

Combinatorially Orthogonal Paths

Sean Bailey ${ }^{* 1}$, LeRoy Beasley ${ }^{\dagger}$, and David Brown ${ }^{\ddagger 2}$
${ }^{1}$ Department of Mathematics, Computer Science, \& MIS, Texas A\&M University Texarkana
${ }^{2}$ Department of Mathematics and Statistics, Utah State University

First submitted: July 5, 2023
Accepted: October 3, 2023
Published: November 23, 2023

Abstract

Vectors $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ and $\vec{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{T}$ are combinatorially orthogonal if $\left|\left\{i: x_{i} y_{i} \neq 0\right\}\right| \neq 1$. An undirected graph $G=(V, E)$ is a combinatorially orthogonal graph if there exists $f: V \rightarrow \mathbb{R}^{n}$ such that for any $u, v \in V, u v \notin E$ iff $f(u)$ and $f(v)$ are combinatorially orthogonal. We will show that every graph has a combinatorially orthogonal representation. We will show the bounds for the combinatorially orthogonal dimension of any path P_{n}.

Keywords: Graph theory, dot product graphs, combinatorially orthogonality, paths. MSC 2020: 05C62.

[^0]
1 Introduction

Combinatorial orthogonality was first introduced by Beasley, Brualdi, and Shader [1]. They defined vectors $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ to be combinatorially orthogonal if

$$
\left|\left\{i: x_{i} y_{i} \neq 0\right\}\right| \neq 1
$$

This definition means that the combinatorial orthogonality of two vectors is only dependent on the positions of the nonzero coordinates. An alternate definition is vectors $x=$ $\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ with $x_{i}, y_{i} \in\{0,1\}$ for $1 \leq i \leq n$ are combinatorially orthogonal if $x \cdot y \neq 1$.

This definition can be extended to matrices: A matrix A is combinatorially row-orthogonal if its rows are pairwise combinatorially orthogonal. Similarly A is combinatorially columnorthogonal if its columns are pairwise combinatorially orthogonal. If A is a square matrix that is both combinatorially row-orthogonal and combinatorially column-orthogonal, it is called a combinatorially orthogonal matrix. Beasley et al. used this definition to determine the minimum number of nonzero entries possible in an orthogonal matrix of order n which cannot be decomposed into two smaller orthogonal matrices. Some work has also been done on the combinatorial orthogonality of the digraph of orthogonal matrices $[1,2,3]$.

2 Combinatorially Orthogonal Graphs

Let $G=(V, E)$ be a simple undirected graph. Then we say G has a k-combinatorially orthogonal representation of type I if there exists a function $f: V \rightarrow \mathbb{R}^{k}$ such that for any $u, v \in V u v \notin E$ if and only if $f(u)$ and $f(v)$ are combinatorially orthogonal. We say G has a k-combinatorially orthogonal representation of type $I I$ if there exists $g: V \rightarrow \mathbb{R}^{k}$ with $g(v)_{i} \in\{0,1\}$ for $v \in V$ and $1 \leq i \leq k$ such that for any $u, v \in V u v \in E$ if and only if $g(u) \cdot g(v) \neq 1$. The equivalence of these representations is given in Proposition 2.1.

Proposition 2.1. Let G be a simple undirected graph that has a k-combinatorially orthogonal representation of type I, then there is a k-combinatorially orthogonal representation of type II of the graph G that is equivalent. Further, if G has a k-combinatorially orthogonal representations of type II, then there is a k-combinatorially orthogonal representation of type I of the graph G that is equivalent. (That is every representation of type I is equivalent to a representation of type II and vice versa.)

Proof. It is sufficient to consider the function

$$
F(\vec{v})_{i}= \begin{cases}1 & \text { if } \vec{v}_{i} \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

for all $\vec{v} \in \mathbb{R}^{k}$. We can then observe that for any $\vec{x}, \vec{y} \in \mathbb{R}^{k},\left|\left\{i: x_{i} y_{i} \neq 0\right\}\right|=F(\vec{x})$. $F(\vec{y})$. From this it follows immediately that Type I and Type II combinatorially orthogonal representations of a graph are equivalent.

Since both of the representations are equivalent, we will primarily use the representations of type II. In either case, the question arises whether there exists a combinatorially orthogonal representation for every graph. Theorem 2.2 shows that every graph has a combinatorially orthogonal representation.

