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ABSTRACT

Magnetization studies on a single crystal of YNijBjC superconductor have revealed

significant effects of nonlocality in the superconductive state and have displayed a significant

angular variation in normal state. The 17 mg crystal was studied at temperatures T from

above (15 K) to 2 ~ 3 K, in magnetic fields H applied parallel and perpendicular to the

(001)-crystal axis, within magnetic fields from zero to the upper critical field. The

material exhibited little magnetic irreversibility, vdth a critical current density ~ 10"* x J„ the

depairing current density. This nearly reversible behavior has allowed an analysis of its

equilibrium properties: the thermodynamic critical field HJiT), HJiT), and the magnetization

M(H,T) in both the normal and superconductive states. Near T^, the equilibrium

magnetization M of the clean single crystal of YNijBjC was standard London-like with M

« ln(/0- Well below T„ however, M is shown to deviate significantly from this simple

"local" London predictions, but the behavior is well described by "non-local" London

theory, which is a more general theory derived by Kogan et al. [Phys. Rev. B 54, 12386

(1996)]. The non-local analysis yields reasonable values for the nonlocality radius p and

London penetration depth X. The T dependence of X was obtained from both non-local

London analysis at low temperatures and a standard local-London analysis near T^.

Contrary to the exponential dependence expected for simple s-wave pairing, the nearly

behavior for A(7) below 10 K seems to give evidence for a more complex, perhaps non-j-

wave pairing scheme. In addition, the normal state magnetic susceptibility was measured
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in the temperature regime between 16 K and 295 K in an applied field of 10 kG, for the

magnetic field applied parallel or perpendicular to the crystalline (OOl)-direction. The

material exhibited a large anisotropy between the two field orientations, particulary in the

low temperature regime. Furthermore, according to heat capacity studies of YNijBjC, the

material appears to deviate from both weak- and strong-coupling superconductive

mechanisms, but agrees relatively well with predictions [Q « z'] of a medium-coupling

formalism. From magnetization and heat capacity studies, the deduced values of the

Ginzburg-Landau parameters xi and increase considerably as T decreases. This is

consistent with the material's long electronic mean fi-ee path and the observation of non

local electrodynamics.

Several features of high temperature superconductors were investigated in

complementary work. In studies of the effects of adding elemental Ag to high

superconducting HgBa2Cu04+8 materials, a series of polycrystalline AgJIgBa2Cu04+j

materials (with molar fraction x = 0, 0.05, 0.1, 0.3, and 0.5) were investigated. The

processing with Ag at elevated temperatures led to changes in superconducting properties.

These are consistently interpreted in terms of the superconducting hole density, calculated

from the London penetration depth X by analysis of the equilibrium magnetization M using

standard London theory. The irreversible magnetic properties of these materials are

dominated by surface barrier effects and are well described in terms of thermally activated

tunneling of pancake vortices through a surface barrier.

For practical applications, vortex pinning in high-r^ superconducting (HTS)

materials is very important. To pin vortices strongly, splayed columnar tracks produced
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using a fission process, induced by high energy (GeV) proton irradiation, have been formed

in several HTS materials. Overall, the magnetic hysteresis AM (« J) of the materials is

greatly increased by the splayed columnar defects. The hysteresis or persistent current

density first increases with increasing the proton fluence 0^, then passes through an optimal

proton fluence, and finally decreases at much higher 0^. In contrast with AM (« J) that is

enhanced significantly by the columnar defects, the superconducting transition temperature

Tj is suppressed somewhat, with a material-dependent rate. By analyzing the decay rate of

Jwith a time in aMaley analysis, the effective pinning energy UiJ) was obtained with both

irradiated and unirradiated materials. The net pinning potential barrier of vortices is clearly

enhanced by the splayed columnar tracks, from 0.8 GeV proton irradiation. In general,

these splayed columnar defects lead to significant enhancements in the vortex pinning effect

within the HTS materials investigated.
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CHAPTER 1

INTRODUCTION

In 1908, H. Kamerlingh-Onnes first liquified helium and then discovered the

phenomenon of superconductivity just three years later, in 1911.^ A superconductor has an

important property, which is Meissner effect. The Meissner effect, a spontaneous expulsion

of magnetic flux upon cooling through the superconductive transition temperature T„ was

found by Meissner and Ochsenfeld in 1933.^ It required, however, a long time to

understand clearly the microscopic mechanism of superconductivity. The first theoretical

explanation of the magnetic properties of superconductors was given in 1935 by F. London

and H. London.^ After that, in 1950, L. D. Landau and V. L. Ginzburg suggested a more

general theory of superconductivity.* At last, the microscopic mechanism of the

phenomenon of superconductivity, so-called BCS theory, was discovered in 1957 by J.

Bardeen, L. Cooper, and J. R. Schrieffer.' The mechanism of BCS theory itself is often

called Cooper pairing.®

Following Kamerlingh-Onnes' discovery of superconductivity in metallic mercury,

more than 20 metallic elements were found to be superconductive. Subsequently, various
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alloys including ordered binary, ternary, and intermetallic compounds played a key role in

increasing the superconducting transition temperature up to about 20 K by the middle of the

20* century. In 1973, a record high-r^ of 23.3 K was found in the compound NbjGe.''*

Many years then passed with no further increase in the superconducting transition

temperature. At last, in 1986 J. G. Bednorz and K. A. Muller first discovered

superconductivity in a layered perovskite material, (La-Ba)2Cu04, which had an

astonishingly high T^, above 30 K.' For this remarkable discovery, Bednorz and Muller

received the 1987 Nobel Prize in Physics. This marked the discovery of new classes of so-

called high temperature superconducting (HTS) materials. Finally, the dream of

superconductivity at the temperature of liquid-nitrogen (77 K) came very quickly. Like an

explosion, several series of cuprate materials were quickly discovered: a Y-based family with

Tj up to 90 K, Bi-based family with up to 110 K, Tl-based family with up to 125 K,

and Hg-based family with up to 133 At the time, science appeared to be on the

threshold of a technological revolution and the discovery of room temperature

superconducting materials before the 21" century. However, contrary to our expectation,

a dozen years have passed since the discovery of high-r^ superconductivity, with no

technological revolution to date.

Having materials that superconduct at remarkably high temperatures, it was thought

somewhat naively that practical applications of the new materials would be easily developed.

However, many obstacles soon became apparent. First, applications such as

superconducting wires, magnets, and so on are hindered by the fact that the high-Tj

superconductors are ceramics, which are brittle and not flexible. Second, the high-Tj
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superconductors have highly anisotropic properties; in polycrystalline materials, the current

flow across grain boundaries is quite poor (the "weak link" problem); in the presence of a

large magnetic field, which is necessary for many applications, the movement of flux lines

("giant flux creep") generates heat and makes current conduction to be dissipative; and so

on. Since discovery of high-r^ materials, many scientists have expended great effort to

overcome these challenges. Therefore, it seems that these innovative HTS materials have

enormous potential for new technological applications in the near future. Surely, their

future seems bright at the beginning of the 21" century.

As mentioned, all of the high-r^ superconducting materials are ceramics, cupric

oxides. In one approach, many scientists tried to solve the ceramic problem by growing

HTS layers on some substrate or backing. High-r^ superconducting wires were made by

a powder-in-tube (PIT) technique;^® films were prepared by various deposition methods;

flexible tapes were formed by ion beam-assisted deposition (IBAD)""" and the recently

developed Rolling-Assisted Biaxially Textured Substrate (RABiTS™) technique.^"'^^

Second, other material scientists have searched for new classes of more metallic

superconductors possessing greater flexibility. Recently in early 1994, the intermetallic

borocarbide family (iZNijBjC, where R = rare earth, Y, and so on) was discovered by many

research groups. This new class of intermetallic iSSlijBjC superconductors has held a

great attention during recent years because of very interesting physical properties, such as

the coexistence of magnetism and superconductivity,^'"'^ phase transitions in the lattice of

magnetic flux lines, e.g., changing fi-om a simple hexagonal vortex array to a square array,'^"

" and their modestly high transition temperatures, comparable with well-studied A-IS
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structure materials. Though these new materials were first thought to be similar to

conventional low-J^ superconductors (LTS), they have some unconventional properties.

Therefore, the nickel borocarbide family may provide a connecting line between

conventional low-T^ superconductors and unconventional high-r^ materials.

From a basic perspective, there are two kinds of superconductors, known as type-I

and type-n according to their responses to magnetic field. The type-I superconductors

exclude magnetic field up to a critical field (H^, which destroys superconductivity. For

type-n superconductors, there are two additional critical fields, the lower critical field

and the upper critical field The relation between and (and is more

complicated. The Meissner state with flux density B = 0 exists only below When the

applied field exceeds flux starts to penetrate into the material in the form of quantized

flux lines called vortices (each with flux = ch/2e = 2.07 x IC' G-cm^). Finally the

material reverts to the normal state at field H^2- The field regime between and 7/^2 is

called the mixed state or vortex state. Several structural phases have been identified,

including the vortex liquid, vortex glass, and vortex solid; these have differing dynamic

behaviors.^ The mbced state plays a key role in practical applications of HTS materials, for

the mked state covers a very large part of the magnetic phase diagram, and the H^2 is much

larger (and the coherence length is much shorter) than those in conventional low-T^

superconductors. As noted, the HTS materials suffer from highly anisotropic properties,

weak link current flow, and giant flux creep (magnetic relaxation) in the mixed state. To

overcome giant flux creep and weak current density (JJ in the mixed state, many scientists

have studied vortex pinning effects ofHTS materials. Fortunately, vortices can be "pinned"

-4-



in the mixed state by intrinsic or extrinsic imperfections (defects) that prevent movement of

vortex. In 1991, L. Civale et al. showed that introducing columnar defects, formed by

heavy-ion irradiation, greatly increase the critical current density in single crystals of

YBaiCujOj.^' In other words, parallel columnar defects produce strong vortex pinning and

reduce the decay rate of magnetization. More recently, T. Hwa et al. suggested that splayed

(slightly dispersed in angle) columnar defects should create even stronger pinning effects

than those of simple parallel columnar defects.^* Therefore, Krusin-Elbaum et al. devised

a mechanism to produce splayed columnar defects using a fission process, in which heavy

constituent nuclei inside a material were induced to fission by high energy (GeV) proton

irradiation. They found remarkable increases in the critical current density and decreases

in the decay rate of magnetic relaxation, due to strong vortex pinning.^''*® The key point for

usefiil applications lies in creating means to pin the vortices against dissipative motion, due

to a current flow in a magnetic field. This is a necessary condition for many practical

applications to emerge.

The present study is directed in part to understanding the superconducting properties

of the new class of intermetallic Ni-borocarbides. Chapter 2 deals with the physical,

thermodynamic, and superconducting properties of these materials and with some

theoretical background for understanding them. The second major topic deals with strong

vortex pinning. Thus, Chapter 3 presents the pinning effects due to artificially created

defects, such as simple parallel columnar tracks and splayed columnar tracks, and describes

some flux creep models as well. Chapter 4 contains the conclusions of this work.
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CHAPTER 2

THE SUPERCONDUCTING AND

MAGNETIC PROPERTIES OF YNijBjC

SINGLE CRYSTAL

In this era of high- superconductors, a new class of perhaps more conventional

intermetallic borocarbide materials has been discovered, with transition temperatures in

the range of 7 K - 20 K. The nickel-borocarbide superconductors are proving to be a rich

and complex system of materials. In the past few years, these materials have received great

attention from many scientists, because they show so many remarkably interesting

physical phenomena. For example, they display a coexistence of magnetism and

superconductivity,^^"'^ the vortex lattice changes from simple hexagonal to square

symmetry,'^'" and the transition temperatures are comparable with the well studied A-15

compounds. In general, the superconducting parameters ofYNijBjC single crystal are not

-6-



easily determined magnetically because of the paramagnetic properties of normal state. In

addition, the "clean" single crystal of YNijBjC studied here shows deviations from simple

standard London formalism,*^ which provides important evidence for more complex

superconductivity. There are still many physical properties, that are not fiilly understood

in the /fNijBjC family (where R represents any rare earth ion and Y).

2.1 Experimental Aspects

The recently discovered superconductor YNijBjC is one member in the series of

several new intermetallic borocarbide superconductors.^^'^* The single crystal of YNijBjC

was grown by a high temperature flux method using Ni2B flux with isotopic "B to reduce

neutron absorption (in small angle scattering studies). The 17 mg single crystal whose

dimensions are 0.29 x 0.23 x 0.06 cm' had a mosaic spread of less than 0.2°, as determined

by neutron diffiaction." The structure of YNi2B2C was determined by Siegrist et al.^* and

is shown in Figure 2-1. These intermetallic borocarbides have a layered crystal structure,

but they do not contain superconductive CUO2 layers as with all of the high-r^

superconducting cuprates. In the structure of i?Ni2B2C, Ni2B2 layers alternate with RC

layers, repeating along the crystallographic c-axis. These new type quaternary /?Ni2B2C

(where R = rare earth and Y) compounds build up in the well known tetragonal ThCr2Si2-

type structure and belong to the space group M/mmm.^-^^''"

Small Angle Neutron Scattering (SANS) has become a very useful method for



a

n

m

Figure 2-1. The structure of YNijBjC. B.C.Chakoumakos and
M. Paranthaman, Physica C 227,143 (1994)



investigating the vortex structures in the superconducting mixed state. Overall, isotropic

superconductors have a simply hexagonal flux line lattice (FLL) with vortices forming

equilateral triangles. Neutron scattering studies have shown, however, that the FLL in

borocarbides is more complex: the symmetry changes from simply hexagonal to square

form, even for YNijBjC that contains no magnetic rare earth ions.'^^'-*^ The FLL is nearly

hexagonal in low fields if where vortices are far apart. As the magnetic field increases to

modest field levels, the FLL becomes rhombohedral and appears to undergo a first order

structure transition. At still higher fields, the lattice becomes square. This seemingly

strange behavior has been explained in terms of non-local London theory (as discussed

below)'*' or generalized Ginzburg-Landau theory.'*^ If the superconductivity in "clean"

YNijBjC is indeed non-local, then its equilibrium mixed state properties should be modified

significantly. Recently, K. J. Song et al. have shown that the equilibrium magnetization of

the single crystal of YNijBjC deviates significantly from simple London predictions, and it

is well described by a non-local generalization of London theory.**

Magnetic studies were conducted in a SQUID (Superconducting QUantum

Interference Device)-based magnetometer (Quantum Design model MPMS-7). Generally

the sample for study was glued onto a thin Si-disk using a Duco cement and mounted in a

Mylar tube for measurement. The equilibrium magnetization M of the single crystal of

YNijBjC superconductor has been studied with magnetic field H parallel and perpendicular

to c-axis. Prior to studies in low magnetic fields, the superconducting magnet in the

magnetometer was "reset" to release trapped flux in its windings, by heating it above its T^.

The Meissner state magnetic moment m was measured under zero-field-cooled (ZFC) and
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field-cooled (FC) conditions in an applied field jy = 10 G. In all case, the magnetization

Af[G] = /M[Gcm'] / F[cm'] was based on the volume V, using the theoretical mass density

= 6.05 gm/cm^ which was calculated from the lattice parameters (Appendix 1).^*^*

These magnetization studies have been carried out in order to understand the

superconducting properties of YNijBjC and its magnetic field-temperature (H vs. 7) phase

diagram. The following topics are discussed. First, the reversible magnetization of the

single crystal of YNijBjC are analyzed, for field orientation H parallel and perpendicular to

(OOl)-direction, using the theoretical formalisms of standard simple London-limit*' near

and the non-local London theory of V. G. Kogan et al.*^ at low temperature. Here, the

temperature dependence of the penetration depth, X, is discussed. In addition, the upper

critical field, is treated as well. Second, the normal state magnetic properties, primarily

paramagnetism due to paramagnetic Ni^^ ions, have been investigated for both field

directions. Third, the thermodynamic critical field of the superconductor, is established

from the magnetic study. This is possible, since the superconducting state magnetization

in this material is remarkably reversible magnetically. For comparison with this

thermodynamic analysis, the heat capacity of the YNi2B2C single crystal has been

investigated as well, using a Physical Properties Measurement System (Quantum Design

PPMS). Fourth, the lower critical field, is established by determining the field at which

the magnetization first deviates fi'om initial linearity, which field H parallel and perpendicular

to (001)-direction. Finally, the dimensionless Ginzburg-Landau parameter Arfor YNi2B2C

single crystal will be discussed. In addition, we go beyond the constant-a: approximation

and investigate the temperature dependence of the more detailed parameters aTj, k^, and aTj,
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according to K. Maki theory.*'

These topics are discussed in detail to Section 2.3 "Experimental results and

discussions." Before discussing explicit results, however, the magnetic measurement system

is described in following section. Next, the principle of SANS (small angle neutron

scattering) will be introduced, since neutron scattering experimental results are playing a key

role in understanding the vortex physics in these borocarbide families. However, SANS

experiments were not performed directly in this work. Following that, some theoretical

background will be presented: the thermodynamic properties of reversible superconductors,

the London theory,^-**-*' the Ginzburg-Landau theory,*-*' and Kogan's standard simple local

limit and non-local London formalisms.*'-*^-'"

2.2 Experimental and Theoretical Background

2.2.1 SQUID-based Magnetometer System

Quantum Design's Magnetic Property Measurement System (MPMS) is a highly

integrated instrument system. The model MPMS sample magnetometer is designed to

detect the magnetic moment of a sample, from which the magnetization and magnetic

susceptibility can be determined. Figure 2-2 and 2-3 show the system components and the

functional control diagram of the SQLFID magnetometer of Quantum Design's MPMS-7.

The principal components of this measurement system are comprised of the following

subsystems."-"
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SYSTEM COMPONENTS

1. Sample Rod 8. .SQL IU Capsule with Mattnetic Shield 15. Console Cabinet

2. Sample Rotator 9. Superconducting Pick-up Coil 16. Power Distribution Unit

3. Sample Tianspoit 10. Dewar Isolation Cabinet 17. Model 1822 MPMS Conuoller

4. Probe Assembly 11. Dewar 18. Gas/Magnet Control Unit

5. Helium Level Sctisor 12. HP Thinkjet Printer 19. HP Vectra Computer

6. Supereondurtlnj! Solenoid 13. Magnet Power Supply 20. Monitor

7. Flow Impedance 14. Model 1802 Temperature Controller

4 _

TOKW

*d

c

18

-17

_1S

7 8

Figure 2-2. The system components of the SQUID magnetometer of
Quantum Design's MPMS-7.
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HP Computer

IEEE-488 Interface

1822-MPMS Computer

I

1802 R/G Bridge

Gas Control Panel Gas/Heater Switch
Temperature Sensor

Airblock Flushing

Sample

Transport

Assembly

Coupling

Transformer

Heater

SQUID

Coupling

Transformer

Vacuum Pump

Gas Heater

Proportional Gas Flow

Helium

Level

Detector

FlowSQUID MagnetSample
ImpedanceControl PowerTranslation
HeaterSupply

SQUID

Sensor

Magnet

Persistent
SQUID

Switch
Detector

Array
Magnet

Dewar

System

Figure 2-3. The Functional Control Diagram of the SQUID magnetometer
of Quantum Design's MPMS-7
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(1) Temperature Control System

The principal components of the temperature control system are the liquid helium

dewar, the variable impedance assembly, the temperature control module, the proportional

flow control valve, and the vacuum pump. Figure 2-4 and 2-5 show the Temperature

Control Module and the Gas Control System of MPMS-7. The system has two

thermometers, a germanium resistor for the low temperature regime below 40 K and a

platinum resistance thermometer for the regime above 40 K, to cover the whole temperature

range from 2 K (-271 °C) to 400 K (127 °C). An important feature is the fully automated

temperature control system. The Model 1802 R/G Bridge controls the heat flow into the

sample space to establish a target temperature between 4.4 K and 400 K. Also, one requires

no special modification of the MPMS hardware to operate for a limited time at temperatures

below 4.4 K. The principle of the operation of the MPMS at temperature below 4.4 K is

not complicated. To do so, the system adjusts the proportional flow control valve to get

a lower pressure in the helium reservoir. Therefore, liquid helium will flow through the

impedance assembly and into the helium reservoir via the connecting tube. Maintaining this

condition for short period time (about 15 minutes) will result in the accumulation of about

20 cc of liquid helium in a reservoir. One can start automatically this mode of operation by

the following steps: (1) set temperature to 5 K, (2) pause 600 seconds, (3) set the target

temperature below 4.4 K, and (4) turn impedance heater off. The first two steps are

included to make sure that the sample chamber and helium reservoir are relatively cool

before the system tries to fill the reservoir with liquid helium. However, during step 3, the
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Figure 2-4. The MPMS temperature control module.
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reservoir fills with liquid helium, the impedance is closed, the proportional flow control

valve is opened, and the temperature is controlled at temperature below 4.4 K using both

the proportional flow control valve and heater. One charge of liquid helium can maintain

target temperature in the range 2 ~ 4 K for about 2 or 3 hours.

(2) Magnet Control System

A high homogeneity superconductive magnet provides magnetic fields up to ±7 T.

It is energized with current from a power supply. Thus, the field is provided and sustained

by charging or trapping an amount of current in the superconducting magnet that is wound

in a solenoidal configuration and is constructed as a completely closed superconducting

loop. The entire sequence of the MPMS magnetic field control is processed entirely by the

Model 1822 Main Controller without detailed attention fi-om the HP host computer. To

establish a target magnetic field, the magnet current can be controlled in two ways: the

Oscillating and the No Overshoot mode. The Oscillating mode oscillates the current back

and forth around target value with decreasing amplitude of oscillation, after passing the

target value at first. In contrast, the Ab Overshoot mode guides the current to get the target

value very monotonicaUy without passing the target value. Sometimes, it is very important

to choose the Oscillating mode or No Overshoot mode according to experimental

objectives. Usually, the Oscillating mode reduces greatly the magnetic field relaxation in

the magnet, which arises fî om residual magnetic forces on the magnetic flux pinned in the

magnet windings. The current oscillation helps minimize these relaxation effects, which

appears as drift in the output of the SQUID detector with its extreme sensitivity. However,
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when one measures a material exhibiting irreversible magnetic behavior, the Oscillating

mode cannot be used; the No Overshoot mode should be used so that the sample

experiences a monotonically changing field. Finally, it should be noted that, when the

magnet is charged to a high field, some magnetic flux becomes trapped in the

superconducting windings. To eliminate trapped flux that gives a remnant magnetic fleld,

the MPMS system allows one to warm (with an electric heater) the magnet above its

superconducting transition temperature for a short time period, releasing the trapped fields.

