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Abstract

In this paper, we investigate an intelligent reflecting surface (IRS) assisted simultaneous wireless information
and power transfer (SWIPT) system in which users equipped with multiple antennas exploit power-splitting (PS)
strategies for simultaneously information decoding (ID) and energy harvesting (EH). Different from the majority
of previous studies which focused on single objective optimization problems (SOOPs) and assumed the linearity
of EH models, in this paper, we aim at studying the multi-objective optimization problem (MOOP) of the sum rate
(SR) and the total harvested energy (HE) subject to the maximum transmit power (TP) constraint, the user quality
of service (QoS), and HE requirements at each user with taking a practical non-linear EH (NLEH) model into
consideration. To investigate insightful tradeoffs between the achievable SR and total HE, we adopt the modified
weighted Tchebycheff method to transform the MOOP into a SOOP. However, solving the SOOPs and modified
SOOP is mathematically difficult due to the non-convexity of the object functions and the constraints of the
coupled variables of the base station (BS) transmit precoding matrices (TPMs), the user PS ratios (PSRs), and the
IRS phase shift matrix (PSM). To address these challenges, an alternating optimization (AO) framework is used to
decompose the formulated design problem into sub-problems. In addition, we apply the majorization-minimization
(MM) approach to transform the sub-problems into convex optimization ones. Finally, numerical simulation results
are conducted to verify the tradeoffs between the SR and the total amount of HE. The numerical results also
indicate that the considered system using the IRS with optimal phase shifts provides considerable performance
improvement in terms of the achievable SR and HE as compared to the counterparts without using the IRS or with
the IRS of fixed phase shifts.

Index Terms: Intelligent reflecting surfaces (IRS), multi-user MIMO, simultaneously wireless infor-
mation and power transfer (SWIPT), multi-objective optimization problem (MOOP).

I. INTRODUCTION

The significant growth in applications and services within wireless communications has been a key driv-
ing force for the development of advanced technologies. Massive multiple-input multiple-output (MIMO)
technologies which are recognized as one of the effective solutions to increase spectral efficiency (SE)
have been studied and deployed in wireless communication systems (WCSs) [1]. However, the exploitation
of the large number of antennas leads energy consumption issues. Apart from the SE, the design of WCSs
recently has paid more attention to energy efficiency (EE) issues to move towards next generation of green
WCSs. With the rapid development of advanced metasurfaces and fabrication technologies, intelligent
reflecting surfaces (IRSs) have arisen as a promising approach to boost the WCS performance [2]. An
IRS is composed of a vast number of programable elements which are capable of reflecting incident
radio-frequency (RF) waves and changing their phase shifts [3], [4]. Through precise adjustment of the
phase shifts, the signals reflected from the IRS can be effectively combined with other signal links,
either constructively or destructively, based on specific requirements of WCSs [5], [6]. Consequently,
propagation environments can be smartly controlled to establish favourable channels. In addition, IRSs
can easily integrate into existing wireless networks due to its flexibility and low implementation cost [5],
[7]. Apart from the goals of the SE and EE, WCS designs aim at prolonging the lifetime of wireless
devices by harvesting energy from surrounding environment. To this end, recent studies have focused on
simultaneous wireless information and power transfer (SWIPT) techniques [8]–[10]. In general, SWIPT
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has two basic schemes, namely a separated scheme and a co-located scheme [11], [12]. In the separated
scheme, there are two groups of users, namely energy harvesting (EH) users and information decoding
(ID) users, in which each receiver has a distinct function of either EH or ID. Conversely, in the co-located
scheme, each device conducts both EH and ID functions through either time switching or power splitting
(PS) methods.

A. Related works
The studies on deploying IRSs in SWIPT systems for various scenarios have been reported in [5], [13],

[14]. In [5], the authors studied an IRS-assisted SWIPT multi-user MIMO system in which the transmit
precoding matrices (TPMs) at the base station (BS) and phase shift matrix (PSM) of the IRS are jointly
optimized to maximize the weighted sum rate (SR) of the information receivers. To address the challenges
caused by the non-convex characteristics of the optimization problem (OP), the authors in [5] employed
the block coordinate descent algorithm for decoupling the original OP into multiple sub-problems and
alternatively optimized the TPMs and the PSM. The authors in [13] proposed a penalty-based algorithm
to minimize the total transmit power (TP) under the quality-of-service (QoS) constraints and the EH
constraints for all users. In [14], the max-min EE of the IRS-aided SWIPT system was investigated, where
the authors proposed two algorithms, namely penalty-based and inner approximation based strategies, to
handle the non-convexity of the OP. Similarly, the authors in [15] studied the harvested energy (HE)
maximization in IRS-assisted SWIPT multi-user MIMO systems. Notice that all of the aforementioned
works focus on optimizing a sole system performance metric referred to as a single objective OP (SOOP),
while only a few of papers considered simultaneous OPs of conflicting objectives, namely a multi-objective
OP (MOOP) [16]–[18].

B. Contributions
Motivated by the aforementioned discussion, the present paper delves into an IRS-aided MU-MIMO

SWIPT system with the non-linear EH (NLEH) model. The co-located SWIPT scheme is deployed, in
which the users adopt the PS method to conduct both ID and EH simultaneously. To investigate the
insights on tradeoffs between the achievable SR and sum HE (SHE), we formulate the design problem as
a MOOP of the SR maximization (SRM) and sum HE maximization (SHEM). It is important to highlight
that MOOP design is a necessary research trend in next generation wireless systems in which various
conflicting performance metrics are taken into consideration [19], [20]. To emphasize the distinctiveness
of our research, we compare it with the other related works in Table I. The contributions of our work can
be described as follows:

• We formulate the design problems of the BS TPMs, user PS ratios (PSRs), and IRS PSM to maximize
the SR and sum HE under the constraints of maximum TP, the minimum user rate requirement, the
minimum user HE requirement and IRS unit-modulus. Both SOOPs and MOOP are formulated as
non-convex non-linear constrained OPs whose optimal solutions cannot be directly obtained.

