
  

ONLINE FIRST

This is a provisional PDF only. Copyedited and fully formatted version will be made available soon.

ISSN: 1507-1367

e-ISSN: 2083-4640

Brain diffusion MRI biomarkers after oncology treatments

Authors:  Mahdi Mohammadi, Shabnam Banisharif, Fatemeh Moradi, Maryam
Zamanian, Ghazal Tanzifi, Sadegh Ghaderi

DOI: 10.5603/rpor.98728

Article type: Review paper

Published online: 2024-01-03

This article has been peer reviewed and published immediately upon acceptance.
It is an open access article, which means that it can be downloaded, printed, and distributed freely,

provided the work is properly cited.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


Brain diffusion MRI biomarkers after oncology treatments

Running Title: MRI biomarkers after chemoradiotherapys

10.5603/rpor.98728

Mahdi  Mohammadi1,  Shabnam  Banisharif2,  Fatemeh  Moradi3,  Maryam  Zamanian2,  Ghazal

Tanzifi4, Sadegh Ghaderi 5

1Department  of  Medical  Physics  and  Biomedical  Engineering,  School  of  Medicine,  Tehran

University of Medical Sciences, Tehran, Iran

2Department of Medical Physics, School of Medicine, Isfahan University of Medical Science,

Isfahan, Iran

3Department  of  Energy Engineering & Physics,  Amirkabir University  of  Technology (Tehran

Polytechnic), Tehran, Iran

4Department of Nuclear Engineering, Islamic Azad University, Central Tehran Branch, Tehran,

Iran

5Department  of  Neuroscience  and  Addiction  Studies,  School  of  Advanced  Technologies  in

Medicine, Tehran University of Medical Sciences, Tehran, Iran

Addres  for  correspondence:  Sadegh  Ghaderi,  Tehran  University  of  Medical  Sciences,

Department  of  Neuroscience  and  Addiction  Studies,  Tehran,  Iran;  e-mail:

S_ghaderi@razi.tums.ac.ir

Abstract

https://doi.org/10.5603/rpor.98728


In addition to providing a measurement of the tumor’s size and dimensions, magnetic resonance

imaging (MRI) provides excellent noninvasive radiographic detection of tumor location.  The

MRI technique is  an important modality that  has been shown to be useful in  the prognosis,

diagnosis,  treatment  planning,  and  evaluation  of  response  and  recurrence  in  solid  cancers.

Diffusion-weighted imaging (DWI) is an imaging technique that quantifies water mobility. This

imaging approach is good for identifying sub-voxel microstructure of tissues, correlates with

tumor  cellularity,  and  has  been  proven  to  be  valuable  in  the  early  assessment  of  cytotoxic

treatment for a variety of malignancies. Diffusion tensor imaging (DTI) is an MRI method that

assesses  the  preferred  amount  of  water  transport  inside  tissues.  This  enables  precise

measurements  of  water  diffusion,  which  changes  according  to  the  direction  of  white  matter

fibers, their density, and myelination.  This measurement corresponds to some related variables:

fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD),

and  others.  DTI  biomarkers  can  detect  subtle  changes  in  white  matter  microstructure  and

integrity following radiation therapy (RT) or chemoradiotherapy, which may have implications

for cognitive function and quality of life. In our study, these indices were evaluated after brain

chemoradiotherapy. 
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Introduction

Diffusion-weighted  imaging  (DWI)  quantifies  an  estimate  of  water  mobility  obtained  by

magnetic resonance imaging (MRI), is useful for assessing sub-voxel microstructure in tissues,

correlates with tumor cellularity,  and has been shown to be useful in the early evaluation of

cytotoxic therapy in a variety of cancers [1–5].

Diffusion tensor imaging (DTI) is a non-invasive MRI-based approach that detects white matter

structure more accurately than conventional MRI. Water diffusion in tissues is measured using

DTI, an MRI method that analyzes the preferred direction and amount of the water's movement.

Water diffusion in white matter tracts is often directionally dependent or anisotropic because of

the ordered structure of axons and myelin sheaths. Radiation-induced white matter damage may

be evaluated noninvasively using DTI, which has a long history of supporting evidence as an

imaging biomarker [6–10].