In addition, the homogeneity of magnet is important, since the movement of

superconducting sample in inhomogeneous field induces currents that can drastically change

the sample magnetization. Usually, a scan of 3 cm, properly centered, gives a field

excursion of ~ 3 G at = 5 T, i.e., 60 ppm for our MPMS system. The MPMS-7

model has 1 ppm/hour of field stability and 0.01% over (at a scan of 4 cm) of intrinsic field

uniformity.

(3) Superconducting SQUID Amplifier System

The detection system for magnetic moment consists of a highly balanced second-

derivative pickup coil, reset circuitry, auto-ranging capability, a superconducting

transformer and ̂ SQUID sensor with a Model 2000 SQUID Amplifier. Figure 2-6 shows

the transverse SQUID system. The rf SQUID detector is the most important part in the

magnetic moment detection system. The thin film SQUID device of Josephson junctions

essentially functions as an extremely sensitive current-to-voltage convertor. Figure 2-7

shows the configuration and location of the pickup coil set. The longitudinal pickup coils
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Figure 2-6. The MPMS transverse SQUID system; inset: the detector

array for longitudinal system.
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are a highly balanced second-derivative coil set with a 2.02 cm diameter and a total length

of 3.02 cm. The upper coil is a single turn wound clockwise, the center coil comprises two

turns wound counter-clockwise, and the bottom coil is a single turn wound clockwise. This

second-order gradiometer configuration, which will provide more noise cancellation than

a first-order gradiometer, rejects noise in the detection circuit caused by fluctuations in the

large magnetic field of the superconducting magnet. A measurement is performed in the

MPMS system by moving a sample through the superconducting detection (pickup) coils.

When the sample moves through the pickup coils, the magnetic moment of the sample

induces an electric current in the pickup coils. The pickup coils, the connecting wires, and

the SQUID input coil form a closed superconducting loop. Therefore, any change of

magnetic flux in the pickup coils produces a change in the persistent current in the pickup

detection circuit, which is proportional to the change in magnetic flux. Since the SQUID

functions as a highly linear current-to-voltage convertor, the variations in the current in the

pickup coils produce corresponding variations in the SQUID output voltage which is

proportional to the magnetic moment of the sample.

(4) Sample Holding System

The sample holding system composes of the sample holder (Mylar tube and Si- or

Al-disk), the sample rod, a special slide seal assembly, and a stepper-motor-controlled

platform. The sample is attached with "Di/co" cement on the Si-disk, which seats in a Mylar

tube that is connected in turn to the end of a rigid sample rod. After loading the sample into

magnetometer, the top of the sample transport rod is attached to a stepper-motor-controlled
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platform and this drives the sample through the pickup coils in a series of discrete steps. At

each step, the SQUED system measures a voltage proportional to the induced current. The

resulting "scan", which typically is 3 ~ 4 cm in length, is converted to magnetic moment

electrically, using an experimentally determined calibration factor, and automatically

controlled attenuation factors.

(5) Computer Operating System.

All operating features of the MPMS are under automated and computer control.

The user interface at the PC console provides the option of working under standard

sequence controls, or diagnostic controls which are invoked individually. For the

experimental studies reported here, specific sets of instructions ("sequences") were written.

The Model 1822 Main Controller is a standard bus on-board computer that controls probe

functions and SQUID data acquisition. This unit is consisted of a 6809-microprocessor

operating in a STD bus configuration, with an IEEE-488 General Purpose Interface Bus

(GPIB) card to handle communications between the 1822 microprocessor and the host

computer. In addition, the Model 1802 Digital R/G Bridge is a multi-channel,

microprocessor controlled, a programmable measurement and control instrument.

The model MPMS sample magnetometer is currently used in many research

laboratories. It is configured to detect the magnet moment of various materials. The

MPMS can measure a magnetic moment with a range of sensitivity from about 10"* emu to

2 emu in the standard configuration and can measure over 300 emu with the extended range
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option, as included in this instrument. Usually, the MPMS reports the magnetic moment

data in emu (electromagnetic units [Grcm^]). Therefore, we get the magnetization Mby

dividing the value of the magnetic moment by volume, mass, or the number of moles in the

sample to obtain M in units of emu/cm^ = G, emu/gm = G-cmVgm, and emu/mol =

G-cm'/mol, respectively.

2.2.2 Small Angle Neutron Scattering (SANS) Experiment

In recent years, Small Angle Neutron Scattering (SANS) has become a very useful

method for investigating the vortex array in the superconducting mixed state. In particular,

a phase transition in vortex symmetry, from simply hexagonal to square symmetry, was

discovered in SANS experiments on ifNijBjC compounds.'^"'' In general, scattering

experiments are one of the main sources of information on the structure of matter. A beam

of particles, such as electrons, neutrons, alpha particles, other atomic nuclei, etc., is

deflected by elastic collisions with atomic nuclei. In addition, to get useful information from

scattering experiments, specialized techniques are needed for detecting the scattering

particles. The use of neutron diffraction is relatively new compared to electron and X-ray

diffraction. Neutron scattering is a unique tool for the study of a variety of magnetic

phenomena, because the magnetic moment of neutron interacts with magnetic moments or

spatial variations in the magnetic field within matter.

Usually, flux lines start to enter into superconducting materials when the applied

field H reaches the lower critical field H^i. These flux lines inside a material can form a

periodic lattice, due to their repulsive interaction. One can understand the principle of small
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angle neutron scattering (SANS) from a flux line lattice (FLL), following the treatment of

C. M. Aegerter et al." If the flux density B « (f>o/cio in superconducting material is 1 T

(which is much larger than/T^i), the typical spacing between FLL planes will be about 50

run. Thus, to observe the structure of the FLL, neutrons with long wavelengths are required

to get even small angle scattering. For example, if the beam has wavelengths between 1.2

and 1.5 nm, scattering angles 26 « T can be estimated from the Bragg condition,

l„ = ld^sxn{d), (2.2.2-1)

where X„ is the wavelength, is the layer spacing, and ̂ is scattering angle. Because a

neutron has a magnetic moment, //„ = -1.913/^;^, it may interact not only with the nuclei in

a sample, but also with magnetic field modulation due to FLL in superconducting mixed

state. Thus small angle neutron scattering, due to interactions between neutrons and

magnetic spatial inhomogeneities, gives information about the structure of the FLL within

superconductors."'"

The intensity of scattered neutrons in a Bragg reflection (integrated over angle

rocking curve, when the sample is rocked through the Bragg condition) is estimated from

the magnetic cross section to be"

[("/'.'(W.'mSAV)] H<htf (2.2.2-2)

where is the flux of incoming neutrons, X„ is the neutron wavelength, V is the sample

volume, <pg = h/lQ is the magnetic flux quantum, and F{c^ is the magnetic form factor,

which is a measure of the q^ Fourier component of the spacial variation of the magnetic

field in the sample. For extreme type-II superconductors (HTS materials) with high k

values, which indicate long magnetic penetration depths and short coherence lengths, the
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■fXOwk) can be easily calculated in the London approximation:

=  + (2.2.2-3)

Here Xl is the magnetic penetration depth, which is temperature dependence, and B is the

average of magnetic induction field. Finally, one can obtain the relation between I and Al

fi-om equations (2.2.2-2 and -3):'^

(HQ = W)]exp(-2n^B5 (2.2.2-t)

where y is the neutron gyromagnetic ratio, and $ is the coherence length. Thus, the London

penetration depth Xl of the sample in the mixed state can be estimated fi"om the scattered

intensity where I« X"*. Because the HTS materials have long penetration depths, « 150

~ 200 nm at low temperature and much longer close to the scattered intensities are very

weak and hard to obtain, compared with conventional low-Tj type-II superconductors.

Therefore, in SANS experiments on HTS materials, long counting times are required

generally. In addition, there is very strong background scattering from various defects in

the sample. For experimental data in the mbced state, the background correction is obtained

by subtracting normal state results, measured above its T„ just as the magnetization data

were corrected by this method.

2.2.3 Thermodynamic Properties for Reversible Superconductors

For reversible superconductors, the most fiandamental thermodynamics quantities,

which are the electronic specific heat the thermodynamic critical field (H^), are

directly related to the superconducting energy gap. The superconducting state has lower

entropy, which is a higher degree of order, than that of the normal state. One expects a
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reduction in energy as a result of the transition from the normal to superconducting state.

Thus, the superconducting condensation energy (which is proportional to H^, as noted

below) associated with the superconducting transition can be calculated easily. Figure 2-8-a

shows the typical relation between the critical field and temperature T. Figure 2-8-b

shows the corresponding magnetization curve M{H) for a simple type-I superconductor.

The curve ofH^ versus T separates two phases, the normal and superconducting states. As

we see the Figure 2-8-a, when the superconducting specimen starts at point S and ends at

point with taking the vertical path SN, that is gradually increasing the field, with keeping

constant temperature (below TJ, it results to the normal state at the point N. In the

above processing, the condensation energy is AE = E^-E^. In addition, AE is equal to the

demagnetization energy because the sample acts as perfect diamagnet, due to the Meissner

effect, along the path SN\ see the Figure 2-8-b. Finally, we can write the following

expression for the condensation energy per unit volume,

AE = -fo"'MclH=-{\IAu) (2.2.3-1)

where 5 (magnetic flux density) = H (magnetic field strength) + 47iM = 0 (in the Meissner

state). In other words, this A£ is the amount of energy needed to convert a system from

the superconducting to the normal state or the amount of energy lost by the system when

it makes the transition from the normal to the superconducting state.

To apply thermodynamics, the transition from the superconducting to the normal

state must be reversible. In other words, the magnetization of a superconducting sample can

depend only on the values of the applied magnetic field and temperature, but not on the

processes for establishing these external conditions. Generally, the stable state in any system
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Figure 2-8. (a) The plot of critical field, , as a function of the temperature,
(b) The magnetization M of a type-I superconductor versus magnetizing field
H: the figure pertains to a long specimen with field applied parallel to the long
axis (zero demagnetizing factor). At critical field H^, the sample reverts to the
normal state.
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belongs to the lowest free energy. It is very useful to compare the difference in the magnetic

contribution to the free energy of two phases, which are superconducting and normal states,

due to the applied magnetic field. The free energy of the superconducting state must be less

than that of the normal state because the superconducting state has lower entropy. In

addition, the application of magnetic field does not change the free energy of the normal

state because of the non-magnetic properties of the normal state. In contrast, the free

energy of the superconducting state will increase as the applied magnetic field increases.

Therefore, for both type-I and type-II superconductors, the thermodynamic critical

field is defined by the relation,

/// (T) / 81I = [ (7) - (7) ] / , (2.2.3-2)

where F„{T) (or F,(T)) is the molar free energy of the normal state (or superconducting

state), is molar volume. The relation of free energy of a system is F(J) = 17(7) - TSiJ)

+ pV, without magnetic field, where 17(7) is the internal energy, 5(7) is the entropy per

mole, p is the pressure, and V is the volume. Thus, the free energy of a magnetic body

within magnetic field can be written

F{T) = U{T) 'TS{T)+pV- (l/4Tt) M, (2.2.3-3)

where is the applied magnetic field, and Mis the magnetic moment. If the pressure and

the applied magnetic field are kept constant but the temperature T is varied by an amount

dT, the change of the free energy is

dF{T) = dU{T) - TdS{T) - S{T) dT+p dV- (IMrt) H, dM. (2.2.3-4)

However, using the first law of thermodynamics, dU- TdS-p dV + (IMtt) Hg dM, one can

get

-28-



dFiT) = -S(T)dT and S(T) = - [dF/ (2.2.3-5)

per unit volume. In addition, the molar specific heat is defined by Cp = J [dS/dT]. Finally,

one obtains for a superconductor,

C„-C, = T(d/dT)[S„iT)-S,(T)]

= T(d/dT){-(d/dT)[F„-F,]}

= - (T / Sn)(dVdT')[HXr)f, (2.2.3-6)

where C„, S„, and F„ are the specific heat, the entropy and the fî ee energy of the normal

state, and C„ S„ and F, is the specific heat, the entropy, and the free energy of the

superconducting state, respectively. Therefore, we can derive the thermodynamic critical

field by the specific heat experiment due to following relation,''-''

h,Ht) = {Snjy^j//'dr//'(ir{ic,{r) - c,(r)]/r}. (2,2.3-7)

Therefore, in the fî amework of thermodynamics, we can obtain the thermodynamic critical

field from specific heat measurements, using above relations.

On the other hand, we can obtain the thermodynamic critical field from a

magnetization experiment as well. Usually, in the regime near the vortices are packed

very tightly. According to Abrikosov calculations, the local flux density is less than the

applied field by an amount proportional to the local value of |ij/(r)p. Thus, the

magnetization, M=(B- H)IA-k is proportional to <ijf'(r)> which goes to zero linearly with

(H^2 -H)  m' the second order phase transition at H^2- As an explicit result,^'-"

B = H+ATiM=H-iH^-H)l[{2]e-l)P2, (2.2.3-8)

where = 1.16 for the triangular lattice and 1.18 for the square lattice.
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Meanwhile, let us define the Gibbs free energy G = F - BH/An. Using the

thermodynamic relation, (dG/dH)r = - B/4n, one can get easily following relation by

integrating, whereF=G whenH=0, and G, = G„ whenH>H^2>

/ 8it = F„ (0) - F, (0) = - /J"^ M dH, (2.2.3-9)

having nothing to do with the value of k. This indicates that the area under the

magnetization curve is given by the condensation energy /Stt in all case, in spite of

changing of the shape of magnetization curve.

2.2.4 From London to Ginzburg-Landau Theory

(1) London theory

At first, let us consider the behavior of superconducting electrons under a constant

electric field E, in a superconducting metal. The superconducting electrons will be

accelerated by the electronic field E:

m{dy/Jdi) = -eE. (2.2.4-1)

The supercurrent density is /, = - n,ev^, where t\ is the number of superconducting electrons

per unit volume, and v, is the velocity of the superconducting electrons; from equation

(2.2.4-1), one then has

dJJ dt= (njs?lm)E. (2.2.4-2)

Using Maxwell's equations inside a superconductor, V x £" = - {\lc)(dBldt) and V x .B =

(47t/c)/„ we can deduce the following relation describing magnetic fields:

(a/aO[V X /. + («,eV/«c)B] = 0 (2.2.4-3)
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and

(a/a/)[V X V X 5 + (47tw.e'//MC^)jB] = 0. (2.2.4-4)

However, the one of the basic physical features of superconductors is the Meissner effect,^

which indicates that the flux density B inside a superconductor is zero in small magnetic

fields the lower critical field. This Meissner effect is incompatible with the above

relation (2.2.4-4), which shows that constant magnetic fields can be exist within a perfect

conductor. Therefore, F. and H. London suggested that the magnetic properties of

superconductors could be explained by restricting the equation (2.2.4-3 and 4), whose the

solution is not only constant but also always zero, to the following forms,'-**

V X /, + {jx^eimc)B = 0 (2.2.4-5)

and

V X V X B + (A-Knfi^lmc^)B = 0. (2.2.4-6)

From the vector identities VxVxB = V(V'B)-V^B and Maxwell's equation V '.B = 0, the

equation (2.2.4-6) becomes

V'B - (47tw.eV/MC^)B = 0. (2.2.4-7)

This equation predicts that the magnetic flux density dies away exponentially inside a

superconductor, falling to 1/e of its value at the distance Xl from the surface. The quantity

Xl, known the London penetration depth, is given by

Xl = (mc^/4T:n,ey^. (2.2.4-8)

The penetration depth Xl is temperature dependent due to the temperature dependence of

w„ the density of superconducting electrons. The Gorter-Casimir theory,® which is an

empirical two fluid model, provides that w,«(1 -1*), where t = T/Tg is reduced temperature.
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Therefore, we can get the relation of Xl « (1- in the framework of two fluid model.

A key point of the London theory is that the supercurrent is always determined by

the local magnetic field. The London theory assumes that the total current J is the sum of

a supercurrent /, and a normal current J„. In summary, we can now write the current

relations and the London equations for superconductors;

J=J„ + J, and J„ = a'E (2.2.4-9)

V X /, = - (nfiVmc)B (2.2.4-10)

dJJ dt = (nfi^lm)E (2.2.4-11)

Meanwhile, if we introduce a vector potential A for the magnetic field B, where B

= V ̂  A, then the London relation between /, and A is A(r) = - (fnc/nfi^)JXr) from the

London equation (2.2.4-10). Therefore, the q* Fourier components ofA and /, are related

by^(q) = - (/nc/n,e^/,(q). Using Maxwell's equation V x = (47c/c)/, vector potential B

= V^A, and London gauge V -/d = 0, we can get

= - (47t/c)(/, + /J, (2.2.4-12)

where is external current, and /, is supercurrent. After taking a Fourier integral, the

equation (2.2.4-12) can be rewritten

- q^^(q) = - (47t/c)7,(q) + ̂(q>4(q) (2.2.4-13)

where we define K(q) from J,(q) = - (47t/c)Sr(q)/l(q). Finally, we can derive the London

kernel, by comparing two equations, as

^l(q) ~ 47tw,eV/nc^ = 1/(Xl)^. (2.2.4-14)

This London kernel is independent of q.

In general, the London theory, which is a macroscopic or phenomenological theory

-32-



of superconductivity, treats well the Meissner effect in bulk superconductors as well as the

magnetic properties of superconducting thin films with dimensions comparable to the

penetration depth. However, there are some serious discrepancies between the London

theory and some experimental results," such as the variation of the London penetration

depth Xl with orientation in a single crystal, the near-independence of the London

penetration depth Xl with respect to near 7^, an increase in Xl as the electronic mean free

path { decreases, and the need for a negative surface energy between the normal and

superconducting phases.

(2) Pippard theory

The London relation for penetration depth, Xl = does not explain

well the observed anisotropy of the penetration depth in dilute alloying materials. To

understand this anisotropy, A. B. Pippard made many measurements of the penetration

depth®^ and reached the important conclusion that the London equation for pure

superconductors should be replaced by a non-local equation, like the non-local form of

Ohm's law for the anomalous skin effect in a normal metal. Therefore, Pippard introduced

a new size scale, the coherence length, while deriving a non-local generalization of the

London equation.®^ Just as the local form of Ohm's law in the normal skin effect,

/(0) = a£(0), (2.2.4-15)

should be replaced by a non-local relation for the anomalous skin effect,

/(O) = {3olAn)f{[r{r'E)e"" (2.2.4-16)

so also should the local London equation,
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•^.(0) = - (n.eVwc>4(0), (2.2.4-17)

be replaced by the Pippard non-local relation

/,(0) = - (3A^e747T^7w)/[r(rvl)e^"^^ ] dv. (2.2.4-18)

The coherence length $ is given by

1/^ = 1/^0 + 1/fi (2.2.4-19)

where ̂  is a constant for a given pure superconductors and 5 depends on the mean free path

{; $ = $0 in pure superconductors, and ̂  f for { « The microscopic BCS theory* gives

^o = 0.18>,Vf/^b^„ (2.2.4-20)

where Vp is the Fermi velocity.

Continuing, the kernel .^rp(c[), defined through the equation J,(q) = - (47T/c)Ar(q)/4(q),

is given by

KM = (5 /C.X,^)(3/2(q5)')[(l + tan-'q| - qC] . (2.2.4-21)

From this, we can get the following limiting forms:

-K'p(q) = (l/V)(?/U[l-q'?/5 + ...] forq5«l (2.2.4-22)

^:p(q) = (l/A^^nrtqU 1 - 4/JiqS + n ] forq$»l. (2.2.4-23)

The Pippard kernel for q$ » 1 belongs to { -> <», with ̂  and k. The Pippard

kernel goes over to a London kernel for qS « 1, which is satisfied when q -> 0. If we

consider the Fourier component with q ~ l/X, then ̂ «X leads to London behavior. This

corresponds to two types of superconductors: the type-I or Pippard superconductors with

$ >X, and the type-II or London superconductors with $ < A.

In summary, the Pippard theory demonstrates well the potential non-local
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relationship current density and vector potential, and the properties of the coherence length.

Pippard gave up a local concept, a "rigidity" of the superconducting wave fiinction, and

introduced the non-local concept of a coherence length $, which requires an integration

averaging over a finite region surrounding the perturbing point.

(3) Ginzburg-Landau theory

The macroscopic electromagnetic London equations play a key role in understanding

some phenomenology of superconducting materials. However, they do not explain fiilly the

macroscopic picture, as mentioned previously. In 1950, Ginzburg and Landau developed

a macroscopic, phenomenological theory based on thermodynamics to overcome some

deficiencies of London theory.* In the pre-BCS era, the Ginzburg-Landau theory provided

important understanding of the macroscopic picture of superconducting materials.

The Ginzburg-Landau theory is based on second-order phase transitions. This is

based on quantum mechanics, unlike London theory which was truly classical. A main point

of the theory is that Ginzburg-Landau introduces an effective wave function, T(r), which

is called the order parameter. The order parameter is defined to be zero in the normal state

and unity for a purely superconducting state at zero temperature.

In analogy with an ordinary wave function, Y(r) for a superconductivity is taken as

a complex function. Therefore, the density of superconducting electrons, iV,(r), is related

to the order parameter via the relation iV/r) = |Y(/*)p. In addition, Ginzburg-Landau wrote

the free energy of the material, jF„ as a function of 'F(/*) and Y(r)*. They incorporated in

F, dependencies on a spatial variation of Y(r) as well as a magnetic field H,
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F, = F„ + f<fr {- F ( mrf) + (1/8k) \Hir) -

+ (1/2/w*) |[(^7)V - (e7c>4(r)]T(r)p }. (2.2.4-24)

The term F„ is the free energy of the normal state. The function F has always positive value

(^0), which represents a lowering of the free energy of the system due to the

superconducting correlation. Since -> 0 in the normal state, then F(0) = 0. For

temperatures just below when (T^ - T)« T„ the term F(|'P(r)p) can be expanded in a

power series, keeping just the first two nonvanishing terms:

F(|T(/-)|^ « a mrf + mmr)t (2.2.4-25)

odd powers of |T(r)| are excluded because they are not analytic at T(/-) = 0. The next term

in equation (2.2.4-24) is the magnetic field energy, which increases the superconducting free

energy due to the Meissner effect; is the external applied field. The final term in equation

(2.2.4-24) comes from the spatial variation of the order parameter and from current flow,

which increase the free energy.

