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Grapevine bunch rot assessment has economic significance to wineries. Industrial working conditions 
require rapid assessment methods to meet the time constraints typically associated with grape intake 
at large wineries. Naturally rot-affected and healthy white wine grape bunches were collected over 
five vintages (2013 to 2016, 2020). Spectral data of 382 grape must samples were acquired using three 
different, but same-type attenuated total reflection mid-infrared (ATR-MIR) ALPHA spectrometers. The 
practical industrial problem of wavenumber shifts collected with different spectrometers was overcome by 
applying functional data analysis (FDA). FDA improved the data quality and boosted data mining efforts 
in the sample set. Canonical variate analysis (CVA) biplots were employed to visualise the detection and 
quantification of rot. When adding 90 % alpha-bags to CVA biplots minimal overlap between rot-affected 
(Yes) and healthy (No) samples was observed. Several bands were observed in the region 1734 cm-1 to 1722 
cm-1 which correlated with the separation between rot-affected and healthy grape musts. These bands 
connect to the C=O stretching of the functional groups of carboxylic acids. In addition, wavenumber 1041 
cm-1, presenting the functional group of ethanol, contributed to the separation between categories (severity 
% range). ATR-MIR could provide a sustainable alternative for rapid and automated rot assessment. 
However, qualitative severity quantification of rot was limited to only discriminating between healthy and 
severe rot (> 40 %). This study is novel in applying FDA to correct wavenumber shifts in ATR-MIR spectral 
data. Furthermore, visualisation of the viticultural data set using CVA biplots is a novel application of this 
technique.

INTRODUCTION
Detrimental grapevine bunch rots, specifically botrytis 
rot and sour rot, have significant economic impact on 
wine production (Bois et al., 2017; Madden et al., 2017; 
Crandall et al., 2022). Rot leads to a reduced volume of 
pre-fermentative juice and thus a reduced final wine yield 
(Barata et al. 2011), as well as processing difficulties such as 
stuck fermentations and wine filtration problems (Hausinger 

et al., 2014; Osborne, 2014; Jadhav and Gupta, 2016).  
However, the major detrimental effects of botrytis and sour 
rots on wine quality primarily relate to the impact on the 
sensory properties of grape juice and wine (Steel et al., 2013; 
González-Barreiro et al., 2015; Gelhken et al., 2022; Li et al., 
2022; Santos et al., 2022). Due to the detrimental effect of 
rot on wine quality, wineries incorporate rot assessment into 
grape quality evaluation (AGW, 2022).
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Disease assessment can be divided into identification, 
detection, and quantification objectives (Bock et al., 2022a). 
The focus of the present study is on bunch rot detection 
and quantification. Plant disease detection aims to reveal 
a disease’s presence, while disease quantification seeks 
explicitly to indicate the amount or intensity of a disease in a 
target population (Nutter et al., 1991). Plant disease intensity 
is predominantly described by the term severity, which is 
defined as the visible symptomatic area of the sampling 
unit affected by the disease, expressed as a percentage or 
proportion of the total area (Nutter et al., 1991). Severity, or 
percentage rot, has a clear effect on wine composition (Barata 
et al., 2011). Severity is often used at wineries to enforce 
price penalties if rot intensity exceeds a certain threshold 
(Hill et al., 2013). Recently the approach for the detection 
of grapevine bunch rot has been centred on detecting the 
increased concentrations of rot-associated disease markers 
(Porep et al., 2015; Steel et al., 2018; Gelhken et al., 2022), 
and discriminating between rot-affected and healthy grapes 
(Giovenzana et al., 2018).

Although visual estimations are known to be vulnerable 
to assessor error, it still is the reference method used in 
modern-day disease assessment (Bock et al., 2022b). 
However, subjectivity associated with visual estimation of 
rot is a source of contention between grape growers and 
wineries. Sensor-based technology and image analysis are 
employed to increase the reliability of grapevine bunch 
rot measurements (Hill et al., 2014; Bock et al., 2022b). 
Spectroscopy features strongly in these alternative methods 
of assessing rot.

