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Abstract 

Integrated Immunity-based Methodology for 

UAV Monitoring and Control 

Ryan Gerald McLaughlin 

A general integrated and comprehensive health management framework based on the 

artificial immune system (AIS) paradigm is formulated and an automated system is developed 

and tested through simulation for the detection, identification, evaluation, and accommodation 

(DIEA) of abnormal conditions (ACs) on an unmanned aerial vehicle (UAV). The proposed 

methodology involves the establishment of a body of data to represent the function of the vehicle 

under nominal conditions, called the self, and differentiating this operation from that of the 

vehicle under an abnormal condition, referred to as the non-self. Data collected from simulations 

of the selected UAV autonomously flying a set of prescribed trajectories were used to develop 

and test novel schemes that are capable of addressing the AC-DIEA of sensor and actuator faults 

on a UAV. While the specific dynamic system used here is a UAV, the proposed framework and 

methodology is general enough to be adapted and applied to any complex dynamic system. The 

ACs considered within this effort included aerodynamic control surface locks and damage and 

angular rate sensor biases. The general framework for the comprehensive health management 

system comprises a novel complete integration of the AC-DIEA process with focus on the 

transition between the four different phases. The hierarchical multiself (HMS) strategy is used in 

conjunction with several biomimetic mechanisms to address the various steps in each phase. The 

partition of the universe approach is used as the basis of the AIS generation and the binary 

detection phase. The HMS approach is augmented by a mechanism inspired by the antigen 

presenting cells of the adaptive immune system for performing AC identification. The evaluation 

and accommodation phases are the most challenging phases of the AC-DIEA process due to the 

complexity and diversity of the ACs and the multidimensionality of the AIS. Therefore, the 

evaluation phase is divided into three separate steps: the qualitative evaluation, direct 

quantitative evaluation, and the indirect quantitative evaluation, where the type, severity, and 

effects of the AC are determined, respectively. The integration of the accommodation phase is 

based on a modular process, namely the strategic decision making, tactical decision marking, and 

execution modules. These modules are designed by the testing of several approaches for 

integrating the accommodation phase, which are specialized based on the type of AC being 

addressed. These approaches include redefining of the mission, adjustment or shifting of the 

control laws, or adjusting the sensor outputs. Adjustments of the mission include redefining of 

the trajectory to remove maneuvers which are no longer possible, while adjusting of the control 

laws includes modifying gains involved in determination of commanded control surface 

deflections. Analysis of the transition between phases includes a discussion of results for 

integrated example cases where the proposed AC-DIEA process is applied. The cases considered 

show the validity of the integrated AC-DIEA system and specific accommodation approaches by 

an improvement in flight performance through metrics that capture trajectory tracking errors and 

control activity differences between nominal, abnormal, and accommodated cases. 
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Chapter 1: Introduction 

1.1: Problem Formulation 

 Due both to an expansion in the presence of UAVs as well as an increase in the number 

of potential applications of UAVs, there has been a growing emphasis and significance in the 

ability to operate these vehicles both effectively and safely under any conditions. The Federal 

Aviation Administration began to require that civilian owned UAVs be registered on December 

21st, 2015, and, since then, there has been a constant increase in the rate of new UAVs being 

registered, increasing by 10.2% between 2020 and 2021 [1]. While this growth rate is expected 

to saturate, the number of civilian owned UAVs will continue to increase, which will 

significantly affect the number of UAVs in the national airspace. Due to this growth, as well as 

growth contributed to non-public UAV presence, it is necessary that these UAVs are capable of 

functioning both under ideal flight conditions and under some potential non-ideal circumstances. 

