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Performance Analysis of Gradient Inversion Attack
in Federated Learning with Healthcare Systems

Abstract—Federated learning (FL) is widely applied to health-
care systems with the primary aim of keeping the privacy of
patient’s data while improving classification quality by using
knowledge from multiple participants. However, the training
images are believed to be embedded into the shared gradient,
which indicates a privacy risk when sharing the gradient with
other participants in FL. Therefore, this work aims to design
and evaluate an image recovery attack on medical images. More
specifically, dummy images are trained to match the dummy
gradient to the shared gradient while maintaining the smoothness
and naturalness of reconstructed images. On the adversary side,
an optimization problem is formulated with variables of dummy
images and network parameters treated as constants. We evaluate
the gradient attack on two medical datasets and reconstructed
images clearly show the details of chest X-ray and MRI images
including bone and blood vessels of captured areas. Our work
aims to increase the awareness of people on sharing the gradient
in FL, especially in healthcare systems.

Index Terms—Gradient leakage attack, Federated learning,
Medical Images

I. INTRODUCTION

Federated learning (FL) allows the preservation of data
privacy while training deep learning models collaboratively
without directly exchanging the training data [1], [2]. In
centralized FL, each participant such as hospital usually shares
a gradient with a network parameter server, and then the
server aggregates a global model using training images from
all participants. Since it is very important to keep patients’
data private, FL has recently attracted a lot of healthcare
applications. For example, how to build a global model to
diagnose patients’ diseases based on data such as X-ray im-
ages, clinical photography, or test indexes. However, existing
works demonstrated that sharing gradient could lead to the
leakage of training images. In this work, we aim to design
and evaluate a gradient attack algorithm in healthcare systems
in distributed learning.

Reconstruction of training images is an interesting research
topic that has been investigated by a lot of researchers.
Information used for image reconstruction can vary from the
shared gradient [3]–[5], image representation [6], or trained
neural network [7]. In this work, we focus on the problem
of image reconstruction attacks using the shared gradient in
FL, especially for medical images. Authors in [3] proved that
inputs of a fully connected (FC) layer can be fully recovered
using the shared gradient of that layer. Zhu et.al [4] introduced
a new gradient attack for a convolutional neural network by
training dummy images to match the shared gradient. How-
ever, their method can only recover images with a resolution as
high as 32x32. Moreover, existing works focus on well-known
general datasets such as MNIST, CIFAR-100, or ImageNet [8].
There is still a lack of studies that investigates the performance

of gradient attack on a medical dataset. Therefore, our work
aims to design and evaluate a method to recover training
medical images from the shared gradient in healthcare systems
with federated learning.

To find the reconstructed image, we formulate an opti-
mization problem that minimizes the discrepancy between
the shared gradient and the gradient generated by the re-
constructed image, which is called a dummy gradient for
short. The variables of the optimization problem are the
dummy images that are initialized randomly. To increase the
smoothness and naturalness of the recovered images, two
regularization terms are added including total variance and
six-norm losses. Specifically, the total variance loss reduces
the difference between two nearby pixels while the six-norm
loss guarantees the reconstructed images within a limited
range. To solve this optimization problem, we can apply any
numerical method to approximate the roots of a loss function
such as Newton–Raphson [9]. In this work, we use the L-
BFGS optimizer method implemented in Pytorch to find the
reconstructed images that minimize the loss function.

The gradient attack has been evaluated on two medical
images: chest X-ray and MRI images using the LeNet ar-
chitecture. The normal participant or hospital randomly se-
lects a training image to update network parameters at each
training round. Based on the shared gradient, the attacker can
successfully recover the training images with the resolution
as high as 2048x2048 with a very low mean squared error
(MSE) of 0.0006, a high structural similarity index measure
(SSIM) of 0.959, and a high peak signal-to-noise ratio (PSNR)
of 32.34. We also analyze the impacts of image resolution
on the gradient attack and the results show that there is a
higher risk of data leakage with higher image resolution. In
addition, we evaluate the effects of the differential privacy that
added a Gaussian noise to the shared gradient before sharing
it to other clients. Specifically, the reconstructed performance
generally deteriorates as a higher variance of noise is used.
Then, we compare the reconstruction performance between our
work and the existing method in [4]. Finally, we demonstrate
reconstructed images in the comparison with the original
training images in both datasets.