• To investigate Pareto optimal solutions, we transform the MOOP into the SOOP by using the modified
weighted Tchebycheff (MWT) method [21]. The resultant SOOPs and MOOP under consideration
are highly complicated to solve since the coupling of the design variables, the non-convexity of the
objective functions (OFs) and constraints. To tackle these issues, an alternating optimization (AO)
framework is utilized to alternately optimize the BS TPMs, the user PSRs, and the IRS PSM. To
deal with the non-convexity property of each subproblem, we exploit the majorization-minimization
(MM) method to determine lower bound concave functions for the NLEH and user rate functions
and establish the convex inner counterparts of the feasible sets to recast the OPs as convex forms.

• Simulations are provided to illustrate the benefits of employing optimal IRS for enhancing SR and HE
performance. In addition, the simulation results provide the insightful performance tradeoffs between
the SR and HE performance in the considered system.
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TABLE I: COMPARISON OF THIS WORK WITH THE RELATED WORKS

[5] [14] [15] [16] [17] [18] This work
MIMO ✓ X ✓ X X X ✓
SOOP ✓ ✓ ✓ ✓ ✓ ✓ ✓
MOOP X X X ✓ ✓ ✓ ✓

Co-located SWIPT X ✓ ✓ X X X ✓
NLEH model X ✓ ✓ X X X ✓

Minimum HE constraints ✓ ✓ ✓ X X ✓ ✓
Minimum data rate constraints X ✓ ✓ X X ✓ ✓

The structure of this paper is outlined as follows. Section II describes the signal and system model.
In Section III, the design OPs for SOOPs composed of the SRM and SHEM are formulated. Then,
the MOOP of the SRM and SHEM is devised. Section IV develops the iterative algorithms to solve the
considered SOOPs and MOOP. Finally, Sections V provides the simulation results while Section VI offers
the concluding remarks.

Notations: The trace, determinant, Hermitian transpose, and transpose operations of a matrix X are
expressed as Tr (X), |X|, XH , and XT respectively. The identity matrix of dimension n × n is rep-
resented by In while a diagonal matrix with the main diagonal entries of a1, a2, ..., aM is written
as diag (a1, a2, · · · , aM). The Hadamard product of two matrices X and Y is represented by X ⊙ Y.
Expression X ⪰ 0 stands for a positive semi-definite matrix X. An expectation operation is expressed by
E(·). x ∼ CN (a,R) stands for a complex Gaussian random vector x with mean a and covariance matrix
R. With function f(X,Y), it is referred to as f(X) when Y is fixed.

II. SYSTEM MODEL

Fig. 1: A multi-user MIMO SWIPT system with the assistance of the IRS.

The considered IRS-aided MU-MIMO SWIPT system is sketched in Figure 1 in which a BS having Nt

antennas communicates with L multiple antenna users (UEs) in downlinks with the assistance of an IRS
of N reflecting elements. User ℓ denoted by UEℓ with ℓ ∈ L = {1, · · · , L} is equipped with Nr antennas.
By applying the TPM Vℓ ∈ CNt ×dℓ for the signal of UEℓ, the BS transmits the superimposed signal as
s =

∑L
ℓ=1 Vℓ sℓ, where sℓ ∈ Cdℓ×1 is dℓ data streams intended for UEℓ. It can be generally assumed that
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E(sℓ sHℓ ) = Idℓ , E(sℓ sHi ) = 000 for ℓ ̸= i. We denote the channel matrix from the BS to the IRS, from the IRS
to UEℓ, and from the BS to UEℓ by G ∈ CN ×Nt , Hr,ℓ ∈ CNr ×N , and Hb,ℓ ∈ CNr ×Nt , respectively. Note
that the channel state information (CSI) acquisition in IRS-aided WCSs is challenging due to the presence
of a large number of passive reflecting elements at the IRS. The various channel estimation schemes for
IRS-related channels were introduced in [22], [23]. To explore the achievable system performance, we
consider the scenario where the BS has access to perfect CSI. Such assumption is widely adopted in related
studies [5], [13], [14]. The interactions of the IRS elements with the inpinging signals are represented
by matrix Θ = diag (γ1 θ1, γ2 θ2, · · · , γN θN ) where θn = ejϕn for n ∈ N = {1, · · · ,N }. For reflecting
element n, γn ∈ [0, 1] and ϕn ∈ (0, 2π] respectively represent its reflection amplitude and phase shift. For
simplicity, we assume that γn = 1, ∀n [3]. Define Hℓ ≜ Hb,ℓ +Hr,ℓ ΘG as the effective channel from
the BS to UEℓ. Then, the received signal at UEℓ can be written as

yℓ = Hℓ Vℓ sℓ +
L∑

i=1,i ̸=ℓ

Hℓ Vi si +nrℓ , ℓ ∈ L, (1)

where nrℓ ∼ CN
(
0, σ2

rℓ
INr

)
is additive white Gaussian noise (AWGN) at UEℓ.

To facilitate EH, the PS circuits at the users are deployed to partition the received signals into two
streams: one dedicated to ID and the other intended for EH. Denoting a PSR ρℓ as the portion of the
signal used for ID at UEℓ, its signal for ID is given by

yID,ℓ =
√
ρℓ Hℓ Vℓ sℓ +

√
ρℓ

L∑
i=1,i ̸=ℓ

Hℓ Vi si +
√
ρℓ nrℓ +ncℓ , ℓ ∈ L, (2)

where ncℓ ∼ CN
(
0, σ2

cℓ
INr

)
is additional noise caused by the ID circuits at UEℓ [24]. Accordingly, the

achievable data rate for UEℓ is

ζℓ(V,ρ,θ) = log2
∣∣INr +Hℓ Vℓ V

H
ℓ HH

ℓ J−1
ℓ

∣∣ , (3)

where we have defined V = {V1,V2, . . . ,VL}, θ = [θ1, θ2, . . . , θN ]
T , ρ = [ρ1, ρ2, . . . , ρL]

T , and Jℓ =∑L
i=1,i ̸=ℓ Hℓ Vi V

H
i HH

ℓ +σ2
rℓ
INr +ρ

−1
ℓ σ2

cℓ
INr . From the received signal in (1), the remaining signal stream

for EH at UEℓ is given by

yEH,ℓ =
√

1− ρℓ
L∑
i=1

Hℓ Vi si +
√

1− ρℓ nrℓ , ℓ ∈ L . (4)

Note that in practical scenarios, the noise power is significantly lower compared to the RF power, and
therefore, it is ignored for EH. Then, the input energy of the EH circuits at the UEℓ is expressed as
ξℓ(V,ρ,θ) = (1− ρℓ)Tr