DTI  assesses  water  molecule  diffusion  in  the  brain,  which  changes  with  white  matter  fiber

direction,  density,  and myelination.  Mean diffusivity (MD), radial diffusivity (RD), and axial

diffusivity (AD) are three related values of this measurement. These indices are related to the

magnitudes of diffusion that are perpendicular and parallel to white matter fibers, respectively.

The fractional anisotropy (FA) index is another kind of diffusion index that is often employed. It

is a normalized value that may vary from zero (which indicates equal diffusion in all directions)

to one (diffusion along a single axis only). FA is a measure of the overall density and integrity of

the brain’s white matter; a reduction in FA has been linked to a wide variety of brain disorders [7,

11–17].

Radiation therapy (RT) for primary brain tumors and brain metastases from extracranial tumors

is performed annually on hundreds of thousands of patients around the world [18–23]. There are

two types of brain radiotherapy: whole brain (WBRT) and partial brain (PBRT). WBRT involves

irradiating the whole brain and brainstem, whereas PBRT involves irradiating the tumor or tumor

bed and surrounding margin and some healthy brain tissue [21, 24, 25]. Stereotactic radiosurgery

(SRS) uses accurate 3D imaging and localization to deliver ablative doses of radiation to the

tumor while exposing healthy brain tissue to a minimum [23, 25].

RT may cause post-treatment neurocognitive deterioration, with verbal and visuospatial memory

being  the  most  commonly  reported.  Neurocognitive  decline  has  been  an  independently

associated  predictor  of  survival  in  individuals  with  brain  malignancies,  and  the  long-term

consequences of RT are usually permanent and gradual [12, 26]. Damage to white matter (WM)

pathways,  vascular injury,  and neuroinflammation are all  factors that  contribute to  radiation-

induced brain damage.  Axonal  degeneration and demyelination of  WM have been shown in

histopathological  investigations  following  radiation  exposure,  and  diffusion  tensor  imaging

(DTI) biomarkers are related to these alterations [12, 27, 28].

Based  on  our  research,  the  aim of  the  study is  to  collect  and  classify  brain  diffusion  MRI

biomarkers after chemoradiotherapy.

Materials and methods

Search strategy

On November  12th,  2021,  the  search  for  articles  was  started,  and  on  July 3rd,  2022,  it  was

completed. Diffusion MRI, Brain, Chemoradiotherapy, Imaging Biomarker, and Neuroimaging



were among the keywords used in the search, which were entered into the following template in

the PubMed electronic database and the Google Scholar search engine.

Inclusion criteria (refer to DWI biomarkers) were as follows:

● English-language original articles;

● original and review studies looked at DWI biomarkers after brain chemoradiotherapy and

used MRI data;

● original research that looked at long-term cognitive and behavioral disorders.

Exclusion criteria were as follows:

● all of the articles are written in languages other than English;

● case studies and short reports;

● the studies did not employ an MRI or any other imaging modality (particularly in cases of

neurological manifestations).

Literature screening

Approximately  100  publications  were  discovered  during  the  first  search,  which  comprised

original studies, review articles, case reports, and short reports. As a result, case studies and short

reports were excluded, but the references in the literature review were examined. After the final

evaluation,  32  original  papers  and  6  review  articles  remained  based  on  the  inclusion  and

exclusion  criteria.  Biomarkers  and  long-term  cognitive-behavioral  disorders  were

comprehensively retrieved from all of the papers in the reference list.

The following parameters were considered throughout the search:

● first author;

● the date of publication;

● using MRI.

Finally, after doing database searches and collecting publications, they were divided into three

categories: white matter changes, radiation necrosis, and neurocognitive damages.

MRI

Devices



Various investigations have employed devices of varying field strengths and commercial models

to study changes in diffusion parameters in brain tissue in relation to necrotic and neurocognitive

damage. The types of these devices include a 3.0T system (Philips Medical Systems, Best, the

Netherlands), a 3.0T system (Achieva, Philips, Eindhoven, The Netherlands), a 3.0T 750, and 1.5

T and Signa Excite HDx scanner (General Electric Healthcare, Milwaukee, Wisconsin, United

States), a Signa 1.5T and 3.0T scanner (General Electric Healthcare, Chicago, IL, United States),

a  Sonata  1.5T scanner  (Siemens  Healthcare,  Erlangen,  Germany),  a  TimeTrio  3.0T scanner

(Siemens  Medical  Solutions,  Malvern,  PA,  USA),  and  a  3.0T scanner  (Trio  MAGNETOM;

Siemens Healthcare, Erlangen, Germany) cases. It is important to note that in some experiments,

just one or even three types of a device were employed.

