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ABSTRACT

New effects due to the electron-phonon interaction in some low-dimensional

tight-binding systems are discussed. A sheet of graphite which is two dimensional

and an armchair single wall carbon nanotube (SWNT) which is quasi-one dimen

sional are taken as examples. The geometrical structure and the linear dispersion

of the energy with respect to the electron wave vector are expected to play a

significant role. For the ordinary electron-phonon coupling which includes mod

ulated hopping and linear electron-phonon interaction the matrix elements for

both systems are derived in the context of a two parameter model for the phonon

vibrational spectrum. It is found that they (for both structures) strongly depend

on the geometry, display a deformation type of potential and are reduced by a

factor of (1 — i?), where R depends uniquely on the introduced phonon parameters.

Next a new type of interaction is derived; it arises from the phonon modulation

of the electron-electron interaction. After writing the matrix elements for the

new Hamiltonian, the problem is considered in the context of many body physics.

There are two contributions. One of them is the random phase approximation with

one phonon line. The electron self-energy for it is calculated. It is shown that, in

general, one might expect that this is not a large effect. Analytical expressions are

obtained for the armchair single wall carbon nanotube. The exchange interaction

in the one-phonon approximation is another term that arises and is also consid

ered. One is able to write four new Feynman diagrams and derive an expression

for —/mS(^). It is found that the contribution from this type of coupling could be

large and comparable to the one from the modulated hopping. These results are

supported by numerical estimates of some characteristics of graphene and SWNT.

The values of the electron-phonon coupling constant. A, and the electron lifetime,

r, could be compared between the traditional electron-phonon interaction and the

phonon modulated electron-electron interaction. Finally, it is realized that for a
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perfect (defect-free) armchair SWNT the diffusion thermopower and the phonon

drag thermopower should be zero because of the complete symmetry of the energy

bands of the system.
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Chapter 1

Overview

The interaction between electrons and phonons is extremely important in the

context of the flow of electricity and heat in a certain system. The discussion

in this work will be primarily concerned with interesting transport properties in

low-dimensional tight-binding systems. A long list of research - theoretical and

experimental - has shown that properties in electronic materials that are reduced

to one and two dimensions show fascinating new phenomena. A lot of scientists

share the opinion that a big part of the future of technology belongs to the low

dimensional structures. They play a significant role not only in making new

devices, but also in testing the laws of fundamental physics [1 .

The aim of this work is geared towards a description of some new effects that

arise when we consider the electron-phonon interaction in certain low dimensional

tight-binding systems. These effects are demonstrated in a layer of graphite (called

graphene) which is an example of a two-dimensional system, and an armchair sin

gle wall carbon nanotube (SWNT) which is an example of a quasi-one dimensional

system (later we specify what an armchair (SWNT) is). The newly discovered car

bon nanotubes offer the possibility to study the laws of solid state physics and

search for new effects [2]. In fact, these nanoparticles served as an inspiration of
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the present work.

A carbon nanotube is a graphite sheet rolled into  a cylinder; its diameter is

much smaller than its length. Because of the different ways this can be done, we

expect that these quasi-one dimensional systems will display a very strong depen

dence on the geometry, but will also have similarities with the two dimensional

graphene. This is unique to solid state physics. Every tube is characterized by a

chiral index (n, m) which contains two integers and they specify the carbon nan

otube uniquely (see Ch.4). In fact, their electronic structure is either metallic or

semiconducting depending on how the sheet is rolled into a cylinder [3] (hence on

the combination of n and m). Thus, it is very important to understand how the

two-dimensional graphite will be described and then apply the formalism to the

quasi-one dimensional SWNT.

Many of the applications of the carbon nanotubes are not realized yet, because

this is a relatively new field of research. But, we can be certain that the properties

and applications of the tubes will depend strongly on their geometry and low

dimensionality. In principle we can imagine that  a material with desired properties

can be achieved using only carbon atoms and changing the geometrical structure.

To study the effects of any type of interaction one needs to understand first

the electronic structure of the system. The electronic structure of two dimen

sional graphite - called graphene - is derived by  a simple tight-binding scheme for

the TT-electrons of the carbon atoms [28]. The tight-binding approach is a good

approximation here because the electrons are well localized around the ions. The

structure of a single wall carbon nanotube can be obtained from that of graphene

simply by using periodic boundary conditions in the circumferential direction -

the wave vector associated with this dimension is quantized while the wave vector

associated with translation is continuous. Therefore, the energy bands consist of

a set of one dimensional dispersions.

All of the discussions and derivations will be concerned with one special case
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of a highly symmetrical carbon nanotube - an armchair (10,10) SWNT, which is

of metallic type. The reason is that the majority of the synthesized tubes and

“ropes” are believed to be made of this kind of SWNT .The key to the production

of the nanotubes is the use of metal catalyst such as Ni, Co or Fe [17] in an

arc discharge method, or using a pulsed laser vaporization techniques [18]. The

experimental analysis shows that most of the nanotubes are (10,10) SWNT.

The primary objective of this work will be to determine the electron-phonon

interaction both the application of the known mechanisms and search for new ones.

But, before we are able to do that the phonon dispersion relationships need to be

derived. The phonon spectra for graphene [5], [6] and different SWNT-s [16] are

known, and have been calculated up to fourth neighbors. The phonon dispersions

need to be incorporated in the considerations of the electron-phonon effects. One

needs to have a relatively simple relation of lo{Q) in order to do that properly.

For this purpose a model with two parameters is proposed - the parameters are

for the-central force (a) and for the angle bending (/5) that invoNes a three-body

force. It turns out that all the features of the known graphene spectrum can be

reproduced by a suitable choice of these two parameters. The same choice for a

and /? is used for the armchair tube. In most ionic and semiconducting solids only

acoustic modes are important (if the band is nondegenerate). But for graphene

and SWNT the optical modes depend on the acoustic ones. Thus, the optical

modes cannot be simply neglected. This coupling was not considered in prior

work and we therefore believe that the electron-phonon interaction needs to be

calculated properly for both systems.

We start with the description of the electron-phonon interaction - an electron

which is conceived to be in a particular state is described by a tight- binding

wave function and a phonon is described by a phonon eigenstate. The finite

resistivity of metals is entirely due to deviations of the ions from their equilibrium

positions. The most important such deviations are those associated with the
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thermal vibrations of the atoms. This is an intrinsic source of resistivity even for

materials free of defects. The simplest theories of the lattice contribution to the

conductivity of metals assume that the scattering is dominated by processes in

which an electron emits (or absorbs) a single phonon; the energy of the electron

changes by the energy of the phonon. It is a well known result that the electrical

resistivity is proportional to the temperature T in the limit of high temperatures

because the total number of phonons is directly proportional to T. In describing

the electron-phonon interaction of a sheet of graphite and an armchair SWNT we

will be concerned with the high temperature limit [8^.

The simplest interpretation is that the vibrating ions carry the electron orbitals

with them as they move - this is the so-called rigid ion approximation. This is

certainly a great simplification because an important effect is neglected - the

electron distribution will distort around the moving ion. But in tight-binding

systems where the electrons are well localized the rigid ion approximation is a very

reasonable approach. The quantitative description starts with the assumption

= Efl V{r — R) is onlythat the periodic potential of a set of rigid ions anper

approximation of the true nonperiodic potential

U{r) = -Y.^{R) • vy(r - R). (1.1)
R

The potential V{f— R) is defined as the unscreened electron-ion potential. In the

following discussions we will not be concerned with including screening effects.

In graphene the excited electron states are at the energy band minimum [29],

which is the K point of the Brillouin zone. The A^-point is located at the Brillouin

zone edge. In this case only electrons with long wavelengths are involved. Thus,

instead of calculating the potential one parametrizes it by assuming that it is

proportional to the relative distance between nearest neighbors only. We will

assume that this is true for the carbon nanotube also.

With the above substitution for the potential in these tight binding systems the
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electron-phonon interaction comes into play through the hopping of the conduc

tion electrons between nearest neighbors only. The lattice vibrations will modulate

the process and the coupling is called modulated hopping. This kind of transition

displays a deformation type. We obtain that by taking only phonons with long
A

wavelength and polarizations of the ions rj ̂  Q.

It is very important to calculate the matrix elements for this process correctly

in order to have correct estimation of properties which depend on the matrix

elements. The interaction Hamiltonian is written for a solid with two atoms

per unit cell. Retaining only nearest neighbor hopping we are able to obtain

that the matrix elements are linear in the phonon wave vector Q and depend on

both the acoustic and optical phonon modes. Therefore, one needs to have an

appropriate model to account for the phonon polarizations. This was the reason

for introducing the two parameter model for the phonon dynamics. Since the

optical modes depend on the acoustic ones it turns out that the deformation

constant D of the interaction is significantly reduced by a factor which depends

only on the a and ̂  parameters from the phonon model. This was not obtained

in previous calculations [34], [40]. Another feature of note is that D is the same

for graphene and for a tube; the nearest neighbor overlap integral is assumed the

same and the curvature of the tube is not considered.

Another source of the electron-phonon interaction is when the potential is

taken to be The formalism allows for introducing the charge distribution of

the electrons and the ions of the crystal - pi[r) and Pe{^- Since the electrons in

graphite are 7r-electrons the electron, charge distribution is taken to have 2pj-wave

symmetry and the distribution for the ions has 2s-wave symmetry. pi{f) and Pe{f)

modulate the potential in such a way that in the long wavelength limit - Q —>■ 0
the interaction takes the form of a deformation type again. It is possible to obtain
the deformation constant 3 which depends on the parameters that describe the
electron and ion charge distributions.
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The last contribution that is discussed is new. It is the phonon modulated

electron-electron interaction. It could be important not only for graphene but

also for other low dimensional tight binding systems [4]. The potential is again

the Coulomb potential between an electron and an ion (the same one as for the

previous interaction). One notices that the position of the atom which is included

in the potential is modulated by the lattice vibrations. Keeping only terms of

first order in the ion displacements around equilibrium, one is able to obtain the

form of the Hamiltonian. It is notable that this is not a phonon mediated electron-

electron interaction [33] in which the coupling of the electrons is done by emitting

or absorbing of a phonon. The phonon modulated electron-electron  interaction

has a different origin; it comes from the modulated distance of the charged ions.

The matrix elements we derive are the same for transitions in graphene and a

carbon nanotube, to a relative phase factor.

The next thing that is interesting to discuss is some aspects of the interacting

electron-phonon system which are of many-body character - a charge carrier is

linearly coupled to a systems of boson particles (phonons). The imaginary part

of the electron self-energy is a very important quantity. It is closely related to the

coupling constant of the interaction - A and the electron lifetime - r. We work

in the one phonon approximation at finite temperatures. The Feynman diagram

for the modulated hopping and the linear electron-phonon interaction is the same

and it is well known. The only thing that needs to be done is to have the correct

expressions of the coupling constant which is the same for both type of processes

but with different deformation constants.

The new type of interaction that was introduced is expected to have strong

impact on the many body effects also. There are two contributions to the electron

self-energy. One of them comes from the diagrams that represent the random

phase approximation of the system with one phonon line. Using the Lehemann

representation one is able to derive a general expression for the self-energy that
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resembles the one from the ordinary electron-phonon interaction. The general

idea is that for small excitation energies this contribution can be neglected. In

one dimension one needs to be more careful. It is already shown that the density

oscillations and the spin waves completely describe the excitation spectrum in

ID [19]. For the quasi-one dimensional carbon nanotube with linear energy dis

persions exact expressions can be found. A self-energy term that is proportional

to and two terms proportional to T are produced. The coupling constant that

corresponds to the term is a remnant of the plain electron-electron interaction.

The terms with linear T can be considered to be a phonon modulation of the

correlation energy.

Another contribution to the phonon modulation of the electron-electron inter

action are the exchange terms. They arise from the different ways of pairing of

the electron operators. There are four new diagrams that correspond to the new

, matrix elements. Again the diagrams involve only one phonon line. It is worth

noting that the self-energy in this case depends only on the wave vector and not

on the energy which means that the will be left unchanged and it has little

effect on the wave vector distribution. The interesting thing is that in the limit

of (5 —> 0 the matrix elements can be written in the form of a deformation type

of potential again. For both systems, graphene and a SWNT, the exchange terms

are expected to give a large contribution.

To support the theoretical derivations with numbers, estimates of the coupling

constant and the relaxation time for the different mechanisms of interaction are

presented. The numbers support the expectations that the exchange phonon

modulated electron-electron interaction will give  a comparable contribution as

the one from the modulated hopping.

