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Abstract 

“Leveraging Artificial Intelligence and Geomechanical Data for Accurate Shear Stress 

Prediction in CO2 Sequestration within Saline Aquifers (Smart Proxy Modeling)” 

Munirah Alawadh  

This research builds upon the success of a previous project that used a Smart Proxy Model 
(SPM) to predict pressure and saturation in Carbon Capture and Storage (CCS) operations into 
saline aquifers. The Smart Proxy Model is a data-driven machine learning model that can 
replicate the output of a sophisticated numerical simulation model for each time step in a short 
amount of time, using Artificial Intelligence (AI) and large volumes of subsurface data. 

This study aims to develop the Smart Proxy Model further by incorporating geomechanical data-
driven techniques to predict shear stress by using a neural network, specifically 
through supervised learning, to construct Smart Proxy Models, which are critical to ensuring 
the safety and effectiveness of Carbon Capture and Storage operations. By training the Smart 
Proxy Model with reservoir simulations that incorporate varying geological properties and 
geomechanical data, we will be able to predict the distribution of shear stress. 

The ability to accurately predict shear stress is crucial to mitigating the potential risks 
associated with Carbon Capture and Storage operations. The development of a geomechanical 
Smart Proxy Model will enable more efficient and reliable subsurface modeling decisions in 
Carbon Capture and Storage operations, ultimately contributing to the safe and effective 
storage of CO2 and the global effort to combat climate change. 
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Chapter 1: Introduction 

 
This part of the study focuses on providing an overview of the research. It includes the problem 

statement, research objective, and dissertation outline. 

1.1 Problem Statement 

Over the past couple of decades, there has been significant development and enhancement in 

various geologic sequestration technologies aimed at mitigating greenhouse gas emissions. 

Among these technologies, the injection of carbon dioxide into subsurface formations has 

emerged as one of the most viable and promising approaches to significantly reduce 

anthropogenic CO2 emissions into the atmosphere. To achieve this important objective, deep 

saline formations have been recognized as particularly suitable for large-scale CO2 storage. 

When CO2 is injected into underground saline aquifers, various factors come into play to ensure 

the smooth and successful implementation of the process without facing any damageable failure. 

These factors include determining the geomechanics properties and structure of the storage area, 

determine the number of injection wells to be used, calculating the optimal amount of CO2 to be 

injected into each well, adjusting the choke sizes of individual wells to regulate the flow rate, and 

monitoring the overall production or injection from the field. Usually these crucial decisions are 

typically made by a reservoir engineer team, relying on numerical simulation models that enable 

them to examine and evaluate multiple production and injection scenarios simultaneously and 

efficiently. Reservoir simulation is considered one of the most essential tools in oil and gas 

reservoir development and management. It provides valuable insights and predictions regarding 

the future performance of the reservoir, as well as optimization strategies to enhance hydrocarbon 

recovery under various operating conditions. Oil and gas organizations invest significant 

resources, including substantial financial investments, in reservoir simulation to maximize the 

value of their assets. However, it is important to acknowledge that numerical reservoir simulation 

models can be computationally intensive, particularly in complex projects involving uncertainty 

assessment. The process of predicting shear stress behavior often takes up to approximately one 

week to obtain results. This computational complexity poses challenges, especially when timely 

decision-making is required. In response to these challenges and the increasing demand for 

efficient and accurate modeling of CO2 sequestration scenarios, researchers have explored 

alternative techniques that can replicate the roles and functionalities of numerical reservoir 

simulation models within a shorter time frame, while maintaining the same level of accuracy. One 
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such technique is the utilization of artificial intelligence (AI) models, particularly the smart proxy 

model, which has been chosen as the technological model for this specific project. The smart 

proxy model leverages AI algorithms and techniques to provide rapid and accurate predictions of 

various CO2 sequestration scenarios. By employing advanced data-driven approaches and 

machine learning algorithms, the smart proxy model aims to achieve comparable accuracy to 

traditional numerical simulation models but within a significantly reduced time frame. This 

alternative modeling approach holds great promise in meeting the increasing modeling needs for 

CO2 sequestration, particularly as the volume of CO2 emissions continues to rise. In recent years, 

the research group led by Mohaghegh at West Virginia University has made significant progress 

in developing a range of Smart Proxy Models. These models have emerged as viable alternatives 

to traditional numerical reservoir simulation models. 

1.2 Research  Objective  

The primary objective of this research is to develop an artificial intelligence model capable of 

effectively emulating the functionality of numerical reservoir simulation models. The main 

objective is to precisely forecast the spatial distribution of shear stress throughout the simulation 

period, encompassing every grid block within the reservoir. This will be accomplished through the 

utilization of injection and post-injection procedures. The findings of this study showcase the 

remarkable capabilities of Smart Proxy Models in addressing the practical challenges 

encountered in numerical reservoir simulation workflows. These models serve as rapid and 

precise tools for simulating reservoir behavior. Moreover, it possesses the capability to replicate 

the fluid flow dynamics across various time intervals throughout the injection and post-injection 

cycles of CO2 sequestration into a saline aquifer. The accomplishments of this dissertation, 

however, go beyond demonstrating the modeling approach for shear stress distribution in saline 

aquifer formations. The findings have larger ramifications since they might be applied to other 

time-consuming processes in reservoir management workflows. This dissertation proposes a 

unique technique for developing proxy models, which serve as helpful companions in the research 

and effective modeling of CO2 storage in geological and saline formations by leveraging the 

power of artificial intelligence and machine learning algorithms. This feature provides a 

comprehensive understanding of the system's behavior, facilitating more accurate predictions and 

analysis.  
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1.3 Dissertation Outline 

This dissertation is structured into nine chapters, which are arranged in the following manner: 

● Chapter 1 is dedicated to introducing the problem statement and elucidating the 

objectives of this study. 

● In Chapter 2, an extensive literature review of reservoir proxy models is presented. The 

chapter begins by examining the fundamentals of proxy modeling and their 

categorizations. It then introduces the Smart Proxy Model, discussing prior research 

conducted in the field and outlining the respective advantages and disadvantages of each 

study. 

● Chapter 3 provides a foundational overview of the field of artificial intelligence and 

delves into its various sub-field categories. 

● Chapter 4 explores Carbon Capture and Storage (CCS) as a vital approach to combat 

global warming and reduce CO2 emissions. It covers the storage process, techniques, 

and various options for storing CO2 in different geological formations. The chapter 

emphasizes the importance of understanding subsurface conditions and geomechanical 

aspects for effective CO2 sequestration. 

● Chapter 5 gives a detailed overview of geomechanics associated with the storage of CO2 

deep down in sedimentary formations. Foremost, the chapter introduces the concept of 

CO2 storage deep down within rock layers, processes of geomechanics and the resulting 

operational issues. Next, the chapter addresses in detail the geomechanical aspects such 

as stress and strain of the reservoir, micro-seismicity and integrity of the well. Lastly, the 

chapter integrates geomechanical observations at some geological carbon storage field 

deployments. 

● Chapter 6 focuses on the development of numerical reservoir simulation, which serves as 

the essential groundwork for implementing Smart Proxy Models. The chapter extensively 

covers the methodologies employed to generate additional geological models, 

incorporating geomechanical properties crucial for the project's success. Furthermore, it 

concludes by shedding light on the configuration of data ingestion, injection constraints, 

and the adoption of diverse time steps to ensure accurate and efficient modeling. 
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● Chapter 7 focuses on the methodology employed in the study, which outlines the essential 

procedures and steps taken to ensure the study's success. This methodology involves 

several key steps to achieve accurate predictions using the developed smart proxy. It 

begins with selecting a specific number of realizations and extracting relevant data from 

them while adding essential features to enhance prediction accuracy. The study relies on 

methods such as training, calibration, and blind validation to attain the expected results 

for the smart proxy model. 

● In Chapter 8, the study presents an analysis and discussion of Shear Stress. This chapter 

specifically zooms in on a singular blind result and a solitary training result, both 

encompassing all layers at a particular time step. Additionally, the chapter provides 

insights into the cross-sectional view and offers a comparison of Mean Absolute Error for 

Shear Stress Outputs. To maintain clarity and streamline the presentation, the remaining 

blind and training run results for the initial 20 layers have been exclusively reserved for 

the Appendix. 

● Chapter 9 serves as the conclusion of this study and offers final remarks and suggesting 

enhancements for the model. 
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Chapter 2: Proxy Models Literature Review 

 
Over the past few decades, scientists and engineers in the oil industry have developed and 

implemented several proxy modeling techniques to address the challenge of execution timing for 

numerical reservoir simulations. These techniques aim to overcome the timing challenge by 

utilizing mathematical, statistical, or data-driven approaches to replicate the outputs of reservoir 

simulation models. In subsurface modeling and related earth science disciplines, proxy models 

serve as facilitators for numerical physics-based approaches, such as the CMG model. Reservoir 

simulation plays a crucial role in various aspects of petroleum reservoir management, including 

forecasting and analyzing reservoir communication. Consequently, reservoir development 

decisions nowadays heavily rely on feedback from reservoir simulation models. Reservoir 

simulation offers oil and gas companies a convenient and effective means to assess saline aquifer 

formations, monitor CO2 plumes during and after injection, and aid decision-making processes 

for optimization scenarios such as monitoring wells, injection volume, constraints, number of 

injection wells, and pressure maintenance. It involves constructing a mathematical representation 

of physical phenomena based on relevant observations and simplified assumptions. The evolution 

of numerical reservoir simulation from a basic decision-making tool to a crucial technology for 

complex production and development scenarios has been remarkable in the realm of reservoir 

engineering over the past few decades. 

However, obtaining practical solutions for uncertainty analysis or optimization schemes requires 

developing reservoir simulation models and running them thousands of times under various 

operational and geological scenarios, considering the variability of uncertain parameters. This 

process consumes significant time and computational resources. In the oil and gas industry, 

where the concept of "time is money" holds significant importance, finding efficient solutions is 

essential. The Smart Proxy Model addresses this challenge by leveraging its unique capabilities. 

It combines reduced order modeling techniques, which simplify the complex physics of stress 

distribution, with data-driven modeling approaches that harness the power of available reservoir 

data which is the primary focus of this study. By capturing the underlying patterns and 

relationships between input parameters and stress distribution, the Smart Proxy Model offers an 

efficient means of shear stress prediction. This enables efficient exploration of large solution 

spaces for optimal or near-optimal solutions, as well as performing Monte Carlo simulations to 

quantify uncertainties associated with geological models (Mohaghegh, p: 19, 2023). The objective 
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is to evaluate the model's effectiveness, accuracy, and reliability in capturing the shear stress 

distribution phenomena. By successfully achieving this goal, the Smart Proxy Model can offer 

valuable insights into stress-related issues, assist in decision-making processes, and contribute 

to the optimization of reservoir development strategies.  

In recent decades, the petroleum industry has witnessed the development and introduction of 

various proxy model techniques. These computational approaches encompass a wide spectrum, 

ranging from statistical methods like response surface modeling to mathematical techniques such 

as reduced order models, and even include data mining and artificial intelligence methodologies 

like smart proxy models. In the forthcoming sections, a more comprehensive examination of these 

techniques will be provided, delving into their intricacies. Moreover, the strengths and limitations 

of these techniques will be assessed. 

2.1 Proxy Modeling Classifications 

Proxy modeling can be categorized into different groups based on various criteria. These 

techniques can be further subdivided into statistical or mathematical models, depending on their 

respective approaches. Each of these techniques will have its own set of subcategories. The main 

two groups are Traditional proxy modeling and Smart Proxy Modeling.  

2.1.1 Traditional Proxy Modeling 

It simplifies the problem being solved in order to minimize computational time. This is in contrast 

to numerical simulation, which aims to approximate the solution rather than simplifying the 

problem. Traditional proxy modeling can be further divided into Reduced Order Models (ROM) 

and Response Surface Methodology (RSM). 

a) Reduced Order Models (ROM): 

It is an alternative solution to reduce the order of models and it is one of the traditional types of 

proxy models. The mathematical equations governing the physical phenomenon addressed in 

Numerical Simulation are simplified by establishing more fundamental and simplified 

relationships. That means the resolution of models is reduced in both time and space. However, 

it is important to acknowledge that within a specific paradigm, any reduction in computational time 

comes at a cost and the price paid by reduced order models (ROMs) is the accuracy of the models 

(Mohaghegh et al., 2015). There exist two primary methods to decrease the order of a model: 

reduce the resolution in time and space and reduce physics models (RPM).  
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 1-Reduce the resolution in time and space: 

In this method, the model undergoes a significant upscaling process to the extent that, in 

certain instances, the solution for each component of the model approximates the 

analytical solution despite its inherent limitations. To achieve an optimal balance, 

workflows have been devised to gradually enhance the spatial resolution by iteratively 

refining the initial coarse grid configuration (Mohaghegh, p:15, 2023).  