(∑L
i=1HℓViV

H
i HH

ℓ

)
. As shown in recent works [25], [26], the practical EH

circuits exhibit a non-linear RF energy conversion. Specifically, the practical experiments show that for the
lower input power the output power of the EH circuits increases but for the high input power, the output
power becomes saturated at the maximum possible power. Thus, the assumption of linear EH models
can lead to the system performance loss due to a mismatch between the practical EH models with the
ideal linear EH ones. Accordingly, it is important to take practical NLEH models into consideration while
designing the optimal transmission strategies. With adopting the NLEH model [25], the total HE at UEℓ

can be obtained by
ξNL
ℓ (V,ρ,θ) = Γℓ

(
1 + e−aℓ(ξℓ(V,ρ,θ)−bℓ)

)−1 − ΓℓΥℓ. (5)

Here, Υℓ = 1/
(
1 + eaℓbℓ

)
, Γℓ = Pℓ/ (1−Υℓ) where constants aℓ and bℓ are determined by the charac-

teristics of electronic components in the EH circuits. Additionally, Pℓ represents the maximum harvested
power at UEℓ when the EH circuit attains saturation.
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III. MULTI-OBJECTIVE OPTIMIZATION FORMULATION

This paper aims to simultaneously maximize the SR and SHE at the users by optimally designing the
BS TPMs, the IRS PSM, and the PSRs under the practical constraints imposed on the TP, the minimum
data rate and HE. However, the objectives of the SRM and SHEM may conflict with each other [19].
Therefore, to study the insightful tradeoff between them, we formulate the design problem as a MOOP.
To this end, we firstly introduce two SOOPs, then we formulate a MOOP from those SOOPs.

A. SOOP for SRM problem
The achievable bit rate of the system is key performance metric in the design and evaluation of WCSs.

Thus, the first SOOP is to maximize the achievable SR of the system. The SRM problem can be represented
as a minimization one

SOOP 1 : min
V,ρ,θ

Ω1 (V,ρ,θ) ≜ −
L∑

ℓ=1

ζℓ (V,ρ,θ) (6a)

s.t.
L∑

ℓ=1

Tr
(
Vℓ V

H
ℓ

)
≤ Pmax, (6b)

ζℓ (V,ρ,θ) ≥ r
req
ℓ , ℓ ∈ L, (6c)

ξNL
ℓ (V,ρ,θ) ≥ e

req
ℓ , ℓ ∈ L, (6d)

|θn| = 1, n ∈ N , (6e)
0 ≤ ρℓ ≤ 1, ℓ ∈ L, (6f)

where Pmax is the maximum BS TP budget while r
req
ℓ and e

req
ℓ are the minimum user rate requirement

and the minimum HE requirement at UEℓ, respectively. Constraint (6b) restricts the maximum TP at the
BS. Constraint (6c) guarantees the QoS in terms of the achievable user rate for each user while constraint
(6d) guarantees the minimum amount of HE for each users. Constraint (6e) imposes the unit-modulus on
the IRS reflective elements.

B. SOOP for SHEM problem
Apart from the performance metric of the SR, in SWIPT systems, maximizing the amount of HE is

another desirable objective. Thus, the second SOOP aiming at the SHEM is formulated as

SOOP 2 : min
V,ρ,θ

Ω2 (V,ρ,θ) ≜ −
L∑

ℓ=1

ξNL
ℓ (V,ρ,θ) , s.t. (6b)− (6f). (7)

C. MOOP for the SRM and SHEM
Note that the objectives of the SRM in SOOP 1 and the SHEM in SOOP 2 are mutually conflicting. One

solution to maximize the SR performance can result in the degradation in the SHE performance. Thus,
the MOOP which aims at simultaneously optimizing both performance metrics is practically necessary.
The MOOP is expressed as

MOOP : min
V,ρ,θ

Ω3 (V,ρ,θ) ≜ [Ω1 (V,ρ,θ) , Ω2 (V,ρ,θ)] , s.t. (6b)− (6f) (8)

in which the OFs in problems SOOP 1 and SOOP 2 are the elements of the OF vector in (8).
Due to the coupled variables of the TPMs, PSRs, and PSM, OFs in problems (6), (7), and (8) are highly

non-linear and non-convex. Regarding the constraints, it is worth noting that the minimum user data rate
constraints in (6c) are non-convex with respect to (w.r.t.) the design variables and the EH constraints
in (6d) are more complicated and non-convex due to the NLEH models. Furthermore, the unit-modulus
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constraints on IRS reflective elements in (6e) pose a non-convex nature, which makes the OPs intractable
to solve.

IV. PROPOSED METHOD FOR SRM AND SHEM
In this section, we employ the AO approach to decompose each original problem, namely SOOP 1,

SOOP 2, and MOOP, into amenable sub-problems. Initially, we obtain the optimal TPMs and PSRs with
fixed phase shifts. Subsequently, with fixed TPMs and PSRs, we determine the optimal phase shifts. In
each sub-problem, in order to address non-convex OFs and non-convex constraints, we aim to identify
suitable surrogate functions. This is achieved by applying the MM method to reformulate the design
problems into convex optimization ones.

A. Proposed method for SOOP of SRM
1) Joint design of TPMs and PSRs: In this subsection, we fix θ while the BS TPMs and the user PSRs

are optimally designed. Then, problem (6) is rewritten as

min
V,ρ

Ω1 (V,ρ) ≜ −
L∑

ℓ=1

ζℓ (V,ρ) (9a)

s.t. ζℓ (V,ρ) ≥ r
req
ℓ , ℓ ∈ L, (9b)

ξNL
ℓ (V,ρ) ≥ e

req
ℓ , ℓ ∈ L, (9c)

(6b), (6f). (9d)

We aim at finding the concave lower bound of non-convex ζℓ (V,ρ) in (9a) and (9b). To this end, at itera-

tion m, we define J(m)
ℓ =

L∑
i=1,i ̸=ℓ

Hℓ V
(m)
i V

(m),H
i HH

ℓ +σ2
rℓ
INr +ρ

(m),−1
ℓ σ2

cℓ
INr , CB,ℓ =

1
ln(2)