There are several reasons why methods for faster and more 
sustainable quality control (QC) are turning to spectroscopy. 
Key advantages of vibrational-based methodologies such 
as spectroscopy that relate well to industrial applications 
include rapid and simultaneous measurement of several 
parameters and being environmentally friendly (Caramês 
et al., 2017; Okere et al., 2021; Hassoun et al., 2023). It is 
primarily the mid-infrared (MIR) region (4000 to 400 cm-1) 
that has proven potential for analysis of the compositional 
features of grape must (reviewed by dos Santos et al., 
2017). The specific sampling technique of attenuated total 
reflectance mid-infrared (ATR-MIR) spectroscopy is 
valuable  for quantitative and qualitative food analysis 
(reviewed by Mendes and Duarte, 2021). Under industrial 
working conditions, the ATR sampling technique is hugely 
beneficial because no or minimal sample preparation is 
required in analysis (Gambetta et al., 2019). This reduces 
the need for additional labour and time of sample pre-
processing, thus increasing the speed of analysis. Even 
though ATR is the most widely used MIR sampling module 
in food analysis (Mendes and Duarte, 2021), studies on using 
this sampling mode specifically for grape analysis are not 
plentiful. Furthermore, the investigation of Schmidtke et al. 
(2019) is the only published study in which ATR-MIR was 
specifically explored in rot assessment. 

Along with spectroscopic methods, large volumes and a 
variety of data, referred to as big data, are generated (Simsek 
et al., 2019). Infrared spectroscopic data is an example of 
high-dimensional big data, i.e., data where the number of 
variables (predictors) is large compared to the number of 

observations (Petrovic et al., 2019). Information must be 
extracted from these big datasets using case-specific data 
mining techniques, such as computer-based statistical models 
or algorithms (Ropodi et al., 2016; Szymańska, 2018). 

Efficient data visualisation is critical in analysing big 
datasets (Szymańska, 2018; Rodwell et al., 2021; Kim 
& Kim, 2022). A score scatter plot is traditionally used to 
visually represents the relationship between two variables 
using two orthogonal axes. On the other hand, a biplot can 
be seen as an extension of the score plot to accommodate 
p variables by introducing p axes which can assume any 
orientation (Gower & Hand, 1996). In routine application, 
the main advantage of biplot methodology is that high-
dimensional data like spectra are projected in such a way 
that the information can be visualised by a human operator 
and interpreted by non-statisticians. 

Two examples of biplot variations used for the 
visualisation of multivariate data include principal 
component analysis (PCA) and canonical variate analysis 
(CVA) (Alkan et al., 2015; Rodwell et al., 2021). Principal 
component analysis (PCA) is most often used for initial 
data exploration by visualising outliers, groupings, or trends 
(Callao & Ruisánchez, 2018; Arslan et al., 2021). CVA 
biplots are used in discriminant analysis (DA) methods, and 
the DA results are visually displayed compared to merely 
reporting discriminant functions (Gardner & Le Roux, 
2005). The multivariate visualisation technique of CVA 
biplots provides a visual interpretation of the similarities or 
differences between observations according to the variables, 
as well as the degree of overlap between classes (Le Roux 
& Gardner, 2005; Gower et al., 2011). The applications of 
CVA biplots on multivariate data were previously explored 
in the disciplines of archaeology (Wurz et al., 2003), process 
control of metallurgical plants (Aldrich et al., 2004), and 
meteorology (Alkan et al., 2015). However, the application 
of CVA biplots on a viticultural data set has not been 
investigated before. 

Without a doubt, data artefacts could hinder the mining 
of spectral data and lead to low data utility and prevent 
routine applications. Wavenumber shifts, which could occur 
due to the difference in internal settings of spectrometers, 
are an examples of data artefacts encountered (Szymańska, 
2018). The following paragraph addresses the misalignment 
in spectral data with functional data analysis (FDA).

