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ABSTRACT

The study of hydrogen in a constant magnetic field has been one of the most persistent

problems in non-relativistic quantum mechanics. Although it is conceptually one of

the simplest problems that one can think of, the non-separability of the Schrodinger

equation containing both a Coulombic term and a constant magnetic term in the

Hamiltonian has made the problem especially diflficult. In this dissertation, we apply

a solution in the form of the Fock expansion to this problem. It is shown that the

logarithmic terms which are associated with the Fock expansion vanish. We then

derive and solve a three term recurrence relation in order to find a set of solutions to

this Schrodinger equation. Linear combinations of these Fock solutions which satisfy

the physical boundary conditions are found, and at the same time upper bounds for

the binding energies are found using the Raleigh-Ritz variational principal. It is shown

that these same Fock solutions produce lower bounds for the binding energies when the

Schwinger variational principal is employed. Therefore, the eigenenergies for bound

states of hydrogen in a constant magnetic field can be bracketed from both above

and below. We furthermore examine another recent method, that of Kravchenko,

Liberman and Johansson[15] for solving the hydrogen atom in a constant magnetic

field problem. We show that their method is equivalent to examining an eigenchannel

in the R-matrix method of Bohm and Fano, and compare their results to the ones we

obtain through variational methods on the Fock solution. We find that their method

is both accurate and efficient for calculating the binding energies.
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CHAPTER 1

Introduction

The computation of binding energies for hydrogenic atoms in arbitrary, con

stant magnetic fields has been one of the most persistent problems in quantum me

chanics. The early spectroscopy experiments date back to those of Zeeman in 1897

[1], and attempts to accurately describe this system are still actively sought. The ad

vent of modern quantum mechanics allowed the differential equation which produces

the solutions to this physical system to be written down easily in the form of the

Schrodinger equation.

Here, Z is the charge of the nucleus, B is the magnitude of the applied magnetic field,

and E is the energy of the state. Atomic units h = rrie = e — 1 are used where rUe is

the mass of the electron and e is the charge of the electron. The advantage of these

units is that large numbers of numerical factors do not need to be carried throughout

the calculation. Atomic units are discussed extensively in Bethe and Salpeter[2].

This Schrodinger equation can be refined to include small corrections. For

example, the form written in equation (1.1) assumes an infinitely massive nucleus.

The motion of the nucleus is a small correction which can be treated as a perturba

tion. This correction is not made in this work, however. Other work on this correction

is discussed in the review article by Clark, Lu and Starace [3]. Spin-orbit corrections,

corrections for the anomalous moment of the electron, and other relativistic correc

tions can also be made. These are all discussed in Bethe and Salpeter[2].

Obtaining general solutions to the Schrodinger equation has been extremely

difficult. This difficulty arises because the natural symmetry of the system changes



radically between the high B field and the low B field cases. For small fields, the

solutions have a spherical symmetry because the Coulomb potential, —7 is spheri

cally symmetric. For large fields, however, the solutions have cylindrical symmetry

because the dominant potential is the magnetic potential. This potential has a form

of sin^ 9, where 6 is an angle measured from the direction of the applied magnetic

field. Throughout this work, it will be assumed that the direction of the applied field

is the z direction. Because of the change of symmetry between low and high field,

the Schrodinger equation is not separable in any coordinate system. Therefore, one

reason for interest in this problem is that it is a conceptually simple, non-separable

problem. By studying the hydrogenic atom in a constant magnetic field problem,

methods can be developed for studying other, more general non-separable systems.

A second reason for studying this problem was given by Fano in 1980 [4],

who points out that a hydrogenic atom in a constant magnetic field can be used as

a prototype for studying wave propagation along a potential ridge. Such ridges are

common in physical systems. For example, the potential surfaces for many molecules

show the features of a potential ridge. Such ridges also arise in the potential describing

resonances in two electron atoms and in the "transition states" for many chemical

reactions [5]. The magnetic potential displays such a ridge in a very simple form. If

the magnetic potential Vm = ̂B^r^sin^S is plotted, it is clear that such a potential

vanishes for ̂  = 0 and 6 = tt. However, the potential is maximum at 6 = |, and rises

to infinity as r goes to infinity. The ridge is clearly visible in Figure (1.1) which shows

the combined Coulomb and magnetic potential for hydrogen with a magnetic field of

13.7 atomic units. By solving the Schrodinger equation, the behavior of the solutions

along this ridge can be studied and perhaps can give insight into more general ridge

problems.

The study of hydrogenic atoms in magnetic fields is not confined to the

discipline of theoretical atomic physics. While it is true that the magnetic fields

currently produced in the laboratory only show a large effect for highly excited states,

even the lowest states of this system are still studied. One discipline where such

systems are of interest are in the study of excitons in magnetic fields [9]. An exciton

is a system which is found in some semiconductors in which an electron becomes
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Figure 1.1: Plot of the combined Coulomb and magnetic potentials: The combined

potentials of for the hydrogenic atom in a constant magnetic field are plotted for an

applied magnetic field of 13.7 au. The potential ridge caused by the magnetic term

is clearly seen.



bound to a charged defect. The system is very similar to that of hydrogen. The

effective Coulomb potential is much less because of the dielectric constant of the

semiconductor. The mass is also replaced by an effective mass[10]. The result is that

excitons in a constant magnetic field present systems which are extremely similar

to that of hydrogen atoms in a constant magnetic fields. The effects seen only on

highly excited states of hydrogen can be seen in even the lowest states of excitons at

laboratory attainable fields.

Some branches of astrophysics involve matter in much more intense magnetic

fields that can currently be produced in the laboratory. For example, magnetic fields

up to 5x10® Gauss have been detected near the white dwarf PC 1031+234 [11]. White

dwarfs are formed when medium sized stars are no longer able to sustain fusion at

their cores. The outer layers of these stars, which are mostly composed of hydrogen,

are violently blown off. The core which is left behind becomes a white dwarf. These

events are quite common in the universe and lead to many opportunities to observe

hydrogen and other atoms in very intense fields. In fact, hydrogen has been observed

around PG 1031+234, and attempts have been made to understand the spectrum[12].

More recently, even larger fields have been detected around a special class of neutron

stars called magnetars. These produce magnetic fields ranging from 1 x 10^® Gauss

to 1 X 10^"^ Gauss[13]. This is well into the regime where even the ground state is

strongly affected by the star's magnetic field.

One consequence of the history and interest in hydrogenic atoms in constant

magnetic fields has been the countless methods which have been used to describe

the system. The most popular methods have been the variational approaches. The

calculation of Smith et al.[27] uses a three parameter trial function of the form

<i'i, (fJ = E («!"'■'+>>'"'■'*') 6""'"+™ («.«. (1-2)
il

Such a trial function is able to produce good ground state energies for fields between

10® and 10® Gauss. Brandi[21] was able to calculate more intense magnetic fields by
using a trial function which is a linear combination of hydrogen atom wavefunctions.

^(0 = ^
[(n + 0!f (x) y;;"'(«», (i.3)



where x = This approach was able to produce good ground state energies from

10® to 10® Gauss. The high field limit has been calculated by Rech et al.[22]. In this

calculation, the Schrddinger equation is written in parabolic coordinates £,r], and (p

and a trial function of the form

OO

xP{e, T], (P) = (1.4)
ij=0

is used in the Raleigh-Ritz variational principle. This calculation was made for fields

between 4.7 x 10® and 1.2 x 10^^ Gauss. Relativistic variational calculations have

been made by Goldman and Chen [23, 24]. These calculations are able to avoid the

collapse of the variational energies to the negative energy sea by carefully specifying

the boundary conditions. These calculations were made from fields of 2.35 x 10® to

4.7 X 10^® Gauss.

The earliest methods were the simple perturbative methods. Although the

full Schrddinger equation is not separable in this case, it is separable in the two ex

tremes of the applied magnetic field. The simple perturbative methods work in the

two cases where either the Coulomb potential dominate or the magnetic field dom

inates. In the case of the magnetic interaction being very small compared to that

of the Coulomb attraction the solutions behave approximately like those of hydrogen

with no applied field. In the case of the Coulomb attraction being very small com

pared to that of the applied magnetic field, the solutions appear similar to those of

the harmonic oscillator. Unfortunately, the direct perturbative approach only works

for a limited range of external magnetic fields. More terms can be taken in the per

turbation expansion in order to make the calculation accurate over a wider range

of applied fields, however the series always eventually diverges. Higher order terms

in the perturbation series expansion causes this divergence to become much more

severe as the order increases. As a result, one has to be very careful to use higher

order perturbation theory only in the range in which it is valid. Otherwise, the result

can be extremely inaccurate. Figure (1.2) shows the divergent behavior of the re

sults of perturbation theory. As one can see, fifth order perturbation theory becomes

extremely divergent when pushed beyond its range of validity. Although perturba

tive approaches are less common than variational approaches, a few are still notable.



Comparison of Perturbation Theory Calculations
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Figure 1.2: Plot of first and fifth order perturbation theory calculations: Both the

first and fifth order perturbation results for hydrogen in a constant magnetic field are

plotted as a function of the applied magnetic field /5. The higher order perturbation

result shows a drastic divergence as the calculation is pushed beyond its range of

validity. In fact, the perturbation results diverge (yield non-physical energies) for any

order perturbation expansion.



Killingbeck[18] improved the standard perturbative method by including only what

is necessary as the perturbation. This was done by writing the angular term, sin^ 9

for the low field case in terms of the zeroth and second order Legendre functions Pq

and P2. The zeroth order Legendre function Pq is spherically symmetric. Therefore

adding this term to the unperturbed Schrodinger equation does not change the nat

ural symmetry of the system. The Schrbdinger equation was solved exactly with this

Legendre term included. Only the second order part was used as a perturbation. Do

ing this allowed accurate results to be calculated with less terms in the perturbation

expansion than the standard method. Another notable perturbation calculation uses

perturbation theory for both the high and low fields. Fade approximants were then

used to interpolate between the two extremes and yield a result which applied for

all fields[19]. The results were quite good in the two asymptotic regions, but were

inaccurate in the intermediate region.

Adiabatic approximations have been used to find the lowest energies of this

system[25, 26]. These calculations were adiabatic in the context that r varied slowly.

This allowed separability between r and 9 to be assumed. The advantage of this

approach was that it produced rigorous upper and lower bounds to the exact eigenen-

ergies. This allowed the eigenenergies to be bracketed and the errors in the calculation

to be bounded. In these calculations an infinite set of coupled differential equations

was derived. The set of differential equations can not be solved exactly, but approxi

mations were made to allow calculation. If all of the coupling matrix elements were

neglected, then the system of equations could be solved and the solutions were lower

bounds to the exact energies. If only the off-diagonal coupling matrix elements were

neglected then upper bounds were produced. One disadvantage of this method was

that the lower bound was not variational and therefore could not be improved by

adding more terms. Additional terms simply allowed the calculation of higher states,

but did not improve the accuracy of the lower states. Therefore, although the ener

gies were rigorously bounded from both above and below, the errors in the calculation

could not be reduced easily. In the work discussed in this thesis, upper and lower

bounds are also calculated, but both bounds are produced variationally. The advan

tage of the variational approach is that both the upper and lower bounds converge



towards the exact eigenenergies as the number of terms in the expansion is increased.

These convergent bounds allow the errors in the calculation to be rigorously known

and for the calculation to be improved easily.

Because of the seemingly chaotic nature of the energy levels in the inter

mediate region of the magnetic field strength classical methods have recently been

applied to the hydrogenic atom in a constant magnetic field problem [14]. The sys

tem has been studied extensively using quantum mechanics and many calculations

yield very good results for certain ranges of the applied magnetic field. Classically

the hydrogen atom in a constant magnetic field is a simple system which displays

chaotic dynamics. In the two asymptotic regions of zero and extremely high B fields,

the system is completely separable and only stable, periodic orbits are found. As a

magnetic field is applied, the stable orbits found in the standard hydrogen atom be

gin to become unstable. These unstable orbits begin to bifurcate for increasing fields

to create new stable orbits. These stable orbits then become unstable and bifurcate

again until the entire phase space is filled with unstable trajectories. The constant

process of bifurcating unstable orbits becoming stable orbits which bifurcate again

leads to a system with many chaotic orbits and several regular orbits. This feature

can be seen as a consequence of wave propagation along the potential ridge seen in

Figure (1.1). Most solutions propagating along this ridge are unstable. Metastable

states can be found propagating along the center of the ridge.

To date, the best calculation of the bound states of hydrogen in a constant

magnetic field is probably the one of Kravchenko et al. [15]. These calculations use an

iterative method to essentially diagonalize the R-matrix of Fano and Bohn [6, 7]. They

were able to produce results for an extremely wide range of magnetic field strengths

and for many excited states to high precision. This is a very practical method of

calculating the bound states of the system. In order to perform the calculation to

high precision, special numerical libraries were developed which enabled thousands of

significant figures to be kept. This allowed the large numbers of terms of nearly the

same magnitude, but different signs to be added without a complete loss of numerical

accuracy. Although the calculation performs quite well, it shares the feature with the

Fano-Bohn R-matrix method that it does not produce bounds. Therefore it is not

8



truly a mathematically "exact" solution to the problem in the sense that both the

accuracy and the precision can be specified.

The goal of my thesis work is to solve the non relativistic Schrodinger equa

tion for the hydrogenic atom in a constant magnetic field "exactly" in two senses.

The first sense is that the solutions should converge to the exact solutions. In other

words, the solution can be improved to arbitrary accuracy by adding more terms to

the expansion for the wavefunction or by considering more wavefunctions in the sys

tem. Normally convergence is assumed in that the Raleigh-Ritz principle converges

when a complete set of basis functions is employed. Convergence may be deceptive,

however, if the basis sets which are employed are not well adapted to the known

properties of the exact solution. Although the results may converge in the mathe

matical sense, practical calculations can rarely utilize all elements of an infinite basis

set. Therefore, calculations can converge slowly, if at all when a finite subset of a

basis is used. Examples of this effect are well known in atomic physics. For example,

Hylleraas improved the convergence of calculations for helium atoms by adding ri2

explicitly into the trial wavefunctions [16]. Similar effects were found by adding log

terms. The addition of both of these terms were motivated by the Fock expansion.

The second sense in which the solutions should be "exact" is that the en

ergy eigenvalues are bracketed from both above and below and the gap between the

upper and lower bounds can be made arbitrarily small. Therefore, the errors in

the eigenenergies are known rigorously because the theories which are employed pro

duce rigorous upper and lower bounds. If the solutions to the Schrodinger equation

could be found in closed form, the eigenenergies would lie between these upper and

lower bounds. Furthermore, it will be shown that both the upper and lower bounds

converge to the exact solution. Therefore, the calculations in this work are able to

specify that the exact solution lies between the two bounds and furthermore, the

bounds can be "squeezed" to any desired precision. Since the methods used to com

pute upper bounds are well known, this work emphasizes the accurate computation

of lower bounds. In essence, the development of such methods constitutes my original

contribution to the study of atoms in constant magnetic fields. This work can also

contribute to the study of many other systems. The mathematical foundations are



quite general and other systems can be put into a form in which convergent upper

and lower bounds to the exact eigenenergies are able to be calculated.

The first step in solving any quantum mechanical system is to write the

Schrodinger equation. This is derived in chapter two. Because it is already known

that there is no closed form solution to this equation, a series solution known as the

Fock expansion is used. The logarithmic terms which are normally associated with the

Fock expansion are found to be absent for equation (1.1). The Fock expansion[15, 8]

is substituted into the Schrodinger equation and a three term recurrence relation is

derived. The Fock expansion has previously been used to describe the wavefunctions

of hydrogenic atoms in constant magnetic fields by Kravchenko et. al[15]. The success

of that method suggests that the Fock expansion basis can describe the properties of

the exact wavefunction quite well.