2-RPM: Reduce Physics Models: 

In this method, the model will concentrate on the physics of the problem in order to 

circumvent the computational time and it represents a mathematical proxy model. The 

application of reduced order model (ROM) approaches in numerical modeling of shale 

production has been prevalent in recent years by Wilson and Durlofsky (2012). In their 

work, they presented a reduced physics technique that initially incorporated dual porosity, 

dual permeability, and gas desorption. By employing the reduced physics model (RPM) 

approach along with tuning adjustments to align with gas production data, they simplified 

the complex full-physics model into a single porosity and permeability model. These 

approaches rely on physical proxies as substitutes for the detailed understanding of the 

underlying physics. As a result, ROM approaches address a different problem than the 

original intention of the numerical simulation model (Mohaghegh et al, 2015). 

b) RSM: Response Surface Methodology  

These models require a large number of simulation runs to be effective and it is known as 

Statistics-based proxy models. These models use statistical techniques to analyze and predict 

the responses generated by numerical simulation models. Examples of this specific type of 

methodology comprise of space designs and classical systems. Examples of the experimental 

design techniques consist of full factorial, factorial designs, and space-filling designs. The "curse 

of dimensionality" poses a problem for commonly used ROMs (Gholami et al. 2019; He, 2011; 

Chen et al. 2013). Because of the nature of the ROM models, the time required to develop it is 

often comparable to the time required to execute a numerical simulation. As a result, ROMs can 

be computationally expensive at times.  

However, they face challenges associated with traditional statistics, especially when applied to 

problems with well-defined underlying physics. One common problem is the issue of correlation 

versus causality. Just because two variables are correlated, it doesn't mean that one variable is 



8 
 

causing the other. Another problem with statistics-based approaches is that they impose a 

predefined functional form, usually a polynomial, to analyze or model the data. While different 

functional forms can be tested to find the best fit, it becomes problematic when the data doesn't 

conform to a predefined form and exhibits multiple changing behaviors. Response surfaces 

struggle to establish well-defined and robust relationships between the variables in a numerical 

simulation model and the model's responses (Mohaghegh, p:16, 2023). Most of these techniques 

have only been applied to academic problems with a small number of cells. The real challenge 

will arise when they are used to build proxies for large-scale industry-based numerical models 

with millions of cells. Recently, some new statistics-based proxy models have emerged that use 

principal component analysis (PCA) as their core technology. Principal component analysis is a 

dimensionality reduction technique that is frequently used to reduce the dimensionality of large 

data sets. This analysis can be broken down into five steps. (Jaadi, 2021). 

1-Standardize the range of continuous initial variables: This step standardizes the 

range of the variables. 

2-Compute the covariance matrix to identify correlations: The goal of this step is to 

understand how the variables of the input data set are varying from the mean with respect 

to each other, or in other words, to see if there is any relationship between them.  

3-Compute the eigenvectors and eigenvalues of the covariance matrix to identify 

the principal components: To find the primary components of the data, we must 

compute the linear algebra concepts of eigenvectors and eigenvalues from the covariance 

matrix. 

4-Create a feature vector to decide which principal components to keep: The feature 

vector is simply a matrix with the eigenvectors of the components that has been chosen 

to keep as columns, making it the first step towards dimensionality reduction. In this step 

it has been chosen whether to keep all these components or discard those of lesser 

significance (of low eigenvalues), and form with the remaining ones a matrix of vectors 

that we call Feature vector. 

5-Recast the data along the principal components axes: By multiplying the transpose 

of the original data set by the transpose of the feature vector, it is possible to use the 

feature vector created using the eigenvectors of the covariance matrix to reorient the data 
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from the original axes to the ones represented by the principal components (hence the 

name Principal Components Analysis). 

These models, such as proper orthogonal decomposition (PDO) and polynomial chaos expansion 

(PCE), have been used to develop proxies for numerical reservoir models (Mohaghegh, p:16, 

2023) PCE methods are categorized into intrusive and non-intrusive approaches. In the intrusive 

approach, approximations are substituted into the governing equation to obtain accurate 

coefficients. In the non-intrusive approach, coefficients can be computed through a small number 

of model simulations without altering the governing equations. The non-intrusive approach 

includes two main methods: projection and regression. Regression is more popular due to its 

lower computational requirements for multiple system inputs (Zhang and Sahinidis, 2013a, b, c). 

The POD method, which offers ways to find the best lower-dimensional approximations for the 

given data set, essentially provides an orthogonal basis for representing a given set of data in a 

certain least-squares optimal sense (Luo & Chen, 2019). However, these techniques are likely to 

converge with traditional response surfaces, as they are developed within the same computational 

framework.  

c) Data Driven Models 

Significant advancements and breakthroughs in computational intelligence, particularly in the 

realm of machine learning, have played a crucial role in expanding the possibilities and 

capabilities of empirical modeling. These developments have greatly enhanced our ability to 

model and understand complex systems based on empirical data. On the other hand, data-driven 

modeling involves the thorough examination of system data to uncover relationships among 

various variables, including inputs and outputs. Data-driven modeling serves as an inclusive field 

that encompasses various emerging approaches. This approach encompasses several key areas 

in its methodology, including: 

● Data mining and knowledge discovery in databases are specialized fields that primarily 

deal with large databases and have significant applications in domains such as banking 

and financial services. Data mining is considered a subset of the broader field of 

knowledge discovery in databases. These disciplines rely on statistical methods and 

machine learning techniques to extract valuable insights, patterns, and knowledge from 

extensive datasets (Stedman & Hughes, 2021). 
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● Machine learning, originally classified within the realm of artificial intelligence, focuses on 

the fundamental principles shared by computational intelligence and soft computing. 

● Artificial intelligence is a distinct and fascinating field that explores the integration of 

human intelligence into computers, aiming to understand how computers can mimic and 

incorporate human-like intelligence. 

● Soft computing, a field closely related to computational intelligence, primarily emphasizes 

the application and development of fuzzy rule systems. It is a subfield that deals 

specifically with the utilization of fuzzy logic and fuzzy rule-based systems to address 

complex problems and make intelligent decisions (Soft Computing, 2023). 

● Computational intelligence encompasses a range of techniques and approaches, 

including fuzzy systems, neural networks, and evolutionary computing. It extends beyond 

these specific areas to include other aspects of artificial intelligence and machine learning 

as a comprehensive field of study (What Is Computational Intelligence?  - IEEE 

Computational Intelligence Society, n.d.). 

Data-driven modeling techniques involve using a training set to establish the connection between 

system inputs and outputs, effectively capturing the system's behavior. After generating this 

relationship, a separate data set that was not part of the training process is employed to assess 

the model's predictive capabilities. 

2.1.2 Smart Proxy Modeling  

In 2006, Prof. Shahab Mohaghegh at West Virginia University initially developed the design for 

smart proxy models. Smart Proxy Modeling has been extensively studied and developed to deliver 

fast and accurate results, typically within seconds. It has been validated for both steady-state and 

transient problems, serving as a potential replacement for traditional approaches. Smart proxy 

models, also known as surrogate reservoir models, are advanced reservoir approximations that 

can accurately mimic the behavior of complete field models when subjected to changes in all input 

parameters such as reservoir characteristics and operating constraints. Smart proxy modeling is 

a combination of machine learning technologies that are trained to understand and replicate the 

complex physics of fluid flow in a hydrocarbon reservoir. It significantly reduces computational 

time without changing how numerical simulation is used to generate solutions for complex 

physical phenomena. It differs from other proxy models by not simplifying the physics or reducing 

the resolution of the simulation model, and it does not rely on pre-defined functional forms. It 
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preserves the physics and resolution of the original simulation model by utilizing the data 

extracted from the Numerical Simulation model during the training process. The model follows the 

principles of system theory, with an Input-System-Output structure, rather than being a statistical 

best-fit of the simulator responses. They integrate reservoir engineering, modeling techniques, 

and employ data mining and machine learning methods within the framework of surrogate 

reservoir modeling (SRM). According to Mohaghegh et al. (2012), SRM is a collection of 

interconnected neuro-fuzzy systems that are trained to adaptively learn fluid flow behavior from a 

reservoir simulation model comprising multiple wells and layers. The objective is to replicate the 

results of the reservoir simulation model with a high degree of accuracy in real-time operations. 

In order to construct a smart proxy model, multiple reservoir simulation scenarios were required, 

taking into account different operational constraints and geological conditions. Several modeling 

scenarios were developed to capture these variations. The spatial-temporal database was 

created by gathering geological parameters and results from the desired simulation runs. The 

selection of input parameters and acquisition of data required for developing the smart proxy 

model relied on key performance indicators and expertise in petroleum engineering. The trained 

model was then employed in a blind run to validate its performance as an intelligent proxy model. 

Additionally, another grid-based proxy model was created to construct the well-production profile, 

enabling a more comprehensive assessment of field performance. Remarkably, both smart proxy 

models yielded highly precise results. 

In order to train the Smart Proxy Model, we integrate the features of the geological and flow 

models, along with the operational limitations employed in the numerical simulator, with the 

corresponding output from the simulator. This amalgamation produces a comprehensive spatio-

temporal dataset that encompasses vital fluid flow information specific to the field. This 

assimilated dataset serves as the foundation for training and fine-tuning the Smart Proxy Model. 

To ensure its accuracy, the model undergoes validation through blind simulation runs, where it is 

tested against novel data that it hasn't encountered previously. After successfully completing the 

validation process, the Smart Proxy Model becomes a valuable tool for reservoir management 

and strategic planning. Its application in these domains enables efficient decision-making and 

enhances the overall management of the reservoir. With its validated accuracy and reliable 

predictions, the Smart Proxy Model empowers stakeholders to make informed choices regarding 

the optimal utilization of resources, ensuring effective reservoir management and facilitating 

strategic planning initiatives. 
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Smart Proxy Model can be characterized as well-based (Mohaghegh et al. 2012; Shahkarami et 

al. 2014) or cell-based (Mohaghegh et al. 2012). (Gholami et al. 2019; Alenezi and Mohaghegh 

2017). Numerous research studies have focused on well-based proxy modeling, there is a scarcity 

of literature discussing dynamic cell-based proxy modeling specifically for compositional 

simulations, such as CO2 sequestration into saline aquifers. The primary objective of a well-based 

SRM is to replicate reservoir production specifically at the well location, whether it involves 

production or injection activities. In contrast, a cell-based SRM offers the flexibility to simulate 

various dynamic reservoir parameters, including phase saturations, or fluid component 

composition, and pressure, at any desired location or time within the grid block. In contrast, the 

cell-based SRM provides the capability to model a wide range of dynamic reservoir parameters, 

including pressure, phase saturations, and fluid component composition, at any desired time and 

location within the reservoir grid block. 

2.2 Exploring Smart Proxy Modeling in the Literature 

The Laboratory for Engineering Application of Data Science (LEADS) at the Department of 

Petroleum and Natural Gas Engineering (PNGE) in West Virginia University has conducted 

numerous studies (Jalali, Mohaghegh, 2009; Kalantari-Dahaghi, Mohaghegh, et al. 2011; 

Mohaghegh, Amini et al. 2012; Amini, Mohaghegh, et al, 2014; Shahkarami, Mohaghegh, et al, 

2014; Gholami, Mohaghegh, et al, 2014; Mohaghegh, Gaskari, et al. 2014; Haghighat, 

Mohaghegh, 2015; Alenezi, Mohaghegh, 2017; Alnuaimi, Mohaghegh, 2022) that specifically 

delve into the application of this technology. The following sections will discuss all studies that 

applied this technology into their models.  

The smart proxy model has been applied to various field and reservoir challenges. An example 

of its utilization is demonstrated by Jalalai (2009), who employed the smart proxy model for 

reservoir simulation and uncertainty analysis in coal bed methane production. To conduct 

uncertainty analysis, Jalalai employed a Monte Carlo Simulation, which typically necessitates a 

large number of simulation runs. However, the developed smart proxy model enabled the 

generation of these simulation runs in a significantly shorter timeframe. Additionally, compared to 

conventional statistical techniques, a considerably smaller number of simulation runs were 

required to construct the response surface using the smart proxy model. In a pioneering study by 

Kalantari et al. (2011), the groundbreaking technology of the Smart Proxy Model was introduced 

and applied to shale gas reservoirs. This innovative approach marked a pivotal moment, 

revolutionizing the estimation of shale reservoir production profiles with a commendable level of 
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accuracy. Another study by Mohaghegh et al. (2012), an innovative SPM approach which 

revolutionizes reservoir analysis. Departing from traditional practices, this groundbreaking model 

was implemented at the gridblock level of a substantial oil field situated in the Middle East, 

specifically in Saudi Arabia, renowned for its vast array of wells. By leveraging the power of grid-

based computations, the Smart Proxy Model showcased exceptional prowess in accurately 

capturing intricate changes in pressure and saturation across the reservoir, surpassing the 

capabilities of conventional simulation methodologies. This seminal research marked a significant 

milestone in reservoir engineering, paving the way for more advanced and precise reservoir 

characterization techniques. In a groundbreaking study conducted by Gholami (2014), a smart 

proxy model was developed to optimize reservoir injection processes. The research concluded 

that smart proxy modeling offers a computationally feasible alternative to numerical reservoir 

simulation. What sets this approach apart is its ability to accurately replicate pressure and 

saturation distributions throughout the reservoir, at the grid block level and at each time step, 

without compromising the underlying physics or resolution of the original numerical simulation 

model. Achieving a comprehensive understanding of pressure and saturation variations across 

the geological formation, particularly beyond the injection wells, is crucial for effective CO2 

storage and various reservoir engineering procedures. This necessitates the integration of 

reservoir engineering, reservoir modeling, machine learning, and data mining within the 

framework of smart proxy modeling. By utilizing smart proxy modeling, the technology aims to 

learn the intricacies of fluid flow in porous media from numerical simulation model data, enabling 

the replication of results for different scenarios. This ability to replicate and reproduce diverse 

outcomes is a key advantage of smart proxy modeling. In Amini et al. (2014) study, they 

introduced a grid-based smart proxy model for a CO2 sequestration project. The aim of their 

research was to accurately estimate the gas saturation output at the grid level, specifically in the 

context of reservoirs undergoing CO2 injection. The results demonstrated that the smart proxy 

model achieved this goal with minimal error when compared to the numerical model. By 

employing this innovative approach, researchers were able to effectively simulate and predict the 

behavior of gas saturation during CO2 injection in the reservoir, providing valuable insights for 

