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ABSTRACT 

The intricate relationships and cohesiveness among numerous components make the task 
of designing mixture proportions for high-performance concrete (HPC) a challenging endeavour. 
Machine learning (ML) algorithms are indeed efficacious in mitigating this predicament. However, 
their lack of an explicit correlation between mixture proportions and compressive strength renders 
them opaque black box models. To surpass this constraint, the present research puts forward a 
semi-empirical methodology that involves the utilization of tactics such as non-dimensionalization 
and optimization. The methodology proposed exhibits a remarkable level of accuracy in predicting 
compressive strength across various datasets, exemplifying its all-encompassing applicability to 
diverse datasets.Furthermore, the exact association furnished by semi-empirical equations is a 
valuable asset for engineers and researchers operating in this domain, especially concerning their 
prognostic capabilities. The compressive strength of concrete holds significant importance in 
designing high-performance concrete, and achieving an optimal mixture proportion necessitates a 
comprehensive comprehension of the complex interplay among diverse factors, including the type 
and proportion of cement, water-cement ratio, size and type of aggregate, curing conditions, and 
admixtures. The semi-empirical approach put forth in this study presents a potential remedy to the 
intricate undertaking by establishing a more unequivocal correlation between mixture ratios and 
compressive strength. 
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INTRODUCTION 
Concrete materials are the predominant construction materials utilized in contemporary 

engineering structures. The construction of concrete structures in intricate surroundings necessitates 
the employment of high-performance concrete (HPC), which is characterized by enhanced 
specifications regarding its strength, durability, and workability. HPC is a composite material 
comprised of high-grade cement, aggregates, water, and active fine admixtures. This concrete 
exhibit superior durability, workability, and strength properties [1]. HPC has found diverse 
applications in the construction industry, including but not limited to the development of houses, 
bridges, and various components  [2, 3]. The utilization of concrete admixtures has the potential to 
minimize the dimensions of concrete structures, decrease their weight, curtail the material 
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requirement, enhance the endurance of concrete structures, and extend their serviceability. HPC 
can be formulated by incorporating a range of enhancing agents such as mineral admixtures, 
chemical admixtures, and fibrous materials into the concrete mixture [4–7]. 

The precise anticipation of concrete strengths has a significant impact on the effectiveness 
of material utilization and the structural safety of civil infrastructure [8]. Moreover, a failure to properly 
acknowledge the inherent robustness of concrete may result in a superfluous application of cement, 
thereby intensifying the release of CO2 [9]. In light of this, considerable endeavors have been 
undertaken over the last several years to establish prognostic models which establish a correlation 
between the mixture composition of concrete and its corresponding potency. Ideally, a predictive 
model ought to furnish noteworthy elucidations that culminate in the enhancement of concrete 
compositions characterized by exceptional constructability and durability at a reduced expenditure 
[10, 11]. As a consequence, there has been a proliferation of models that are formulated utilizing 
physics or chemistry-based relationships. Although conventional approaches have been 
instrumental in establishing strong correlations between critical parameters, including cement 
dosage, aggregate fraction, and air void content, with concrete strength, analyzing the compounded 
impacts of these features remains a difficult undertaking [12]. Furthermore, it is imperative to 
acknowledge that the conventional methods fail to consider the impact of ancillary factors, including 
but not limited to the chemical admixtures' inherent characteristics and appropriate dosage, the 
distribution of aggregate sizes, as well as the fineness modulus of aggregates. Ascertaining a potent 
and comprehensive prognostic model for concrete strength through conventional methods poses a 
formidable challenge [13–15]. 

The subfield of artificial intelligence, known as machine learning, endeavors to construct 
algorithms capable of acquiring knowledge from data sets and enhancing their aptitude over time. 
Machine Learning (ML) has garnered considerable attention in recent times owing to its inherent 
capacity to automate and optimize an extensive array of tasks, ranging from image recognition and 
natural language processing to predictive analytics [16, 17]. One of the significant advantages of ML 
is its capability to manage and dissect massive and intricate datasets, facilitating the identification of 
underlying patterns and enabling precise predictions with exceptional accuracy. The emergence of 
many machines learning (ML) techniques, including supervised and unsupervised learning, 
reinforcement learning, deep learning, and others, has been observed. ML has garnered widespread 
attention and is extensively applied across diverse industries, including healthcare, finance, 
manufacturing, and transportation. One potential application of machine learning (ML) is in the 
healthcare domain, in which it may be utilized to analyze medical images and identify any possible 
anomalies. Meanwhile, within the field of finance, ML may prove valuable in identifying instances of 
fraud and mitigating risks associated with financial activities [18–20]. 