Mid-infrared spectra are typically plotted as a function 
of wavenumbers (Fig. 1), resulting in a curve of continuous 
measurements following a sequence. With traditional 
methods such as PCA and partial least squares (PLS) 
regression, spectra are considered as a set of points where 
the way they are ordered has no influence on the results. In 
contrast to this approach, FDA assumes that a continuous 
function of intensity (absorbance units) is observed as a 
discreet set of wavenumbers, representing a “smooth” data-
generating process (Ramsay & Silverman, 1997). Smoothing 
is the first step in FDA, with the purpose of converting 
raw discrete data points into a smoothly varying function 
(Ullah & Finch, 2013). Typically, smoothing splines are 
used to estimate the underlying continuous function (Saeys 
et al., 2008). Spline modelling is an established tool in 
statistical regression analysis to reproduce flexible shapes 
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mathematically (Perperoglou et al., 2019). The original 
definition of “splines” refers to draftsmen’s strips used for 
drawing curves. The spline would be fixed at specific points, 
called knots, for the strip of material to form a smooth curve 
between the knots (Wright & London, 2009). Low-order 
polynomials are chosen to fit the data, or in other words, 
draw the curve between two points on a scatter plot. The 
polynomials have different degrees of freedom relating to 
the complexity of the model; for example, a one-degree 
polynomial corresponds to a straight line and simple linear 
regression (Wright & London, 2009). Smoothing splines also 

have a regularisation parameter that determines the amount 
of smoothing. 

This study aimed to explore the potential use of ATR-
MIR spectroscopy to detect and quantify grapevine bunch 
rot using biplot methodology.

MATERIALS AND METHODS
Sample collection from commercial vineyards
In-vineyard grape bunch samples (n = 382), each consisting 
of ten single cultivar bunches, were collected over five 
vintages (2013 to 2016, 2020) from commercial vineyards 

TABLE 1
Description of the data set used in this study for detection and quantification of grapevine bunch rot. The number of samples 
allocated to each of the categories, and cultivar representation per category are summarised.

Cultivar representation per category

Category Severity (%) n SN CO SB CY HP Other

Yes > 0.1 222 69 62 31 14 40 6

No 0 49 7 13 10 6 6 7

Yes/No n/a 122 38 21 24 12 6 11

Total 383 114 96 65 32 52 24

1 0 - 4.9 58 8 18 11 7 7 7

2 5 - 9.9 27 7 13 2 1 3 1

3 10 - 19.9 50 16 15 7 4 7 1

4 20 - 39.9 65 24 10 13 6 10 2

5 > 40 69 21 18 8 1 19 2

Total 269(1) 76 74 41 19 46 13
(1)1x CO and 1x CY rot-affected samples, i.e. the “Yes” category, severities (%) were not assessed. 
CY = Chardonnay. CO = Colombar. HP = Hanepoot (Muscat d’ Alexandrie). Other = Fernão Pires, Harslevelü, Nouvelle, Sémillon, Verdelho, 
Viognier, White Muscadel (Muscat de Frontignan). SB = Sauvignon blanc. SN = Chenin blanc. n = total number of samples. n/a = not 
assessed.

FIGURE 1 
Attenuated total reflectance mid-infrared (ATR-MIR) spectrum of grape must plotted as a function of absorbance intensity. The 

specific example shown illustrates the MIR spectral range from 4000 to 400 cm-1. 
Each dot (•) on the spectrum represents a corresponding wavenumber. Source: Own data.

 
 



Detection and quantification of grapevine bunch rot

S. Afr. J. Enol. Vitic., Vol. 44, No. 2, 2023DOI:  https://doi.org/10.21548/44-2-5913

147

situated in the Olifants River and Cape Coastal Wine of 
Origin regions, Western Cape, South Africa. A producer 
winery’s three viticulturists selected and categorised the 
samples as rot-affected or healthy based on the presence or 
absence of symptoms associated with botrytis and sour rots 
(Cornelissen et al., 2022). The viticulturists also assessed 
the samples’ severity (%) as Hill et al. (2010) described: S 
= ΣSi/n, where Si = severity for the ith bunch and n = the 
total number of bunches assessed. Samples were collected 
from the white wine grape cultivars Chenin blanc (SN), 
Colombar (CO), Sauvignon blanc (SB), Chardonnay (CY) 
and Hanepoot (Muscat d’ Alexandrie) (HP). The cultivars 
Fernão Pires, Harslevelü, Nouvelle, Sémillon, Verdelho, 
Viognier and White Muscadel (Muscat de Frontignan) were 
also included, although with low representation (Table 1). 
According to the modified Eichhorn-Lorenz (E-L) grape 
berry growth stages system (Coombe, 1995), samples were 
collected in any of the following berry growth stages: Stage 
36 (intermediate sugar levels) to 38 (berries harvest-ripe). 