In chapter three, upper bounds to the binding energies are calculated using

the Raleigh-Ritz variational principle and the Fock wavefunction. The form of the

Fock expansion is such that when it is used for the Raleigh-Ritz principle, all of the

integrals can evaluated in closed form, and all intermediate series terminate. Because

of this, no approximations need to be made beyond the approximation made in termi

nating the Fock expansion and beyond choosing the number of Fock wavefunctions.

It is demonstrated that the upper bounds found by this method converge to the exact

result as the number of Fock wavefunctions used is increased.

In chapter four, lower bounds to the binding energies are calculated using

the Schwinger variational principle. Normally the Schwinger principle is used to com

pute continuum states and phase shifts. The Schwinger principle was extended by

Maleki[31, 32] in order to apply to bound states as well. The Schwinger variational

principle is discussed, and it is shown that in the special case where the interaction

potential is always positive, that the Schwinger variational principle produces lower

bounds to the exact eigenenergies. The condition for bound states is also derived.

The same Fock expansion wavefunctions which were used to calculate the Raleigh-

Ritz upper bounds are used with the Schwinger principle. Once again, the form of the

Fock expansion allows all of the integrals to be evaluated in closed form. All inter

mediate series terminate so that no approximations are needed beyond terminating

10



the expansion and choosing the number of Fock wavefunctions. It is demonstrated

that the lower bounds converge to the exact eigenenergies as more Fock solutions are

considered.

Chapter five describes the calculation of excited states. It is shown that in

unmodified form, the Raleigh-Ritz variational principle does not yield very accurate

upper bounds to the exact eigenenergies. The reasons for this lack of accuracy is

given and methods for improving the upper bounds are described. Furthermore, it is

shown that the Schwinger variational principle yields accurate lower bounds to the

exact eigenenergies even for excited states.

Chapter six discusses several aspects of the problem which are suggested

by my method. It is shown that if an expansion in terms of hydrogenic Sturmian

functions are used instead of the Fock expansion, all of the matrix elements can be

calculated independently of the physical parameters B and Z. They are also inde

pendent of the variational parameter. This allows one to calculate all of the matrix

elements only once and use them for many different magnetic fields and charges. A

method for finding the bounds for the high field case is also shown. Finally, the

Fano-Bohn R-matrix method is briefly described and applied to the lowest state in

the manifold.

Chapter seven contains conclusions and results of the calculations which

have been made. Appendix A gives the Wigner 3-J symbols which were used in the

calculation. Appendix B describes the Feynman theorem used in Chapter four.
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CHAPTER 2

Derivation of the Hamiltonian and the Recurrence

Relation

2.1 The Hamiltonian

The goal of this work is to find the eigenvectors and convergent upper and lower

bounds to the eigenvalues for the bound states of hydrogenic atoms in a constant

magnetic field. Throughout this report, the constant magnetic field is assumed to be

aligned along the z axis. Relativistic corrections are ignored because they are small

for the magnetic fields considered. The nucleus is assumed to be infinitely massive.

Corrections for the effects of a finite mass nucleus could be added later, but were not

employed in this work. Finally, the entire calculation is carried out in atomic units

[2].
Recently classical analysis of this problem has become popular. This pop

ularity is due to the chaotic behavior of some of the classical orbits of the electron

[14]. An accurate description of the system must be quantum mechanical, however.

The first step in solving any quantum mechanical problem is to write a Hamiltonian

which describes the system. For a hydrogenic atom in an arbitrary magnetic field,

the Hamiltonian is

^  (2.1)

Here, —iV represents the momentum operator in the Hamiltonian, A is the vector

potential, and Z is the nuclear charge. The vector potential is taken to be A =

^{B X r). This potential is in the Coulomb gauge so that V • A = 0 and describes a
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constant magnetic field B = V x A. The vector potential A is then substituted into

the Hamiltonian to obtain,

where L is the orbital angular momentum vector. It is common to introduce a strength

parameter /? = ̂  to scale the magnitude of the magnetic field. Doing so results in
the Hamiltonian

H - ^ ~ ~r

The first and second terms of equation (2.3) represent the radial and angu

lar components of the kinetic energy. These terms are found in any single particle

Hamiltonian that is written in spherical coordinates. The second two terms represent

the interaction of the electron with the magnetic field. The first is a linear term which

is easily removed from the Hamiltonian. The second is the quadratic term which is

of interest. It is this quadratic term which mixes the natural geometry of the system

and causes the Schrodinger equation to become non-separable. The final term is the

Coulombic term, which represents the interaction of the electron with the nucleus.

As one can see, in the limit as 5 -> 0, equation (2.3) becomes the magnetic field-

free hydrogenic Hamiltonian. In the limit as Z —> 0, equation (2.3) is the spherical

representation of the harmonic oscillator. This is exactly as one would expect. This

Hamiltonian is then inserted into the Schrodinger equation to obtain

+ ̂  + sin2 [9) - -
2  2r " ' 2 r

■0 - (2.4)

Unfortunately, it is known that this Hamiltonian has no closed form solutions. This

is because of the change in the natural coordinate system between the high and low
field cases. Since the direct approach can not solve the Schrodinger equation, another

method must be employed. This will be discussed in the next section.

2.2 The Fock Ansatz

The approaches taken in this work are variational. Normally, in a variational ap

proach, the trial wavefunctions are not solutions to the Schrodinger equation. How-
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ever, in the present case the trial solution is chosen in such a way that each basis

function is an approximate solution to the Schrodinger equation. It is relatively

easy to find these basis functions and several methods can be used to do this. In this

work an expansion is substituted into the Schrodinger equation to obtain a recurrence

relation. This recurrence relation is solved to obtain expansion coefficients which al

low the series solution to solve the Schrodinger equation. Unfortunately, each of these

solutions diverges exponentially if taken to infinite order. Therefore very specific lin

ear combinations of truncated solutions are needed in order to satisfy the physical

boundary conditions. This linear combination is found by using the basis functions

variationally. The matrices which are calculated using these variational principles are

then diagonalized. Finally, the expectation value of the Hamiltonian is minimized

to find the optimal eigenenergies. The eigenvectors then yield the constants which

represent the linear combination of the basis functions which best satisfy the bound

ary conditions. This differs from the standard variational approach where the basis

functions are arbitrary. Choosing basis states which are solutions to the Schrddinger

equation insures that any linear combinations of these basis states which are used are

also solutions to the Schrodinger equation.

The trial solution is in the form of the Fock expansion. The Fock ansatz is.

OO

(2.5)
71=0

where

£ — E — mP (2.6)

In equation (2.6) m is the familiar magnetic quantum number. In this particular case,

m is a good quantum number. This is because [B • L,H] = 0. Since B • L = B^Lz,

and Lz gives the quantum number m, m is, conserved throughout the calculation.

The substitution made in equation (2.6) removes the linear magnetic term so that

it does not need to be explicitly calculated. Equation (2.5) is substituted into the

Schrodinger equation, which is then evaluated term by term. The first term is the

radial kinetic energy term.
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1  OO r 1

--V^Tp^ - ̂  --(n + z/) (n + 1/+ 1)
2
^  n=0

+  (n + u + l) (0, (/.).

The centrifugal term yields,

t2 CO t2

sV'. = E (9, .
n=0

The magnetic terms give,

00

fiL.i,. = E mffe-^'r'+'x:: (S, 0),
n=0

and
/92 00 /02

5in^ (») 0. = E y S'"' («) e-^V'+'-^X: (9,0).
71=0

Finally, the Coulombic term is

^  00

^  n=0

These terms are collected into powers of r, and a three term recurrence

relation is written. In order to do this, it is recognized that since the the final sum

must be zero, all terms in the same power of r must vanish. Therefore, the recurrence

relation is,

[(n + u){n + iy + l)- L^] {9, p) =

+ [2v^ (n + z.) - 2Z] (0, P) + p' sin' (9) X„^4 {9, <P) (2.7)

It is important to note that the recurrence relation in equation (2.7) al

ways has non-zero solutions. In the Helium atom case considered by Fock, this was

not true and it was found necessary to add logarithmic terms to Equation (2.5) in

order to obtain a recurrence relation with non-trivial solutions. Each term in the

recurrence relation depends only upon known operators and upon previous terms in

the expansion. These are already specified as starting conditions or calculated in a

previous step when the recurrence relation is solved iteratively. It was not known a
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priori that a solution in the form of the Fock expansion with no logarithmic terms

generates a solvable recurrence relation. The right-hand side of equation (2.7) can be

expanded in eigenfunctions of If one of these eigenfunctions has an eigenvalue of

{n u){n + v 1) then the equation has no non-trivial solution. Such a case indi

cates a "resonance" in the recurrence relation which indicates that the expansion in

Equation (2.5) is not correct. Such "resonances" in the recurrence relation are found

in other systems such as the driven harmonic oscillator. If only trivial solutions could

be found, the logarithmic terms would have to be put back into the Fock expansion.

Then a new recurrence relationship would be found which might be solvable. It is

essential to demonstrate that Equation (2.7) has solutions. This will be done in the

next section. Doing so shows that the Fock expansion with the logarithmic terms

removed can be used as a basis set to form solutions to this Schrodinger equation.

2.3 Solution of the three-term recurrence relations

2,3.1 Spherical Harmonic Expansion

Now that a recurrence relation has been derived, solutions to the recurrence relation

in equation (2.7) must be found. These solutions will form a basis with which the

physical solutions to the problem are constructed. The values of are set to 0

when n < 0. This starting condition allows the rest of the terms of the recurrence

relation to be generated. The requirement that n > 0 rules out irregular solutions

since such solutions can not be normalized and do not have expectation values of

physical operators. This condition agrees with known solutions in the two asymptotic

regions of the magnetic field. For a field of ,8 = 0, the solution must be that of the

"standard" hydrogen atom without any applied magnetic field. In this case, none of

the solutions contain negative powers in r. The other asymptotic region is that in

which the magnetic field is very large compared to the Coulombic field. In this case,

Z —> 0, and the solution is that of a harmonic oscillator. In this case there are also

no terms which contain negative powers in r.

With these starting conditions, the n = 0 term of the recurrence relation is
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examined. In this case

v{p + l)- {e, <j)) = 0 (2.8)

The solution to this well known equation is the spherical harmonic, Y^rri(9, ((>)■ The
spherical harmonics are common in atomic physics and are often used to describe the

angular state of one electron wavefunctions. It should be no surprise that the zeroth

order term of the Fock expansion for our Hamiltonian would have this property.

To find the general solution to this problem, a spherical harmonic expansion

is used as an ansatz. Therefore,

x; {6, = Z («. «*) ■ (2-9)
I

This is then substituted into equation (2.5) to yield a new ansatz

v-. = E E 4>) (2.10)
n  I

In general it is expected that since the spherical harmonics have two indices I and m,

that both of these indices must be summed over in order to sum over the complete

set of basis functions. This is substituted into recurrence relation (2.7) to obtain an
equivalent recurrence relation.

^[{n + i^){n + u + l)- L^] (0, (j))
I

- [2V^ (n + f) - 2Z] («, (S) (2.11)

If the sin^ (9) Yim (9, 0) is written as a sum of single spherical harmonics,
then the angular terms can be removed from the recurrence relation the same way
that the radial terms were. This leaves a recurrence relation in A^i which no longer
contains any spatial variables. To do this, the identity

sin^ (6) = j VteKoo {e,« - jWy no (», <t>) (2.12)
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is used. Substituting equation (2.12) into equation (2.11) leaves a four term recurrence

relation. The last two terms contain products of two spherical harmonics. ̂ 00(^14>) is

a constant, however. Therefore, this term is easily converted to one with only a single

spherical harmonic. The ¥20(6, (l))Yimi9, (f)) term is not changed so easily. Products

of two spherical harmonics can be written in terms of Wigner 3-J symbols, however.

The 3-J symbols are very common in atomic physics and are a compact notation

to describe the coupling of two angular momenta. These products of two spherical

harmonics (which represent angular momenta) can be written in terms of Wigner 3-J

symbols as a sum of single spherical harmonics by using the standard formula [17]

(2^1 -l-1) (2/2 + 1) (2/ -f 1)
Yhmi {0, 4)) Yi^rn2 (^> <P) = Y,

47r

X YL (0,4>)
h  I

0  0 0
(2.13)

h  h I

mi 7712 m

In this particular case the product 1^20 {&, <i>) Yim (d, 4>) needs to be calculated.

The reason for this calculation is that since each term in the Fock expansion for the

wavefunction will have a spherical harmonic term in it, and sin^^ can be written

as a linear combination of the spherical harmonics Too and y20) such products will

be common throughout the calculation. Equation (2.13) allows these products to

be written as sums of single spherical harmonics which are much easier to calculate.

Therefore, the appropriate substitutions are made into Equation (2.13) to obtain

"5 (2/-f 1) (2/'-f 1)1 ̂
Y

47r

0 —m m

2o{e,ci>)Yimie,cf>) = Y

' 2 I' I

0  0 0,

Only a few of the Wigner 3-j symbols can contribute to the sum. The rest are zero

and collapse the infinite sums into only three terms. Therefore,

Yvm'iOA)- (2.14)

T20 [e,<i>)Yim (0,0) =

5 (21 -f 1) (21 - 3)
47r

1-2 1-2

0 —m 0  0m

Y{i-2)m (0, 0)
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+
5 (2/ + 1)

iTT

2l I  I

0 —m m 0  0 0
Yim {0,cf>) (2.15)

5(2Z + 1) (2/+ 5)
, 1

y{l+2)m (^) <P)
2  I 1 + 2 W 2 / 1 + 2

471" I 0 —m m y \ 0 0 0
The notation in the above equation is simplified by setting the complicated terms in

front of the spherical harmonics to functions of I and m to become,

>20 {e,<l>)Yim =

Ci (/, m) y(;_2)m {0, (l>) + C2 {I, m) Yim {0, + Cz {I, m) Y(i+2}m {0, (i>) (2.16)

where Ci, C2, and C3 correspond to the coeflficients in front, of the spherical harmon

ics in equation (2.15). This identity is then substituted into equation (2.11), and

coefficients of like spherical harmonics are set to zero. Doing this finally leaves the

five term recurrence relation.

[(72 + u) (n + u + — I (^l + 1)] — ̂ 2\/—2f (^n + v) — 2Z

2^2 4t: ̂  ,, 2/?^ Att
^

A"

—C2 {I, m) -1
0

in-4}l + ~3~ y "2) ̂̂ n-4)(i+2) (2.17)

2^2 n \ av
"I ^y "^^3 il - 2, m) — 0

It should be noted that the recurrence relation in equation (2.17) that the values of

I are limited. They are limited from below by the nature of the spherical harmonics

which were used to generate the recurrence relation. Therefore I > 0. The maximum

value is also limited, however. The first term of the recurrence relation is [(n-f-i/)(n-|-

u + 1) — l{l + 1)]j4J(^. In this term, all of the variables n, v and I are integers. When

I = n + u this entire term vanishes. Therefore, in order to prevent the solution to the

recurrence relation from exploding, we must have = 0 and = 0.

Thus we insure that = 0 ii I > n + u.

It is important from a programming point of view to be sure that no val

ues of the matrix representing A'^i are accessed beyond the boundaries of the array.

Therefore, the series in I should be properly terminated. Fortunately, the nature
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Table 2.1: Scheme of recurrence relation matrix.