In the past few decades, engineering has witnessed a surge in the application of machine 
learning methodologies for analyzing biological data of significant volume and complexity [21, 22]. 
The Random Forest (RF) methodology, comprising a collection of decision trees and incorporating 
intrinsic feature selection and interactions within the learning process, is widely preferred. The stated 
methodology is nonparametric, readily explicable, efficacious, and displays elevated prognostic 
competence across a variety of data sets. The domain of computational biology has recently 
witnessed a surge in the adoption of RF due to its distinctive benefits in addressing issues of limited 
sample size, feature space with high dimensionality, and intricate data structures [23]. 

The utilization of the Random Forest (RF) classifier has generated considerable attention due 
to its outstanding classification performance and efficient processing speed. The RF classifier can 
produce dependable and consistent categorizations by utilizing predictions derived from an 
ensemble of decision trees [24]. Additionally, this classifier can be effectively employed to select and 
prioritize variables demonstrating the greatest discriminatory capability between the specified 
categories. The importance of this resource stems from the extensive nature of remotely sensed 
data, which presents a challenge in identifying the most relevant variables. Such an undertaking 
requires significant time, is subject to errors, and can be subjective [25]. 

In this study, the Random Forest (RF) algorithm was used to forecast High-performance 
concrete (HPC) due to its ability to handle complex systems and multiple parameters using ML 
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techniques. Optimization algorithms were also implemented to improve the precision of the HPC 
systems. The following section describes three pioneering algorithms: the Crystal Structure 
Algorithm (CSA), Bonobo Optimizer (BO), and Sunflower Optimization Algorithm (SFO). 
Optimization algorithms refer to mathematical methods that aim to find the best solution to a 
particular problem and have been widely used to optimize various parameters associated with the 
design of HPC systems. This study presents a novel approach to predicting CS by integrating RF 
with three optimization algorithms. The results demonstrate that RF can accurately predict CS, and 
combining optimization algorithms significantly improves the model's efficiency. 

MATERIALS AND METHODOLOGY 

Data gathering 
Multiple input variables are required for supervised machine learning algorithms to predict 

the compressive strength of recycled coarse aggregate-based concrete. The data used in this study 
were obtained from previously published literature and can be found in Appendix A. The models 
employed nine input variables, including water (W), cement (C), sand (S), natural coarse aggregate 
(NCA), recycled coarse aggregate (RCA), superplasticizers, size of RCA, the density of RCA, and 
water absorption of RCA. The outcome variable for the models was the compressive strength. The 
model's outcome is significantly affected by the number of input parameters and data points. In this 
study, 344 data points (mixes) were utilized to predict RCA-based concrete. The RF model was run 
using Python coding on the Anaconda software, and the RF software was utilized to run the model. 
The relative frequency distribution of each parameter used for the mixes was analyzed, and the 
descriptive statistical analysis for all parameters is listed in Table 1. 

Tab. 1. The statistical properties of inputs and output 

Variables Statistical properties 

Max Min Ave. St. dev. 

Water (kg/m3) 271 117.6 184.62 25.835 

Cement (kg/m3) 600 158 386.86 82.160 

FA (kg/m3) 1010 0 681.88 205.28 

NCA (kg/m3) 1448.25 0 398.07 370.70 

RCA (kg/m3) 1574.3 0 596.35 371.69 

SP (kg/m3) 7.8 0 1.3241 2.0512 

SRCA (mm) 32 10 19.755 4.0201 

DRCA (kg/m3) 2661 0 2231.0 580.95 

WRCA (%) 10.9 0 4.8046 2.2624 

CS (MPa) 108.5 13.4 44.394 15.617 

Random forest  

principle of RF 
A Random Forest classifier consists of a set of tree-structured classifiers represented as 

{d(x, ℵl), l = 1,… }, with each tree making a unit vote to determine the most popular class for a given 
input x. Here, the {ℵl} denote independent identically distributed random vectors. 

