝑘(𝑋𝑖). F is the tree space. The learning objective of XGBoost is like the traditional 

decision tree model, which is to select splits that optimize the training loss. However, XGBoost 

can improve gradient tree boosting by regularizing the learning objective. Let K be the additive 

functions and n is the number of instances. The goal is to minimize the following Equation (ii): 

ℒ𝑘 = ∑ 𝑙(𝑦𝑖, 𝑦̂𝑖)
𝑛
𝑖=1 + ∑ Ω(𝑓𝑘)

𝐾
𝑘=1        (ii) 

Ω(𝑓𝑘) = 𝛾𝑇 + 
1

2
𝜆 ∑ 𝜔𝑖𝑘

2𝑇
𝑖=1         (iii) 

Where l is the loss function, and Ω penalizes the complexity of the model. The complexity 

of 𝑓𝑘 will be censured for high values of T & high variations of weights 𝜔𝑖 for T leaves. Thus, 

XGBoost can learn better and improve tree structure than the traditional tree model. Equation (i)-

(iii) are solved for optimal 𝜔𝑗
∗. 

After having an optimal model represented by ∮(𝑋𝑖) with hyperparameter tuning, its 

prediction results can be analyzed. Notably, the primary interest is to recognize the contribution of 

each feature to the response prediction by the model. Shapley Additive Explanations (SHAP) is an 
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established and consistent attribution method that can deliver a robust explanation of the XGBoost 

results. The sum of all the feature importance is: 

∮(𝑋𝑖) ≈ 𝑆(𝑧𝑖) =  𝜑0 + ∑ 𝜑𝑖𝑗𝑧𝑖𝑗
𝑚
𝑗=1        (iv) 

𝑆(𝑧𝑖) is the explanation model intended to explain the output ∮(𝑋𝑖) inherently. 𝑧𝑖𝑗 ∈

[0,1]𝑚 equal to 1 when a variable j is observed, otherwise 0; 𝜑𝑗 is the variable importance that can 

be attributed to variable j; 𝜑0 is the output of the base model with no features. According to 

Lundberg & Lee (245), 𝜑𝑖𝑗 can be exhibited as follows: 

𝜑𝑖𝑗 = ∑
(𝑚−|𝑟|)!(|𝑠|−1)!

𝑚!𝑟⊆𝑋𝑖
[∮(𝑟) − ∮(𝑟\𝑗)]      (v) 

Here, r denotes all the distinct subsets of 𝑋𝑖, & 1 ≤ |𝑟| ≤ 𝑚 is their order. The above equation 

also represents the overall impact of variable j on the model by the weighted sum of the marginal 

effect [∮(𝑟) − ∮(𝑟\𝑗)]. Overall, SHAP enables the model's prediction to be explained reliably. 

The method is executed using the SHAP Package of Python programming language. 

6.6.2 Binary Logistic Model Specifications 

The binary logistic regression models are adopted to compare and validate the feature importance 

and relationships determined by the XGBoost model and analyze the DACs and non-DACs-

specific covariates of AFV adoption (i.e., segmentation). Previous studies often used discrete 

choice models to analyze vehicle type, including binary logit models (246-249). This study 

analyzes the AFV adoption of an individual household, which is a binary outcome variable. 

Therefore, the estimation of the binary logit model is adopted in this study. The following Equation 

(vi) illustrates the modeling approach of the binary logistic regression: 

𝑃(𝑌𝑖 = 𝑤ℎ𝑒𝑡ℎ𝑒𝑟 𝑎𝑛 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑜𝑤𝑛𝑠 𝐴𝐹𝑉) =  
exp (𝛼+𝛽𝑖𝑋𝑖+𝜀)

1+exp (𝛼+𝛽𝑖𝑋𝑖+𝜀)
 (vi) 

Where, 𝑌𝑖 is the AFV adoption function determining the AFV adoption by household i for 

the Seattle household data. 𝑌𝑖 = 1 indicates a household owning AFV, 0 otherwise. 𝑋𝑖 are the 

explanatory variables; 𝛽𝑖 is a vector of estimable coefficients corresponding to 𝑋𝑖; 𝛼 is the intercept 

term; and 𝜀 is the error term. The coefficients of the binary logit model don't have a sense of 

magnitude. Therefore, marginal effects are calculated to identify the magnitudes of the estimated 

coefficients. The following marginal effect equation (vii) of the explanatory variable 𝑋𝑖 shows the 

prediction function's partial derivative, the instantaneous rate of change. 