CO2 sequestration projects. Also, in Alenezi and Mohaghegh (2017)study, they embarked on an 

exploration of the remarkable world of smart proxy modeling. Venturing into the SACROC unit 

field in Scurry County, Texas, they conducted a captivating investigation that unfolded at both the 

grid block and well level. What set their research apart was the ingenious employment of a 

cascade training and validation method, a unique approach where each time step's inputs were 

generated based on the output of the preceding time step, creating a dynamic flow of data that 



14 
 

fueled the smart proxy model. Implementing a cascade 22 training and validation method, they 

derived the inputs for each time step from the output of the preceding time step, excluding the 

first time step, until reaching the final time step. This ingenious feature endowed the model with 

the ability to self-feed from carefully selected dynamic data sources, granting it the power to 

evolve and adapt as the study progressed. The complexity of the production performance and the 

intricacies of its geological classification made the SACROC unit field an optimal testing ground 

to evaluate the prowess and effectiveness of the smart proxy model. These models are far more 

valuable now that they can be created in seconds rather than hours or days. In a recent study 

conducted by Alnuaimi (2022), an artificial intelligence model was developed to replicate the 

functions of a numerical reservoir simulation model. The primary objective of this model was to 

predict the pressure distribution and CO2 plume within a saline aquifer reservoir at different time 

points and grid blocks. The model consisted of a grid with dimensions of 211 x 211 in the X and 

Y directions, and 30 layers in the Z direction, with 28 layers comprising a mixture of conductive 

and non-conductive rock types. The top two layers were designated as shale barrier layers. The 

prediction of pressure distribution and CO2 plume involved injection and post-injection processes, 

with four injectors aimed at injecting approximately two million metric tons per year over a ten-

year period. However, due to limited training data available for the neural network, the model 

faced challenges in accurately predicting saturation across future time steps, resulting in 

accumulation of errors and poor predictions. 
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Chapter 3: Introduction to Artificial Intelligence 

 
Undoubtedly, you have likely encountered the terms "Artificial Intelligence" and may have even 

incorporated them into your daily life. However, have you ever contemplated the precise definition 

of artificial intelligence and its historical origins? This chapter aims to provide a clear 

understanding of "Artificial Intelligence".  

Artificial intelligence involves emulating human intelligence by replicating the cognitive abilities of 

the human brain. Artificial intelligence is activated through Machine learning which is a scientific 

and technological discipline that involves the use of algorithms to enable computers to perform 

tasks without the need for explicit programming. The objective of Artificial intelligence is to 

empower machines to perform tasks such as decision making, analysis, and modeling. It 

encompasses various domains, including machine vision and expert systems, all driven by the 

common goal of developing machines capable of "thinking". 

3.1 History of Artificial Intelligence 

The foundations of what we now recognize as artificial intelligence and machine learning were 

established in the early 1950s when these concepts and ideas first emerged (Gold, 2023). 

According to the information provided on the Science in the News website by Rockwell Anyoha, 

the field of artificial intelligence (AI) experienced significant growth from 1957 to 1974, as 

demonstrated in (Figure 1). During the period from 1957 to 1974, the field of artificial intelligence 

(AI) experienced substantial growth. Advances in computer technology, including improved 

storage capacity, speed, and affordability, made computers more accessible. Researchers made 

progress in developing machine learning algorithms and understanding their application to 

specific problems. Early demonstrations, such as the General Problem Solver and ELIZA, 

showcased advancements in problem-solving and natural language interpretation. These 

achievements, along with the support of influential researchers, led government agencies like 

DARPA to fund AI research at various institutions. The government's focus was on developing a 

machine capable of transcribing, translating spoken language, and efficiently processing large 

amounts of data. Despite the optimism surrounding AI's potential, challenges remained in 

achieving goals like natural language processing, abstract thinking, and self-recognition. One 

significant obstacle was the limited computational power of computers, which hindered their ability 
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to store and process vast amounts of information. Consequently, AI research experienced a 

slowdown as funding decreased and enthusiasm waned for about a decade (SITNFlash, 2020). 

In the 1980s, AI experienced a resurgence due to two key factors: the expansion of the algorithmic 

toolkit and increased funding. Deep learning techniques popularized by John Hopfield and David 

Rumelhart enabled computers to learn through experience. Edward Feigenbaum introduced 

expert systems that mimicked human decision-making, providing advice in specific domains and 

finding application in various industries. The Japanese government invested heavily in AI and 

expert systems through the Fifth Generation Computer Project (FGCP), aiming to revolutionize 

computer processing, logic programming, and AI development. Although not all ambitious goals 

of the FGCP were fully realized, it inspired a new generation of engineers and scientists 

(SITNFlash, 2020). 

From the 1990s to the 2000s, AI continued to make significant progress even without extensive 

government funding or widespread public attention. Landmark achievements included IBM's 

Deep Blue defeating chess grandmaster Gary Kasparov in 1997, representing a significant 

milestone in artificial decision-making. Speech recognition software developed by Dragon 

Systems was implemented on Windows, further advancing the interpretation of spoken language. 

The exploration of human emotion also became a focus, exemplified by Cynthia Breazeal's robot, 

Kismet, capable of recognizing and displaying emotions. These developments demonstrated the 

potential of AI to tackle a wide range of problems (SITNFlash, 2020). 

Figure 1: Roller Coaster of Success and Setbacks of Artificial Intelligence  
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3.2 Artificial Neural Networks 

Artificial Neural Networks (ANNs) are an intriguing field of study, one that has been growing in 

popularity since its inception. ANNs are a powerful tool that have revolutionized the field of 

machine learning and artificial intelligence. They are used in a variety of applications, such as 

image recognition, speech recognition, natural language processing, and predictive analytics. The 

oil and gas industry has applied artificial intelligence (AI) to tackle a range of challenges, such as 

characterization of reservoirs, modeling of reservoir simulation, identification of wells suitable for 

stimulation, interpretation of well logs, drilling, and analysis of pressure transients. The successful 

implementation of artificial intelligence and machine learning in engineering applications began in 

2004 in the field of petroleum engineering, specifically in numerical simulation, pioneered by 

Intelligent Solutions, Inc. Similarly, in 2016, the field of mechanical engineering, particularly 

computational fluid dynamics, witnessed the effective integration of artificial intelligence and 

machine learning techniques, spearheaded by West Virginia University (Mohaghegh, 2023, p. ix). 

3.3 The Structure of a Neural Network 

The concept of ANNs is rooted in the biological structure of neurons in the human brain by 

McCulloch and Pitts back to 1943 (Mohaghegh, 2000). The brain is a complex network of 

interconnected neurons that communicate with each other through electrochemical signals, 

forming the basis of neural networks. In (Figure 2) It is shown that  a neuron typically consists of 

a cell body, axon, and dendrite that connect to other neurons through synaptic connections. 

Communication between neurons occurs via electrochemical signals that enter the cells through 

dendrites. When a neuron is stimulated by a characteristic input, it releases an output signal that 

travels through its axon. This process is known as "firing a signal," and it occurs when the 

electrical potential reaches a threshold value (Mohaghegh, 2018 p. 12).  

 
Figure 2: Neurons in the human brain 
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3.4 Mechanics of Neural Networks  

An artificial neural network (ANN) is composed of layers of neurons that are arranged in specific 

formations, as depicted in (Figure 3). These layers include input layer, hidden layer(s), and output 

layer. The input layer serves as the entry point for data and it is the initial raw information that is 

inputted into the network. In other words, the number of neurons in the input layer corresponds to 

the number of parameters presented to the network as input, while the same is true for the output 

layer. The hidden layer is influenced by the activities of the input units and the weights assigned 

to the connections between the input and hidden units. It performs intermediate computations and 

processes the information. Although hidden layers are sometimes called a "black box" within the 

network system, this does not mean that one cannot examine the function of those layers 

(Mohaghegh, 2018, p. 15). The output layer's outputs are determined by the activities of the 

hidden units and the weights associated with the connections between the hidden and output 

units. It produces the final results or predictions based on the processed information from the 

hidden layer.  

 
Figure 3: Artificial Neural Networks 

 

Furthermore, the mathematical description of the neuron model can be expressed by the following 

equation. 

                                                             𝑦 = 𝐹(∑𝑚
𝑖=0 𝑤𝑖 ∗ 𝑥𝑖 + 𝑏)                                           Eq. 1 
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Where: 

𝑥𝑖: is input value. 

𝑤𝑖: is the weight value. 

b: is bias. 

F: is a transfer function. 

𝑦 : is the output value. 

3.5 Type of Neural Network  

Neural networks can be classified in two major categories: supervised and unsupervised. 

Supervised learning is a widely adopted machine learning approach that relies on labeled 

datasets to train algorithms. In this method, the algorithm is guided by labeled input and output 

data to classify data or make predictions. On the other hand, unsupervised learning involves the 

analysis and clustering of unlabeled data without the presence of output or labeled data. This 

approach utilizes algorithms that can uncover hidden patterns or categories within the input data, 

even without prior knowledge of the expected output. They can be classified further as feed-

forward networks and feedback networks (E, 2010). In a feed-forward ANN, information solely 

flows in a forward direction. The inputs and outputs are predetermined, and there are no 

connections or loops between units that could form. Data travels from the input layer to the hidden 

layer and finally reaches the output layer.On the other hand, feedback ANN models incorporate 

loops within the system. These loops establish connections from outputs directly back to inputs 

and hidden layers. The entire process can be categorized into five stages, namely: 

 

1. Transfer Function: The transfer function in a neural network calculates the output by 

taking the dot product or sum of products of the inputs and weights. It's important to note 

that even if the input values are the same, the output values will vary based on the 

assigned weights. These weights determine the strength of the connections between 

neuron layers(Artificial Neural Network, n.d).  

 

2. Activation Function: After the transfer function, a non-linear and differentiable 

activation function is applied to the result. This activation function introduces non-

linearity to the system, allowing the neural network to learn complex patterns and handle 

negative values in the data. 

                                         𝜃 = ∑ 𝑥1𝑤1𝑗 + 𝑥2𝑤2𝑗 + 𝑥3𝑤3𝑗+. . . . . . +𝑥𝑛𝑤𝑛𝑗                            Eq. 2 
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Different activation functions have different behaviors. For example, the tanh function 

outputs values between -1 and 1, while the leaky ReLU function retains some negative 

values. The logistic sigmoid function produces values between 0 and 1 based on the 

transfer function output. (Pramoditha, 2022) 

 

                                      𝑓(𝜃) =
1

1+𝑒−𝛩                                               Eq. 3 

 

3. Error Function: The output value calculated at the last hidden layer is compared to the 

actual output from the target dataset to calculate the total error using an error function 

like Error Sum of Squares (Course Hero, 2018). 

         𝐸𝑆𝑆 = ∑𝑛
𝑖=1

1

2
(𝑌𝑇𝑎𝑟𝑔𝑒𝑡 − 𝑌𝑜𝑢𝑡𝑝𝑢𝑡)2                                             Eq. 4 

 

4. Backpropagation: It is an algorithm used in neural networks for supervised learning. It 

calculates the gradient of the error function with respect to the network's weights, 

enabling the adjustment of weights to minimize the error. This algorithm operates by 

propagating the error backward through the network, updating the weights layer by layer. 

Backpropagation has gained popularity in deep learning applications, such as image and 

speech recognition, due to its efficiency and effectiveness in training neural networks 

(Backpropagation | Brilliant Math & Science Wiki, n.d.). 

 

5. Weight Optimization: The weights symbolize the magnitude or significance of the 

information being conveyed, while the layer represents the pathway or direction through 

which the information is transmitted. 

3.6 Datasets  

The process of neural data processing involves dividing the database into three sets: training, 

calibration, and verification or validation dataset.  

1. Training: It refers to the dataset used to train the ANN. It consists of input samples 

(reservoir simulation data) along with their corresponding target outputs (e.g., desired 

reservoir behavior). During the training phase, the ANN learns from this data, adjusting its 

internal parameters to minimize the discrepancy between its predictions and the target 

outputs. 

 



21 
 

2. Calibration: It is a dataset which is majorly a watchdog, it is a separate dataset used to 

evaluate and analyze the ANN's performance during the training phase. 

 

3. Verification or Validation dataset: Once the training phase is complete, the trained ANN 

needs to be evaluated on an independent dataset to assess its generalization capabilities 

and ensure it has not overfit the training data. It contains samples that were not used 

during training or calibration. The process helps gauge the ANN's reliability and provides 

insights into its real-world applicability. 

During the training process, the weights between the neurons or processing elements are 

adjusted using an iterative process, but it's important to avoid over-training or memorization, which 

can lead to inaccurate generalization. To prevent this, it's common practice to periodically stop 

the training process and evaluate the network's performance on the calibration dataset. Each 

artificial neuron handles input signals, calculates a total for the combined input signals, and uses 

an activation function to determine the output. The weight of each input represents its connection 

strength to the neuron in the next layer, and the weight is adjusted during the training process. 

The inner product of the input and weight vectors determines the total input signal.  
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Chapter 4: Why Carbon Capture and Storage? 