Finally, we note that all of the discussion was done for graphene and an arm

chair single wall carbon nanotube without any defects or imperfections. If one

introduces defects into the systems that will change the problem significantly, but
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this is not a subject of the present work.
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Chapter 2

Lattice Dynamics in Graphene

and a (10,10) SWNT

2.1 The model

Here we present a model for the phonon spectrum of a two-dimensional sheet

of graphite (called graphene). This is a natural starting point in obtaining the

phonon spectrum for a SWNT. Since the structure and the bond lengths for an

armchair (10,10) tube and graphene are very similar, one expects to obtain a

very good approximation for the phonon modes of SWNT from the graphene

spectrum. The measured and calculated spectrum for 2D graphite is presented

in Fig.2.1. The method which is used in calculating the spectrum is the Born-

von Karman lattice dynamical model and interactions up to fourth- neighbors are

included [20]. The purpose of this work is not to improve on this approach, but

to give a simpler alternative in obtaining the phonon dispersions. The vibrational

modes for different carbon nanotubes are calculated in several reports [21], [24 .

Results are also available for calculated and measured Raman- and Infrared-active

modes [22], [23]. For considering the electron-phonon effects in the transport

9
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Figure 2.1: Plionon spectrum for gTaphene. The a and /? dependence of the highly

symmetrical points along all four branches are also given.

properties of an armchair SWNT one needs to incorporate the different modes

and their polarizations in the expressions for the transport properties. It is not

easy to do that with the Born-yon Karman method. Here a model based on only

two parameters is proposed, which enables one to obtain not only the phonon

dispersions, but the polarization vectors as .well. The two parameters are fitted to

the well known spectrum for a layer of graphite. Notice that the proposed.model

describes only four of the branches of the phonon spectrum. They are denoted as

LA, SH, LO and SO which correspond to in-plane vibrations only. The notation

is taken from [5 . '

We assume that there are two types of forces between the atoms. One of them

is a central force which depends only on the distance between two neighboring

atoms. The potential which describes this force is given by

'^n') ■ fnn' ^ (2.1)
n

“ nn'
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/ are the displacements of the atoms from their equilibrium positions,

Tn^n' is the unit vector between those two atoms, and a is a constant which char

acterizes the central force.

The second type force is due to the bond-bending between the atoms. The

potential is a three-body potential and was proposed in ref. [25] for obtaining the

phonon spectrum for silicon. The model is described by

where un,n

|]^(cos Bijk-cos Oof,
ijk

V = (2.2)

where Oijk is the angle-formed between the i — j bond and the i — k bond. Thus,

this potential is a three-body potential, because three neighboring atoms are in

volved. 6o is the equilibrium angle and for the hexagonal lattice is 120°. /? is a

characteristic constant for this type of force.

Thus, two parameters are introduced with this model. They will be detemined

from the known phonon spectrum for graphene.

From the graphite structure, the angle between two closest bonds is obtained

to be

+ (wt - Wj)] • [r.-ifc-h (ui - Ufc)'
cos uijk — - , _ ;; , , •

Tij -|- yUi Uj) Tik -f- [Ui Uk)

Since one is considering small displacements from equilibrium, the above expres

sion can be expanded for small u

form

(2.3

After one does that, the result takes the

)

cos Bijk =

The constant — | i® canceled by cos^o = cos 120°  = — |. The microscopic equa
tions for the normal modes are in the form

(2.4)

-MuFUy^s- (2.5)nsn's' —

n's'

Here R is the combined force due to the two potentials from eqn.(2.1) and

eqn.(2.2). A nontrivial solution of these four equations exists if \M{Q)—MijR{Q)I\ =
nsn's'
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0, where M{Q) is the dynamical matrix which is Hermitian and I is the unit ma

trix.

Thus, the matrix which needs to be diagonalized in order to obtain the normal

modes is of the form

Cu-X^ F

F* U-X2 C

A

B
(2.6)

A* C* u-Xx

C* B* F  U-X2

with elements

MuF,
3a 45/3 9^

u

cos Qya^
2 8 8

ZI5 Q^ay/S Q3a 45/3 3/3

2^8
3^/3^.. o
—-—2(sin QyC — 2e
8

■Qxo^

cos
8

—t

ayX2 QyU -f —

_.2xa^ .
2  Sin

COS cos
2  ’2

QyO1:1F )
2  ̂

A e ae

av^ 9V3/3
~  ̂ 2

-gjax/? ,3a 9j3 QyO^(ye ^ +(y+ y)cos-^),

fiaS . Qya
^ sm—^

2  ’

e

c

B

where a = y/Sac-c- The distance between two carbon atoms is ac-c = 1-42 A.
The goal is to solve for the normal modes for different symmetry points in the

Brillouin zone of graphite since the fourth-order equation which arises from the

above matrix cannot be solved analytically in general. After one obtains simplified
expressions for the modes at different symmetry points, one compares with the
known phonon specrtum for graphite (Fig.(2.1)) in order to find the best numbers
for the model parameters a and /3.

Simple results can be found if we look at the F,  K and M points in the Brillouin

12



zone:

(2.7)0,r,i,2

27/3
Mul--r (2.8)3a + —.,3,4

Mu)k,i

Mu}K,2

(2.9)3a,

27/9
(2.10)

2

3a 27/9

2  8

o  3/9
3q + y.
2a,

(2.11)MuJk,3A

MulM (2.12)

(2.13)

(2.14)

(2.15)

,1

Mul

MJi

M

M

,2

27/9
a +,3 2  ’

MujjiAM 6P.,4

Obviously, there are more constraints here than parameters. But, nevertheless, all

the characteristic features of the phonon spectrum for graphene are obtained. At

the F-point the two lower modes start at zero frequency and the higher modes start

from the same nonzero value. At the /F-point two of the modes are degenerate

- the longitudinal optical and the longitudinal acoustic modes have a common

frequency (Fig.2.1).

To find the best fit for the parameters a and /9 one has to look at the problem

of interest. Here we are interested in the longitudinal acoustic branch. A good

approximation of the LA branch can be obtained by choosing a = 8.98 N/m'^ and

^ = 0.4 N/rn?. The graphene spectrum for these values is presented in Fig.2.2.

It is seen from the graph that the lower branches are described fairly well while

the upper branches are shifted upward although they retain the general features

of the graphene spectrum as is shown in Fig.2.1

To describe the longitudinal optical phonons one can take for a = 7.27 Nlvn?

and ̂  = 0.05 N/m'^. It is interesting to see that one of the other two branches.
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Figure 2.2: Phonon spectrum for graphene with a = 8.98N/m^ and /3 = OAN/m^

which is a mixture between longitudinal and transverse modes, is characterised

by the /? parameter only - a good fit is /? = 0.83 Njrn?'. The other one depends

only on a - choose for example a =8.0 Njm}.

Therefore, depending on which part of the phonon spectrum one is interested

in one can choose the appropriate values for the constants a and /?.

2.2 Phonon spectrum for a (10,10) SWNT

The motion of the lattice is discussed by introducing two parameters for the

central force potential and for the bond-bending potential. It is believed that this

model would give good results when applied to the calculation of real transport

properties such as electron lifetime and electrical conductivity.

To obtain the phonon dispersion relations and the polarization vectors for a

SWNT we explore the connection between the structure of the tube and the carbon

sheet and also we take into account that the tube is essentially a one-dimensional
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M Lt

Figure 2.3: Brillouin zone for a SWNT.

system. The translational symmetry of the armchair SWNT persists along the

tube axis, but does not longer exist around the circumference. The phonon wave

vector is discrete in this direction and just like in the case for electrons takes

discrete values

m 2tc
Q.= (2.16)

N^a

where iV = 10 and m = 0,..., N —1. Thus, the 4x4 matrix for graphene can be

turned into a matrix for the (10,10) tube by substitution the above condition in

eqn.(2.5) and by keeping Qy = Q continuous (for more details - see Chapters (3)

and (4)).

The discrete set of allowed values for Qx implies that the Brillouin zone for

graphene will be sliced N times - Fig.2.3. Thus, one obtains a set of phonon

branches for each m. The calculated spectra for different types of tubes using this

zone-folding technique can be found in [26 .

For this problem we are interested in transport properties where the acoustic

modes are important. This means that only the modes and the polarization

15



vectors around the F-point need to be determined. Results for m = 0 and m = 1

are given on Fig.2.4. a and P have the same values as for graphene.

We see that the general properties for the acoustic and optical modes are

preserved with this method. For longitudinal acoustic modes the ions oscillate in

phase along the tube axis and for the longitudinal optical modes they are out of

phase. The phonon frequency for the longitudinal branch changes linearly with

respect to k while the optical oj stays a constant. One is able to determine the

velocity of sound, s, also. For m = 0 we obtain that Sid = 3.26 + 10^cmis while

for graphene S2D = 7.5 * lO^cm/s.

2.3 Acoustic phonons for graphene and SWNT

Here we discuss the equations for the phonons in graphene and the (10,10) SWNT.

It is evident from the form of the matrix elements for the electron- phonon inter

action that the quantity (77^ — 775) need to be determined,

dynamical matrix are determined for small wave vectors;

The terms from the

3a 27p

2  4

3a 27P

2^4
~YQ/^QxQy
3a 27P

-

+

V, (2.17)

X2 (2.18)

F (2.19)

 *Q^o^(|- ̂/?),

2 ̂ 2 4^^’
3a , 27p x/3 a 9 ..

4-- ̂̂ -“-2-^2 -4^)-

2 4

V3
-iQ.

2

A (2.20)

C (2.21)

B (2.22)

Now by adding and subtracting the microscopic equations, they can be written

in such a way that a solution for {A - Bx^y) in terms of [A + B^r^y) is found.x,y

16
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Figure 2.4: Phonon Spectra of a (10,10) SWNT for a) m=0; and b) in=l
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we denote the polarization vectors f/A and 775.By Ax,y and Bx,y

Mu\A, + B,) = -QyDr{A, + B,) + iQyaDi{A,-B,)

+ QxQy^ Dr{Ay + By) — iQyUDi^Ay “ By),

Muj\A,-B,) = -iQ,aDi{A, + B,) + {G-QyDr){A,-B,)

+ iQyaDi{Ay + By) + QxQy(l'^Dr{Ay — By),

Mu'^{AyABy) = QxQyO^Dt{Ax A Bx) — iQydDi^Ax — Bx)

- QyDr{AyA By)-iQxaDi{Ay-By),

Muj^^Ay — By) = iQyaDii^Ax + Bx) + QxQyCt'^Dr{Ax  — Bx)

- iQxaDi{Ay + By) + {G-QyDr)iAy-By). (2.26)

(2.23)

(2.24)

(2.25)

The following definitions are made;

4ft
16

Dr

= 3a+|/3..
A

G

The acoustic modes are the ones in eqns.(2.23,2.25) and the optical modes are

those in eqns. (2.24,2.26). We see that they are coupled; although the acoustic

modes are of interest for us, we have to account for the optical modes also. This

is so, because in the matrix elements for the electron-phonon coupling both po

larizations enter the formulas.

Now only the terms with first order wave vector are kept in the expressions for

the optical modes. Thus, we are able to write

’12 (<» + |/3)
.V3(a-|ft
12 (a + |/3)

Q(Ar - A) t^{Ax + A) ~ Qy^{Ay + A)]> (2.27)

(Ay - By) QxCl{Ay -f- By) -t- Qya[Ax -{- .Bx)]. (2.28)
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If one uses our fitted values for the force constants one can estimate that the factor

p _ a-9/2/3
^  a+9/2/3

The above derivations are for a two-dimensional layer of graphite. From here

it is easy to derive the optical modes for a SWNT. Set = 0 and keep Qy = Q

continuous. Then the expressions become

0.67.

.V3
(2.29)= -i^RQa{Ay + By),

= -i^RQa(A, + B.). (2.30)

Therefore, the conclusion is that in further calculations the optical modes cannot

be neglected because they couple to the acoustic ones according to the above

results.
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Chapter 3

Graphene

General considerations3.1

Here we discuss a single plane of graphite which is called graphene. The carbon

atoms are arranged as in Fig.3.1. As it was said earlier the nearest neighbors are

separated by uq = 1.42 A. Carbon has four valence electrons. Three of them are

tightly (T-bonded with neighboring atoms in the layer. The remaining electron

goes into a p-state oriented perpendicular to the plane and is analogous to the tt

state of a diatomic molecule. The three electrons involved in co-planar bonds will

not play a significant role in the transport properties of the graphene. Therefore,

the atom will be treated as having one conduction electron which is considered to

be in the 2pz state.