The pattern of the entries in the recurrence relation matrix are shown.

I

u

0 0 X 0

1 0 X 0

n  2 0 X 0

3 0 X 0 X 0 X 0

4 0 X 0 X 0 X 0

5 0 X 0 X 0 X 0

of the recurrence relation prevents the artificial termination of the series in I from

becoming necessary. Table (2.1) shows the scheme in which the values of A'^i are

calculated. In this table 'X' represents elements of the matrix which are non-zero.

'0' was put into some of the matrix elements to make it clear that these elements

are always zero. The values of I are along the horizontal axis and the values of n

along the vertical axis. The matrix is initialized by putting a value into Aq ,^. The

recurrence relation only produces non-zero values ior I = v until the n = 4 term is

reached. At this point, the angular momentum mixing caused by the sin^ 9 in the

■^{n-A)i term causes I + 2 and I — 2 terms to also be produced. The same pattern
repeats itself every four terms by adding two more I terms to the matrix. As one can

see, this limits the possible values of I so that they do not grow as fast as the value
of n. From a practical point of view this is a very important result. If one wishes

to produce the most accurate results possible, the series which are being calculated
should be artificially terminated as little as possible. In this case, the series in n must

be artificially terminated by choosing the order of the Pock expansion terms which

are to be calculated. The angular series are self-terminating, however, if the proper
number of I array elements are specified when the array is initialized. Therefore they
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can be calculated to the order of n which was taken in the Fock expansion.

There are many ways in which to solve this recurrence relation. The the

method that we have chosen is to do this algorithmically. Since the recurrence relation

must sum to zero, it is required that every term cancels. The approach which is taken

is to set the entire set of A'^i to values which make the recurrence relation equal to zero.

The exact amount needed to cancel a previous term is added to A^i. This procedure

is iterated until the desired number of terms in the expansion of the wavefunction has

been reached. The notation

^ a;;, + c}

is used for compactness. The symbol '=>' represents the assignment operator in a

standard computer programming language such as Fortran or C. It is not the absolute

assignment symbol '=' of mathematics. Instead, it can be a self-referential assignment

as is seen above. The equation {A!^i A^i -\-C} means that the value C is added

to the current value of The second term of the recurrence relation is examined.

[{n + v + 1) {n + v) — I {I + 1)] A'^i = ̂2V—2e (n + u) — 2Zj

Using the algorithm described above yields,

[2y/^ (n + I/) - 2Z]
[(tt u) [n f 1) — I [I 1)]^nl !..W„ , } (2-18)

The terms which contains the magnetic interaction — sin^ {6) A!^iYim {0,4>) must be

examined. They yield the contributions

[(n + i') (n +1. + 1) - i {; + 1)]
(2.19)

A'nl + 1) _((( + 1)] ̂(«-4)(I+2) ? (2.20)

-yf 0^0,(1-2,771)
^ i (2.21)

These coefficients are calculated iteratively. First, for a given value of i/

which is chosen, the coefficient Aq^^ is set to be 1.0. This corresponds to the n = 0
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term of the recurrence relation (2.7) which has a solution of a spherical harmonic

= yvm{d,4>)- For the n = 1 term, the substitution in equation (2.18) can
be used since it only refers to the term directly before it. This term alone generates

coefficients until the n = 4 term. The order in which these terms are calculated are

very important. The elements depend explicitly on all of the elements and

the elements depend explicitly on the elements. This makes the

terms indirectly dependent on the terms. Therefore one must make sure that

the terms are calculated before the terms. The magnetic terms which

are calculated mix the angular momentum components so that the wavefunction is no

longer a function of simply one value of /. It is important to note however that this

mixing only changes I by factors of ±2. Therefore, parity is a good quantum number

and even and odd I wavefunctions are in different manifolds. As a result, only even

or odd I states need to be computed in a single calculation.

2.4 Termination of the Fock Expansion Series

Although the Fock expansion series does not necessarily need to be artificially ter

minated beyond the approximation of taking n terms, it is convenient to terminate

the series in a slightly different fashion. As will be seen in the next chapter, many

of the integrals involving the Fock expansion result in terms which contain gamma

functions or powers of n 4- z^. In order to force all of these powers to be of nearly the

same magnitude, the series is terminated in such a way that the maximum power of r

is i^max- This Umax IS choseu so that Umax = ̂max- Such a termination scheme insures

that the maximum power of r of all xl)^ is the same.

The drawback to this termination method is that the number of spherical

harmonic terms for a given Umax (which will be seen in later chapters) is limited.

Mathematically the results are only guaranteed to converge monotonically as the

size of the matrix to be diagonalized is increased. However monotonic convergence

as the maximum order of the Fock terms is increased is assured. Therefore such a

termination scheme does not allow one to increase the maximum I independently of

Umax- This is a disadvantage for strong fields, or highly excited states where many I
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values may contribute.
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CHAPTER 3

Satisfying Boundary Conditions and the

Raleigh-Ritz Variation Principle

In the chapter two, a three term recurrence relation which generates so

lutions to the Schrodinger equation was found in the form of the Fock expansion.

Although these are solutions, they are divergent and do not satisfy the boundary

conditions which are present in the physical problem. Ultimately linear combinations

of these Fock solutions which satisfy the boundary conditions must be found. At

the same time the goal is to bracket the eigenenergies from both above and below.

Upper bounds to the eigenenergies and approximate linear combinations of the ba

sis functions which satisfy the physical boundary conditions can be found using the

Raleigh-Ritz variational principle.

The general method which is normally used for the Raleigh-Ritz principle

is to write a trial wavefunction which is an approximation to a real solution to the

Schrodinger equation. The functional,

{"^trial (<^1) 0:2) ■••On) (Oi, CX2, ...Qfn))
i^trial (Oi, O2, ...Oiji) |^tria/ (Oi, O2, ...Qn))

is minimized. These variational energies correspond to upper bounds to the exact
eigenenergies. Most successful trial functions for the hydrogen atom in a constant
magnetic field problem have used trial functions with many variational parameters
in order to gain finer control over the behavior of the wavefunction. In the case of

the Fock expansion as it has been chosen, there is only one non-linear variational

parameter e and a set of linear parameters which determine the linear combinations

of the Fock functions ipu of equation (2.5). Minimization with respect to the linear
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parameters requires diagonalization of the Hamiltonian matrix in the Fock basis.

Since the Fock functions are not orthonormal one obtains the eigenvalue equation

IMHlipi.') - s Cu' = 0 (3.2)
v'

3.1 Calculating the Raliegh-Ritz Matrix Elements

To use the Raleigh-Ritz principle, the matrix elements

..Vi/iy'[£j — (3.3)

must be calculated. This is the same as equation (3.1), however a pre-normalization

factor has been inserted into the denominator. The reason for doing this is to aid in

the numerical stability of the calculation. Dividing by this pre-normalization factor

causes the terms in the summations which are shown later to become more nearly

the same in magnitude. This pre-normalization does not actually normalize the fi

nal wavefunction because the Fock terms which are used as the trial functions for

the calculation are not orthogonal to each other. When the Raleigh-Ritz matrix is

diagonalized, the final wavefunction is found as a linear combination of these Fock ex

pansion functions. These final wavefunctions will also have to be normalized because

of the non-orthogonality of the chosen basis.

When the matrix given in equation (3.3) is diagonalized, it produces eigen

values Ufe and associated eigenvectors These eigenvectors are linear combinations

of the original Fock trial functions As was stated above, the eigen

vectors are not normalized. Therefore, in order to obtain proper eigenvectors,

is calculated. The approximate eigenenergies then become

Where Vk{e) are the eigenvalues of the matrix u(e). In order to find the optimal

variational energies, Ek{£) is minimized. The lowest energies given by Ek should be
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the best upper bound to the exact eigenenergies which are possible with the Fock

basis functions.

3.2 Pre-normalization of the wavefunction

In order to calculate the matrix elements in equation (3.3), the pre-normalization

factor in the denominator should be calculated in order to make the computation

of the Raleigh-Ritz matrix elements more numerically stable. This factor is easily

found. Writing in integral form and collecting terms,

roo /'27r /"TTroo rZTT riT ^

=[[ (3.6)JO JO JO n n' I V

Yim {0, <t>) Yifm {9, (f)) sin (9) drd9d4>

must be evaluated. The spherical harmonics are orthonormal, however, causing most

of the angular terms vanish. Only the radial integral

^n-\-n'

n  n' I

is left to evaluate. This integral is solvable in closed form and yields the pre-

normalization factor,

ii'Ai'j}=E E E (3.8)
" n' I [2y/-2ej

The integrals which pre-normalize the ■0^' states are exactly the same as those for the

"01/ states. Therefore these will not be evaluated explicitly.

3.3 Calculation of the Raleigh-Ritz matrix elements

In order to calculate the matrix elements, the Hamiltonian operates on the Fock trial
wavefunctions which have been previously calculated. Once the matrix given in equa
tion (3.3) has been constructed, it is diagonalized. These eigenvalues are then used
in equation (3.5) to obtain upper bounds for the exact eigenenergies. The eigenvec
tors which result from the diagonalization of equation (3.3) contain proportionality
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constants. These proportionality constants give the linear combination of the original

Fock trial functions which best describe the exact wavefunction.

Since the Hamiltonian has many terms, it is easiest to operate the Hamilto-

nian on the trial wavefunctions term by term. In order to calculate H\^u'), first the

radial kinetic term is evaluated.

n  I

+  + + (3-9)
n  I

- 5 E E (" + "') (n + "' + 1) (6 A)-
^ n I

The angular momentum operator operates on the wavefunction to yield,

^ EE' (' + 1) («,■)>) (3.10)
^ n I

The quadratic magnetic term evaluates to,

■i 2J2 ^4^2

=

3V 5 „ ,

- I (3.11)V  o „ ^

[Ci {I, m) Y^i_2)m {e, <f>) + C2 {I, m) Yim {e, <f>)
+ Cz (/, m) Y'(;+2)m (^, (t>)

Where, Ci, C2 and Cz are as defined in equation (2.16). Finally, the Coulombic term
evaluates to,

= -Z^^A'i,e-'^'r''*''-^Y,„{eA) (3.12)
^  n I

All of these are evaluated and the results are combined. The results are

then put into the integral — slxjju')- These represent the matrix elements of the
Raliegh-Ritz matrix. Since the integral contains many terms, it is easiest to integrate
in several parts as was done above. As was seen in equation (3.9), there are three
parts to the integral (^,^1 — |V^|7/'j,'). The first term only multiplies the wavefunction
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by a factor of e. This is canceled by the e in each matrix element, and therefore does

not have to be explicitly evaluated. The second term multiplies the wavefunction

by yj—2e (n' + + 1) and reduces the power in r by one. This results in a known

integral which evaluates to

E E E 7" (313)
"  n' I [2^/^J

The third term multiplies the wavefunction by (n' + u') {n' + u' + 1) and reduces

the power in r by two. This integral evaluates to

4Si: 7" (3.14)"  n' ' {2y/-2£j

The angular momentum term ̂  multiplies the wavefunction by I' {I' + 1), and re
duces the power in r by two. Evaluating this integral yields,

^ E E E' +1) (3.15)"  n' I ^2y^-2£j

The Coulombic term —f simply multiplies the wavefunction by — Z and reduces the
power in r by one. This integral evaluates to,

^ 1^1^2-j'^nl^n'l—f .n+n'+u+u'+2
"  n' I {2\/-2£j

The magnetic term has several parts. The integral involving the first term on the

right hand side of equation (3.11) is

1  roo r2TT f-K

L L L EEEE<l<Te"'-^''-»+"'+«''+^ (3.17)0  JO JO n n' I I'

Yim (^, 4>) Yvm' {G, 4>) sin (0) drdOdcj)

evaluates to

1/3' E E E ■ (3.18)Q  ̂ Z—* m nl f ^ n+n'+f+i^'+Sn  n' I \2^y-2£j

The integral involving Ci{l,m) on the right hand side of equation (3.11) is

1  I A-TT r27r rTT ,

IVT'' I L L EEEE'4J,<.,C,(i',m)e-2^V"+"'+'-+''+2 (3.19)0 V 0 ■'O JO JO n n' I I'
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yim {0,0) Yi'm {9, <f)) sin (6) drd6d(j).

This becomes

(i + 2,m) (3.20)
^  n n' I l2y/-2£j

The integral involving the C2{1, m) term in the right hand side of equation (3.11) is

1  Att /"OO r2Tr rTT

( L L (3.21)0 V 0 JO JO JO ^

Yim {6, (jj) Yi'm {9,0) sin (6) drdOdcf).

This evaluates to

-iJfe'ZEE KXnC. (i. m) - (3.22)
^  n' I (2V-2ej

Finally, the integral involving Cz{l,m) on the right hand side of equation (3.11) is

1  ! Att /"OO /'2t /■t

L L EEEE'4»l<.fC3(r.m)c-''.^-r."+"'+'-+''+' (3.23)O V 0 JO JO JO n' I I'

Yim {9,0) Yi'm {9, 0) sin (6) drddd4>.

This evaluates to

E E E (1 - 2, m) (3.24)"  n' I i2^/-2£j
Gathering the magnetic terms terms together results in

^ ^2 -p ^1. r (n + + ;/ + t/' + 5)3*^ 2^Z^Z^-^nl ——^n+n'+f+i/'+S [o.ZO)

1  At:

IVT

n n' I

Atc II —Ci {I + 2, m) + 1 - y ^C2 {I, m)
V 0 ~  "^"'('-2) I •

If all of these terms are collected, a matrix can be formed which has ele

ments which are labeled by the indices v and u'. Finally all of the terms which have
previously been evaluated can be combined to give the Raleigh-Ritz matrix. This
final matrix is
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{^u H-e Ipu') =

EEE
n  n' ;

(n' + + I) A'' A''' ̂V ze [n + U -\- 1} A^iAj^n .ri+n'+v+u'+2

. n+n'+iv+i/'+l

1 / , i\ / I / 1 \ ji/ ^1/' r (tz + 7l' 4" + Z^' + 1)

2  (2/::2?)

2  (2v/=&)'. n+n'+iz+i^'+l

7  r(n + n' + i/ + z^' + 2)
(2v^)n+n'+i'+j2'+2

1 o2 r (n + n' + z/ + z^' + 5)
~ 2 4 ̂nZ"

(2^^)n+n'+f+i/'+5

(3.26)

/ 47r'-C,(i + 2,mX,„«)

/ 47r \ / /47r
+  [1-\I-C2 {I, m) 1 a;;, + ̂/-Cs {I - 2, m)

3.4 Diagonalization of the Raleigh-Ritz matrix

As was described above, the eigenvalues of the matrix

(3.27)

fpu')must be found. Here, (ipultpu) was calculated in equation (3.8) and H-e

was given explicitly in equation (3.26). This is easily done on the computer. To

do so, first the coefficients of the wavefunctions, are calculated and put into

arrays. Two arrays are used corresponding to the indices u and u'. These arrays

completely represent the Fock trial wavefunction because all other parameters of the

Fock expansion are known functions. These coefficients are then used to explicitly

calculate equations (3.8) and (3.26). Doing so yields the matrix elements of the

Raliegh-Ritz matrix. These matrix elements are then stored in a two dimensional
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array to represent the complete matrix Raliegh-Ritz matrix. Once all of the elements

of the array are calculated, it is passed to the standard LAPACK library, and the

diagonalization routine dgeevxO is called. The eigenvalues Vk{e) and eigenvectors k

of this matrix are returned from this routine.