 

According to the National Centers for Environmental Information, the average temperature across 

global surfaces in 2022 was 1.55°F (0.86°C) higher than the 20th-century average of 57.0°F 

(13.9°C). This is the sixth-highest temperature among all years in the recorded period from 1880 

to 2022. Moreover, it marks the 46th consecutive year since 1977 where global temperatures 

have been above the 20th-century average. These findings also indicate that the last nine years 

from 2014 to 2022 have been among the ten warmest years on record. In fact, all ten of the 

warmest years have occurred since 2010, highlighting a concerning trend of rising temperatures 

across the globe. These findings underscore the urgent need for immediate action to curb 

greenhouse gas emissions and address the ongoing climate crisis. In (Figure 4) shows the 

quantity of heat stored in the top 2000 meters of the ocean, known as the upper ocean heat 

content, reached an all-time high in 2022, exceeding the previous record established in 2021. The 

last four years, from 2019 to 2022, have witnessed the highest levels of upper ocean heat content, 

with the top four positions being held by them (Assessing the Global Climate in 2022, 2023). 

 

 
Figure 4: Land and Ocean Temperature Departure from Average Jan-Dec 2022 (with respect to 

1991-2022 base period) 

 

As a result of human activities, such as burning fossil fuels, deforestation, and transportation, 

there has been an increase in carbon dioxide emissions, leading to global warming and climate 

change. Given this evidence, the significance of Carbon capture and storage (CCS) technology 



23 
 

is becoming more apparent in mitigating the impacts of climate change, as it can effectively reduce 

greenhouse gas emissions from industrial activities while keeping these activities operational. 

Nonetheless, the safety, sustainability, and cost-effectiveness of CO2 storage must be ensured 

to make Carbon capture and storage a viable solution in the fight against climate change.  

4.1 General Information About CCS 

Carbon capture and storage (CCS) is a vital process for reducing carbon emissions from industrial 

activities by capturing carbon dioxide (CO2) and storing it in deep underground geological 

formations. This chapter aims to provide general information about CCS projects and their 

process. It outlines the three main steps involved in the CCS process, and the five types of 

underground formations for CCS projects and storage characteristics. Additionally, this chapter 

will discuss the trapping of CO2 in the subsurface, as well as the Regional Carbon Sequestration 

Partnership (RCSP) Initiative projects as examples. 

4.2 Storage process  

Carbon capture and storage (CCS) is a critical technology that has gained significant attention as 

a solution to reducing greenhouse gas emissions. The Carbon capture and storage process 

involves three steps: capturing, transporting, and storing carbon dioxide (CO2) (Figure 5). Each 

step of the process is essential to ensure the safe and efficient storage of CO2. 

 
Figure 5: Carbon capture and storage three major  process  
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a) Capturing CO2 

Capturing CO2 is the first step in the CCS process. This step involves separating CO2 from other 

gases produced during industrial processes such as power generation, cement manufacturing, 

and steel production. There are several methods for capturing CO2, including post-combustion 

capture, pre-combustion capture, and oxyfuel combustion. Post-combustion capture involves 

removing CO2 from flue gases after the combustion of fossil fuels. Pre-combustion capture 

involves removing CO2 before the combustion of fossil fuels, while oxyfuel combustion involves 

burning fossil fuels in pure oxygen to produce a flue gas that is mainly CO2. 

b) Transporting CO2 

The second step in the carbon capture and storage process is transporting CO2 from the capture 

site to the storage site. CO2 is transported using pipelines, road transport, or ships. Pipelines are 

the most common method of transporting CO2, especially for large-scale CCS projects. Road 

transport and ships are used for smaller-scale projects or in areas where pipelines are not 

feasible. CO2 is transported in a supercritical state, which means it is in a fluid state under high 

pressure and high temperature and more details will be discussed in this chapter. 

c)  Storing CO2 

The final step in the carbon capture and storage process is storing CO2. CO2 is stored in 

geological formations deep underground, including depleted oil and gas reservoirs, saline 

formations, and unmineable coal seams. The storage process involves injecting CO2 into these 

formations, where it is stored permanently. CO2 is stored in a supercritical state, which ensures 

that it remains dense and does not escape into the atmosphere. 

4.3 Techniques for Storing CO2  

According to the information provided by the National Energy Technology Laboratory. One 

method of storing CO2 is by injecting it into underground rock formations. CO2 can be stored in 

different states, including as a supercritical fluid, which is a state where it is subjected to high 

temperature and pressure. Supercritical CO2 is a state where CO2 is at a temperature above 

31.1°C (88ºF) and a pressure in excess of 72.9 atm (about 1,057 psi) (Carbon Storage FAQs, 

n.d.). Under these conditions, CO2 has properties of both gases and liquids, where it is dense 

like a liquid but has a viscosity like a gas. The main advantage of storing CO2 in the supercritical 

state is that it requires significantly less storage volume than storing it under standard temperature 
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and pressure conditions. The natural temperature and pressure in the Earth's crust increase with 

depth, as does the pressure of fluids such as oil, brine, and gas. At depths below 800 meters 

(about 2,600 feet), the natural temperature and fluid pressures are usually above the critical point 

of CO2 for most places on Earth (Carbon Storage FAQs, n.d.). Therefore, when CO2 is injected 

into rock formations at this depth or deeper, it remains in the supercritical state given the 

temperatures and pressures present. Storing CO2 as a supercritical fluid has several benefits. It 

reduces the amount of storage space required, which can reduce the overall cost of CCS. 

Additionally, it ensures that the CO2 will remain stored underground for long periods, as it is less 

likely to leak out of the storage formation. However, storing CO2 in rock formations requires 

careful selection of suitable sites to ensure that storage is safe, environmentally sustainable, and 

cost-effective. 

 

 
 

Figure 6: Illustration of Pressure Effects on CO2 (based upon image from CO2CRC). The blue 

numbers show the volume of CO2 at each depth compared to a volume of 100 at the surface. 

 

4.4 Type of CO2 Storage 

Storing CO2 is the most critical step in the CCS process, and it must be done safely and 

permanently. Geological formations are the most promising storage sites, but they require careful 

selection and monitoring to ensure that CO2 does not escape into the atmosphere. The storage 

process also requires ongoing monitoring and verification to ensure the long-term safety of the 

storage site. There are several types of geologic formations that can be used for carbon storage, 

including saline formations, oil and natural gas reservoirs, unmineable coal seams, basalt 
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formations, and organic-rich shales. In this chapter, we will discuss each of these storage types 

in detail with real examples of CCS Project of each type of storage. 

4.4.1 Saline formations 

Saline formations are underground rock formations that contain highly saline water. These 

formations are widespread and can be found all over the world. The porosity of the rock formations 

enables them to store large amounts of CO2. When CO2 is injected into the saline formations, it 

dissolves in the saline water, forming a weak acid that reacts with the minerals in the rock, forming 

stable mineral compounds. This process ensures that the CO2 is permanently stored 

underground. Saline formations are considered an ideal storage type for CO2 because they are 

abundant, widely distributed, and have a low risk of leakage. 

According to the information provided on the website (SECARB Phase III Site: SECARB Citronelle 

Projects (Anthropogenic Test), n.d.). The Citronelle Project is an example of carbon capture and 

storage (CCS) project that involves the injection of captured CO2 into a saline formation located 

in the Southern Mississippi region. In (Figure 7) shows a Stratigraphic column showing tertiary 

and cretaceous formations at Citronelle field. The project aims to demonstrate the technical and 

economic viability of saline storage for CCS. The CO2 is captured from a nearby fertilizer plant 

and transported via pipeline to the injection site. The project is part of the Southeast Regional 

Carbon Sequestration Partnership (SECARB) program, which is funded by the U.S. Department 

of Energy. 
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Figure 7: Stratigraphic column showing tertiary and cretaceous formations at Citronelle field 

4.4.2 Oil and natural gas reservoirs 

Oil and natural gas reservoirs are underground rock formations that contain oil or natural gas. 

These reservoirs can also be used for CO2 storage. When CO2 is injected into these reservoirs, 

it mixes with the oil or natural gas, reducing the viscosity of the fluids and increasing their flow 

rate. This process is known as Enhanced Oil Recovery (EOR) and has been used for many years 

to extract more oil or gas from reservoirs. However, the use of oil and gas reservoirs for CO2 

storage is limited to the amount of oil or gas present in the reservoirs, making it a less reliable 

storage option (Carbon Storage FAQs, n.d.). 

According to the National Energy Technology Laboratory, the Cranfield Project is a carbon 

capture and storage (CCS) project located in Mississippi, USA is focused on storing carbon 

dioxide (CO2) in depleted oil reservoirs, which are classified as oil and natural gas reservoirs in 

geological storage formations. The project is a part of the Southeast Regional Carbon 

Sequestration Partnership (SECARB) initiative, which is a collaboration between industry, 

government agencies, and academic institutions to evaluate the feasibility of carbon capture and 
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storage in the region. The goal of the Cranfield Project is to inject CO2 into the depleted oil 

reservoirs to enhance oil recovery and store the remaining CO2 in the reservoirs. This project 

aims to demonstrate the effectiveness of carbon storage in oil and gas reservoirs and evaluate 

the potential for long-term CO2 storage in such formations (SECARB Phase III Site: SECARB 

Cranfield Project (the Early Test), Mississippi, n.d.) 

4.4.3 Unmineable coal seams  

Unmineable coal seams are underground coal formations that are not suitable for coal mining due 

to their depth or poor quality. These seams can also be used for CO2 storage. When CO2 is 

injected into the coal seams, it adsorbs onto the coal surface, displacing the methane gas that is 

present in the coal. This process is known as Enhanced Coalbed Methane Recovery (ECBM) and 

has the potential to increase the amount of methane that can be extracted from the coal seams. 

Unmineable coal seams are considered an attractive option for CO2 storage because they are 

abundant, widely distributed, and can potentially enhance coalbed methane recovery (Shi & 

Durucan, 2005). 

4.4.4 Basalt formations  

Basalt formations are underground rock formations that are composed of volcanic rock. When 

CO2 is injected into the basalt formations, it reacts with the minerals in the rock, forming stable 

mineral compounds. This process is known as mineral carbonation and ensures that the CO2 is 

permanently stored underground. Basalt formations are considered an attractive option for CO2 

storage because they are abundant, widely distributed, and have a high storage capacity 

(Alzayani et al., 2023). 

4.4.5 Organic-rich shales  

Organic-rich shales are sedimentary rock formations that contain significant amounts of organic 

matter, such as kerogen. These formations can also be used for CO2 storage. When CO2 is 

injected into the organic-rich shales, it reacts with the organic matter, converting it into stable 

mineral compounds. This process is known as mineralization and ensures that the CO2 is 

permanently stored underground. Organic-rich shales are considered an attractive option for CO2 

storage because they are abundant, widely distributed, and have a high storage capacity 

(Rahman et al., 2020). 
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4.5 CO2 Storage Characteristics  

In order to ensure safe and effective long-term carbon dioxide (CO2) storage, several reservoir 

characteristics of a subsurface storage complex are studied. These characteristics include 

storage resource, injectivity, integrity, and depth. The storage resource refers to the space 

available to store large amounts of compressed CO2, and injectivity relates to the rate at which 

CO2 can be injected into the subsurface. The integrity of a storage complex refers to its ability to 

confine CO2 safely within a predetermined volume without any breaches, and the depth of the 

storage zone is important to ensure that CO2 can be injected as a supercritical fluid. All of these 

characteristics are carefully examined to determine whether a potential storage complex is 

suitable for CO2 storage. 

4.6 Trapping CO2 in The Subsurface  

Trapping is the process of confining the injected carbon dioxide (CO2) in the subsurface storage 

formation. There are four main mechanisms involved in trapping CO2 underground, each playing 

a crucial role in keeping it confined. The first mechanism is Residual Trapping, where CO2 

remains trapped in the pore spaces between rock grains as the CO2 plume migrates through the 

rock. The second in Solubility Trapping, a portion of the injected CO2 dissolves into the brine 

water that is present in the rock's pore spaces.Thirdly, the mechanism is Structural Trapping 

which physically traps CO2 in rock formations. The rock layers and faults surrounding the storage 

formation prevent CO2 from moving out of the injection zone. Structural Trapping is the most 

effective trapping mechanism as it prevents CO2 from migrating laterally or vertically. Finally, 

Mineral Trapping refers to a reaction that can occur when CO2 dissolved in the rock's brine water 

reacts with the minerals in the rock. Over extended periods, this weak acid can react with the 

minerals in the surrounding rock to form solid carbonate minerals, permanently trapping and 

storing that portion of the injected CO2. Therefore, these four mechanisms are essential for 

keeping the CO2 trapped in the subsurface storage formation. 
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Chapter 5: GEOMECHANICS 

 

Geomechanics is a multidisciplinary field that investigates the deformation behavior of rocks and 

soils in response to changes in temperature, stress, and pressure. It encompasses the study of 

pressure transmission through fluids within rocks and the transfer of effective stress across rock 

particle interfaces. To gather reliable data for geomechanical models various methods used like 

coring, seismic analysis, well testing (e.g., transient pressure analysis, hydraulic fracturing stress 

testing), and geophysics (e.g., acoustic emission) (Wikipedia contributors, 2023b). This scientific 

discipline plays a pivotal role in understanding a wide range of geological processes and 

engineering applications. In geomechanics, the behavior of rocks and soils is extensively studied 

to facilitate various critical activities, such as mineral excavation from subsurface layers, 

assessment of borehole stability, design of stimulation programs for reservoir engineering, and 

analysis of fluid flow beneath the earth's surface (Cook, 2023). By comprehending the mechanical 

responses of geologic materials to environmental and engineering factors, geomechanics 

provides valuable insights into the safe and efficient utilization of subsurface resources while 

ensuring the stability and sustainability of infrastructure projects. 