The organization of the paper is listed as follows. Section II
provides a short summary of federated learning and gradient
attack works. Then, we present the gradient attack method
in Section III followed by the performance evaluation in
Section IV. Finally, we give the conclusion of our work and
discuss the potential work of gradient attack in medical images
in Section V.
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II. RELATED WORK

In this section, we summarize existing works related to
federated learning and common attacks in FL as well as the
gradient attack.

A. Federated Learning

FL can be categorized into two groups: centralized federated
learning (CFL) and decentralized federated learning (DFL)
based on how the consensus model is built [1]. Figure 1 shows
the two types of FL in healthcare systems. CFL includes
a central server and a set of clients such as hospitals to
collaboratively train a global model. In a training epoch, all
clients update the parameters using their private datasets such
as X-ray images, MRI images,. Then, the updated parameters
are sent to the central server where an aggregation algorithm
is used to create a consensus model. There are multiple
aggregation algorithms such as federated averaging [10] or
attentive federated aggregation [11]. Then, the central server
or the coordinator sends back the global model to all clients for
the next round of training. The training process ends when the
global model converges using the data from all clients. CFL is
suitable in cross-silo federated learning with few participants
such as organizations and the communication with the server
is available.

Unlike CFL, DFL does not require any central server as
the coordinator for training the global model. In DFL, a client
such as hospital sends the model update to a set of neighbor
agents and then these clients update the network parameters
based on the model update received by neighbor clients. At
each client, an aggregation method is used to achieve a global
update. Although DLF is preferred in cross-device federated
learning with a large number of participants such as smart
phones, we prove that the gradent attack can be launched in
both CFL and DFL as long as the gradient information is
leaked. The attack can occur at the central server in CFL or
at any client in DFL.

B. Common Attacks in FL

According to the survey on federated learning attacks and
defenses [12], there are multiple attacks such as poisoning at-
tacks, inference attacks, evasion attacks, and backdoor attacks.
Poisoning attacks can be done by injecting false/misleading
data or changing the gradient before sharing with the central-
ized server or peer participants [13], [14]. Poisoning attacks
can degrade the performance of the global model. Inference at-
tacks [15] may reveal sensitive information about training data
such as training inputs, training labels or data membership.
This kind of attack leverages the shared gradient information
for inference. Evasion attacks are performed during the infer-
ence phase and refer to designing an input that seems normal
to human but is wrongly classified by the global model [16].
Backdoor attacks can cause the global model to misbehave on
specific inputs while appearing normal in other cases [17]. In
this attack, a malicious functionality is inserted into a targeted
model through poisoned updates from malicious clients.

C. Gradient Attack

Phong et al. was the first analytical attack that provided a
closed-form expression for the reconstructed inputs of the FC
layer. Let W, b denote the weight matrix and bias vector of
the layer while x, z are input and output vectors of the layer.
The FC layer can be expressed as follows: Wx+ b = z. If l
is the loss function that indicates the difference between the
predicted and true labels. Then, the input vector of the FC
layer can be approximated as follows.

x′ =
∂l
∂W
∂l
∂b

(1)

Zhu [4] was the first optimization attack that utilized an
optimization approach to minimize the difference between
the dummy and shared gradients. Specifically, the objective
function L depends on the dummy images, which are treated as
variables of the optimization problem. The L-BFGS optimizer
is used to find the solution to the optimization problem.
Specifically, the dummy images x′ can be updated below.

x′
t+ = x′

t − α
∂L
∂x′ (2)

where x′
t denote the dummy value at the epoch t and α is

learning rate. Experimental results showed that the attack by
[4] is sensitive to initialization, i.e., if using an auxiliary image
with the same class as the training image, it is more likely that
the reconstructed image is successfully recovered.

Geiping et al. [5] formulated an optimization problem that
matches gradients while regularizing image fidelity. More
specifically, the loss function includes the difference between
shared and dummy gradients as well as the total variation
loss. However, the authors evaluated the attack method on
general datasets such as CIFAR-10 and ImageNet and there
is still a lack of performance evaluation on medical images.
Therefore, we focus on the gradient attack on healthcare
systems by analyzing the reconstruction performance on well-
known medical datasets.