The LAPACK libraries[28] are convenient because they are are free, accurate

and highly portable. The diagonalization routine dgeevxO does not sort the eigen

values, however. Therefore, sorting routines were written and the lowest eigenvalue

was chosen to correspond to the ground state. The assumption that the ground state

is the lowest eigenvalue is reasonable as long as no other levels cross that of the

ground state. Examination of the eigenvalues indicate that this is a good assumption

since there is a large separation between the values of the lowest and second lowest

eigenvalues. This can be seen in figure (3.1).

3.5 Normalization of the final results

Although the Raleigh-Ritz matrix has been diagonalized, the results still need to be

normalized so that

Ordinarily, the pre-normalization process would be sufficient for this. In this case,

however the Fock expansion basis functions are not orthogonal to each other. There

fore, a final normalization must be done at this point. To do this, the final wavefunc-

tion is written as

(3.29)
1/

Here, are the components of the eigenvector and represent the wavefunc-

tions defined in equation (2.5). Therefore, the normalization factor is,

=  1^.) (3.30)

Substituting the Fock trial functions from equation (2.10) into gives

roo r27r rTTroo rZTT /•TT

(MM = 111
■/U JU n n' I I'

n+n'+f+i/'
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Comparison of Two Lowest Eigenvalues of the Raleigh-Ritz Matrix
B=.05

CO
0)
3
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>
c
g>
Lu

-0.4

-0.6 -
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-0.5 -0.4 -0.3 -0.2

e

Figure 3.1: Two lowest matrix elements for the even manifold: The two lowest matrix

elements in the even manifold are plotted here. It is shown that these two matrix

elements are separated and do not appear to cross.
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(0, <^) Yira {9, (j)) sin ddrded(l>

= V y V ,1*^ A"' + n' + v + v' + Z)2-j Z-, nl^n'l ^2y^Zy)n+n'+i/+i/'+3

Therefore, substituting the above equation into equation (3.30) yields the final nor

malization factor

f-) = E E E E E (3-32)

This normalization factor is computed and substituted into the denominator of the

second term in equation (3.28).

3.6 Minimization of the Raleigh-Ritz matrix eigenvalues

Once the eigenvalues of equation (3.3) are calculated, the value of the eigenvalues of

Ek{e) = e+ (3.33)

should be minimized. The value of Ek{e) at its minimum represents the best upper

bound to the exact eigenenergy which can be found with the chosen trial wavefunction

using the Raleigh-Ritz method. Figure (3.2) shows this minimization process for the

ground state of hydrogen in a field of /? = 0.05. The vertical axis represents the value

of the eigenvalue which corresponds to the ground state. The horizontal axis repre

sents the variational parameter e. The minimization occurs at ,5 = 0.4975264802548

and gives an approximate ground state energy of E = -0.49752648040 au. If the

solution were exact, then e and E would be identical. Figure (3.2) also shows the

intersection of the line E = e with the value of the eigenvalue which represents the

ground state energy of the atom. It is clear that this intersection occurs very close to

the minimum of the eigenvalue.

An estimate of the errors in the calculation can easily be found using the

Raleigh Ritz method. In order to use this estimate, two assumptions must be made

about the calculation, however. The first is that the Fock expansion converges to

the exact wavefunctions if an infinite number of terms are taken in the expansion.

This was proven by Hylleraas[16] in the case of Helium, and a similar method can
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Minimization of Raleigh-Ritz Matrix Element
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Figure 3.2: Minimization of Raleigh Ritz Matrix Element: In this figure the lowest

eigenvalue of the Raleigh-Ritz matrix is plotted as a function of the variational pa

rameter e. The minimum of this eigenvalue is easily seen as well as that minimum's

close proximity to the line E = e. If the eigenvalue were a perfect eigenenergy, the

minimum would occur exactly on this line.
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be used to do this for the hydrogen atom in a constant magnetic field. The second

assumption is that all solutions to the Schrodinger equation given in equation (1.1)

can be represented by the Fock expansion. This has never been formally proven. If

both of the assumptions are made, then because H = e 1^^),

7t4^ = 0 (3.34)
for a "perfect" solution. Therefore, the value of equation (3.34) at the e which

minimizes equation (3.28) should give an estimate of the errors in the calculation.

This estimate is not absolute, however. Upper bounds to the eigenenergies must be

found in order to bracket the eigenenergies.

Table (3.1) shows how the energy varies as the number of Fock functions

and their order are varied. The third column of table (3.1) shows the convergence

of these terms towards zero as the number of terms in the Fock expansion increases.

This estimate of error seems to converge monotonically towards zero until thirteen

terms are used in the Fock expansion. A possible explanation for this non-monotonic

behavior is given in the next section.

3.7 Convergence of the upper bounds as a function of the

order of the Fock expansion

Although the Fock expansion technically solves the Schrodinger equation for hydrogen

in a constant magnetic field, this assumes that the Fock expansion is taken to infinite

order.

Yi A„,K|r. {«. 0) (3.35)
n=0 I

The recurrence relation in equation (2.16) produces solutions to the Schrodinger equa

tion. These solutions are exact for an infinite expansion. For a finite expansion,

however, there is always a remainder term. Furthermore, as the order n increases, so

does the maximum power of the radial variable r. This leads to several interesting

convergence properties of the Fock expansion when used with the Raleigh-Ritz prin

ciple. For small B-fields, the coefficients Ani corresponding to large n are very small.
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Table 3.1: Convergence of the Raleigh-Ritz calculation for = 0.05.

The lowest energy for a Raleigh-Ritz calculation of the ground state of hydrogen is

shown with an applied magnetic field of /d = 0.05. The energy shown converges as

the number of terms in the Fock expansion increases.

Number of Fock Terms and Order Energy (an) Vk{s)

3 -0.49752069817 0.00289855022

4 -0.49752643540 0.00010184888

5 -0.49752646442 4.05067082261e-05

6 -0.49752647878 1.06244711858e-05

7 -0.49752648004 -1.89165839093e-06

8 -0.49752648033 -6.96123124561e-07

9 -0.49752648040 -1.01409166758e-07

10 -0.49752648039 5.65905132669e-08

11 -0.49752648040 1.29681568440e-08

12 -0.49752648040 -4.76531843997e-ll

13 -0.49752648040 -4.88791618292e-10

14 -0.49752648040 -1.62756474964e-ll
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Therefore solutions depend mostly on small order coefficients Ani. The energies will

appear to converge before the remainder terms become very large.

Table (3.1) shows the convergence properties of the Raleigh-Ritz calculation

as a function of the number of terms taken in the Fock expansion coupled with the

order of the Fock expansions used. In the calculation which produced table (3.1),

the order of the Fock expansion is not independent of the number of Fock expansion

terms. For a small B-field it is shown that the results converge to an upper bound

of the exact eigenenergy as the number of terms in the Fock expansion are increased.

In the case of Table (3.1), the ground state energy is calculated at a magnetic field

strength of = 0.05 atomic units. Although such a field is well beyond the reach of

simple first order perturbation theory, it is still small enough that the geometry is

basically spherical and results to five significant figures can be calculated with only

three terms. As the number of Fock terms is increased, the best upper bound to the

exact eigenenergy begins to converge asymptotically to the exact value. After only

eleven terms, the calculation converges to the number of significant figures calculated.

The result for ten terms show the feature that the upper bound does not

converge monotonically. The trend appears that the result should have converged to

the desired precision in only nine terms. However, the result for ten terms in the

Fock expansion is actually slightly higher than the result for nine terms instead of

the expected lower result. This is because of the way that the trial wavefunctions

are calculated. If an infinite number of Fock basis states could be used, the exact

wavefunction would be
00

^ ^ (3.36)
u-O

where the coefficients Cu correspond to the eigenvectors of the matrix

For practical purposes, however, only a finite matrix can be calculated and diagonal-

ized. We define the notation

^(N) ̂  (3.37)
u-O

Where N corresponds to the number of Fock basis states that are used. Ordinarily,

adding a term to this basis should never lead to an increase in the upper bound to
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the eigenvalue. This is because the final coefficient in the expansion Npf can be set to

zero in the expansion, making the final wavefunction equivalent to an expansion with

one less term. This is not true in the case which has been calculated, however. The

reason for this is that the Fock basis functions are not fixed, but are a function

of the number of terms in the Fock expansion. In the calculation reported in Table

(3.1), the number of terms taken in the Fock expansion is the same as the number

of functions which are used. Therefore, increasing the number of functions which are

used also increases the number of terms in each Fock function. This variability in the

basis set leads to possible increases in the calculated upper bound as the number of

terms is increased. This variability is also seen the error term when thirteen terms

are used in the Fock expansion. The error decreases once again for fourteen terms.

In table (3.2) we see the same calculation as that shown in table (3.1)

except that it is for a much larger applied field of ̂  = 0.2. In this case we see that

the convergence is no longer monotonic. The energy becomes lower until the number

of Fock functions and their order reaches five. After this point the results diverge. In

fact, for a large number of terms, this divergence is quite severe. This is because the

remainder term from calculating the coefficients of the Fock expansion become quite

large.

A detailed exploration of the convergence of this calculation is given in Table

(3.3). In this case the Fock expansion is taken so that the number of terms can be

specified independently of the number of functions. This also allows the number of

Fock functions to be chosen independently from the order of the Fock functions used.

As one can see, as the order of the Fock expansion is increased, the minimum energy

becomes higher. Therefore an increase in the order of the Fock expansion makes the

calculation less accurate. On the other hand, as the number of Fock functions used

is increased, the energy becomes lower and improves monotonically.

We can see from these two cases that the Fock expansion is not convenient to

use with the Raleigh-Ritz variational principle. The general trend is for the energies

to increase (i.e. to get worse) as the order of the Fock functions is increased. On

the other hand, the solutions always improve as the number of Fock functions is

increased. This feature leads to a method of allowing the Raleigh-Ritz principle to
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Table 3.2: Convergence of the Raleigh-Ritz calculation for /5 = 0.2.

The lowest energy for a Raleigh-Ritz calculation of the ground state of hydrogen is

shown with an applied magnetic field of /? = 0.2. It is seen in this case that the

energy does not converge as the number of Fock terms increases.

Number of Fock Terms and Order Energy (an)

3 -0.46386328339009

4 -0.46403613501216

5 -0.46456269423592

6 -0.46427491750252

7 -0.46399164930861

8 -0.46329016681068

9 -0.45993569807247

20 -0.24537462068371

Table 3.3: Convergence of the Raleigh-Ritz calculation as a function of the order of

the Fock expansion and the number of functions.

Number of Fock Functions 3rd order 4.th order

2 -0.46386283390090 -0.46356754467774

4 -0.46413796291041 -0.46368626905290

6 -0.46414991325643 -0.46369345622131

8 -0.46423345160191 -0.46369409130916

18 -0.46424666137469 -0.46374985816947

Number of Fock Functions 5th order 6th order

2 -0.45529332692395 -0.40571488070206

4 -0.46221365142844 -0.45218737666694

6 -0.46229468576427 -0.45298778470024

8 -0.46230291934447 -0.45306825873346

18 -0.46234571313618 -0.45319677878570
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produce convergent upper bounds to the exact solutions. The most efficient method

to calculate these upper bounds probably involves varying both the order and number

of Fock functions. The best algorithm for doing this has yet to be discovered.
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CHAPTER 4

Finding Lower Bounds using the Schwinger

Variational Principle

In chapter two a series solution in terms of the Fock expansion was found for

the hydrogenic atomic in a constant magnetic field problem. In chapter three upper

bounds to the exact eigenenergies were found by using the Raleigh-Ritz variational

method. The upper bounds could be improved by including more Fock functions in

the basis. In principle if all terms were included the upper bound would equal the

exact energy. In practice only a finite number of terms are taken, but the upper bound

can be made to approach the exact value to an arbitrary accuracy. In other words,

if a tolerance in the energy were specified one should be able to add enough terms

to reach that goal. To do this it would be necessary to know the exact eigenvalue or

to have an accurate lower bound to the exact energy. If the lower bound can also be

made to approach the exact energy, then as the bound is improved then one could

specify a definite tolerance AE and by improving both the upper and lower bounds

until they differed by AE one would effectively have an exact solution within a given

tolerance to the eigenvalue problem. Previous lower bounds, for example those given

by the adiabatic method[20, 25] did not have this property. The lower bound by that

method can never equal the exact energy except for the trivial case when B = 0. The

goal of this dissertation, is to bracket the energy eigenvalues from both above and

below. Therefore, a method must be found to calculate lower bounds to the energy

eigenvalues as well as upper bounds.

The method used to calculate the lower bounds in this work is the Schwinger

variational principle[38, 39]. The Schwinger variational principle was originally used

for continuum states and has been used to calculate such quantities as phase shifts.
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Maleki showed that the Schwinger variational principle is also applicable to bound

states [31, 32]. We will derive the condition for bound states for the Schwinger varia

tional principal. It will be also be shown that that the Schwinger variational principle

gives lower bounds to the exact eigenenergies in the case of the hydrogenic atom in a

constant magnetic field. The Schwinger principle will then be applied to this system.

The Schwinger variational lower bounds do equal the exact eigenenergies when the

trial function equals the exact eigenfunction. By using the Fock expansion as the

trial function it is possible to improve the lower bound indefinitely (assuming that all

solutions to the Schrddinger equation can be represented in the Fock form). Thus,

by using the Fock expansion to compute upper and lower bounds it is possible to

"squeeze" the exact energy from both above and below. In this way one can specify

a desired tolerance and by computing both bounds, insure that the exact energy is

computed within a desired tolerance. In this sense the Fock expansion together with

the Raleigh-Ritz and Schwinger variational principals provide an exact solution for

the energy eigenvalues. Neither method, however, gives an expression for the error

in the wavefunctions. This means that the accuracy of important physical quantities

such as the dipole matrix elements is not similarly insured. While there are methods

to bound these quantities, perhaps using the Fock expansion, that is beyond the scope

of this work.

In the Raleigh-Ritz calculation shown in Chapter three, the Schrodinger

equation was solved approximately. In the Schwinger variational principle this same

equation must be solved again. The Schrddinger equation can be written in compact

form as,

\h-e + Vi)=0 (4.1)

where

'' = - f W-2)
z  r

In this notation, e is the energy h contains the kinetic and Coulomb terms and Vj

is the interaction potential. The interaction potential must contain all terms in the

potential which is not contained in h, and in this case contains the non-Coulombic

part of the potential. Other choices can be made for which terms are included in hi
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and which are included in Vi. This will be seen later.

It may not be possible to find closed form solutions to equation (4.1). If

closed form solutions cannot be found, approximation methods must be used. In

the Schwinger variational principle, the approximation used is to replace the exact

interaction potential Vi with a separable potential of the form,

^ Vi \ipt) mvi .4 3s

In equation (4.3), |V't) is a trial wavefunction. The potential is a non-local po

tential. Its meaning is that V"^ operating on an arbitrary state vector \F) is given

V" IF) = (4 4)

This property insures that when \ipt) equals the exact solution l'^), then V^\ip) = V\ip)

and it follows that when \rpt) — |t^), then the solution with equals the exact

solution. This insures that energies computed with equal the exact energies when

the trial function equals the exact eigenfunction. It will be shown in a later section

that this substitution leads to lower bounds to the exact eigenenergies in the case of

a hydrogenic atom in a constant magnetic field.

In order to perform this calculation, it will first be shown that in certain

cases, substituting the Schwinger potential for the full interaction potential produces

bounds. Furthermore, it will be seen that in the particular case of a hydrogenic atom

in a constant magnetic field that lower bounds are produced. A method for solving

the modified Schrodinger equation will the be demonstrated. To prove the lower

bound properties of the Schwinger variational principal extensive use is made of the

Feynman theorem discussed in the next section.