Because of the small overlap of the 7r-wave functions in graphite their levels

split in the solid much less than the cr-bands. The bonding and antibonding

bands overlap somewhat, so that the two atoms in the unit cell do not fill the

bonding band completely. It turns out that there is no band gap between the

empty and full states, but there are only very few states near the top of the

occupied region. Because of this, graphite is called a semimetal.

TT-
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Figure 3.1: Structure of graphene

The unit cell for a graphite sheet is of hexagonal form with two atoms per unit

cell which we call A and B atoms. The convention which we will follow is that

any point in the sheet of hexagons can be mapped by the two fundamental lattice

displacement vectors ui and a2 as shown in Fig.3.1. The magnitude of the vectors

is a = Go X \/3 = 2.46 A. Thus, the first Brillouin zone (BZ) is of hexagonal form
- Fig.3.2. The sides of the hexagon are at a distance from the center. F, M

and K are some of the high symmetry points which are also shown on Fig.3.2.

Tight-binding band structure3.2

In developing the method we assume that around each lattice point the full pe

riodic crystal Hamiltonian can be approximated by Hat of a single atom situated

at this lattice point. We also assume that the electron levels of the atomic Hamil

tonian are well localized, which is true for the carbon orbitals in graphene. This

means that the tight-binding approximation (TBA) is a very reasonable approach
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Figure 3.2: Brillouin zone of two-dimensional graphite

in our case [27].

The wave functions are chosen to satisfy the Bloch condition, but at the same

time they reflect the atomic character of the levels. For graphene they are of the

form

f{r-Rn-)l (3.1)• enn

nn^

where n, n' = A, B for the two different atoms in the unit cell. Rn and Rn' are the

positions of the atoms A and B. A is a constant which will be determined later.

The function /(r) which is centered at A or 5 atoms describes the atomic nature

of the electronic states - in this case it is a orbital.

To proceed further with the problem we need to evaluate the constant A in

the wave functions and to obtain an energy dispersion relation. We do that by

solving the equation

(3.2)
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which could be written as

(3.3)Hnn + ̂nn'Hnn' — ES-,

Hn'n d" ̂nn'Efi Xnn'n'n' (3.4)ES.

Here S is the normalization for the single electron orbital and

' = J dhf (f - Rr,yHf if-R,.). (3.5)H,nn

Now keeping only nearest neighbor overlap integrals (the electron states are well

localized) we obtain for the energy

Hnn' . (3.6)E = ±
S

and for the constant

HL'
Xnn' — i (3.7)

\Hnn'\'
Using the actual structure for graphene and keeping only nearest neighbors the

expressions for the energy and the constant A are found to be

(1 + 4co£^^cos
E = ±Jo (3.8)

5

Xab ± (3.9)
(l + 4cos^x ^ + 4:Cos^^y/^a

COS

where Jo = 2.5 eV [28] is the overlap integral between nearest neighbors. It

is already shown [28], [29] that there are two symmetric bands that cross the

Fermi surface at the K points in the BZ for graphene. It also could be derived

that around the JF-points for small wave vectors the energy dispersion relation is

linear with respect to the electron wave vector.
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Modulated hopping in terms of the tight-binding ap

proximation

3.3

We are interested in electron-phonon coupling in graphene. In the tight-binding

approximation one contribution to the electron-phonon interaction comes from

the modulation of the tight-binding matrix elements arising from the change in

the overlap between orbitals centered on different atoms and from the Coulomb

potential (which is the case for normal metals). Thus, the tight-binding approach

is the limit of total screening.

Further we derive a formula for the matrix elements for modulated hopping of

the electron-phonon coupling. It is assumed that when the lattice is deformed by

displacing an atom from its equilibrium position the orbitals follow the displaced

atoms without appreciable deformation. Thus, the position of the ion is Ra,b =

relation of the well localized electronic states is still valid, we have

where the displacements ua,b are small. Since the orthogonality

{c+,Cn/} = 8,T (3.10)in'*-

The Hamiltonian for the interaction for a crystal with two atoms per unit cell is

given by [29^

= Y.j dV^+y(f-fj?°+u,
nn

- Rl, - Un')i>.Hit (3.11)ni

Now the potential for the rigid ions is expanded around the equilibrium positions

as follows

V{r + B;, - a„.) = Fo + (5.- 5„.) n vy(f + ̂ (3.12)

We substitute this into the expression for Hint and drop the constant term - Vq

- S„.) n I VV(f + - ̂,)V> =
nn'

Hint = ^Ti') n Jnn'i (3.13)
nn'
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where Jnn' is the overlap integral. Note that the potential of the electron-phonon

interaction is represented by a sum of atomic potentials centered around each ion.

The next step is to expand the displacements Un in terms of the phonon creation

and annihilation operators bq and btq [30

n (&Q + btQ). (3.14)

iOQ is the frequency of the phonons and fjn is the polarization vector of the ion.

The electron field operators could be written in terms of the creation and

annihilation operators for the electrons

(3.15)
k

where is the wave function from eqn.(3.1) and A is the band index. For

graphite the part of the overlap integral Jnn> which concerns the r integration

usually can be taken to depend only on the distance between two neighboring

atoms [34

(S?, - Sj.)

where and Jo are known constants. We use = 2.2 A“^, the number which is

cited in ref. [34'.

Now we take eqns. (3.14-3.16) and substitute them in the expression for the

Hamiltonian - eqn.(3.13)

(3.16)J. 9oJo,nn

[Rl-RD^  (f, Jk.Rl _ ̂
2NMu,q

ik.Rl,
"'Hit )•nt

K - R°'ij,nn' Ji%,Q

X  £+<5-

X

(3.17)

This is a general formula for the modulated hopping electron-phonon interaction

of a solid with two atoms per unit cell. For graphene all the vectors in the above
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formulas are two dimensional. Now one can evaluate the matrix elements for the

electron-phonon coupling. The constants A are also present. They control the

processes between different energy bands.

3.4 Deformation potential and optical phonon coupling

If we look at the Fermi surface [28] of the two-dimensional graphite we see that

it has small circles around the K points in the Brillouin zone. Because of the

symmetry of the system it is only necessary to consider one of them which we

choose to be

27r 27r

The electronic states of interest are in the vicinity of these points. The excited

ko = { )■ (3.18)

states are at the band minimum and they are located in a small wave vector space.

One can also see that the K point is situated at the Brillouin zone edge. When
we are concerned with transitions at the Brillouin zone edge the deformation

potential approximation comes into play. The main idea is that only the long
wave limit Q —*• 0 in the first Brillouin zone is needed and only acoustic phonons

are important. Also for the phonon energy we take ujq = sQ with s being the
sound velocity in the layer. This is the deformation potential approximation.
This approach was invented to describe simple metallic systems [31]. Now we
can look how this method can be applied to graphene. Since we are interested
what happens around the A^-point we make an expansion around these points -
k ^ kQ-\-k where is a small vector. The energy has a linear dispersion

E = &], (3.19)

where vp = Jq^ is the Fermi velocity. The expression for the constants A
becomes

6  3

A^b = ±—~—{ky - ik:E) = ±e
k

5 (3.20)
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where the phase factor <f) = tan"^ ̂  is introduced. The expression from eqn.(3.17)
can be written in a more convenient form. For processes between different bands

we have

= E2\ 2NMu;q
AB

,27r - - Q-Rab
J}A n ^Rab — ko n Rab 2—

2

+ rjB n VRba + ̂0 n ^ba + - "'2^^'
(f> + <f>\ -Q-^ba
—)e’ ̂ ],

X

+ (3.21)

(3.22)Mrrkk' -Mr
fcfcMi’,22

h
qoJQt 2= E2Mrrkk',\2 \| 2NM0JQ

X  [fiA n ^Rab Y - ko n Rab ~ ^

—)e =

+ fjB n ^Rba Y 2
(f> + (j)\ .-Q-^ba
—)<= » 1.

AB

Q n R

+

Q n R

+

ab

ba

(3.23)

(3.24)Mrr.A: it',21

where Rab = Ra — Rb S'lid- VRab = By Mn we mean the matrix

element for transitions in the conduction band, M22 stands for transitions in the

valence band and M12 and M21 are for transitions between the two. Further

manipulations are possible with the above formulas, namely consider the limit for

small Q and expand around the A"-point. Then one notices that two terms are

present - one with {7}a + Vb) which is responsible for the acoustic excitations and

one with (77^ — ??b) which is responsible for the optical excitations. Summing over

27



nearest neighbors and using the results from Ch.2 that both types of modes are

coupled the final formulas for the matrix elements are obtained to be

n  T V , \/r\= -iqQjQXQ — [{r]Ax + VBx){Qxa cos —-—

+  {VAy+VBy){Qxasm^'^^ -QyU COS
\/3

Mi2 = —iqoJoXQ — [{T]Ax + VBx){Qx

+  ivAy+VBy){Qxa cos

(j} + (f>'

2  ̂+ Qj/flsinM-11

^)1(1 - -R).
^— Qya cos

(3.25)

4> + <i>'.  <!> + <!>'
asm

(3.26)+ Qj/csin

Two conclusions can be made. First, the matrix elements for both transitions -

intraband and interband - are reduced by a factor (1 — i?) which depends on the

parameters chosen to describe the oscillations of the ions. Second, it is evident that

not only the longitudinal modes are important, but also the transverse modes give

a similar contribution. Both types of polarizations are present in Mu and M12.

Thus, there is a difference between this tight-binding system and a simple metal,

in which only acoustic phonons are expected to matter. The formulas (3.25) and

(3.26) disagree with the ones found in ref. [34] by a factor (1 — i?) which reduces

the matrix elements. Also the dependance of \Mq\^ on the phonon wave vector Q

is clearly displayed in the present calculation. Thus, we believe we have brought

some enlightenment to the matter and in this way further calculations that rely

on the matrix elements of the electron-phonon interaction can be done correctly.

The matrix elements can also be evaluated for the range of the optical phonons.

In this case one assumes that the phonon energy ujq is constant. An optical phonon

result when the neighboring atoms vibrate out of phase. This polarizes the system

and is a cause for the presence of an electric field, which scatters the electrons.

The coupling to optical phonons can be very large. To estimate it in this case one

uses eqns.(3.21-3.24) with constant frequency and (^>1 -I-tJb) expressed in terms of

{fjA - fiB).
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3.5 Electron-phonon and phonon-modulated electron-electron

interactions

The model which we are discussing is a neutral tight-binding systems that has

two atoms per unit cell. For graphite the ion cores have s-wave symmetry and the

electrons that are responsible for the conduction process have pz-vf&ve symmetry.

Since this is a neutral system the average number of conduction carriers on each

side is equal to the valence of the ions. We also assume that the rigid ion approx

imation is valid and the electrons can hop to the neighboring sites. The starting

Hamiltonian for such a system is written as

H Ho -|- Hint, (3.27)

(3.28)-70 T,{4+s^j + 4+s^j) +
jS Q

r (Pri(fr2

Ho

- ̂) - pe{ri - Rn)ctCn]

Pi{r2 - Rn>) - Pe{r2 - Rn')cX,Cn'],

Hitnt

(3.29)X

where 70 = Jq = 2.5 eV and pi and pe are the ion and electron charge densities. In

the case of graphite where there are two atoms per unit cell the electron operators

will be called A and B corresponding to the particular ions. Again Rn

the locations of the positive ions. We want to express Hint in terms of collective

coordinates. Thus, the first thing that needs to be done is to diagonalize Ho- In

TBA the electron operators are expanded in the form

Therefore, the form for Ho is just the usual hopping Hamiltonian which we already

discussed in the previous sections.

('n,m I are,n

(3.30)Cn

= loY:[9mpk+9^{k)BfAj^,,Ho (3.31)
k
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g{k) = (3.32)

g(k) = |s(4)|e‘»®.

8 is the connecting vector between nearest neighbors. For the case of graphene

there are three such vectors - = (:^,0), 62 = f) ^3 ~ (“2^’
- Fig.3.1. The expression for the phase factor 0(k) was already derived when the

band index A(^) was investigated. Around the point kp where the energy bands

cross the Fermi level it was found that 9{k) = (—^ — tan“^ |=-) where k is small.
If the phase factor is included in the Bj^ = , Hq can be diagonalized with

the transformation

(3.33)

-!)

1

+ h) (3.34)

1

% =

n

One of the terms that is produced from the Hamiltonian (eqn.(3.29)) is the mod

ulated hopping that is due to the overlap between two nearest neighboring atoms.