ATR-MIR spectra acquisition of grape must samples
Upon collection, grape bunch samples were placed in plastic 
bags, kept below 20ºC and immediately transported to the 
on-site winery laboratory for analysis. Samples (consisting 
of 10 bunches each) were pressed by hand to extract the 
fresh grape must (± 300 mL) and decanted from the skins 
and seeds to be used for spectroscopic analysis without 
further pre-processing. Must aliquots (1 mL) were scanned 
on a MIR ALPHA spectrometer (Bruker Optics GmbH, 
Ettlingen, Germany) fitted with a diamond ATR single 
reflection sample module. Air, used as reference background 
spectra, was scanned hourly during analyses using the 
same method described for the grape musts. Each sample 
was scanned in 30 seconds on the diamond crystal heated 
to 40ºC, at a resolution of 8 cm-1 in the wavenumber region 
6996 to 373 cm-1. The average spectrum of 64 repeat scans 
per sample was recorded with OPUS spectroscopy software 
(www.optikinstruments.eu). The ATR cell was cleaned with 
distilled water between samples and dried with disposable 
wipes to avoid sample carryover. An instrument-specific 
Performance Qualification (PQ) test was used for daily 
validation of the performance of the spectrometer (ALPHA 
user manual, 2014). 

Data treatment and analysis
Alignment of spectral data with functional data analysis 
(FDA)
Three different same-type spectrometers were used 
throughout the period of sample collection and spectral 
acquisition. The exact scanning wavenumber ranges of the 
spectrometers were not identical due to the spectrometers’ 
unique internal settings and laser configurations. Either 
1 607, 2 309 or 2 338 datapoints were created per spectrum, 
depending on the internal settings of each spectrometer. 
Exploring the spectral data in instrument-independent 
software required wavenumber alignment of the complete 
spectral data set (6996 to 373 cm-1), which was achieved 
using FDA. A brief introduction on FDA was given in the 
Introduction section.  

In the present study, the smoothing approach 
encompassed a three-degree polynomial cubic regression, 
yi = β0 + β1xi + β2xi2 + β3xi3 with 500 knots and smoothing 
parameter = 0. The aim was to interpolate the intensity 
(absorbance units) between the observed wavenumbers 
(Fig. 2A). The “Spline” package in R, Version 3.6.1 (The R 
Foundation for Statistical Computing, 2019) was used.

Each of the three spectrometers’ grape must spectral data 
were fitted in this way to form a new regular grid of aligned 
wavenumbers. One thousand evenly spaced points in the 
region 2600 to 900 cm-1 were chosen as predictor variables 
based on this region’s prominent published molecular 
information regarding grape must chemical composition 
(Shah et al., 2010; Petrovic et al., 2020). 

Detection and severity quantification of grapevine bunch 
rot 
Each sample was descriptively categorised for the detection 
of rot as “Yes”, indicating the presence of rot, or “No”, if the 
sample did not show any visual rot symptoms. Furthermore, 
a third class of samples with unknown grape rot status, where 
no visual assessment was carried out on these samples, was 
categorised as “Yes/No”. In total, the sample set consisted of 
222 “Yes”, 48 “No”, and 112 “Yes/No” samples (Table 1).

For the quantification of rot intensity, each of the “Yes” 
and “No” samples were also assigned to either of five 
categories based on their visually estimated severity (%) 
(Table 1).  The five categories (severity % range) were 
established by the researcher using empirical experience 
regarding the maximum severity encountered under local 
conditions, published rot severity threshold levels before 
detrimental effects on wine quality were observed (Ky et al., 
2012), and in-vineyard reported severities (Meneguzzo et al., 
2008, Evans et al., 2010; Paňitrur et al., 2018; Schueuermann 
et al., 2019; Würz et al., 2020). 

Multivariate data analysis (MVDA)
Principal component analysis (PCA), described by Naes 
et al. (2004) and Cozzolino et al. (2012), was used to 
explore the underlying group structure in the dataset and to 
detect outlying or extreme samples. Raw spectra were mean 
centered, and Hotelling’s T2 (95 %) was used to identify 
unusually positioned samples (SIMCA MVDA software, 
Version 16, Sartorius Stedim Data Analytics AB, Umeå, 
Sweden).