𝜕𝑃

𝜕𝑋𝑖
=

𝛽𝑗𝑒
−(𝛼+𝛽𝑖𝑋𝑖+𝜀)

[1+𝑒−(𝛼+𝛽𝑖𝑋𝑖+𝜀)]2
         (vii) 

6.6.3 Model Segmentation 

Given an uneven distribution of AFV users between transportation-disadvantaged and non-

disadvantaged communities, we use segmented models. The segmented methodology followed in 

this study is based on the studies conducted by Misra and Atkins (250) and Nitesh and Cherry 

(251). In this approach, two separate binary models are estimated for disadvantaged and non-

disadvantaged communities. Then, a pooled binary logit model is estimated by joining both 

groups. 

A likelihood ratio (LR) test is performed to understand whether the segmented models are 

the same as the pooled model or not. The test can be described as follows: 
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−2[𝐿𝐿(𝑝𝑜𝑜𝑙𝑒𝑑 𝑚𝑜𝑑𝑒𝑙) − 𝐿𝐿(𝑑𝑖𝑠𝑎𝑑𝑣𝑎𝑛𝑡𝑎𝑔𝑒𝑑 𝑜𝑛𝑙𝑦 𝑚𝑜𝑑𝑒𝑙)
− 𝐿𝐿 (𝑛𝑜𝑡_𝑑𝑖𝑠𝑎𝑑𝑣𝑎𝑛𝑡𝑎𝑔𝑒𝑑  𝑜𝑛𝑙𝑦 𝑚𝑜𝑑𝑒𝑙)~𝜒2

𝑑𝑓
 

where, 

𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 (𝑑𝑓) = 𝐾1 + 𝐾2 − 𝐾 , where 𝐾1and 𝐾2 is a degree of freedom of 

segmented models (disadvantaged and non-disadvantaged models) and 𝐾 is a degree of 

freedom for the pooled model. 

6.7 Results and Discussion 

6.7.1 XGBoost Feature Importance 

We initially used all the input variables in the XGBoost model to identify the most critical variables 

that can predict AFV adoption in DACs. The model’s prediction accuracy is 91.52%. Furthermore, 

the model accurately predicts 84% out of 86% non-AFV adoption households and 8% out of 14% 

AFV adoption households. The XGBoost model’s performance is shown graphically by a receiver 

operating characteristic (ROC) curve in Figure 6-3. The plot shows the true positive rate against 

the false positive rate at various classification thresholds. The curve is closer to the top-left corner, 

indicating a higher ability to correctly classify positive instances while minimizing false positives. 

The area under the ROC curve is 0.93, which suggests that the model can distinguish well between 

the positive and negative classes. Therefore, the model exhibits a high level of discrimination and 

performs well in predicting AFV adoption. Figure 6-4 illustrates the estimated SHAP feature 

importance plots from the XGBoost model. These plots indicate that there is no apparent 

overfitting issue in the model. The plot shows a subset of features with significantly higher 

importance than others, which is consistent with domain knowledge. The model has successfully 

captured the relevant patterns and relationships in the data. These plots can be explained both 

globally and locally. The global explanation uses the average magnitude of SHAP (i.e., in log-

odds units). It shows the model output while a feature is deleted from the model. 

Figure 6-4 (right) indicates that household income is the most important feature, which is 

followed by other independent variables, including household size, home ownership, public 

charging stations, multi-vehicle households, home in Seattle city, and car share program. Among 

the disadvantaged variables, the environment is the most important, followed by equity, 

transportation access, environmental, transportation access, overall, economy, and resilience 

disadvantages. Nonetheless, local interpretations of the variables need to be analyzed to uncover 

the direction in which the variables are important. 

The local interpretation plot is presented in Figure 6-4 (left), in which every dot indicates 

each sample's location, and each color represents the value of the respective feature for that 

location. Higher household income is positively correlated with AFV adoption. Correspondingly, 

public charging stations, multi-vehicle households, home ownership, large households, home in 

Seattle city, and using a car share program are positively associated with AFV adoption. 