A random forest consists of multiple tree-structured classifiers developed using a training 
sample set and a random variable, {ℵl}, for the 𝑙 -th tree in Breiman's model [26]. The random 
variables are independent and identically distributed between any two trees, resulting in the creation 

of a classifier 𝑑(𝑥, ℵ𝑙), where x represents the input vector. By running the algorithm l times, a 
sequence of classifiers {𝑑1(𝑥), 𝑑2(𝑥), . . . , 𝑑𝑙(𝑥)} is generated, which can be utilized to create multiple 
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classification models. The final output of the system is determined by a standard majority vote, and 
the decision function is calculated accordingly [22]. 

𝐷(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑔∑𝐹(𝑑𝑖(𝑥) = 𝑀)

𝑙

𝑖=1

 (1) 

Each tree has the right to vote for the best classification result for a given input variable, and 
the combination of these individual decision tree models is denoted as D(x). The output variable is 
M, and the indicator function is represented as 𝐹(. )  [27]. The process of selecting the most 
appropriate classification outcome is illustrated in Fig 2. 

 

Fig.1_ Schematic of Random Forest 

Characters of RF 
The margin function [28], which is employed in Random Forest to assess the extent by which 

the average number of votes for the correct class at X, M, surpasses that for the incorrect class, can 
be defined as: 

𝑛𝑝(𝑋,𝑀) = 𝑎𝑣𝑙𝐹(𝑑𝑙(𝑋) = 𝑀) −𝑚𝑎𝑥𝑗≠𝑀𝑎𝑣𝑙𝐹(𝑑𝑙(𝑋) = 𝑗) (2) 

A higher value of the margin function indicates greater accuracy in the classification 
prediction and a higher level of confidence in the classification. The generalization error of this 
classifier can be defined as: 

𝑄𝐴∗ = 𝑄𝑋,𝑀(𝑛𝑝(𝑋, 𝐹) < 0) (3) 

Leo Breiman established that the random variable ℎ𝑘(𝑋) = ℎ(𝑥, ℵ𝑘), follows the Strong Law 
of Large Numbers when the number of decision trees is sufficiently large. As the number of decision 
trees increases, QA* converges to a certain value for almost all sequences of ℵ1 Breiman also 
demonstrated that Random Forest is not susceptible to overfitting and can yield a limiting value for 
the generalization error [16]. 

𝑄𝑥,𝑀(𝑄𝜃(𝑑𝑙(𝑥, 𝜃) = 𝑀) −𝑚𝑎𝑥𝑗≠𝑀𝑄𝜃(𝑑(𝑥, 𝜃) = 𝑗) < 0) (4) 

Another conclusion drawn by Leo Breiman is that there is a maximum limit for the 
generalization error: 

𝑄𝐴∗ ≤ �̅�(1 − 𝑟2)/𝑟2 (5) 

Two factors that influence the generalization error of RF are the strength of each tree in the 
forest, denoted by (r), and the correlation between the trees, represented by the average correlation 

value  �̅� . A lower correlation value indicates reduced interdependence between the trees, which 
results in improved performance for the RF [29]. 

Out-of-bag estimation 
The process of building a Random Forest includes growing a tree on a new training set that 

randomly selects features. The new training set is generated using bagging methods, which involve 
drawing samples from the original training set. Bagging is used in this process for two main reasons. 
Firstly, it has been observed that bagging can improve accuracy when random features are 
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employed. Secondly, bagging produces out-of-bag data, which can be utilized to provide continuous 
estimates for the QA* of RF, as well as strength and correlation estimates [30, 31]. 

Approximately 36.8% of the samples in T are not included in the 𝑙 -th training set, 𝑍𝑙, which 
is drawn from the original training set Z using bagging with replacement. 𝑍𝑙 contains N samples, 
where N is the total number of samples in Z. The probability of any given sample not being present 

in 𝑍𝑙 is (1 − 1/𝑁)𝑁, which approaches 𝑎−1 as N increases. These samples that are not included in 

𝑍𝑙  are known as out-of-bag data [32]. 
The OOB estimation algorithm employs out-of-bag data to estimate the classification 

performance. Each tree in the forest has an error estimate using the OOB method. The 
generalization error of the RF is calculated as the average of all tree error estimates for each tree 
included in the RF. Tibshirani, Wolpert, and Macready suggested using the OOB estimate as a 
component when estimating the generalization error, as it is faster to compute and less biased 
compared to cross-validation. Furthermore, the OOB estimate is more accurate than cross-
validation. Using the OOB error estimate eliminates the need for setting aside a test set, as Breiman 
demonstrated that the accuracy of the OOB estimate is comparable to that of using a test set of the 
same size as the training set. Additionally, the out-of-bag method can be utilized to estimate the 
strength and correlation, providing an internal estimate that can aid in comprehending classification 
accuracy and identifying areas for improvement. 