Canonical variate analysis (CVA) biplots
Weighted canonical variate analysis (CVA) was used 
to evaluate the separation between the five pre-decided 
categories (severity % range). The aim of CVA is to obtain 
optimal separation between classes and relies on Mahalanobis 
distances to define interclass distance or differences between 
class means (Gardner & Le Roux, 2005; Gardner-Lubbe 
et al., 2008; Gower et al., 2015). The results are reported as 
CVA biplots (R function of Package “UBbiplot”, available 
on a website featuring R code and datasets in Understanding 
biplots, Gower et al., 2011). Biplots are not primarily a 
method of analysis, but rather a way of visualising the 
data (Gower et al., 2015). CVA biplots provide a method 
to visualise the differences between the means of K groups 
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in a reduced number of dimensions. A two-dimensional 
representation of the data is given with non-orthogonal axes. 
Alpha-bags (Le Roux & Gardner, 2005) were superimposed 
on the CVA biplots as a quantitative measure to describe 
how well categories are separated, as well as the degree of 
overlap. 

The challenges related to CVA modelling in the present 
study were that with only a small number of samples, the 
number of predictor variables totalling 1 000 is much larger 
than the number of samples. Furthermore, since the spectra 
follow a smooth curve, the variables are highly correlated, 
especially variables associated with wavenumbers close 
together. The collinearity problem of variables is a 
fundamental problem in spectroscopy, with many strongly 
related measurable variables (Naes et al., 2004), which 
makes overfitting a problem. CVA cannot deal with multi-
collinear data (Khakimov et al., 2015), thus, dimension 
reduction was needed.

Dimensionality reduction was done by mathematically 
selecting a subset of the most relevant variables out of the 
1 000 equally spaced wavenumbers obtained with FDA, 
based on the ideas of Tuv et al. (2006). A final subset of 38 
wavenumbers was selected for DA of the three pre-classed 
rot categories (“Yes”, “No” and “Yes/No”).

A second round of variable selection was executed on 
the 1 000 wavenumbers for DA on five pre-decided severity 
categories (severity % range). The best subset of seven 
wavenumbers was selected. The package “randomForest” in 
R Language for Statistical Computing, Version 3.6.1 (The R 
Foundation for Statistical Computing, 2019), was used for 
both rounds of variable selection. 
 
RESULTS AND DISCUSSION
Alignment of spectral data with FDA
The spectral wavenumbers or variables of the three ALPHA 
spectrometers used were misaligned due to differences in 
the internal settings of these instruments, and pre-processing 
of data was thus required. Accurate wavenumber alignment 

was obtained by using a grid consisting of evenly spaced 
wavenumbers, as illustrated by the example of a grid of 
wavenumbers for two spectrometers in Figure 2A. The solid 
lines indicate the interpolated intensity curves. In the intensely 
zoomed representation, deviations are present between the 
solid lines and the observed values (indicated by the blue 
and orange ○). However, these deviations are insignificant 
in practice while ensuring a smooth curve. As shown in 
Figure 2A, the vertical dotted lines of wavenumbers for 
the two spectrometers are not aligned. To construct a single 
dataset for observations from the instruments, a new aligned 
grid was chosen for each spectrometer. This new aligned grid 
of each of the spectrometers is indicated by the black square 
(■) at the end of the black dotted lines (Fig. 2B). 

Each of the three ALPHA spectrometers used in the study 
had its own regular grid of wavenumbers. For alignment of 
wavenumbers, a new grid was to be modelled using the same 
principle illustrated in Figures 2A and 2B. This new grid 
was chosen as 1 000 equally spaced points in the interested 
MIR region of 2600 to 900 cm-1. From Table 2, it is evident 
that the magnitude of the shift is not merely constant either 
to the right or left but calculated. The spectral shift ranged 
from -1.66 cm-1 to 2.28 cm-1. Misalignment of spectra is 
not problematic when using instrument-specific software 
since the software can handle instrument differences. 
However, whenever standalone software is used for data 
mining, spectral alignment differences are problematic, and 
alignment is necessary. 