Importantly, equity and overall disadvantaged categories are positively related to the adoption of 

AFV, whereas environmental, transport, and economic DACs are negatively associated with AFV 

adoption. Additionally, it is evident that the resilience category is not a particularly important 

feature in predicting AFV adoption.  

To compare and validate the feature importance determined by XGBoost, a binary logistic  
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Figure 6-3: ROC curve of the XGBoost model 
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Figure 6-4: Local (left) and Global feature importance plots by SHAP 
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model is also employed by incorporating all variables and subsequently computing the 

standardized coefficients for each variable. The standardized scores display the feature importance 

plot. The plot is shown in Figure 6-5, exhibiting household income as the most important feature 

to predict AFV adoption, followed by household size, home in Seattle city, and public charging 

stations. Environment and Equity disadvantages are the top DAC indicators. This reveals a 

significant consistency in the importance of most variables between the binary logit model and the 

XGBoost feature importance. This consistency implies that despite their different methodologies, 

both approaches identify similar features as influential in predicting AFV adoption. The analysis 

provides robust evidence and increases the reliability of the model's feature selection process.  

6.7.2 Supervised Clustering 

XGBoost has an interesting application that enables supervised clustering – where clustering on 

the feature attributions can be performed instead of using unsupervised clustering methods. 

Supervised clustering is immune to a challenging problem of unsupervised learning: the 

determination of feature weights. The unsupervised clustering method cluster features with 

different units, whereas the supervised cluster uses feature attributions to manually convert all the 

independent variables into values with the same units as the response variable of the model. It 

indicates that a unit change in any variable is comparable to a unit change in other variables (i.e., 

feature attribution). Fluctuations in the variables only affect the clustering when those clusters 

correlate with the response variable. The XGBoost prediction was clustered using hierarchical 

agglomerative clustering (similar to a dendrogram plot to join the samples). Figure 6-6 

demonstrates supervised clustering with SHAP feature attributions of our study data. The X-axis 

refers to all the 2,202 observations in the data, and the Y-axis presents the log odds of AFV 

adoption. Red feature attributions push the score higher; in other words, they push households to 

adopt AFV. At the same time, the blue attributions feature pushes the score to be lower and 

discourages adopting AFV. A few such noticeable subgroups with related features are annotated 

in Figure 6-6. This proves the power of supervised clustering to identify the group that shares the 

common features related to AFV adoption. For example, high-income households, large 

households, and equity-disadvantaged communities are more likely to increase AFV sales. In 

contrast, few public charging stations and environmentally disadvantaged communities discourage 

people from adopting AFV. Similarly, low-income, few public charging stations and single-

vehicle and small households in transport DACs are less likely to increase the adoption of AFV in 

the future. On the other hand, high-income households living in Seattle city are more inclined to 

buy AFV. Likewise, not overall and not environmental DACs are best suited for AFV adoption. 

Overall, the supervised clustering and the XGBoost feature attributions plots show that household 

income, public charging stations, multi-vehicle households, home ownership, household size, 

home in Seattle city, and car share program are the most important predictors for AFV adoption. 

Moreover, the XGBoost feature extraction shows equity and environmental DACs are the most 

critical disadvantaged indicators in the sample. These will be considered in the modeling to 

understand AFV adoption in the communities with these disadvantages. 

6.7.3 Results of the Segmented Binary Logistic Models 

The important predictors found in the XGBoost feature attributions are modeled using a binary 

logistic regression model with segmentations to analyze AFV adoption. Prior to model estimation,  
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Figure 6-5: Feature importance plot from binary logit standardized coefficients  
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Figure 6-6: Supervised clustering of the study data with SHAP feature attributions  
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correlations between household income and the DAC indicators are examined. The results in Table 

6-4 show no high correlations exist in the variables. Furthermore, the variance inflation factor 

(VIF) is utilized to investigate the multicollinearity problem in the data. The higher the value of 

the calculated VIF, the higher the potential for collinearity between the related independent 

variables used in the model. Generally, VIF values less than 3 suggest the absence of 

multicollinearity in the model (252). VIF can be expressed in Equation (viii) below. Where, 𝑅𝑗
2 is 

the multiple correlation coefficients for the independent variables. If 𝑅𝑗
2 equals zero, VIF equals 

1, and no correlations exist between independent variables. The estimated VIFs for the study data 

show no signs of multicollinearity between the variables. 