5.1 Importance of Geomechanics in CO2 Sequestration 

Increasing greenhouse gases into the atmosphere is a growing concern as they are immensely 

contributing to global climate change. In this regard, research for both environmentally and 

economically sustainable ways of reducing CO2 emissions are underway.  One of the effective 

ways of fighting against global warming and climate change is through Geological Carbon 

Sequestration which entails capturing and injecting CO2 into geological formations for permanent 

storage. Even though this strategy has been proven efficient in preventing health and 

environmental threats, it has both economic and security implications. Geomechanics is a very 

critical consideration during the injection and long-term storage of CO2. Projects of sequestering 

CO2 entail injecting CO2 in a supercritical state into certain depths in highly porous and permeable 

formations (Feng & Zhang, 2022). It is thus important to eliminate or reduce leakages for a 

prolonged period of at least 1000 years. Understanding geomechanics is key herein since the 

trapping of CO2 below the rock layers depends highly on the geological structure. For instance, 

during formation deposition, a complex geological structure forms. Besides, locations with low 

and high permeability determine how the fluid flows within the formation. The CO2 injected into 
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the formation will either flow laterally or vertically until it reaches an impermeable or a low 

permeable caprock since the density of fluid formation is higher than that of CO2 (Feng & Zhang, 

2022). Low permeability structures or formations make up the physical traps of CO2. The varying 

density between CO2 and groundwater results in an upward movement (Rutqvist, 2012). 

Afterward, in the wetting phase, the groundwater re-enters the pore spaces in the rock to replace 

the CO2 in the weak wetting phase. As CO2 gets replaced with groundwater, the percentage of 

CO2 in the rock pores reduces significantly. Capillary or residual trapping is the mechanism that 

holds isolated CO2 in a stable phase (Feng & Zhang, 2022). 

5.1.2 Key Objectives and Challenges in Geomechanics 

One of the key objectives of geomechanics is its use in mining science. It entails the investigation 

of deformation processes in the ground surface and rock mass for efficient management of subsoil 

and sustainable operation of underground and subsurface facilities. Subsoil facilities are 

permanent structures used for mineral mining. In addition, transportation lines as well as high-rise 

structures, water bodies, power generation points as well as city and industrial infrastructures are 

established in subsoils. For all these establishments, the underground rock masses and ground 

surface components are integral. In case of either man-made or natural calamities, ground and 

rock masses get subjected to deformations; consequently, the rock layers below the earth’s 

surface are prone to instability risks. Advanced knowledge and understanding of stress-strain 

analysis of the rocks and the relevant technologies help a big deal in offering insight into the origin 

and causes of stress and strain patterns, as well as their variability (Sashurin, 2020). 

5.2 Types of stresses 

The accumulated weight of overlying rocks and plate collisions exert substantial forces on the 

rocks at a given depth. The size of the force varies depending on the area of exposure. When the 

force gets adjusted for the area over which it is distributed, then it is known as stress. Rocks are 

said to be under strain when applied stress causes the rocks to change in shape ("Chapter 13. 

Stress and Strain," n.d.). Rocks are acted upon by two categories of forces namely; normal stress 

and shear stress. The normal stresses act on the rocks at right angles while shear stresses act 

parallel to the rock surfaces. The normal stresses further fall under two forms of compression and 

tension. Compression is a force that squeezes on the rocks while tension is a force that pulls the 

rocks apart. As outlined in “Chapter 13 of Stress and Strain," n.d.), compression in the rock layers 

takes place when the plates collide with each other or get buried under other rock layers. On the 

other hand, when the rocks diverge, they are said to be experiencing tensional forces. For 
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instance, during continental drift, a continent begins to pull apart from the other due to tensional 

forces. When rock plates move side by side, under the characteristics of transform plate 

boundaries they experience shear stress.  Rocks maintain an equilibrium state in a certain face 

when equal shear stresses act in the opposite direction. However, a positive shear force acting in 

an X phase and X direction causes the rocks to move in the X direction. Similarly, an extreme 

shear force acting in the negative Y plane in the negative X direction results in the rocks moving 

in the negative X direction.  A positive Y plane of rocks being acted on by forces in the X negative 

X direction results in the rocks moving in the negative X direction. A negative Y plane being 

pushed in the negative Y direction results in the rocks to move in the positive Y direction (Viewd 

Mechanical, 2020). 

 

Figure 8: Illustration of Normal or Shear Stresses Acting on Rocks beneath the Earth's Crust. 

5.2.1 Mohr’s circle and stress transformation 

Mohr’s circle is a representation of the triaxial stress state in the core. In triaxial compression 

tests, the maximum principal stress gets applied along the cylindrical rock specimen’s axis while 

the minimum overall stresses get applied on the specimen’s lateral surface. When shear stress 

is equivalent to the shear strength, then shear damage takes place (Feng & Zhang, 2022). In a 

normal formation of fault regimes, the maximum overall stress represents the vertical stress 

whereas the overall horizontal stress represents the minimum stress as shown in figure 9 (a) 

below. 
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Figure 9: Representation of Normal Fault Regime Formation, Vertical and Horizontal Effective 

Stress. 

The initial formation’s Mohr’s circle is indicated in Figure 9 (b) above and the changes in the 

Mohr’s circle during the injection of CO2 are represented by Figure 9 (c) above.  During an 

increase in pore pressure, there is a greater variation in the maximum effective stress in 

comparison to the minimum effective stress. Eventually, the radius of the Mohr’s circle reduces 

and slightly moves to the left which means that the shear stresses have reduced. Thus, during 

the initial phase of CO2 injection, the Mohr’s circle tends to move away from the damaged area 

hence increasing the stability of the faults and caprock. Afterward, the shear stress undergoes a 

continuous decrease with a corresponding injection of CO2 until a balance between maximum 

and minimum effective stresses is reached (Feng & Zhang, 2022). 

5.2.2 Relationship between stress and strain (Hooke’s law) 

In structural geology, stress and strain are closely related concepts. This relationship can get 

described using the elasticity concept. Perhaps, elasticity is the ability of the material to undergo 

deformation when subjected to stress and then return to the original size and shape when the 

stress gets released. The stress and strain relationship in an elastic material is linear; the resulting 

deformation is directly proportional to the induced stress. Hooke’s law is used to describe this 

relationship. The law states that; the stress is proportional to the strain in a material with the elastic 

modulus as the proportionality constant. 

              𝜎 = 𝐸 ∗ 𝜀               Eq. 5 

 

 

Where; 

𝜎 =  𝑆𝑡𝑟𝑒𝑠𝑠 
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E= Elastic (A measure of material’s stiffness) 

𝜀 =  𝑆𝑡𝑟𝑎𝑖𝑛 

Nonetheless, this stress and strain linear relationship applies until a certain point is referred to as 

the yield point. The rocks begin to undergo plastic deformation beyond this point hence the 

nonlinear relationship. The level of plastic deformation depends on the amount and type of stress-

induced, rock structure and material composition. 

5.3 Rock Mechanics 

5.3.1 Overview of rock properties and classification 

On the basis of their mode of formation, rocks fall under three main classes namely; igneous, 

sedimentary, and metamorphic. Primarily, igneous rocks form by cooling and solidification of the 

magma from deep in the earth's layers when it reaches the earth’s surface. Sedimentary rocks 

on the other hand form due to the accumulation of rock sediments in topographical sinks and 

tectonic basins. Lastly, metamorphic rocks form from exposure to extreme temperatures and 

pressures on pre-existing rock layers. This means that metamorphic rocks form deep down the 

earth's layers but get exposed due to epeirogenic movements or erosion (Mibei, 2014). 

Rocks can further get classified based on various properties. Arguably, the properties of a rock 

refer to either lithologic or measurable aspects of the rock materials that can either get examined 

in hand specimens or through laboratory tests. Such properties include but are not limited to 

mineralogy, primary porosity, hardness, particle size, color, and permeability. Different rocks have 

different levels of hardness; the resistance of the rock to permanent deformation. Categories of 

hardness provide rational estimations of the rock material strengths for the classification of earth 

material as rock. This characteristic is important for designers of rock excavations such as 

auxiliary spillways when doing estimations on the location and alignment ("Chapter 4 Engineering 

Classification of Rock Materials," 2012). Different rocks also have different textures. For instance, 

crystalline is a textural term for rocks consisting of entirely interlocking crystals while pegmatitic 

rocks are coarse-grained crystals of greater than 10 mm diameter and glassy rocks are extrusive 

igneous rocks that cooled quickly without discrete crystallization. The permeability of the rock is 

another aspect that determines the classification of rocks. It is highly interlinked with the pore 

spaces of a particular rock. Perhaps, rocks with coarse gravel have a high rate of permeability as 

opposed to those with silt, clay, or shale particles ("Chapter 4 Engineering Classification of Rock 

Materials," 2012). 
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5.3.2 Failure criteria of rocks (Mohr-Coulomb criteria) 

Shear failure remains to be the most common type of failure which occurs when shear stress 

acting on a caprock plane exceeds the shear strength at the plane of fault. This type of rock failure 

is identified using the Mohr-Coulomb criterion. It is because Mohr-Coulomb’s criterion considers 

both minimum and maximum principal stresses, and underestimates the strength of the rock 

hence appropriate during designs. 

5.3.3 Rock behavior under different loading conditions 

As argued by Zhang et al., (2021), when rocks get subjected to an increased strain as the stress 

is kept constant, they undergo creeping. On the other hand, when the stress reduces at constant 

strain, the rocks undergo slackening. Whenever the induced stress exceeds the crack initiation 

stress, then the micro-cracks within the rocks expand at a steady rate. Stress exceeding damage 

stress results in accelerated inelastic strain which triggers unstable growth of micro-cracks. 

5.3.4 Laboratory testing techniques for rock characterization 

Laboratory testing of the rocks gets undertaken to determine the elastic properties and strength 

of intact specimens. It also aids in evaluating the degradation and disintegration potential of rocks. 

Such information is thus helpful in the design works of rock fills, both shallow and deep 

foundations, cut slopes, and rip-raps used in protecting shores. The mostly conducted laboratory 

tests for determining the strength of intact rocks include; compressive strength, direct shear, point 

load index, and the Brazilian test. The durability tests on the other hand include abrasion and 

slaking tests ("Laboratory testing and rock properties," 2011).    

5.3.5 Young’s modulus and Poisson’s ratio 

Young’s modulus refers to the measure of stiffness of an elastic material. Perhaps, it is the ratio 

of stress to strain. 

  𝐸 =
𝑆𝑡𝑟𝑒𝑠𝑠 

𝑆𝑡𝑟𝑎𝑖𝑛
=

𝜎

𝜀
             Eq. 6 

 

Rocks that have low Young’s modulus have ductility characteristics whereas those with high 

Young’s modulus have brittle characteristics. Brittle rocks always depict better targets of hydraulic 

fracturing as well as completion quality (Ma et al., 2016). When rocks as any other material get 
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stretched in one direction, they tend to compress in the perpendicular direction to the phase at 

which the force gets applied. Perhaps, poisson’s ratio refers to the change in the width per the 

material’s unit width to the change in length per unit length when subjected to strain. 

                                 𝑃𝑜𝑖𝑠𝑠𝑜𝑛′𝑠 𝑅𝑎𝑡𝑖𝑜 =
𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑆𝑡𝑟𝑎𝑖𝑛

𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑆𝑡𝑟𝑎𝑖𝑛
                      Eq. 7 

𝜐 =
−𝜀𝑡

𝜀𝜄
 

𝜀𝑡 = 𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑜𝑟 𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝑆𝑡𝑟𝑎𝑖𝑛 

𝜀𝜄 = 𝐴𝑥𝑖𝑎𝑙 𝑜𝑟 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑆𝑡𝑟𝑎𝑖𝑛  

𝜐 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛′𝑠 𝑅𝑎𝑡𝑖𝑜 

The Poisson's ratio gets represented by a negative sign whereas normal materials have a positive 

ratio. Nonetheless, Poisson's ratio is positive for tensile deformations and negative for 

compressive deformations ("Poisson's Ratio," n.d.). Both Poisson’s ratio and Young’s modulus 

are critical parameters in the design of hydraulic fractures (Ma et al., 2016). 

5.4 Geomechanical considerations for site selection and well design 

Modeling of fracture propagation extends its benefits to site selection and well design. Fracture 

length information obtained from the modeling techniques is useful in designing well patterns (Lee 

et al., 2022). Ground surface uplifts and micro seismic events are also useful in monitoring 

subsurface fluid flow which is critical in siting of wells. 

5.5 Risk assessment and mitigation strategies for geomechanical hazards 

A high injection rate of CO2 can cause the downhole pressure to exceed the pressure at the 

fracture hence inducing tensile fracture. If the pressure builds up and exceeds the normal range, 

the response can easily extend to the top of the target reservoir and sea bed surface. When the 

cap rock is impermeable, then shear failure at the interface is highly possible. Thus, the stability 

of the caprock becomes insecure. Eventually, CO2 leakages resulting from buoyancy are highly 

probable hence posing an environmental threat (Song et al., 2023). Besides, CO2 traps induce a 

variation in temperature or pressure which eventually results in buildup of stress or strain around 

the injection area hence causing either deformation, change in injectivity and permeability of rock 

layers. Also, the build-up of pore pressure due to CO2 induction act as pathways for CO2 and 

induce micro-seismic waves that can result in earthquakes and ground surface uplifting. Mohr-

Coulomb failure however can be used to predict fault reactivation through evaluating the stability 

of existing faults (Song et al., 2023).   