In terms of a and /? operators

(3.35)

(3.36)
V2

k,Q

But we already have derived this formula in the previous section using different

formalism. The result for Mu and M12 is the same as before. The next step is to

take the Fourier transformation of the Coulomb potential

Hmod

+ (3.37)

(3.38)
-r2

9

where Vq = A-Ke^jq^. Now let the atomic positions be where jR° is

the equilibrium position and is a small displacement. We note that in collective
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coordinates the number operator is

4^ = z + ̂ Ee«< (3.39)

Take the Fourier transformation of the electron and ion charge densities. The

ions in graphene have 2s-wave symmetry. According to [35] the wave function

is given by t/>2s = |ci|re The normalization condition gives that [cj-p =

Therefore, using |cjp the Fourier transform of the ion charge density can be easily

solved

a]-q^Pi{q) = J d^rpi{r)e^^-^ 6 (3.40)= a-(a?+ 92)4-

At the limit of small q the above formula yields

8

Pi{q) = (3.41)
(a? + ̂2)4 •

For the conduction electrons in graphite we take that ̂ 2p = |ce|r-ne“^ - the free

electrons are in 2^2 atomic orbitals [35]. To proceed further adopt a coordinate

system with z-axis along the 9-vector;

q.n '0,

= cos QcosOq + sin 0 sin 6q cos (f>.r.n

Thus, the expression for Pe{q) becomes

Cepy r‘^dr J d{cos9)

Jo
cos

Pe{q) =

6 cos Oo + sin 6 sin cos ̂]^. (3.42)X

One performs the integrations over (f> and cos 9 first.

peiq) = 27r|cepy “'’■[(3cos^0o - 1)
1  . 2 2  1— sin qr) + sin^ 9q— sin qr]. (3.43)

qr
X  ( sin qr + cos qr —q2r2 ^3^3qr
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Now one does the integrals over r and the result is

167r|cepae
(3 cos^ Oq — l){cc\ — 5^^) + 3 sin^ Oo{al — q'^) . (3.44)Pe{q) =

{q^ +

^0 is the angle between q and the normal vector to the graphene plane n. The

normalization of the used 2p2-wave functions determines the costant |cep. One

finds |cep = Q;®/(327r) and the expression for the electron density turns out to be

pe{q) = (3.45)

Note that the angle between q and the normal vector to the graphite plane is

taken to be = 90°.

All the preliminary steps in investigating the Hamiltonian from eqn.(3.29) are

done. One notices that it is possible to obtain several terms in this way (we

already discussed the modulated hopping). One of them is the electron-phonon

interaction which is written as

Q  ̂(^‘^QPT{Q)Pe{Q)Q
Q

H,e-p

(3.46)

n

=
(3.47)2NMu:^'

Aq- = aQ- + a+^- (3.48)

(3.49)Pt{Q) = Pi{Q)-\-Zp,{Q).

It is the usual form of the linear electron-phonon coupling. The matrix element

for transitions within the same band is the term with summation of the polar

ization vectors of the ions. The one with the difference is the matrix element for

transitions between bands. The above formulas are investigated for longitudinal

phonons - ffA^B = 5?q- For graphene only oscillations within the plane are consid-
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ered. In the limit of small wave vector Q the expressions for the ion and electron

densities can be expanded and retaining only the largest terms we find that

D = VQPT{Q)pe{Q) = (3.50)

Therefore, the matrix elements for the electron-phonon interaction are of the

form of a deformation potential with a deformation constant given in the above

expression. For transitions in the same band and between bands we find

6{k-Q)-e{k)
Mu = 2XqDQ_lcos{ ), (3.51)

2

9{k-Q)-e{k)
M\2 — 2XqDQ )■ (3.52)

2

Another type of interaction which is obtained from the original form of the Hamil
tonian - eqn.(3.29) - is the direct electron-electron interaction

1
He-e (3.53)

PA{q) =

PB{-q) =

The integral over qz can be done and we obtain

(3.54)

(3.55)

1
M,

•Jll +
6 (2n-3)!! 2n

a

- E (3.56)(2n - 2)!! {ql + a^)n+i/2n=l

Looking at the limit for small q allows the above summation to be truncated.
Thus, one takes

1  1= 2Te^l—
q±

Processes between bands and in the same band are possible with the same matrix
element.

(3.57)
or
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The last term which we will consider here is a new contribution to the electron-

phonon interaction. This is the phonon modulated electron-electron coupling

+ Q)Pn'{-^A0.
g,Q

(3.58)He—ph—m —

Notice that the above expression is written for rjA^B = Vq- Again transitions are

possible between different bands. To find what the matrix elements really are for

the processes one can perform the summation over  n and n'. One finds that there

are four possible combinations

13 Pn{q + Q)pn'{-T) = PA{q + Q)pA{-^ +pA{q+Q)pB{-q}

+ PB{q + Q)pa{-^ + PB{q + Q)pb{-^- (3.59)

nn'=A,B

The next thing is to express pA and /?b in terms of the a and ̂  operators that

diagonalize Hq. In this way we are able to see that in general processes are pos

sible between any combination of four bands. To determine the matrix elements

correctly one needs to put all phase factors which depend on the physical structure

of the solid. The complete expression for Hg-ph-m for the different transitions is

given below.

Ai
^^<3(9 n 'ris)v,p\(<l)A^He—ph—m

kk'gQ

(4k+
+ + atk+q+Q^k'-q^^k^P +X

q+Q k'-q

+  o s P2
+ 4

-  (4

+

k+

k+

cos —

2

q+Q^P-q°^kl^P + k+q+Q^P-/^k^P "*■ 4-k+q+Q^k'-^k°^P
0 0 . ^2cosy Sin+

aq+Q P-q

(4k+q+Q^P-^>^°‘P k+
+ + ^t+q+Q^P-q^k^P

q+Q k'-q

(4

+

k+q+Q^P-^k^P k+q

02
+ aj cos —

2

+Q^P-g^k°‘P + l^k+q+Q^P-q^^k^P
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6i . 62
sin —

2+
(3.60)sin Y '’

where

= e{k + q + Q)-e{k)

02 = e{k'- ̂  - d{k').

One notes that the matrix elements in general could be written as a part that is

common to all processes and a part that depends on the phase factors. The term

that appears in all transitions we denote as

\M,,q — 4:Mg{q- fi^)X^,

Mg = Vgpliq).

(3.61)

(3.62)

Having the formula for the matrix elements one is able to proceed with further

calculations.

There have been reports in the literature [32], [33] about electron-electron

interaction assisted or mediated by phonons. They investigate a process in which

the interaction between two electrons is done by exchanging a phonon. Here

the electrons interact through a Coulomb potential, and the distance between the

electrons is modulated by the ion vibrations in the solid, which is a different mech

anism. This is a new contribution to the ordinary electron-phonon interaction and

it is derived for graphite, although the formalism is set for any tight-binding sys

tem. Only different phase factors will arise which are different for different solids.

Later we show that it can give large contribution to the transport properties

compared to the contribution from the modulated hopping.
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Chapter 4

Synthesis, Structure and

Applications of Single Wall

Carbon Nanotubes

4.1 Synthesis of SWNT

Carbon nanotubes are recently discovered nanoscale particles obtained by wrap

ping layers of graphite into a cylinder. These are a novel class of quasi one

dimensional materials which olfer the possibility for new physics and new technol

ogy [36]. Although they are built only with carbon atoms, potentially they can
be grown in a variety of shapes and sizes. The transport properties are predicted

to depend on their geometry.

There are two large groups of carbon nanotubes - multiwall (MWNT) and

single wall (SWNT) tubes. As the names show the MWNT are formed by more

than one concentric graphite sheet rolled into cylinders with an empty core, and

the SWNT are made with only one such a sheet. Most of the observations have

been on multiwall carbon nanotubes. The earliest experiments are based on high
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resolution transmission electron microscopy on a material produced in a carbon

arc. It was shown that there were ̂ m-long tubes with cross sections of several

coaxial tubes and a hollow core. Scanning tunneling microscopy and atomic force

microscopy have also been used to identify the topological structure of the new

materials [9], [10].

A little later SWNTs were also observed. Just like the MWNT they tend

to align themselves parallel-like and except for occasional branching they form

close-pack bundels or “ropes”. The diameter of the rope is maintained constant

over the entire length. SWNTs are very flexible. They can bend into curvatures

with radii as small as 20 nm. They also have very high tensile strength. One of

the largest reported nanotubes is 700 nm long and it has 0.9 nm diameter. The

smallest one reported has a diameter only 7 A. On Fig.4.1 two types of single

wall carbon nanotubes are shown.

Since the major interest of this work is the theoretical modeling of the SWNT,

we describe only the methods of production of these tubes. They can be produced

by the method of carbon arc [2]. Typical synthesis conditions employ voltage of

about 20-25 V operating in an inert gas (He) atmosphere with pressure in the

range 300-500 Torr. There are two carbon rods (6-7 mm in diameter) which serve

the role of a cathode and anode. A hole of about  6 mm is made in the anode.

The hole is fllled with a mixture of carbon powder and a transition metal (Ni, Co

or Fe). The 6 mm diameter cathode rod is pure carbon. A dc current of 95-115

A is passed through the junction. After the arc between the rods is made, they

are kept at a distance of 1 mm. The deposit of SWNT starts forming at a rate

of about 1 mm/min on the anode while the cathode is consumed. The estimated

temperature is 2500-3000 C. The tubes form only where the current flows.

Another technique which is used for producing SWNT is the laser vaporization

technique [11]. In contrast to the arc method, this method allows for nanotube

production in higher yield and the SWNT are of better quality. The essence of
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Figure 4.1: Example of two types of SWNT from the many possible tubes

the method is that a scanning laser beam is focused to a 6-7 mm in diameter spot

in a metal-graphite target. The target is supported in a tube filled with argon

atmosphere at a pressure of 500 Torr and heated at a high temperature, thus,

the metal-graphite mixture is vaporized and SWNTs are produced. After that

the nanotubes are swept by the flowing argon gas and they are deposited on a

water-cooled copper collector.

The role of the catalyst for the formation of the tubes is to prevent the carbon

pentagons from closing at the growing edge which would be the reason for stopping

of the process. To be able to do that the absorption energy of the catalytic particle

has to be comparable in strength with the strengths of the carbon bonds, so that

the catalitic particle will be held to the carbon structure. In the absence of the

catalyst at the tube edge, defects can

closure of the growing process will occur.

The produced tubes have a typical diameter of only 14 A, but can bundle up

to form ropes that are as long as tenths of a milimeter. It is not known at present

no longer be annealed efficiently, thus a
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how much metal catalyst is remained in the tube after the growing is over. It

is accepted that large quantities of single wall (10,10) tubes (the meaning of the

notation will be explained later) are obtained by these methods, ah initio studies

also support this conclusion. It is shown in [12] that an armchair (10,10) tube is

preferred over a zigzag or any other tube under these experimental conditions.

Therefore, there is a belief that the present methods of catalytic synthesis of

single wall tubes produces armchair (which is metallic) tubes with a diameter of

14 A. Thus, our theoretical investigations will be developed for a one dimensional

systems and applied to (10,10) armchair SWNT.

4.2 Applications

Defect-free nanotubes are expected to have remarkable mechanical, as well as

electronic and magnetic properties that are in principle tunable by varying the

diameter and chirality of the tube. The significance of these nanostructures as

electronic materials is the demonstration of quasi-one dimensional wires with a

large length-to-diameter ratio, thus, a new field is opening in studying one dimen

sional physics.

The all-carbon cylindrical molecules (the carbon nanotubes) have proven to

have high strength and light weight [14]. This is  a very desirable quality for

making microscopic devices. Varying the structure along a tube causes varying of

the electronic properties. There are some new computer simmulations about how

the structure of the carbon nanotube is changed if a defect is introduced on the

wall [13]. This could be used to make the equivalent of semiconductor junctions

which is a basic element of digital electronics.

Devices could be made also as tunnel junctions, or transistors in different cir

cuits, or capacitors. If we have defect-free single wall nanotubes it means that the

resulting devices would be very stable to change in the temperature, because the
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tubes do not require any doping by impurities, as the conventional semiconduc

tors do. Such transistors and capacitors would have very high intrinsic mobility

as well.

Some new studies about chirality-changing in the carbon nanotube due to

pentagon-heptagon defects provide a wide range of device possibilities for doped

or undoped SWNT [15]. One could arrange the defects along a tube and the

electronic structure could be modulated; by putting a defect on the wall of the tube

a hetero junction (metal/semiconductor or semi conductor/semi conductor) could

be realized. If a doping of the semiconductor side of the metal/semiconductor

interface is done then a device similar to a Schottky barrier is available. This is

unique because just by removing of a carbon atom  a sophisticated device is made.