J
(m),−1
ℓ Hℓ V

(m)
ℓ ,

cB,ℓ = log2

∣∣∣INr +Hℓ V
(m)
ℓ V

(m),H
ℓ HH

ℓ J
(m),−1
ℓ

∣∣∣− 1
ln(2)

Tr
(
V

(m),H
ℓ HH

ℓ J
(m),−1
ℓ Hℓ V

(m)
ℓ

)
,

DB,ℓ =
1

ln(2)
(J

(m),−1
ℓ −(J(m)

ℓ +Hℓ V
(m)
ℓ V

(m),H
ℓ HH

ℓ )
−1) ⪰ 0. Then, the following inequality is hold [27]

ζℓ (V,ρ) ≥ ζ̃ℓ (V,ρ) = cB,ℓ + 2ℜ
{
Tr
(
CHB,ℓ Hℓ Vℓ

)}
− Tr

(
DH

B,ℓ

(
Hℓ Vℓ V

H
ℓ HH

ℓ +Jℓ

))
. (10)

To deal with the non-convex constraint in (9c), we firstly transform it into an equivalent form as follows

ψℓ (V) ≜ Tr

(
L∑
i=1

Hℓ Vi V
H
i HH

ℓ

)
≥ ξ̄ℓ

(1− ρℓ)
, (11)

where ξ̄ℓ ≜ bℓ − 1
aℓ

ln
(

Γℓ

e
req
ℓ +ΓℓΥℓ

− 1
)

. Since ψℓ (V) in (11) is convex w.r.t. V and, thus, its lower bound

is given by using its first-order Taylor expansion at V(m) as [27]

ψℓ (V) ≥ ψ̃ℓ (V) ≜ 2ℜ

{
Tr

(
L∑
i=1

Hℓ V
(m)
i VH

i HH
ℓ

)}
− Tr

(
L∑
i=1

Hℓ V
(m)
i V

(m),H
i HH

ℓ

)
. (12)

Substituting (12) into (11) yields the inner convex approximation of (9c) as

ψ̃ℓ (V) ≥ ξ̄ℓ
(1− ρℓ)

, ℓ ∈ L . (13)
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From the above discussion, problem (9) can be reformulated as

min
V,ρ

Ω̃1 (V,ρ) ≜ −
L∑

ℓ=1

ζ̃ℓ (V,ρ) (14a)

s.t. ζ̃ℓ (V,ρ) ≥ r
req
ℓ , ℓ ∈ L, (14b)

(6b), (6f), (13). (14c)

Now, problem (14) is jointly convex w.r.t. {V,ρ} and, thus, it can be efficiently solved by convex program
solvers, e.g., CVX packages [28].

2) Design of the phase shifts: Next, we focus on optimizing θ with given {V,ρ}. Accordingly, problem
(6) is rewritten as

min
θ

Ω1 (θ) ≜ −
L∑

ℓ=1

ζℓ (θ) (15a)

s.t. ζℓ (θ) ≥ r
req
ℓ , ∀ℓ ∈ L, (15b)

ξNL
ℓ (θ) ≥ e

req
ℓ , ∀ℓ ∈ L, (15c)

(6e). (15d)

Similar to (10), we derive the lower bound of ζℓ (θ) as follows

ζℓ (θ) ≥ ζ̃ℓ (θ) = cR,ℓ + 2ℜ
{
Tr
(
CHR,ℓ Hℓ Vℓ

)}
− Tr

(
L∑
i=1

DH
R,ℓ Hℓ Vi V

H
i HH

ℓ

)
− Tr

(
DH

R,ℓ

(
σ2
rℓ
+ ρ−1

ℓ σ2
cℓ

))
,

(16)

where cR,ℓ = log2

∣∣∣INr +H
(z )
ℓ VℓV

H
ℓ H

(z ),H
ℓ J

(z ),−1
ℓ

∣∣∣− 1
ln(2)

Tr
(
VH

ℓ H
(z ),H
ℓ J

(z ),−1
ℓ H

(z )
ℓ Vℓ

)
, CR,ℓ =

1
ln(2)

J
(z ),−1
ℓ H

(z )
ℓ Vℓ, DR,ℓ =

1
ln(2)

(J
(z ),−1
ℓ −(J(z )

ℓ +H
(z )
ℓ Vℓ V

H
ℓ H

(z ),H
ℓ )−1) ⪰ 0, J(z )

ℓ =∑L
i=1,i ̸=ℓ H

(z )
ℓ Vi V

H
i H

(z ),H
ℓ +σ2

rℓ
INr +ρ

−1
ℓ σ2

cℓ
INr , H(z )

ℓ ≜ Hb,ℓ +Hr,ℓΘ
(z ) G.

By substituting Hℓ ≜ Hb,ℓ +Hr,ℓΘG into (16) and using the matrix identity in [29], [30] that∑L
i=1 Tr

(
ΘH Wℓ ΘZi

)
=
∑L

i=1 θ
H
(
Wℓ ⊙ ZT

i

)
θ, where Wℓ = HH

r,ℓDH
R,ℓ Hr,ℓ, and Zi = GVi V

H
i GH ,

the lower bound ζ̃ℓ (θ) in (16) can be expressed as

ζ̃ℓ (θ) = cR,ℓ + 2ℜ
{
Tr
(
CHR,ℓ (Hb,ℓ +Hr,ℓ ΘG)Vℓ

)}
− Tr

(
L∑
i=1

HH
b,ℓDH

R,ℓ Hb,ℓ Vi V
H
i

)

− Tr

(
L∑
i=1

HH
b,ℓDH

R,ℓ Hr,ℓ ΘGVi V
H
i

)
− Tr

(
L∑
i=1

GH ΘH HH
r,ℓDH

R,ℓ Hb,ℓ Vi V
H
i

)

−
L∑
i=1

θH
(
Wℓ ⊙ ZT

i

)
θ − Tr

(
DH

R,ℓ

(
σ2
rℓ
+ ρ−1

ℓ σ2
cℓ

))
. (17)

Similar to (11), constraint (15c) can be rewritten w.r.t. θ as follows

ψℓ (θ) ≜ Tr

(
L∑
i=1

Hℓ ViV
H
i HH

ℓ

)
≥ ξ̄ℓ

(1− ρℓ)
. (18)
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Similar to (12), the lower bound of ψℓ (θ) can be given by