III. GRADIENT-INVERSION-BASED IMAGE RECOVERY
ALGORITHM

We first describe some assumptions related to the federated
learning architecture. Hospitals in FL share a global CNN
model f for the classification task such as detection of brain
tumors or Pneumonia. Network parameters θ of the global
CNN model are initialized using the He method [18]. The
output of the model can be defined as y = f(x, θ). Assume
that the normal participant has private training images and for
each training epoch a training image x is randomly selected
to update the global model. Note that the training image x
is usually normalized into the range [0, 1] to accelerate the
training process. Recall that we denote l as the cross-entropy
loss value that shows the difference between the real and
predicted labels y. Instead of sharing the training image, each

hospital sends the gradient
∂l

∂W
and

∂l

∂b
generated by the

training image to other hospitals in FL. Network parameters
θ include weights W and biases b. Please note that we aim
to reconstruct the training inputs but not the training labels
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Fig. 1: Federated learning in healthcare systems

since the labels can be accurately reconstructed using existing
works.

The overview of the proposed architecture is shown in
Figure 2. We initialize a random image as the reconstructed
image x

′
that is fed into a CNN model to compute the

dummy gradient. Then, we formulate a weighted loss function
to compare the difference between the dummy and shared
gradients. Specifically, we define the weighted loss function
as:

L = αgLg + αtvLtv + αnormLnorm (3)

where Lg = MSE(
∂l

∂θ
,
∂l′

∂θ
) is the difference between the

shared gradient
∂l

∂θ
and dummy gradient

∂l′

∂θ
; Ltv is the

total variation loss that is added as a regularizer to maintain
the fidelity of images; Lnorm is another regularizer used to
constrain the value of the image within a specific range. The
total variation loss can be computed as follows:

Ltv =
∑
i

(x′
i − x′

i+1)
2 (4)

where x′
i and x′

i+1 are values of two nearby pixels with indices
i and i + 1 in the reconstructed x′. Ltv is added to the loss
function since we expect neighboring pixels to have similar
values. We can consider the total variation loss as a denoising
method in the gradient attack. At the beginning of the recovery
algorithm, Ltv has a very large value and this loss tends to
decrease during the reconstruction phase. Meanwhile, the six-
norm loss is considered as below:

Lnorm =
∑
i

(x′
i)

6 (5)

The LBFGS optimizer is considered to find the solution
to the optimization problem. The objective function is L and
variables are x′. The best-reconstructed image x∗ can be
derived as follows.

x∗ = argmin
x′

L = argmin
x′

(αgLg + αtvLtv + αnormLnorm)

(6)

Pixel i of the dummy image can be updated at the epoch t
below:

x′
i,t = x′

i,t−1 − α
∂L
∂x′

i

(7)

where x′
i,t is the pixel of x′ at epoch t. While updating x′

i,
we keep other variables as constants.

The best coefficients αg, αtv, αnorm usually depend on the
training dataset and can be found using an auxiliary sample
from the adversary. Moreover, the appropriate coefficients
usually differ from the image resolution. Therefore, it is
important to validate multiple sets of coefficients to find the
best coefficients. Note that LBFGS is a second-order opti-
mization algorithm that measures the second-order derivative
to know which direction to move (like the first-order) and
also to estimate how far to move in that direction. LBFGS
is implemented in various Python-based machine learning
libraries such as TensorFlow or Pytorch. If only one training
image is used to update the network parameters, the number
of variables of the optimization problem is w × h× d where
w, h, d are the width, height, and depth of the original image.
If using the image with high resolution, we expect to have
high accuracy performance and long attack time. Generally,
medical images in healthcare systems have high resolution to
achieve high classification accuracy.

After finding the best-reconstructed image x∗ that mini-
mizes L, we need to clip x∗ into the range [0, 1]:

x∗ = max(0,min(x∗, 1)) (8)

Since the original image is normalized before feeding into the
classification model, the clipping step is needed.