Crystal Structure Algorithm (CryStAl)  
Minerals that display a regularly repeating or ordered crystalline structure in three dimensions 

are known as crystals. Crystalline solids can have varying sizes and shapes, and their properties 
may be either isotropic or anisotropic [33]. Tiny particles with a defined shape make up crystals. 
Through experimentation, various chemical and physical formulations have been studied and 
proposed. Additionally, the intricate symmetries and properties of crystals have influenced human 
creations such as mechanisms, structures, and artworks. This article uses the Bravais model to 
explain the crystal structure. In this model, infinite lattice geometry is considered, and the periodic 
structure described by the lattice geometry is specified along with the vector of the lattice positions 
as follows: 

𝑧 =∑𝑠𝑖𝑐𝑖 (6) 

In the Bravais model, the periodic structure is described by the lattice geometry along with 

the vector of the lattice positions, where 𝑐𝑖 represents the minimum vector of the principal crystal 
directions, 𝑠𝑖 denotes the angular number of the crystal. This basic idea of crystals is presented with 
appropriate modifications for CryStAl mathematical modeling. In this model, each candidate solution 
of the optimization method is regarded as a single crystal lattice. An arbitrary number of crystal 
lattices is selected as initialization for the cycle. 

[
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, {
𝑖 = 1,2,3,… , 𝑠
𝑗 = 1,2,3, … , 𝑞

 (7) 

where 𝑠 is the candidate solution and 𝑞 is the dimension of the problem. In the search space, 
the initial positions of these crystals are randomly determined by: 

𝑥𝑖
𝑗(0) = 𝑥𝑖,𝑚𝑖𝑛

𝑗
+ 𝛾(𝑥𝑖,𝑚𝑎𝑥

𝑗
− 𝑥𝑖,𝑚𝑖𝑛

𝑗
), {
𝑖 = 1,2,3,… . , 𝑠
𝑗 = 1,2,3,… , 𝑞

 (8) 

Where 𝑥𝑖
𝑗(0) characterizes the starting gem position, the least and greatest permitted values 

are characterized as 𝑥𝑖,𝑚𝑎𝑥
𝑗

 and 𝑥𝑖,𝑚𝑖𝑛
𝑗

 separately, the 𝑗 th choice variable of the 𝑖  -th candidate 

arrangement is within the indicated 𝜌. The primary crystals, according to the crystallographic concept 

of the "base," consist of all corner crystals.  𝑤𝑧𝑚𝑎𝑖𝑛  randomly determined considering the first 
generated crystal. In addition, the 𝑧𝑙 the current value is ignored, and a random extraction method is 
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set for each tread. Crystals with optimal configuration determined by 𝑤𝑧𝑟. 𝐷𝑣 represents the mean 
of randomly selected crystals. To keep track of the position of a candidate solution in the search 
space, four types of update procedures are defined using fundamental network principles: 

Simple cubic; 𝑤𝑧𝑛𝑒𝑤 = 𝑤𝑧𝑚𝑎𝑖𝑛 +𝑤𝑧𝑜𝑙𝑑 
 

(9) 

Best crystal 
cubicle; 

𝑤𝑧𝑛𝑒𝑤 = 𝑧1𝑤𝑧𝑧𝑚𝑎𝑖𝑛 + 𝑧2𝑤𝑧𝑟 +𝑤𝑧𝑜𝑙𝑑 (10) 

Mean crystal 
cubicle; 

𝑤𝑧𝑛𝑒𝑤 = 𝑧1𝑤𝑧𝑧𝑚𝑎𝑖𝑛 + 𝑧2𝐷𝑣 +𝑤𝑧𝑜𝑙𝑑 
 

(11) 