𝑉𝐼𝐹𝑗 =
1

1−𝑅𝑗
2     (viii) 

Table 6-5 presents the results for the impacts of the underlying contributing attributes for 

the AFV adoption. The first model is the pooled model, and the remaining two are disadvantaged-

only and non-disadvantaged-only models. By using the LR test, we test the null hypothesis that 

the pooled model is identical to the segmented models. The corresponding test has a p-value close 

to zero, which confirms that the null hypothesis can be rejected at 99% confidence and concludes 

that the segmented models can sufficiently explain the data separately. All three binary logistic 

models with the coefficients, significance level, and related marginal effects, are reported in Table 

6-5. The direction of all estimated coefficients is similar to the XGBoost prediction. 

The number of public charging stations is found to be statistically significant and positively 

associated with the AFV adoption intent in all three models. More public charging/refueling 

stations show a strong correlation with AFV adoption in DACs. Specifically, in the disadvantaged-

only model, the increase in the number of public charging stations by one unit is associated with 

the increase of AFV adoption by 2%. This is consistent with the study conducted by White et al. 

(231). The impact becomes larger with the increase of public charging stations in DACs compared 

with non-DACs. The greater density of charging stations comes with several potential benefits. 

For example, it reduces the lower-range anxiety and mobility restriction of AFVs. More charging 

stations provide greater flexibility for AFV usage through a better functional range. This can also 

be related to the social pressure or neighbor effect people may feel about buying AFVs. More 

charging stations encourage more AFV adoption and influence other people in the neighborhood 

to purchase AFVs.  

Moreover, predicted margins are estimated to explore the differential effects of 

infrastructure on AFV adoption across the DACs and non-DACs. Figure 6-7 shows the predictive 

margins of public charging stations across DACs and non-DACs. Predicted margins are nothing 

but the predicted probabilities for different values of an independent variable while holding other 

variables at their mean (253). For example, in Figure 6-7, if all households in the sample live in 

disadvantaged tracts having four public charging stations, they have a 20% chance of AFV 

adoption. The effect increases for both DACs and non-DACs with the increase in the number of 

charging stations. However, DACs have higher impacts on AFV adoption with an increase in 

public charging stations than non-DACs. The higher chances in DACs may be related to the 

segmented effects of income and tech-savviness of the households discussed below. 

The results suggest that the coefficient for household income categories is positive and 

statistically significant. In the pooled model, if a household earns an income of ">=$50,000-

<$75,000", it is 6% more likely to adopt alternative fuel vehicles than a low-income household   
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Table 6-4: Correlations between household income and the DAC indicators 

  
Income 

Transport 

DAC 

Health 

DAC 

Economy 

DAC 

Equity 

DAC 

Resilience 

DAC 

Environment 

DAC 

Income 1.00       

Transport 

DAC 
-0.01 1.00      

Health DAC -0.08 0.04 1.00     

Economy 

DAC 
-0.21 -0.03 0.16 1.00    

Equity DAC -0.10 -0.11 -0.11 0.38 1.00   

Resilience 

DAC 
0.01 -0.11 -0.09 0.13 0.35 1.00  

Environment 

DAC 
-0.03 -0.06 -0.05 0.25 0.24 0.28 1.00 
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Table 6-5: Segmented Model Results 
  

Pooled Model Disadvantaged-Only 
Non-Disadvantaged 

Only 

Coef. 
Marginal 

Effect 
Coef. 

Marginal 

Effect 
Coef. 