In the simple case of zero applied magnetic field and spatial homogeneity, we have

F,-F„ = a |Yp + (P/2)|Tp. (2.2.4-26)

In the fi-amework of thermodynamics, the free energy F, should be a minimum. Therefore,

P should be positive to be an adequate theory. If a > 0, the minimum free energy takes

place at |¥p = 0. If a < 0, one can differentiate with respect to | Y(r)p to get the minimum

values ofF,,

aF;/a|Yp = a + p|Y.p = o, (2.2.4-27)

the minimum free energy occurs at |Yp = | Y.p = -a /p, where Y. indicates a value far from

any boundaries. Substituting |¥p = |Y.p = -a /p into equation (2.2.4-26) and using the
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definition of the thermodynamic critical field H„ one finds

F,-F„ = a |Y.p + (P/2)|T.r = - a V2p = (2.2.4-28)

In addition, if we eliminate a and P by solving equations (2.2.4-27) and (2.2.4-28)

simultaneously, we get the following form,

i^(|Tp) = (^//87i) (2|Yp/|Y.p + |Y|V|¥.r). (2.2.4-29)

The coefficient a (7) must change fi-om positive to negative value at r= T^. By

keeping only the leading term in a Taylor's series expansion of a (7) about T„ one has

a(0 = ao('-l), (2.2.4-30)

where a„ is positive and t = TIT^. If p is constant at 7= T„ then we have « (1-/) as well

as |Tp « (1-t). In London theory, the density of superconducting electrons, w,« (1-0

when r-> r,. Using the identification 7/, =i\l2 = |Yp and recalling that the simple London

penetration depth = »ic^/47te^«„ we can define a Ginzburg-Landau penetration depth

~  ! 47r(e*) ̂ IT] In addition, we can derive the parameters of the theory by

solving (2.2.4-28),

IYp = IY.p = -a /p, and Aql^ = = /nV / [47t(e*) ̂ [Yp ]:

I Y.p =N,=n,l2 = /n*cV47ie*^A^ = /wc^/87te^A^ (2.2.4-31)

a(7) = - (e*V/«V)iy/(7)A2(7) = -{2eim<F)HXT)X\T) (2.2.4-32)

P(7) = (47re*V/n*V)i7,\7)A \T) = (167teV»rV)7f/(7)A\7). (2.2.4-33)

Consider now the fiill expression for the overall fi-ee energy, equation (2.2.4-24).

In minimizing F^ vwth respect to variations in Y and ̂  (in addition to the obvious

requirement of 7^, ̂  F^, we get two additional equations, the so-called Ginzburg-Landau

differential equations,
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{a + P |Tp + (l/2m*) [(Vi)V - (e7c>4]2}T = 0 (2.2.4-34)

J= (c/4Tr)Vxfl-= (e* V2w*i)(T VT - YV Y") - [(e7//w'clY* Y^. (2.2.4-35)

The fonner equation (2.2.4-34) has the form of a Schrodinger equation with an eigenvalue

-a, apart from the nonlinear term. The latter equation (2.2.4-35) has the form of the usual

quantum mechanical expression of the current density for particles of mass rn, charge e*,

and wave function Y(r). In addition, a boundary condition at the surface of the specimen

n • [(V7)V - (e7c>4]Y = 0 (2.2.4-36)

where n is the normal surface, should be considered with these equations. In particular, for

the case of spatial uniformity where VY = 0, one has J = - [(e*)7/w*c]Y'Y/4 = - [(e*)^ |Yp

lm*c\A from the equation (2.2.4-35), which is exactly identical to J = - {^nJmc)A from

London equation if we take e* = 2e, m* = 2/n, and |Yp = JV, = n,/2. These relations agree

very well with the microscopic BCS theory with Cooper pairs, consisting of two paired

electrons.

Meanwhile, if we consider a simplified case of zero field (A = 0), take Y to be real,

and introduce a normalized wavefunction w = Y/Y„, then the differential equation (2.2.4-

34) takes the form

{i?l2rn\a. \)V^w + w-w' = 0. (2.2.4-37)

Therefore, we can define a coherence length 5(7) for variation of Y such as

5'(7) = hV2tn\a (7)| « (l-T/Ty. (2.2.4-38)

This means that the small disturbance of Y from Y. decays in a coherence length of order

5(7). By substituting equation (2.2.4-32) into equation (2.2.4-38), we get

i(.T)=<l>J [(2/2)ltff.(7)A(7)] (2.2.4-39)
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where <j>g = hdQ = hdit = 2.07 x 10'^ [G-cm^] is the quantum of flux. Moreover, we find

the famous Ginzburg-Landau parameter x; the ratio of the characteristic lengths near T„

<= \{T) / 5(7) = im)TiHJiT)X\T) / (2.2.4-40)

In general, pure superconductors have x'« 1, and dirty superconductors have /c» 1. The

value K= \Nl is the boundary between type-I and type-II superconductors: type-I is Ar<

\Nl, and type-II is k> 1/72.

Finally, we treat the linearized Ginzburg-Landau equations to avoid the difficulty of

solving the coupled nonlinear partial differential equations. By dropping the term PlYpY

in equation (2.2.4-34), we can get the linearized Ginzburg-Landau equation,

(V// - 27l4/0„)2¥ = (- 2/n*a //)')T = (7). (2.2.4-41)

Suppose that we apply the field H along the z-axis and take a convenient gauge. Ay = Hx.

We have the following results from equation (2.2.4-41):

[- V' + (47t//0„)i7x iddy) + (27t7r/0j ]Y = (1/?)Y. (2.2.4-42)

Since the effective potential depends only on x, we can choose the trial solution, Y =

exp(i^^)exp(/^jZ)/(x). Substituting the trial solution into equation (2.2.4-42), we can derive

-/"(x) + (2nH/<PJ'(x.x,ff= (lie-K')f (2.2.4-43)

where x^ = I2kH. This is similar to the Schrodinger equation of a harmonic oscillator,

particularly that giving quantized states for a normal charged particle in a magnetic field.

These so-called Landau levels, which are separated by the cyclotron energy h(o„ have

eigenvalues E„ = (n+ \l2yt\(o^ = (« + l/2)h (2eHlrnc). Meanwhile, the eigenvalues of the

equation (2.2.4-43) are to be equated to E„ = (hV2m*)(l/$^ - ̂/). Thus, we can find

H = [(hV27«*)(l/$' - KMiP +I/2)h(2e/m*c)]
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=  /27r(2w +1)](1/S' - k^). (2.2.4-44)

In this equation, has the highest value if n = 0 and = 0. The corresponding value which

is the largest possible field strength while remaining in the superconducting state,

defined = H^2 (upper critical field), is = <Po /2tt$^(7). Using the equations (2.2.4-

39 and -40), the relation between and the thermodynamic critical field is found to be

H,2 = = ̂2kH,. (2.2.4-45)

Let us consider the mixed state of a type-II superconductor in an applied magnetic

field. There are vortex cores which can be described the lowering of the free energy and

decreasing of superelectron density. We can consider the vortex core as a cylinder of

normal state material with radius 5- An increase of local free energy of per

unit length of a core comes from the appearance of a normal state core. However, there is

the decreasing of local fi-ee energy of (7tA^)(/f„^/87r) per unit length, because the material is

not diamagnetic over a radius of the penetration depth ~ X. To drive the superconductor

into the mbced state, a minimum applied field, is required. Therefore, is defined as

the applied field at which there is no net gain of local free energy. By equating

/87t) = /87t), we estimate that/f^ Ik. A more accurate treatment of the

core energy provides the following relationship:

= [H, ln(*:+ 1/2)] / (*• ̂/2). (2.2.4-46)

Using equation (2.2.4-40), to eliminate we have

ln(A:+ 0.5)/47iA'. (2.2.4-47)

Finally, the three critical magnetic fields for type-II superconductors are related by the

expression
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ln(;r + 0.5). (2.2.4-48)

2.2.5 Kogan's Standard Local and Non-local London Formalisms

(1) Kogan's Standard Simple Local Limit London Formalism

In high-Jj superconductors (HTS), the values of the Ginzburg-Landau parameter

*■ ( = ) are much higher ( » 1) than those of conventional low-J^ superconductors.

This means that we can estimate as formed from equations (2.2.4-45, -46, and

-47). In addition, there exists a broad field domain « H « H^2 i" which the average

intervortex distance L obeys the inequality ^ « L « X. In 1988, V. G. Kogan et al.

showed that the reversible magnetization M is linear in the logarithm of the applied field

The argument proceeds as follows.

First, the free energy density of an individual vortex line and the repulsive interaction

energy between vortex lines were calculated by A. Abrikosov.®^ For simple materials,

Abrikosov theory leads to a hexagonal vortex lattice, shown by P. G. de Gennes."

Therefore, in a field domain « H « the free energy density F, deduced using the

London approach, is given by de Gennes" as

StiF = B^ + (B<PJ2t:X^) \n(L/3/^) (2.2.5-1)

where B is the magnetic induction, is the flux quantum ( = 2.07 x 10'^ G-cm^), fi is a

geometric factor of the order unity which depends on the flux lattice structure, and L is the

average vortex separation which is defined L = (<p„tBy^. A typical value ofX is about 50

nmfor5 = I T. UsingZ = {(pJBy^ and equation (2.2.4-45) where77^2 ~ 0o/27i5^(7), the

logarithm in equation (2.2.5-1) can be driven the following ways:
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ln(i/?/0 = = (\ll)\Ti{<l>JB)(J}llf] = (l/2)InOffiiy,2 IB) (2.2.5-2)

where Pi = InP^. From the differentiation of the free energy density (equation (2.2.5-1))

with respect to the magnetic induction 5, we can get easily/fas follows;

if = 471(3/785) = 47t(8/85)[(5V87t + (50„/167i'A.') ln(Z/7/0]

= (a/85)[(572 + (50„/47r>i^)(l/2)ln(/?i HJB)]

= B + (0„/87iA.2)ln(/7i /f,2/5) + {B(I>J%t:X\-\IB)

= B + {(l>J%TiX^)\nifiiHJtB)

=B + (0„/87iAX/^ 77,2 IB) (2.2.5-3)

where P^ = P^Iq. The pre-ln factor, is equal to 5,i/21n(x'+ 0.5) from equation

(2.2.4-47). This is small as compared to both H and B because of H » H^i by initial

assumption. Therefore, B in the ln(/72 5,2 IB) can be set « H and replaced by H under the

In sign. Using B = H + 4nM relationship, finally we can deduce the relation for the

magnetization M:

- 47i:M = (00 / SttA, \n{fi2 IH) (2.2.5-4)

for pinning-ffee isotropic superconductors in the field domain 5,i « H « 5,2.

Now consider the influence of demagnetizing effects. In the field region (5,i« 5

<<5,2). ̂  is the order of 5,i. Since 5^ = + 47tI)M where D is the demagnetization

factor, the difference between5,^ and5is small. Therefore, the field 5in equation (2.2.5-

4) can be regarded as the applied field, 5^. Thus, equation (2.2.5-4) shows that in the field

domain (5,i « 5 « 5,2), the reversible magnetization (M) should be linear in the

logarithm of the appliedfield (In(5)).

This formalism can be generalized to the case of anisotropic materials, eg. layered
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compounds. V. G. Kogan generalized the London equation, using an anisotropic

superconductive mass tensor.®* Proceeding like the previous isotropic case, one can deduce

the free energy for a lattice of vortices tilted at an angle 0 with respect to the c-axis of the

crystal:®®

ln(i7,2 fUB), (2.2.5-5)

where the direction Z coincides with the c-axis of the single crystal, and the direction X is

taken as the intersection of the Z-B (magnetic field) plane with the basal plane normal to the

direction Z. By differentiating the free energy F with respect to B with the consideration

of the components of B, we can get the field H and the magnetization M for uniaxial

superconductor in the thermodynamic equilibrium:

-M2 = {H2 -B^IAtz = [/Wj cosOl^m^O)] and

-Mx=(Hx-B^IA-k =Mg [/Wj sind/\/m(d)], (2.2.5-6)

where A/o = (^o/32Tt^A^) ln(^rj2/?//0> ni(6) = mism^0+m3cos^0, and ^ is the angle

between the applied field H (the direction of the vortices) and c-axis. Therefore, the

component parallel to the applied field, M^, and the component normal to the applied field,

A/„, can be derived from equation (2.2.5-6):

Mp = M2 COS0+Mx sm0 =-M^Vm(0) and

M„=Mx<XiS0-M2 im0=-M^ [{m^ - m^l^m{0)]sva.0cos0. (2.2.5-7)

In the case of a polycrystal, with considering the randomly oriented crystalline grains

which have magnetic moment m and summation over all possible azimuthal orientations, we

can obtain the magnetization, along the applied field:

=  mji0)sm0d0=fMJ^0)sm0d0, (2.2.5-8)
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where iV is the number of densities of grains and the magnetic moment m = VM. Using the

equation (2.2.5-7), we can deduce the slope

= («>,/647l'3.^(ym,)/r). (2.2.5-9)

where is an arbitrary scaling field,

f = Wj/zwi, and/y) = y + (?^ -1)"''^ ln[(}^ -1)"^ + yl (2.2.5-10)

If we take y = /«/ =//2 = 1 for the isotropic materials, the slope of equation (2.2.5-9)

coincides with the result of the slope from equation (2.2.5-4).

As we know that from equations (2.2.5-4 and -9), we can obtain the average

penetration depth A fi-om the slope dMld()xdI) of the reversible magnetization M as a

fiinction of In/f: dMld(\iiH) « In addition to the average penetration depth A, we can

estimate the upper critical field the extrapolation of the linear parts of MQnH) to

M= 0, with assumption = 1. To summarize, this simple London formalism gives a simple

method for obtaining the penetration depth A and the upper critical field tor dean

superconducting materials having high values of the Ginzburg-Landau parameter k.

(2) Kogan's Non-local London Formalism

As described previously, we can explain relatively well the magnetic properties near

Jg by the Gfinzburg-Landau theory. However, it is hard to apply GL theory in the low

temperature region of far from T^. On the other hand, the London formalism applies to

high-a: materials at any temperature, because the contribution of vortex cores to the total
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energy is small. As we know from equation (2.2.5-4), the simple local London model

predicts a linear relationship between magnetization (A/) and the logarithm of the applied

field (InH). However, at low temperatures, the plots of M versus ln(^ deviated from the

predicted linearity, for some samples of high-*; high-r^ superconducting materials from the

Bi- and Tl-based families. Therefore, Kogan et al. reconsidered in detail the London

approach at low temperatures and rederived more general London equations that contain

a nonlocality in the current-field relation.^ As mentioned in the previous section, a nonlocal

current-field relation was first suggested by Pippard. After that, ECS theory extensively

developed nonlocal electrodynamics by providing an integral equation with a Kernel

extending to distances the coherence length at T = 0 K (a finite size of Cooper pairs).

Those studies of nonlocality focused mainly on the vortex core region for materials with k

~ 1. Below we show the current-field relations from several theories: GL, local London,

and BCS nonlocal theory. At first, the current-field relation of the GL theory which

introduced the order parameter is

(4Tz/c)j(r) = - (myX')[A + (0„/2Tt)V^], (2.2.5-11)

Second, the current-field relation of the local London theory with = 1 is

(47i/c) j(r) = - (1/A.2) fl(r). (2.2.5-12)

Third, the current-field relation of the BCS nonlocal theory is

(4ll/c)Kr) = -/CCr-r) rfr; (2.2.5-13)

where near nonlocality is irrelevant because 5(7) » 5^. Recently, Kogan et al. have

developed relatively simple corrections to London equation to allow for limited nonlocality

in high-/: superconducting materials at low temperatures.^
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The main assumption in Kogan's recent approach is that the spatial dependence of

the order parameter A, the gap function, due to supercurrents can be ignored. The starting

point for the nonlocal extensions is the quasiclassical Eilenberger equation of the BCS

theory,"

V -11/= 2A gh^ - 26/+ ig<f>-f<g>)/T, (2.2.5-14)

(2.2.5-15)

(A/2717) HTJT) =L,>o (A/h<y- <y^), (2.2.5-16)

j = -47r|elAr(0)rimX„>o <yg>, (2.2.5-17)

where v is the Fermi velocity, 11 = V+ 2/7l4/0o, A(r) (due to condensate of pairs) is the gap

function, yCjV.fu) (due to condensate of pairs), =/*('",v,<y), and g (due to normal

electrons) are Eilenberger Green's functions, N(P) is the total density of states at the Fermi

level per one spin, = tc71(2w+1) with an integer n, < .... > means the average over the

Fermi surface, and ris the scattering time due to nonmagnetic impurities. In the absence

of current and field, we have

/o = Ao/A), go = //?o, and = (Ao^ + hV)''^. (2.2.5-18)

If a weak supercurrent flows (J = <pJV^^), one can search for solutions of equations (2.2.5-

14, -15, -16) in the form (with small/ and gy):

A = Aoe'® /= (/o +/i) e"', f* = (^ +//)e "',andg = go + gi. (2.2.5-19)

Therefore, when we solve for/j and gi, the first order corrections (/i and for/ and g in

Fourier space are

g,{k) = 1W + (vt)V4])(va), (2.2.5-20)

/,(*) = - (2.2.5-21)
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Substituting gj in equation (2.2.5-17), one can deduce the BCS current-field relation

m = - [4jte^Ar(0)rA.VcW*)£^ , (A'/A')<v,v,/[/r= +V(v*)V4]), (2.2.5-22)

where fi' = y2rand a = <I>J'I2'k= A + (l>^dl2Ti. Finally, keeping the first order

correction in small ̂'s, one can find the current-field relation

(47t/c)/, = - (1 - X ̂ n,j,„ k, kjoj, (2.2.5-23)

where \/X^ = (167rViV(0)rAo^<v^>/3c^)XcA>o O^iPoP'X = 3<v,Vy)/<\^>, and

^ijbn = (47i:Vh2JV(0)rAo^ / ̂  ) <v,\j.V/V^> o )• (2.2.5-24)

«Pi, « 1, then the equation (2.2.5-23) can be reduced the standard local

limit anisotropic London equation (the first term on the right side of equation (2.2.5-23):

(471/c)/, = - (2.2.5-25)

Meanwhile, the last term on the right side of the equation (2.2.5-23) is due to nonlocality.

For an isotropic system in the layer planes, from the equation (2.2.5-24) one can

obtain and define the followings:

Wo = (hV/ 16Ao' )K7) = f^{T), (2.2.5-26)

where /? is a nonlocality radius, which is the order of the coherence length at T = 0 K. The

temperature dependence of is given by

YiT) = Ao^ UHP' fP) / ni//?' n (2.2.5-27)

Values of y, calculated fî om equation (2.2.5-27), are plotted versus reduced temperature

t = TIT^ in Figure 2-9. The various curves refer to progressively more "dirty" materials with

shorter and shorter electronic mean fi-ee path f. From the Figure, one sees that the
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Figure 2-9. Parameter y versus reduced temperature t which determines the

temperature dependence of nonlocality radius p for the scattering parameter

(impurity parameter) 1=0 (the upper curve), 0.2, 0.5, 1, 2, and 10 (the
bottom curve). (V.G. Kogan et al., Phys. Rev. B 54, 12386 (1996))
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nonlocality radius, /?« 7 j', is reduced by temperature and by impurity scattering. In the

clean limit (5 / { « 1), the nonlocal effects are significant at low temperatures. However,

in the dirty limit, y becomes T-independent, that is, all nonlocal effects disappear.

If we apply the equation to a vortex along the z-axis, then the equation (2.2.5-23)

reduces to (47y„ /c) = - (1- a„ /X^. Isolating the vector potential a, using ̂  y- a = H-

(f>Ji^z)d(r) of the flux quantization condition, and neglecting ~ terms, one obtains for

the magnetic field;

H(k) = 00 / (1 + (2.2.5-28)

this differs from the corresponding single vortex expression {H(k) = 4>o I (I + )) in

simple local London theory. Next substitute H(G) at reciprocal lattice vectors G (from

equation (2.2.5-28)) into the expression F = J?^^o/f(G)/87r0o for the free energy density

of a flux line lattice; then for fields H^i « B « integrate from = [(27rV3)S/0o]^'^

(for a hexagonal vortex lattice) to = 27i/$', one then obtains the following results,

ignoring terms of order ~

F' = Mo + 1) / + 1)] + 77J, (2.2.5-29)

where Hq = (f)^ l2l^\/2>f?, Mq = and the constants % and rj2 absorb

uncertainties in the core energy and in the cutoff. Finally, from M = BIAti - dFldB = -

dF'/dB, one can obtain the following result for the magnetization, within Kogan's nonlocal

London formulation:^

M^-M, [ln(fl,/B+l)-H, /(H, +B) + C(7)], (2,2.5-30)

where ̂ {T) = TJ^- ln(//o /^2^c2 !)• Therefore, the nonlocal London formula for the
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reversible magnetization in intermediate fields contains the field scale ~ instead

of which the local limit London formula (2.2.5-4) contains. Unlike the

temperature dependent the field does not go to zero at T = 7^ but rather increases

as the temperature increases.

Finally, if one also allows for possible thermal fluctuations of vortices, then a

fluctuation term should be added to Afin the equation (2.2.5-30). The fluctuation term has

the form 8M= (kgT/<pJ) ln(Cn^k^T/<pgSB), where s (= c/2) is the interlayer spacing and the

constant C « 10.2.'*® So, which local London theory gives a constant slope from the linear

relationship between M and \n(B) as we know, the nonlocal London formalism yields a

nonlinear slope

S=d{M)ldQnB) = Mo /(I + B/H^f - kjl(t>^. (2.2.5-31)

On the other hand, in the case of strongly anisotropic materials (polycrystalline),

although we do not use, the nonlocal London formula of the reversible magnetization M can

be derived as

M= - (MJ2){mH,+B)IB] + (^V.^)ln[(7^ +5)/i^ ] -^ /5 +C } + r5M, (2.2.5-32)

where 8M= (kgTI2<pgS) ]n(C^ef8l^T/(^sB). In addition, in the dirty case or near for any

mean fi-ee path {,

M= - (Mo/2) ln(;7 IB) + {kBTI2(ks) \niCs/eiekBTI(ksB). (2.2.5-33)
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2.3 Experimental Results and Analysis

2.3.1 Magnetization Studies in the Superconducting State

In this work, magnetization studies have been carried out in order to understand the

superconducting properties of YNizBjC single crystal and its magnetic phase diagram in the

.ff-J plane. In previous magnetic studies, Ming Xu et al. found that YNijBjC appears to be

a relatively conventional low-Jj superconductor.*' R. Movshovich et al. concluded that

there is modestly strong coupling and a conventional pairing mechanism in YNijBjC.®*

However, the superconducting length scales and characteristic magnetic fields are not well

established for this material. In addition, the magnetic field-temperature (H vs. T) phase

diagram for the system has not been fully established. There are still many controversies and

complicated problems.®^'* In this section, the superconducting length scales and non-local

effect will be treated. In the following sections, the normal state properties and the critical

magnetic fields - the thermodynamic critical field H„ lower critical field and upper

critical field H^2" will be discussed.

Previous magnetization measurements on the single crystal of YNijBjC were

analyzed using Ginzburg-Landau and simple London-limit theories.*' The analysis yielded

the value k{ = A/Q =13 ~ 15 for the GL-parameter,*' indicating type-II superconductivity.