IV. PERFORMANCE EVALUATION

For performance evaluation, we consider
two datasets. The first one is a high-quality
dataset of chest X-ray images downloaded from
https://www.kaggle.com/datasets/paultimothymooney/chest-
xray-pneumonia with two image categories: pneumonia and
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Fig. 2: The overview of gradient inversion attack in healthcare systems

normal. The other dataset contains MRI brain images down-
loaded from https://www.kaggle.com/datasets/navoneel/brain-
mri-images-for-brain-tumor-detection. The default image
resolution is 1024x1024. Assume that each hospital randomly
selects one image from the dataset for training and then
sends the gradient to the network parameter server or client.
Our assumption is similar to online training when the client
updates the model whenever a new training image is collected.
If multiple training epochs are used, the entire training dataset
can be utilized for updating network parameters. The LeNet
architecture with four convolutional layers and one hidden
fully-dense layer is used for the classification model. The
number of channels in LeNet is set to 12 in four convolutional
layers and kernel size is 5. The stride is set to 2 in the two
first layers and 1 in the two last convolutional layers. Padding
is applied in these convolutional layers. The output of the
convolutional layers is flattened and fed to the fully-connected
layer with two output neurons. These output units present the
probability of normal and abnormal classes.

Three main performance metrics are used to evaluate the
performance of the gradient attack including Mean Squared
Error (MSE), Structural Similarity Index Measure (SSIM), and
Peak Signal-to-Noise Ratio (PSNR) between the original and
reconstructed images. The reconstruction quality gets better
with a smaller MSE, higher SSIM, and higher PSNR.

The reconstruction quality greatly depends on the coef-
ficients in the loss function. The optimal coefficients can
be found by performing a grid search. Note that the op-
timal weights need to be updated when image resolution
changes. For example, with chest X-ray images of 512x512,
αg = 1, αtv = 1.5 × 10−8, αnorm = 10−10; with images of
1024x1024, αg = 1, αtv = 1.7× 10−8, αnorm = 10−10; with
images of 2048x2048, αg = 2, αtv = 1.7 × 10−8, αnorm =
10−10. When there is no auxiliary data, we may need to check
different sets of weights to find the optimal values.

A. Reconstruction quality during the attack
Figure 3 shows the weighted loss function as well as

Lg, Ltv, Lnorm while updating the dummy images. To find the
best-reconstructed image, we need 250 epochs for the example
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Fig. 3: Reconstructed image during the reconstruction attack

image. At the beginning of training, the gradient loss Lg , the
total variation loss Ltv , and the norm loss Lnorm have a very
large value above 104. During the training procedure, the loss
value decreases especially Lg to around 10−6, which means
the dummy gradient matches the shared gradient. Meanwhile,
the decrease in Ltv and Lnorm is smaller than Lg . Note that,
Lg contributes greatly to the weighted loss function, which
means αg is much larger than αtv and αnorm.

As shown in Figure 3, a random image is initialized at epoch
0. The reconstructed image starts to be revealed at epoch 100
and the best-reconstructed image can be seen after epoch 200.
The weighted loss value reaches the saturation period after
epoch 200. The training procedure stops at epoch 250 after
observing no improvement in reconstruction quality.
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B. Impacts of image resolution

The classification performance highly depends on the image
resolution of the inputs. With abnormal images such as chest
X-ray of pneumonia and brain MRI images with tumours, it is
necessary to accurately recover the training images. As shown
in Figure 4, the reconstruction quality increases when using
high image resolution. With an image size of 512x512, the
attack can only result in a quite blurred image and blood
vessels cannot be seen clearly. As the image size is set to
2048x2048, the chest X-ray image with clear blood vessels
can be recovered as shown in Figure 4f. However, the attack
time increases significantly with a high image resolution.
More specifically, Table I shows that the attack time jumps
from 30.12 to 5229.29 (s) when the image resolution is set
to 256x256 and 2048x2048, respectively. This is due to the
exponential increase in the number of variables that need to be
optimized. The attacker always wants to achieve reconstruction
performance as high as possible. However, high reconstruction
quality, which is related to high image resolution, usually
requires a long reconstruction time or powerful computing
resources. Therefore, each participant in FL needs to consider
both factors: classification and reconstruction quality when
choosing the image resolution of training inputs.

We also measure MSE, SSIM, and PSNR of the recon-
structed image with index 1 from the chest X-ray dataset.
MSE becomes smaller, SSIM and PSNR get higher as image
resolution increases. For example, the structural similarity
index improves significantly from 0.769 to 0.959 when the
image resolution changes from 256x256 to 2048x2048.