M&B crystal 
cubicle; 

𝑤𝑧𝑛𝑒𝑤 = 𝑤𝑧𝑜𝑙𝑑 + 𝑧1𝑤𝑧𝑧𝑚𝑎𝑖𝑛 + 𝑧2𝑤𝑧𝑟 + 𝑧3𝐷𝑣 (12) 

Bonobo Optimizer (BO) 
The BO algorithm, developed by Das et al. [34], is a modern metaheuristic algorithm that 

draws inspiration from the reproducible approach and social behaviour of bonobos. The BO 
algorithm is formulated in a population-based structure. Bonobos are typically divided into smaller 
groups, known as fission, for activities such as foraging for food and sleeping at night. To enhance 
the effectiveness of the search process, this behaviour was incorporated into the BO algorithm. 

The BO algorithm surveys the natural strategies and behaviours of bonobos to achieve 
optimal responses. Bonobos exhibit various mating strategies, including extra-group mating, 
promiscuity, restrictiveness, and consortship. These strategies are used to generate new bonobo 
populations [35]. The mating strategies may be modified based on the phase condition, which can 
be either negative (NP) or positive (PP). The PP state indicates a favourable condition within the 
bonobo community characterized by sufficient food, genetic diversity among bonobos, successful 
mating, and safety from neighbouring communities. Conversely, the NP state represents an 
unfavourable circumstance within society. 

Restrictive and Promiscuous Mating Techniques 
The mating strategy of the bonobos is represented by the phase probability parameter (𝑤𝑤). 

Initially, 𝑤𝑤   is set to 0.5 and is incremented at each iteration. If a randomly generated number, p, 

falls within the range from zero to one, a new bonobo is created. The value of p is compared to 𝑤𝑤   
using Eq. (13): 

𝑠_𝐵𝑛𝑗 = 𝐵𝑛𝑗
𝑖 + 𝑝1ℎ

𝑒(𝑒𝑗
𝐵𝑛 − 𝐵𝑛𝑗

ℎ) + (1 − 𝑝1)ℎ
ℎ𝑓𝑙𝑎𝑔(𝐵𝑛𝑗

ℎ − 𝐵𝑛𝑗
𝑤) (13) 

Bn = bonobo 

𝑠_𝐵𝑛𝑗 and 𝑒𝑗
𝐵𝑛 are the 𝑗 − th new offspring’ variables 

j is a value that varies between 0 and 1  
c is referred to the variables’ number 
p1 determines a random value within the range from 0 to 1 

𝐵𝑛𝑗
𝑖 and 𝐵𝑛𝑗

𝑤 determine the values of variables related to 𝑖 − 𝑡ℎ and 𝑤 − 𝑡ℎ bonobos, respectively. 

he and hh are referred to as sharing coefficients for eBn and 𝑤 − 𝑡ℎ bonobos, respectively. 

As the best response of 𝑖 − 𝑡ℎ  bonobo obtains a better consequence than 𝑤 − 𝑡ℎ  bonobos, 
promiscuous mating happens. In this situation, the flag is indicated 1. On the other hand, for limited 

mating eBn are assigned as -1. 

Extra-Group and Consortship Mating Techniques 
If part 𝑤𝑤 is lesser than 𝑝, these types of mating will happen. On the other hand, if 𝑝2 is equal 

to or less than the extra group (𝑤𝑥𝑦𝑤) probability, this will result in upgrading the solution via extra-

group mating. 
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{
  
 

  
 𝐵𝑛𝑗

𝑖 + 𝑐
(𝑝3
2+𝑝3−2𝑝3

−1)(𝑉𝑎𝑟_𝑚𝑎𝑥𝑗−𝐵𝑛𝑗
𝑖)          𝑒𝑗

𝐵𝑛≥𝐵𝑛𝑗
𝑖

𝐵𝑛𝑗
𝑖 − 𝑐

(−𝑝4
2+2𝑝4−2𝑝4

−1)(𝐵𝑛𝑗
𝑖−𝑉𝑎𝑟_𝑚𝑖𝑛𝑗)          𝑝3≤𝑤𝑐

𝐵𝑛𝑗
𝑖 − 𝑐

(𝑝3
2+𝑝3−2𝑝3

−1)(𝐵𝑛𝑗
𝑖−𝑉𝑎𝑟_𝑚𝑖𝑛𝑗)          𝑒𝑗

𝐵𝑛≤𝐵𝑛𝑗
𝑖

𝐵𝑛𝑗
𝑖 + 𝑐

(−𝑝4
2+2𝑝4−2𝑝4

−1)(𝑉𝑎𝑟_𝑚𝑎𝑥𝑗−𝐵𝑛𝑗
𝑖)          𝑝3≥𝑤𝑐

 (14) 