4.1 The Feynman Theorem

The Feynman theorem[29] relates small variations of the eigenenergies, or phase shifts

in the case of continuum states, to small variations in the potential. Specifically if V

depends upon a parameter A then so will the eignenenergy E. Feynman's theorem
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states that

dX
= U{X) dV

dX
^(A)

Integrating this equation between the limits a and h gives

dV{X)
E{h) L ^(A- E{a)

dX
))dX

(4.5)

(4.6)

One can then choose the potential to be of the form V(A) = 1^1 + A(IAo — Vi), where Vq

is the original potential and Vi is a potential which is either always greater than or

always less than the original potential[30]. If such a potential is used it is clear that

1/(0) = Vi and that 1/(1) = Vq. Therefore, substituting this potential into equation

(4.6) and making the limits of integration vary between 0 and 1, yields

E{1) - E{0) = [' mX) \Vo-V,\iP{X)) dX
Jo

(4.7)

From equation (4.7) it is seen that that £'(1) represents the energy with the original

potential and £(0) represents the energy with a modified potential. If Vq - is a

positive quantity then £(1) - £(0) also is positive and therefore the energy with the

exact potential is greater than that with the modified potential. If Vq — V] is negative

then £(1) — £(0) is negative and the energy with the exact potential is lower than

that with the modified potential. In other words, if Vq - Vi is negative, then if V] was

substituted into the Schrodinger equation, it would produce lower bounds to energies.

If Vo < Vi is positive then if Vi was substituted into the Schrodinger equation it would

produce upper bounds to the energies.

4.2 Conditions for which upper and lower bounds are pro

duced with the Schwinger variational principle

The results from the previous section are used to show the conditions which allow the

Schwinger variational principle to produce bounds. The Schwinger potential given in

equation (4.3) is employed as V] in the Feynman theorem equation (4.7). This yields.

£(l)-£(0) = ̂' UiX) Vi- V'(A)) dX (4.8)
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Equation (4.8) is then rewritten as

X  /' [W(A)|V,|<i.(A)) (A|V||« - <V{A)|l'|,^,) {0,|V,|V'(A)>]<iA
Jo

The Schwartz inequality [37] shows that if V7 has the same sign everywhere, then

[(^(A)|yil^(A)) - mx)\vM {cf>t\Vimx))] > 0

Taking into account the first factor on the right hand side of equation (4.9), if Vj > 0

then the Schwinger potential gives a lower bound and if Vi < 0 then the Schwinger

potential gives an upper bound. This is because the integrand on the right hand side

of equation (4.9) is always positive or zero. Therefore, the entire integral must also be

non-negative. The Schwinger principle can not give bounds in general. However, if

the potential Vi does not change sign, it follows from the above argument that upper

or lower bounds are obtained.

4.3 Derivation of the condition for bound states in the Schwinger

Variational Principle

In the previous section it was shown that the Schwinger potential yields bounds

for a potential V} which does not change signs. The conditions for approximating

the energies of bound states should be found. The Schwinger variational principle

was originally derived for continuum states to compute approximate phase shifts and

scattering lengths. It was recognized that bounds on these quantities could be derived

in some cases[33]. Still later the bound properties of the Schwinger variational prin

ciple were employed to compute eigenenergies of atomic systems [31]. In this section

the equation for bound states is derived. Normally one would solve the Schrbdinger

equation, \hi — e + Vi) = 0. The solution to this can be written as

\^) = \^n) + GV,\i;) (4.10)

Here, {(ph) is the homogeneous solution to the differential equation and G is the

hydrogen atom Green's function. This Green's function is defined as the solution to
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the equation

(A-£)|G) = -1 (4.11)

In the case of the Schwinger potential, VJ is replaced with given in equation (4.3).

This yields,

For bound states, the Green's function is for outgoing waves and there is no homoge

neous solution to the differential equation. Here it is recognized that outgoing waves

for negative energy decrease exponentially for large r, while incoming waves increase

exponentially for large r. Therefore the bound state solution can be written as.

Equation (4.13) is multiplied on the left by {(l)t\V is divided by (d>f|F|'0®). Collecting

all terms onto one side of the equation yields the condition [31]

{(t>t \Vi-ViG°V,\ <l>t) = 0 (4.14)

In the case where the trial wavefunction is written as a finite linear combination of

functions the determinant is used

det{{<Pt \V:-VjG°Vi\ <Pt)) = 0 (4.15)

Here, the Green's function G° is a function of e and solutions can only be found

when e corresponds to a bound state.

4.4 Evaluation of the Coulomb Green's function in terms of

hydrogenic Sturmian functions

The condition for bound states was found in the previous section. The Schwinger

variational principle will now be applied to the problem of finding the bound state

energies of hydrogenic atoms in a constant magnetic field. In this case, the trial

wavefunction remains the same Fock trial wavefunction used for the Raleigh-Ritz
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principal, given in equation (2.5). Next, the Green's function must be found. The

Green's function is defined to be,

(4.16)

If one expands the Green's function in an eigenfunction expansion and sub

stitutes it into equation (4.15) then one would obtain an expression of the form

i:nVim{<Pn\Vim{E) V 4>= ((j)t i-
E-E^

t . (4.17)

If the trial functions (j)t do not depend explicitly on E, then m{E) would have the

general form of an cotangent. This is because as E is varied there are poles at each

energy eigenvalue of the Coulomb potential E^. These poles cause discontinuities in

m{E) shown schematically in figure (4.1). Because of the cotangent like behavior,

there are an infinite number of zeros in the function m{E). It has been shown that

zeros in this function correspond to bound states of the entire system. Therefore,

a single trial function is able to reproduce not only the ground state of the system,

but all of the excited states as well. This is different from the Raleigh-Ritz principle

which can only produce lower bounds to the lowest state in any manifold. In order

to use the Raleigh-Ritz method for excited states, the principle needs to be modified.

The ground state is removed from the basis and the basis is then re-written so that it

is orthogonal to the computed ground state. In the Schwinger variational principal,

on the other hand, no re-orthogonalization needs to be done. The trial functions

automatically produce the entire spectrum. Thus, the Schwinger variational principle

is very convenient for calculating excited states.

In our case we are using the Fock expansion, which produces trial functions

which depend explicitly on energy as a parameter. Because of this explicit depen

dence, a spectrum is produced which no longer contains all of the excited states. In

the case of the Fock expansion the number of excited states produced is the same as

the number of terms which are taken in the expansion. This does not cause a prob

lem in producing results for excited states since the number of Fock terms is chosen

arbitrarily. An alternative to the eigenstate expansion is an expansion in terms of
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Figure 4.1: Behavior of m{E): The cotangent like behavior of the matrix elements

of the Schwinger matrix is shown schematically here. The poles occur at the bound

state energies of hydrogen in no external field.
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Sturmian functions. This will be seen in the next section. In this case, the Green's

function can be expanded in terms of hydrogenic Sturmian functions.

4.4.1 Hydrogenic Sturmian Functions

The hydrogenic Sturmian functions are the solutions of a Sturm-Liouville equation

very similar to the standard Schrodinger equation. The placement of the eigenvalue

in this equation is diflFerent, however. In this case an equation of the form

Timip + KimVil; = El/; (4.18)

is be solved. Instead of E being the eigenvalue, E is kept fixed. The Sturmian eigen

value is then which is a function of E. For the hydrogenic Sturmian problem,

the potential V is the Coulomb potential with unit charge. The solutions to this

differential equation are hydrogenic Sturmian functions

Snim (r, e, (t>, E) = (2v^r) Yim {0, <i>) (4.19)

with Sturmian eigenvalues

E = (4.20)

or

Kim{E) = n\/-2E (4.21)

These hydrogenic Sturmian functions can are used as a basis in which the

Green's function is expanded. First, the Green's function is written in terms of

partial waves so that Here gim{^) is the Im component of

equation (4.16). This can be written explicitly as

" (n - T,„ - V)
It is convenient to expand this function in terms of known functions. Since the

Sturmian functions defined in equation (4.19) form a complete basis, gim{^) can be

expanded as

9lm{^) — (4-23)
q  p
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Multiplying both sides of equation (4.19) by {Q. - Tim — V) and then using equation

(4.18) yields

{fi - T,„ - V)g,M = 1 = EE<h,\^ -E+ - 1)V]|S|„><S„1„| (4.24)
q  p

Multiplying the above equation on the left by results in

= EEop^K" - (4.25)
q  p

or defining P = |^j this can be rewritten as

{5„m| = E "p. [(" - E) {s^,„\s^,„) + (aS„ - l) (S,^„|] (4.26)
P

For the case where Q, = E, multiplying on the right by ̂ 15^;^), the results in [34]

^n,p' — O'p'ni^nlm ~ ̂)^nlm (4-27)

Therefore, ap/_„ can be written as

V,n = nTl -\)B^ (4.28)
V nim )Pnlm

Therefore, the hydrogenic Green's function can be written in terms of Sturmian func

tions by substituting equation (4.28) into equation (4.23) to obtain

W£)=E7]#4^ ("-29)
q  \ qlm 'Pqlm

4.4.2 Evaluation of

Pnim is defined as

/JS™ = {S^JV\SgJ = -Z f (2x/=2£r)]'<ir (4.30)
If the substitution, u = 2\/—2Er is made, then the integral can easily be evaluated[35].

The result is

Z  r(n-f/ + l)
Pnlm (2v/T^)2/+2 (n - / - 1)! ^ ^ ^
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4.5 Application of the Schwinger variational principal to the

hydrogenic atom in a constant magnetic field problem

The Fock expansion solutions shown in equation (2.5) can be used as trial functions

for the Schwinger variational principle as well as the more common Raleigh-Ritz

principal. In order to do this, the Fock solutions

V'" = E E ,t>)
n  I

are substituted into the condition for bound states

F{E) = det((^,|yi - ViGyilV.') = 0

(4.32)

(4.33)

In the case of the hydrogenic atom in a constant magnetic field problem, the added

"interaction" potential VJ is the magnetic field potential

V, = ̂r^sin^ie)
This interaction potential is substituted into equation (4.33) to obtain

det (•01/
o2 o2 o2

—r^sin^(^) ——r^sin^(0)G—r^sin^(^) 0.' = 0

(4.34)

(4.35)

r'Sin*'(0) 0^'^4.5.1 Evaluation of

The first term to calculate in equation (4.35) is

01/
/?2

01/' ) =

tTXeEEEEE K,
^  n I m n> V m'

From equations (2.12) and (2.16)

-V-^r n+n'+i/+i/'4-4
fl/rr^fC T (4.36)

sin\e)Yvm'{eA) = [Ci(r,m')T(,'-2)m'(^,0)
+  m') Y,m' {e, 0) + Cz{l', m')y(/'+2)m'(0,0)] (4.37)
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Evaluating the radial component of the integral and substituting equation (4.37)

gives,

^r'sin'O \  ̂ + 5) r ,
2  (2yr2i)"+"'+''+-'+5

I'm'

2  / 47r 2 Att

2  /47r 2-3yyCs(r,m)y;;(«»y(,,+2)„(e,0) + 3yi;.,(«,0)yi....(»,0) (4.38)

The angular integrals are evaluated easily by taking advantage of the orthonormality

of the spherical harmonic functions. The evaluation of this integral results in four

terms.

A sin^ 9

—  A'^ A'^ r' /'/j.o Nr'(n. + n' + 1/ + u' + 5)3y 5 .^Z^.^^ni^n'(/+2)^U'+ ^2yir2i)n+n'+J/+i''+5

_  *v 41/' p (j xr(n + n + u + u +5)
3 V 5 ^ (2\ZT^) +5

- ^)/¥EEE^^,<-,-2,g3(i - tTtrllrJ' (4.39)(2v'
"  n' i

-2e)"+"'+''+'''+5

Af 41/' r(n + n' + + 5)
3  (2-y/T^)"+"'+''+'''+5

4.5.2 Evaluation of {tpu\ViG°Vi\tp^').

The second term of the condition for bound states is

{'p.mssI'm'
iwv,I = EEE gE a -1)

n' I' m' Pn'l'm'K^ri'l'm'

The two integrals in the numerator must be evaluated. These are

(4.40)
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The infinite sums in equation (4.40) can be collapsed by evaluating the Green's func

tion at e instead of E. This does not give the optimum lower bound, but the result

is still a lower bound as seen in the arguments given in section 4.2. This procedure

makes it possible to avoid truncation of the series. We shall see that the lower bounds

are still convergent. Therefore the integral |Vi| is evaluated. This integral

can be written explicitly as

f E E E E /" (2x/=fc) dr (4.41)
^  n n' I

I n
Ja

The substitution x = 2\/—2er is made. The radial component of this integral then

becomes
roo

/  (4.42)
Jo

1  r°°

(2v^)"+''+''+5 Jo

Integrals of this form can be evaluated analytically [36]

r e-V-'L!i{x)dx = [Be(7) > 0]

Therefore, the radial component of the equation (4.41) evaluates to

/ / n/i \ ^ r(n-f z/-H/'+ 5)r(n'- n - - 4)
(  I II ~ (27^)"+"+''+^ {n'-I'-l)\r{l'-n-u-3)

One problem with the above expression becomes immediately apparent. Because I' is

always less than n, {I' — n — i/ — 3) is always a negative integer. The gamma function

has poles at each of the negative integers, however. In order for equation (4.43) to

yield a value other than zero, it must be evaluated for n' < n -t- 4- 4, so that the

numerator is also evaluated at the poles of the Gamma function. Doing this allows

the substitution

r(-n) ^ ^ m\ ^
Equation (4.44) is then substituted into equation (4.43) to yield

—r^sin^(0i A _ (-1)'"""*"^ r(n-I-z/-h -4 5)(n-I-z/- -h 3)!nim j^ (2v/i:^)n+i/+z'+5 (n'-— l)!(n-f z/— n'-l-4)!
(4.45)
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Substituting this evaluated radial integral into the full integral leaves,

q2 f-lV'-n'+l

2 t-rrT(2v^)"+''-''«
r(7z + i/ + /' + 5) (n + f — /' + 3)!
(n' - — l)!(n + — n' + 4)!

A''jrCr^(9,4>)Y,.„,(0,4>)smHdaLin

(4.46)

(4.47)

The angular integral was previously evaluated in equation (4.38). Therefore the

integral becomes

= "YVy EE EE
r(n + 1/ 4" /' + 5)(n + + 3)!
(n' — I' — l)!(n + 1/ — n' + 4)!

(i', m)5,.,,., + 'n)'5r,.

+ 4lJ(,ntC3(r, m)Si',i+2 -

With the above calculated, it is now possible to calculate the condition for bound

states in equation (4.33). Such a calculation can be seen in figure (4.2) for the ground

state of hydrogen and an applied field of ,5 = 0.05. There is a bound state wherever

this eigenvalue intersects zero. In this case the intersection occurs at e —0.4975.

4.6 Convergence of the lower bounds as a function of the

number of terms in the Fock expansion

In chapter three it was shown that when the Fock expansion is used with the Raleigh-

Ritz principle that the results do not converge monotonically as the order of the Fock

functions is increased. However, the results converge monotonically as the number of

Fock functions is increased. The remainder also exists in the Fock expansion when

it is used with the Schwinger variational principle. Therefore, an analysis similar to

that in chapter three is performed for the Schwinger variational principle.