Generally, Ginzburg-Landau theory is applicable in a temperature regime near the critical

temperature T^. Although conventional London theory is valid for all temperatures, there

is no simple macroscopic description far fi'om T„ as V. G. Kogan et al. pointed out.** High

a: ( »1) materials, in the intermediate field regime with « H « H^2, described
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relatively well by standard London-limit theory; however, this theory does not account for

the kinetic energy and the condensation energy terms arising from a suppression of the order

parameter in vortex cores.*^-'*'''^" A complete microscopic formalism should be employed

to suitably describe the vortex cores.*^

Recently, small angle neutron scattering (SANS) studies have shown that the flux

line lattice (FLL) in borocarbides can change from square to hexagonal symmetry as a

function of vortex density, i.e. magnetic field.^' " When the magnetic field H is applied

parallel to the tetragonal (00c)-axis, the local supercurrent density j(r) of a vortex circulates

in the square crystallographic basal plane. At first, the FLL is nearly hexagonal in low field

H, where the vortices are far apart and interact weakly. At larger but still modest field

levels, the FLL becomes rhombohedral and appears to undergo a first order structural

transition. Finally, at higher field, the FLL becomes square. This seemingly unusual

behavior of the vortex lattice is difficult to explain within the conventional standard London

theory, which cannot account for either the symmetry of the FLL or features in the

equilibrium magnetization that deviates significantly from simple London predictions. This

standard London theory is local, with air) « jir). However, for clean type-II

superconductors with a long electronic mean free path, the current densityy is determined

non-locally by an integral over a region of the size of coherence length ($o). Non-local

London theory^ has provided a good description of the FLL transformation at low fields.*^

Below we show that the equilibrium magnetization of the single crystal of YNijBjC, which

deviates significantly from simple London predictions, is well described by non-local London

theory.*^
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When the electronic mean free path is long in clean type-II superconducting

materials with high *; Kogan et al. suggested that non-local theory should be used " The

standard London-limit expression,

M= - {_<l>J'ilTeX'')\nir}HJH), (2.3.1-1)

contains the upper critical field ^ the field scale. For clean materials at low

temperature, they argued that the field scale should be « <f>^Ip^, where p is the non-

locality range on the order of $o(r=0 K).^ Thus, when non-locality is important, the

resulting expression for M is"^

M= - Ml 1) - HliH,+H) + C] + 6M. (2.3.1-2)

Here/To = 0o/(^27rV3), 6M= (kgT/cp^) XniCidkBTIcpjsH) and C(7) = +

1), where both rj^ and 772 constants of order unity. In previous sections (2.2.4 and

2.2.5), local and non-local relations have been treated in detail theoretically. In contrast

with that decreases as temperature increases, increases gradually as temperature

increases. Thus, the non-local expression (2.3.1-2) reduces to the local equation (2.3.1-1)

as T approaches T^. Furthermore, for dirty superconducting materials, where p is small and

/To is very large, the non-local form collapses to the local form at all temperatures.

Consequently, the non-local theory predicts that the equilibrium magnetization should vary

logarithmically with field H near T„ but deviate significantly from logarithmic behavior at

low temperatures (well below TJ.

In this work, the equilibrium magnetization of a clean single crystal of YNijBjC is

shown to deviate significantly from simple London predictions, but it is well described by

the non-local theory. Prior to experimental studies in low magnetic fields, the
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superconducting magnet in the magnetometer was "reset" to release trapped flux in its

windings, by heating it above its T^. The Meissner state magnetic moment m was measured

under zero-field-cooled (ZFC) and field-cooled (FC) conditions in an applied field H = \Q

G. In all case, the magnetization M[G] = 7w[Gcm']/F[cm^] was based on the volume V,

using the theoretical mass density = 6.05 g/cm'), calculated fi-om the lattice

parameters.^" Figure 2-10 shows ZFC and FC magnetization M(7) curves with an applied

field = 10 G. The superconductive transition temperature was determined as the point

at which the linearly varying FC magnetization M(7) extrapolates to zero, which ignores a

very slight "tail" at higher temperature. The value of is 14.5 K (onset 15.6 K). Hysteresis

loops M(H) in the mixed state were measured in fields up to 6.5 T. In the following, the

values of magnetization (M) are corrected for the normal state magnetization, measured at

a temperature of 20 K. To obtain the equilibrium magnetization in the presence of weak

hysteresis, we average the increasing- and decreasing-field values. Overall, however, this

material is remarkably reversible, magnetically. Figure 2-11-(a) and -(b) show the

magnetization curve at 7= 3 K and 5 K with magnetic field parallel to c-axis.

According to the standard local London theory, the equilibrium magnetization M

should be linear in ln(/r)- The non-local theory predicts, however, a nonlinear dependence

at low temperature. Figure 2-12 shows plots of Af versus ln(^ at various temperatures.

The linear dependence for Tnear is clear. Well below T„ however, the data progressively

deviate fi"om a simple linear dependence, where non-local effects should be significant. In

analyzing the experimental data the fluctuation term {6M) is not considered, as it is expected

to be small for this low-r^ material. The fitting procedure for the experimental equilibrium
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magnetization Af[G] at a given temperature (7) is as follows. First, we note that equation

(2.3.1-2) contains three fitting parameters A/q, and C, corresponding to the three length

scales X, p, and 5- For each fixed value of T, the experimental data (A/[G]) have been fitted

using a nonlinear regression routine to the non-local equation (2.3.1-2). Figure 2-13 shows

an example of the non-local analysis of data T = 3 K, 5 K, and 7 K. In Figure 2-12, the

solid lines at low temperature region are calculated using the same methods.

To see the behavior of three fitting parameters, their temperature dependencies are

presented in Figure 2-14 for magnetic field H parallel to (OOl)-direction. First, the

temperature dependence oiHfP) is shown in Figure 2-14-(a). As this figure shows, Hq{T)

increases with Tas the formalism predicts, because the non-local radius {p) decreases with

T. In addition, the quantity y(7)77o(7), where y(7) gives the temperature dependence of the

non-local radius p, is temperature independent. This major consistency test for the non

local analysis follows from the theory which predicts that YiTWoiD " 0o 1^- Second,

Figure 2-14-(b) shows the resulting parameter = (p^ /327t^X^(7). The temperature

dependence of X can be derived from Mq for a wide range of temperature. Third, the

parameter C(7) is shown in Figure 2-14-(c). Overall, the temperature dependencies ofMq

and C are qualitatively similar to those found for the high-Te materials studied earlier.^ So

far, the non-local London formalism of Kogan et al.'^ has described the data well and has

provided a good consistency check with the quantity y{T)Hq{T).

As mentioned above, the temperature dependence of the London penetration depth

X can be obtained fî om the parameter A/q = (J>„I22-k^X\T). Figure 2-15-(a) shows the T

dependence of X obtained from both non-local London analysis at low temperature region
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and a standard local London analysis near T^. At first, we tried to fit the data for 1/A,^ using

some power-law functions of f = T/T„ and found to provide a good fit. Contrary to the

exponential dependence expected for s-wave pairing, the nearly behavior for A(7)

below 10 K in the single crystal of YNijBjC seems to give evidence for a non-s-wave pairing

scheme, perhaps similar to the dependencies in HgBa2Cu04, where « J and « 7',

which is consistent with symmetry of the order parameter.'*"'' Another example is

the dependence 7' in YBCO at low temperature.'*-" Using 1/A'~ (1-1'), the London

penetration depth extrapolates to about 90 nm at 7 = 0 K for field H parallel to (001)-

direction; this is considerable smaller than the value 150 nm deduced by Ming Xu et al.,®'

who analyzed their results using a simple London and Ginzburg-Landau formalisms near 7^.

Figure 2-15-(a) shows that the plot of 1/A' versus 7 is linear near 7„ as expected from

Ginzburg-Landau theory. Furthermore, there is reasonably good agreement between the

magnetization results in this study and neutron scattering results, which come from the

intensity I of neutrons diffracted from the FLL.'' The diffraction intensity of the (01)

reflection is

I« (1/A')' X (1. X exp(-7i^/i7J. (2.3.1-3)

Thus, [A(0)/A(7)]' can be estimated from above equation (2.3.1-3), using values for

from the magnetization study, where {T)ldT = -3.8 kG/K near 7^. Figure 2-15-(a)

shows that the values deduced from the neutron scattering intensity agree fairly well with

the penetration depth values from the magnetization study. In addition. Figure 2-15-(b)

shows A'(0)/A'(7) plotted versus t=T/T^ comparing the experimental temperature

dependence with several theories. The data fairly well agree with the traditional, empirical
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(1-f^) dependence.

Let us recall that the equilibrium magnetization Af is linear in \n(H) in the standard

local-London theory, with slope S = dMld(\nH) « lA^. As showed previously, the

equilibrium magnetization A/[G] of this crystal is not linear in ln(/0 at low temperature. In

the non-local London theory, the modified expression is

l/X" o.S = dM/d(lnH) = [Mo/(l+H/Hof] - (2.3.1-4)

where again we neglect the last term due to fluctuations. In Figure 2-16, the upper panel

shows the field H dependence of iS" = dMld(lnH) with the field H parallel to the (001)-

direction, and the lower panel shows the temperature T dependence of dSIdH, where the

fluctuation term is ignored. As the T increases, the dSIdH decreases. The quantity dSIdH

is a measure of the curvature of the M(^rH) curves. At low temperature, where M(\nH) has

large curvature, the (EIdH is large. Conversely, at high temperature, the dSIdH is small, the

MQxdJ) is nearly linear, and the standard London theory describes the data accurately.

It is often difficult to determine precisely the upper critical field, for type-II

superconducting materials. From the non-local London theory,*^ we have C(^ ~

+ 1); however, one cannot directly extract H^2 because and TJ2 are unknown.

The quantity H^2^ however, can be estimated roughly, if one assumes values for 771 and 772,

as in the next (2.3.6) section. Meanwhile, the irreversibility field H„ where 0, shown

versus Tin Figure 2-17, can be obtained from results similar to those in Figure 2-18-(b),

using the criterion that ln(7) = 1 A/cm^; at this level, the isothermal J vs. H has decreased

by fectors of 10^ or 10* from its low field values and is falling off precipitously. This H„ can

be described by the power-law relation/f^T) =HJip)(\-TITJ' with 77=1.35 and 77=1.61 for
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magnetic field ̂ parallel to and perpendicular to (OOl)-direction, respectively. As seen in

Figure 2-17, the irreversibility field of the single crystal of YNijBjC is nearly isotropic near

(0.67^ <T< rj, but somewhat anisotropic far away (T < 0.67^).

Figure 2-18-(a) and -(b) show the "anomalous peak effect" in M vs. H and in ln(./)

vs. H, respectively. Here, we can observe this phenomenon clearly slightly below H^2- The

formation of the peak in the superconductor YNijBjC can be attributed to a sharp transition

from week to strong pinning of vortices. There are a many possible mechanisms to explain

this magnetization anomaly, which are the formation of a modulated "FFLO" state,'®-"

matching effects of the vortex lattice spacing and the pinning center spacing,"

synchronization through the softening of the shear modulus of the FLL and the vortex lattice

defect structure,'*-" collective pinning which leads to extra softening of the lattice,*" and a

variation of the pinning threshold,'* etc. From the previous discussion, measurements of the

electrical resistivity presented below, and the reports of other research groups,®'- *''*^ it is

clear that YNijBjC is generally a quite clean (?„» nm) type-II superconductor. In

Figure 2-18-(a), the magnetization curve is nearly reversible over an extended field range,

which indicates that the pinning force for vortices is very weak; then the anomalous peak

effect with a stronger pinning force occurs just below H^2- Therefore, a simple

interpretation in terms of the conventional "peak effert" in the critical current density often

observed for dirty type-II superconductors can be dismissed in this case. Long ago, Fulde

and Ferrell (FF)'® as well as Larkin and Ovchinnikov (LO)" proposed the existence of a

non-uniform superconducting state, an "FFLO" state, in conventional superconductors.

Recently, K. Samokhin showed possible types of non-uniform states in c?-wave
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superconductors.** In order for the "FFLO" state to be observed, the materials should be

(1) an extreme clean limit of a type-II superconductor with (2) strong Pauli limiting.*^

Recently, it has been suggested that the "FFLO" state exists in certain heavy-fermion

superconductors.*^®" For example, UPtj, UBeu, PbMogSg, and UPdjAlg are good

candidates to exhibit the "FFLO" state, but CeRuz is not. In the original theory dealing with

a BCS superconductor, the 'TFLO" state should be restricted to r< 0.567"^.*®'®^ However,

R. Modler et al. found a greatly enhanced existence range, T < 0.9T„ for both UPdiAlj and

CeRu2.*® These YNizBjC data are similar to the results on CeRuj*'"*®'®^ and UPdjAlj.*^*®

Thus, we can check simply whether this YNijBjC can be a good candidate for observing the

"FFLO" state or not. The YNi2B2C is a clean superconductor. The characteristic parameter

P = where = 0.77;(-a!^,2 IdT) near T, and /(v'2//,,) =

1.8[Tesla/Kelvin]T„ is the Clogston paramagnetic limit (where is the BCS energy gap

at r= 0 K).®' The /?value of YNijBjC is estimated as 0.3. This is small compared with the

criterion (/? = 1.8) for the "FFLO" state to exist.*' Thus YNijBjC may be not a good

candidate for an "FFLO" superconductor, but the similarities of the superconducting phase

diagrams are interested nonetheless. Figure 2-19 shows the region of "anomalous peak

effect", slightly below which came from both Ginzburg-Landau or standard London

limit analysis near and non-local London analysis at low temperature region (well below

rj. In addition, near 7= 0 K, the arrow is due to WHH®* analysis. The generalized

"FFLO" state can be introduced to this YNijBjC system. Therefore, the generalized

"FFLO" state can exist in the extended regions T< 0.77^ in the single crystal of YNijBjC

superconductor. This generalized "FFLO" state can push up the HJiT) and cause an
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unconventional positive curvature of the HJiT). However, these phenomena cannot be

explained fiilly to current theory.

2.3.2 Magnetic Susceptibility Of), Magnetization {M), and

Electrical Resistivity (/?) in Normal State

It is diflScult to determine precisely the superconductive magnetic properties for the

YNijBjC system, because of its normal state paramagnetic signal.'^-'' To complement

studies of YNijBjC in the superconducting state, we have investigated the magnetization

and electrical resistivity in the normal state above T^. The normal state magnetic

susceptibility was measured in the temperature regime between 16 K and 295 K in an

applied field of 10 kG, for the magnetic field applied parallel and perpendicular to the

crystalline (OOl)-direction. The temperature dependence of magnetic susceptibility, x~

MIH, for the two field orientations is shown in Figure 2-20. The magnetic susceptibility is

anisotropic for the entire temperature range. With the field perpendicular to (OOl)-direction,

the susceptibility follows a Curie-Weiss temperature dependence, whereas the susceptibility

is significantly smaller with the field parallel to the (OOl)-direction. The large anisotropy

between magnetic field parallel to and perpendicular to (OOl)-direction in the low

temperature regime is a common phenomenon in the /SSTijBjC materials containing magnetic

rare earth ions R = Er, Ho, Tb, and however, the origin of such behavior is less

obvious in the present compound containing yttrium, for which no local magnetic moment

is expected.
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The inset to Figure 2-20 shows l/;jf plotted versus T for both directions of applied

field. The data at T > 200 K for both field directions show a Curie-Weiss-like behavior,

r^ = ̂AP'' Pb / 3^5 {T+e) = CI {T+ 0), (2.3.2-1)

where C is Curie constant, 6 is Weiss temperature, is Avogadro's number, kg is

Boltzmann constant, fig is Bohr magneton, and p is the effective number of Bohr magneton.

From the high temperature (200 K ̂ T ̂ 295 K) slopes in the inset, one finds = 1.83//^

and l.SSpg for the applied field parallel to and perpendicular to (OOl)-direction, respectively.

These values are somewhat smaller than the theoretical value'* of 2.83//^ for the Hund's rule

ground state ofNi^^ assuming that the orbital moments are quenched by crystalline electric

field (CEF) efiects. The Weiss temperature, 6, is found to be about 1235 K and 652 K for

an applied field parallel to and perpendicular to the (OOl)-direction, respectively. On the

other hand, the constant term in the magnetic susceptibility of the single crystal of YNijBjC

seems to be come fî om Pauli spin paramagnetism. Figure 2-21 shows the magnetic

susceptibility versus HT, which emphasizes the data at low temperatures. According to

Figure 2-21, the Pauli spin susceptibility, can be estimated about 3.2 x 10"^ cm^ / mol,

which is very similar to several previous studies.'"'"'*""

The large anisotropy of the single crystal of YNijBjC may be due to CEF effects as

observed commonly in the iJRh4B4 compounds'"^ for R = rare earth elements and iOSfijBjC

materials fori? = Ho, Tm, and Dy."'*^'"^ Plots of the magnetization versus applied field at

several different temperatures (above TJ for both directions of applied field are shown in

Figure 2-22. For the field parallel to (OOl)-direction, the magnetization M(/f) is linear in

the applied field for over the whole temperature regime. However, the MQJ) curves for
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the field applied perpendicular to the (OOl)-direction become nonlinear below 50 K, and

more strongly nonlinearity as the temperature decreases. This is likely due to CEF effects

of Ni^"^ ions. The normal state paramagnetic signal from paramagnetic NP ions is relatively

weak, compared with the normal state paramagnetic signal due to rare earth ions in /?Ni2B2C

compoimds. The YNi2B2C, however, contains no rare earth ions. The Y as well as B and

C are non-magnetic elements. Therefore, the paramagnetic signal due to Ni^'^ions can be

become a significant factor in this compound.

The anisotropic magnetization of the single crystal of YNi2B2C most likely comes

from the CEF splitting of the J = 4 ground multiplet fFJ of the ion. The magnetic

moment due to Ni^^ is more sensitive to applied field perpendicular to (OOl)-direction (H

I I aZ>-plane) than that with the field applied parallel to the (OOl)-direction {HI I c-axis).

Therefore, the CEF effects of the single crystal of YNi2B2C may come from the Ni magnetic

moment to lie predominantly within the aZ>-plane at low temperatures. In addition, the

deviations from Curie-Weiss behavior and the large Weiss temperatures for the

paramagnetic susceptibility of the single crystal of YNi2B2C can indicate that the Ni

bands may be critically associating with the conduction electrons. Electron band structure

calculations for /?Ni2B2C materials^"^'^" show that the bands near the Fermi level display

predominant Ni 3c/ bands, with a relatively high density of states at and that the

superconductivity may come fî om the conventional mechanism with strong electron-phonon

coupling, in the contrast to the analysis of heat capacity for the single crystal of YNi2B2C

(following next section 2.3.3).

Measurements of the electrical resistivity were conducted using a van der Pauw
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method^°''^°® in the normal state, for temperatures from 20 K to 300 K. Figure 2-23 shows

the electrical resistivity of the single crystal of YNijBjC. The temperature dependence of

the electrical resistivity shows the typical behavior of decreasing linearly with temperature,

as for temperatures from 300 K to 70 K. The measurements yielded an electrical resistivity

of4 pQ-cm at 20 K and a residual ratio (= /AowXemp.) of 10.

2.3.3 Heat Capacity for Normal and Superconducting State

Figure 2-24 shows the heat capacity [Cp / 7] as a function of [T^] in the temperature

regime from 2 K to 30 K, with no applied magnetic field and with H=1T. There is a jump

of heat capacity in zero applied field at « 14.5 K. In the high magnetic field {H=l T),

however, the jump in heat capacity disappeared: the superconductivity is completely

suppressed. For the normal state data with 17= 7 T, the heat capacity Cp can be fitted in the

temperature range 2 K < r< 14 K to the relation

Cp / T= (or y+/?r^ + 6T% (2.3.3-1)

where y is the coefiBcient of the electronic heat capacity (Sommerfeld parameter), and fi

describes the lattice heat capacity. Fitting the data without the anharmonic term {61*)

gives y « 19.1 [mJ/(mol K^)] and P « 0.097 [mJ/(mol K^)]; including the anharmonic term

gives y « 20.6 [mJ/(mol K^)], /?« 0.037 [mJ/(mol K*)], and 6 » 0.00033 [mJ/(mol K®)].

Inclusion of the anharmonic term provides much better fitting than without the anharmonic

term; the need is evident, from the significant curvature in the plot of CIT vs (Figure 2-

24).
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The value of the Debye temperature &d can be obtained from the relation P =

\9AA7J0d (where Z is the number of atoms per formula unit). The resulting values are ̂

» 495 K without and 0^ « 680 K with the anharmonic term, respectively. The origin of the

large anharmonic effect is not be understood completely. However, this apparent

anhamonicity may be due to the shape of the phonon density of states departing from the

Debye model or to the crystalline electric field (CEF) splitting of ions. The coefficient

of the electronic heat capacity y is much better defined, with values 20.6 [mJ/(mol K^)] (or

19.1 [mJ/(mol K^] with anharmonic term) that are similar to the results of other groups."'®*

To compare the predictions of the BCS theory with heat capacity measurements, the

electronic heat capacity (C^J in the superconducting state is needed. In general, one can

assume that the lattice heat capacities in the normal (C^) and superconducting state (CJ are

the same at the same temperature with C|„ = = PT^, as based on measurements of the

lattice terms above and below the transition temperature.^*® Therefore, C„ can be obtained

by subtracting the lattice heat capacity in the normal state, Cy^{H=l T), from the total heat

capacity in superconducting state, C^(H=0 T), below T^\

C„ = Cp - Cta- (2.3.3-2)

Various relationships between C„ and 7 have been tried. In contrast to the predictions of

BCS theory, an exponential temperature dependence of C„ does not agree well to the data.

However, the data of the YNi2B2C single crystal can be fitted relatively well to an empirical

P dependence, where t = TIT^ is reduced temperature. A similar P-dependence for was

reported by N. M. Hong, et al.*' for their YNijBjC compound: C„ = 3 yT^ The plot of

C„ vs ris shown in Figure 2-25. The inset of Figure 2-25 shows the /'-dependence of C^.
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This r'-dependence for C„ seems curiously simple; it comes from the two-fluid model which

gives the following simple relations for medium-coupling superconductors with electron-

phonon coupling constant A » 1,"'^°'

C„ = 3yr,r', where/=r/7;, (2.3.3-3)

AC/yr, = 2, (2.3.3-4)

d(C„ n)ldT=6YlT, (at 7= JJ. (2.3.3-5)

Thus Y values can be deduced from above simple relations, using the derived C„ data. This

gives y = 23.1 [mJ/mol K^] from the measured d(C„)ld(f) ~ 1010 [mJ/mol K]; y ~ 18.6

[mJ/mol K^], from AC « 540 [mJ/mol K]; and y « 19.0 [mJ/mol ], from d(C„/T)/dT «

7.85 [mJ/mol K^] near T^. These y values agree relatively well, within 5~15 %, with the

results of fitting of the heat capacity data in if = 7 T and the calculations based on

magnetization data.