The 𝑤𝑐 is started with 0.5 with an incremental upgrading related to the evolution’s nature, and 
it optimizes the searching process for the foremost hopeful output. 𝑉𝑎𝑟_𝑚𝑖𝑛𝑗  and 𝑉𝑎𝑟_𝑚𝑎𝑥𝑗  denote 

the lowest and highest boundaries of the 𝑗 − 𝑡ℎ variable, respectively. 
In other cases, using the consortship mating strategy, a novel offspring is generated, where 

the amount of 𝑝2 is found to be higher than that of 𝑤𝑥𝑦𝑤, as Eq. (15): 

𝑠_𝐵𝑛𝑗 = {
𝑠_𝐵𝑛𝑗 + 𝑐

𝑝5𝑓𝑙𝑎𝑔(1 + 𝑝1)(𝐵𝑛𝑗
𝑖 − 𝐵𝑛𝑗

𝑤)                             𝑝6 ≤ 𝑤𝑐

𝐵𝑛𝑗
𝑤                                                                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (15) 

In these equations, 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5 are random numbers between 0 and 1. 

Sunflower Optimization Algorithm (SFO) 
The main reason for employing the SFO algorithm to optimize problems is to leverage the 

power of soft computing capabilities [36]. The SFO algorithm is a heuristic population-based 
algorithm inspired by nature, specifically by the concept of simulating the orientation of sunflowers 
to maximize the amount of radiation received from the sun [37]. Sunflowers exhibit a daily periodic 
sequence that tracks the sun's movement to maximize radiation intake and reverse direction in the 
evening [38]. The orientation of a sunflower towards the sun is determined by Eq. (16), which 
assumes that each sunflower produces only one pollen gamete according to the model. 

𝑅𝑖=
𝑋∗ − 𝑋𝑖
‖𝑋∗ − 𝑋𝑖‖

 , 𝑖 = 1,2, … , 𝑧𝑐 (16) 

The direction r in which sunflowers take a step is shown by Eq. (17): 
𝑏𝑖 = 𝛽 + 𝐺𝑖(𝑋𝑖 + 𝑋𝑖−1) × ‖𝑋𝑖 + 𝑋𝑖−1‖ (17) 

The pollination probability is represented by 𝐺𝑖(𝑋𝑖 + 𝑋𝑖−1), while 𝛽 denotes a constant that 
characterizes the "inertial" movement of the sunflowers. Individuals that are closer to the sun exhibit 
smaller movements as they refine their local position, while those that are farther away move 
normally. Constraints on the magnitude of these steps are introduced by Eq. (18): 

𝑏𝑚𝑎𝑥 =
‖𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛‖

2 × 𝑉𝑝𝑜𝑝
 (18) 

The lower and upper limits are represented by 𝑋𝑚𝑖𝑛  and 𝑋𝑚𝑎𝑥 , respectively, while 𝑉𝑝𝑜𝑝 

denotes the total number of plants in the population. The new plant is determined using the following 
Eq: 

𝑋𝑖+1 = 𝑋𝑖 + 𝑏𝑖 + 𝑅𝑖 (19) 
The SFO algorithm involves the following simple steps: 
1) Identify the individual within the population that receives the highest evaluation as the sun. 
2) Randomly generate the population. 
3) Adjust the orientation of the remaining population members to maximize their exposure to the sun. 
[39]. 
In addition, Fig 2 has determined the flowchart of SFO. 



 
  Article no. X 

 
THE CIVIL ENGINEERING JOURNAL Y-20ZZ 

 
 

  DOI 10.14311/CEJ.20XX.0X.XXXX 8 

 

 

Fig. 2_SFO Algorithm. 