Structure of an armchair and zigzag SWNT4.3

Since the calculations will be carried out for one of the highly symmetrical tubes,

here we summarize the notation and parameters which will be used later. We

start with a layer of graphite. The unit cell was shown in Fig.3.1 where Ci and 02

are the unit vectors.

Their length is a = y/Z x ac-c = 2.46 A. To describe a tube it is convenient

to specify a chiral vector

Ch — ncL\ -|- mcL2

which uniquely determines the shape of the tube. Here n and m are integers.

Thus, the tube is named as (n,m). The pair of integer numbers also completely

specifies the chiral angle 6 and the diameter d of the tube - Fig.4.2.

If a lattice point 0 is chosen to be the origin, then any other point can be

obtained by the pair of integers (n,m). By rolling the sheet so that this lattice

point coincides with the origin, a tube (n, m) is obtained. Therefore, the pair

(n, m) shows that the SWNT can be in almost any shape or size.

(4.1)
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Figure 4.2: An example for a chiral vector is given - Ch = 3ai + 2a2. Point M can be

mapped into point 0 by rolling the graphite sheet into a cylinder

The chiral angle 6 can be defined to be between the zigzag direction and the

vector Ch- There are two highly symmetrical cases. One of them is when n = m

and the (n, n) tube is called armchair and the other one is when m = 0, then the

(n, 0) tube is called zigzag. This is shown in Fig.4.3. For an armchair tube ̂  = |

and for a zigzag tube 9 = 0.

To express the dispersion relations for electrons and phonons in SWNT, it is

necessary to specify the unit cell and the basis vectors. For armchair and zigzag

tubes, it is convenient to choose a real space rectangular unit cell - Fig.4.4. The

area of each real space unit cell contains two hexagons or four carbon atoms. The

Brillouin zones are also shown. The corresponding unit cells in reciprocal space

has an area n times larger than the area of the corresponding primitive cell in

graphene. This large unit cell spans the circumference of the cylinder.

It is predicted by various calculations (from tight-binding approach to ab

initio) that all armchair tubes will exibit a metallic behavior. However, for the
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Figure 4.3: The tube axis for the two highly symmetrical cases - zigzag and armchair -

are shown.
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Figure 4.4: a - BriUouin zone for an armchair tube; b - BriUouin zone for a zigzag tube
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zigzag tubes only those with n divisible by 3 are metallic and the rest are semi

conducting [16]. Thus, this is a remarkable result - the geometry of these new

structures specifies their physical and electronic properties.
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Chapter 5

Electron-Phonon Interactions In

An Armchair SWNT

Tight-binding approach5.1

The length of a SWNT is much larger than its diameter. Experiments generally

show that the most often observed (10,10) armchair tubes have lengths of the

order of a millimeter and the diameter of an individual tube is approximately 14

A. Thus, this is essentially a quasi one-dimensional system [36

The whole formalism of describing the carbon nanoparticles was already de

veloped in Ch.3, where we discussed a two dimensional sheet of graphite. An

isolated graphene is a semimetal, with the Fermi energy located at a critical point

in the two-dimensional tt spectrum. For this system, which is closely related to

graphene, the Fermi surface is collapsed into one point; there are actually two

distinct Fermi points K and K' at where a is the length of the primitive

translational vector, but because of the symmetry of the system we consider only

one [38 .

The simplest possible method for calculating the effects of electron-phonon

■371.
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coupling is to utilize the tight-binding approximation for a graphite layer where

the curvature of the tube is neglected and boundary conditions around the circum

ference are applied - a very reasonable approximation for the (10,10) tube [39 .

The tube axis for (10,10) tube is along the y-axis on Fig.5.1. This SWNT has 10

hexagons around the circumference. The translational vectors in this coordinate

system are

_  , VSa a
~ ^ 2 ’2^’

^  .y/3a a«2 = (—>-2)-

Ul

Thus, we start with the wave functions for graphene given in eqn.(3.1). In the
circumferential directions only a finite amount of wave vectors are allowed. The

appropriate boundary conditions for an armchair tube are

m 27r

where m = 0,2,..., iV - 1. The ky = k wave vector which is along the tube axis is
kept continuous.

The wave functions become

k (5.1)

V. = x; [/, +

where /aj are the 2p. atomic orbitals centered at the two different atoms
unit cell.

The energy dispersion relations can also be obtained

(5.2)

in the

ka- + 4cos^:|]V2,
It is assumed that the overlap integral between nearest neighbors is the same
the one m graphene. The wave vector k is changing in the limits (-^, ̂
constants A which control the processes between different bands take the form

rmrE — ±Jo[l d- 4cos cos (5N

f). T

.3)

as

he

cosf)
^AB = ± (5.4)(1 + 4 cos ̂  cos ̂  -I- 4 cos2 ̂ ) 1/2 •
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Figure 5.1: x-axis is the zigzag tube axis; y-axis is the armchair tube axis

The resulting calculated energy bands for (10,10) tube are presented in Fig.5.2.

One sees that there are 20 conduction and 20 valence bands. Two of them

nondegenerate and they cross the Fermi level at points ±|j. The others are doubly

degenerate. This is a result common to all armchair tubes - there are always 2n

conduction bands and 2n valence bands and the two nondegenerate ones cross the

Fermi level. Thus, an armchair tube is expected to be a metal - only infinitesimal

excitations are needed to excite carriers into the conduction band.

are

The reason for that has a quantum mechanical nature and it is based on the

electronic structure of two dimensional graphite with TT bands degenerate at the

K points of the hexagonal Brillouin zone. The periodic boundary conditions for

the one dimensional tube permit only a finite number of wave vectors to exist

around the circumference and since at least one of them passes through the K

point for an armchair SWNT, it is expected to have a metallic behaviour.

Again we are interested in carrier excitations around the K points in the

Brillouin zone. The boundary condition for the discrete wave vector for these two
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Figure 5.2: Energy bands for an infinitely long (10,10) armchair carbon nanotube

bands reads

27r

y/da
The continuous wave vector, which is along the tube axis, can be expanded around

the crossing point. Thus, instead of k we substitute ko + k where 4 = and k

is small.

After the expansion around ko the energy dispersion relation for the two lowest

bands takes the form

(5.5)

E = ±VFk

where vp = Jo^^- As in graphene one obtains a linear k dependence in the
energy with the difference that k is a, one dimensional vector is renamed back

to k).

(5.6)5

The constants A are

:2rr

A1 = ±e--. (5.7),2

It is interesting to note that they do not depend on the wave vector which follows
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from the symmetry of the system.

We start by examining the modulated hopping of the electron-phonon inter

action in an armchair SWNT. This type of coupling plays an important role in

the transport processes of the tube. In fact, the electron-phonon coupling is the

deciding factor for the values of the transport properties for most metallic systems

at higher temperatures. The formalism was already developed for graphene. All

one needs to do is to convert the problem into a one dimensional one by applying

the appropriate boundary conditions [40]. The form of the Hamiltonian for the

interaction is the same as before

+ b-g).

The evaluation of the matrix elements are based on the matrix elements for

graphene, given in eqns.(3.21-3.24). A' and are the band indices. The summa

tions over nearest neighbors are done and the expressions simplify to

Mkk+Q,ll

(5.8)tnt —

= 250Jo-ATq[(77^2: - riBx){l + cos ̂  cos(^ + ̂))
4  0 4

I  /qV I ^+ vHVAy + VBy) Sm — COs(- -f —)],

.  /TT Qa

+ \/3(7?^i, - 77Bj;)cos^sin(|-f ̂ );.

Qa

4

(5.9)

MkkJrQ,\2 = SgoJoAfg [7(77^2; -f 77S2;) sin

(5.10)

Notice that the phase factor (j) does not exist here any more. The reason is the

quasi-one dimensionality of the system. By k we mean that =

in units and ky = k is the continuous variable. These are the exact expressions

for the electron-phonon coupling for the (10,10) SWNT.

2x is quantized
\/3o

Deformation potential approximation5.2

Further insight can be gained by looking at the deformation potential approx

imation. It was discussed for graphene. Here we do the same for SWNT. We
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expect to find many similarities between the two. The reason why we consider

the deformation potential approach is that the electronic states are around the

Brillouin zone edge near the A'-point. Taking the limit of a small wave vector k

around the K- point and a small phonon vector Q the matrix elements become

3  \/3= 2qoJoXQ[-{r)Aj; - rjBx) + {r]Ay + VBy)i-^Qo]^
3

Qa + l^ijlAy - VBy), n= 2qQjQXQ[{r}Ax + 'nBx)i
8

(5.11)M11

(5.12)M-12

As it was found in graphene, not only the longitudinal modes matter, but also

the optical phonons should be taken into account. This is done by using the

results from Ch.2. Thus, the final form for the matrix elements for the modulated

hopping is

^/3
= qQjQXQ—Qa{'qAy + VBy){'i- - A),

/3
Mu = qoJoXQ—Qa{r}Ax + ̂Bx)(l - A).

Due to the optical modes the matrix elements are reduced by A which depends on

the parameters a and /? - the constants which characterize the phonon spectrum

for the tube. Since (1 — A)

significant reduction of (1 — A)^

Both processes - interband and intraband - have a deformation type of poten

tial. Following the convention, it is useful to represent the Hamiltonian of the

interaction in the form

M- (5.13)11

(5.14)

0.33 then squaring the matrix element causes a

0.1.r\j

(5.15)
kQ

where D — ̂ qoJoa is the deformation potential constant and it is the same for
both types of processes.

The message from this calculation is that the geometrical structure of the

metallic armchair SWNT is manifested in the matrix elements controlling the
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electron-phonon interaction. We believe that the topology of the tube plays an

essential role in all transport processes. Thus, the gapless carrier excitations about

the critical points should be examined very carefully. As it was obtained for

graphene, not only the longitudinal modes are important, but also the transverse

modes are. We also have found that the transitions in the same band are controlled

by the longitudinal phonons and the processes between bands are controlled by

the transverse phonons.

Compare with the results from ref. [40]. It can be seen that both calculations

give similar results about the dependance on the phonon wave vector Q. The

major difference is that the matrix elements here are shown to be reduced by a

factor (1 — i?) because of the coupling between the acoustic and optical phonons.

This was not found in [40] and we consider the above results as improvement.

5.3 Electron-phonon and phonon-modulated electron-electron

interactions

Many similarities are expected between a SWNT and  a sheet of graphite. In the

chapter about graphene we looked beyond the traditional modulated hopping for

graphene. New terms arise to the electron-phonon interaction which could give

appreciable contributions. Later we will show that these effects can be important

in the transport properties of the carbon nanoparticles. Once again we expect the

symmetry of the system to play an essential role.

All the formulas developed previously for the two dimensional graphite layer

are expected to be valid here. We need only impose discrete boundary conditions

for our case and make the transformation from a two dimensional solid into a one

dimensional one.

One notices that the expressions for the electron charge density and ion charge

density are the same as for graphene.
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Consider the electron-phonon interaction. The Hamiltonian has the same form

as in eqn.(3.46) from Chapter about graphene. Now the phonon wave vector Q

is taken to be along the tube axis and only acoustic modes are of interest. The

deformation constant D is also the one derived for graphene. Thus, because of the

modulation of the bare Coulomb potential due to Pt{Q) and pe{Q) the electron-

phonon interaction is of deformation type.

The phase factor 9{k) is also involved in the expression for the matrix elements.

For a (10,10) SWNT it was already derived that it is a constant 6{k) = —2Trf3.

Therefore,

M---11 = —iXq^DQ

= ml)-

(5.16)

(5.17)

zy

An interesting result is obtained here - transitions between two different bands

to first order of the phonon wave vector are not allowed in the armchair tube.

In Ch.2 we have derived that the optical phonons are connected to the acoustic

phonons. The coefficients of proportionality contain Q. Thus, M

is another manifestation of the symmetry and one-dimensionality of the system.

Another thing that is noticed is that the matrix elements for intraband transitions

display a deformation type of approximation with  a deformation constant D as it

was found for graphene.

Another term which was obtained from the general Hamiltonian set for graphene

is the ordinary electron-electron interaction. We notice that the integration

can be done. Thus, the matrix elements for transition between any combina

tion of bands up to a phase factor take the form

d'^qL

Thisrsj
12

over

T^qz TT
M = / '^qPliq) = 2e^[lnI — Inz {2^y 2kp 2kp

6 (2n - 3)!! 2n
a

+ E (5.18)
{2n-2)\\(Ql + aY'n=2
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2eMn^. (5.19)M.9z
a

At small Qz the last expression is a reasonable approximation for the matrix ele

ment of the Coulomb interaction.