Theorem 2.2. For every graph $G=(V, E)$, there exists an integer k such that G has a k-combinatorially orthogonal representation.
Proof. Let $\bar{G}=(V, \bar{E})$ be the complement of G and $k=|\bar{E}|$. Label the edges of \bar{G} $\left\{\bar{e}_{1}, \bar{e}_{2}, \ldots, \bar{e}_{k}\right\}=\bar{E}$. Define $f: V \rightarrow \mathbb{R}^{k}$ such that for $v \in V f(v)_{i}=1$ if \bar{e}_{i} is incident to v and 0 otherwise. Note that $u v \notin E$ if and only if $f(u) \cdot f(v)=1$. Similarly, $u v \in E$ if and only if $f(u) \cdot f(v)=0$. Thus G is a k-combinatorially orthogonal graph.

We define the combinatorially orthogonal dimension of G, denoted $\rho_{c o}(G)$, to be the minimum k such that there exists a combinatorially orthogonal representation of G. If the combinatorially orthogonal dimension of a graph G is at most k, we refer to G as a k combinatorially orthogonal graph. From Theorem 2.2 , we can see that $\rho_{c o}(G) \leq|\bar{E}|$. This bound is interesting in that it is based on the non-adjacencies of G, which is opposite of the general bound for dot product graphs which is based on adjacencies.

Theorem 2.3. Let H be an induced subgraph of G, then $\rho_{c o}(H) \leq \rho_{c o}(G)$.
Proof. Let $f: V(G) \rightarrow \mathbb{R}^{k}$ be a function such that G is a k-combinatorially orthogonal graph. It can easily be noted that f restricted to $V(H)$ is a k-combinatorially orthogonal representation.

Theorem 2.3 allows the characterization of k-combinatorially orthogonal graphs, for any fixed k, by forbidden induced subgraphs or substructures.

Since we may use representations of the form $f: V \rightarrow\{0,1\}^{k}$, there are 2^{k} different vectors to choose from for each vertex of the graph being represented. Therefore, a k-combinatorially orthogonal representations of a graph $G=(V, E)$ is tantamount to a partition of V into 2^{k} classes, each class characterized by a behavior. For example, if $f(v)=\overrightarrow{0}$, then v is a universal vertex. We record this observation, in a form useful to us, as the following lemma.

Lemma 2.4. Let G be a graph and v be a universal vertex of G. Then $\rho_{c o}(G)=\rho_{c o}(G-v)$. Proof. Let $\rho_{c o}(G)=k$. By Theorem 2.3, $\rho_{c o}(G-v) \leq \rho_{c o}(G)$.

We will now use a proof by contradiction. Suppose that $\rho_{c o}(G-v)<\rho_{c o}(G)$. Then there exists a $k-1$-combinatorially orthogonal representation of $G-v$, namely $f: V(G-v) \rightarrow$ $\{0,1\}^{k-1}$. Now consider the combinatorially orthogonal representation of G given as follows for any $u \in V(G)$

$$
F(u)= \begin{cases}f \overrightarrow{(u)} & \text { if } u \neq v \\ \overrightarrow{0} & \text { if } u=v\end{cases}
$$

A brief examination shows that this representation holds for G. But this is a contradiction that $\rho_{c o}(G)=k$ since this is a $k-1$-combinatorially orthogonal representation of G.

Therefore, $\rho_{c o}(G-v)=\rho_{c o}(G)$.

3 Combinatorially Orthogonal Dimension of Paths

After considering general bounds on combinatorially orthogonal graphs and some of the characterized behavior, we turn to a specific class of graphs - paths. To do this we can first note that for $n>3$, no pair of vertices has the same neighborhood and there is no universal vertices. Thus each vertex will map to a distinct vector and no $\overrightarrow{0}$ will be used in any k-combinatorially orthogonal representation. We now consider what other vectors are not possible or restricted in any k-combinatorially orthogonal representation of P_{n}. The use of $\overrightarrow{1}$ is not possible in any k-combinatorially orthogonal representation of P_{n}, as shown in the following lemma.

Lemma 3.1. If $n>5$, then any k-combinatorially orthogonal representation of P_{n} can have no all 1 vector from $\{0,1\}^{k}$.