ψℓ (θ) ≥ ψ̃ℓ (θ) ≜ 2ℜ

{
Tr

(
L∑
i=1

H
(z )
ℓ Vi V

H
i HH

ℓ

)}
− Tr

(
L∑
i=1

H
(z )
ℓ Vi V

H
i H

(z ),H
ℓ

)
. (19)

To address non-convex constraint (6e), a relaxation and penalty approaches are employed. Constraint
(6e) can be relaxed as follows [31], [32]{

|θn|2 ≤ 1 + νn, ∀n ∈ N ,
|θn|2 ≥ 1− µn, ∀n ∈ N ,

(20a)

(20b)

with auxiliary variables µn ≥ 0 and νn ≥ 0, ∀n ∈ N . To handle constraint (20b), we use its inner convex
set at θ(z )n as [27], [33]

2ℜ
{
θ(z ),∗n θn

}
−
∣∣θ(z )n

∣∣2 ≥ 1− µn,∀n ∈ N . (21)

By denoting µ = [µ1, · · · , µN ]
T , ν = [ν1, · · · , νN ]T and applying the penalty method, problem (15) can

be recast as

min
θ,µ,ν

Ω̃1 (θ) ≜ −
L∑

ℓ=1

ζ̃ℓ (θ) + β

(
N∑

n=1

µn +
N∑

n=1

νn

)
(22a)

s.t. ζ̃ℓ (θ) ≥ r
req
ℓ , ℓ ∈ L, (22b)

ψ̃ℓ (θ) ≥
ξ̄ℓ

(1− ρℓ)
, ℓ ∈ L, (22c)

µn ≥ 0, νn ≥ 0, n ∈ N , (22d)
(20a), (21), (22e)

where β is a penalty parameter. The penalty is involved in the OF in (22a) such that µn and νn approach
to zero and, then, |θn| , ∀n ∈ N reaches to 1. Note that the OP (22) is convex and its optimal solution
can be obtained by standard convex solvers [28].

As a result, the iterative procedure for maximizing the SR of the users by alternatively updating the
TPMs, PSRs, and PSM is presented in Algorithm 1 with the maximum number of iterations ϱmax and
error tolerance ε. Note that to facilitate the convergence of the iterative algorithm, the penalty parameter
is updated at each iteration and is confined to a maximum value βmax.

B. Proposed method for SOOP of SHEM
1) Joint design of TPMs and PSRs: Similar to Subsection IV-A1, by fixing θ, problem (7) can be

rewritten w.r.t. V and ρ as

min
V,ρ

Ω2 (V,ρ) ≜ −
L∑

ℓ=1

ξNL
ℓ (V,ρ), s.t. (6b), (6f), (9b), (9c). (23)

In problem (23), constraints (9b), (9c) are handled in Subsection IV-A1 and, thus we focus on handling
the non-convex OF. To this end, we introduce auxiliary variables ϑ ≜ {ϑ1, ϑ2, · · · , ϑL} satisfying(

1 + e−aℓ(ξℓ(V,ρ)−bℓ)
)−1 −Υℓ ≥ ϑℓ, ℓ ∈ L . (24)

Then, the OF is lower-bounded by [34]

ξNL
ℓ (V,ρ) ≥ Γℓ ϑℓ, ℓ ∈ L . (25)
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Algorithm 1 An AO algorithm for the SRM
1: Inputs: Set ε and ϱmax.
2: Initialization: feasible V(0) = V(0)

∗ , θ(0) = θ(0)
∗ ρ(0) = ρ

(0)
∗ , and set r = 0.

3: repeat
4: Set m = 0, V(m) = V(r)

∗ , ρ(m) = ρ
(r)
∗ ;

5: repeat
6: For given θ = θ(r)

∗ , solve problem (14) to obtain the solutions Ṽ and ρ̃;
7: Update m ← m +1,V(m) = Ṽ,ρ(m) = ρ̃;

8: until |Ω̃1(V
(m),ρ(m))−Ω̃1(V

(m −1),ρ(m −1))|
Ω̃1(V

(m −1),ρ(m −1))
≤ ε or m > ϱmax;

9: Obtain V = Ṽ, ρ = ρ̃;
10: Set β > 0, βmax > 0, δ > 1, z = 0, θ(z ) = θ(r)

∗ ;
11: repeat
12: For given V,ρ, solve problem (22) to obtain θ̃;
13: Update z ← z +1, β = min (δβ, βmax), θ(z ) = θ̃;

14: until |Ω̃1(θ
(z))−Ω̃1(θ

(z −1))|
Ω̃1(θ

(z −1))
≤ ε or z > ϱmax;

15: Obtain θ = θ̃;
16: Update r ← r +1, V(r)

∗ = V,ρ
(r)
∗ = ρ,θ(r)

∗ = θ;

17: until
∣∣∣Ω̃1(V

(r)
∗ ,ρ

(r)
∗ ,θ

(r)
∗ )−Ω̃1(V

(r −1)
∗ ,ρ

(r −1)
∗ ,θ

(r −1)
∗ )

∣∣∣
Ω̃1(V

(r −1)
∗ ,ρ

(r −1)
∗ ,θ

(r −1)
∗ )

< ε or r > ϱmax;

18: Outputs: V(opt) = V(r)
∗ ,ρ(opt) = ρ

(r)
∗ ,θ(opt) = θ(r)

∗ .

By denoting λ ≜ {λ1, λ2, · · · , λL}, inequality (24) can be recast as{
1−Υℓ −Υℓ λℓ−ϑℓ ≥ λℓ ϑℓ, ℓ ∈ L,

ξℓ(V,ρ) + a−1
ℓ ln (λℓ) ≥ bℓ, ℓ ∈ L .