In Figure 3, the raw ATR-MIR spectra after grid 
alignment are plotted. No offset was observed, which 
demonstrated the value of FDA in spectroscopy to maximise 
industrial application as previously advocated (Saeys et al., 
2008). The observed peaks corresponded to water absorbance 
at 1638 cm-1 (Lemos et al., 2020) and the fingerprint region 
1500 to 940 cm-1 (Musingarabwi et al., 2016), denoted by 
A and B respectively (Fig. 3). With specific reference to 
the fingerprint region, wavenumbers in the region 1087 to 
1032 cm-1 showed the strongest absorbance. These strong 

FIGURE 2
Illustration of grid alignment between two ALPHA spectrometers. The spectra generated by the two spectrometers are 
represented by the blue and orange vertical lines, respectively. The blue and orange circles (○) in Figure 2A represent the 
observed intensities (absorbance units) from the different instruments. Intensity is interpolated between intensities of observed 

wavenumbers. The squares (■) in Figure 2B represent the new aligned grids of each of the two instruments.

 

          
           Figure 2A                    Figure 2B 
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TABLE 2 
Illustration of applying functional data analysis (FDA) for alignment of wavenumbers obtained from three different ATR-MIR 
ALPHA spectrometers. 
Spectrometer Wavenumber (cm-1)

A(1) 2599.97 2499.53 2100.64 1799.32 1500.87 1199.55 901.10

B(1) 2599.79 2500.67 2101.36 1801.16 1500.97 1200.78 900.58

C(1) 2600.68 2501.77 2101.98 1801.11 1500.24 1199.36 898.49

New(2) 2600.00 2499.60 2099.70 1800.20 1500.70 1199.50 900.00

A vs New(3) 0.03 0.07 -0.94 0.88 -0.17 -0.05 -1.10

B vs New(3) 0.21 -1.07 -1.66 0.96 -0.27 -1.28 -0.58

C vs New(3) -0.68 2.17 2.28 -0.91 0.46 0.14 1.51
(1)Three ALPHA spectrometers with different internal settings which led to differences in spectral ranges. (2)New grid after alignment.
(3)Difference (cm-1) after spectral alignment. 

 
 FIGURE 3 

ATR-MIR raw spectra of rot-affected and healthy grape musts after grid alignment using functional data analysis (FDA). Peak 
absorbance corresponds to water absorbance at 1638 cm-1 (A) and the fingerprint region 1500 to 940 cm-1 (B). 

Colours denote the spectra in each of the five pre-decided rot categories (severity % range) described in Table 1. 
ATR-MIR = attentuated total reflectance mid-infrared.

 
 

FIGURE 4 
Principal component analysis (PCA) score plot on score vectors t[1] and t[2] derived from from mid-infrared (MIR) spectra in 
wavenumber region 2600 to 900 cm-1 of rot-affected and healthy grape musts. Colours denote spectra of each of five pre-decided 
rot categories (severity % range) described in Table 1. Seven outlier samples were deselected in the PCA score plot. The samples 

outside the Hotelling’s T2 ellipse are considered extreme samples.
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absorptions are mainly due to the CH-OH frequencies of 
glucose and fructose (Cozzolino & Curtin, 2012; Gambetta 
et al., 2019) and C-O stretching of alcohol (Nagarajan et al., 
2006). Data artefacts will always be part of the practical 

problems encountered in data collection (Naes et al., 
2004), but can be dealt with by means of pre-processing as 
demonstrated by the present study.
 

FIGURE 5 
Principal component analysis loadings line plot on loading vector p[1] showing the weights that combine with wavenumbers 
in the fingerprint spectral region (1500 to 940 cm-1), as the source of variation observed along PC1 in the scores scatter plot. 

Maximum absorbance is observed in wavenumber region 1032 to 1087 cm-1. 