Performance evaluation methods 
As mentioned earlier, this article uses various metrics to evaluate the models, such as the 

root mean square error (RMSE), correlation coefficient (R2), mean square error (MSE), median 
absolute percentage error (MDAPE), and ratio of RMSE (RSR). These metrics are calculated using 
equations (20) through (24): 

𝑅2 =

(

 
∑ (𝑎𝑖 − �̅�)(𝑘𝑖 − �̅�)
𝑝
𝑖=1

√[∑ (𝑎𝑖 − 𝑎)
2𝑝

𝑖=1 ] [∑ (𝑘𝑖 − �̅�)
2𝑝

𝑖=1 ]
)

 

2

 (20) 
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𝑅𝑀𝑆𝐸 = √
1

𝑃
∑(𝑘𝑖 − 𝑎𝑖)

2

𝑝

𝑖=1

 (21) 

𝑅𝑆𝑅 =
𝑅𝑀𝑆𝐸

𝑆𝑡. 𝐷𝑒𝑣.
 (22) 

𝑀𝑆𝐸 =
1

𝑃
∑𝑑𝑖

2

𝑝

𝑖=1

 (23) 

𝑀𝐷𝐴𝑃𝐸 = 100 ×𝑚𝑒𝑑𝑖𝑎𝑛 (
|𝑘𝑖 − �̅�|

|𝑎𝑖 − �̅�|
) (24) 

In this context, 𝑎𝑖 and 𝑘𝑖 refer to the predicted and experimental values, respectively. The 
mean values of the predicted and experimental samples are represented by 𝑎 and 𝑘. Alternatively, 

𝑃 denotes the number of samples being considered. 

RESULTS AND DISCUSSION  
This section pertains to the evaluation of the hybrid models that have been introduced. The 

performance metrics have been divided into training and testing, with 70% of the data samples 
allocated for training and the remaining 30% for testing. For the R2 metric, a higher value is 
considered better, while for the other metrics, the objective is to minimize the error and achieve the 
most favorable outcome. Any improvement or deterioration in the performance metrics during the 
testing phase indicates the efficacy or inadequacy of the training of the model during the training 

phase. The performance evaluation of the models is presented in Table 2. The 𝑅2 the highest value 
was in 𝑅𝐹𝐶𝑆𝑡𝑒𝑠𝑡 = 0.9969, the obtained value that was the lowest by𝑅𝐹𝑆𝑂𝑡𝑒𝑠𝑡 = 0.9738. In RMSE 

and RSR, the most suitable values of 1.112501 and 0.0654 were acquired by 𝑅𝐹𝐶𝑆𝑡𝑒𝑠𝑡 , 
correspondingly and the RMSE value for 𝑅𝐹𝑆𝑂𝑡𝑒𝑠𝑡 = 4.913095, while the RSR value for 𝑅𝐹𝑆𝑂𝑡𝑟𝑎𝑖𝑛 =
0.293, indicating that the performance of the model is weakest in these two metrics. In MDAPE, like 
the other two error assessors, 𝑅𝐹𝑆𝑂𝑡𝑒𝑠𝑡  had the lowest value of 6.7167, while 𝑅𝐹𝐶𝑆𝑡𝑒𝑠𝑡 attained the 
highest value of 1.3275. In terms of MSE, which represents the highest value of the pertinent 

performance standard, the most acceptable outcome was achieved by𝑅𝐹𝑆𝑂𝑡𝑒𝑠𝑡  with a 24.1385, 
whereas the poorest result was attained by 𝑅𝐹𝐶𝑆𝑡𝑒𝑠𝑡 with a score of 1.2377. 

 

Tab. 2: The results achieved from the hybridized models 

Figure 3 is a scatter plot of the predicted values versus the actual values for three hybrid 
models: RFCS, RFBO, and RFSO. The scatter plot has a centerline and two linear fits that represent 
the training and testing phases. The scatter plot shows that all three models have a strong positive 
correlation between the predicted and actual values, meaning that the models are capable of 
accurately predicting the values. However, the scatter plot also shows that RFCS has the tightest 
clustering of data points around the linear fit lines, indicating that it is the most accurate of the three 
models. RFBO and RFSO also demonstrate a strong correlation, although with slightly more 
scattered data points. The linear fit lines for both models exhibit a similar slope and intercept, 
indicating that their predictive capabilities are comparable. 