(26a)
(26b)

To handle non-convex constraints in (26a), we adopt Lemma 2 in [34] to find the upper bound of λℓ ϑℓ

at given λ(m)
ℓ and ϑ(m)

ℓ at iteration m as follows

φ(λℓ, ϑℓ) ≜ 0.5
(
λ
(m)
ℓ ϑ

(m),−1
ℓ ϑ2

ℓ +ϑ
(m)
ℓ λ

(m),−1
ℓ λ2ℓ

)
≥ λℓ ϑℓ . (27)

Then, constraints in (26a) can be expressed as convex ones

1−Υℓ −Υℓ λℓ−ϑℓ ≥ φ(λℓ, ϑℓ), ℓ ∈ L . (28)

Next, to tackle non-convex constraint (26b), we utilize the following inequality [35]

YH X−1Y ⪰ Y(m),H X(m),−1Y+YH X(m),−1Y(m)−Y(m),H X(m),−1XX(m),−1Y(m),

∀Y,Y(m), X ≻ 0, X(m) ≻ 0. (29)

Accordingly, the lower bound of ξℓ(V,ρ) = Tr
(∑L

i=1 (Hℓ Vi)
H X−1

ℓ Hℓ Vi

)
with given ρ

(m)
ℓ and V

(m)
i

at iteration m can be determined as

ξℓ(V,ρ) ≥ Tr

(
L∑
i=1

(
Hℓ V

(m)
i

)H
X

(m),−1
ℓ Hℓ Vi

)
+ Tr

(
L∑
i=1

(Hℓ Vi)
H X

(m),−1
ℓ Hℓ V

(m)
i

)

− Tr

(
L∑
i=1

(
Hℓ V

(m)
i

)H
X

(m),−1
ℓ XℓX

(m),−1
ℓ Hℓ V

(m)
i

)
≜ ξ̃ℓ(V,ρ), (30)
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where X−1
ℓ = (1− ρℓ) INr and X

(m),−1
ℓ = (1− ρ(m)

ℓ ) INr . Then, constraint (26b) can be reformulated as
the convex constraint as follows

ξ̃ℓ(V,ρ) + a−1
ℓ ln (λℓ) ≥ bℓ,∀ℓ ∈ L . (31)

From the above discussion, the design problem (23) w.r.t. variables {V,ρ} is recast as

min
V,ρ,ϑ,λ

Ω̃2 (V,ρ) ≜ −
L∑

ℓ=1

Γℓ ϑℓ s.t. (6b), (6f), (13), (14b), (28), (31). (32)

Problem (32) is to minimize the linear OF over the convex constraints. Thus, its optimal solution can be
efficiently obtained by the CVX packages [28].

2) Design of the phase shifts: Similar to Subsection IV-A2, problem (7) can be expressed w.r.t. the
variables θ as

min
θ

Ω2 (θ) ≜ −
L∑

ℓ=1

ξNL
ℓ (θ) s.t. (6e), (15b), (15c). (33)

Considering the non-concave function ξNL
ℓ (θ), we can derive its lower bound with the same approach in

(25) as follows
ξNL
ℓ (θ) ≥ Γℓ ϑℓ,∀ℓ ∈ L (34)

with additional constraints in (28) and

(1− ρℓ) ψ̃ℓ (θ) + a−1
ℓ ln (λℓ) ≥ bℓ. (35)

where ψ̃ℓ (θ) is determined as (19). Accordingly, problem (33) can be reformulated as

min
θ,ϑ,λ,µ,ν

Ω̃2 (θ) ≜ −
L∑

ℓ=1

Γℓ ϑℓ +β

(
N∑

n=1

µn +
N∑

n=1

νn

)
(36a)

s.t. (22b), (22c), (22d), (20a), (21), (28), (35), (36b)

whose optimal solutions can be efficiently obtained by convex optimization solvers.
Finally, the details of the iterative algorithm to alternatively obtain the BS TPMs, PSRs and PSM to

optimize the SHE are represented in Algorithm 2.

C. Proposed method for MOOP of SRM and SHEM
It is very difficult to jointly find the optimal solution to (8). To tackle it, we transform the MOOP of the

SRM and SHEM into a SOOP by using the MWT method [21]. Given Ω∗
1 and Ω∗

2 which are respectively
the optimal values of SOOP 1 and SOOP 2, the MOOP in (8) can be recast as

min
V,ρ,θ

Ω3 (V,ρ,θ) ≜ max
p∈{1,2}

ωp

Ωp (V,ρ,θ)−Ω∗
p∣∣Ω∗

p

∣∣ + τ
∑

q∈{1,2}

Ωq (V,ρ,θ)−Ω∗
q∣∣Ω∗

q

∣∣
 , s.t. (6b)− (6f),

(37)
where τ is a sufficiently small positive scalar which is normally chosen between 0.0001 and 0.01 [21].
The weighted parameters ωp ∈ [0, 1] with ω1 +ω2 = 1 can be set to the different values to investigate the
tradeoffs between the achievable SR and achievable SHE.

1) Joint Design of TPMs and PSRs: Problem (37) can be recast w.r.t. V and ρ as follows

min
V,ρ

Ω3 (V,ρ) ≜ max
p∈{1,2}

ωp

Ωp (V,ρ)−Ω∗
p∣∣Ω∗

p

∣∣ + τ
∑

q∈{1,2}

Ωq (V,ρ)−Ω∗
q∣∣Ω∗

q

∣∣
 , s.t. (6b), (6f), (9b), (9c).

(38)
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Algorithm 2 An AO algorithm for the SHEM
1: Inputs: Set ε and ϱmax.
2: Initialization: feasible V(0) = V(0)

∗ , θ(0) = θ(0)
∗ ρ(0) = ρ

(0)
∗ , and set r = 0.

3: repeat
4: Set m = 0, V(m) = V(r)

∗ , ρ(m) = ρ
(r)
∗ ;

5: repeat
6: For given θ = θ(r)

∗ , solve problem (32) to obtain the solutions Ṽ and ρ̃;
7: Update m ← m +1,V(m) = Ṽ,ρ(m) = ρ̃;

8: until |Ω̃2(V
(m),ρ(m))−Ω̃2(V

(m −1),ρ(m −1))|
Ω̃2(V

(m −1),ρ(m −1))
≤ ε or m > ϱmax;

9: Obtain V = Ṽ, ρ = ρ̃;
10: Set β > 0, βmax > 0, δ > 1, z = 0, θ(z ) = θ(r)

∗ ;
11: repeat
12: For given V,ρ, solve problem (36) to obtain θ̃;
13: Update z ← z +1, β = min (δβ, βmax), θ(z ) = θ̃;

14: until |Ω̃2(θ
(z))−Ω̃2(θ

(z −1))|
Ω̃2(θ

(z −1))
≤ ε or z > ϱmax;

15: Obtain θ = θ̃;
16: Update r ← r +1, V(r)

∗ = V,ρ
(r)
∗ = ρ,θ(r)

∗ = θ;

17: until
∣∣∣Ω̃2(V

(r)
∗ ,ρ

(r)
∗ ,θ

(r)
∗ )−Ω̃2(V

(r −1)
∗ ,ρ

(r −1)
∗ ,θ

(r −1)
∗ )

∣∣∣
Ω̃2(V

(r −1)
∗ ,ρ

(r −1)
∗ ,θ

(r −1)
∗ )

< ε or r > ϱmax;

18: Outputs: V(opt) = V(r)
∗ ,ρ(opt) = ρ

(r)
∗ ,θ(opt) = θ(r)

∗ .