Proof. Suppose that $v \in V\left(P_{n}\right)$ is represented by $\left[\begin{array}{llll}1 & 1 & \ldots & 1\end{array}\right]$. Then the only vertices non-adjacent to v are represented by vectors with exactly 1 nonzero element. There can be at most 2 such vectors or they will form a complete subgraph isomorphic to K_{3}. Thus P_{n} has at most 2 vertices non-adjacent to v. Thus $n \leq 5$.

We can next examine the use of unit vectors in any k-combinatorially orthogonal representation of P_{n}.

Lemma 3.2. If $n>6$, then any k-combinatorially orthogonal representation of P_{n} can have at most one unit vector from $\{0,1\}^{k}$.

Proof. Suppose that P_{n} has k-combinatorially orthogonal representation with at least 2 unit vectors from $\{0,1\}^{k}$. Without loss of generality, suppose those vectors are $\left[\begin{array}{llll}1 & 0 & \ldots & 0\end{array}\right]$ and $\left[\begin{array}{lllll}0 & 1 & 0 & \ldots & 0\end{array}\right]$ and they represent vertices u and v in P_{n}, respectively. Because these two vectors are orthogonal, they are also combinatorially orthogonal. So $u v \in E\left(P_{n}\right)$.

Now consider all $w \in V\left(P_{n}\right)$ such that $u w \notin E\left(P_{n}\right)$ and $v w \notin E\left(P_{n}\right)$. For all such w, $f_{1}(w)=f_{2}(w)=1$. This however means for any two such vertices, namely w_{1} and w_{2}, $w_{1} w_{2} \in E\left(P_{n}\right)$ since $f\left(w_{1}\right) \cdot f\left(w_{2}\right) \geq 2$. Thus at most two such w can exist. In the case where two such vertices exist, then $n \leq 6$ as there are at most 2 other vertices adjacent to either u or v.

These lemmas limit the vector options when building k - combinatorially orthogonal representations of P_{n} when $n>6$. These limitations lead to following upper bound of combinatorially orthogonal dimension of P_{n} and associated proof.

Theorem 3.3. For any n,

$$
\rho_{c o}\left(P_{n}\right) \leq \begin{cases}n-2 & \text { if } n \text { is odd } \\ n-1 & \text { if } n \text { is even }\end{cases}
$$

Proof. We will break our proof into two cases, namely when n is even and when n is odd. Case 1: Suppose that n is even. Consider the following function $f: V\left(P_{n}\right) \rightarrow\{0,1\}^{n-1}$.

$$
\begin{aligned}
f\left(v_{1}\right) & =\left[\begin{array}{llll}
1 & 0 & \ldots & 0
\end{array}\right]^{T} \\
f_{i}\left(v_{2}\right) & = \begin{cases}1 & \text { if } 1<i \leq\left\lceil\frac{n-3}{2}\right\rceil+1 \\
0 & \text { otherwise }\end{cases} \\
f_{i}\left(v_{3}\right) & = \begin{cases}1 & \text { if } i=1 \text { or } i=\left\lceil\frac{n-3}{2}\right\rceil+2 \\
0 & \text { otherwise }\end{cases} \\
\text { For } j>3 f_{i}\left(v_{j}\right) & = \begin{cases}1 & \text { if } i=1 \text { or } i=\left\lceil\frac{j-3}{2}\right\rceil+1 \text { or } i=\left\lceil\frac{j-2}{2}\right\rceil+\left\lceil\frac{n-3}{2}\right\rceil+1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

For example, when $n=8$, the vectors $f\left(v_{1}\right), \ldots, f\left(v_{8}\right)$ are the columns of this matrix:

$$
\left[\begin{array}{llllllll}
1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

To show that this representation satisfies the adjacencies of P_{n}, we will first consider $f\left(v_{2}\right) \cdot f\left(v_{j}\right)$. Trivial examinations shows that $f\left(v_{2}\right) \cdot f\left(v_{j}\right)=0$ when $j=1$ or 3 . Similarly, since $2 \leq\left\lceil\frac{j-3}{2}\right\rceil+1 \leq\left\lceil\frac{n-3}{2}\right\rceil+1, f\left(v_{2}\right) \cdot f\left(v_{j}\right)=1$ when $3 \leq j \leq n$.