And the last term which was investigated for graphene is the phonon modulated

electron-electron coupling. This is actually the new contribution to the electron-

phonon interaction and comes from the modulation of the distance between two

electrons in the Coulomb potential due to the lattice vibrations. We obtain the

matrix elements by looking at eqn.(3.60) from Ch.3. One notices that for the tube

^1 = 0 and ̂ 2 = 0 because the phase factors are constants. Therefore, only the

first term in eqn.(3.60) survives and the matrix element up to a phase factor is

given by the expression

(5.20)

The different matrix elements corresponding to different electron-phonon coupling

processes are obtained. Thus, one is able to proceed further with investigation of

the effects following from these transitions on the characteristics of two dimen

sional graphite and a quasi-one dimensional (10,10) SWNT. The expressions for

the different terms in the original Hamiltonian - eqn.(3.29) - is rather general and

it can be applied to other tight-binding systems. The idea is that the effects of

several contributions with different origin are comparable for low dimensional sys

tems and the evaluation of the transport characteristics needs to be done carefully.

The geometry of a certain solid comes into play when one puts all the phase

factors. Also the ion and electron charge densities are different for different solids.

The differencies are not only in the constants ae,ai, \ce\ and |ci|, but also in the

type of wave symmetry of the ions and electrons.

If one wants to simplify the calculation further, one can neglect the modulation

terms in the expression for Mg, and take only the unscreened Coulomb potential
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in ID. For small wave vectors qz « a the bare Coulomb potential is a good

approximation.

Notice that the above was done assuming that this is essentially a one-dimensional

system. But carbon nanotubes have finite diameters and we consider them being

quasi-one dimensional. Thus, if one needs to be more precise this should be taken

into account [41]. Thus, the Coulomb interaction for electrons on a cylinder with

radius R is modified to

n
*(9 • fg)-M,q = a'lL{qR)KLiqR) (5.21)

\ 2NMuq

Iii^qR) and Ki,{qR) are the modified Bessel functions from first and second kind

of the order L - which stands for angular momentum of the interaction. If T = 0

then we are dealing with a intraband transitions; if i = 1 then the transitions are

interband. But in our transitions between bands do not take place and therefore

L is always zero.
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Chapter 6

Electron Self-Energy

Modulated hopping and linear electron-phonon in

teraction

6.1

The imaginary part of the electron self-energy is  a very important quantity. It

is closely related to the relaxation time of the electrons. Thus, several transport

properties depend on the self-energy. In this chapter we will examine the impact

of different types of interactions on it.

The first effect which will be discussed is how the imaginery part of the self

energy depends on the electron-phonon interaction. The basic diagram is given

on Fig.6.1. It has one phonon line represented by  a dashed line.

The expression for the self-energy is well-known and in the high temperature

limit is given by [30

- ImY.(k) = 2-K{kBT)Y\ .
Q  ̂

Thus, we obtain that the —ImT,{k) is proportional to the temperature T. At this

Q
- H+q)- (6.1)
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Figure 6.1: Diagram for the first order electron-phonon interaction

stage one can define the following quantity

IMqP^ = 25:

A is dimensionless and it represents the coupling constant of the appropriate in

teraction.

There are two types of electron-phonon interaction for the low dimensional

tight-binding systems which are in consideration here - modulated hopping and

linear electron-phonon interaction. The above diagram describes both of them.

The only difference which will have an impact on further estimations is in the

matrix elements.

Consider the quasi-one dimensional armchair SWNT. The matrix elements for

the modulated hopping were already calculated and they display a deformation

type of potential. The energy dispersion is also known - e* = ±Jo[l — 2cos y'-

(6.2)
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Therefore, using the properties of the 5-function we find

WLo
^(4 ~ ̂k+g) — (6.3)A,-,- =

2%avF’Stto
29X3

where the band indices are i,j = 1,2, D is the deformation constant, Lq is the

length of the unit cell in ID and a is the spring constant of the solid. We have

defined it in Ch.2. The above formula is the same for transitions in the same band

and between bands. The reason is that the energy dispersion is linear with the

wave vector and that the electron energy has an opposite sign of the hole energy.

The essence from the above result is that due to the facts that the energy

dispersion is linear and the solid is one dimensional, it follows that only excitations

between the two bands - Fig.6.2 - contribute to the coupling constant of the

modulated hopping.

Notice that we have made use of the following model

4a . 2

'''' 2qD'
where p is the mass density and a is the spring constant, qo is the radius of the

Debye sphere.

The same procedure is applied for the linear electron-phonon interaction. One

is interested only in transitions between the two bands - Fig.6.2. But it

found that the matrix element for this kind of processes was zero. Therefore, it

follows that the ordinary electron-phonon coupling does not have any impact on

the —/mS(^).

For graphene similar results can be obtained. The only difference is that now

Q is two-dimensional and the integration is over two variables. The 5-function is

used to do the integration over the 4> variable

P^Q = (6.4)
Lq

was

IQir'^avF J
‘2

2\DWdA = X Il (6.5)3

qD

56



/r E

0

Figure 6.2: Only the two lowest bands that cross the Fermi level at the Brillouin zone

edge are of interest.

where the qo is the radius of the Debye circle in 2D for a hexagonal lattice (Fig.3.1)

(2^)^rql (6= .6)
Ao ’

\/3 2
= ~-:—G ,

2
(6.7)Ao

Thus, for the integral it is easy to find

^/2

-Lh (6.8)dx 2.18.
sin^ X

Notice that both intraband and interband processes contribute to A with the same

magnitude.

To derive an expression for A for the linear electron-phonon interaction in

graphene it is enough to replace D with D in eqn.(6.3) and eqn.(6.5); the result

could have been written by inspection. Processes between different bands are

possible with the appropriate substitution for D.
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RPA for the phonon modulated Coulomb interaction6.2

6.2.1 Derivation of the Imaginary part of the electron self-energy

Here the main objective is to treat the problem in terms of the new type of

interaction - the phonon modulated electron-electron interaction. We already have

written the form of its Hamiltonian. In this chapter we investigate the impact of it

on the transport properties of the electrons in an armchair SWNT and graphene.

The model is that every atom in the system has conduction electrons and the

average charge on each atom is zero. In deriving of this Hamiltonian we assumed

that the rigid ion approximation is valid, thus, the electrons follow the motion

of the ions in the process of phonon. vibrations. It is found that this type of

interaction has interesting results in lower dimensions.

In order to understand that we look at the matrix elements for graphene and

for a SWNT given in eqns.(3.60) and (5.20). For small wave vectors Vq is taken

to be the ordinary Coulomb interaction in ID and 2D which we will assume to be

true for easier estimates. At larger values of q the matrix element is modulated

in a complicated way.

Next the electron self-energy is calculated in the one-phonon approximation.

The Feynman diagram is shown in Fig.6.3a. There are two Coulomb lines repre

sented by wiggly lines. The dashed line is the phonon line. Higher order diagrams

are shown in Fig.6.3b. The summation of the self-energy terms from Fig.6.3b is

the random phase approximation (RPA) with one phonon line.

To evaluate the self-energy we start with the lowest order in the 5-matrix

expansion [30

=  J < rrCp-j(r)ctQ{P.r-r') (^i)

%,n(^2)CfcV,,(r2)c^(r') >< > . (6.9)

X

X
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a)

b)

Figure 6.3: a - Feynman diagram with two Coulomb lines and one phonon line; b - RPA

with one phonon line

Here j, I, m, n, r are band indices and they take values 1 and 2 only. The diagram

for which the above expression is written is the one from Fig.6.3a. Also the

standard substitution for is used
Q

First one notices that there are several possible combinations involving dilfer-

ent band indices. Then there are several possible combinations for the Coulomb

and phonon wave vectors which arise from the different pairings of the electron

operators in the above eqnuation. For the phonon wave vectors one obtains

(6.10)

Qi = Q2 (6.11)

and then the combinations for the ̂ -vectors are

(6.12)92 9i,

(6.13)92 = -qi-Q,
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(6.14)q2 = —9i + Q-

Note that adding together these different possibilities changes the factor of {fj^ n

n ^2) into n Qy. To obtain the RPA correlation energy of the electron gas

one needs to perform the frequency summations of the summed diagrams from

Fig.6.3b

(Vq • Q?
2NMI3^ ^ ̂

X S°{k + Q + q,ik^ + iQ„ + ig„)j

T>‘(Q
U)Q

igniQn

,iQn)

M^P,
(6.15)

-M,P,

where Pg is the polarization factor of each bubble

h - hk+d^kF,=2/ g (6.16)
(2’r)=i9n+ £{-£{+,-

We try to obtain some general results in order to receive an idea about the

problem. In doing the summations over Matsubara frequencies one has to do the

summations before performing any analytical continuations such as substituting

ikn —5- + i6.

We proceed with the summation over iQn and the result is

{flQ • Qf M^Pg
— TT2NM/3 ̂  ̂

gQ

l + Ng-f

iqn + ikn -<^Q-

Nq+r
m =

^RPA iqn + ikn + UJq — e‘UJQ

(6.17)+

where the following definitions are made

1 - MgPg,(■RPA

e ^k+q+Q ’

Nq = l/(e^''=-l).

f" = l/(e^=" + l).
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Now one needs to do the summation over iq^. Unfortunately, the function under

the integral contains complicated arguments, so that the integral in most cases

will need to be done numerically. But for certain “simple” systems (as we show

later) we can find analytical expressions.

To continue further with the problem one can employ Lehmann representation

(% • Q) de" A(k + Q,e")
27r ikn + iQn - e"’

fi

EE(t) = (6.18)2NM‘^ UJQ

where A{k + Q, e") is the spectral function for the electron self-energy. Now the

summation over iQn is done and one obtains

(% • Qf
— E2NM^

1 +

Nq + Tm = A{k + Q,e'')
iknUjQ

(6.19)+
it

In the high temperature limit the imaginary part of the self-energy is

ksT
A{k-\-Q,e.-(jjQ)-Iml]{k) =

iVM(27r)3

-|- A(k Q, e ujq) . (6.20)

When the wave vector k is near the Fermi surface the spectral function could be

written as [43

A{k + Q,e±UQ) = F{k + Q){e - tp ± uq^. (6.21)

The difference e — ep vanishes at the Fermi surface. Thus, one arrives at

kpT I d^QF{k + Q).- 7mE(&) = (6.22)
NM{2iry

Two things should be noticed here. First, the imaginary part of the self-energy is

proportional to T - a typical result for the ordinary electron-phonon interaction.
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Second, the ion mass is still in the denominator, which means that this term

be considered small. Thus, the general idea and conclusion are that the

types of diagrams shown in Fig.6.3 are not expected to play a significant role

in the transport processes governed by the phonon-modulated electron-electron

interaction.

can

6.2.2 RPA for the armchair SWNT

Some analytical results for the RPA diagrams are possible to be obtained for

SWNT which is an example of a quasi-one dimensional system. The reason is

the following: Only excitations in the two lowest energy bands are considered.

They cross the Fermi level at the K points in the Brillouin zone and the energy

dispersion is linear with the wave vector - e = ±VF{k — kp) where vp is the Fermi

velocity and the wave vector k is changing from —kp to kp. In this model the

integrals in eqn.(6.17) can be evaluated. Although the model is the same for

graphene, one is not able to obtain closed form results because the problem is

two-dimensional.

Note that the expression for P, from eqn.(6.16) is for a one band model. Here

excitations are possible between two bands. Using the fact that f{—x) = 1 — f{x)

for the Fermi distribution function including all types of excitations one is able to

arrive at

2{ek - ek-g)
[tk - tk-qY - {iqnY

-b (-k-q)
(efc -I- tk-qY - {iqnY ’

P,

(1 fk fk-q) (6.23)

where

e* - ek-q

6k -f 6k-q = 2vpkp q- 2vpk — vpq.

vpq,

62



The first term in eqn.(6.23) comes from intraband interactions and the second one

from interband interactions. The integration can be easily done using the

fact that the Fermi distribution function is a step function at zero temperature

(Appendix I). The result is

comes

2  {ivFkFf - {iqnY
{vFqy-iknY n

VFq^ (6.24)
Tr{{vFqy - {iqnY) TTVf

Both terms in the above expression have poles at ±VFq. Since we are interested

in the limit of g —> 0 the logarithmic term can be neglected as having a much

weaker divergence compared to the first one. It seems like the excitations for

small wave vectors from the electron-hole band transitions have little effect on

the polarization factor in this ID system. Only the intraband transitions are

important [44]. Therefore,

VFq'^
(6.25)A = Fiivpqy - (iqu^y

VFMqq^/TT

{iquY - {vFqY'

To obtain the correct result for the electron self-energy all of the frequency sum

mations have to be done before making the continuation ikn tk + i6. The

summation over iqn can be easily performed in eqn.(6.17)

(6.26)1 +^RPA

Af' iK + Af' + wg - e"UJQ

hvF
m = ENMtt

qQ

+
ikn ~ Af' -f LOq —

N{M') + f{e" + ujQ)
ikn + — OJQ - e"

l + N{M'y-f{e" + UQ)

+ (

(6.27)-f
ikn - M'^-UJq-

where

MqM'^ = {vFqfil- ), (6.28)
TVf
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f{e"±uj) = l/(e^('"=^“) + l).