By introducing slack variable η, problem (38) can be equivalently expressed as

min
V,ρ,ϑ,λ,η

Ω̃3 (V,ρ) ≜ η (39a)

s.t. (6b), (6f), (13), (14b), (28), (31), (39b)
1 + τ

|Ω∗
1|
Ω̃1 (V,ρ) +

τ

|Ω∗
2|
Ω̃2 (V,ρ) ≤

η

ω1

− 1− 2τ, (39c)

τ

|Ω∗
1|
Ω̃1 (V,ρ) +

1 + τ

|Ω∗
2|
Ω̃2 (V,ρ) ≤

η

ω2

− 1− 2τ, (39d)

which is a convex optimization and can be solved by available convex optimization solvers.
2) Design of the phase shifts: This subsection aims to find the optimal IRS PSM. To end this, we

solve the following problem

min
θ

Ω3 (θ) ≜ max
p∈{1,2}

ωp

Ωp (θ)−Ω∗
p∣∣Ω∗

p

∣∣ + τ
∑

q∈{1,2}

Ωq (θ)−Ω∗
q∣∣Ω∗

q

∣∣
 , s.t. (6e), (15b), (15c). (40)

Similar to Subsection IV-C1, problem (40) can be recast as a convex OP

min
θ,ϑ,λ,µ,ν,η

Ω̃3 (θ) ≜ η + β

(
N∑

n=1

µn +
N∑

n=1

νn

)
(41a)

s.t. (20a), (21), (22b), (22c), (22d), (28), (35), (41b)
1 + τ

|Ω∗
1|
Ω̃1 (θ) +

τ

|Ω∗
2|
Ω̃2 (θ) ≤

η

ω1

− 1− 2τ, (41c)

τ

|Ω∗
1|
Ω̃1 (θ) +

1 + τ

|Ω∗
2|
Ω̃2 (θ) ≤

η

ω2

− 1− 2τ, (41d)
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which can efficiently solved by convex optimization solvers.
By solving the convex OPs in (39) and (41), the iterative algorithm to find the optimal TPMs, PSRs

and PSM are described in Algorithm 3.

Algorithm 3 An AO algorithm for the MOOP
1: Inputs: Set ε and ϱmax.
2: Initialization: feasible V(0) = V(0)

∗ , θ(0) = θ(0)
∗ ρ(0) = ρ

(0)
∗ , and set r = 0.

3: Set weighted parameter sets ω1 and ω2 = 1− ω1;
4: repeat
5: Set m = 0, V(m) = V(r)

∗ , ρ(m) = ρ
(r)
∗ ;

6: repeat
7: For given θ = θ(r)

∗ , solve problem (39) to obtain the solutions Ṽ and ρ̃;
8: Update m ← m +1,V(m) = Ṽ,ρ(m) = ρ̃;

9: until |Ω̃3(V
(m),ρ(m))−Ω̃3(V

(m −1),ρ(m −1))|
Ω̃3(V

(m −1),ρ(m −1))
≤ ε or m > ϱmax;

10: Obtain V = Ṽ, ρ = ρ̃;
11: Set β > 0, βmax > 0, δ > 1, z = 0, θ(z ) = θ(r)

∗ ;
12: repeat
13: For given V,ρ, solve problem (41) to obtain θ̃;
14: Update z ← z +1, β = min (δβ, βmax), θ(z ) = θ̃;

15: until |Ω̃3(θ
(z))−Ω̃3(θ

(z −1))|
Ω̃3(θ

(z −1))
≤ ε or z > ϱmax;

16: Obtain θ = θ̃;
17: Update r ← r +1, V(r)

∗ = V,ρ
(r)
∗ = ρ,θ(r)

∗ = θ;

18: until
∣∣∣Ω̃3(V

(r)
∗ ,ρ

(r)
∗ ,θ

(r)
∗ )−Ω̃3(V

(r −1)
∗ ,ρ

(r −1)
∗ ,θ

(r −1)
∗ )

∣∣∣
Ω̃3(V

(r −1)
∗ ,ρ

(r −1)
∗ ,θ

(r −1)
∗ )

< ε or r > ϱmax;

19: Outputs: V(opt) = V(r)
∗ ,ρ(opt) = ρ

(r)
∗ ,θ(opt) = θ(r)

∗ .

It is important to mention that in Algorithms 1, 2 and 3, each sub-problem is convex and, thus, its OF is
not increasing over iterations. Therefore, the convergence of the AO algorithms is guaranteed since the OFs
are non-increasing and lower-bounded. On the other hand, the computational complexity of Algorithms
1, 2 and 3 is polynomial-time since their solutions are obtained by convex optimization.

V. NUMERICAL RESULTS

The numerical simulations are conducted to assess the proposed methods and to investigate the tradeoff
between achievable SR and SHE in the IRS-aided multi-user MIMO SWIPT system. We examine a
scenario in which the BS is positioned at (0, 2) meters and the IRS is deployed at (3, 4) meters while
L = 3 users are randomly located in a circle centered at (5, 2) meters with radius 2 meters [5], [36].
The BS, which has Nt = 4 antennas, sends dℓ = 2,∀ℓ ∈ L data streams to each user equipped with
Nr = 2 antennas. The path loss between two nodes with the transmission distance x is modeled as
PL = PL0 (x/x0)