Marginal 

Effect 

Constant -3.585*** - -3.64*** - -3.77*** - 

Household Size 0.170*** 0.025 0.15 0.016 0.19*** 0.02 

Multi-vehicle (Base: No), 

Yes 

0.376** 0.042 0.43 0.044 0.32* 0.04 

Household Income (Base: 

<$50,000), 

      
 

  
 

             >=$50,000-<$75,000 0.680*** 0.06 1.07*** 0.11 0.41 0.03 

          >=$75,000- <$100,000 0.889*** 0.085 0.35 0.03 1.20*** 0.12 

         >= $100,000 1.022*** 0.102 0.84** 0.08 1.16*** 0.11 

Home in Seattle City (Base: 

No), Yes 

0.523*** 0.067 0.3 0.034 0.53*** 0.07 

Home Ownership (Base: No), 

Yes 

0.283** 0.032 0.44* 0.044 0.23 0.03 

Car Share Program (Base: 

No), Yes 

0.923*** 0.136 2.08*** 0.359 0.51* 0.07 

Public Charging Stations 0.071*** 0.01 0.15** 0.02 0.05** 0.01 

Equity Disadvantaged (Base: 

No), Yes 

0.266* 0.03 0.45 0.046 0.24 0.03 

Environment Disadvantaged 

(Base: No), Yes 

-0.369** -0.044 -1.42*** -0.162 -0.14 -0.02 

Model Fit Statistics 

N 2,202 724 1,478 

Log-likelihood -839.79 -258.75 -567.84 

Chi (12) 111.67 60.26 93.9 

Model Significance Test 0 0 0 

AIC 1,705.58 543.5 1161.68 

BIC 1,779.65 603.1 1230.56 

LR test for segmentation Chi2 (12) = 26.405, Prob>chi2 = 0.009 

*** p<0.01, ** p<0.05, * p<0.10 
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Figure 6-7: Predictive margins of public charging stations across DACs and non-DACs 
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(<$50,000). This effect increases with the increase in household income, which is as we expected. 

For example, households having income ">$100,000" are 10.2% more inclined to buy AFVs. This 

is also aligned with the previous studies (212; 213; 225). Several reasons may play a role. First, 

due to the high purchase cost of AFV, it is not surprising that higher household income is an 

important influencing factor for adopting AFV. Li et al. (213) found a significant and positive 

correlation between alternative fuel vehicle type and income. Second, higher-educated people are 

generally believed to have higher incomes and are usually more enthusiastic about welcoming and 

adopting new technologies and sustainable vehicles (224). 

The segmented models show some variations in household income. For example, in the 

disadvantaged-only model, households having an income of ">=50,000 - <$75,000" are found to 

be 11% more likely to adopt AFVs than households having an income of "<$50,000". Whereas the 

same category for the non-disadvantaged-only model is found to be statistically not significant. 

The chance of buying AFVs for the ">$100,000" category in DACs is 8%, which is lower than the 

">=$50,000 - <$75,000" category for DACs. Although this appears to be counter-intuitive, this is 

consistent with Lee et al. (254), who suggested this change might result from saturation among 

high-income AFV owners and diffusion to the other segment of income strata. The increased lower 

cost and affordability of newer AFVs could incentivize middle-income households to purchase 

more AFVs (216). 

Moreover, according to Bas et al. (255), having a pro-AFV attitude in middle-income 

groups may also contribute to adopting AFVs. This is further supported by the findings from the 

car share program variable (i.e., tech savviness), which is significant in our analysis. In the pooled 

model, the probability of adopting AFV for households that use a car share program is 13.6% 

higher than the ones that don't use a car share program in a big city. It may be because car sharing 

may change individual travel behavior, which can impact the frequency at which people make 

trips, levels of private car ownership with various vehicle choices, and the eagerness to use newer 

technologies (228). Car sharing status represents tech-savvy people who show interest in using 

different technologies in daily activities. Therefore, they would be more attracted to the benefits 

of AFVs over conventional vehicles. For example, Khattak and Khattak (256) found that people 

interested in technologies are more likely to purchase AFVs than conventional fossil fuel vehicles. 

Segmented models show there are significant differences between DACs and non-DACs in AFV 

adoption by tech-enthusiast people. In DACs, people interested in technologies are 36% more 

likely to adopt AFVs, whereas the adoption is 7% in non-DACs. 