 This increase in the presence of UAVs in the airspace has also come with an associated 

increase in the number of different applications of UAVs, particularly with respect to non-public 

use. Partially due to the myriad applications of UAVs, it is critically important that the UAV is 

capable of functioning acceptably under any conditions, whether the UAV is functioning 

normally, there is some issue with the UAV, or there are some potential unfavorable 

environmental conditions. While UAVs have grown significantly in popularity for civilian 

recreation, UAVs are also used extensively in military, non-military commercial, and scientific 

applications. Military applications include reconnaissance, research and development, some 

higher-risk combat missions, and some more specialized operations [2]. UAVs can also be used 

extensively in non-military commercial and scientific applications, such as inspection of various 

infrastructure, monitoring and management, such as mapping of forests, surveying and aerial 

mapping, such as aerial LiDAR, and so on [3]. 

 While operation of these vehicles under nominal circumstances is of primary concern and 

a unique challenge on its own, the operation of UAVs when under the effects of some abnormal 

condition (AC) is also important and can prove to be an even more difficult task than control 

under nominal conditions. While, in the case of manned flight, a pilot can generally 

accommodate for the presence of an AC, this becomes more difficult if a pilot is not on the 

aircraft. This difficulty is again amplified when the UAV is not only unmanned, but also 

completely autonomous, where there is no operator to address the AC, and the solution must be 

completely automatic. The main types of ACs related to the UAV itself include structural 

abnormalities which limit control effectiveness and abnormalities in feedback from sensors on 

board the UAV which are used in the automatic control architecture. 

 One potential automatic solution to addressing ACs on board an autonomous UAV is the 

artificial immune system (AIS) paradigm. The AIS paradigm has emerged as a novel 
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computational artificial intelligence technique which has shown the capability to provide a 

comprehensive and integrated solution to the entire monitoring and control of an aircraft both 

when operating under nominal conditions or when under the effects of an AC [4]. The AIS itself 

is a structured body of flight data which is capable of defining whether or not the aircraft is under 

the effects of an AC, what the specific AC is, the severity and effects of the AC, and finally the 

accommodations to flight systems necessary to ensure safe operation, if possible. While other 

approaches have been applied to address ACs, in particular for UAVs, the immunity paradigm is 

of particular interest due to the promise shown by the algorithm to address ACs in the most 

general and comprehensive way. 

 While the AIS has been used for monitoring and control of aircraft, there have been 

issues with the full integration of the entire process using one single entity. When the process is 

broken down into the detection, identification, evaluation, and accommodation of ACs, the 

accommodation phase has been difficult to integrate into the single entity of the AIS. The ability 

of the AIS to handle the entire four phase process in an integrated way will be investigated 

within this research effort through simulation for an autonomous UAV. 

 

1.2: Research Objectives 

 The main objectives of this research effort are to explore the potential routes for the 

integration of the AC evaluation and accommodation phases, along detection and identification 

into an AIS-based monitoring and control process, to use the novel integration to analyze the 

effects of the transitions between phases and to ensure the transitions between the phases occur 

effectively, and to implement all phases and judge the performance of the fully integrated system 

through simulation. Some previous efforts targeting the evaluation phase exist, however, its 

integration using a partitioned immune system on board a UAV is another novelty of this 

research. The primary tool for analysis of the UAV will be the West Virginia University (WVU) 

unmanned aerial system (UAS) simulation environment [5]. The results from these simulations 

will be used to investigate the viability of the proposed solutions for integrating completely all 

phases of the process for autonomous UAVs. While the dynamic system being used throughout 

this effort is a UAV, the framework and the methodology proposed here are a general solution to 

the monitoring and control problem and are applicable to any dynamic system. 

 

1.3: Research Contributions 

 The main avenue through which this effort is novel is through the development of a 

general framework for the AC-DIEA process integrated into one single unit. While many efforts 

have addressed individual phases and integration of the detection, identification, and evaluation 

phases, general integration of the accommodation phase has not been achieved. Here the process 

will be applied to a UAV, addressing the specific issues of applying the process to a UAV, more 
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specifically to the AC-DIEA of ACs affecting the primary control surfaces and corresponding 

angular rate sensors. 

 While the main point is the full integration, several stages of the AC-DIEA process also 

were approached in a novel way. The identification phase of the algorithm was addressed via the 

antigen presenting cell approach which is a novel approach formulated here. This approach is 

based on the interactions between T-cells and the antigen presenting cells of the adaptive 

immune system. 