On the other hand, there are a number ofBCS relationships involving and various

normal state quantities (details are given in Appendix 2);'°*

-(dH,,/dT)r, = 9.55 x 10^" T,(n^ S/S;)'^ [G/K], (2.3.3-6)

Alo = 1.33 X 10" y (ri^ S/Sp)'' [cm], (2.3.3-7)

N(0) = 7.97 X 10^ y [state/(cm' erg spin)], (2.3.3-8)

where N(0) is the density of one spin direction. Thus y « 5420 [erg/(cm'K^)] « 21.5

[mJ/(mol K^] can be deduced using the above relations^"" and these magnetization results:*'

-(dH,2 / dT)r, » 3400 [G/K], Alo « 89.5 x lO"' [cm], and T, =14.5 [K]. In addition, y «

5885 [erg/(cm'K^)] » 23.3 [mJ/(mol K^)] can be estimated fromPauli spin susceptibility,

(about 3.2 x lO"* cmVmol) from Figure 2-21, with uncertainties due to the Stoner
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enhancement factor, core diamagnetism, the van Vleck (orbital) paramagnetism, the

electron-phonon enhancement factor, and so on. These results fairly agree well with the

value obtained directly from the normal state heat capacity. From y and the jump of the

zero field heat capacity data, we get ACp / (yTJ ® 1-81, indicating that this YNijBjC single

crystal deviates from the BCS weak-coupling value of 1.43.

Continuing, the entropy S and the free energy F of the single crystal of YNi2B2C can

be estimated from the experimental heat capacity data. First, from the relation between heat

capacity Cp and entropy S,

C^ = T (dSldl) or ̂  = / (Cp/ 7) dT, (2.3.3-9)

the entropy of this system is estimated experimentally. Figure 2-26 shows the entropy S in

the normal and superconducting states as a function of temperature. In general, the entropy

measures the disorder of a system. Because the entropy in the superconducting state is

lower than in the normal state, just as the Figure 2-26 shows, the electrons in

superconducting state are more ordered than in the normal state. Second, from the relation

between the entropy S and the free energy F,

dF(T) = -S(T)dT or F=-f SdT, (2.3.3-10)

the free energy of this system was estimated experimentally as well. Figure 2-27 shows

experimental values of the free energy as a function of temperature in the superconducting

and normal states. Just as the Figure 2-27 shows, the two curves of the free energy merge

at the transition temperature T^. This means that there is no latent heat of transition at

and the phase transition is second order.
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2.3.4 Thermodynamic Critical field

Let us further examine the thermodynamic properties discussed in the previous

section 2.2.3. For both type-I and type-II superconductors, the thermodynamic critical field

is defined by the relation,^'-"'**

(7) / 871 = [ (7) - F. (7) ] / , (2.3.4-1)

where F„ (7) (orF, (7)) is molar fi-ee energy of the normal state (or superconducting state)

and is the molecular volume. In addition, the molar specific heat is defined

by Cp = T'[i^ldT\. Finally, one obtains that

Q- C. = 7(8/87) [S„ (7) - 5. (7)] = -{TV^I 87t) (8^/8^^)[77,(7)]^ (2.3.4-2)

where C„, S„ and F„ are the specific heat, the entropy, and the free energy of the normal

state, and C„ S„ and F, are the specific heat, the entropy, and the free energy of the

superconducting state. In the framework of thermodynamics, one can deduce the

thermodynamic critical field from the specific heat using following relation,

= (87t/F^)//' dr/r.''' dT n {[cxr') - c„(r •)]/r"}. (2.3.4-3)

The resulting temperature dependence of HXT) is shown in Figure 2-28. The

experimental results have been fitted to the standard relation, 77^(7) = HXO)[\-(T/T^y],

which describes the data well. This yields the value Hj(0) « 2556 G. The slope of near

Tc can be derived to be -[dHJdT\j.^ » 320 G/K. Then the following relation"" for the

superconducting energy gap A(0),

- l(TIH,(0)) (dHlT) / dT) = A(0) / k,T, (2.3.4-4)

gives the estimate » 1.82 and A(0) » 2.26 meV. It seems to describe these results

for the single crystal of YNijBjC superconductor fairly well, giving a value for ̂ {0)lkgT^
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that is slightly larger than the BCS prediction « 1.76). The /'-dependence of C„,

shown in the previous section (2.3.3), implies a parabolic variation of thermodynamic critical

field with temperature,''''*" which is also observed experimentally. The same

dependence of C„ implies that the coefficient of electronic heat capacity, y ~

where Evaluating this with/r^ « 2556 G gives the values y » 19.6

[mJ/mol K']. This agrees fairly well to previous evaluations, too. In addition, the deviation

function D{t),

m = [H,(TyHXO)] - (l-e) (2.3.4-5)

where / = TIT^ anAHJ^) « 2556 G, of the single crystal of YNijBjC is shown in Figure 2-

29. For comparison, the Figure 2-29 also contains the calculated BCS weak coupling

deviation function." Here the experimental data clearly deviates from the BCS weak

coupling theory, as with Nb and other "simple" superconductors.

Meanwhile, strong coupling theory predicts the following relation: L{Qy(kBT^ =

1.76[(ACp/yre)/1.43]"'. For the YNi^BjC single crystal with AC^ » 540 [mJ/mol K] and

y « 20 [mJ/mol K'], this predicts that A(Oy(kgT^ » 1.98 which significantly exceeds the

value of 1.82 obtained fî om equation (2.3.4-4). Therefore, the strong coupling theory

seems not to explain well these heat capacity data. As discussed previously, the above

results for the single crystal of YNijBjC superconductor seem to be consistent with the

medium coupling formalism.

Let us now evaluate the condensation energy, or equivalently the thermodynamic

critical field, fi-om an entirely different experiment study of the magnetization. This is

possible because the magnetization of this material is remarkably reversible magnetically in

-87-



<s

-0.01

w -0.02

5
p

^ -0.03

-0.04

^(0) = 2556 0

(001)H

0~ experiment
BCS weak coupling theory

0.0 0.2 0.4 0.6 0.8

/ =(T/Tf, where 7"=14.5
1.0

Figure 2-29. A plot of the deviation fimction D{t) as the function oft= TtT^.

-88-



the superconducting state. The previous Figure 2-11 shows the magnetization curve at T

= 3 K and 5 K with magnetic field parallel to (OOl)-direction. At this relatively low

temperature (« /3), one can see a wide reversible region. Thus it is possible to apply

thermodynamics to these data. Thermodynamically, the area under the magnetization curve

gives the condensation energy, whatever is the shape of the magnetization curve.

Therefore, the thermodynamic critical field, (7), can be obtained from integrating the

magnetization A/(/0 curve, as noted in equation (2.2.3-9) previously,*'-"

-fMdH=F„ (0) -F. (0) 871. (2.3.4-6)

One complication, however, is that the magnetization is not completely reversible

in the low field regime. Also, the magnetization curves for the single crystal of YNijBjC

obviously deviate from simple standard London theory at low temperatures. Thus, at low

temperature, the magnetization M(F) data were extrapolated to lower fields using the non

local London formalism, which was described previously.*' At the lowest fields, we used

for M(H) the Meissner state slope. These contributions were added to the area under the

reversible magnetization curve to obtain the full integral in equation (2.3.4-6). The resulting

values ofHXT) using this method are shown in the Figure 2-28. There is some difference

between the results from heat capacity and magnetization; the evaluations of differ

systematically by ~ 10 %. However, we can see fairly good agreements of both

thermodynamic critical fields, as the temperature dependencies and overall behavior are

remarkably similar.
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2.3.5 Lower Critical field

It is generally difiScult to determine the lower critical field at which flux first

enters a superconductor reversibly. In a magnetization curve, strong pinning effectively

prevents magnetic flux fi-om entering the sample, especially in low fields. However, with

sufficiently low hysteresis and critical current density J„ one can find as the field at

which the magnetization deviates from the initial linear slope of diamagnetism.

Experimentally, the magnetization difference AM is investigated in order to establish the

field at which M first deviates from linearity. Here AM is the difference between the

experimental magnetization and an extrapolation of the initial linear dependence of the

magnetization on field ̂ eissner state slope), as determined by a least squares fit to the low

field data points. Figure 2-30 shows an expanded plot of the low field regime. In addition,

the inset of Figure 2-30 shows the square root of the deviations fi-om linearity (AM)''^,

plotted versus applied field H.

One must correct, however, for demagnetization effects due to the geometric shape

of sample. The effective field is related by - 47tDM, where is the

applied field and D is demagnetizing factor. In the Meissner state, one has

= -ll(4n) = dMldff,^, (2.3.5-1)

and with linear magnetic response, one has

= dMtdH^ = ;r,™e / (1 + (2.3.5-2)

Thus the demagnetizing fectorZ) can be determined. For the single crystal of YNijBjC, the

values!)^//(001) = 0.725 andZ)^^(ooi) = 0.135 are estimated fi-om the experimental data. In

general, the demagnetizing factor D can not be easily determined analytically for a
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complicated sample shape. Alternatively, one can use the relation, B = + 47tM and the

fact that the lower critical field, is the field at which the magnetic induction B first

increases from zero. Thus, with B = 0, then can be obtained from the relation = -

47tM, where Mis the value at first deviation from linearity.

Using this method, the results for versus temperature shown in Figure 2-31 were

obtained. Data are shown for H both parallel and perpendicular to the crystalline c-axis.

Experimentally, the deduced values of approximately follow a parabolic dependence

H^i(T)=H^i(0) [ 1 - (T/%y], similar to the thermodynamic critical field H. Previously, the

YNijBjC system was reported to be remarkably isotropic in torque magnetometry

measurements"* and magnetization studies." Subsequently, Yethiraj et al. found that the

Y-based borocarbide compound exhibits complex angular dependencies.^^ For the data in

Figure 2-31 with fields applied along orthogonal directions, it is likely that the observed

difierences arise from a superconductive mass anisotropy y - \/(mJm^) = /^.

Table 2.3.5-1 shows a comparison between reported values of y in the literature and our

determinations from/f^j (fi'om next section (2.3.6) and y =

Table 2.3.5-1 The comparison of superconductive mass anisotropy for
YNi^BjC: y = v^(mymj =

— Y

This work: (standard London analysis) 1.148

This work: from/T^j (Abrikosov analysis) 1.165

Ref: torque magnetometry measurements*** 1.005
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2.3.6 Upper Critical field H^2

The quaternary intermetallic compound YNijBzC has been described as a

conventional, isotropic type-II superconductor.*' "^ However, the upper critical field,

of single crystal of YNijBjC has an unconventional behavior. At low temperatures, a

positive curvature has been found by several research groups.^"'"''*'"''"' There are

many controversies regarding the upper critical field in this material. Determining H^2 is

made more complex by the paramagnetic background signal and non-locality of the single

crystal. Two approaches for extracting H^2 magnetization data rely on Ginzburg-

Landau and standard London-limit theories.** '"'*''"'"

In the reversible (H,T) region near HJiT), according to Abrikosov, standard

Ginzburg-Landau relation predicts"

-47iM= . (2.3.6-1)

Here Aris the Ginzburg-Landau parameter and is a constant which is 1.16 for a triangular

vortex lattice." Since E^2 is linear in T near T„

dirAv:M)ldT\ = [dEJJ)^dT\[\K2^^-\)P^l (2.3.6-2)

one should obtain a linear dependence ofMonTnear T^. Therefore, Figure 2-32-(a) and

-(b) contain plots of equilibrium magnetization Mas a function of temperature (a) in the

reversible region and (b) in the limited scale up to 47i:M= -10 G. Indeed, the data in the

Figure 2-32-(b) are nearly linear in T and have similar slopes for a wide region of field. A

linear extrapolation of the reversible data in Figure 2-32-(b) to M = 0 yields values for

E^2(J) directly. These values shown as open diamonds in Figure 2-33. One uncertainty,

however, relates to the slope dMIdTin Figure 2-32: according to equation (2.3.6-1 and -2),
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the slopes should be temperature and field independent near T^{H = 0). In contrast, the

slopes do vary with temperature, beyond what can be expected fi-om the factor,

suggesting that at may be J-dependent. In addition, the 3/(7) data with | 47t3/1 < |-10 G|

may be affected by fluctuations. Thus it is desirable to assess HJ^T) by some

complementary method.

Several alternative approaches are available for estimating H^2- ^^e standard

London limit formalism for the reversible equilibrium magnetization in the intermediate field

region, equation (2.3.1-1), which provides that M ~ Thus Figure 2-34-(b)

shows plots of 3/versus \n(H) at several temperatures. Linear extrapolations of3/(ln7/) to

3/ = 0 gives values for PH^2 taking P=\ gives the results shown as open circles in

Figure 2-33. Well below T„ however, the electrodynamics in the material becomes non

local, as discussed extensively in an earlier section; there the standard London-limit theory,

as shown in Figure 2-12, is inadequate and the equilibrium 3/vs. ln(7/) relation is non-linear.

In the low temperature region, the non-local London formalism of Kogan et al.^ was

applied to the data, as shown in section (2.3.1). From the fitting parameter C(7) = A7i - ln(7fo

I rj2H^2 + 1) of the non-local theory,^ one cannot directly extract H^2 because of the two

unknown constants and t}2, both of order unity. Arbitrarily setting " 0.1 and t}2 - 2.7

gives the values H^2 shown in Figure 2-33 as open down-triangles. The resulting

temperature dependence is qualitatively reasonable.

Another approach is based on the Abrikosov relation, equation (2.3.6-1), for MiH)

iovH near/7g2j which provides that - 3/ ~ {H^2 (D - We test this direct proportionality

by plotting 3/versus H in Figure 2-34-(a). The data at low temperature exhibit a credible
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linear dependence for M near zero, yielding values for H^2 via linear extrapolations to M=

0 (ignoring data in the "peak effect" where Af is irreversible). These values shown as open

up-triangles in Figure 2-33. For temperatures nearer T„ the predicted linear dependence is

poorly defined and the resulting values for are less reliable.

Finally, measurements of the heat capacity C^{H,T) provide completely independent

values for the upper critical field H^. These measurements were conducted in several fixed

fields (001)-axis. there is a jump in Cp due to the second order phase transition;

experimentally, we defined the field H^2 to be at the mid point of this jump. The resulting

values, shown as solid squares in Figure 2-33, agree relatively well with the aggregate

results from magnetization studies.

2.3.7 Ginzburg-Landau parameter k,

beyond the constant - /r approximation

In the original formulation of Ginzburg-Landau theory, the parameter at was defined

as the ratio of A,/^, near T^. As is evident in the preceding discussion, this dimensionless

parameter appears fi"equently with the theory of the mixed state. Experimentally, it is often

assumed that Aris constant for a given (sample of) superconducting material. To illustrate

a typical argument, the Ginzburg-Landau parameter a: can be estimated to be about 15,

deduced fi-om equation (2.3.6-2), in single crystal of YNijBzC, with magnetic field Hparallel

to the (OOl)-axis. From WHH theory,** one has HJ^Q) = 0.1T^{-dH^2l^^ which

predicts.^62(0) ~ 3.8 T based on the experiment result -0 36 T/K near T^. Then,
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with the simple relation HJG) = a coherence length $ of about 9.3 nm can be

determined, which gives in turn a penetration depth X = 139 nm, from k= XI^. Using these

values, the lower critical field H^i can be estimated from the relation H^i(0) - {(pJAnX^ )(lnAr

+ 1/2) to be about 273 G, which is consistent with the value (for magnetic field H parallel

to (OOl)-axis) in Figure 2-31. However, this typical analysis with a constant Ginzburg-

Landau parameter at oversimplifies the experimental and theoretical reality.

Extensions beyond the constant-a: approximation are needed for lower temperatures.

In 1964, K. Maki first studied this problem theoretically.*' The generalized work contains

three parameters aTj, a:^, and at,, associated with the three relations

=  (2.3.7-1)

(471) icMldH)„,^ = -ir P^\ (2.3.7-2)

and

(2.3.7-3)

At Tj, one has Aq = = aTj = a: as in the original formulation. Below T„ however, the

exhibit different temperature dependencies, with the size of the variation depending on the

cleanliness of the material. The various x; values can be estimated from the respective

e7q)erimental data; the thermodynamic critical field magnetization and heat capacity

measurements, the upper critical field H^2 dMIdH near H^2 equilibrium

magnetization measurement, and the lower critical field from flux-entry field

measurement. Figure 2-35 shows determinations of a; of the single crystal of YNijBjC as

a function of temperature. The Aq is best determined, as it is based on data for H^2 ^c»

each of which is well established by both magnetic and calorimetric studies. Experimentally
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Kj (7) increased by nearly a fartor-of-2 over its value near T„ » 8. The second

parameter which is based on the slope of near has a very similar value near

T^. Like Aq, it increases significantly as the temperature is reduced. The least well defined

is % as it is based on the field of first penetration, which is affected by surface feature that

can either promote the entry of flux (e.g. sharp edges) or inhibit flux entry (e.g. pinning or

surface barrier effects). The experimental value of near is much larger than the similar

values for xTj and k^.

According to Eilenberger,"^ the relative temperature dependencies of the Ac's

depends on the quantity (? /^) and the anisotropy due to impurity scattering. As the

electronic mean free path ( becomes longer, the generalized Ginzburg-Landau parameters

exhibit a more pronounced variation with temperature; with relatively short {, the x; lose

their temperature dependence and retain their values at Since this YNijBjC crystal

displays pronounced effects of non-local electrodynamics that requires a long mean free

path, it is only natural that the non-locality should be accompanied by temperature

dependent at values, as observed.

2.4 Summary

In summary, the YNijBjC crystal is a clean ({„ » ̂ ~ 9 ran), type-II

superconductor. The anisotropic London equations derived by V. G. Kogan et al. for

describing nonlocal effects in clean high-at superconducting materials well represent the

magnetization data for the single crystal. There is an "anomalous peak effect" slightly below
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H^2- It b® possible to consider the formation of a generalized FFLO state, a suitable

first-order phase transition from weak to strong pinning near YM2B2C system.

The temperature dependence of l/A^ which is obtained using non-local theory at low

temperature and local theory near T„ is 1/A^« /" with n = 3/2 and 1 = TIT^. Contrary to the

e7q>onential dependence expected for s-wave pairing, the nearly behavior for X(7) below

r= 10 K in the single crystal suggests the possibility of a non-j-wave pairing mechanism.

However, the parabolic relation between X\0)IX\T) = (1-/^), with t = T/T„ describes the

experimental values fairly well, also. More direct and precise methods are needed to

investigate the temperature dependence of X near J = 0 K, to understand whether the

pairing in YNi2B2C differs from 5-wave.

The normal state magnetization and paramagnetic susceptibility of YNi2B2C likely

comes from paramagnetic Ni^"^ ions. In addition, the anisotropy of the magnetic

susceptibility of this material can be attributed to CEF effects on Ni^^ ions. Meanwhile, in

the firework of thermodynamics, the thermodynamic critical field, (7), of YNi2B2C is

described well by the parabolic relation, HJiT) = HJiO) [1 - (TIT^ ], with HJiO) » 2556 G.

Other aspects of the heat capacity data deviate from predictions of both the weak- and

strong-coupling theories, but agree fairly well with the medium-coupling analysis. It seems

inevitable to make a more comprehensive study of microscopic mechanisms, such as

medium or strong electron-phonon coupling, for YNi2B2C. Using various methods, the

coefficient of electronic heat capacity y » 20 [mJ/mol K^] is obtained, values come from

heat capacity data, from integration of the magnetization curves and normal state

parameters, and from the medium-coupling analysis.
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Overall, the YNijBjC crystal exhibits little irreversibility in the superconducting state

and Mgnificant angular variation of magnetization in normal state. Near T„ the equilibrium

magnetization M for YNi2B2C is standard London-like with M « ln(^. Well below T„

however, M deviated from this simple "local" form and follows accurately the more general

nonlocality relation ofKogan et al. The deduced values of the Ginzburg-Landau parameters

Aq and aCj (from Maki theory) increase considerably as the temperature decreases. This is

consistent with the material's long electronic mean free path and the observation of non

local electrodynamics.
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CHAPTER 3

THE MIXED STATE PROPERTIES OF

HIGH-r^ SUPERCONDUCTORS

High-Te superconducting (HTS) materials are unconventional type-II

superconductors which have a much larger upper critical field and consequently a

much shorter coherence length (Q than those of conventional low-J^ superconductors.

Overall, the mixed (vortex) state in HTS materials covers a very large part of the magnetic

phase diagram. The mixed state plays a key role in practical applications of HTS materials.

However, there are many obstacles to be overcome in obtaining practical applications of

HTS materials. First, the high-T^ superconductors are ceramics, which are brittle and

generally not flexible. It is not easy to develop applications such as superconducting wires,

magnets, and so on. Second, the high-T^ superconductors have highly anisotropic

properties, weak link current flow, and giant flux creep (magnetic relaxation or decay of the
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electric current with time) in the mixed state. Usually, the conventional low-J^

superconductors exhibit only a small magnetic relaxation effect, which is explained by the

classical Anderson-Kim model:"' the irreversible magnetic moment decreases

logarithmically with time, which is referred to as "magnetic flux creep" since it occurs via

hopping of vortices. However, the high-r^ superconductors show a much large rate of

magnetic relaxation, so called "giant flux creep.""® In the presence of a large magnetic

field, an easy movement of flux lines generates heat and makes the current conduction to

be dissipative. Therefore, magnetic relaxation in HIS materials can be an important

limitation, fi-om the point of the view of practical applications. To overcome the specific

shortcomings of giant flux creep and a weak current density (J^ in the mixed state, the

pinning effects of flux lines (vortices) in HTS materials has been studied. Fortunately,

vortices can be pinned in the mixed state by intrinsic or extrinsic imperfections (defects),

which prevent the motion of flux lines. In 1991, L. Civale et al. showed that introducing

columnar tracks, made by heavy-ion irradiation, greatly increases the critical current density

in single crystals of YBa2Cu307.'' More recently, T. Hwa et al. suggested that splayed

columnar defects (with an angular dispersion of several degrees) should create much

stronger pinning effects than those of simple, parallel columnar defects,'* since splay forces

an entanglement of vortex lines that further constrains their motion. Therefore, L. Krusin-

Elbaum et al. devised a mechanism to produce splayed columnar defects using a fission

process, in which heavy constituent nuclei (Hg, Tl, Pb, etc.) inside HTS materials were

induced to fission by high energy (0.8 GeV) proton irradiation."'^ They found remarkable

increases in the critical current density and decreases in the decay rate of magnetic
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relaxation, due to strong vortex pinning effeas. Overall, a key requirement for useful

applications lies in making methods to pin the vortices against dissipative motion, due to a

current flow in a magnetic field.