(6.29)

(6.30)

Now the imaginary part of the electron self-energy can be found by substituting

ikji —> e -h <5. From the above expression it follows that if we look at the high

energy limit there will be a term which is proportional to T^. It is convenient to

define

-ImT,(k) = {kBT)\{T),

\{T) = {kBT)AvFY:^

(6.31)

(6.32)8{ek - ̂k+q+q)-pul

The phonon energy and M' are neglected compared to the electron energy. Making

use of the ̂ -function we obtain

<iQ

IQe^k'p
m = (kBT) (6.33)2 ^ -^2)

In^ X7r/2

-Ih dx (6.34)
2^sin^ x(l — Inx)
ITVp

0.68. One obtains the same expression for A for

processes in the band and bewteen bands since one takes k m kp.

Besides the term proportional to there will be terms which have linear

Numerical evaluation gives I2

dependence on the temperature;

(flQ n Qf
P^Q M,

im n Q? <i^M^

I dq jdQ

jdqjdQ

Vp
Ai 6{ek - ek+g+q), (6.35)

Stt^

hvp
A2 8{ek - Ck+g+q). (6.36)

87r2 Mlpuq

The term that has uq in the denominator could be neglected because the mass of

the ion is in the denominator too and as a whole this contribution can be neglected

as small (as it was already pointed out). The term with uq can be evaluated and

one is able to write the result

2e^klr
X/:3 (6.37),

TT^aVp
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In^ X7r/2

h = I
Jo

(6.38)dx
sin^

2e2
Inrc

TTVp

(6.39)h 0.37.r\j
r>^

The same calculation for graphene is more difficult technically. Analytical ex

pression for Pg and crpa cannot be derived [47], [48]. Thus, the above evaluation

in 2D cannot be done in simple terms as it is demonstrated in ID.

There are reported calculations in the literature that deal with the Coulomb

interaction [45] in terms of bosonizations; calculations of the static polarizabilities

of nanotubes are also available [59], but they do not treat the problem in the

context of the electron-phonon interaction.

6.3 Exchange self-energy

Derivation of the exchange self-energy6.3.1

One can look beyond the RPA approximation by assuming that the effects from

the exchange phonon modulated electron-electron interaction is not small.

The exchange term is provided by writing the exchange pairing in the Green’s

function

12 - Z! ̂t+Q^dfk-g + /k+q+Q n

The two terms arise from the different ways of pairing. In the problem for graphene

the pairing has to be done for two different operators present in the expression -

a and /5. The exchange interaction up to a phase factor is written as

(6.40)

E  • Q><,Pl{<l)[h+g+Q + h-giVgxch

e{k + Q)-9{k)
X  COS

2

0{k + Q)-e{k)
sin (6.41)

2
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It is useful to express the Hamiltonian in the following way

Y.U(k,Q)Xgci^HA,, (6.42)Vexch. —

Q

where we define

e{k + Q)-e{k)
U{k,Q)u = riQ- [{k + Q)S{k + Q)-kS{k)

U{k,Q)ie = 57q • [(^ + (5)5'(^ + Q) - sin

COS .  (6.43)
2

e{k + Q)-9{k)
,  (6.44)

2

1
S{k) = (6.45)

For small wave vectors Q one is able to write

U{lQ)^iri^-Q)S{k). (6.46)

Now the one-phonon self-energy is obtained

Em = {Ha n Qf iVo + /(02p ^ (JJQ ^ikn - e' -f CJg
m = lAe^'+i),

1 + - S(0
.  (6.47)

ikn — e' -uiQ

(6.48)

(6.49)e' ^k+Q-

There are four diagrams which correspond to eqn.(6.42). They are given in Fig.6.4.

In the high temperature limit, neglecting the phonon energy compared to the

electron energy,

-ImE{k) = 7r{kBT)X,

A = 2S\k)j:

(6.50)

(Vq • QY
- ̂k+g)- (6.51)

P<^Q
Q

This is a general formula for the phonon-modulated exchange electron-electron

interaction for these tight-binding systems. The imaginary part of the electron

self-energy is proportional to T in the high temperature limit, as expected for

66



\
3

\N
/

/ N \

t I
t I

I /

N /

s

\t

\I

n
I\
/\

Figure 6.4: Diagrams for the exchange interaction with one phonon line

metals. Also it is evident that the matrix elements for this interaction display a

deformation type - Mq = X0S{kp)Q - it is linear with Q with a “deformation

constant” S^kp).

6.3.2 Application to SWNT

The next step is to evaluate the function S{k) which is contained in U{k,Q). In

Appendix II the fuction S{k) in ID is derived.

In a more general way 5(x) could be written as

e^kp
5 (6in(x) = .52)

27r

In Fig.6.5 we present Jxu as a function of x. It is a smooth rising function, which

takes its largest value at x = 1 where its value is taken. The expression from

eqt.(6.51) is evaluated for longitudinal phonons. The energy dispersion for the

nanotube is e = Jo [1-2 cos f: |. The 5-function eliminates the integration over Q
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Figure 6.5: J as a function of x in ID

Slj^{x)kF
2iravF

n There is a direct analogy between the results for the ordinary electron-phonon

interaction and the exchange interaction. The coupling constant A is of the same

form with dilferent deformation constants.

A = (6.53)

6.3.3 Application to graphene

In 2D the same difficulties are encountered when the modulated hopping was con

sidered. Eqn.(6.51) still holds, with the change that Q and k are two-dimensional.

In Appendix III the evaluation of S{k) in 2D is shown.

Again the S function can be written in the form

e^kF
S J (62Dix) = 2d{x), .54)

27r

where J2D is discussed in Appendix III. Here we present it as a function of x on

Fig.6.6. J20 is maximum at a; = 1, as the case with Jm. For longitudinal phonons
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Figure 6.6: J as a function of x in 2D

only, the electron self-energy is

25|j>(x)g£)
— Imll{kp) = kpT X /1 (6.55):

TT'^aVp

where Ii was defined in eqn.(6.8).

It is not difficult to see that the results for the exchange electron self-energy

could have been written by inspection using the expression for the electron-phonon

interaction. The same integrals arise in both places. The only difference is in

the contribution from the matrix elements. For the electron-phonon coupling the

deformation constant D is present; for the phonon-modulated Coulomb interaction

the function S{x) plays the role of a deformation constant. Which contribution is

large depends on whether D or S{x) is larger.

In the next chapter we give numerical estimates for some transport properties

for these low dimensional systems.
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Chapter 7

Numerical Estimates of Some

Transport Characteristics

Constant of interaction - A7.1

The results for the imaginary part of the electron self-energy due to different

processes can be used to estimate some characteristics such as the electron lifetime

and the electron-phonon coupling constant. They all depend on the imaginary

part of the electron self-energy. We use the following relationship between r - the

lifetime and the imaginary part of the electron self-energy —ImY,{k)

^ = -Imm. (7.1)

The previous chapter was devoted to find simple expressions for the contributions

from different types of electron-phonon interaction. Here we intend to show that

the numerical estimates for some of the transport properties for these low dimen

sional systems can contain contributions that have similar numerical values but

different origin. It was shown that the — is proportional to the temper

ature (at the high temperature limit) and it is also proportional to the coupling

constant A - eqn.(6.1). The coupling constant plays the deciding role which pro-
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cess is dominating. All the physics is contained in it. According to the derivations

from the previous chapter, for the modulated hopping

(7.2)^iDfhopp — 2'KavF ’
2\DWd
TT'^aVp

(7.3)^2D,hopp —

Using the result for the deformation constant from Ch.3, we obtain that \D\ =

11.72(1 — R) = 3.87 eV, and it is the same for graphene and for a tube. The

constant vp is found to be vp = 5.33 eV.A. And finally, the constant a for graphite

is taken as a = 8.98 N/rri^ - the number used to estimate R. The deformation

constant is significantly reduced because of the factor {1— R). Therefore, we find

that

^iD,hopp = 0.68,

^2D,hopp = 0-46.

(7.4)

(7.5)

Next the linear electron-phonon interaction is discussed. The only thing that

changes is the deformation constant. Note that once the constant is found for one

of the processes (in our case the modulated hopping) then for every other process

we can use the following simple equation

D X Xfiopp
X (7.6)e-p —

We find that \D2d\ =

sin(<p(k, Q)) (see Ch.3) which are taken to have their maximum value, so an upper

limit for the coupling constant can be found. The values for a,- and for carbon

are listed in ref. [35]. Here we take a summation over them; the estimate for the

deformation constant is I)

tube and for graphene are found to be

— ̂ ] = Bid n B depends on cos{4>{k, Q)) and

0.89 eV. Therefore, the coupling constants for the

Aid,

X2D,

= 0.036, (7.7)e-p

(7.8)0.024.e-p
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Note that \id and X2D are an order smaller than A for the modulated hopping.

Therefore, this makes the electron-phonon interaction due to the Coulomb poten

tial to be unimportant compared to the modulated hopping.

When the RPA is disscussed one notices that a linear term with T of the

self-energy can be produced but since the ion mass is in the denominator, the

general idea is that this contribution is not expected to be large. It turns out that

analytical results can be derived for SWNT. A term which is proportional to

of the self-energy can be produced, thus r is proportional to T^. It is a signature

of the ordinary electron-electron interaction. The lifetime can be made as big as

one wants providing one goes at sufficiently low T. At room temperature this is a

negligible factor compared to the dominant scattering mechanism. It is certainly

necessary to go at very low temperatures (in order to avoid scattering by ionic

vibrations) in very pure samples (in order to avoid impurity scattering) before one

is able to see the characteristic T^-dependance. Define

IQe'^kp
X{T)nPA = (ksT) (7.9)Y X 0.002,

where the number is given at T = 300 K. We conclude that the rate of this type

of scattering proceeds is 10^ slower that the modulated hopping and 10^ slower

than the linear electron-phonon interaction. But it is still much larger than the

usual electron-electron contribution which for a typical metal is of the order of

10^ slower than the one for the dominating electron-phonon scattering at room

temperatures.

Also a linear term with the temperature was derived for the self-energy. This

means that the lifetime is r ~ T~^.

XlD,RPA = 0.035. (7.10)

The value of r shows that this process is an order slower than a typical relaxation

time for metallic systems (involving only electron-phonon transitions). Thus, the
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contribution from the RPA phonon modulated electron-electron interaction can

be thrown away in agreement with the general derivation in Ch.6.

Now we consider the contribution from the phonon modulated Coulomb in

teraction from the exchange terms. Again 1/r

metallic systems. Thus, armchair SWNT and a layer of graphite are expected to

display metallic behaviour according to this mechanism also. Here we show that

the phonon modulated electron-electron interaction gives relatively large effects

on the lifetime of the charge carriers. There is  a complete analogy between the

two expressions for the Im'£{k) concerning the ordinary electron-phonon and ex

change phonon modulated electron-electron interactions. The only difference is in

the coupling constants. In the second type of processes the deformation constant

D is replaced by the function SiDaoix)- We use eqn.(176) with a new deforma

tion constant. Compare between \D\ = 3.87 eV and |5'(x = 1)id| = 3.02 eV and

S2d{x = 1)1 = 4.56 eV. Therefore, one is able to estimate

r - a characteristic feature for

(7.11)

(7.12)

^lD,exch —

^2D,exch — 0.57.

0.41,

The major conclusion that can be reached is that for these low dimensional tight

binding systems the transport characteristics are expected to be dominated by

two mechanisms - i) the first one is the traditional modulated hopping; ii) and

the second one is the newly derived Coulomb interaction which arises due to the

vibration modulated distance between the electrons. Both processes give similar

contributions.

The above formulas and evaluations are done for perfect tubes and perfect

sheets. All of the experimental measurements of SWNT are actualy for ropes of

SWNT. The transport processes are believed to be carried mainly along a single

tube. The above expressions and estimates were done for one perfect armchair

SWNT. But keeping in mind how they are synthesized one has to put defects
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into the system also. This will change the answer somewhat especially at low

temperatures [49 .