The analysis reveals that home ownership has a positive and statistically significant impact 

on AFV adoption in both the pooled and disadvantaged-only models. The findings suggest that 

households in DACs who own a home are 4.4% more likely to adopt AFVs. This could be 

associated with the fact that owning a home offers better opportunities for overnight home 

charging facilities. Besides, home in Seattle city is significant in the pooled and non-disadvantaged 

only models. The results indicate that the households living in Seattle city (i.e., urban areas) are 

6.7% more interested in adopting AFV than those living outside Seattle (i.e., rural or suburban 

areas). It may be because of the high exposure of AFV in urban areas with favorable built-in 

infrastructure. Moreover, most urban and city areas are segregated regarding socioeconomic 

factors and ethnic characteristics (257). Therefore, people living near each other are most likely to 

be similar, which may also be the indictment for AFV ownership. The more people adopt AFV, 

the more desirable it becomes for others in the neighborhood (222).  



134 

 

Household size is statistically significant and positive. It indicates that an increase in the 

household size by one is 2.5% more likely to increase AFV adoption. This is consistent with Plotz 

et al. (258) and Jia et al. (214). The former found that multimember families are more likely and 

enthusiasts to adopt AFV, specifically electric vehicles. The latter found a higher correlation 

between average household size and the number of alternative fuel vehicles in the U.S.  Multi-

vehicle household is also significant and positive, which indicates that the household vehicle size 

of more than one induces the households to buy AFV. It is consistent with Jia et al. (214), who 

stated that the number of vehicles in the household tends to affect the future purchase of a vehicle. 

Households with more vehicles tend to buy newer vehicles with newer technologies. The findings 

of Li et al. (213) are also in line with the result, which stated the percentage of AFV households 

with more than one vehicle is much greater than that of households with conventional vehicles. 

The important disadvantaged categories are also explored in all three models. The equity 

disadvantaged category is statistically significant in the pooled model. Also, the environment 

disadvantaged is significant and negative in the pooled and disadvantaged-only models. The 

coefficient of equity disadvantaged is positive, indicating that households living in an equity 

disadvantaged community are 3% more likely to use alternative fuel vehicles. In an equity 

disadvantaged area, there may be disparities in terms of income, race, infrastructure investments, 

technology innovations, and deployments. High-income households and high local populations 

(e.g., more white population and fewer people of color or vice-versa) are privileged in such areas 

in terms of offer incentives, such as tax credits, rebates, or free charging, by government and 

private entities for purchasing or using AFVs (216; 259). In contrast, if the households live in 

environmental and transportation DACs, they are 4.4% less inclined to buy AFV than the ones 

who do not live in such disadvantaged communities. Transportation and Environment DACs are 

generally more congested and polluted than non-DACs. Average trip length and duration are 

higher in a transportation DAC than in a non-transportation DAC (160). The level of pollutants, 

i.e., diesel particulate matter, ozone, and PM2.5 in the air, are high in an environmentally 

disadvantaged community (160). Air-toxic respiratory hazards and air-toxic cancer risks are 

especially elevated in those areas. Although it is expected that more people in the DACs should 

adopt AFVs to improve the overburdened by pollution, a high percentage of higher-educated and 

high-income households are generally discouraged from living in such areas. Therefore, most 

people living in these areas may not be able to afford to buy AFVs. 

6.8 Policy Implications 

The findings of this paper have important policy implications. This study can help policymakers, 

city officials, or other stakeholders recognize the issues of current AFV sales and adoption from 

the perspective of related correlates. The findings deepen our understanding of disadvantaged 

communities’ social and economic challenges. This is vital for overcoming environmental justice 

and equity issues. Investments in DACs charging/refueling infrastructure can have a higher impact 

on AFV adoption, especially if they consider the insights from XAI in the decision-making process 

and emphasize the importance of considering social and economic factors in AFV adoption 

programs. Homeownership offers the distinct advantage of having personal home charging 

facilities for AFVs, a key factor in the convenience and feasibility of owning such vehicles. 

However, the substantial income needed to purchase a home places this benefit out of reach for 

middle and lower-income categories. To bridge this gap and encourage the adoption of AFVs 
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among these communities, the installation of charging stations in the apartment complexes might 

be as a viable solution. This approach not only provides necessary infrastructure for AFV owners 

but also ensures that the benefits of this technology are more equitably distributed, enabling 

broader access regardless of homeownership status. 