For a small field of /3 = 0.05, the convergence properties can be seen in table

(4.1). In this calculation the order of the Fock expansion is coupled with the number
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Figure 4.2: Intersection of Schwinger variational principle matrix element with zero.
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Table 4.1: Convergence of the Schwinger variational calculation for a field of p = 0.05.

The lowest energy for a Schwinger variational principle calculation of the ground state

of hydrogen is shown with an applied magnetic field of /5 = 0.05. The energy shown

converges as the order and number of Fock terms increases.

Number of Fock Functions and order Energy (au)

3 -0.497526983572

4 -0.497526489977

5 -0.497526483433

6 -0.497526480834

7 -0.497526480509

8 -0.497526480430

9 -0.497526480423

10 -0.497526480407

11 -0.497526480402

12 -0.497526480401

13 -0.497526480401
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of Fock functions. It is seen that the results appear to converge as the number of

Fock functions and their orders are increased. Furthermore, this result converges to

the same result as that of the Raleigh-Ritz calculation given in table (3.1). Figure

(4.3) shows that the upper and lower bounds are "squeezed" by this calculation for

an applied magnetic field of /3 = 0.05 as the number of Fock functions and their

orders are increased. Both calculations eventually yield the same result to machine

precision. This calculation is the first calculation of an energy level of hydrogen in a

constant magnetic field which has been made "exactly" in the sense of having rigorous

and convergent upper and lower bounds to the calculation.

For a larger field of = 0.2, the same algorithm yields the results in table

(4.2). Once again we find that as the order of the Fock expansions used increases that

the energies produced become worse. This is expected because of the error produced

by the remainder terms. As the number of Fock functions is increased, however,

these results converge. One interesting feature is seen in the third order calculation

of table (4.3). The energies calculated with four Fock functions and six Fock functions

are identical to the precision shown. This is because different Fock functions do not

necessarily contribute to the same class of solutions and may have a negligible effect

on an individual energy level. Adding still more Fock terms causes the calculation to

converge once again. The same behavior is seen for the fifth order calculation when

six, eight, and ten Fock functions are used. This calculation is expected to converge

also as more functions are used just as is seen in the third order calculation.

A detailed exploration of the convergence of this calculation is seen in table

(4.3). We find behavior very similar to that of the Raleigh-Ritz calculation in chapter

three. Once again, the Fock expansion is taken in such a way that the number of

Fock functions can be chosen independently from the order of the Fock functions. As

the order of the Fock functions is increased, the calculation diverges because of the

remainder terms in the Fock expansion. On the other hand, the calculation converges

monotonically as the number of Fock functions increases.

Just as was the case for the Raleigh-Ritz principle, the Fock expansion is

not convenient to use with the Schwinger variational principle. The energies tend to

decrease as the order of the Fock functions increases. As the number of Fock functions
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Figure 4.3: Comparison of Raleigh-Ritz and Schwinger Calculations: The

Raleigh-Ritz and Schwinger variational principle calculations are plotted on the same

graph. This shows that when combined, these two calculations "squeeze" the exact

energy eigenvalue from above and below.
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Table 4.2: Convergence of the Schwinger variational principle calculation for a field

of ̂  = 0.2.

The lowest energy for a Schwinger variational principle calculation if the ground state

of hydrogen is shown with an applied magnetic field of /3 = 0.2. The energy shown

diverges as the order and number of Fock terms increases.

Number of Fock functions and order Energy (au)

3 -0.46496810908108

4 -0.46651159497317

5 -0.46481356154289

6 -0.465686499493251

7 -0.49103124777930

8 -0.49682027453290

9 -0.49912134026123

Table 4.3; Convergence of the Schwinger variational principle calculation as a function

of the order of the Fock expansion and the number of functions.

Number of Fock Functions 3rd order 4th order

2 -0.46496810908108 -0.46706805565431

4 -0.46486706716073 -0.46631749486877

6 -0.46486706716073 -0.46557412244048

8 -0.46483438049915 -0.46535554436570

10 -0.46483130359737 -0.46522020306386

Number of Fock Functions 5th order 6th order

2 -0.47214216430168 -0.49190602232048

4 -0.46569000153895 -0.48059477822483

6 -0.46563676655388 -0.47686691518706

8 -0.46563676655388 -0.47612118646134

10 -0.46563676655388 -0.47534798259475
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increases, the energy increases monotonically, allowing convergent lower bounds to

the eigenenergies to be calculated. When combined with the Raleigh-Ritz variational

principle, this allows the exact eigenenergies to be bounded from both above and

below.
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CHAPTER 5

Excited States

In the previous chapters two variational methods were used to calculate the

binding energy of the ground state of hydrogenic atoms in constant magnetic fields.

It was shown that both the Raleigh-Ritz and Schwinger variational principles gave

convergent bounds to the exact eigenenergies as the number of Fock functions used

was increased. There is a lot of interest in the energy levels of excited states of

hydrogen in constant magnetic fields. One reason for this is that effects which are

currently impossible to see for the ground state with laboratory achievable magnetic

fields can be seen in excited states, which have a weaker interaction with the Coulomb

potential. Variational calculations are normally applied to the ground state. In this

chapter we will explore the properties of the Raleigh-Ritz and Schwinger variational

principles for excited states.

5.1 Excited states and the Raleigh-Ritz variational principle

First the properties of the Raleigh-Ritz variational principle are examined in the case

of excited states. In chapter three, the eigenvalues and eigenvectors of a matrix of

the form

- e\ ipu') (5.1)

were calculated. For the ground state the lowest eigenvalue was examined and a

minimum was found in this eigenvalue as a function of the variational parameter e.

The second lowest eigenvalue is now examined. This eigenvalue corresponds to the

first excited state in the manifold. For the even I manifold and m = 0, this is the

state. First the convergence of the state is examined in table (5.1).
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Table 5.1: Convergence of the first excited state in the Raleigh-Ritz principle

The eigenvalue corresponding to the ̂ 5o state of hydrogen in a constant magnetic field

is shown as a function of the number of terms in the Fock expansion. This calculation

is made for a magnetic field of /5 = 0.05. It can be seen that the eigenenergy does

not converge for the first excited state.

Number of Terms Energy (an)

3 -0.094064421667259

4 -0.0060926401333017

5 -0.0069673324363791

6 -0.0097025321547484

7 0.05320130772264

8 0.037259153500780

9 0.02639849000743

10 0.04337141609756

11 0.084472168771727
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This calculation is made for an applied external magnetic field of ̂  = 0.05.

The minimum is then found in the second lowest eigenvalue. As one can see, the

Raleigh-Ritz variational principle does not converge for the first excited state in hy

drogen. The reason for this can be seen in figure (5.1). The lower, solid line in figure_

(5.1) represents the ground state eigenvalue as a function of the variational parameter

e. It was shown in chapter three that for an applied magnetic field oi 0 — 0.05 that

this minimum is located at approximately e = —0.4975. This is seen in the minimum

located in in the left-hand side of the plot for the lowest eigenvalue. The minimum

for the first excited state occurs at approximately e = —0.09. This is seen in the

upper, dashed line in figure (5.1).

If the Schrodinger equation was solved exactly, all of the eigenvalues pro

duced would be orthogonal to each other. In this case, however, the eigenvectors are

not orthogonal to each other. The reason for this is that the variational parameter s

is not the same at each minimum. This causes the ground state wavefunction to be

different at each value of e. While it is true that upper bounds to the eigenenergies of

excited states are produced when these excited states are orthogonal to approximate

ground state wavefunctions[2], they are not expected to be very accurate because the

best approximation for the ground state wavefunction occurs when e « -0.4975. If

e = —0.09, the ground state wavefunction is not a very good approximation to the

exact wavefunction.

The lack of orthogonality of the wavefunctions for different values of e prop

agate throughout the calculations of the excited states. Just as the ground state and

the first excited states are not orthogonal because they minimize at different e, the

same is true of the first and second excited states, as well as further excited states.

Therefore, a straight-forward calculation of the excited states using the Raleigh-Ritz

variational principle is not possible.

In order to obtain a better upper bound for the first excited state, this state

would have to be written in a new basis which is orthogonal to the best possible

ground state (i.e., that produced at £■ —0.4975). One procedure for doing this is as
follows. First, the lowest local minimum in the ground state eigenvalue is found in

order to find a linear combination of Fock expansion solutions which best describes
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Figure 5.1: Plot of the ground state and first excited state eigenvalues: This is a plot

of the ground state and first excited state eigenvalues for a Raleigh-Ritz calculation

of hydrogen in a magnetic field of /5 = 0.05.
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the ground state of hydrogen in a constant magnetic field. This calculation is exactly

the same as was shown in chapter three. One result of the matrix diagonalization

which produced this eigenvalue is a corresponding eigenvector. Each element of this

eigenvector represents a proportionality constant such that if this the element is

Cji, then

^ = i:Cn'iPn (5.2)
n

In this expression, represents an approximate solution to the Schrodinger equation.

The linear combinations of Fock solutions which result from diagonalizing the Raleigh-

Ritz matrix becomes a new basis. If the basis element which represents the ground

state is removed from the basis, all states produced in this basis are automatically

orthogonal to this state. In effect, the first excited state can become a new "ground

state" for the calculation. This procedure can be repeated for more highly excited

states.

A problem with such a procedure is that the bookkeeping becomes very

complicated. Ultimately one needs to evaluate expressions which explicitly depend on

the Fock expansion. Every time the basis is re-orthogonalized, the new basis has to be

converted into the Fock expansion basis before any of the integrals can be evaluated.

Although this can be done for the first excited state with little inconvenience, more

highly excited states become much more complicated.

5.2 Excited States and the Schwinger Variational Principle

In the previous section the properties of the Raleigh-Ritz variational principle were

examined for excited states. It was shown that without modification, the Raleigh-

Ritz principle does not produce convergent upper bounds for excited states. The

properties of the Schwinger variational principle are now examined for excited states.

Unlike the Raleigh-Ritz variational principle, the Schwinger variational prin

ciple does not depend upon the orthogonality of the functions which represent the

final wavefunctions. The derivation of the Schwinger variational principle does not

put strong constraints upon the form or properties of the trial wavefunction. In fact.
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as long as the trial wavefunction satisfies the conditions for bound states,

{^t\V-VGV\^t) (5.3)

then the wavefunction produces an approximate lower bound to the exact bound state

energy. The Fock expansion, taking enough terms, can exactly represent the exact

eigenfunctions to the Hamiltonian describing a hydrogenic atom in a constant mag

netic field. Therefore it is reasonable to expect that the Fock wavefunctions should

produce convergent lower bounds to the exact eigenenergies. This expectation relies

on the assumption that all physical solutions to the Schrodinger equation can be rep

resented accurately in terms of the Fock expansion. This is a reasonable assumption

because the Fock expansion works very well for the ground state. Calculation of the

state of hydrogen, which is the first excited state in the I = even manifold gives

the results in table (5.2). In table (5.2) we find results very similar to that of the

ground state. For a small magnetic field of /3 = 0.01, the results converge as the

number and order of the Fock expansion is increased until N = 8. At this point the

remainder terms cause the calculation to begin to diverge. The results of table (5.3)

show that the eigenenergy for the first excited state in the even manifold does not

converge for as a function of the number of Fock functions and their order for a field

of = 0.05. In this case the effect of the remainder terms is much more pronounced.

This behavior is seen in the ground state calculation discussed in chapter four. In

fact, the convergence of the first excited state is nearly identical to that of the ground

state.

For the ground state, we showed that as the order of the Fock expansion is

increased, the energies become worse, but they improve as the number of Fock func

tions is increased. This same behavior can be seen in tables (5.3-5.18). One difference

between the ground and first excited state calculations is that the divergence in the

energies as the order of the Fock expansion is increased is much more pronounced for

a small applied field. This fact makes the Fock expansion more difficult to use for

excited states.

In chapter four, it was found that as the number of Fock functions was

increased that the energies converged. The reason for this was not explained, however.
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Table 5.2: Convergence of the Schwinger variational principle calculation of the first

excited state for a field of /? = 0.01.

The lowest energy for a Schwinger variational principle calculation of the first excited

state of hydrogen is shown with an applied magnetic field of /3 = 0.01. The energy

shown diverges as the order and number of Fock terms increases.

Number of Fock functions and order Energy (au)

2 -0.12440676219299

3 -0.12440669241998

4 -0.12440650496050

5 -0.12440646694709

6 -0.12440646631362

7 -0.12440646602182

8 -0.12440646972656

Table 5.3: Convergence of the '^Sq state of hydrogen in a constant magnetic field of

P — 0.05 as a function of the number of terms in the Fock expansion.

Number of Fock Terms Energy (au)

3 -0.10356944995453

4 -0.10115800106354

5 -0.11055115523515

6 -0.10866707914256

7 -0.11794963968629

8 -0.12104618943571

67



Table 5.4: Ground and Excited States for three Fock terms and diagonalizing a 1x1

matrix

State Energy (au)

1 -0.49752698357173

2 -0.10356944995453

3 -0.04241779303271

4 -0.02120935499403

Table 5.5: Ground and Excited States for three Fock terms and diagonalizing a 2x2

matrix

State Energy (au)

1 -0.49752673425308

2 -0.10105097121551

3 -0.04241729919206

4 -0.02120664759489

Table 5.6: Ground and Excited States for four Fock terms and diagonalizing a 1x1

matrix

State Energy (au)

1 -0.49752655514451

2 -0.10115880435343

3 -0.03741099046707

4 -0.02363566822972

5 -0.01424713799904

68



Table 5.7: Ground and Excited States for four Fock terms and diagonalizing a 2x2

matrix

State Energy (an)

1 -0.49752648753690

2 -0.10115800106354

3 -0.03730809743829

4 -0.02363207684448

5 -0.01424605143463

Table 5.8: Ground and Excited States for five Fock terms and diagonalizing a 1x1

matrix

State Energy (au)

1 -0.49752730373767

2 -0.11352784529523

3 -0.04549359291833

4 -0.02522029385700

5 -0.01502642306314

Table 5.9: Ground and Excited States for five Fock terms and diagonalizing a 2x2

matrix

State Energy (au)

1 -0.49752648343339

2 -0.11055115523515

3 -0.03688477482622

4 -0.02165352444543

5 -0.01497089429302
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Table 5.10: Ground and Excited States for five Fock terms and diagonalizing a 3x3

matrix

State Energy (au)

1 -0.49752648328641

2 -0.10956912897387

3 -0.03462215435880

4 -0.02164559978114

5 -0.01491737667402

Table 5.11: Ground and Excited States for six Fock terms and diagonalizing a 1x1

matrix

State Energy (au)

1 -0.49753213533889

2 -0.11443410789833

3 -0.05211361414029

4 -0.02614706566632

5 -0.01553990065782

Table 5.12: Ground and Excited States for six Fock terms and diagonalizing a 2x2

matrix

State Energy (au)

1 -0.49752648084453

2 -0.10923816889084

3 -0.04498398977888

4 -0.02250154331410

5 -0.01421715050698
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Table 5.13: Ground and Excited States for six Fock terms and diagonalizing a 3x3

matrix

State Energy (au)

1 -0.49752648083414

2 -0.10866707914256

3 -0.04365349980880

4 -0.02241403538203

5 -0.01418745141327

Table 5.14: Ground and Excited States for six Fock terms and diagonalizing a 3x3

matrix

State Energy (au)

1 -0.49752648083414

2 -0.10866707914256

3 -0.04365349980880

4 -0.02241403538203

5 -0.01418745141327

Table 5.15: Ground and Excited States for seven Fock terms and diagonalizing a 1x1

matrix

State Energy (au)

1 -0.49755746991220

2 -0.12088630587119

3 -0.05504466563092

4 -0.02803535668890

5 -0.01644658768464
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Table 5.16: Ground and Excited States for seven Fock terms and diagonalizing a 2x2

matrix

State Energy (au)

1 -0.49752648061549

2 -0.11863416727419

3 -0.05333966271402

4 -0.02800962056781

5 -0.01641140874644

Table 5.17: Ground and Excited States for seven Fock terms and diagonalizing a 3x3

matrix

State Energy (au)

1 -0.49752648050873

2 -0.11794963968629

3 -0.04968591720881

4 -0.02799986288751

5 -0.01443722373590

Table 5.18: Ground and Excited States for seven Fock terms and diagonalizing a 4x4

matrix

State Energy (au)

1 -0.49752648050322

2 -0.11761369320507

3 -0.04889372424387

4 -0.02799217493600

5 -0.01417969627680
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This convergence can be analyzed by examining the diagonal matrix elements of the

Schwinger matrix. Figure (5.2) shows the diagonal matrix elements for three Fock

expansion terms. In this case only one diagonal matrix element is plotted. In figure

(5.2) the transformation n* = was made so that the poles which lie at the

hydrogen atom bound states are transformed to integers. This transformation causes

the poles to appear equally spaced. In this figure each n* at which the curve intersects

zero represents a lower bound to an exact bound state. Using the Fock expansion

with the Schwinger variational principle allows rough lower bounds to any excited

state to be calculated quite quickly and efficiently. In fact, if the Greens function had

not been evaluated at E = e, all excited states would be generated.