−α, where α represents the path loss exponent, PL0 = 10−3 denotes the path loss at
the reference distance x0 = 1 meter [5]. We examine scenarios where direct links from the BS to users
encounter deep fading and shadowing. Consequently, the path loss exponents for these channels are set to
αBU = 3.75. Simultaneously, to enhance signal transmission from the BS to users, the IRS is strategically
positioned, ensuring that the line-of-sight paths from the BS to the IRS and from the IRS to users are
predominant. Consequently, the path loss exponents for the channels from the BS to the IRS and from
the IRS to users are respectively set to αBI = 2.2 and αIU = 2.2 [30]. The small-scale fading channels
from the BS to the users adhere to the Rayleigh distribution while the other channels conform to the
Rician distribution with a Rician factor of 3 [5]. The noise power is set σ2

rℓ
= σ2

cℓ
= −60 dBm, ∀ℓ ∈ L

[27]. The initial penalty parameter, the maximum penalty parameter, and the update step are set β = 10,
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βmax = 1000, and δ = 5, respectively. Unless otherwise stated, we set N = 30, ereqℓ = 0.01 mW, rreqℓ = 1
bps/Hz, Pℓ = 24 mW, aℓ = 150, bℓ = 0.014, ∀ℓ ∈ L [26]. Regarding the iterative algorithm, we set
ϱmax = 100 and ε = 10−3. The numerical results are obtained by averaging over 100 random channel
realizations.

Example 1: We investigate the convergence behaviour of the proposed MOOP algorithm under a specific
channel realization with the maximum TP Pmax = 40 dBm and different values of ω1 in Figure 2. It is
observed that the proposed MOOP algorithm reaches the convergence within 50 iterations. The results in
Figure 2 also reveal that the convergence of MOOP can be reached faster for the smaller value of ω1.
The reason is that with the smaller values of ω1, the MOOP prioritizes to optimize the SHE in the OF
in which the OF of the SHE is approximated by a linear function and, thus, the optimal solution can be
obtained efficiently. Additionally, Figure 3 depicts the evolution of the achievable SR and SHE of the
SOOPs and the MOOP algorithm under a specific channel realization, respectively. It can be seen that the
achievable SR and SHE are simultaneously non-decreasing over iterations. Moreover, since the MOOP
have to ensure the tradeoff between the SR and SHE, the optimal values obtained by the MOOP with
different quantity of ω1 are always lower than the values of the corresponding SOOPs.
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Fig. 2: Convergence behaviour of the MOOP algorithm.
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Fig. 3: Achievable SR and SHE of the MOOP and SOOP algorithms.

Example 2: This example evaluates the average achievable SR by using Algorithm 1 to solve SOOP 1
and the achievable SHE of all users by applying Algorithm 2 to solve SOOP 2 under different maximum
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TP levels of the BS. In addition to our approach, namely “Optimal phase”, in which the TPMs, PSRs,
and phase shifts are alternately optimized, we also consider two benchmark schemes, namely “Fixed
phase” and “No-IRS”, for comparison. For the fixed phase schemes, the phases of reflection element are
fixed to be zero [13], [30]. For the No-IRS schemes, there is no IRS in the system. Figure 4 shows that
the achievable SR and the achievable SHE of all considered schemes increase with Pmax. However, the
optimal phase schemes significantly outperform the other schemes. This is because for the optimal phase
schemes the phase shifts at the IRS are optimized to create favourable effective transmission environments
to improve the system performance in terms of the HE and achievable rate at all users. Moreover, the
results indicate that the system performance in terms of the achievable SR and the achievable SHE with
the fixed phase schemes is not much better than No-IRS schemes. Thus, optimizing the IRS phase shifts
in a MU-MIMO SWIPT system assisted by the IRS is crucial for the system performance improvement.
One interesting observation from Figure 4 is that as the TP exceeds 40 dBm the increase of the SR tends
to be slower, while the increase in the achievable SHE becomes more pronounced. This is because that,
for the SRM as shown in Figure 4a, when the TP increases the co-channel interference also increases.
On the contrary, for the SHEM as shown in Figure 4b, as the TP increases the minimum user data rate
and HE constraints are easily satisfied, and then the TP is maximally exploited to maximize the sum EH.
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Fig. 4: Average achievable SR and average SHE of users versus the maximum TP of the BS.

Example 3: By applying Algorithm 3 to solve the MOOP, we investigate the tradeoffs between the
achievable SR and the SHE of the users. Figure 5 provides the numerical results of the average achievable
SR and SHE with various maximum TP Pmax = {38, 40, 42} dBm, which are obtained by changing the
quantities of weighted parameters ω1 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, ω2 = 1 − ω1, and τ = 0.005. The results
depicted in Figure 5 indicates that the achievable SR reduces as the achievable SHE increases. This proves
that the SRM and the SHEM problems are not coincide. Specifically, the results in Figure 5 show that
for the region of the low SHE, a small increase in the achievable SHE results in the small decline in
the achievable SR. In contrast, when the achievable SHE reaches a certain level, a small increase in the
achievable SHE leads to the significant decrease in the achieve SR. Therefore, the numerical results in
Figure 5 demonstrate the insightful tradeoff between the achievable SR and the achievable SHE, which
allows communication system designers to control the system performance by setting the appropriate
weighted parameters to meet the specific requirements. The results also show that the Pareto region is
enlarged as the maximum TP Pmax increases. In other words, both achievable SR and SHE are improved
as Pmax increases.
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Fig. 5: Performance tradeoffs between average achievable SR and SHE obtained by the MOOP algorithm.

VI. CONCLUSIONS

In this paper, we have explored the tradeoffs between the achievable SR and SHE of the users in an
IRS-assisted MU-MIMO SWIPT system under the maximum TP budget constraint, the minimum data
rate, and HE requirements at each user by optimizing the BS TPMs, the user PSRs, and the IRS PSM. To
obtain the insightful tradeoff between the achievable SR and SHE, we have formulated the design problem
as a MOOP, then applied the MWT approach to cast the MOOP into a SOOP. Considering the practical
NLEH model, the resulting optimization problems are challenging to solve due to their non-linearity and
non-convexity w.r.t. the coupled design variables. To render the OPs amenable, we have applied the AO
method to partition the original OPs into the sub-problems. Then, we have derived effective surrogate
functions to recast the sub-problems into convex OPs. The numerical simulation results have illustrated
the efficient convergence of the proposed AO algorithm for the SOOPs and MOOP. They have also
demonstrated that the systems using the IRS with optimal PSM can provide significant benefits in SR and
SHE performance gains compared to the counterparts without using the IRS or with a deployment of the
IRS with fixed PSM. Moreover, the numerical results have revealed the insightful tradeoffs between the
achievable SR and SHE in the considered system.
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