Furthermore, as we know, the relatively high cost of purchasing EVs is a critical barrier in 

DACs. However, with new incentives, the cost of EVs is decreasing. Specifically, the US federal 

government provides a tax credit of up to $7,500 for new EVs purchased in or after 2023 (260), 

and used EVs are now eligible for tax credits of up to $4,000 (261). Additionally, auto 

manufacturers can articulate customized sales and incentives, e.g., financial incentive policies and 

other policy developments, to expand AFV adoption to underserved communities. For example, 

in 2021, Chevrolet provided a cashback incentive of $7,000 to purchase a new Bolt EV (262). 

Furthermore, manufacturers can identify the most attractive features of AFVs to customers, such 

as technological and environmental innovation, performance, and operating costs comparison 

between AFVs and conventional fossil fuel vehicles. Federal investment initiatives and state and 

public utility agencies may use the AFV information in this study to determine the required 

infrastructure, e.g., the number and size of the charging/ refueling stations, to install AFVs in 

underserved communities. By encouraging AFV adoption in DACs, policymakers can promote 

decarbonization and improve public health, equity, and environmental justice. 

6.9 Limitations 

This study is not without some limitations. Our theoretical framework may have overlooked other 

important variables. For example, the inclusion of "average commute time" and "household's 

yearly mileage" could have added more insights into the analysis. However, these variables are 

not primarily part of the PHTS databases. Besides, a variety of AFV types are lumped together in 

this analysis due to not having enough data on all types of AFVs. Moreover, different policies, 

e.g., VMT-based tax or fuel tax, that can impact AFV adoption could not be explored. 

6.10 Conclusions 

This study aims to understand the adoption of alternative fuel vehicles in disadvantaged 

communities. By combining statistical and explainable artificial intelligence (XAI) techniques, the 

study explores the complex behavioral decision-making processes involved in AFV adoption and 

the role of various factors in this process. The study utilizes a unique and comprehensive database 

that links the 2021 Puget Sound Household Travel Survey, the US Department of Energy's AFV 

data, and the US Department of Transportation's Environmental Justice databases. The data 

statistic indicates that AFV adoption in DACs (12.96%) is expectedly lower than non-DACs 

(15.30%). The use of XAI, i.e., XGBoost with SHAP technique, has provided valuable insights 

and emphasized the importance of considering social and economic factors in AFV adoption 

programs. The XAI results suggest that lack of access to charging infrastructure, consumer 

attitudes, and income correlate with AFV adoption in DACs. The modeling results show that more 

public charging/refueling stations strongly correlate with AFV adoption in DACs. Tech-oriented 

households are more likely to adopt AFVs in the DACs. The results further point to the importance 

of home charging facilities while adopting AFVs in DACs. Moreover, AFV adoption is strongly 

correlated with household income in DACs. Results further indicate that households living in an 
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equity DAC are more interested in buying AFVs, reflecting income, race, and investment disparity. 

This also highlights the importance of more investments and policy incentives to be taken in the 

future to increase AFV adoption in DACs. 
The findings of this study are based on data from the greater Seattle area of the state of 

Washington. Hence, they should not be generalized to the context of other cities or states. Although 

the results are not generalizable to other areas, they will be helpful for similar research in other 

cities/regions. Moreover, the findings of this study provide important policy implications by 

offering insights into the factors influencing AFV sales and adoption and highlighting social and 

economic challenges in disadvantaged communities. A comprehensive discussion of these 

implications can be found in the Policy Implications section of the paper. Additionally, the findings 

provide a basis for future research on AFV adoption in disadvantaged communities and highlight 

the need for continued investment. Future research should analyze the AFV adoption in all the 

DACs of the US. Future studies may consider analyzing the adoption of different types of AFVs 

in DACs. Also, the relationship between home charging facilities and various types of 

homeownership, such as apartments, single-family homes, and townhouses, needs to be 

investigated in the future. Furthermore, it will be interesting to investigate AFV adoption in highly 

disadvantaged communities, e.g., above the 85th percentile. Finally, AFVs are being widely 

adopted by public transportation agencies. These vehicles (e.g., buses or service vehicles) are often 

different from conventional vehicles in design, fuel, and incentives, among others. Thus, 

examining such AFVs in more detail is important to get a complete picture of how AFVs are 

reshaping transportation. 
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CHAPTER 7 CONCLUSIONS 

  



138 

 