 Additionally, the extension of the evaluation and accommodation methodology when 

applied to a UAV is also novel. While immunity-based approaches have been applied to the AC-

DIEA process on board a UAV, addressing the evaluation and accommodation stage in an 

integrated way and addressing specific issues unique to UAVs is performed here. This includes 

addressing dynamic limits imposed from actuator faults when addressing evaluation and 

accommodation approaches which are specific to the UAV’s mission. 

 The extension of the evaluation logic also includes addressing the analysis in a novel 

way. This comes from two main sources, one of which is addressing some of the issue of non-

linearity in relationships between control surface deflections and their corresponding angular rate 

through the organization of AIS projections. The other novelty in the evaluation phase is 

addressing how the dynamics of the UAV are delayed by the control surface ACs. 

 Finally, as the integration of the accommodation phase is of particular interest here, 

integrated process is both applied and tested through simulation, where the immune system itself 

is developed, the algorithms of the AC-DIEA process are both developed and tuned, and the 

process is ultimately applied to a simulated UAV. 

 

1.4: Publications 

 Presently, the following publications have been made based on this research:  

 

• McLaughlin, R. G., & Perhinschi, M. G. (2024). Monitoring and Control of a UAV 

Under Abnormal Conditions Using the Artificial Immunity Paradigm. AIAA Science and 

Technology Forum and Exposition, AIAA SciTech Forum 2024. 

• McLaughlin, R. G., Al-Nuaimi, & Perhinschi, M. G. (2023). Integrated Immunity-based 

Methodology for Unmanned Aerial Vehicle Monitoring and Control. AIAA Science and 

Technology Forum and Exposition, AIAA SciTech Forum 2023. 

https://doi.org/10.2514/6.2023-1663 

• McLaughlin, R. G., & Perhinschi, M. G. (2023). Immunity-Based Sensor and Actuator 

Abnormal Condition Evaluation on an Unmanned Aerial Vehicle Using the Partition of 

the Universe Approach. AIAA Science and Technology Forum and Exposition, AIAA 

SciTech Forum 2023. https://doi.org/10.2514/6.2023-1662 

https://doi.org/10.2514/6.2023-1663
https://doi.org/10.2514/6.2023-1662
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• McLaughlin, R. G., & Perhinschi, M. G. (2023). Framework for Abnormal Condition 

Evaluation Using a Partitioned Immune System. AIAA Science and Technology Forum 

and Exposition, AIAA SciTech Forum 2023. https://doi.org/10.2514/6.2023-1661 

• McLaughlin, R. G., & Perhinschi, M. G. (2023). Immunity-Based Sensor and Actuator 

Abnormal Condition Identification on a UAV Using a Partitioned Immune System. AIAA 

Science and Technology Forum and Exposition, AIAA SciTech Forum 2023. 

https://doi.org/10.2514/6.2023-1660 

• McLaughlin, R. G., & Perhinschi, M. G. (2023). Abnormal Condition Identification 

Using Antigen Presenting Cell Approach for a Partitioned Immune System. AIAA Science 

and Technology Forum and Exposition, AIAA SciTech Forum 2023. 

https://doi.org/10.2514/6.2023-1659 

• McLaughlin R., Perhinschi M. G., “The Artificial Immune System Paradigm for 

Generalized Unmanned Aerial System Monitoring and Control” (2023), in Karakoc T. 