Models RFCS RFSO RFBO 

Status Train Test Train Test Train Test 

RMSE 1.584589 1.112501 4.401471 4.913095 1.71693 2.794363 

R2 0.991554 0.996913 0.980004 0.973828 0.992097 0.982405 

MSE 2.5109 1.2377 19.3729 24.1385 2.9478 7.8085 

MDAPE 1.9341 1.3275 6.357 6.7167 2.397 3.6994 

RSR 0.1055 0.0654 0.293 0.289 0.1143 0.1644 
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Fig.3_ The scatter plot for developed hybrid models. 
Figure 4 is a line-symbol plot comparing the predicted and measured samples for the three 

hybrid models: RFCS, RFBO, and RFSO. The plot shows how closely the predicted values align with 
the measured values, highlighting the performance of the models. RFCS exhibits the highest level 
of accuracy, with the predicted values closely following the measured values throughout the entire 
dataset. RFBO and RFSO also demonstrate a strong correlation between the predicted and 
measured values but with slightly more deviations from the measured values. This suggests that 
while RFBO and RFSO are still effective, they may not be as precise as RFCS. 

 

Fig.4_The comparison of predicted and measured samples based on a scatter plot. 
Figure 5 illustrates the distribution of error percentages for the developed models. The x-axis 

represents the error percentage, and the y-axis shows the frequency of occurrence. The graph 
shows that RFCS has the lowest error percentage, with most error percentages falling within the 
range of 0-10%. On the other hand, RFBO and RFSO have a wider distribution of error percentages, 
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with more values exceeding 10%. Furthermore, RFBO and RFSO have a right-skewed distribution, 
implying that a few data points have relatively high error percentages. The graph also reveals that 
all three models show lower error percentages during the testing phase than during the training 
phase, indicating the risk of overfitting the training data. In conclusion, the graph provides a clear 
visualization of the error percentage distribution for the developed models and highlights the superior 
accuracy of RFCS. 

 

Fig. 5_The error rate percentage for the models being showcased. 
Figure 6 shows a box plot of the error percentage for the presented models. RFCS had an 

average error of 0% during the training phase, with a sharp normal distribution and minimal 
dispersion observed. The dispersion of errors was also good, with values below 10%. In contrast, 
RFSO had dispersion in both phases, and a flatter normal distribution was observed. Nevertheless, 
the model achieved its highest error percentage, below 10%. RFBO had the most significant and 
diverse errors, but an outlier data point was only collected during the testing phase, exceeding 10% 
of the data, which is considered uncommon. The Gaussian distribution of RFSO was more widely 
dispersed compared to the other two models, with a lower frequency of occurrence around zero. In 
general, all three models performed well, but RFCS yielded the most favorable outcomes. 
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Fig. 6_The error-box for error percentage of presented models. 

CONCLUSION 
High-performance concrete (HPC) is a form of concrete renowned for its exceptional 

workability, longevity, and robustness. The CS of concrete is widely regarded as a critical mechanical 
property. Obtaining a comprehensive understanding of CS through laboratory experimentation is a 
process that requires significant time and physical labor. The application of machine learning is a 
potential solution to this challenge. This research endeavor sought to employ the random forest (RF) 
machine learning algorithm to forecast coiled tubing fatigue life in HPC applications. The study 
utilized a hybrid approach that combined the RF model with optimization algorithms, such as CSA, 
BO, and SFO, to enhance accuracy. The models' performance was evaluated using R2, RMSE, RSR, 
MSE, and MDAPE. The study's results revealed that the RFCS models had the highest R2 values, 
while RFSO had the lowest R2 value of 0.973828. The error indicators, including RMSE, MSE, RSR, 
and MDAPE, indicated that RFCS models generally had lower error indicators, suggesting better 
performance compared to RFBO and RFSO models. The lowest RMSE values were observed in 
both training and testing phases among the RFCS models, with a narrow dispersion range, 
suggesting consistent and accurate performance in predicting HPC. However, the error percentage 
values were relatively consistent across all models, indicating the need for further improvements. 
Overall, the study suggests that the RF hybrid models, especially the RFCS models, are proficient 
in predicting HPC and can provide precise and reliable results for engineering applications. 
Additionally, the study demonstrates the effectiveness of the hybrid approach in improving the 
models' accuracy. 
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