Diffusion-weighted techniques 

DWI

DWI is  a potential  MRI technique for characterizing the response to  RT and the damage to

normal tissue.  Changes in the mobility of water molecules in tissue are reflected in the MR

signal in DWI. Brownian motion, as it is often referred to, is the result of heat agitation and is

strongly impacted by the water's cellular structure. Neurosurgical evaluations of brain tumors

may greatly benefit from DWI. One of the most commonly used parameters derived from DWI is

the apparent diffusion coefficient (ADC), which quantifies the magnitude of water diffusion in

tissue.  ADC can  provide  valuable  information  about  tumor  cellularity,  necrosis,  edema,  and

perfusion, which can help in diagnosis, prognosis, treatment planning, and monitoring of brain

tumors. ADC can also detect early changes in tissue microstructure after RT, which can indicate

the  efficacy  of  treatment  and  the  risk  of  complications.  Therefore,  ADC  is  an  important

biomarker for assessing brain tumors and their response to RT [28, 29].

DTI

The advanced DTI technique is a helpful tool for measuring the damage to white matter that is

caused by radiation. It is able to detect abnormalities much earlier than conventional imaging

approaches. It is feasible to use the DTI's capacity to identify white matter degradation in order

to determine whether or not RT has varied detrimental effects on various parts of the brain [29,

30].



We selected MD, RD, AD, and FA as biomarkers because they capture different aspects of white

matter  microstructure  and  integrity  that  can  be  altered  by  brain  disorders.  MD reflects  the

average diffusion of water molecules in the brain tissue, which can be affected by factors such as

cell density, membrane permeability, and extracellular space. RD reflects the diffusion of water

molecules orthogonal to the main fiber direction, which can be indicative of demyelination or

axonal loss. AD reflects the diffusion of water molecules along the main fiber direction, which

can be suggestive of axonal damage or degeneration. FA reflects the degree of anisotropy or

directionality of water diffusion in the brain tissue, which can be associated with fiber coherence,

organization, and alignment. These parameters have been widely used and validated in previous

studies  of  various  brain  disorders,  and  they  provide  complementary  information  about  the

structural changes in white matter that may underlie the pathophysiology of these disorders. We

did not use other parameters, such as mode of anisotropy or trace of the diffusion tensor, because

they are less commonly used and less informative than the ones we selected [12, 27, 28].

Chemoradiation therapy techniques

Chemotherapy

Chemotherapy medications may be used after surgery, in conjunction with radiotherapy, in cases

of recurrence of the disease, or even as a substitute for radiation treatment in children, depending

on the  patient's  health.  Brain  tumors  cannot  be  effectively treated  with  chemotherapy alone

because of the blood-brain barrier (BBB) [31, 32].

External radiotherapy

Based on the type and location of the lesion, different radiotherapy techniques are used to treat

brain tumors. For the most precise RT treatment, stereotactic radiosurgery (SRS) makes use of

three-dimensional (3D) imaging to locate and treat brain malignancies in a single session. Some

SRS techniques include the X-ray knife and the Gamma-knife [33–35]. 

Other  methods  of  external  radiotherapy  include  delivering  the  tumor  from  the  outside  in

numerous doses. Three-dimensional conformal radiation therapy (3D-CRT) reliably identifies the

planning target volume (PTV) and adjacent organs at risk (OARs) using 3D imaging [36]. In

order  to  optimize  the  radiation  flux  profile,  novel  modulation  systems,  named  intensity

modulated radiation therapy (IMRT), computer-controlled multi-leaf dynamic collimators, and



methodologies such as inverse planning are required to apply this strategy [37, 38] .The most

recent versions include rotating cone beams as therapy with multiple arcs at a consistent dose

rate in each different sub-field of radiation or volumetric modulated arc therapies (VMAT) as

treatment with rotating cone beam radiation with varying shapes and radiation intensities [39,

40].

Results and Discussion

Brain diffusion MRI biomarkers

White matter changes

Neuron myelinated fibers, also known as tracts, are found in white matter (WM), the deepest

component of the brain tissue in the central nervous system. The white matter tracts of the corpus

callosum and the internal capsules are crucial [41]. RT for various types of brain tumors, such as

gliomas,  medulloblastomas,  and meningiomas,  will  always  lead  to  alterations  in  the  tumor's

volume and the ratio of intracellular to extracellular volumes [42–44]. DTI and DWI, by using

intrinsic tissue properties, offer a helpful quantitative evaluation of tissue structure, particularly

myelinated fiber bundles in WM [45, 46].