H., Yilmaz N., Dalkiran A., Ercan A. H. (Editors), New Achievements in Unmanned 

Systems: International Symposium on Unmanned Systems and The Defense Industry 

2021, Sustainable Aviation Series, Springer Nature Switzerland AG 

• McLaughlin, R. G., & Perhinschi, M. G. (2022). Immunity-based Framework for 

Integrating Abnormal Flight Condition Accommodation within a UAV Health 

Management System. AIAA Science and Technology Forum and Exposition, AIAA 

SciTech Forum 2022. https://doi.org/10.2514/6.2022-2082 

• McLaughlin, R. G., & Perhinschi, M. G. (2022). Visualization Tool for the Design and 

Analysis of UAV Partitioned Artificial Immune System. AIAA Science and Technology 

Forum and Exposition, AIAA SciTech Forum 2022. https://doi.org/10.2514/6.2022-2081  

• McLaughlin, R. G., & Perhinschi, M. G. (2022). Partitioned Immunity-based Approach 

for Detection and Identification of Sensor and Actuator Faults on a UAV. AIAA Science 

and Technology Forum and Exposition, AIAA SciTech Forum 2022. 

https://doi.org/10.2514/6.2022-2080  

• McLaughlin, R. G. and Perhinschi, M. G. (2021), Partitioned Artificial Immune System 

for Detection and Identification of Autonomous Flight Vehicle Abnormal Conditions. 

International Journal of Intelligent Unmanned Systems, Vol. 9 No. 4, pp. 237-255. 

https://doi.org/10.1108/IJIUS-11-2019-0064 

 

1.5: Dissertation Overview 

 This dissertation is structured as follows. Chapter 2 contains the literature review, which 

features a discussion of the knowledge based approaches to AC monitoring. It will also address 

the basics of the AIS and how it has been applied to detection, identification, evaluation, and 

accommodation. Chapter 3 focuses on the discussion of the immunity paradigm, beginning with 

https://doi.org/10.2514/6.2023-1661
https://doi.org/10.2514/6.2023-1660
https://doi.org/10.2514/6.2023-1659
https://doi.org/10.2514/6.2022-2082
https://doi.org/10.2514/6.2022-2081
https://doi.org/10.2514/6.2022-2080
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the biological immune system features which inspire the algorithms before moving on to the 

various features of the artificial immunity paradigm. Chapter 4 will cover the development of the 

AIS, including the failures being considered, trajectories being used, and data acquisition, as well 

as the logic at each of the stages of the AC-DIEA process. Chapter 5 covers the WVU UAS 

Simulation Environment, which was used for data collection and is critical for the development 

of the AIS. Chapter 6 will analyze the efficacy of the AC-DIEA algorithms, introducing metrics 

by which each phase is evaluated and discussing the results for each phase and complete 

integrated examples. Chapter 7 draws conclusions about the performance of the AC-DIEA 

algorithm and the integration of the accommodation phase to the remainder of the algorithm and 

proposes recommendations for expanding upon this effort. 
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Chapter 2: Literature Review 

 A general dynamic system is determined to be under the effects of an AC if the system is 

functioning outside of general designed operational conditions. These ACs, which are also 

referred to as faults or failures, are common terms for when the operation of the system occurs in 

these unexpected ways, which can often result in unfavored and undesired consequences which 

are somewhat unpredictable without extensive work. These consequences can vary from 

relatively mild cases, such as losses in efficiency of controls resulting in higher fuel consumption 

or longer operational time to achieve the same goal, to very severe ones, such as complete loss of 

the dynamic system, which can be disastrous in the case of an aircraft. While the focus here is on 

UAVs, virtually any system imaginable can be subject to failures, and this globality has resulted 

in a great focus on systems which are capable of functioning under the effects of any potential 

AC. This focus is only amplified when discussing aircraft, as failure to adjust to adverse flight 

conditions could not only result in complete mission abortion, but it could also result in 

significant material and financial damage and, even more dire, loss of life. 

 In general, there are two main methods for detection and eventually accommodation of 

ACs. These two methods are model-based approaches and knowledge-based approaches. As 

expected, model-based approaches are usable when a mathematical model is readily available, 

which can already encounter problems based on the efficacy and detail of the model [6]. 

Conversely, knowledge-based approaches can also be used if a model is absent [7]. 

Mathematical models can be very specific to each dynamic system, and thus are less generally 

applicable than knowledge-based approaches. 