In figure (5.3), the diagonal matrix elements for four Fock functions are

plotted. Because there are two diagonal terms, two curves appear on the graph. As

in figure (5.2), each curve intersection with zero represents a lower bound with an

exact eigenenergy. The original curves which are seen in figure (5.2) are still present

in figure (5.3). New curves also appear which lie between the original curve and the

pole. The existence of such a curve should tend to push the first state to higher

energy when the matrix is diagonalized. This would improve the lower bound.

Another aspect of the diagonal matrix elements is seen in figure (5.4). In

this case there are three diagonal matrix elements. The curve created by the third

diagonal matrix element is not affected by the first two poles, however. This is because

of the way that the Fock expansion has been truncated. The Fock expansion has been

calculated so that each Fock expansion term is terminated to the same power in

r. For six terms in the Fock expansion it is terminated at r®. As a result, the Ve

term only has one Fock expansion term with an angular dependence of Too- The Fock

expansion would have to be continued to include a Y^o term in order to be affected

by the first two poles.

As has been shown here, the behavior of the Raleigh-Ritz variational prin

ciple is fundamentally different from that of the Schwinger variational principle. In

the Raleigh-Ritz principle calculation of excited states is difficult because the excited

states must be orthogonal to each of the lower states. Because the trial wavefunc-

tions depend upon the variational parameter s, the ground state is no longer correct
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Schwinger Variational Princple Diagonal Matrix Elements
Three Fock Terms
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Figure 5.2: Plot of the diagonal matrix elements for the Schwinger variational matrix

with three Fock terms: The diagonal matrix elements of the matrix which is to be

diagonalized in the Schwinger variational principle is plotted here for an external field

oi ̂  = 0.05 an. In this plot, n* =
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Schwinger Variational Principle Diagonal Matrix Elements
Four Fock Terms

Figure 5.3: Plot of the diagonal matrix elements for the Schwinger variational princi

ple matrix with four Fock terms; The diagonal matrix elements of the matrix which

is to be diagonalized in the Schwinger variational principle is plotted here for an ex

ternal field of = 0.05 au. Because there are two diagonal terms, both are plotted

on the same graph. In this plot, n* =

75



Schwinger Variational Principle Diagonal Matrix Elements
Six Fock Terms
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Figure 5.4: Plot of the Diagonal Matrix elements for the Schwinger variational prin

ciple matrix with six Fock terms: The diagonal matrix elements of the matrix which

is to be diagonalized in the Schwinger variational principle is plotted here for an ex

ternal field of = 0.05 au. Because there are two diagonal terms, both are plotted

on the same graph. In this plot, n* =
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when the excited states are calculated. The Schwinger variational principle does not

have this disadvantage, however. As long as the condition for bound states in equa

tion (4.33) is satisfied, bounds to the exact eigenvalues can be found. The behavior

for excited states is exactly the same as that for the ground state. Once again, as

the order of the Fock expansion increases, the calculation diverges, but it converges

monotonically as the number of Fock functions is increased.
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CHAPTER 6

Extensions

6.1 The high magnetic field case

In chapters two, three and four, a trial solution to the Schrddinger equation in terms

of a Fock expansion was found. This expansion was substituted into the Raleigh-Ritz

variational principle and find upper bounds to the eigenenergies for bound states were

calculated. These Fock expansion solutions were also substituted into the Schwinger

variational principle which produced lower bounds to the eigenenergies. Both of these

calculations were done for relatively small magnetic field. Although the trial function

in the previous chapters should work for large magnetic fields as well as small ones,

the change in the natural geometry of the system makes them inefficient. This is

because a large number of terms in each Fock solution as well as a large number

of different solutions are required in order to represent wavefunctions with a geometry

significantly different from spherical geometry.

Other calculations have been made to obtain accurate upper bounds to the

eigenenergies for the bound states of hydrogen in constant magnetic fields [21, 22].

Some of these calculations treated high fields, however no convergent lower bounds

for high fields have been reported. Therefore a more efficient method for obtaining

lower bounds using the Schwinger variational principle will be proposed here.

A small adjustment in the interaction potential makes the Schwinger varia

tional principle more efiicient for the high field case. In the previous calculation the

potential

U = Vc + Vi

was used, where Vc is the Coulomb potential and Vj is the interaction potential

which contained the magnetic interaction. This interaction potential contained the
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quadratic magnetic term. For the high magnetic field case, it makes sense to let the

magnetic potential be the "main" part of the potential and let the Coulomb potential

become the interaction. This is because the the magnetic field has a stronger effect

on the the electron than the Coulomb potential in this case. If the magnetic field is

aligned in the z direction, as it has been throughout this work, the magnetic field

does not act on the electron in the z direction. Because of this, the z component can

also be absorbed into the "main" part of the potential.

The potential can be written

U = V + Vi (6.1)

where

F = i^Vsin2^-- (6.2)
2

and

^i = -7 + 7 (6-3)
r

Here, represents the z component of r and Z represents the charge. The radial

vector r can be written in Cartesian coordinates as

r = + Tyy + r^z (6.4)

The magnitude of this vector is

r = ̂rl + rl + rl (6.5)

Therefore r > Tz since > 0 and > 0.

In section (4.2) it was shown that if the interaction potential Vi was greater

than or equal to zero that the Schwinger potential always produces lower bounds to

the the exact eigenenergies. Since r > it is easy to see that

Fi = -- + -> 0 (6.6)
r  Tz

Therefore, this interaction potential will also produce lower bounds to the eigenener

gies when used with the Schwinger variational principle.
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Although numerical calculation of the strong field case is beyond the scope

of this work, the procedure for using this new interaction potential is similar to that

of the weak field case. The "main" part of the potential is no longer the Coulomb

potential. Therefore the Greens function is no longer the well known hydrogenic

Greens function. In the high field case, the Hamiltonian without the interaction

potential is written

/i = — sin^ ̂  — (6.7)
2  2

In this case the Hamiltonian is separable and can be written in the form

h = hp+ h2. (6.8)

The Greens functions corresponding to hp and hz are well known and correspond

to the harmonic oscillator and one dimensional Coulomb Greens functions. The Gp

corresponds to the Greens function for hp and Gz corresponds to the Greens function

for the Hamiltonian hz, then the total Greens function can be written in the form of

a convolution integral

G = J Gp{E — u)Gz (u) du (6.9)
where c represents some contour. This new Greens function can be calculated in closed

form. The Greens function operating on a function can be calculated numerically.

It can be expanded in terms of hydrogenic Sturmian functions as it was in the weak

field case. One consequence of the strong field separation of the potential is that all

of the sums are unlikely to collapse to a finite number as they did in the weak field

case. Therefore, further approximations must be made by truncating these sums.

6.2 Extension to the Continuum

One use for the strong field separation of the potential is for calculating phase shifts

for continuum states. Although the solution proposed for weak fields is a complete

solution to the problem, it has the disadvantage that the solutions are not asymptot

ically correct. In order to use this solution for the continuum, a very large number of

terms would need to be included in the Fock expansion and extremely large matrices
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would need to be diagonalized. The strong field separation, however is asymptoti

cally correct. Accurate, convergent methods for calculating lower bounds to the phase

shifts in the continuum case have been proposed in the past [30]. The Schwinger vari-

ational principle allows convergent upper bounds to the phase shifts to be calculated

also. In the continuum case, the Feynman theorem states that

dV
i

dX
^iX)). (6.10)

One significant difference between this expression and the one given for bound states

is that the right hand side of the equation contains a negative sign. If this negative

sign is propagated through the derivation it is seen that for phase shifts a positive

interaction potential produces upper bounds. Therefore, by using previous methods

to calculate lower bounds to the phase shifts and the Schwinger variational principle

to calculate the upper bounds the phase shifts too can be bracketed from both above

and below.

6.3 Hydrogenic Sturmian basis functions as trial functions

In all of the previous chapters the Fock expansion was used as a trial wavefunction.

It was shown that the Fock expansion is able to produce solutions to the Schrodinger

equation. These solutions can be used in both the Raleigh-Ritz and Schwinger vari

ational principles to produce upper and lower bounds to the exact eigenenergies.

The Fock expansion has the disadvantage that it is not written in a conventional

orthonormal basis set. The hydrogenic Sturmian functions which were used as a

basis to expand the Greens function in chapter four are closely related to the Fock

expansion. Linear combinations of these hydrogenic Sturmian functions can also be

used as trial solutions. Indeed the Fock expansion truncated at a power of r, say

N, can be expressed exactly as a finite linear combination of Sturmian functions. It

follows that the Raleigh-Ritz and Schwinger variational principle calculations using

the Fock expansion are completely equivalent to using Sturmian basis functions in the

same variational procedures. This is assuming that both expansions are truncated to

the same power in r. For that reason, this section outlines how one would employ
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Sturmian functions to bypass the Fock expansion, yet obtain equivalent results.

In equation (4.19) the hydrogenic Sturmian functions were shown to be of

the form

■5;,™ (r, e, M (2V=^r) (S, 4>) (6.11)
These Sturmian functions can be slightly redefined as

(r, e, cj>, e) = (2v^r) 1)^ {9, (j>). (6.12)

If the Sturmian functions are redefined as in equation (6.12), then the normalization
factor becomes

oe = / C£
r^nlm — \ '■^nlm

z

r

qe \ _ ^ r(/ + n + 1)/  (2v^)2 {n-l-1)! ^ ^ ^
One benefit of using the Sturmian basis as defined in equation (6.12) instead

of the Fock basis is that the Sturmian basis allows all of the matrix elements to be

calculated independently of the physical parameters of the system {Z and j3), and one
variational parameter e. Therefore, the matrix elements need only to be calculated

once. The physical parameters are separated from the matrix elements and simply
become multiplicative factors in front of the constant matrix elements. This was not

the case for the Fock expansion. When the Fock expansion is used to calculate the

matrices corresponding to the Raleigh-Ritz and Schwinger variational principles, the
matrix must be recalculated and re-diagonalized for each value of the magnetic field
B and for each value of the variational parameter e.

If a Sturmian basis set is used instead of the Fock expansion basis set, the
the condition for bound states in the Schwinger variational principle becomes

F(s) = det IV, - V.GVij S;, = 0. (6.14)

The Greens function is expanded in terms of the same Sturmian functions so that the

determinant of

/ QS IT/ T//^T/I Ce \ / QS IT/I C£ \ 1^ I I /\^nlm rl - FiGVil — {b^i^ |l/i| ——— ——
Pqrs K'^grs J-J

(6.15)
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must vanish. As one can see in equation (6.15), only one matrix needs to be calculated

in this case. This matrix has elements

= {S;,„ |V,1 (6.16)

where V\ is the quadratic magnetic potential

Vi = ̂r^sin^0 (6-17)

and we indicate by superscripts that M is diagonal in the magnetic quantum number

m.

The matrix is

= ̂ 1 lo lo (2v^r) sin^ e
{2\/—2er^ ^2%/—2erj Yim{9, ({>)Yiim'{0, <i>)r^ sm0drd6d(j) (6.18)

If the substitution u = 2y/—2er is made, then du = 2^J—2edr and r = , and

the matrix element becomes

1  r 7"^ r .1-1' -uD  1 /"oo r

=  i I u  e

{u) L'^n'-K\ ("") 4>)yi>m{0, (f>) sln^ 6 sin 6dud9d(f). (6.19)

One can see that the triple integral in equation (6.19) is independent of P, e and

Z. Indeed it is just a pure number which is denoted by A4. Then equation (6.19)

becomes,

^nl,n'l' (6.20)2 (2^/^)

One can see from equation (6.20) that the physical parameters P and e are

separated from the rest of the matrix. Thus is a matrix of pure numbers

which only have to be calculated once. For practical calculations this matrix can

be evaluated as the first step of a computer program. The physical parameters of

the system are then simply multiplicative factors which are simple powers of P and
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2\J—2e. Multiplying these factors by combinations of this simple matrix together

with the closed form expression for in equation (6.13) and A given in equation

(4.2) creates a new matrix which is diagonalized to obtain the eigenvalues used for

the Schwinger variational principle.

The Sturmian basis functions can also be used to separate the physical

parameters from the matrix used for the Raleigh-Ritz method. In this case the matrix

nlm H-e ^n'l'm') + ̂ i^nlm I ^n'l'm') (6-21)

must be diagonalized. In the above equation

H = + sin^ 9 (6.22)
2  r 2

It is recognized from the definition of the Sturmian function in equation (4.18) that

~2^ ~ ~ l^nlm) ~ 0 (6.23)

Therefore

-iV - e) = XruJ |S;,„> (6.24)
If equation (6.24) is substituted into the Raleigh-Ritz matrix, the Raleigh-Ritz matrix

then becomes

Rnl,n'l' (/5,e) = (5^,^ ^nlm /-» sin (/
r  r 2

Sn'l'm ) £ (Rnlm i Rn'l'm) (6.25)

The quadratic magnetic term was already calculated before in the discussion

of the Schwinger variational principle and is seen in equation (6.20). This leaves two

other matrices to be calculated. The matrices with a factor of

equivalent to the normalization factor found in equation (6.13). This leaves the

overlap integral found in the last term on the right hand side of equation (6.25).
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This overlap integral is

roo /•27r
.-V-2er^n^n' (^) — i^nlm I ^n'l'm') ~ 2^) 6

(2v/=^r) (2x/^r)'' (2v^r) (6.26)
yjrjj (0, (?!>) y)/m' (^, 0) sin 6drd6d(f)

Once again, by making the substitution u = 2\/—2£r the variational parameter s can

be removed from the integral. After integrating the angular terms this substitution

yields
1  rooO'Z,' (s) = 1 (u) ijtti (») rfx (6.27)

Therefore, the matrix above can be written as

O'Z' (f) = (6.28)

where C is a pure numerical matrix which is independent of any physical parameters.

Once again, the matrices M., Pnim and O need to be calculated only once. The

physical parameters are simple multiplicative factors. Therefore, the Raleigh-Ritz

matrix can also be calculated quite efficiently if the Sturmian basis is used.