3.1 The Influence of Ag-Additions to

HgBa2Cu04+5 Materials

3.1.1 Experimental Aspects

As mentioned, the high-J^ superconductors are ceramics which are brittle and

inflexible. To get some metallic properties in the HTS materials, many scientists

investigated the effects of adding some kinds of metallic elements to the HTS materials.

Usually, metallic silver (Ag) seems to be favorable in the fabrication of high-Tj

superconducting tapes, wires, and materials as it is one of the few elemental metals that does

not "poison" the superconductor. The Hg-based cuprate HgBa2Cu04+4, which has high-r^

values near 90 K," is one of the simplest materials, in which it has only one CuOj layer in

the unit cell. The Hg-1201 compoimd has a tetragonal structure and P4/mmm space group,

with one planar Cu site as shown in Figure 3-1."'

The synthesis of the Ag^gBa2Cu04+a materials was as following. To begin, a

precursor Ba^CuOj was prepared from BaO and CuO powders after mbdng, grinding,

pressing, and heat treatment. Then the superconductor HgBa2Cu04.^ was prepared by heat
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treatment of mixtures of powders of the precursor and HgO. Finally, to make

Ag,^gBa2Cu04+8 materials containing metallic silver (Ag), portions of the HgBa2Cu04+8

stoichiometric material were mixed and ground together with AgjO in Ag-mole fractions

X = 0, 0.05, 0.1, 0.3, and 0.5. Each material was pressed into a pellet. This was wrapped

in Ag foil and sealed in an quartz tube that was evacuated to 0.1 mbar pressure. The

assembly was annealed at temperature 840 "C for 5 hours. The detailed synthesis and

structure properties of this materials have been described elsewhere."*

The magnetic studies were carried out using a SQUID-based magnetometer

(Quantum Design MPMS-7). The randomly oriented polycrystalline AgJIgBa2Cu04+j

materials (mass 98.7, 86.5, 105.9, 106.7, and 98.0 mg for x = 0, 0.05, 0.1, 0.3, and 0.5,

respectively) were glued onto a thin Al-disk using a Duco cement and mounted in a Mylar

tube for measurement. Prior to studies in low magnetic fields, the superconducting magnet

in the magnetometer was "reset" to release trapped flux in its windings, by heating it above

its T^. The Meissner state magnetic moment m was measured under zero-field-cooled (ZFC)

and field-cooled (FC) conditions in an applied field 4 G. In all case, the magnetization

A/(G) = »j(G*cm^)/F(cm') was based on the volume V, calculated fi"om the mass of

superconductor accounting for any free Ag component (Appendix 3).

The superconductive transition temperature was determined by extrapolating to

zero the linearly varying Field Cooling (FC) magnetization A/(7) curve. For studies in the

mixed state, at first the sample was cooled from above in zero magnetic field and

stabilized at the target temperature. At this temperature, the sample magnetization A/(/r)

was measured in fields up to 6.5 T for both increasing and decreasing field history. In
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addition, to correct for the paramagnetic background signal, the normal state magnetic

moment was measured for temperatures from above to 295 K for each samples and

extrapolated to lower temperatures. From the studies of reversible and irreversible

magnetization in the mixed state, the superconducting properties, such as London

penetration depth X, characteristic temperature for thermally induced current decay, and

so on, of the Ag^gBa2Cu04+8 materials were investigated, according to the mole fraction

X = 0, 0.01, 0.1, 0.3, and 0.5, respectively. The properties are consistently understood in

terms of the superconducting hole density and thermally activated tunneling of pancake

vortices through a surface barrier."'

3.1.2 Experimental Results and Analysis

Silver is one of the very few metals that is chemically compatible with high

temperature superconductors. As such, it is often used as a matrix or substrate. One may

expect, however, that the presence of silver (Ag) at high temperature during the synthesis

of the HTS materials may play some role in changing the superconducting properties. The

basic intra-granular properties of Hg-1201 superconducting material may be modified by

adding Ag into HgBa2Cu04+5 superconductor. For example, the Jf-ray diffraction studies

of these Ag,^gBa2Cu04+8 showed that the crystalline unit cell volume was reduced, with

contractions of both the a- and c-lattice parameters."* As mentioned in the previous section

(3.1.1) and shown in Figure 3-2, the superconductive transition temperature was

determined by the linearly extrapolating to zero in field cooled (FC) magnetization M(7)

curve. This procedure ignores the slight tail at higher temperature due to thermal
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fluctuation effects. As a function of the mole fraction of Ag-content, the and persistent

current density Jp (at T = 10 and 30 K for = 1 T) values are shown in Figure 3-3-a and

-b. The values were determined by the FC magnetization M(7) curve, and the values

were obtained from the Bean critical state model, assuming the value r = 1 pm for the

average radius of the circulating currents. Figure 3-3-a shows that generally decreases

with Ag-content with the only exception the material with x = 0.3 case. Meanwhile, Figure

3-3-b shows no clear trend for Jj, versus Ag-content.

While the FC transitions in Figure 3-2 change smoothly with temperature, the zero

field cooled (ZFC) magnetization M(T) curve has more structure as seen in Figure 3-4. This

"two step" transition is due to decoupling of current flow between grains.'^" The figure

shows the Meissner state magnetic moment under ZFC condition in an applied field 4 G.

It is evident that the structure gradually disappears as the Ag-content increases. This means

that increasing the Ag-content diminishes the supercurrent flow between grains and weakens

the inter-grain coupling.

After correction for the normal state magnetic moment that was measured from 295

K to near and extrapolated to lower temperature, the mixed state magnetization was

obtained. Figure 3-5-a and -b show M(H) curves for one sample of Ag;^gBa2Cu04+j with

X = 0.05. In Figure 3-5-a, the magnetization Af is irreversible at the low temperature of 10

K. However, Figure 3-5-b shows that the magnetization Mis nearly reversible at higher

temperatures. As noted in the previous section (2.2.5), the standard local limit London

theory should describe fairly well HTS materials with high jf-values.*' According to

Kogan's standard London limit theory in the intermediate field regime « H « H^2. the
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equilibrium magnetization Mis given by equation (2.3.1-1);*'

M= - /(327r^ X(Tf)] IH), (3.1.2-1)

which means that the equilibrium magnetization M should be linear when plotted versus the

logarithmic of field ln(fl)- Thus its slope dM / d[n(H) is proportional to 1/A^. The standard

London theory for the reversible magnetization is based on thermodynamic equilibrium.

Often, fluctuation effects near in HTS materials contribute considerable entropy and can

significantly modify the equilibrium magnetization. In this study, fluctuation effects are

ignored because the analysis focuses on the data well below where such effects are very

small. The equilibrium magnetization M, at low temperature and low field region, was

approximated by the average of both field histories, increasing and decreasing field. The

\IX} dependencies as a function of temperature for various samples are shown in Figure 3-6.

Both Ginzburg-Landau and BCS theories predict the linear relationship between 1/X^ and

temperature (7) near only. However, as shown in Figure 3-6, the linear variation of the

experimental 1/A.^ with temperature extends down to temperature far below T^. This

suggests that the superconducting mechanism in these materials is more complex than simple

j-wave pairing.

Whatever is its temperature dependence, the density of superconducting charge

carriers, w„ can be estimated using London theory in previous section (2.2.4):

(XJ^ = m (?■ I (3.1.2-2)

These values and the corresponding values can be composed with the universal empirical

curve of versus hole density p, which was formulated and discussed by Presland

et al."^ and Tallen and Flower:
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T; / T;,^ = 1 - 82.6 {p - 0.16)2. (3.1.2-3)

In Figure 3-7, this parabolic relation is fitted to the experiment data for the Ag-Hg-1201

materials."' The overall consistency strongly suggests that the hole doping effects play a

significant role in establishing the observed properties of these Ag^gBa2Cu04+j

superconductors.

In addition to the reversible magnetization, there is also irreversibility which comes

from the present of macroscopic currents in the superconductors that flows in the bulk, on

surfaces, or both. Often, as-prepared Hg-based cuprates show an asymmetric curve M(H),

with M « 0 in the decreasing field branch. This is a characteristic feature of a surface

barrier-dominated system.'23-126 pjgurg 3.5.^ shows an example, this characteristic

asymmetry in AgJIgBa2Cu04^ with x = 0.05. Recently, the theory for thermal flux creep

of "pancake" vortices through a Bean-Livingstone surface barrier was developed by

Burlachkov et al."' Instead of the transmission of a vortex line through a surface,"* the

theory considered 2-D pancake vortices,"' which form in the mbced state when the

interlayer coupling is weak and small compared with other energies in the system. When

the magnetic field is first applied, the pancake vortices do not penetrate into the

superconductor until H reaches the penetration field , where

H^=H,Qxp{-T/T,). (3.1.2-4)

Here is the thermodynamic critical field and T is the temperature. The factor is a

characteristic temperature for a given superconducting material,"'

= e^dllaitlQ = lAnXf dIHtlQ, (3.1.2-5)

where 6/ = 0.95 nm is the distance between sets of Cu-0 planes, e„ = lAtiXf is the vortex
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line energy, and tlt^ is the ratio of the eq)erimental time (since application of the field) to the

fimdamental time scale for vortex oscillations. At 7= 0 K, the equation (3.1.2-4) reduced

to the traditional result that « H^. However, for r> 0 K, thermally activated creep of

pancake vortices into the superconductor leads to the exponential factor, tTvp{-TIT^, and

causes to fall off much more rapidly with T than expected classically from the

temperature dependence of H^T). Although surface imperfections often reduce the

magnitude of the prefactor in equation (3.1.2-4), they do not change the value of T„.

Let us consider further an asymmetric magnetization curve like Figure 3-5-a, with

the field increasing beyond the penetration field In this region, the magnetization M is

predicted to decrease as M ~ HH. Furthermore, in the decreasing field region, the

magnetization is expected to be field independent with M " 0, as observed. Consequently,

the width AAf of the magnetization loop for H » H^, using B = (If - for H>H^ and

-AnM=H -B = H-(IP- is

AM« H^IHoc exp(-2r/rj. (3.1.2-6)

At sufiBciently high temperature or high field, the pancake vortex hopping distance becomes

comparable with the thickness of the vortex-free surface layer. Then penetration by pancake

vortices becomes reversible and AM (« 0) decreases to a noise-limited values, which serves

to define the irreversibility line.

We can determine easily the penetration field as the point of minimum

magnetization (-M„„) in the initial, increasing field part of an M{H) curve. Using values

determined by this method, can be estimated by the slope (c/lnflp IdT). Figure 3-8 shows

semilogarithmic plots versus temperature T. The resulting values are 7^ = 18 - 21 K,
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18 K, 16 K, 16 -18.5 K, and 14.5 -16.5 K for A&HgBa2Cu04+B with x = 0, 0.05, 0.1, 0.3,

and 0.5, respectively. Using equation (3.1.2-5) with the typical experimental value, ln(///„)

-30, and values of A, from the London analysis, we obtain for AgJIgBa2Cu04+8 with x =

0.1 the value « 18 K; this is comparable with the experimental value from Hj,(T). Similar

results are obtained for the other samples. Continuing, equation (3.1.2-6) predicts an

exponential falloff of AM with temperature T. So Figure 3.9 shows semilogarithmic plots

of AM versus T for AgJHgBa2Cu04+5 with x = 0.1 in several fields. Thus complementary

values for can be obtained from the slope of the lines in Figure 3-9. For the field range

H =2 ~ 10 kG, the estimated values for by this method are = 19 - 16 K, 26 - 22 K,

19-10K, 21 -12K, and 28 - 27Kfor AgJigBazCuQi+j withx = 0, 0.01, 0.1, 0.3, and 0.5,

respectively. These values are overall similar to the values obtained from the penetration

field/fp. However, the values of exhibit a field dependence which is not included in the

existing theory. In summary, the results for AgJIgBa2Cu04+j materials seem to be

reasonable and consistent. Some complexities remain, such small "fishtail" effect in the

M{H) curve and the variation oiJ^ with Ag-content.
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3.2 The Effects of Artificially Created Defects

by Irradiation Methods:

Splayed Columnar Effects in Several

HTS Materials

3.2.1 Experimental Aspects

All of the HTS materials are type-II superconductors, which exhibit a wide mixed

state region in their magnetic phase diagram. Figure 3-10 shows a simplified, schematic

magnetic phase diagram for type-II superconductors. Two critical fields are seen, the lower

critical field and the upper critical field The Meissner state, in which the magnetic

field inside superconductor is completely screening out (B = 0), only exists below The

magnetic flux lines, so-called vortices = chUt = 2.07 x 10*' G-cm'), begin to enter into

the superconductor when the applied field exceeds The field regime between and

is called the mixed state or vortex state. Within the vortex state, there may be a variety

of vortex structural or dynamical phases. Especially, important phases are vortex solid and

vortex liquid phases, which are divided by the irreversibility (melting) line, at which = 0.^

The flux lines can be pinned inside a type-II superconductor by natural or artificial

defects. Vortex pinning is a very important factor in practical applications requiring a large

magnetic field {H^i <H < since vortices permeate the HTS material. The core of a

vortex is an almost normal conductor. Because a superconductor conducts a macroscopic

current Jin the presence of a magnetic field, vortices experience a Lorentz-like force:'^*'
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F = J^BIc, (3.2.1-1)

where Jis the macroscopic current density, and B(=H+ 4t:M ) is the magnetic induction.

The movement of vortices in a superconductor is viscous. Usually the vortex velocity (v)

due to the Lorentz driving force is perpendicular to the magnetic induction B. Therefore,

there exists an electric field,

E = B^v/c, (3.2.1-2)

and this electric field E is parallel to the macroscopic current density J. This makes power

dissipation^*'

P = J'E. (3.2.1-3)

Therefore, vortex motion in a viscous medium dissipates energy, unless v (the velocity of

a vortex) = 0. Consequently, vortices (flux lines) must be pinned in the material to obtain

a loss-free current.

For most practically applications of HTS wire and tape, one must overcome the

obstacle of dissipative current conduction, which is particularly pronounced at higher

temperatures (above 77 K). Fortunately, microscopic inhomogeneities ("defects") of

various configurations help to immobilize vortices. The defects can become "pinning

centers" which are energetically very favorable sites for vortices. In other words, the

defects act like potential wells that tend to immobilize vortex lines, so long as the Lorentz

force (FJ is less than pinning force (F^J. Thus the defects provide vortex pinning, which

is essential for the loss-fi^ee critical current density. The discovery of columnar defects

provided a particularly effective type of potential well, since their linear geometry and

transverse size closely match the properties of a vortex.
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Recently, T. Hwa et al. suggested that splayed columnar defects should create even

more strong pinning effects than those of simple columnar defects.'* Therefore, L. Krusin-

Elbaum et al. devised a mechanism to produce the splayed columnar defects using the fission

process, in which heavy constituent nuclei inside materials were induced to fission by high

energy proton (0.8 GeV) irradiation."'^ They found remarkable increases in the critical

current density decreases in the decay rate of magnetic relaxation, due to strong

vortex pinning. This new procedure creates the splayed columnar tracks in HTS materials

using deeply penetrating (with a range of 0.6 meters) 0.8 GeV protons. The next section

(3.2.2.1) will treat briefly the mechanism of defect formation.

In the present work, the effects of the splayed columnar tracks have been

investigated in several HTS materials, including bulk polycrystalline

(TlPb)(SrBa)2Ca2Ci%C^ materials, which are labeled as [(TlPb)(SrBa)-1223]; epitaxial thin

films (TlagBio.2)Ba2Ca2Cuj(Va onLaAlQ orYo jZro jOj (YSZ) substrates: [(TlBi)-1223

thin film]; thick films of TlBa2Ca2Cu309 on polycrystalline YSZ substrate: [Tl-1223 film];

bulk polycrystalline Tl2Ba2CaCu20g+4: [Tl-2212]; thin films and bulk polycrystalline

HgBa2Ca2Ci%Q,: [1^-1223 film, Hg-1223]; single crystal or tape (deposited on Ag with 3.4

pm thickness) Bi2Sr2CaCu20g: [Bi-2212, Bi-2212 tape/Ag]; and so on. The magnetic

studies of these materials were conducted in a superconducting quantum interference device

(SQUID)-based magnetometer (Quantum Design MPMS-7). After pre-characterization,

the samples were irradiated in air by the 0.8 GeV protons beam from Los Alamos Meson

Production Facility (LAMPF) at the Weapons Neutron Research (WNR) facility. At first,

loss-free current density/is derived from M(H) data and analyzed using Bean critical state
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model:''"

J= 15 X AMIr, (3.2.1-4)

where AM = (jM. - Af+| ) is difference between M. in decreasing field branch and Af+ in

increasing field branch of the hysteresis loop; r is the radius of a cylindrical sample. Second,

the measured magnetic relaxation data are analyzed using several flux creep theories such

as classical Anderson-Kim,'" collective flux creep,'"-'" or interpolation formula.'"-'" Third,

the effective pinning energy U{J,T) irom M(T,t) data is studied employing the Maley

analysis of flux creep.'" In addition, evidence of quantum creep, that is quantum tunneling

of vortices,'" is discussed.

3.2.2 Experimental and Theoretical Background

3.2.2.1 The Formation of Defects in HTS Materials by Particle Irradiation

One of the most interesting technological properties of type-II superconductors is

the conduction of a current density with no dissipation. According to Maxwell's equation

(V X = (An/c)!), there is a relationship between current density J and the vortex density

gradient (V x B), which is caused by a vortex pinning. From a thermodynamic point of

view, the macroscopic current in materials can decay, due to thermally activated motion of

the vortices; i.e. magnetic relaxation. Therefore, to overcome the shortcomings of giant flux

creep and weak current density in the mixed state of HTS materials, many scientists have

studied vortex pinning in these materials.

The most direct method to make defects in materials is by irradiation with energetic
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particles such as electrons, protons, neutrons, heavy ions, and so on. The relationships

between bulk damage and incident energy of irradiation (using heavy ions: Kr, Xe, Pb, U,

etc.) were studied by F. Studer and M. Toulemonde."' They showed the damage evolution

and the corresponding damage morphology was dependent on the electronic stopping power

{dEldx) in the material. The evolution of the damage efficiency (e = AI[dEldx\, here .<4 is

a damage cross section) versus the electronic stopping power (dEldx) and the damage

morphology in five specified categories are shown Figure 3-11. In range I (below the

threshold stopping power TJ, the damage results only from the nuclear elastic collisions.

At range n (between and 7^), the damage is induced by inelastic collisions, giving a defect

morphology of small spherical regions. At range III (between T, and TJ, the damage

efficiency increases very fast as the electronic stopping power increases, and the defects

extend along the particle path and become discontinuous and cylindrical in shape. At range

IV (between and r„), the discontinuous cylindrical defects gradually become continuous.

Finally, at range V (above T^, the defects become latent tracks with a homogenous

cylindrical shape. Therefore, we can make point-like defects with light ions (electrons,

protons) irradiation of MeV energy, or blob-like defects by neutron irradiation to the HTS

materials.^'* Even better, we can produce nominally parallel columnar defects'' in HTS

materials by irradiation with GeV energy heavy ions, Xe, Sn, Pb, Cu, Au, etc., and the

splayed columnar defects" by fission fragments produced by irradiation with GeV energy

protons, which penetrate deeply in materials.

It is clear that to pin flux lines, strongly columnar defects are better than point-like

defects. Linear vortex pinning sites match the linear shape ofthe vortex core. To obtain

-129-



>

0)

I
II
CO

I II III T .

T t
C 1

T
T

IV V

I

{dE/dx) (MeV/|im)

II III IV V

O

O

o

Figure 3-11. General behavior of the damage efficiency as observed in magnetic

insulators. In the upper part of the figure, the evolution of the damage efficiency

versus {dEldx) is shown. F. Studer and M. Toulemonde, Nucl. Inst. & Meth. in

Phys. Research B 65, 560 (1992).

-130-



the maximum pinning force, the transverse size of the defects should be similar to the

coherence length 5^, since the pinning force = - VC/pi, ~ 75^,, and is the shortest

relevant length scale. In addition, to pin every vortex within a material, (number of pins

per area) must larger than B (number of flux quanta </>o per area). In 1991, L. Civale et al.

showed that introducing columnar defects, made by heavy-ion irradiation, greatly increases

the critical density in single crystals of YBajCujO,.^' In other words, the columnar

defects produce strong vortex pinning and reduce the decay rate of magnetization. Usually,

the columnar defects, made by irradiation with GeV energetic heavy ions, are very popular

method to pin optimally vortices in HTS materials. This method, which has a limited

penetration range (a few tens of pm « 20 ~ 30 pm), seems to be most useful for increasing

vortex pinning in relatively thin materials.

More recently, T. Hwa et al. suggested that splayed columnar defects should create

more strong pinning effects than those of simple columnar defects.'* Therefore, L. Krusin-

Elbaum et al. devised a mechanism to produce splayed columnar defects using a fission

process, in which heavy constituent nuclei inside materials were induced to fission by a high

energy proton irradiation." This new procedure creates an array of splayed columnar

defects in HTS materials using deeply penetrating (with a range of about 0.6 meters) 0.8

GeV protons. Figure 3-12 shows briefly the mechanism of this procedure.*" At first, an

incident proton can be absoibed by a heavy nucleus, such as Bi, Hg, Tl, Pb, Au, and so on,

in several HTS materials. The probability of this process is substantial, with a fission cross-

section Of « 100 ~ 200 mbams. Therefore, the nucleus, highly excited by the energetic

proton, fissions (splits) into two fi'agments. Each has energy of about 100 ~ 200 MeV and
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Figure 3-12. The formation of splayed columnar defects by the fission process.
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approximately half of the mass and charge of the parent nucleus. Typical fission fragments,

such as "^Xe54 and ̂ ^Krjg at about 100 MeV fi"om fission of ̂"'Bigj, can make columnar

tracks deeply within the thick or bulk HTS materials. Another example is '*'Zr4o and ''Nb4i

at about 100 MeV fi-om fission of ̂°°Hggo. In addition to fission fragments, there remains

several hundred MeV of energy in evaporated neutrons and protons from spallation. Thus,

these fission fragments create randomly aligned columnar damage tracks. Figure 3-13

shows the splayed columnar tracks due to fission fragments.

3.2.2.2 Bean Critical State Model

There is an important relationship between the measured hysteretic magnetization,

due to the vortex pinning, and bulk critical current density J^. In 1962, the "critical state

model" was introduced by C. P. Bean.^^ The idea of the critical state model was

characterized by "critical current density J" in the mixed state of a type-II superconductor.