 
 

FIGURE 6 
Canonical variate analysis (CVA) biplot with 90 % alpha-bags superimposed on each pre-classed rot category, namely Yes 
(▲), No (∆) and Yes/No ( ). The 90 % alpha-bags of “Yes” and “No” categories only negligible overlap. Wavenumbers 1734 
cm-1 and 1722 cm-1 strongly contributed to the separation between rot-affected (Yes) and healthy (No) grapes. Class means are 
indicated by a solid circle (•). The straight line biplot axes represent the 38 wavenumbers (cm-1). The axes are calibrated in the 

original units of measurement, namely absorbance units.
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Detection and severity quantification of rot-affected 
grape musts
Principal component analysis (PCA) 
Explained variance of 98 % was obtained with the first 
two principal components (PC’s). Seven outlier samples 
were deselected from the sample set. In the present study, a 
visible pattern along PC1 is observed of increased severity 
(%) from the negative to the positive end of PC1 (Fig. 4). 
Furthermore, the loadings line plot of PC1 (Fig. 5) confirmed 
the importance of the fingerprint region’s (1500 to 940 cm-1) 
contribution to explained variance along PC1. No clear 
separation according to categories (severity % range) were 
obtained. However, PCA models only attempt to visualise 
the multidimensional variation and underlying structure in 
data without a discriminating function (Wise et al., 2006).

CVA biplots
In the CVA biplots (Figs. 6 and 7), samples are illustrated 
as points in a two-dimensional space, and the variables or 
wavenumbers are presented by separate biplot axes. The 
axes are calibrated in the original units of measurement (Le 
Roux and Gardner, 2005), representing absorbance units in 
the current study. 

Superimposing 90 % alpha-bags, minimal overlap 

between rot-affected (Yes) and healthy (No) categories 
was observed (Fig. 6). Alpha-bags quantitatively describe 
the overlap between classes with the largest value of alpha 
between 0 to 100 quantifying separations between classes 
(Grower, et al., 2015). A 90 % alpha-bag means that 90 % 
of all the samples in a particular category are included in 
the bag. 
The wavenumbers strongly correlating with separation be-
tween “Yes” and “No” categories are identified as 1734 cm-1 
and 1722 cm-1 (Fig. 6). Absorbance units of 1734 cm-1 and 
1722 cm-1 are high in the “Yes” category and low in the “No” 
category. Interestingly, these two wavenumbers are not lo-
cated in the fingerprint region of 1500 to 940 cm-1, which 
were identified as the main source of variation along PC1 
(Fig. 5). It has been shown that the spectral region located 
at 1733 to 1716 cm-1 are key to the prediction of titratable 
acidity (TA) (Gambetta et al., 2019), with carbonyl group 
stretching (C=O) appears around 1730 to 1700 cm-1 (Defe-
mez et al., 1995; Shah et al., 2010; Silva et al., 2022). Exam-
ples of major carboxylic acids found in grape musts include 
tartaric acid, lactic acid, malic acid, citric acid, acetic acid, 
and succinic acid (Callul et al., 1992). Berry dehydration, 
and thus the concentration of organic acids, and production 
of gluconic acid and acetic acid, could explain the increase 

FIGURE 7
Canonical variate analysis biplot using seven wavenumbers and with 90 % alpha-bags superimposed on each of the five pre-
decided rot categories (severity % range). The 90 % alpha-bags of Categories 1 (0 - 4.9 %) and 5 (> 40 %) had negligible 
overlap. Apart from this separation the bags overlap markedly. Wavenumbers 1725 cm-1 and 1041 cm-1 contribute strongly to 
the separation between Categories 1 and 5. Class means are indicated by a solid circle (•). The straight line biplot axes represent 

the seven wavenumbers (cm-1). The axes are calibrated in the original units of measurement, namely absorbance units.
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of TA in rot-affected compared to healthy grapes (Barata 
et al., 2011; Cinquanta et al., 2015).

The third category with unknown grape rot sta-
tus (Yes/No) predominantly presents on the lower left of the 
CVA biplot (Fig. 6). Grape growers collected these samples 
as part of the commercial winery’s, where these grapes will 
be received, protocol to establish harvest date. The assump-
tion was that in most instances, grape growers would not 
knowingly collect rot-affected samples in determining har-
vest date, but rather purposively collect healthy samples. If 
the assumption is correct, combined with the visual interpre-
tation of Figure 6, it is expected that for the detection of rot, 
healthy samples would present to the left of the CVA biplot 
and rot-affected samples to the right of the biplot. However, 
this hypothesis will have to be tested in the following vin-
tages. 