37 
 

Chapter 6: Reservoir Simulation Modeling 

 
6.1 Overview 

It is necessary to construct a reservoir simulation that takes into account geological and 

petrophysical factors in order to comprehend the movement of fluids in subsurface reservoirs that 

contain porous materials. Numerical reservoir modeling is a widely used technique among 

petroleum engineers to simulate hydrocarbon reservoirs. By creating a model that accurately 

reproduces past performance, engineers can frequently predict the future behavior of the 

reservoir. In this study, numerical reservoir simulation was utilized to generate the essential data 

for the development and testing of an artificial neural network. Furthermore, these models are 

employed to devise the best field development strategies by simulating a variety of scenarios. In 

this study, numerical reservoir simulation was utilized to generate the essential data for the 

development and testing of an artificial neural network. The subsequent sections provide a 

detailed description of the process used to develop the reservoir model in this study. 

6.2 Description of Reservoir Geological Structures 

Computer Modeling Group software was the chosen tool for building the reservoir models, which 

were designed to mimic a hypothetical reservoir featuring spatially varying properties, exhibiting 

differences both within and between its geological layers. The Computer Modeling Group (CMG) 

is responsible for developing the Compositional and Unconventional Simulator (GEM), a 

sophisticated compositional simulator based on a general equation of state. The remarkable 

aspect of GEM lies in its all-encompassing feature set, which incorporates dual porosity modeling, 

support for horizontal wells, comprehensive well management tools, the ability to handle complex 

phase behavior, CO2 and miscible gas simulation, representation of gas condensate behavior, 

and the representation of volatile oil behavior (GEM, Compositional & Unconventional Reservoir 

Simulator Unconventional Reservoir Training, 2016). The CO2 injection and sequestration into an 

aquifer formation were replicated in this study using the simulator's dedicated CO2 module. The 

structural components of the reservoir model, namely the top, bottom, and layer thickness, were 

extracted from a previously constructed history match model at WVU (Haghighat, 2015) for the 

Citronelle field, which serves as a saline reservoir in Mobile County, Alabama, USA. The reservoir 

structure was obtained from a model created previously at LEADS at WVU in 2021 by Alaboodi. 
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The model's design comprises a grid layout of 125 x 125 blocks along both the X and Y axes. Its 

geological representation involves a total of 65 layers in the Z direction. Within these layers, 51 

are composed of sand formations, interspersed with 14 shale or impermeable layers strategically 

positioned at the reservoir model's upper, middle, and lower segments. Importantly, layers 5 to 

28 define the Upper Aquifer, while layers 35 to 61 pertain to the Lower Aquifer in the simulation 

model. For a more illustrative understanding of the reservoir's structure and the placement of 

wells, (Figure 10) serve as informative visual aids. In addition, the reservoir simulation model 

takes into account the heterogeneity caused by thickness variations within individual layers and 

across different layers. This authenticity enhances the applicability and value of the study's 

outcomes. 

 

ft 

 

Figure 10: presenting a three-dimensional perspective of the reservoir model's geometry and the 

relative locations of the injection wells. 

 

6.3 Implementation of Geological Reservoir Realizations 

The process of incorporating geological reservoir realizations is discussed for training artificial 

neural networks (ANN) in constructing the Smart Proxy Model. To achieve this, a set of 20 

geological models with similar broad porosity distribution patterns but distinct and varied 

distributions were created. The objective was to develop a realistic, heterogeneous reservoir with 

different characteristics across layers. Through the analysis of porosity and permeability data from 
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(Haghighat, 2015), it was identified that the reservoir model contained four permeability groups: 

very conductive perm, conductive perm, average perm, and tight perm. To generate meaningful 

permeability data, porosity-permeability correlations were used to populate permeability values in 

each grid cell of the model. The top portion of the Upper Aquifer exhibited a highly conductive 

permeability correlation in the top 8 sand layers, while the lower 16 sand layers had an average 

conductive permeability correlation. The layers in the Lower Aquifer were divided into Conductive 

Perm and Tight Perm correlations. As a result, the complex 65-layer model was simplified into 

two main reservoir intervals: the top interval with a high-permeability upper layer and an 

intermediate-permeability middle layer, and the bottom interval with a single relatively low-

permeability layer. These intervals were separated by three very low-permeability shale 

formations, acting as barriers to vertical gas migration.  

After creating the 20 geological models with distinct permeability distributions, the next step 

involved enhancing these realizations with additional geological properties. These additional 

properties, such as rock types, Young's modulus, Poisson's ratio, and stress values, were 

incorporated to gain a comprehensive understanding of shear stress in the reservoir before 

feeding the data into the Smart Proxy Model. As shown in Table 1, shale and sandstone exhibit 

a range of Young's modulus and Poisson ratio values, and these are the values that have been 

selected. The values for these geological properties were meticulously gathered through in-depth 

research and examination experiments, including insights from tutorials and default values from 

CMG (Computer Modelling Group) software. By incorporating these crucial parameters, the 

geological realizations were enriched, enabling a more accurate representation of the reservoir's 

behavior under different conditions. A detailed presentation of all these geological properties and 

parameters will be provided in (Table 1 and 2) will be followed with a 3D view of shear stress IJ 

direction from GEM results (Figure 11). This table will serve as a valuable reference for the Smart 

Proxy Model, contributing to its robustness and effectiveness in simulating the reservoir's complex 

behavior. 
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Table 1: Typical range for Young's modulus and Poisson ratio for different types of rock 

 

Parameter  Value  Parameter  Value 

Finite element   3D Stress x,y,z 5000 

Coupling  One way  Stress gradient x,y,z -12 

Rock type  Elasto Plastic: 
Mohr-Coulomb 

Thermal expansion 

coefficient 

1e-5  1/F 

 

Table 2: Reservoir Parameters and Properties 
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Figure 11: Shear stress IJ Direction 3D view from GEM results  

6.4 CO2 Injection Design (Number of Injector, Injection Time)  

In the reservoir simulation model (as shown in Figure 10), there are four vertical injection wells. 

These wells were perforated and completed in all 51 sand layers, encompassing both the upper 

and lower aquifer formations. The injection strategy was designed to adhere to two main 

constraints: primary constraints related to the Bottom Hole Pressure (BHP) at the well level and 

secondary constraints associated with the maximum injection rate. To maintain a secure 

operational environment, a maximum BHP limit of 5,500 psi was established, with a prudent 10% 

safety margin from the reservoir fracture pressure. This precautionary measure aims to safeguard 

the integrity of the reservoir and prevent potential risks during the injection process.  As illustrated 

in (Figure 12), the injection activities commenced on January 1, 2020, and they are planned to 

span 30 years, lasting until January 1, 2050. Following the injection phase, a post-injection 

monitoring phase is scheduled to begin on January 1, 2050, and will continue for an extensive 

period of 270 years, concluding on January 1, 2320. In total, the entire injection and post-injection 

monitoring scheme will extend over a span of 300 years. This long-term approach ensures a 

comprehensive assessment of the reservoir's behavior and provides valuable insights into its 

response to the injection activities over an extended period. 

 

 

 
 

Figure 12: the simulation study illustrates the designated timesteps for injection and post-injection 

phases. These time intervals were thoughtfully chosen to capture the critical stages of the 

reservoir's response to injection and to monitor its behavior over an extended period after injection 

concludes. 
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Chapter 7: Methodology  

 
7.1 Review  

This chapter focuses on the methodologies used to design artificial neural networks, particularly 

in Smart Proxy Modeling for Shear Stress. It covers strategies for training development and blind 

deployment phases, aiming to clarify these processes. Additionally, it provides an overview of the 

procedures used to create a Smart Proxy tailored to the project's needs. This foundation supports 

understanding subsequent discussions. The chapter offers guidelines for building a predictive tool 

using Artificial Neural Networks and devising features, based on insights from the progression 

and training processes. A blind simulation scenario was executed for primary evaluation. Smart 

Proxy Modeling moves to the next stage if it is successful, involving validation with an unseen 

dataset. This particular phase holds significant importance as it serves as the primary yardstick 

for measuring the performance prowess of the SPM approach. The research followed the 

subsequent procedure outlined in (Figure 13).  

 

Figure 13: The general workflow utilized for SPM in this study  

To simplify the previous flowchart of Smart Proxy Model (SPM) development, there are four major 

stages for SPM in this study: 
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1. Reservoir Simulation Scenarios: We start with a number of reservoir simulation scenarios 

that are run based on the study's purpose and this study will be focusing on Shear Stress 

in three different directions. 

2. Data Retrieval and Structuring: The next step involves the retrieval and structuring of 

relevant static and dynamic data. This process is crucial for producing a comprehensive 

spatio-temporal dataset, which simplifies the overall process. This dataset is then used to 

construct the input data set for neural network training. 

3. Neural Network Construction and Training: Multiple neural network models are 

constructed and trained. This training process is vital as it simplifies the neural networks' 

ability to interpret the dataset effectively. 

4. Model Testing: Finally, the trained neural network models are subjected to testing by 

running them through a series of blind scenarios. This evaluation phase, although an 

integral part of the process, simplifies the assessment of the models' accuracy and their 

capability to make predictions under various conditions. 

7.2 Create a SPM for Predicting Dynamic Behavior Across Multiple Time Steps 

The project's focal point involves crafting a dynamic smart proxy model for predicting Shear Stress 

in three distinct directions at each simulation time step. To fulfill this objective, three distinct 

Artificial Neural Networks Models were constructed. The accompanying flowchart provides a 

visual representation of the three Artificial Neural Networks Models (refer to Figure 14). The first 

ANN Model (referred to as ANN 1) takes input comprising Static Parameters and Shear Stress in 

the IJ direction at time step (t - ∆t), yielding Shear Stress in the IJ direction at time step (t) as its 

output. The Static Parameters, detailed in subsequent sections, encompass constants unaffected 

by time step changes. The second ANN Model (denoted as ANN 2) employs the predicted Shear 

Stress in the IK direction from time step (t - ∆t) as input, generating Shear Stress in the IK direction 

at time step (t) as output. Similarly, the third ANN Model (referred to as ANN 3) utilizes forecasted 

Shear Stress in the JK direction from time step (t - ∆t) as input and produces Shear Stress in the 

JK direction at time step (t) as output. Shear Stress values in the IJ, IK, and JK directions at time 

step (t - ∆t), coupled with the Static Parameters, serve as inputs to the ANNs for forecasting Shear 

Stress in those respective directions at time step (t). 
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Figure 14: Flowchart shows the design of the three ANNs of the Smart Proxy Model 

 

Amidst the deluge of data from numerical reservoir simulations during injection and post injection 

phases, a strategic move was made. Time step data was neatly partitioned into five categories: 

monthly, yearly, decade, and 50 year intervals for both injection and post injection scenarios 

(Alaboodi, 2021). SPM were crafted and trained for each category, functioning as interconnected 

puzzle pieces and here's where it gets innovative. Think of it as a relay race. The latest Smart 

Proxy Models output takes the baton and becomes the input for the next Smart Proxy Models in 

line. And within each Smart Proxy Models, not only does the previous output tag along, but static 

data also joins the ride.This cascade trains the neural network to predict simulation outcomes one 

step at a time, without the traditional need for previous simulation outputs. Rather than playing 

catch-up, the SPM confidently anticipates the next move using its own projections as cues. The 

real beauty? It conjures up simulation results for any step, without hunting for prior numerical 

reservoir outputs. A game-changer compared to the more rigid methods of other studies.  

7.3 Preparing Data for Artificial Neural Networks 

The process of dataset preparation holds immense significance in the development of a Smart 

Reservoir Model. This dataset will serve as the educational material for the Smart Reservoir 

Model, imparting knowledge about the reservoir's characteristics and the specific scenarios at 

hand. The soundness of the Smart Reservoir Models output relies on the integrity of its input. 

Using flawed or inaccurate data in the model will inevitably lead to misguided outcomes. It's 

unreasonable to anticipate positive results from an SPM that hasn't been adequately trained. As 

mentioned earlier, following the execution of the twenty numerical reservoir simulation models, a 

thorough analysis and quality checks were conducted at each time step and layer for every 

individual run. This comprehensive scrutiny aims to comprehend the intricate interplay between 
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various parameters. Furthermore, some crucial features have been generated, substantially 

enhancing the accuracy of the Smart Proxy Models. The next step involves extracting vital data 

from each of these runs. This extracted data serves as the fundamental building blocks for the 

spatio-temporal database, forming the very foundation on which the smart proxy model relies. 

The process of creating the smart proxy entails designing and executing these twenty simulation 

runs, resulting in a substantial collection of records that contribute to the richness of the dataset. 

In the quest to build a robust Artificial Neural Network model, it's imperative to employ domain 

knowledge when constructing the dataset. This essentially means that the data needs to be 

carefully prepared to effectively reveal the underlying structure of the problem to the machine 

learning algorithm. Thus, comprehending the physics and fluid flow dynamics within the reservoir 

model becomes the linchpin for generating an appropriate dataset for the Smart Proxy. 