When we examine $f\left(v_{2}\right) \cdot f\left(v_{j}\right)$ with $j \geq 3$, it is trivial to note that $f\left(v_{2}\right) \cdot f\left(v_{j}\right)=1$.
Now consider $f\left(v_{3}\right) \cdot f\left(v_{j}\right)$ for $j \geq 4$. When $j=4, f_{1}\left(v_{3}\right)=f_{1}\left(v_{4}\right)=1$ and $\left\lceil\frac{4-2}{2}\right\rceil+$ $\left.\left\lceil\frac{n-3}{2}\right\rceil+1=\frac{n-3}{2}\right\rceil+2$, so $v_{3} v_{4} \in E\left(P_{n}\right)$. Similarly for $j \geq 5, f\left(v_{3}\right) \cdot f\left(v_{j}\right)=1$ since $\left.\left\lceil\frac{j-2}{2}\right\rceil+\left\lceil\frac{n-3}{2}\right\rceil+1>\frac{n-3}{2}\right\rceil+2$. So $v_{2} v_{j} \notin E\left(P_{n}\right)$.

Finally we can consider $f\left(v_{j}\right) \cdot f\left(v_{k}\right)$, where $j, k \geq 4$. Since $f_{1}\left(v_{j}\right)=f_{1}\left(v_{k}\right)=1, f\left(v_{j}\right)$. $f\left(v_{k}\right) \geq 1$. Thus any two such vertices are adjacent if and only if

$$
\begin{align*}
\left\lceil\frac{j-3}{2}\right\rceil+1 & =\quad\left\lceil\frac{k-3}{2}\right\rceil+1 \text { or } \tag{1}\\
\left\lceil\frac{j-2}{2}\right\rceil+\left\lceil\frac{n-3}{2}\right\rceil+1 & =\left\lceil\frac{k-2}{2}\right\rceil+\left\lceil\frac{n-3}{2}\right\rceil+1 . \tag{2}
\end{align*}
$$

First, (1) is true if and only if $\left\lceil\frac{j-3}{2}\right\rceil=\left\lceil\frac{k-3}{2}\right\rceil$. To examine this equality, suppose that $k=j+m$ for some non-zero integer m. Then $\left\lceil\frac{k-3}{2}\right\rceil=\left\lceil\frac{j+m-3}{2}\right\rceil=\left\lceil\frac{j-3}{2}+\frac{m}{2}\right\rceil$. If $|m| \geq 2$, then $\left\lceil\frac{j-3}{2}\right\rceil \neq\left\lceil\frac{k-3}{2}\right\rceil$. This leaves $m=1$ or $m=-1$. This also implies either j or k is even and the other is odd. Without losss of generality, we will suppose that j is even and k is odd. Namely $j=2 t$ and $k=2 t \pm 1$ for some integer t. So $\left\lceil\frac{j-3}{2}\right\rceil=\left\lceil\frac{2 t-3}{2}\right\rceil=\left\lceil t-1-\frac{1}{2}\right\rceil=t-1$. If $k=2 t+1$, then $\left\lceil\frac{k-3}{2}\right\rceil=\left\lceil\frac{2 t-2}{2}\right\rceil=\lceil t-1\rceil=t-1$. However if $k=2 t-1$, then $\left\lceil\frac{k-3}{2}\right\rceil=\left\lceil\frac{2 t-4}{2}\right\rceil=\lceil t-2\rceil=t-2$. Thus $v_{j} v_{k} \in E(G)$ if $k=j+1$.

Next,(2) is true if and only if $\left\lceil\frac{j-2}{2}\right\rceil=\left\lceil\frac{k-2}{2}\right\rceil$. Similar to the prior case, we can suppose
that $k=j+m$ for some non-zero integer m. We can see that $\left\lceil\frac{j-2}{2}\right\rceil \neq\left\lceil\frac{j+m-2}{2}\right\rceil$ if $|m| \geq 2$. This leaves us with the two cases of $m= \pm 1$. This also implies that either j or k is even and the other is odd. Without loss of generality, we will again assumes that j is even and k is odd. So $j=2 t$ and $k=2 t \pm 1$ for some integer t. So $\left\lceil\frac{j-2}{2}\right\rceil=\left\lceil\frac{2 k-2}{2}\right\rceil=t-1$. Similarly if $k=2 t-1$ then $\left\lceil\frac{k-2}{2}\right\rceil=\left\lceil\frac{2 k-1-2}{2}\right\rceil=\left\lceil t-2+\frac{1}{2}\right\rceil=t-1$. However, if $k=2 t+1$ then $\left\lceil\frac{k-2}{2}\right\rceil=\left\lceil\frac{2 k+1-2}{2}\right\rceil=\left\lceil t-1+\frac{1}{2}\right\rceil=t$. Thus $v_{j} v_{k} \in E(G)$ if $k=j-1$.