The model provides a simple relation between the measured irreversible magnetization Ailf

and the critical current density of the sample: « AM/r, where r is the width or diameter

of the superconducting sample. Therefore, it is possible to estimate the current density for

arbitrarily small and irregulaiiy shaped samples for which the typical transport measurements

are sometimes very diflBcult.

In this model, C. P. Bean has set two key assumptions.^" First, the lower critical

field H^i is usually ignored. Second, the critical current density is independent of field:

the possible current densities in the materials are +J„ -J^ or 0. Figure 3-14 shows

schematically the profiles of B and 7 in the Bean critical state model, for a long cylindrical
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sample in a parallel magnetic field. In addition. Figure 3-15 shows the hysteresis loop, a

MiH) curve, and flux profiles for a slab of thickness r in an applied field parallel to its plane.

The current density always flows to some depth for a non-zero applied magnetic field.

This depth increases as the ̂ plied magnetic field increases. The magnetic flux density B(x)

can be explained as a fiuiction of the distance from the center of the sample: B(x) decreases

linearly from the surface, where x = 1 represents to the surface and x = 0 stands for the

center of the sample. When the magnetic flux fully penetrates into the center of the sample

at the penetration field the whole sample is in the critical state and the critical current

density flows everywhere in the sample. We can calculate the penetration distance of

the magnetic flux, x, into the slab using Maxwell's equation

V X ̂  = (47i/c>/, so HIx = (47t/cV, and x = cHI{AtU,). (3.2.2.2-1)

To calculate the magnetization curves of the sample, we have that

B(x) = \JiHdV)-\ I {/{dV)] = (Hx)lr = H {cWAnJ, )lr = cIP/(4tiJ,r) (3.2.2.2-2)

and

47:M = B(x) - H = [clP/(4nJ, r)] - H. (3.2.2.2-3)

Using IT = ItUj/ c fi-omfl/(r/2) = (4-kIc) at the center (x = r/2) of the sample, when the

flux fi-ont reach the center, the maximum diamagnetic magnetization can be calculated by

the equation (3.2.2.2-3):

47tM = Birll)-H=H/2-H=-nJ, ric, (3.2.2.2-4)

where B(r/2) = If- {rl2)lr = HI2 = rIc, so

M=-Jjl{Ac). (3.2.2.2-5)

Finally, = -4cM / r: this is a typical relation for the simplest case fi-om the Bean critical
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state model."' The more detailed calculation of the critical current density for a spherical

superconducting sample is treated in Appendix 4.

3.2.2.3 The Measurement of Magnetic Relaxation

A non-equilibrium state can arise from a variety of processes, such as changing of

the magnetic field or temperature. This leads to a redistribution of vortices, whose

configuration tends to relax toward an equilibrium arrangement in the superconductor. As

the redistribution of vortices takes place, the magnetic moment will change with time

because the instantaneous current density/decreases as the flux profile flattens. This is the

basic concept of magnetic relaxation in superconductors. Thus we can understand that the

magnetic relaxation is a consequence of the spontaneous motion of vortices out of their

pinning sites due to thermal activation, quantum tunneling, or some other depinning

processes.

From a thermal point of view, the macroscopic current in materials decays due to

thermally activated motion of the vortices. Thus the magnetic relaxation in HTS materials

can be one of the important factors in practical applications. Usually, the conventional low-

Tj. superconductors have a very small magnetic relaxation effect, which can be explained by

the Anderson-Kim model,"' where a magnetic moment decays logarithmically with time,

which is referred as "magnetic flux creep." However, the high-Tj superconductors exhibit

a large rate of magnetic relaxation, so called "giant flux creep.""®

Magnetic relaxation in HTS materials is an interesting experimental study. It is not

easy to obtain correctly the measurement of magnetic relaxation in HTS materials; for
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example, experimental efifects such as sample inhomogeneities and field inhomogeneities in

SQUID magnetometers can lead to spurious results. According to the Bean critical state

model,^'" the measured irreversible magnetization defined as (1/2) of the hysteresis

AM obtained from the hysteresis loop, is proportional to the current density J. Thus the

measured magnetization must be corrected for the equilibrium magnetization and

background effects. Then we can obtain the relaxation rate and perform the evaluation of

the pinning energy from the irreversible magnetization After establishing the full

penetration for field in HTS materials, the magnetic relaxation can be measured by

monitoring the magnetic moment versus time.

Figure 3-16 shows briefly the procedure for measurement of magnetic relaxation.

The following is a step-by-step procedure for the measurement of magnetic relaxation."'

(1) At first, we must make sure the quality of sample, magnetic field homogeneity, and

magnetic field orientation according to the sample axes. (2) Second, measure the magnetic

hysteresis full loop at fixed temperature T for which magnetic relaxation is going to be

measured. (3) Third, determine the field corresponding to the minimum magnetization

firom the hysteresis loop, which was started fi-om M= 0 and /T = 0, of the second step.

Thus we can estimate the first field for full magnetic flux penetration (/T) that is

^proximately iT « 1.5 x (4) Fourth, estimate the irreversibility field at which AM

= |M - M+l « 0. (5) Fifth, determine the irreversible component M^^ = | -

I where - (M + M.yi. (6) Sbdh, redo zero field cooling of the sample from

above to the target temperature T. (7) Seventh, apply a magnetic field H smaller than

to allow for magnetic relaxation after making full flux penetration, which is obtained by
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a target field H. Keeping the field H constant, measure the decay of magnetic mo
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region, (3) apply a larger field, e.g. (1.5)^r. Finally, go to a target field in decreas

ing field region. (4) Measure the decay of magnetic moment just as (2).
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starting a negative applied field (-H). (8) Eighth, measure the magnetization (A/) as a

function of time t. (9) Ninth, obtain the irreversible magnetization M^t) = M(t) - (M^ +

Mbfcj). (10) Tenth, go back to step (6) or (7) according to a different target temperature T

or field H. In this way, one obtains a reliable set of data for J(H,T,t) « The

data can then be analyzed for the creep rate S(T), the effective pinning energy U(J,T), etc.,

employing the Maley analysis"^ and other theoretical results, including corrective creep

theory,^"' the interpolation formula,"-"^ and classical Anderson-Kim theory."'

3.2.2.4 From Classical Anderson-Kim to Collective Flux Creep Theory

At finite temperatures, flux lines can jump from one pinning site to another by

thermal energy. This causes the macroscopic screening current in a HTS material to decay,

under the combined action of thermally activated motion of the flux lines in association with

the driving force of the current and flux density gradient. Usually, the flux creep, movement

of vortices out of their pinning sites, is evident in two ways; (1) the slow changing of

magnetic moment in a magnetic measurement and (2) the current-voltage dependence for

the lon^tudinal resistive voltage (related to the average creep velocity of the vortex motion)

in a resistive measurement. In the present study, creep of the magnetic moment will be

treated.

The classical theory of thermally activated flux creep has been treated by Blatter et

al.'^ recently. Let us assume that the magnetic flux density B - H (the applied field) and

consider a simple slab geometry with the field BI I z-axis, v (the velocity of flux lines or flux-

line bundles) //jc-axis, and the current density ///y-axis. According to Maxwell's equation,
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V X B = (47r/c)/, the current density J is related to the flux density gradient, as noted above;

dBJdx=-(AT:lc)Jy. (3.2.2.4-1)

The flux lines should move with the velocity by the Lorentz force, = (\lc)(Jy x

Using Maxwell's equation, V x £ = - (\lc)dBldt,

dEldx = - (l/c)85/ar, (3.2.2.4-2)

and the relation between the electric field and the flux motion, E = {\lc)B x y,

£, = (l/c)5,v,. (3.2.2.4-3)

Thus we can get the equation of continuity for the flux lines fi-om equations (3.2.4-2 and -3),

BBIdt = - {dldx){yB). (3.2.2.4-4)

In addition, using the equation after taking the derivative with respect to time (t) of equation

(3.2.2.4-1), we obtain the corresponding dynamic equation for the current density J\

dJIdt = (c/47t)(aW)(v5). (3.2.2.4-5)

The velocity of flux lines due to thermal activation over the pinning barrier is given by

V = Vo exp[-U(^ / kT\, (3.2.2.4-6)

where U{J) is the pinning energy barrier, like a potential energy barrier U. Finally, after

integration, we obtain the decay or dynamic equation for the current density 7,

dJIdt» - (j;/r„) exp[-C/(,^ / kT\, (3.2.2.4-7)

where UiJ) is the activation energy. If we use the mathematical trick, dUdt =

(dUldt)(dJldU), we can get the dynamic equation for the activation energy C7(/),

dUldt = - {JjT;)(dUldJ) / kT\. (3.2.2.4-8)

This equation was solved with logarithmic accuracy by Geshkenbein and Larkin,*^

providing

-142-



UiJ) = kT ln(l+//0, (3.2.2.4-9)

where = tJ" I (J^ \dU/dJ\ ), and additive factor (1+), which is inserted to obtain a valid

expression at / = 0, can normally be dropped because 1« m.

The hopping of flux lines or flux-line bundles out of their pinning-potential wells due

to thermal activation was introduced first by P. W. Anderson and Y. B. Kim in 1962 and

1964."' According to the conventional Arrhenius relation, the vortex hopping time t is

given by

t = to exp(UlkT), (3.2.2.4-10)

where U is the potential energy barrier. Because the hopping is activated by the driving

Lorentz force, F= (l/c)J x B, there is a relation between U and J, such as U decreases as

/increases. In Anderson-Kim flux creep theory, they assume a linear U(J), that is the linear

/-dependence of the activation energy U:

U=Uo(l-J/JJ, (3.2.2.4-11)

where is critical current density at which the activation energy is zero. Using

equations (3.2.2.4-9 and -11), we can obtain the famous logarithmic time decay of the

current density;

/=/^ [1- {kTIUo) ln(l + tUo)]. (3.2.2.4-12)

According to Bean model,"" the magnetization M J. Thus the magnetization should

decay logarithmically with time. From equation (3.2.2.3-12), we can determine the

normalized creep rate S\

S = (1/M^) / /ln(/)] = d[n(J) / /ln(0, (3.2.2.4-13)

(where these, {dM^„ / /ln(/)] = /ln(Af,„) / ffln(/), are the same only » 0.)
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S^-kT! [C/„ - kTH\ + tlQl (3.2.2.4-14)

A low temperatures (usually low-rj superconductors) in which » kT\ii{\ + tlt^,

S^-kT/ U,. (3.2.2.4-15)

This logarithmic relaxation relation based on Anderson-Kim theory explained well the flux

creep for conventional low temperature superconductors. More recently, however,

Thompson et al. showed significant deviations from logarithmic-time behavior for an

YBajCujO, crystal."' In addition, this basic Anderson-Kim theory can not explain the

typical plateau phenomenon"'"'*" of the normalized relaxation rate, in which S is

independent of temperature in the intermediate temperature range for many HTS materials.

Therefore, many scientists have looked for modifications of Anderson-Kim theory or have

searched for some other formalism to explain adequately the above shortcomings.

Before treating the formalism beyond of the basic Anderson-Kim theory, let us

briefly review the concept of collective pinning by Larkin and Ovchinnikov."' When there

are no pinning sites in a material, the flux line lattice (FLL) should be the ideal periodic

arrangement of Abrikosov."' If there is a random array of pinning sites, the individual flux

lines, which have the properties of mutually repulsive elastic strings, would like to take

lower their energy by passing through the &vorable pinning sites. That is collective pinning-

one vortex is piimed by many randomly located "point" defects. Thus the FLL becomes a

deformed and distorted array. Figure 3-17 showed a schematic diagram for collective

pinning.*' Usually, the distortion of the FLL is described in terms of a correlation volume,

Vc, which is characterized by both a correlation length L^ along the field direction and a

transverse dimension R^. In addition, the distortions of the FLL in a correlation volume,
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(b) With random attractive pinning sites, the local direction
of the FLL is modulated slightly.
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R

Figure 3-17. The schematic diagram about the collective pinning,
(from M.Tinkham, "Introduction to Superconductivity")
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which generally contains several or many collective pinning sites, can be described by using

the elastic moduli of the FLL, such as the shear modulus (C^) and tilt modulus (C44).

Extending the idea of a linear U(J) relation in Anderson-Kim theory, the concept of

a nonlinear U{J) relation was first introduced by Beasley et al. in 1969."^ Within the

ftamework of collective pinning theory, Feigel'man et al. introduced an inverse-power-law

form of U{J), assuming weak random pinning and flux lines that act as an elastic medium;

U=UA{JJJr-'^l (3.2.2.4-16)

According to this collective creep theory, the correlation volume of a thermally activated

flux bundles depends on the current density J. In addition, if the current density / goes to

zero, then the volume becomes infinitely large and the barrier U diverges. Using

equations (3.2.2.4-9 and -16), we can obtain the "interpolation formula,"^"^

J(T, 0 = / [1 + ln(l + tlQf, (3.2.2.4-17)

where the dimensionless p is called a glassy exponent. This interpolation formula is valid

both fox J' J„ which may be found at low temperatures (close to Anderson-Kim theory),

as well as for J « which can result fi"om giant flux creep in unconventional HTS

materials. Specially, the numerical values of glassy exponent p, obtained by the elastic

theory, play a role as an indicator for the type of pinning-depinning process;'^"' in three

dimensions with random point-like defects, (1) p = 1/7 represents the motion of individual

flux lines in low-field and low-temperature region; (2) p = 3/2 means the collective creep

of small bundles in higher field and higher temperature; (3) p = 1 stands for the collective

creep of intermediate size bundles; and (4) p = 7/9 corresponds to collective creep of large

bundles. Finally, fi-om equation (3.2.2.4-17), we obtain the normalized creep rate,
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S = dln(J) / ciln(t) = - kT! [C/„ + nA:nn(l + HQ]. (3.2.2.4-18)

At higher temperature where « p^rin(l + HQ, then

5 » 1/ [p ln(l + HQl (3.2.2.4-19)

This result provides an explanation for the temperature T-independent plateau

phenomena"*"'^ of 5 for HTS materials, so long as p and are independent of T.

In 1990, Zeldov et al. introduced another nonlinear U{J) barrier, a logarithmic

dependence onJ:"^

U=U^ ln(^ / J). (3.2.2.4-20)

From combining equation (3.2.2.4-20) and equation (3.2.2.4-9), one can derive

J=J^ exp[ - (kTIU,) ln(//0 ]. (3.2.2.4-21)

Thus the normalization creep rate S can be obtained by

S = diriJ) / dn(0 = - kTtU^. (3.2.2.4-22)

However, the plateau phenomena''*"^^ of S for HTS materials cannot be explained using the

theory based logarithmic U{J) relation because of the direct relationship of 5 « J.

With many different U{J) dependencies possible, Maley et al. developed a model

independent method for determining the dependence experimentally. By inverting equation

(3.2.2.4-7), they obtained the following,"^ assuming only thermally activated current decay:

U='kT [HdJIdt) + q, (3.2.2.4-23)

where C = \n(JjT) is determined experimentally by requiring that U becomes a smooth

function of J. Alternatively, this Maley analysis arises from the flux conserving equation,

dMIdt = {BcxHlnr) exp(-t//7), (3.2.2.4-24)

where B is the magnetic induction, (o is the attempt frequency for vortex hopping, a is the
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hopping distance, r is the radius of the sample, and U is the energy measured in temperature

(K) units. This provides a net pinning barrier U=-T \^{dMld() - C], where from

Bean critical state model and C = \n{B(i)a/lTzr).

3.2.3 Experimental Results and Analysis

The most direct method to make defects in materials is by irradiation with particles

such as protons, neutrons, heavy ions, and so on. Thus, we can make the point-like defects

by irradiation with light ion of MeV energy or blob-like defects by energetic neutron

irradiation of the HTS materials,'^ which also have naturally occurring defects. In addition,

we can produce columnar defects^^ in HTS materials by irradiation with GeV energy heavy

ions such as Xe, Sn, Pb, Cu, Au, etc. Alternatively, splayed columnar defects'' can be

formed by GeV energy protons, which penetrate deeply into materials. In 1991, L. Civale

et al. showed that introducing colunmar defects, formed by heavy-ion irradiation, greatly

increases the critical density in single crystals of YBa2Cu307." Columnar defects, made

by irradiation with GeV energetic heavy ions, have been a very popular method for strong

pinning of vortices in HTS materials. This method, however, has the disadvantage of a

limited penetration range (a few tens of pm » 20 ~ 30 pm). More recently, T. Hwa et al.

suggested that splayed columnar defects should create stronger pinning effects than those

of simple parallel columnar defects.'* Therefore, L. Krusin-Elbaum et al. devised a

mechanism to produce splayed columnar defects using a fission process, in which heavy

constituent nuclei inside materials are induced to fission by high energy (0.8 GeV) proton
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irradiation." They found remarkable increases in the critical current density and decreases

in the decay rate of magnetic relaxation, due to strong vortex pinning. This new procedure

creates the splayed columnar defects in HTS materials using deeply penetrating 0.8 GeV

protons (with a range of about 0.6 meters). In the present work, the effects of the splayed

columnar tracks, which are actually made by fission fi-agments, are studied in several HTS

materials, including bulk polyciystalline high-T^ superconductors, epitaxial thin films, tapes,

single crystals, etc. Sometimes, to increase the areal density of splayed columnar defects,

an "amplifier foil" of heavy metal could be set in front of a thin film. For example, in the

Hg-1223 films, a 40 pm foil of Pb was used to create additional splayed defects due to Pb

fission fi-agments that escape from the last 2 - 3 pm of foil.

Magnetization data (M(H,T,t)) on the HTS materials were obtained using a SQUID-

based magnetometer. Precharacterized samples were irradiated in air by the 0.8 GeV

protons beam (at a beam density of less than 1 pA/cm^ at the Los Alamos Meson

Production Facility (LAMPF) at the Weapons Neutron Research (WNR) branch. We can

estimate the area density of defects,'^ which is conveniently expressed in units of flux

density, as

5^= X (N/V) X { X 0^, (3.2.3-1)

where 0^ is proton fluence, Of ~ is the fission cross-section, NIV\s the number

density of fissionable nuclei, i. is the track length (~ 7 pm in bulk material), and is the flux

quantum. Figures 3-18-a and -b illustrate the effects on the materials, showing Af versus

77 at temperature 7 = 30 K for polycrystalline TljBajCaCujOg+j [Tl-2212] and, at 7 = 60

K, corresponding results for bulk polycrystalline HgBajCajCujO, IHg-1223]. In Figures
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Figure 3-18. Magnetization Af versus field /T for both virgin and
irradiated samples.
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3-18-a and -b, results are shown both for the sample as grown (virgin) and after irradiation

with progressive fluencies of 0.8 GeV protons. It is evidence that the magnetic hysteresis

JA/is greatly increased by the splayed columnar defects. Note too a change in the overall

shape of the hysteresis curve for the bulk polycrystalline HgBajCajCujO,: [Hg-1223]. The

virgin material has an asymmetric shape of M{H) curve with features indicating a surface

barrier-dominated system. The curve gradually changes to a symmetric shape as the

irradiation fluence and defect density increases. The surface barrier effects in these Hg-

based cuprates seem to disappear; at minimum, it become unmasked by the irreversibility

of bulk currents with increased bulk pinning by the sprayed columnar defects. In addition,

from the irreversible component of magnetization M(H), the loss-free current density / is

obtained and analyzed using Bean critical state model (from previous section 3.2.2.2):^^

J= ISAMr » 30(M-M„)/r, (3.2.3-2)

where AM is the difference ( |M. - M+|) between M in decreasing field region and M+ in

increasing field region, and r is an appropriate transverse dimension, and the last equality

is useful at the highest temperatures where the equilibrium magnetization M^ becomes

important. Figure 3-19-a and -b present J versus H at the temperature T =11Y. for bulk

polycrystalline (TlPb)(SrBa)2Ca2Cu309+8: [(TlPb)(SrBa)-1223], and Jversus rinfield/f =

5 and 10 kG for a thin film of Tl,, gBio zBajCajCujO,: [TlBi-1223 film]. In both figures, the

results are shown for the samples both virgin (as grown) and after irradiation by 0.8 GeV

protons. It is evidence that the current density J is greatly increased by the splayed

columnar defects formed by fission fragments. There is, however, an optimal proton fluence

(Pp for enhancing the current density in these HTS materials. The current density / first
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increases with increasing proton fluence 0^, then decreases at much higher (Pp. This is

illustrated in Figure 3-20, plots of the current density J versus the proton fluence <Pp for

polycrystalline HTS Hg-1223 materials in = 1 T. While the current density J can be

increased significantly by introducing optimal densities of defects such as point-like defects,

parallel simple columns, and splayed columnar tracks within the HTS materials, the

superconducting transition temperature is suppressed somewhat by the added defects.

To demonstrate this. Figure 3-21 shows the variation of for several HTS materials as a

function of the proton fluence (Pp. The slopes dTJd0^ for the different HTS materials differ

significantly. One expects that the depression rate for should depend on the fission rate

per volume:

dTJd0^ ~ fission rate / volume ~ x {NIV^. (3.2.3-3)

Qualitatively, this empirical relation appears to describe the process, as the rate is higher for

materials containing two fissionable nuclei per unit all (Bi-2212 and Tl-2212) and lower for

nuclei with smaller Of, e.g. Hg-1223.

In general, the M{H) curves provide the persistent current density fi"om Bean critical

state model. Thus we can define the irreversibility field at which the hysteresis in the

M{fl) curves tends toward zero (AAf ~ 0) in the Mifl) curves, or correspondingly, when

the current density drops precipitously below some criterion value; this is conveniently done

on plots of log(,7) versus H. The irreversibility line H„{J) determined using the criterion

(^toricn "10^ A/cnf), is shown in Figure 3-22 for polycrystalline (TlPb)(SrBa)2C%Ci%0^:

[(TlPb)(SrBa)-1223]. According to the relation for 3Z) line vortices,

(3.2.3-4)
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the irreversibility ]meH^(T) should be linear when plotted on double logarithmic axes, and

the exponent n can be obtained from the linear slope. While the virgin sample (before

irradiation) has w = 2 .4, the irradiated sample has a reduced slope with n = 1.8. Thus the

HTS materials with splayed columnar tracks have higher irreversibility fields. Also, fall

off less rapidly with increasing temperature, compared Avith the virgin HTS materials, as

shown in Figure 3-22.

Next we consider the region below the irreversibility field, where is finite and

non-zero persistent currents flow. Then from time dependent studies, one can obtain the

decay rate S and an evaluation of the pinning energy. A plot of the logarithmic decay rate

S=dln(Myr)/£An(t) = din(J)/<An(t) as a function of temperature is shown in Figure 3-23. The

materials are superconducting tapes of BijSrjCaCujOg/Ag (deposited on Ag with 3.4 pm

thickness): [Bi-2212 tape/Ag], both virgin (as grown) and after irradiation by 0.8 GeV

protons. The decay rate S for the persistent currents is reduced, especially at high

temperature, by the splayed columnar defects, which were formed by Bi-fission fragments.