The ability to use the hydrogenic Sturmian expansion to remove all physical

parameters from the matrix elements of M, Pnim and O leads to a method for im

proving the efficiency of the Raleigh-Ritz and Schwinger variational calculations. The

only parameter on which these matrices are dependent is the size of the matrix (the

number of Sturmians used). Because these matrices need only to be calculated once.

Therefore, with only a little time investment these matrices can be found exactly with

the integer arithmetic routines in a package such as Mathematical^. They can then

be stored in a file and used any time they are needed. If the Fock expansion was

employed these matrices would need to be calculated each time they are used. This is

quite slow with integer arithmetic and would become very cumbersome if more than

a few terms in the expansion were used.

Another very important advantage of using Sturmian basis functions is that

unlike the case of the Fock expansion, there are no remainder terms. Each Sturmian
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function is used individually and no recurrence relation is solved. Therefore, one

would expect that the convergence properties of these calculations will be much better

behaved when performed on a Sturmian basis. This and the separability of physical

parameters makes the Sturmian basis more desirable than the Fock basis for practical

calculations.

6.4 The Fano-Bohn R-matrix method

At this time the best calculations of the bound states of hydrogen in a constant mag

netic field are those of Kravchenko et al.[15]. They have the advantages of being

extremely accurate even for excited states. They do not give bounds to the energies.

Because the error is unknown they do not obtain exact solutions in the strict math

ematical sense. Out calculations of upper and lower bounds confirm that the results

of Kravchenko et al. are extremely accurate, however.

The method used by Kravchenko et al. writes the wavefunction in terms

of the Fock expansion as is done in this dissertation. Instead of using variational

methods, the boundary condition

9'{R) (6= —« .29)
m

is solved using a rather complicated iterative method. In equation (6.29), g{R) is a

modified form of the wavefunction and /t = —-y/STj.

This method is effectively the same as the Fano-Bohn R-matrix[6, 7] which

solves the boundary conditions

^ = tan« (6.30)
by diagonalizing the R matrix. The Fano-Bohn R-matrix is a modified version of

the standard R-matrix method. In the conventional R-matrix method the R-matrix

is constructed the solutions are matched at a fixed, finite radius R to asymptotic

solutions. The Fano-Bohn R-matrix method attempts to use the R-matrix without

knowing the asymptotic form of the solutions. The R-matrix is constructed at a

variable radius. The behavior of the R-matrix solutions as a function of radius then
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indicates the existence of bound states. The method of Kravchenko et al. effectively

diagonalizes the R-matrix proposed by Fano and Bohn.

The Fano-Bohn R-matrix is not well known, and has only been used explic

itly to calculate the bound states of helium [7]. This calculation was able to qualita

tively describe the bound states of helium, but it was not quantitatively very accurate.

This is because the wavefunctions used were not very accurate and because only a

small number of elements in the R-matrix were diagonalized. In order to obtain ac

curate results many elements must be taken into account. This was effectively done

in reference [15].

I have examined the R-matrix method using the Fock expansion and have

applied it to the ground state of hydrogen in a constant magnetic field of ̂  = 0.05. In

order to implement the Fano-Bohn R-matrix method, first the Fock expansion solu

tions to the Schrodinger equation were constructed. These were calculated in exactly

the same way as was done for the Raleigh-Ritz and Schwinger variational princi

ple calculations. These solutions were then projected onto the spherical harmonic

functions Yim{0,(f>). This yields,

•01/,/(r) = (0i/(r, d, 4>) I yim{0, 0)) • (6-31)

In equation (6.31), tpu are the Fock expansion solutions. The same is done for the

derivatives of the Fock expansion solutions with respect to r. The derivative matrix

is

= (01/(^,^,0) I (6.32)

where the prime indicates a derivative with respect to r. The inverse of 0i/,/(r) is

calculated using the LAPACK inverse routines dgetrf () and dgetriO. This inverse

is indicated by The Fano-Bohn R-matrix is then formed by matrix multipli

cation so that

Ruy ('') = E K,/ (^)] ^ (^) (6-33)
Equation (6.33) defines the Fano-Bohn R-matrix. This matrix is diagonalized. In the

Fano-Bohn R-matrix theory, the eigenvalues of this matrix behave as tan0, where

0 is a phase. If the phase goes through a factor of tt, this indicates a bound state.
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For practical calculations, if an eigenvalue's phase goes through a factor of tt, a large

negative number is produced near this discontinuity. Therefore, the lowest eigenvalue

of the diagonalized R-matrix is examined. These discontinuities are readily seen in

this eigenvalue. In figure (6.1) the lowest eigenvalue of Ri,y{r) is plotted.

Here eight terms were taken in the Fock expansion. In Bohn's notation,

this should have the form of a tangent of some phase (j). For a bound state, the

phase (j) should go through a factor of tt at some radius R[7]. In Figure (6.1) we

can see this behavior for an energy of e = —0.497524 au. This behavior vanishes for

€ = -0.497525 au. Therefore, according to the R-matrix method there should be

a bound state between these two values. Previous calculations have shown that the

bound state lies at approximately e = —0.497526 au which is lower than predicted by

the R-matrix method. Therefore we can conclude that the R-matrix method in the

form used in this calculation is the least accurate of the methods tried.

Kravchenko et al. have been able to effectively use the R-matrix method to

achieve very accurate results. Their success was achieved by using rather advanced

numerical methods. First, the R-matrix was not diagonalized directly, instead an iter

ative method was used. Although the iterative method is conceptually cumbersome,

it is much more effective for performing R-matrix calculations with large numbers of

terms. The direct method, on the other hand, must diagonalize a non-sparse matrix.

This becomes computationally intensive as the dimensions of the matrix increase.

The other numerical innovation used by Kravchenko et al. is to use extended

precision mathematical libraries. The iterative method for diagonalizing the R-matrix

produces large numbers of canceling terms. Furthermore, because these terms have

magnitudes of the order of R", these terms can become quite large. Therefore it is easy

to lose all numerical accuracy. The numerical libraries developed by Kravchenko et al.

are able keep hundreds of digits and can therefore overcome this numerical difficulty.

This is probably a key step in employing the Fano-Bohn method generally. That

is, for negative energies the solutions grow exponentially. This growth is reflected

in the R-matrix and extensive cancellations are always required to obtain physical

bound states. A similar cancellation of terms occurs in calculations involving the

Fock expansion. Although all integrals are evaluated in closed form so that the large
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Figure 6.1: The behavior of the eigenvalues of the Fano-Bohn R-matrix are plotted

with two different values of the parameter e. One can see that the behavior of the

eigenvalues change as e crosses an eigenenergy.
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powers in r are eliminated, these integrals invariably lead to sums containing gamma

functions. These sums produce both large positive and large negative terms. The

terms must cancel to become either a small negative number in the case of the

Raleigh-Ritz variational principle, or become zero in the case of the Schwinger varia-

tional principle. For this reason, more advanced calculations using these variational

principles with the Fock expansion should contain extended precision mathemati

cal libraries similar to those of Kravchenko et al. Such libraries would enable these

calculations to be pushed to much larger magnetic fields.
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CHAPTER 7

Conclusions

In this thesis we have examined the variational aspects of the Fock ex

pansion when applied to the system of a hydrogenic atom in a constant magnetic

field. To do this a trial solution in the form of the Fock expansion was substituted

into the Schrddinger equation and a three term recurrence relation was found which

yields the coefficients of each Fock expansion term. In this way we showed that the

Fock expansion can solve the Schrddinger equation. These coefficients can easily be

found algorithmically on a computer. The physical problem, however, requires linear

combinations of these Fock terms which satisfy the physical boundary conditions.

Variational methods are used to satisfy these boundary conditions, and at the same

time find bounds to the eigenenergies.

The Raleigh-Ritz variational principle is the most well-known of all vari

ational methods, and it always produces upper bounds to the exact bound state

eigenenergies. It was found that for the ground state and small magnetic fields that

the Raleigh-Ritz principle can find linear combinations of the Fock functions which

satisfy the boundary conditions even when the Fock solutions are truncated to a par

ticular power of r. For larger fields, however, the Fock expansion can not be truncated

because such a truncation scheme couples the number of Fock functions which are

used with the order of the Fock functions. This does not produce accurate results

because when the recurrence relation was solved to find solutions to the Schrddinger

equation in terms of the Fock expansion, the solutions were found for an infinite order

expansion. For practical calculations, the Fock expansion must be truncated at some

order. Doing this leaves remainder terms which tend to become large as the order of

the Fock expansion increases.
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For these larger fields it was found that the results become worse as the

order of the Fock expansion was increased because of the large contribution of the

remainder terms. The results converge monotonically as the number of Fock functions

is increased, however. This leads to a method of finding convergent upper bounds

to the eigenenergies of the system even for large fields. As long as the number of

Fock functions is increased, the energies become better, and therefore in principle

upper bounds that are AE higher than the exact energy can be found to any desired

tolerance.

For excited states, the Raleigh-Ritz principle does not work without modi

fication. Although the Raleigh-Ritz principle produces upper bounds to the ground

and excited states, the energies for the excited states are not very accurate. This is

because the trial wavefunctions involve the variational parameter e and are minimized

on this parameter. The optimum value of e is not the same for the ground state and

each of the excited states, however. Therefore these states will not be orthogonal to

each other, which is a requirement for the physical system. This problem can be rec

tified by a re-orhtogonalization routine. In this routine, first the optimal ground state

is calculated. In the process of doing this a set of eigenvectors are produced. The

eigenvector which corresponds to the ground state is removed from the manifold of

eigenvectors and the remaining eigenvectors become a new basis in which the excited

states are calculated. Any excited states calculated in this basis are automatically

orthogonal to the ground state. This routine can be repeated for more highly excited

states. Therefore, in principle convergent upper bounds to the excited states can be

calculated.

The Schwinger variational principle was shown to be applicable to bound

states, and it was shown that for the hydrogen atom in a constant magnetic field,

the Schwinger principle produces lower bounds to the exact eigenenergies. Once

again, for the case of the ground state and a small magnetic field, the Schwinger

variational principle was able to produce linear combinations of the Fock solutions

which approximately solve the Schrodinger equation and lower bounds to the exact

eigenenergies were produced. In this case, even when the order and number of the

Fock functions were coupled, the energies converged to machine precision.
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When this result was combined with that of the Raleigh-Ritz principle, the

exact energy was squeezed both from above and below. Therefore, this is an exact

solution to the problem in the sense that convergent, "bounded" energies were found.

This is the first time that such a calculation has been made for this system. Although

there have recently been calculations which find the energies for hydrogen in a con

stant magnetic field to any desired precision, there is not guarantee that the results

are above or below the exact energy.

For larger fields, it was once again shown that a truncation scheme in which

the order and number of Pock terms are coupled does not produce convergent results.

Just as in the Raleigh-Ritz case, the remainder terms from solving the recurrence

relation for the Pock expansion cause the results to become worse as the order of

the Pock expansion is increased. The results converge monotonically as the number

of Pock functions is increased, however. This allows convergent lower bounds to the

exact energies to be calculated from hydrogen in any magnetic field, although an

efficient way of doing this has not been discovered.

One problem with using the Pock expansion is that remainder terms exist

when solving the Schrodinger equation with a recurrence relation. We propose that

this limitation can be removed by using a Sturmian basis rather than a Pock expansion

basis. The Sturmian basis can represent all of the functions of the Pock expansion.

In the case of Sturmian functions, a recurrence relation is not solved and there are no

remainder terms. The Sturmian basis also has the advantage that all of the physical

parameters, such as charge and external field can be removed from the calculation

for both the Raleigh-Ritz and Schwinger variational principles. This allows one to

calculate several matrices of pure numbers at the beginning of the calculation. The

physical parameters can be added later, and most of the calculation is performed only

once.

Finally, the Pock expansion was investigated in Pano-Bohn R-matrix theory.

It was shown that this theory can produce approximate energies to the hydrogen

atom in a constant magnetic field very quickly. It was shown that this is equivalent

to the method used by Kravchenko et. al[15]. At this time, this method is probably

the fastest and most accurate way to find energies for a very wide range of applied
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magnetic fields. It has the disadvantage that special numerical techniques are required

such as arbitrary precision mathematical libraries. The method has already been used

to produce very accurate results, however.

The work in this thesis has concentrated on "proof of principle" rather than

extensive calculations for the purpose of data compilation. The lower bounds method

is essentially new, but when taken with the standard upper bound calculations gives

an essentially "exact" solution for the non-relativistic magnetic field problem. Future

work would concentrate on developing efficient computer programs to implement the

methods developed in this work. A number of improvements have been indicated

here which would be implemented.
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Appendix A

Wigner 3-j Symbols

2  I l-2\

0 0 0 / ^{21 - 3) {21 - 2) {21 - 1) {21 + 1)

2  ; / \ _ (-l)'v^(/ + l)
0 0 0 / ^{21 - 1) {21 + 1) {21 + 2) {21 + 3)

(-1)'V6(/ + 1) (/ + 2)
y/{2l + 1) {21 + 2) {21 + 3) {21 + 4) {21 + 5)

(_!/+'" 72 (/2-3m2 + l)
^{21 - 1) {21 + 1) {21 + 2) {21 + 3)

2  I 1 — 2^ ^ ^
0 -m m ) yj{2l - 3) {21 - 2) {21 - 1) {21 + 1)

2  I 1 + 2

0  0 0  >

I

u —m

1-2 !-'■
m j

2  / 1 + 2 \
m  I1

(A.l)

(A.2)

(A.3)

(A.4)

(A.5)

0 -m m J ^{21 + 1) {21 + 2) {21 + 3) {21 + 4) {21 + 5)
(A.6)
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Appendix B

Proof of the Feynman Theorem

The Feynman theorem[29] states that

dE r dU^  ̂ (B.l)

The average energy is defined quantum mechanically as

E = (A) ̂  (A) dA (B.2)

Taking the partial derivative with respect to A on both sides yields

H  1 (b.s)
FT is a Hermitian operator, however. Therefore it can operate to both the left and

the right, and it can operate on both ip and tp*. Since Hip = Eip, equation (B.S)

becomes

I ?^i,(X)dX + I i,'(X)^^i>{X)dX + Ej r(X)^^dX (B.4)
It is recognized, however, that

f?^^dX^lrf^iX=llrHX = 0 (B,5)
Therefore,

|| = /^.(A)^^(A)dA (B.6)
The Hamiltonian is H{X) = Ti + U{X). The kinetic terms is not a function of A.

Therefore,
dH{X) dV(X)

= ~dr
Therefore, it is proven that

f = /^-(A)^^(A)dA (B.8)
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Appendix C

Proof of the Schwartz Inequality

Let a vector be defined as v = A + XB where A is an arbitrary scalar. We

can therefore write

^2 = iri;= (i* + A*.B*) (1+A5) > 0 (C.l)

Because A is an arbitrary constant we can define it as

A H (C.2)

Therefore

Expanding this yields

o  B*-!- ^ B-A* ̂  ^ (b n A*) (b* n a)\A'-^A*-B-^B*-A + ̂ >0. (C.4)

Multiplying both sides by B'^ yields the Schwartz inequality

A^B^ - [B* n A)^ >0. (C.5)
This can be written in Hilbert space as

(.4I.4)(S|B)-KA|B)P>0. (C.6)

Let us define |A) = \/Vi |(^t) and \B) = y/Vj \ip). Then,

{(f>t\ \vi\ \<t>t) mvim - mvim mvim > o. (c.?)

In our case, Vj has definite sign. Therefore,

imi^) - {'Pt\vi\4>) > 0. (C.8)
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