Thermoelectric power of a perfect armchair SWNT7.2

Now we look at another transport characteristic - the thermoelectric power (5).

There are several reports in the literature about measuring S  [50], [51]. Some

of them concern ropes of armchair SWNT which are believed to contain mainly

(10,10) tubes. S is measured to be positive and relatively big - 9 ̂iVjK at room

temperature. Calculations about S are also available, but they treat bundles or

zigzag tubes [53], [52 .

The model which is used to describe the tubes is  a two-band model [56] with a

linear dispersion of the energy with respect to the wave vector. For a perfect tube

the concentration for the electrons and holes from the two bands is the same. We

derived in the previous chapters that the relaxation times for transitions into the

same band and between bands are the same also. The only difference is that the

electric charge has opposite signs. Thus, using the model for a two-band system

^ _ aiS\ -b (72S2
+ 0‘2

But O’! = (J2 and the electric charge in S is contained to the first power according

(7.13)

to

~ 3 t ^ dt )• (7.14)

Therefore, the result for the thermopower is zero.

The same result is obtained if one considers the phonon drag contribution to

S. Since the matrix elements for intraband and interband transitions are the same

for the electron-phonon interaction, it follows from the two-band model that the

result is zero again [57 .
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Therefore, the conclusion is that to obtain a nonzero answer for S one must

include other effects in describing the tube. We keep in mind that in reality

SWNT ropes are not perfect and other effects - such as scattering from magnetic

impurities or topological deffects might need to be introduced. The interaction of

transition metal atoms with the carbon atoms is the subject of extensive research,

both experimentally and theoretically [54], [55]. This interaction needs to be

incorporated in the calculation of the thermopower. Also the junctions between

tubes in a rope may change the electronic structure. As suggested by [58] a

pseudogap is opened at the crossing point of the two lowest lying bands due to

the intertube coupling.
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Chapter 8

Discussion

Electron-phonon effects on two low-dimensional tight-binding systems are dis

cussed in this work. A sheet of graphite represents a two dimensional solid and

an armchair (10,10) single wall carbon nanotube represents a quasi-one dimen

sional solid. The initial intentions were to introduce and apply models for the

description of a SWNT. Since these nanoparticles are formed by folding a sheet

of graphite into a cylindrical form, it is useful to do that for graphene first and

then apply them to a tube. It is instructive to see the similarities and differences

between the two systems.

Carbon nanotubes are a newly discovered form of matter. All of their proper

ties are affected by their geometrical structure and low dimensionality. Imagine

a system made of carbon atoms only that can be made into a metal or a semi

conductor just by changing the geometry - this is unique to solid state physics.

These new systems offer the possibility to apply known models and to introduce

new ones in order to understand better the physics of them.

First of all a new model is suggested for the description of the lattice dynamics

of the systems. It has two parameters - a for the central force and /5 for the three

body force that is responsible for the angle bending. The model is needed to
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see exactly how the acoustic and optical modes depend on each other. With

the presently available methods a simple analytical expression is not possible.

If we make an appropriate choice for the numerical values for a and /? we can

reproduce all of the characteristic features of the phonon spectrum for graphene.

For example we have chosen a = 8.98 N/m^ and = 0.4 Nlm^. With this

values a good description of the acoustic branches of the spectrum is achieved.

Depending on which part of the graphene spectrum we are interested we can

change the numbers for the parameters.

It is found that according to this model for small phonon wave vectors there

is a relationship that connects the acoustic phonon modes to the optical phonon

modes. This means that even though in the limit where only acoustic modes are

important the optical ones cannot be neglected. This is a new result which is

expected to affect some of the properties of these solids. Note that the formalism

was developed for graphene first and the values for the parameters were found by

fitting to the graphene spectrum. Then discrete boundary conditions were applied

for the phonons of the (10,10) carbon nanotube - in this way one obtains a set of

curves. For small Q we retain only the one with m  = 0 which the F point in the

Brillouin zone.

One needs an appropriate model for the lattice vibrations in order to have a

correct estimation of the electron-phonon coupling. We investigate three types of

electron-phonon interaction - the modulated hopping, the linear electron-phonon

interaction and the phonon modulated electron-electron interaction. The formal

ism is developed in a rather general way and it can be applied to other tight

binding systems.

The potential of modulated hopping is assumed to be proportional to the

distance between nearest neighbors only. This is true because the electrons are

well localized around the atomic orbitals. Graphite has two atoms per unit cell

and the conduction electrons are 7r-electrons. The interesting property of graphene

77



and a (10,10) tube is that only the two lowest lying energy bands are involved.

These bands cross the Fermi level at the characterstic /iT-points of the Brillouin

zone with a linear energy dispersion. Only transitions between these two bands

are considered - the next available bands are at about 0.5 eV.

The matrix elements for the modulated hopping are found for both systems.

Again discrete boundary conditions are applied for the carbon nanotube. We find

that the interaction is of deformation type and that the matrix elements depend

not only on the acoustic modes, but on the optical ones also. With the help of

the lattice vibration model we obtain that the the deformation constant B for the

interaction is reduced by a factor of (1 — i?) with E =

result that has not be obtained before.

The ordinary electron-phonon interaction is considered also. We find that

again the coupling displays a deformation type and the deformation constant B

depends on parameters that describe the electron and ion charge distributions.

The phonon modulated electron-electron interaction is a new type of interac

tion and it is present in every tight-binding system. It comes from the change

of the distance between the electrons due to the ion vibrations in the solid. The

matrix elements are calculated and they are a product of a part which depends

on the phonon wave vector and a part that depends on the electron wave vector

only.

^+P 0.67. This is a new

The next thing which is done here is to estimate the electron-phonon coupling

constant in terms of the many-body techniques, namely - construct the Feynman

diagrams, write the formula for the electron self-energy and estimate the constant

of the interaction. The diagram for the modulated hopping and for the linear

electron-phonon interaction is the same and it is known. For the phonon modu

lated electron-electron interaction there are two contributions.  One comes from

the random phase approximation with one phonon line. The general expectation

is that this effect is not large. We were able to obtain analytical expression for
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Table 8.1: Numerical values for A and r for a tube

Process coupling constant - A relaxation time - r

1.9*10-^^ smodulated hopping 0.68

3.5 * 10-^2 slinear electron-phonon 0.036

RPA - 6.3 * 10-^2 50.002

3.6 * 10-13 ̂RPA - linear 0.035

3.07 * 10-1^ sexchange 0.41

Table 8.2: Numerical values for A and r for graphene

Process coupling constant - A realxation time - r

modulated hopping 2.84 * 10-1^ s0.46

linear electron-phonon -130.024 5.3*10 s

2.2 * 10-1^ sexchange 0.57

the carbon nanotube. It is shown that there is a term in the self-energy which is

proportional to and it will be important at low temperatures and a term which

is linear with T.

Another contribution comes from the exchange pairing of the electron oper

ators. We have shown that this interaction can be written in such a way that

again it displays a deformation type with a new deformation constant - S{kF).

The constant is different for the two systems.

Some of the main results of the present work can be summarized into two

tables. In Table 8.1 we present the calculated constant of interaction A and the

realxation time r for the armchair carbon nanotube. In Table 8.2 the same re

sults are listed for graphene. Note that the formula for the coupling constant A

for all three types of electron-phonon interaction is the same. The only thing that
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changes is the deformation constant. Therefore, the bigger the deformation con

stant, the bigger A. Because Did,2D and S{kp)i£),2D are comparable the coupling

contants are comparable also. The scattering times are presented in the tables,

too. To obtain the total scattering time one uses the Matthiessen’s rule. If there

are several sources of scattering in the relaxation time approximation the rule

implies that
1  1 1
— = 1 h ...
r  Ti T2

Therefore, considering only the modulated hopping and the exchange interactions

we obtain that tid = 1.17 * 10“^^ s and T2d = 1-24 * 10“^^ s. Now one can

compare with the relaxation time for Cu, for example - tcu = 1-9 * lO"^^ s.

Thus, the conclusion is that the relaxation time for graphene and the armchair

single wall carbon nanotube, is roughly 1/2 of tcu- From here it is easy to give

(8.1)

some estimates about the electrical conductivity of the two systems. We use the

standart formula [8], [59
ne^T

(8.2)cr =

m

with the appropriate value for the relaxation time r. For 2D graphite n is taken

to be approximately 10^^ cm"^ according to [34]. Therefore, ~ 3.5 =t= 10®

This value is of the order of the value for the conductivity for copper. Notice

that the present model does not apply to pure 3D graphite. The reason is that

the Fermi surface in 3D is largely modified by the coupling between layers. This

implies that the phonons perpendicular to the surface of graphene are also impor

tant. Therefore, one considers the region where the band structure is essentially

two-dimensional and the present model can be applied.

For the carbon nanotube we perform similar estimates. One takes the electron

concentration n ̂  10^^ cm"^ [16]. Thus, one obtains that atube ~ 3.29 * 10®
Q.cm '

This is in the range of the observed conductivities of ropes formed from single

wall carbon nanotubes. The observed resistivies are in the range of 0.01-0.001
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Vt.cm [60],

ual tubes. It is evident that the measured and estimated conductivity, although

indicative of the metallic character, are far below that of copper.

Finally, the last remark we would like to make is that all of the above consid

erations and estimations are done for graphene and a single wall carbon nantube

free of defects.

[61]. The transport in the ropes is carried mainly by the individ-
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Appendix A

Calculation of the Polarization

Factor For the SWNT

Here we derive the general expression for the polarization factor in ID. Start with

the definition

fk fk+

iqn + Cfc — ̂k+g

There are two contributions - from the interband transitions {Pqi) and from the

kp
9dk- (A.l)

-kp

intraband transitions (P,2)- Pgi can be found analytically using that the energy

dispersion is linear with the wave vector

I / dkif, - A+,) vpq
(A.2)

{vpqY - {iqnY
2  , cosh ̂  cosh /dvpkp

£

cosh.l3vF{kF — q/2)
VFq

(A.3)
■K^Vf {vFqy - {iquY

vpq^ (A.4)'K{vFqy - {iqnY

The limit g -4 0 is taken in eqn.(A.3).
The other contribution to P, is given by

2vFkF + 2vFk — VFq-JP.2 (A.5)dk
{2vF{kF + k- ql2)y -
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2  {ivpkF + vrqy - {iquY

"" {vpqY - (iqny
In obtaining the last expression we have used that the Fermi distribution function

at zero temperatute is a step function and it restricts the integration to the first

Brillouin zone.

= (A.6)
TTVF
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Appendix B

Calculation of S{k) for a tube

The function S{k) in ID is evaluated here. Using the definition we have

(B.l)

Now the change of variables k — q

in the first Brillouin zone. Thus,

k is made and the integration is restricted

M, = 2eMn^

e^kp
2‘kx

e^kp

kp

(

J

(B.2)

1 + a:)^ln |1 + x] — (1 — x)^ln |1 — x| — 2x]S{k) = (B.3)

S{k) = ic(x) (B.4)
27r

where x = k/kp. Since we are interested at processes around the Fermi level we

take X = 1 and the above expressions become

e^kp
5(1) (B=

Jid(1) = 4ln2-2

Ji
27r

dO-) .5)

(B.6)

Therefore, J\d{,x) 0.77.
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Appendix C

Calculation of S{k) for Graphene

The analytical evaluation of S{k) in 2D is more difficult because the integration
“i*

now becomes two-dimensional. After the appropriate change of variables k—q —>• k

we obtain

r^F , /•27r
— / dk' d(j>
ZTrk Jo Jo

kk' — k''^ cos 4>

+ A:2 - 2kk' cos ̂

If the integration over (j) is done first, this leads to elliptical integrals. It turns out

that simple results can be obtained if we integrate over k' first. With x = k/kp

the above expression becomes

S{k)2D = (C.l)

2^Jo
1 -1- 3x cos (j)

S2d{x) =

—2scos^
3 cos^ - 1M

2
Vl + —

x
2x cos (f) -f 1 — x cos+ x^(cos (f) — •IC.2)
(l — COS(f>)

Now at X = 1 the 5(x)-function can be written in the usual form -

e^kp
S{ Jx) = 2d{x) (C.3)

27r

J2d{^) is evaluated when x = 1.
|■2■K 3 ^

J2d{x = J' ) = / d^[(-cos^ — 1)-[-(1 — 3cos<^)sin^
^0 A Z
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1 1
+ -(2cos9!>-3cos^?!>+l)ln(l-I j)

2  sin I

The above integral can be done and we obtain that J2Dix = 1) cv

(C.4)

1.17.
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