The enhanced vortex pinning gives increased stability to the supercurrents in the irradiation

materials. Especially at low temperature, the temperature independent behavior of the

logarithmic decay rate S for the irradiated samples shows the presence of quantum creep,

which means the tunneling of vortices from the pinning wells.®® For the samples with the

splayed columnar tracks, the constant decay rate S (« 0.03 - 0.05) at low temperature is

strong evidence of quantum creep effects, which extend up to temperatures T near 10 K.

This evidence of the temperature independence of the decay rate S at low temperatures is

associated with a flattening of the supercurrent density 7(7), whose limited magnitude is an
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apparent consequence of large quantum creep in the Bi-2212 containing splayed columnar

defects."'

In long-term measurements of the magnetization A/(/) at fixed field and temperature,

Thompson et al."^ showed that the data deviated significantly from the Anderson-Kim

model. This model predicts a magnetic moment changing logarithmically with time (from

previous section 3.2.2.4),"'

M(0 « J(i) = [1 - {k,TIU,) HtlQl (3.2.3-5)

They analyzed the curvature of their data in terms of the dependence of the pinning potential

energy on the current density J. In contrast to the linear U(J) relation of the Anderson-

Kim theory,"' the concept of a nonlinear U{J) relation was treated first by M. R. Beasley

et al. in 1969."^ However, they did not include a dependence of pinning potential energy

U„ on current density J in their Anderson-Kim formulation. Subsequently, a nonlinear

dependence of U{J) on J was introduced in the vortex-glass model by D.S. Fisher et al.^^

and in collective pinning theory by M. V. Feigel'man et al."^ Thus they obtained an

"interpolation formula" (firom previous section 3.2.2.4),

M(t) oc y(0 =/eo / [1 + Wiu:) (3.2.3-5)

which reduces to the Anderson-Kim expression when (kgTIU) « 1. In general, the

interpolation formula describes very well the experimental results.

To understand giant flux creep in HTS materials, the current dependence of the

vortex pinning potential energy U(J) is a very important microscopic property. The

effective pinning energy U(J,T) from M(T,t) data can be studied and determined

experimentally by employing the procedure of M. P. Maley et al.,"^ as described earlier.
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This gives a net pinning barrier U,

U = - 7Iin(flfl//i/0 - q, (3.2.3-6)

where3/« from Bean critical state model and C = ln(B6»/27tr). Thus equation (3.2.3-6)

is an explicit expression for U{J) at temperature T. Some results of such an analysis are

given in Figure 3-24 showing U{J,T) as a function of Af « / for bulk polycrystalline

HgBajCajC^Q): [Hg-1223]. In constructing these curves, the value of C is assumed to be

temperature independent and is chosen to make the segments at several low temperatures

to form a continuous curve. The resulting values of C are 22 (80) for virgin sample in

increasing (decreasing) field history; for the irradiated sample, the corresponding values are

C = 26 (30). It is evident that the increased stability of the vortices in the irradiated

materials comes from the enhancement of the net pinning potential barrier of the vortices.

Before concluding, two features should be noted. First, Figure 3-24 shows that the

segments of the data at low temperature region do not lie well on a continuous curve. This

effect likely comes from quantum flux creep, which can be sometimes significant at low

temperature. This is a limitation of the Maley analysis, which considers only thermally

activated flux creep. Second, for the unirradiated sample, we can see the large differences

between increasing and decreasing field region. This is particularly evident in Figure 3-25,

a semilog plot of the effective pinning potential. It is likely that this difference and widely

difiering values of C (given above) arise from surface barrier effects, where the barriers to

flux entry and flux exit differ greatly. Just as shown in a Figure 3-18-b, the surface barrier

effects gradually disappear by introducing splayed columnar defects, that are formed by

irradiation with 0.8 GeV protons.
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3.3 Summary

The AgJIgBa2Cu04+8 superconductors, fabricated by adding elemental Ag to the

single CU-O2 layer superconductor HgBa2Cu04+4, have been studied in order to understand

a role of Ag, which is often used for contacts, wire or tape fabrication, etc., in ceramic HTS

materials. The ZFC magnetization M(7) curve has structure, a "two step" transition, due

to characteristic decoupling between grains. The structure, however, gradually disappears

as Ag-content increases. This means that the increasing Ag-content diminishes the

decoupling transition, which indicates a weakening of inter-grain coupling. The for

Ag^gBa2Cu04+8 decreases with Ag-content which is associated with changes in the

supercarrier density. The carrier density was obtained from the equilibrium superconducting

properties.

In particular, from an analysis of the reversible equilibrium magnetization data, a

linear variation of 1/X^ with temperature was found to extend down to temperature far

below the hole density was estimated from the London penetration depth using standard

London limit theory. The hole doping significantly affeas the observed properties of the

AgJIgBa2Cu04+8 superconductors. The processing of HgBa2Cu04+{ by addition of

elemental Ag led to significant variation of the hole concentration. The irreversible

magnetization M(H) curves of the AgJIgBa2Cu04+a superconductors were asymmetric

about the line M=0, indicating a surface barrier-dominated system. An analysis based on

the theory for thermal flux creep of pancake vortices through a Bean-Livingstone surface

barrier led to reasonable and consistent values of the characteristic temperature Tg, where
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experimental data for the penetration field and AM were analyzed.

In studies of enhanced pinning of vortices, splayed columnar tracks were formed by

fission fi-agments due to the irradiation of 0.8 GeV protons. Several HTS materials were

studied, including bulk polycrystalline (TlPb)(SrBa)2Ca2Cu309+5: [(TlPb)(SrBa)-1223],

epitaxial thin films (Tl<,.gBio2)Ba2Ca2Cu309+j on LaA103 or jZro gOz (YSZ) substrates:

[(TlBi)-1223 thin film], thick film TlBa2Ca2Cu309 on polycrystalline YSZ substrate: [Tl-

1223 film], bulk polycrystalline TljBajCaCujCt^i ̂ \TI-2212], thin film or bulk polycrystalline

HgBajCajCi^Q: [Hg-1223 film, Hg-1223], single crystal or tape (deposited on Ag with 3.4

pm thickness) BijSrjCaCu^Q: |Bi-2212, Bi-2212 tape/Ag], and so on. The HTS materials

with splayed columnar tracks have higher irreversibility fields and the slower fall off of H„

with increasing temperature, compared vnth the virgin HTS materials. The current density

was greatly increased by the splayed columnar defects. There is, however, an optimal

proton fluence <Pp for enhancing the current density in these materials. The current density

/first increases with increasing proton fluence <2>p, then decreases at much higher 0^. While

the current density J can be increased significantly by introducing optimal densities of

defects such as point-like defects, simple parallel columnar or splayed columnar tracks

within the HTS materials, the superconducting transition temperature is suppressed

somewhat by introducing defects. The depression rate for is proportional to the number

density and fission cross-section of the heavy fissionable nucleus in the material.

The decay rate S for the persistent currents is reduced, especially at high

temperature, by the splayed columnar defects, formed by the fission fi-agments due to the

irradiation of 0.8 GeV protons. In other words, the increasing stability of the supercurrents
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in the irradiated materials comes from the enhancement of the vortex pinning. Especially,

at low temperature, the temperature independent behavior of the logarithmic decay rate S

for the irradiated samples of Bi-2212/Ag points to the presence of quantum creep, i.e.,

tunneling of vortices from the pinning wells. In addition, the effective pinning energy U(J,T)

has been obtained experimentally from M(T,t) data by employing the procedure of M. P.

Maley et al., which is based on thermally activated flux creep. The engineered

microstructures give significantly enhanced vortex pinning.
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CHAPTER 4

CONCLUSIONS

The single crystal of YNi2B2C is a clean type-II superconductor (mean free path {

>  Overall, the material is remarkably reversible, with a critical current density (at a field

^ = 10 kG) of ~ 10"^ X Ja, the depairing current density. Near T„ the equilibrium

magnetization M of this clean, type-II, reversible material follows the standard London

relation Af «ln(fl). Well below the equilibrium magnetization deviates significantly from

traditional local London theory, but it is described well by the more general non-local

London formalism of Kogan et al. [Phys. Rev. B 54, 12386 (1996)]. The resulting

parameters in this theory and C) are well behaved. The temperature T dependence

of the London penetration depth X was obtained from both non-local London analysis at low

temperatures and a standard local London analysis near T^. The quantity 1/X^ follows a

dependence (where 1 = T/T^) for all temperatures, and its behavior is consistent with the

intensity of neutron diffraction from the square vortex lattice, reanalyzed using parameters

from this study. Near the material exhibits a linear dependence with l/X^ « (l-I), as

expected from both Ginzburg-Landau and BCS theories. At low temperature, however,

X(T) seems to deviate from the simple BCS exponential dependence, and varies

approximately as X(T) « T^.

The normal state magnetic susceptibility of the single crystal of YNi2B2C exhibited
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large anisotropy depending on whether the magnetic field was applied parallel or

perpendicular to the crystalline (001)-axis. For the field parallel to the crystalline (OOl)-axis,

the magnetization M{H) in the normal state is linear in the applied field H for over the whole

temperature region, 5 ~ 300 K. However, for the field applied perpendicular to the

crystalline (OOl)-axis, the M(H) curves become nonlinear below 50 K, and progressively

more nonlinearity as the temperature decreases. Measurement of the electrical resistivity

using a van der Pauw method yielded an electrical resistivity of 4 pQ-cm at 20 K and a

residual ratio of 10. Analysis of heat capacity data for the single crystal of YNijBjC agrees

relatively well with a medium-coupling formalism. The electronic heat capacity in the

superconducting state has /'-dependence « z', where t = J/TJ. Values for the

Sommerfeld constant y (the coefficient of the electronic heat capacity in the normal state)

were obtained in a number of ways. These several evaluation all yielded values near 20

mJ/(mol K'), showing good consistency in the data sets and analyses. In addition, from

magnetization and heat capacity studies, the deduced values of the Ginzburg-Landau

parameters Aq and Aq increase considerably as temperature decreases. This is consistent with

the long mean free path and the observation of non-local electrodynamics in the single

crystal of YNijBjC.

In further work, a series of materials Ag^gBa2Cu04+4 containing Ag addition (with

molar fraction x = 0, 0.05, 0.1, 0.3, and 0.5) to the single CuOi layer superconductor

HgBa2Cu04+8 were studied. Overall, the processing with Ag-element led to general

reductions in superconducting transition temperature T^. The superconducting properties

can be consistently interpreted in terms of the superconducting hole density as obtdned from

-167-



the London penetration depth X by standard London analysis. The magnetic properties are

dominated by surface barrier effects. Therefore, the irreversible magnetic properties are

reasonably well described by theory for thermally activated tunneling of pancake vortices

through a surface barrier. In addition, there is "fishtail" behavior, with a local maximum in

the M(H); and values for the characteristic temperature Tg exhibit a field dependence,

reflecting further complexity to these materials.

In the third area of study, the vortex pinning effects due to sprayed columnar tracks,

created by high energy (0.8 GeV) proton irradiation, were studied. For most practical

applications, it is important to pin strongly vortices within high-T^ superconducting (HTS)

materials. The magnetic hysteresis AM (« J) of HTS materials is increased significantly by

introducing an optimal density of sprayed columnar defects. The superconducting transition

temperature T^, however, is suppressed somewhat by the radiation damage. Overall,

irradiation with deeply penetrating 0.8 GeV protons, which create sprayed columnar tracks

via a fission process, enhances the current conduction properties of HTS materials. The

normalized current decay rate S=- dln(J) / d[n(t) is stabilized greatly in time, especially at

high temperature, by the sprayed columnar defects. In addition, at low temperature, there

is evidence of quantum flux creep (vortex tunneling) as S becomes temperature independent.

Finally, analyses using the method of Maley show that these sprayed columnar defects

effectively pin vortices within a variety of HTS materials and increase the net pinning

potential. They make significant increases in the persistent current density J and elevate the

irreversibility line H„{T). These features suggest a good future and progress toward

practical applications.
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Appendix 1. The calculation of mass density of YNijBjC.

Reference : R. J. Cava et. al., Nature 367, 252 (1994)

T. Siegrist et. al., Nature 367, 254 (1994)

For YNijBjC single crystal, the Molecular weight is

MfV = [ 88.91 ] + [ 2 X ( 58.71 ) ] + [ 2 x ( 10.81 ) ] + [ 12 ]

= 239.95 [ (amu) / (Formula unit) ]

From the above references, the lattice parameters (constants) of YNijBjC single

crystal are a = = 3.53 A and c = 10.57 A . The YNijBjC single crystal has two formula

units per unit cell. Therefore, the cell volume is F" = 131.7 = 131.7 x l cm'.

Finally, we can get density of mass of YNijBjC single crystal;

M  [239.95 amu /Fu] x [2 Fu / cell] x [1.66 x IQ-^* g / amu]
P m̂ass

V  [ 131.7 X lo-2<cm'/cell]

= 6.05 g / cm'
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Appendix 2. BCS relationships;

Reference: T. P. Orlando et al, Phys. Rev. B 19, 4545 (1979).

FoUowings are several BCS results for the properties of a superconductor in terms

of its Jj and three independent normal-state parameters: p, Y > and the Fermi-surface area

S. The units and symbols used the relations: (a) Loav temperature normal state resistivity,

/jQcm = (1/9) X 10'" p^. (b) The normal state electronic specific heat coefficient, y [ erg

/ (cm^ ]. (c) The reduced temperature, 1 = TIT^ where is the superconducting

transition temperature, (d) The jump at in the specific heat = Cj - Q. (e) The

conduction electron density = n [1/cm^]. (f) Fermi surface = S [1/cm^]. (g) The Fermi

surface of an electron gas of density n, = 4:1 ( n )^". (h) The flux quantum = <po -

2.07 X lO-' G-cml

1. Average Fermi velocity; < Vp > = 5.77 x 10"' ( S/Sp) ly [cm / sec]

2. Electronic mean fî ee path; {,, = 1.27 x 10* / [ Aicm ( ) ] [cm]

3. Density of states of one spin direction;

N(0) = 7.97 X 10^° y [states / (cm' erg spin)]

4. BCS coherence length; ̂  = 7.95 x 10"'' (w^" StSp) / (yJJ [cm]

5. London penetration depth (at 0 K); = 1.33 x 10* SISp ) [cm]

6. Gor'kovj function;

j(A,)=i2(AJ/(l+AJ, where7?(0)= 1 and i?(«») = rtV [7C(3)] = 1.17

= 0.882 5.51 X 10-" pa^ ( SISp) / (yT,)
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7. Ginzburg-Landau coherence length;

Clean limit (X, « 1): = 0-739^ = 5.87 x lCr"(rf" S/S^ ) / (yT,) [cm]

Dirty limit (X,j» 1):

= 0.852 0/(1-0''' = 8.57 x lO'V [(yp^^ (l-r)]''^ [cm]

8. Ginzburg-Landau penetration depth;

Clean limit: X'gl = ̂u, /[2(l-0]'" = 9.37 x lO'/'V [( S/S^,) (l-/)'''] [cm]

Dirty limit:

^'gl-^u)(5./1.33(,)"^/[2(1-0]"^-6.42x 10-'(A,»/rj"^/(l-<)'" [cm]

9. Ginzburg-Landau k.

Clean limit: k'gl = 0.957 = 1.60 x / ( w''' S/Sj. f

Dirty limit: k^gl = 0.720 A^o / «„ = 7.49 x lo^

10. Thermodynamic critical field; H^ = A.23 y^'^T^(\-t) [Oe]

11. Slope of thermodynamic critical field;

- (dHJdT)r, = [47t(C. - cyr^' = 4.23/" [Oe/K]

12. Slope of upper critical field;

Clean limit: - {dHJdT)\, = 9.55 x lo^^ f TJ { SIS^ f [Oe / K]

Dirty limit: - (dH,2 /dT)\, = 4.48 x lOV/'ocm [Oe / K]

13. Lower critical field; \nK/ [(2)^'^ at]
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Appendix 3. The calculation of the mass of free Ag in

AgjHgBa2Cu04+6and the volume of

AgjHgBa2Cu04+5 superconductor:

-^loui ~ -^Hg-1201 where A^jg.j2oi ~ 603 g/mole

Ag element: 107.87 amu/mole

Pui-iToi = 7.0 g/cm' and = 10-5 g/cm^

Because we can dissolve about 0.1 mole Ag into 1 mole of HgBa2Cu04+8, the mass

of free Ag(A/^ = (x- 0.1)[ # moles of HgBa2CuO4+j](107.87 g/mole Ag), where [# moles

of HgBa2Cu04^8] = [(A4^ g/mole HgBa2Cu04^j)]. Therefore,

M^ = (x- 0.1)[(A4^ - A/^/(603)](107.87).

These samples contained Ag addition with mole fraction x = 0, 0.05, 0.1, 0.3, and

0.5, into the AgJIgBa2Cu04+8 material. In the cases of x = 0, 0.01, and 0.1, the mass of

free Ag is almost zero. However, for x = 0.3 into Ag,jHgBa2Cu04+8 (mass = 106.7 mg),

A<,g=o.3 = (0.3 - 0.1)[(0.1067 .iK^.3)/603](107.87) g

finally,

= 0.003686 g = 3.686 mg.

In addition, using = (Aig-i2oi)(^.upen»nductor) + M\g=o.3, we can get

= (0.1067 - 0.00368) / 7 = 0.01472 g/cm'.
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Appendix 4. The calculation of the critical current density

of a spherical superconductor of radius R by

Bean critical state model:

If we assume that J(r, 6) is the critical current density of a sphere in an applied field

H, then the magnetic moment of the sphere sample is

m = (l/2c)f (ry-J) dr. (A.4-1)

In spherical coordinates,

m = (l/2c)f rJ{r) sin(0 sin(0 dddr. (A.4-2)

From mathematical tables, sin^(nx) dx = nil, where n is integer,

m = f r^J(r) dr. (A.4-3)

Thus the magnetization is obtained to

M= (3t:/8cR')f r^J(r) dr. (A.4-4)

Now J(r) can expand about the point r = R using Taylor series;

J(r) = J(R) + J'(R) (r-R)+ J"(R) (r - Rfl2\ + , (A.4-5)

where the primes represent derivatives with respect to r.

Plugging equation (A.4-5) in (A.4-4),

M= (37i/8ci?')/[J(i?) + J\R) ir-R)+ J'\R) (r -Rf + ]dr

= (37:/8c/?')[/(i?)f7^dr + J'(R)f r^ir - R)dr + J'\R) f r^{r - R)^dr + (/■-)dr]

= (37r/8c/2'){J(i?)[i?'/4] + J'(R)[R'I5 - i?V4] + J"(R)[R^I6 - MS + /?®/4] + ••}
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= (3mcF?){/(i?)[i2'/4] - J'iRWnO] + y"(i?)[i?'/60] + — }. (A.4-6)

If we take the first derivative of 47cM with respect to the applied field H,

47rM' = AnidMIdH)

= {2u''l2cR^)[J'(R) (dRldH)im) - J"{R) (dmH)(R'/20) + - ], (A.4-7)

where the primes indicate derivatives with respect to the applied field H.

On the other hand, using one of Maxwell's equation; H= (4ti/c) J, so dRJdH

= - cI{AtU). If we eliminate dRIdH from equation (A.4-7),

47iA/' = (37i72c7?'){y'(i?) [- diAsiJ)] (i^/4) - J"iR) [- diAiU)] {R?I2Q) + }

= (-37r/87?')[l/y(/2)] [ J'{R) {R'/A) - J"(R) (RV20) + ], (A.4-8)

and solve about J'(R) (/?V20),

J'(R) (7?V20) = (-32/15) R*J(R)M' + (1/100) R" J"(R) + (A.4-9)

Substituting equation (A.4-9) into (A.4-6),

M= (3'ii/ScR^)[J(R)[R*/4]-(-32n5)R*J(R)M'-(in00)R'J''(R)-J''(R)[R'/60] + - ]

= (3n/32c)RJ(R){l + (128/15)A/' - (1/150)/?' [J"iR)/J(R)] + }, so

4713/= (37i'/8c)/?y(/?){l+ (128/15)A/'- (1/150)/?'[/"(/?)//(/?)] + - }. (A.4-10)

If the magnetization M changes with an applied field H, we get the following:

4713/= (3t:VSc)RJ(H){ \ + (128/15)3/' - (1/150)/?' + }

- (37iV8c) R J(H)[l + (l2m5)(dM/dH)l (A.4-11)

where the last terms are neglected. In the Bean critical state model, the possible values of

critical current density are +J^ or -J^ according to the field history, either increasing or

decreasing field, assuming H > the penetration field H^. This gives two branches of

magnetization, for the increasing field region (3/+) or decreasing field region (3/.); these

-190-



have the same magnitude with the opposite signs and correspond to critical current densities

+ or -J„ respectively. Finally, we can calculate the difference between M+ and Afj

(4ka/.,) - (47im.) = (37iV8cVi/,(i?){2+(i28/i5)[(aM,)/(aiy^)+(aA/.)/(air.)]}. (A.4-12)

If we solve equation (A.4-12) for JJiH),

JIH)=(32c^7i/?)[(A/.^)-(M.)]/{2+(i28/i5)[(aAC)/(air.,)+(aA/)/(aiy)]}. (A.4-13)

After converting to laboratory units, where c is replaced by 10, expressing the magnetic field

H in Gauss, and current density/in Amperes/cm^, and neglecting the derivative term, we

obtain the following simple relation:

" (17) AM / R, (A.4-14)

where AM = (M+) - (M.).
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Appendix 5. Published papers and presentations

in these works.

Published papers

1. "Superconducting and magnetic properties of single crystal YNizBjC" K. J. Song,

J. R. Thompson, D. K. Christen, D. G. Mandrus, M. Yethiraj, C. V. Tomy, and D.

McK. Paul, in preparation

2. "Properties of Polycrystalline Hgi.^jBi^jBajCajCujO^ Superconductors, K. J. Song,

H. R. Khan, H. J. Kim, and J. R. Thompson, 22™" International Conference on Low

Temperature Physics, Espoo and Helsinki, Finland, August 4-11, 1999; submitted

to Physica B.

3. "Quantum Tunneling of Vortices in Bi-2212 with Splayed Columnar Defects" J. R.

Thompson, J. G. Ossandon, L. Krusin-Elbaum, K. J. Song, D. K. Christen, and J.

L. Ullmann, 22™* International Conference on Low Temperature Physics, Espoo and

Helsinki, Finland, August 4-11, 1999: submitted to Physica B.
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Song, J. R. Thompson, D. K. Christen, D. G. Mandrus, M. Yethiraj, C. V. Tomy,
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Espoo and Helsinki, Finland, August 4-11, 1999: submitted to Physica B.
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