Radiation necrosis

Focal  neurological  impairments  are  often  associated  with  radiation  necrosis,  which  affects

mostly the  white  matter  and is  generally  permanent  and progressive  [47].  According  to  the

structure of the nerve fiber axons and the myelin sheath, the flow of water molecules along the

length of the nerve fiber is greater than in other directions. Due to the existence of numerous

membranes, restricted space, and high viscosity, the quantity of movement of water molecules in

the intracellular space is smaller than that in the extracellular environment. As a result, since

radiation affects the ratio of intracellular to extracellular volumes, diffusion imaging biomarkers

are very useful to assess radiation damage. Utilizing these biomarkers, like other MR imaging

procedures,  is  non-invasive  and  does  not  require  any further  interventions.  White  matter  is

particularly vulnerable to radiation damage because of the way water molecules move through

the  tissue  [48].  White  matter  axial  and  radial  diffusivity  changes  are  often  interpreted  as



indicators of axonal injury or demyelination [49].  After beginning RT, an imaging biomarker

might be used to determine the radiation sensitivity of an individual's brain normal tissue [50].

Neurocognitive damages

Neurocognitive  abnormalities  are  clearly  linked  to  radiation  treatment  and are  an  important

adverse effect of life-saving interventions in youngsters [51]. After irradiation,  cognitive loss

may begin to  show up months or years  later  and worsen with time [52].  IMRT, stereotactic

radiosurgery, intracranial brachytherapy, and restricted fraction size may minimize normal tissue

damage  [53].  Some  neuropsychological  deficiencies  (such  as  a  lack  of  ability  to  recall

information or spatially interpret information) still persist [54, 55].

Table 1 provides the findings that relate to alterations in diffusion biomarkers in WM changes,

radiation  necrosis,  and neurocognitive  damage.  As  well,  Figure  1  is  a  representation  of  the

common  alterations  that  have  occurred  in  the  most  significant  MR  diffusion  biomarkers,

including FA, MD, RD, AD, and ADC.

Table 1. Studies of diffusion biomarker assessment after radiation damage
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DWI  —  diffusion-weighted  imaging;  NA —  non  available;  3D-CRT  —  three-dimensional

conformal  radiation  therapy;  ADC  —  apparent  diffusion  coefficient;  NAWM  —  normal-

appearing white matter; DTI — diffusion tensor imagin; FA — fractional anisotropy; MD —

mean  diffusivity;  AD  —  axial  diffusivity;  RD  —  radial  diffusivity;  HGGs  —  high-grade

gliomas;  LGGs  —  low-grade  gliomas;  RT  —  radiation  therapy;  EBRT  —  external  beam

radiation  radiation  therapy;  SRS  —  stereotactic  radiosurger;  IMRT —  intensity  modulated

radiation  therapy;  VMAT — volumetric  modulated arc therapy;  ILF — inferior  longitudinal



fasciculus; IFOF — inferior fronto-occipital fasciculus; ROIs — regions of interest; 2D-CRT —

2-dimensional conformal radiation therapy; SVZ — subventricular zone; CCNU — lomustine;

MED — medulloblastoma;  ALL — acute  lymphoblastic  leukemia;  CAC — caudal  anterior

cingulate

Figure 1. Magnetic resonance (MR) diffusion biomarkers changes. N/A — non available

FA — fractional anisotropy; MD — mean diffusivity;  RD — radial  diffusivity;  AD — axial

diffusivity; ADC — apparent diffusion coefficient

Conclusion

Neuroimaging  biomarkers  after  chemoradiotherapy  were  evaluated  using  diffusion  imaging

methods (DWI and DTI). We found that biomarkers change depending on the degree of tissue

damage. Some studies demonstrate that biomarker alterations are increasing, while others show

that they are decreasing. As a consequence, there is disagreement over the general pattern of

change.  Even  so,  FA changes  are  predicted  to  decrease,  whereas  MD and  RD changes  are



expected to increase. It is proposed that further longitudinal studies be conducted to determine

the effectiveness of diffusion imaging biomarkers.
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