C. Impacts of differential privacy

As stated in existing works, differential privacy can be
used as a countermeasure for the gradient attack. In this
subsection, we measure the impacts of differential privacy
on the reconstruction quality of the gradient attack using
three metrics: MSE, SSIM, and PSNR. Figure 5 shows the
impacts of differential privacy on the quality of reconstructed
images with different variances σ2 of noise that is set to
{10−6, 10−5, 10−4, 10−3, 10−2, 10−1}. When σ2 < 10−4,
MSE, SSIM, PSNR keep stable. However, reconstruction
performance starts to deteriorate quickly when σ2 is greater
than 10−3. For example, with σ2 = 0.01, MSE is around 0.28,
SSIM is only 0.0139, PSNR is 5.52, and the reconstructed data
looks like a random image.

D. Performance comparison with existing work

We validate the performance of our work and deep leakage
gradient (DLG) [4] in terms of MSE, SSIM, and PSNR.
The image resolution is set to 512x512. In DLG, the loss
function only contains the difference between the dummy
gradients and shared gradients; the gradient coefficient is set
to 6. Meanwhile, our work adds the total variation and six-
norm losses to maintain the smoothness and naturalness of the
reconstructed images. The coefficients in the loss function are
set as αg = 1, αtv = 1.5 × 10−8, αnorm = 10−10. As can
be seen in Table II, our work can achieve lower MSE, higher
SSIM, and higher PSNR than DLG.

(a) Original image of
512x512

(b) Reconstructed image of
512x512

(c) Original image of
1024x1024

(d) Reconstructed image of
1024x1024

(e) Original image of
2048x2048

(f) Reconstructed image of
2048x2048

Fig. 4: Impact of image resolution on the reconstruction of
X-ray images

E. Visualization

To further show the effectiveness of the gradient attack, we
present the reconstructed images in both chest X-ray and MRI
image datasets in Figures 6 and 7. In the chest X-ray dataset,
we use images of 2048x2048 to achieve the best visualization.
In the MRI dataset, two images with brain tumours and one
image of a normal brain are used for training; the MRI
image has 1024x1024 image resolution. Figure 6 shows that
reconstruction for chest X-ray images of normal and abnormal
lung conditions. The reconstructed images can show details
about lung injuries: cancer or the air collecting in the space
around a lung. In the reconstructed MRI images, bones and
blood vessels can be clearly seen from the reconstructed
images in both datasets, which indicates that the adversary
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TABLE I: The impacts of image resolution on the performance of the gradient attack

Image resolution #Variables Attack time (s) MSE SSIM PSNR
256x256 196k 30.12 0.0189 0.769 17.24
512x512 786k 112.81 0.0013 0.927 28.85

1024x1024 3.14M 914.75 0.0009 0.934 30.27
2048x2048 12.48M 5229.29 0.0006 0.959 32.34
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Fig. 5: Impacts of differential privacy on the reconstruction attack

TABLE II: Performance comparison between our work and DLG

Algorithm MSE ↓ SSIM ↑ PSNR ↑
DLG 0.0561 0.088 12.51

Our work 0.007 0.93 31.29

can successfully recover the training image from the shared
gradient.

V. CONCLUSION

In this work, we present a threat model in healthcare
systems with federated learning where the adversary may
recover the training images by using only the shared gradient.
An optimization problem is formulated to reconstruct the
training images by matching the dummy gradient and the
shared gradient. In addition, we add two regularization losses:
the total variation loss to minimize the difference between
neighboring pixels and the six-norm loss to keep the pixels
within a reasonable range. We conduct extensive experiments
on chest X-ray and MRI datasets and the performance results
show that reconstructed images can be recovered well under
certain conditions: small batch size, high image resolution, and
noise with small variances added in the gradient. By studying
the gradient attack in healthcare systems with FL, we can
design a secure FL architecture to countermeasure against this
attack and ensure a safe distributed learning environment.

To mitigate the impact of gradient attacks, various privacy-
preserving techniques can be used including holomorphic
encryption, secure multi-party computation, and differential

privacy. Holomorphic encryption involves encrypting gradient
information before sharing it with other participants. Secure
multi-party computation allows a server to compute a weighted
average of encrypted weights from participants without reveal-
ing the original weights of any specific participant. Differential
privacy adds noise to the gradient at participants before model
aggregation at the server, thus ensuring data privacy and
serving as a common countermeasure against gradient leakage
attacks.

In our future work, we expand the gradient attack in a more
challenging situation such as large batch sizes, and explore
their effects on practical global models like MobileNet and
DenseNet. In addition, it is crucial to design an effective
defense strategy to reduce the impacts of attacks in federated
learning.
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