Thus (1) and (2) establish that $v_{j} v_{k} \in E(G)$ if and only if $k=j \pm 1$, which satisfies the desired adjacencies. Further we have shown that the function is an $n-1$ combinatorially orthogonal representation of P_{n} when n is even.

Case 2: Suppose that n is odd. Consider the following function $\hat{f}: V\left(P_{n}\right) \rightarrow\{0,1\}^{n-2}$.

$$
\begin{aligned}
\hat{f}\left(v_{1}\right) & =\left[\begin{array}{llll}
1 & 0 & \ldots & 0
\end{array}\right]^{T} \\
\hat{f}_{i}\left(v_{2}\right) & = \begin{cases}1 & \text { if } 1<i \leq\left\lceil\frac{n-4}{2}\right\rceil+1 \\
0 & \text { otherwise }\end{cases} \\
\hat{f}_{i}\left(v_{3}\right) & = \begin{cases}1 & \text { if } i=1 \text { or } i=\left\lceil\frac{n-4}{2}\right\rceil+2 \\
0 & \text { otherwise }\end{cases} \\
\text { For } 3<j<n \hat{f}_{i}\left(v_{j}\right) & = \begin{cases}1 & \text { if } i=1 \text { or } i=\left\lceil\frac{j-3}{2}\right\rceil+1 \text { or } i=\left\lceil\frac{j-2}{2}\right\rceil+\left\lceil\frac{n-4}{2}\right\rceil+1 \\
0 & \text { otherwise }\end{cases} \\
\hat{f}_{i}\left(v_{n}\right) & = \begin{cases}1 & \text { if } i=1 \text { or } i=\left\lceil\frac{n-3}{2}\right\rceil+1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

A brief examination shows that $\hat{f}\left(v_{i}\right)=f\left(v_{i}\right)$ for $i=1,2, \cdots, n-1$, where f is the function from Case 1, where the n used to define f is smaller than the corresponding n for \hat{f} by 1 . Thus the validity of this representation has been proven for v_{1}, \cdots, v_{n-1}. We will now show that it holds $f\left(v_{k}\right) \cdot f\left(v_{n}\right)$.

First we can proved previously that $\left\lceil\frac{n-3}{2}\right\rceil=\left\lceil\frac{j-3}{2}\right\rceil$ when $j=n-1$. Thus $\left\lceil\frac{n-3}{2}\right\rceil=\left\lceil\frac{n-4}{2}\right\rceil$ so $f\left(v_{k}\right) \cdot f\left(v_{n}\right)=1$ for $k=1,2, \cdots, n-2$. Similarly $f\left(v_{n-1}\right) \cdot f\left(v_{n}\right)=2$.
Thus we have shown that this function \hat{f} is an $(n-2)$ combinatorially orthogonal representation of P_{n} when n is odd.

4 Further Work

Theorem 3.3 provides an upper bound for the combinatorially orthogonal dimension of P_{n}. We conjecture that this bound is the combinatorailly orthogonal dimension of P_{n} for $n>6$.

Similarly, we make the following conjecture about k-combinatorial orthogonal representations.

Conjecture 4.1. Let X be a k-combinatorial orthogonal representation of a graph G, and let U be a $k \times k$ combinatorial orthogonal matrix. Then $U X$ is also a k-combinatorial orthogonal representation of G.

The proof of this conjecture will likely focus on the linear algebra properties related to combinatorial orthogonal matrices.

References

[1] L. Beasley, R. Brualdi, and B. Shader, Combinatorial and Graph-Theoretical Problems in Linear Algebra (1993), Springer New York, 207-218.
[2] J. Lundgren, K. Reid, S. Severini, and D. Stewart, Quadrangularity and Strong Quadrangularity In Tournaments, Australian Journal of Combinatorics 34 (2006), 247-260.
[3] S. Severini, On the digraph of a unitary matrix, SIMAX, SIAM Journal of Matrix Analysis Applications 25 (2003), 295-300.

[^0]: *sbailey@tamut.edu
 †lerory.b.beasley@gmail.com
 ${ }^{\ddagger}$ david.e.brown@usu.edu