The CVA biplot of the five pre-decided categories 
(severity % range) with 90 % alpha-bags superimposed 
indicated that Category 1 (0 - 4.9 %) and Category 5 
(> 40 %) only showed a negligible overlap (Fig. 7). Apart 
from this separation, the alpha-bags overlapped markedly. 
However, the separation between Category 1 (0 - 4.9 %) was 
more with each of the other Categories 2, 3, 4 and 5, than 
with Categories 2, 3, 4 and 5 amongst themselves (Data not 
shown). 

An increase in severity (%) is observed from left to 
right on the biplot (Fig. 7). Like the results in Figure 6, 
high absorbance units of wavenumber 1725 cm-1 were 
correlated with discrimination between categories (severity 
% range). As previously discussed, the spectral band of 1725 
cm-1 contains information on carboxylic acids due to the 
stretching of C=O. In addition, wavenumber 1041 cm-1 also 
contributes strongly to discrimination between Category 1 
(0 - 4.9 %) and Category 5 (> 40 %). A distinct ethanol peak 
is situated at wavenumber 1044 cm-1 to 1 040 cm-1 due to C-O 
stretching vibrations (Nagarajan et al., 2006; Schalk et al., 
2017). Yeasts from rot convert sugars in the grape berry to 
ethanol (Hall et al., 2018). Especially in sour rot, ethanol 
could be further oxidised to acetic acid. Acetic acid, amongst 
other organic acids, could be represented by wavenumber 
1725 cm-1.

The visual assessment’s subjectivity and the complexity 
of metabolic pathways associated with rot could explain 
the lack of clear discrimination between Category 1 and 
the middle severity % ranges of Categories 2, 3 and 4 (5 to 
39.9 %). Furthermore, visual assessment has been found to 
overestimate lower severity of < 20 % (Bock et al., 2022b), 
which could have contributed to a clear differentiation 
lacking in the middle severity ranges. Results in the 
current study suggested that the rapid quantification of rot 
assessment by means of ATR-MIR spectroscopy could 
be limited to discrimination between healthy and severe 
infection (> 40 %). Similarly, Hill et al. (2014) also find a 
clear separation between the 0 % to 25 % categories, and the 
categories of 50 % and 78 %. The “seperation” was based 
on the spectral plots of absorbance data in the narrow MIR 
region of 1142 cm-1 to 1081 cm-1; however, this separation 
could be related to the C-O stretch of glycerol (Pavia et al., 
2001). Glycerol is known to be a rot-associated disease 
marker (Versari et al., 2008).
  

CONCLUSIONS
The time-consuming and subjective in-vineyard assessments 
of grapevine bunch rot are unsustainable for large wineries. 
Rapid methods like spectroscopy need to be employed to 
address the industrial requirements of rapid and automated 
grape quality evaluation. However, practical problems like 
data artefacts in routine industrial applications of rapid 
methods are often unnecessarily interpreted as barriers to 
application. The present study demonstrates a practical 
solution of applying FDA correcting of misalignment of 
wavenumbers due to different internal settings of same-
type spectrometers. What is known through the literature, 
this study is one of the first to apply FDA for correcting 
misaligned MIR spectra. The outcome was improved data 
quality which boosted the mining of ATR-MIR spectral data 
for detection and severity quantification of grapevine bunch 
rot.

The results of this study are of significant industrial 
importance. Generally, the use of ATR-MIR for rapid 
assessment of rot-affected grapes is underexplored, and 
this study significantly contributes to the evaluation of 
this spectroscopic method for industrial applications. 
Furthermore, to the best of the authors’ knowledge this is the 
first study exploring the use of ATR-MIR specifically for the 
detection or quantification of grapevine bunch rot. 

The use of CVA biplots demonstrates an effective 
method for addressing the challenge of visualising big data 
sets and is novel for the application to a large viticultural 
data set. Biplot technology is especially of advantageous 
for industrial use since non-experts can easily interpretate 
results. 

Regarding process monitoring, future work could 
include adding quality and acceptance regions to the biplots 
as decision support for the acceptance or rejection of grape 
loads and visually evaluating each vintage’s quality. However, 
the current CVA models need to be validated by additional 
samples in the following vintages. For quantification of rot, 
future work could explore the use of multi-evaluation by 
combining spectral and quantitative data trying to improve 
models for prediction of severity in the ranges of 5 % to 
39.9 %.
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