7.4 Data Processing 

The numerical reservoir simulation runs conducted using CMG software generated a significant 

volume of raw data, both in terms of outputs and inputs. This raw data underwent analysis and 

was then transformed into a format suitable for further use. Python was employed to initiate this 

process, which involves reading the simulation outputs and inputs, followed by the extraction and 

storage of relevant data according to predefined criteria. This process demands a substantial 

amount of computational time and a comprehensive understanding of the critical data derived 

from reservoir simulations. The task of selecting input parameters for training a neural network 

from the pool of variables assimilated in the database is anything but simple. Project databases 

often encompass a multitude of parameters, each of which could potentially serve as an input for 

the neural networks that will facilitate data-driven model training. Within these databases, both 

static and dynamic attributes are provided, alongside comparable data for different offset wells. 

These values are organized as columns in a flat file, destined to be utilized for the training of data-

driven models, particularly neural networks. 

7.5 Features Generation and Engineering 

The process of feature engineering involves the skillful application of domain expertise in selecting 

and transforming critical variables from raw data during the construction of predictive models 

using machine learning techniques. This practice not only empowers machine learning algorithms 

but also enhances their performance substantially. Within a particular project, this approach goes 

beyond mere enhancement; it imparts reservoir engineering insights by leveraging data from a 

numerical simulation model. However, the feature engineering undertaken in this context is no 
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ordinary endeavor. It entails a thoughtful provision of pertinent information to machine learning 

algorithms, enabling them to comprehend the intricate dynamics of fluid flow within porous media. 

Beyond the extraction of static and dynamic attributes from the CMG model, a deeper dive has 

occurred. Novel features have been crafted following a thorough understanding of the data 

structure. This step is undertaken with the goal of elevating the learning capacity of the models, 

thereby enabling them to generate highly precise predictions. The dataset operates in a cell-

based framework, where each row represents a focal cell within the model. This landscape is 

composed of 125 cells along the "I" axis, an equal number along the "J" axis, and 65 layers along 

the "K" axis, resulting in a total of 1,015,625 cells for each realization. The genesis of each new 

feature lies in meticulous calculations, with individual columns being dedicated to each focal cell. 

This multifaceted approach contributes to a comprehensive mosaic of characteristics. The 

concept of distance emerges as a pivotal element. The space between each cell and the injectors 

takes the spotlight, with a cluster of attributes shedding light on proximity. This information is not 

just an accompaniment; it becomes an integral part of the ANN Model. These cells cease to be 

mere coordinates; they transform into entities intertwined with numerical indexes (I, J, and K). 

Further, each cell is uniquely identified, bestowing upon it an emblem that aids recognition by the 

ANN. As this symphony of data unfolds, fresh features come to life, expanding the horizons of 

comprehension and predictive prowess. In the orchestration of learning, these features act as 

guiding notes for algorithms, allowing them to unravel the intricacies of reservoir behavior with 

heightened clarity. In visual terms, these features serve as brushstrokes that collaboratively paint 

the comprehensive picture of reservoir intricacies and behavioral patterns. Each realization, 

encompassing an impressive 1,015,625 cells, contributes to the intricate dance of information, 

with each new feature thoughtfully composed as a column aligning with individual focus cells. This 

orchestration not only yields an expansive reservoir of data but also highlights the meticulous 

craftsmanship behind the creation of predictive models. 
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Figure 15: Distance to the boundary and injection wells from the Focal Cell 

In the context of a numerical reservoir simulation, the characteristics of a specific cell, such as its 

Shear Stress, are not solely influenced by its own attributes but are also impacted by its 

neighboring cells. Hence, when training the ANN Model, it becomes crucial for the model to gain 

insights from not just the primary cell but also the surrounding ones. To achieve this, a tier system 

is introduced, where each central cell is enveloped by three concentric layers termed tiers: tier 1, 

tier 2, and tier 3. These tiers are characterized by their arrangement into surface, line, and point 

contacts, respectively. In this methodology, both tier 1 and tier 2 play a significant role in shaping 

the dataset for the ANN Model. Tier 1 consists of cells in direct face-to-face interaction, 

encompassing six cells encircling the central one. Conversely, tier 2 includes cells in line contact, 

forming a configuration of 12 cells around the central cell. As a result, attributes from a total of 18 

neighboring cells are utilized as input data to train the ANN Model. This arrangement is visually 

illustrated in Figure 16, depicting the circular arrangement of tier 1 cells and their relationship with 

the central cell, while also demonstrating the placement of both tier 1 and tier 2 cells. 
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Figure 16: Schematics showing the implementation of tier cells 

In order to effectively guide the ANN model in comprehending the behavior of each cell within the 

system, it becomes crucial to establish a unique identification for each cell's position and employ 

it as input for the model. This is achieved by determining the precise location of each cell within 

the reservoir simulation model. This location is represented by calculating the distance of the cell 

from the model's boundaries comprising top, bottom, east, west, north, and south dimensions. 

Simultaneously, the three indexing values (i, j, and k) are utilized to pinpoint the exact coordinates 

of each cell. Additionally, to distinctly identify each cell's location, a unique cell ID has been 

assigned within the reservoir simulation model and introduced as input to the ANN, thereby 

enhancing the model's grasp of individual cell positions. To further augment the ANN's 

understanding, the distances between cell positions and reservoir model boundaries are 

combined with information regarding the cell's proximity to injection wells. This entails 

incorporating the order of proximity to the injection sources (e.g., distance to the closest injector, 

second closest injector, and so forth). This supplementary data serves as an additional feature, 

enabling the ANN to discern the relative significance of each cell's location concerning CO2 

injection sources.  

 7.6 Spatio-Temporal Dataset Construction  

The term "spatio-temporal dataset" refers to a collection of data that combines both spatial and 

temporal information relevant to a particular research subject. In this study, various geological 

characteristics, as well as additional features and outcomes from simulations, were gathered to 

form a comprehensive spatio-temporal dataset. This dataset is then utilized to teach the Smart 

Proxy about the fundamental principles of fluid movement through porous materials. Moreover, it 

helps the Smart Proxy understand the intricate nature of the reservoir's heterogeneity as depicted 

in the geological model, and how this heterogeneity influences the flow of fluids and fluctuations 
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in pressure within the reservoir. To efficiently gather information and reduce computational time, 

a systematic approach is employed during the design and execution of simulations. The study 

involves constructing multiple artificial neural networks, each dedicated to aspects such as Shear 

Stress in different directions (IJ, IK, JK). These networks consist of a hidden layer and an output 

layer. There is one hidden layer and one output in each network and it has been shown that single 

layer feedforward networks with backpropagation works well.  In this context, the rows within the 

spatio-temporal database correspond to individual records or samples within the dataset, while 

the columns represent specific attributes or characteristics. Each time a numerical reservoir 

simulation generates a geological scenario, it produces over a million records associated with grid 

cells due to the complexity of the model. As the simulation program comprises 115 time-steps, 

the resulting spatio-temporal database encompasses the records. Each of these records 

encapsulates the static and dynamic attributes of a specific grid block within a given simulation 

run and time-step. 

7.7 Data Partitioning  

In the course of each Smart Proxy Model's (SPM) progression, its developmental data undergoes 

a methodical division into three distinct segments: training, calibration, and validation. This 

allocation follows a meticulous structure: 80% designated for training, 10% for validation, and an 

additional 10% for calibration, a configuration tailored specifically to the Shear Stress models 

within the IJ, IK, and JK directions. Among these segments, the training dataset takes 

precedence, notably due to its substantial size. It serves as the crucible where the neural network 

refines its capabilities, intricately weaving connections between input and output elements. In 

essence, the training dataset acts as a repository of fundamental elements that a data-driven 

model seeks, ultimately governing the breadth of its capabilities. Stepping into the scene, the 

calibration data assumes a more deliberate presence, functioning as an assessor of the artificial 

neural network's (ANN) performance throughout its training spectacle. Concurrently, the training 

data assumes the role of an educator for the ANN. Following the culmination of the training phase, 

the educated ANN embarks upon the validation stage. Visualize the calibration dataset as a 

vigilant sentinel, meticulously overseeing the training performance and proclaiming a halt when 

needed. The rationale behind this intervention is rooted in the fact that the network's efficacy is 

inherently tethered to its calibration dataset, a shrewdly selected dataset purposefully held in the 

dark. However, there's more to unveil. Amidst this didactic spectacle, four reservoir simulation 

runs are handpicked to remain untouched, designated as enigmatic "blind runs." They stand 

resolute, untouched by the training process, awaiting their moment to contribute to the verification 
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phase by assuming the guise of novel simulation data. And then, in a grand culmination, enters 

the validation dataset. This segment emerges as the final act but commands profound 

significance. Diverging from its counterparts, it refrains from molding the network or steering its 

calibration. Instead, it maintains its distance from the outset, reserved for a singular purpose: to 

be the masked dataset. It maintains a patient presence throughout the proceedings, anticipating 

its role or in other words, it is being highlighted that the validation dataset is attentively awaiting 

the moment when it will be used for its intended purpose in evaluating the trained neural network's 

performance. The adeptly trained neural network encounters its initial litmus test through this 

dataset, assessing its capacity for generalization. This marks the preliminary stage preceding the 

ultimate examination, the blind validation test. 

7.8 Training Process of Artificial Neural Network and SPM 

In the realm of training neural networks, simulation runs illustrate how the model interacts with 

data, reflecting its ability to oversee CO2 injection across diverse scenarios. Proxy modeling, a 

data-driven representation, captures the reservoir system's essence and internal dynamics, 

demanding insights from various domains. Static data maintains constancy, including reservoir 

structure details. Supplementary data covers distances between blocks, encapsulating initial 

values and proportions. Dynamic data spans well and blocks aspects, encompassing changing 

pressures, rates, and variables like shear stress content. Crafting a network for a specific purpose 

initiates training, beginning with random initial weights. This iterative learning process refines the 

network's weights for accurate input-output mapping. During training, the network's hidden layers 

process data sequentially, aligning generated outputs with desired outcomes. Errors trigger 

adjustments, refining connections over time. During the development of neural networks, once 

construction and refinement are complete, the training phase commences with designated data. 

The hyperparameters of each artificial neural network (ANN) are tailored individually. The training 

halts upon noticeable improvements in predicted performance aligned with predefined stopping 

criteria. The calibration dataset guides the neural network to determine the optimal training 

endpoint for deploying the best-fit model. An excessively accurate neural network trained solely 

on the training data is termed an over-trained model, memorizing records without genuine 

predictive capacity referred to as over-training or over-fitting, a condition to avoid. Such 

tendencies are mitigated by the calibration dataset. Monitoring the network's behavior during 

training provides valuable insights into its progression. This observation is a crucial gauge for 

effective convergence toward a solution. 
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In this study, neural networks with a single hidden layer were used for analysis, as mentioned 

previously. Table 3 below provides a sample of the hyperparameters used for the neural networks 

in this study. The optimization of hyperparameters for each neural network was based on factors 

such as the size of its spatio-temporal dataset and initial observations from the training process. 

The hyperparameters, encompassing factors like the learning rate, the quantity of neurons within 

hidden layers, and the selection of an activation function, have been recognized as influential 

determinants of the neural networks' training performance. It's essential to emphasize that 

hyperparameter tuning stands as a pivotal component of the process. Its particulars can fluctuate 

depending on the inherent nature and intricacy of the problem being addressed, as well as the 

distinctive attributes of the available data. Additionally, the proficiency of the machine learning 

engineer plays a significant role in shaping the effectiveness of hyperparameter tuning. 

Hyperparameter  Values / type  

Number of Hidden Layers 1 

Number of Neuron in Hidden Layer 1000 

Learning Rate  0.001 

Activation Function (Input Layer-Hidden Layer) ReLU 

Activation Function (Hidden Layer-Output Layer)  Tanh 

Number of Epoch  10,000 

Batch size  20,000 

Table 3: Typical hyperparameters used in this study for one of the ANNs 

In the architecture of a neural network, there's a hidden layer positioned between the input and 

output layers. This hidden layer comprises a defined number of neurons, often referred to as 

"Neurons in the Hidden Layer." The neural network's learning rate is a pivotal parameter that 

governs the size of each step taken during the iterative process aimed at minimizing the loss 

function. Simultaneously, the activation function assumes a crucial role in determining whether a 

neuron should activate or remain dormant. It accomplishes this by calculating a weighted sum 

and adding a bias. The primary objective of the activation function is to introduce nonlinearity into 

a neuron's output using basic mathematical operations. This nonlinearity is essential for neural 
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networks to effectively model and comprehend intricate relationships within data. Now, when we 

discuss the training process, it involves processing all the data records in a training set and 

measuring the error between the neural network's output and the actual desired output. A full 

cycle of this training process is commonly referred to as an "epoch." During an epoch, the entire 

training dataset is propagated through the neural network, both forward and backward, once. 

Typically, specific criteria are established to determine when the training process should 

conclude. This conclusion occurs when the error between the predicted output and the actual 

output drops below a predefined threshold. To facilitate the training process, the training data can 

be divided into smaller subsets known as the "batch size." This division serves a dual purpose. 

First, it accommodates situations where the training dataset is too extensive to be processed all 

at once by the neural network. Second, it introduces an additional parameter that contributes to 

the neural network's training dynamics. 