The COVID-19 pandemic has been an unprecedented systemwide shock that has had long-lasting 

and significant impacts on various aspects of our daily lives, including transportation. One notable 

impact has been a shift in travel behavior, with many people choosing to work from home and 

shop online, resulting in reduced commuting and non-essential trips. This shift has led to a 

reduction in miles driven and a positive impact on air pollution and carbon emissions. However, 

despite the decrease in the number of vehicles on the road, there has been a significant increase in 

crash fatalities during the pandemic, which has disproportionately affected disadvantaged 

communities. This raises concerns about the equity implications of pandemic-related travel 

behavior and road safety changes. This dissertation aims to investigate the changes in the 

transportation system during COVID-19 and explore their future implications, including travel 

behavior, technology adoption behavior, and road safety aspects in disadvantaged communities. 

The study uses advanced statistical and artificial intelligence techniques and comprehensive 

databases to address methodological issues such as spatial heterogeneity and unobserved 

endogeneity. 

The study results suggest that during-pandemic online shopping was expectedly associated 

with lower in-person shopping trips. People who worked from home were associated with making 

more shopping trips. WFH went up from 12% to 61% during COVID-19, admittedly an unusual 

situation. The relationships among online shopping, physical shopping trips, and WFH, found in 

pre-pandemic data, are similar but differ in magnitude from the during-pandemic periods. 

Regarding safety, data statistics show that while crash fatalities increased by 8.2%, total crashes 

decreased by 15.3%, and the total harm cost was lower by about $1.76 billion during COVID-19 

(2020) compared with pre-COVID-19 conditions (2019). The results indicate that compared to the 

pre-pandemic periods, fatal crashes that occurred during the pandemic are associated with more 

speeding & reckless behaviors and varied across jurisdictions. Fatal crashes are more likely to 

happen on interstates and dark-not-lighted roads and involve commercial trucks.  

Furthermore, results show that DACs experienced heightened adversity than non-DACs 

regarding road safety during COVID-19. Transportation, health, and resilience disadvantaged 

tracts are found to be associated with more fatal crashes than non-DACs (an increase of 8% to 

57%). Fatalities vary across different races in DACs. Regarding the travel behavior in DACs 

during COVID-19, households living in DACs are less likely to order online retail goods and 

groceries than non-DAC households. The probability of making more restaurant trips decreases if 

a household lives in a DAC. The findings also highlight the differences between the DACs' and 

non-DACs' in-person and online shopping activities regarding technology access, income, and 

equity. Finally, the analysis of DAC’s decarbonization role through alternative fuel vehicle 

adoption (AFV) adoption using the Puget-Sound household travel survey conducted during 

COVID-19 suggests a lack of access to charging infrastructure, consumer attitudes, home 

ownership, and income play a substantial role in lower AFV adoption rate in DACs. 

The results of this research have significant policy implications. First, planners can 

improve travel demand models by explicitly incorporating WFH as an alternative to commuting 

to work in trip generation and time-of-day models. Second, the findings in DAC’s online shopping 

highlight the presence of a digital divide and digital poverty, which policymakers must address by 

promoting equal access to goods and services for households across all socioeconomic levels. The 

development of digital infrastructure is essential for eliminating the digital divide. This includes 

measures such as ensuring the availability and affordability of high-speed internet in all regions, 
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including rural and underserved areas, and the creation of digital services and devices that are 

accessible to individuals with disabilities or limited technological proficiency. Third, the finding 

on AFV adoption in DACs can help evaluate the planning-level impacts of refueling or charging 

infrastructure in DACs, allowing these communities to benefit from infrastructure investments and 

pave the way to decarbonization. Importantly, the findings can inform policy and planning 

decisions aimed at promoting safer and more equitable traffic safety programs in DACs in the 

post-pandemic world. Specifically, the study reveals the importance of informing policymaking to 

strengthen digital traffic law enforcement through appropriate countermeasures, such as intelligent 

speed adaptation, digital warning signs, and dynamic speed limits in crash hotspots. Finally, the 

study emphasizes the risks associated with DACs and can aid in designing and implementing 

traffic safety interventions, e.g., digital countermeasures, to address road safety risks in DACs. 

Overall, the findings of this dissertation underscore the importance of better preparedness and 

planning for disadvantaged communities to be equipped to handle future systemic shocks.  
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