7.9 Error Measurements 

The validity of the proposed smart proxy model hinges on its assessment using a distinct 

validation dataset. Crucially, the model's precision in comparison to the blind dataset must be 

established. In this context, precision is determined by quantifying the difference between the 

output of the numerical simulator and the smart proxy model. The evaluation of error must occur 

at every grid block since the smart proxy generates output at each of these blocks. A low error 

signifies favorable performance, whereas a high error is clearly undesirable. The method of error 

calculation varies based on the nature of the output data, leading to the utilization of diverse error 

formulas. Specifically, for Shear Stress IJ, IK, and JK directions output, the subsequent error 

formulas are employed: 

Absolute Error Percentage = [(absolute (Artificial Neural Network Output - CMG Output)) / CMG 

Output] * 100  

In the following error formula the difference between what the ANN predicts and what the 

numerical reservoir simulation model shows tells us how accurate the SPM is. 

Absolute Error (or Prediction Accuracy) = absolute (Artificial Neural Network Output - Numerical 

Simulator Output) 
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7.10 Ensuring Neural Network Proficiency with Validation Datasets 

Upon reaching a level of satisfaction in the Smart Proxy neural network training, the process 

advances to a crucial validation stage. Here, the validation datasets come into play, which remain 

untapped during the training phase. These datasets are exclusively introduced after the training 

concludes and just prior to the deployment of the Smart Proxy on entirely novel simulation runs, 

a process referred to as blind validation. The final touch in the SPM development journey involves 

subjecting the evolved model's outcomes to scrutiny through blind validation. This assessment 

entails running simulations that have never been employed for neural network training, thereby 

encapsulating the essence of a blind validation scenario. 

7.11 Smart Proxy Deployment  

In the context of Smart Proxy Deployment, the training procedures for the Smart Proxy Models 

related to Shear Stress (IJ, IK, and JK models) were similarly followed by a calibration and 

validation phase aimed at assessing their internal performance. This validation process ensured 

the internal performance of the trained models, and deployment was initiated upon achieving the 

desired performance according to the established stopping criteria. This deployment leveraged a 

blind validation dataset comprising four numerical simulations: Blind Run 5, Blind Run 9, Blind 

Run 13, and Blind Run 17, all of which were entirely distinct from the neural network's training 

data. It's noteworthy that throughout the entire training and development stages, the neural 

network had not encountered these blind-validation simulations at any point. 
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Table 4: A list of selected features as input to the neural network a particular SPM’s 
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Chapter 8: Results and Discussions 

 
8.1 Overview 

The purpose of this chapter is to assess the performance of the smart proxy modeling technique 

developed in this study in replicating the Shear Stress IJ, IK, and JK distribution results obtained 

from numerical simulations during blind runs conducted using SPM. To confirm the accuracy and 

reliability of the Smart Proxy's predictions, CMG was also used to generate results for the blind 

runs. A comparative analysis is then presented between the results produced by the Smart Proxy 

and CMG for each layer of the reservoir model. Visual representations in the form of two-

dimensional distribution maps are utilized to showcase the quality of the results generated by both 

the Smart Proxy and the numerical reservoir simulation model. Additionally, mean absolute error 

output plots will be shared to provide a clearer understanding of the effectiveness of SPM in 

capturing Shear Stress patterns. In each blind run, there are a total of 153 two-dimensional 

distribution plots and 125 cross-section plots for both i and j directions. As there are 51 layers in 

each simulation run, this chapter presents results for only one training and blind realization for 

each direction of Shear Stress, with the remaining results for training and blind runs provided in 

the Appendix section, focusing on specific reservoir layers for brevity. 

8.2 Reservoir Shear Stress Distribution Results  

Utilizing the Smart Proxy method, the distribution of reservoir shear stress was accurately 

predicted, achieving the highest degree of accuracy among various runs. These results 

consistently matched the outcomes obtained from CMG simulations at all time intervals, with an 

error rate of less than 10%. All of these neural networks were subsequently deployed in sequence 

to predict reservoir shear stress across all time steps in the reservoir simulation model. 

Importantly, the greatest error was observed when utilizing data generated by previous neural 

networks as input for subsequent ones. This can be attributed to the cumulative nature of 

forecasting errors in the sequential neural network approach. 

To gain a more comprehensive understanding of the variations in Shear Stress within individual 

layers, 2D results were generated and examined for all 51 layers in the reservoir model. For 

brevity, the 2D plots displaying Shear Stress outcomes for blind-13 on January 1, 2050, appear 

on the following pages, along with shared training results for train-01. These plots are arranged 

as follows: CMG data on the left, SPM results in the center, and prediction accuracy on the far 
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right. The color scale used for visualization was selected based on the minimum and maximum 

Shear Stress values observed in each layer. 

8.2.1 Training Results of Shear Stress IJ, IK, and JK  

In this section, we will delve into the training outcomes for each of the Model IJ, IK, and JK, 

specifically focusing on No. train-01. The remaining training results are reserved for the Appendix 

section, where only a select few runs and reservoir layers are included, ensuring brevity. Upon 

scrutinizing the training results of Model IJ, we observe outcomes that are less than optimal 

compared to those of Model IK and JK in Figures 17 to 19. Analyzing the results of Shear Stress 

IK and JK, it becomes evident that the predictive performance is highly satisfactory, indicating a 

more effective learning process compared to the initial model Shear Stress IJ. 

[ Training Run-01 Results for Shear Stress IJ direction 01-01-2050 ] 
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Figure 17: displays a comparison between the predicted Smart Proxy Model Shear Stress results 

for Model IJ and the actual CMG results, along with the corresponding error percentages, across 

all layers for train run-01 on January 1, 2050. The arrangement from left to right includes the CMG 

result, SPM result, and Percentage Error. 
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[ Training Run-01 Results for Shear Stress IK direction 01-01-2050 ] 
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Figure 18: displays a comparison between the predicted Smart Proxy Model Shear Stress results 

for Model IK and the actual CMG results, along with the corresponding error percentages, across 

all layers for train run-01 on January 1, 2050. The arrangement from left to right includes the CMG 

result, SPM result, and Percentage Error. 
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[ Training Run-01 Results for Shear Stress JK direction 01-01-2050 ] 
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Figure 19: displays a comparison between the predicted Smart Proxy Model Shear Stress results 

for Model JK and the actual CMG results, along with the corresponding error percentages, across 

all layers for train run-01 on January 1, 2050. The arrangement from left to right includes the CMG 

result, SPM result, and Percentage Error. 

 

8.2.2 Blind Results of Shear Stress IJ, IK, and JK    

As observed in the blind-validation run-13 outcomes, the performance graphs for Shear Stress in 

the Smart Proxy Model for IJ, IK, JK direction (Figures 20 through 22) reveal that certain layers 

yielded exceptionally favorable results, while others were reasonably satisfactory. However, it's 

noteworthy that the Smart Proxy Model still demonstrates a relatively consistent ability to 

approximate the results of numerical reservoir simulation across nearly all the layers. Given that 

each simulation run comprises 51 layers and, consequently, a substantial volume of blind results, 

the chosen presentation includes only one blind result for Shear Stress in each direction. The 

remaining blind results can be found in the Appendix section to streamline the presentation. 
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[ Blind Run-13 Results for Shear Stress IJ direction 01-01-2050 ] 



88 
 



89 
 



90 
 



91 
 



92 
 



93 
 



94 
 



95 
 

 
Figure 20: Comparison of Predicted SPM Shear Stress IJ Results with Actual CMG Results and 

Corresponding Error Percentage Across All Layers for Blind Run-13 on January 1, 2050. 

(Displayed from left to right: CMG Result, SPM Result, and Percentage Error) 
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[ Blind Run-13 Results for Shear Stress IK direction 01-01-2050 ] 
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Figure 21: Comparison of Predicted SPM Shear Stress IK Results with Actual CMG Results and 

Corresponding Error Percentage Across All Layers for Blind Run-13 on January 1, 2050. 

(Displayed from left to right: CMG Result, SPM Result, and Percentage Error) 
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[ Blind Run-13 Results for Shear Stress JK direction 01-01-2050 ] 
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Figure 22: Comparison of Predicted SPM Shear Stress JK Results with Actual CMG Results and 

Corresponding Error Percentage Across All Layers for Blind Run-13 on January 1, 2050. 

(Displayed from left to right: CMG Result, SPM Result, and Percentage Error) 
 

8.2.2.1 Cross Section i and j Direction Results of Shear Stress IJ, IK, and JK  

In the following sections, you'll discover 2D graphs depicting the results of Shear Stress IJ, IK, 

and JK reservoir cross-section analysis for i and j direction. These graphs pertain to shear stress 

within the context of the blind-13 case and can be found in Figures 23 through 28. As there are 

125 indexes for each blind case, to maintain consciousness, only half of the indices will be 

included in the Appendix section. Each row within these figures corresponds to data collected at 

a specific time step, precisely on January 1, 2050. In each row, you'll notice three plots: the 
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leftmost one showcases CMG data, the middle plot displays Smart Proxy method results, and the 

rightmost plot highlights the percentage error. The blind cross section case results indicate that 

the Smart Proxy Model consistently reproduces the results of numerical reservoir simulation 

across all layers, confirming the successful training of the ANN algorithm.  

[ Blind Run-13 Cross Section i Results for Shear Stress IJ direction 01-01-2050 ] 
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Figure 23: Cross Section i Shear Stress model IJ results for all layers for timestep 01-01-2050 
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Figure 24: Cross Section i Shear Stress model IK results for all layers for timestep 01-01-2050 

 

[ Blind Run-13 Cross Section i Results for Shear Stress JK direction 01-01-2050 ] 
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Figure 25: Cross Section i Shear Stress model JK results for all layers for timestep 01-01-2050 
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Figure 26: Cross Section j Shear Stress model IJ results for all layers for timestep 01-01-2050 
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Figure 27: Cross Section j Shear Stress model IK results for all layers for timestep 01-01-2050 
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Figure 28: Cross Section j Shear Stress model JK results for all layers for timestep 01-01-2050 

8.3 Mean Absolute Error Output Plots Comparison 

In the context of mean absolute error output comparisons for geological realization 13, as 

illustrated in Figure 29, it is evident that certain layers consistently demonstrate exceptional 

performance, while others exhibit commendable results. Across various blind runs, there are 

instances where the match is reasonably good, and there are instances where it is exceptionally 

strong. For instance, when considering layer 5 for Shear Stress IJ, it exhibits lower error rates 

when compared to Shear Stress IJ and IK. Similarly, in the case of layer 28 for Shear Stress IJ, it 

shows lower error rates compared to Shear Stress IK and JK. These observations collectively 

affirm the Smart Proxy Model's capability to consistently replicate the outcomes of numerical 

reservoir simulations across all layers. This achievement underscores the successful training of 

the ANN algorithm. The remaining output plots will be available in the appendix. 

 

Figure 29: Mean Absolute Error for Geological Realization 13 Shear Stress IJ, IK, JK Output 

Comparison results  
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Chapter 9: Conclusions and Recommendations   

 

9.1 Conclusions 

In the oil and gas industry, the primary aim is to boost revenue while cutting operational costs. 

Reservoir simulation plays a pivotal role in field planning, encompassing tasks like history 

matching and optimization. However, modern geological models, though more precise, demand 

hefty computational resources, driving up expenses. This study spotlights the time and cost 

savings achievable through the smart proxy model. Unlike traditional simulations, smart proxies 

are fast and computationally efficient. They can run on regular personal computers, eliminating 

the need for expensive hardware. The smart proxy database, though extensive, can be 

streamlined through sampling. Through the adoption of the smart proxy model, one can achieve 

a significant reduction in simulation costs and a notable acceleration in obtaining results. As 

evidence a single conventional simulation may typically consume seven hours, but with smart 

proxies, the same task can be completed in a matter of seconds. The Shear Stress model 

outcomes not only demonstrated its ability to closely replicate the CMG model with remarkable 

precision but also showcased its efficiency in achieving this at a significantly faster pace 

compared to traditional simulation methods, all the while maintaining affordability. 

9.2 Recommendations 

Presented below are recommendations for future research in the domain of advancing smart 

proxy development for reservoir simulation: 

● Based on the comparison output plot highlighting in the results the suboptimal 

performance of the Smart Proxy Shear Stress IK model, it is strongly recommended to 

incorporate both Shear Stress IJ and JK model results as inputs when reconstructing the 

Shear Stress IK model. This approach is anticipated to yield significantly improved results. 

● For Carbon Capture and Storage (CCS) projects, it is advisable to employ a two-way 

coupling approach rather than relying solely on one-way coupling. This two-way coupling 

strategy is expected to enhance the efficiency and effectiveness of CCS initiatives. 
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Appendix    

Appendix 10.1: Training Shear Stress Results (IJ, IK, JK) on 01-01-2050 for Selected Reservoir Layers. In 

maintaining consistency throughout this section, we have chosen specific reservoir layers to remain 

constant across all models and time steps. These selected layers are denoted as follows: #5, #20, #40, 

#50, and #60. 

                    Shear Stress Results IJ                                                Shear Stress Results IK 

                   

                  

                 

                   

                 
Shear Stress Results JK   
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Appendix 10.2: Result for Blind Run shear stress at 01-01-2050 for selected reservoir Layers 

                     Shear Stress Results IJ                                                Shear Stress Results IK 

                         

                        

                         

                        

                        
Shear Stress Results JK   
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Appendix 10.3: Result for cross section i & j Blind Run 09 shear stress at 01-01-2050 for selected 

reservoir Layers 

Shear Stress Results IJ  

                                   

                          

                           

                          

                           
 

 

 Shear Stress Results IK  
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 Shear Stress Results JK  
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Appendix 10.4: Mean Absolute Error for Geological Realization 5,9,17 Shear Stress IJ, IK, JK Output 

Comparison results
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