 Originally, one of the main avenues of accommodation of subsystem failures, particularly 

those which affected sensor outages or other faults affecting sensors, is through direct 

redundancy. Direct redundancy is the physical presence of additional copies of the subsystem 

which can be used if the previous copies fail [8]. Specifically in an aircraft, the main application 

of direct redundancy is through adding additional copies of the same sensor on board. For 

example, some sensors which could be duplicated include those which are present in the air data 

system, which provides angle of attack and velocity measurements, and those which are 

associated with the attitude and heading system, which provide the Euler angles as well as their 

rate, and those related to linear measurements [9] [10]. Less intuitively, direct redundancy can be 

achieved for actuators and aerodynamic surfaces, although with some limitations. 

 While some issues can be addressed very well with direct redundancy, it is not generally 

a comprehensive solution, especially in the case of aircraft. As already established, it is not 

always possible to completely use redundancy for control surfaces but, even in the case of 

sensors, it often is not an optimal solution. This is because every additional part, sensor, or other 

redundant system is going to add weight while being “unused” unless there is some issue. 

Allocating additional weight to these types of considerations removes weight which could be 
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used for additional fuel, passengers, etc. If the system is still capable of holding the extra weight, 

there will be issues with efficiency, as adding weight will reduce efficiency. These redundant 

pieces will also take up more physical space, as well as increase the cost of production, as a 

particularly expensive sensor would have to be purchased two or three times instead of once. 

Accommodating faults through direct redundancy also can cause additional issues in the long 

run, as it does not address what is causing the problem. 

 Another similar way of addressing faults is through functional redundancy. While this 

process is again primarily applicable to sensor faults, a similar methodology could be developed 

and used for some limited actuator faults. Functional redundancy involves the creation of 

mathematical relationships between measured variables to obtain redundant measurements, 

rather than strictly using another copy of a sensor. The calculated value is then compared to the 

feedback from the sensor which the calculated value is estimating and, if there is a large 

discrepancy between the measured value and the estimated value, it can be inferred that there is 

an issue with the original sensor. This approach, in tandem with direct redundancy, has been 

used in many fault detection and identification schemes with respect to sensor faults. This type of 

system has been applied in small commercial aircraft through the unknown input observer 

method [11]. Due to a lack of reliance on other physical parts, many efforts have been made to 

expand the usefulness of functional redundancy, primarily through more sophisticated estimation 

of the sensor outputs through approaches based on more involved calculations of the estimated 

values [12] and in determining what measurements are useful in estimation of other 

measurements [13]. 

 In a similar way to direct redundancy, functional redundancy runs into problems when 

used as the main tool for the addressing of faults on flight systems. One such issue is in 

determination of these mathematical relationships, that is, finding the systems which are 

functionally redundant. Outputs for a certain set of sensors may be able to predict the value for 

another under certain conditions but not others. The actual mathematical relationship between 

the other sensors’ outputs and the predicted measurement is also not always clear, where these 

mathematical relationships also can benefit from the application of neural networks (NN) or 

some other artificial intelligence techniques. Another approach to functional redundancy is to use 

residuals between the current sensor values and those which would be expected for normal 

operation. This, however, can run into issues with computational time when calculating the 

residuals for many variables in real time, which would be the case for aircraft [14]. The 

generation of these residuals is typically handled through parity space methods, though this is 

still a computationally intensive process which is difficult to perform in real time [14-17]. 

 Conversely, observer-based approaches can be used to generate these residuals, which 

often are handled using Kalman filtering or some other type of filter. These specific methods 

have been applied in ‘fly-by-wire’ systems, where acceptable performance has been achieved, 
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though there were issues with prolonged sensor faults [18]. There have also been more 

applications, specifically in aerospace, where particular adaptive filters have been used which, in 

simulation, have shown to maintain system stability with an injected fault [19]. These observer-

based approaches, particularly those using Kalman filters, can struggle with systems which are 

highly non-linear and when highly accurate system models are unavailable [19]. Kalman filtering 

has, however, shown promise in accommodating both sensor and actuator faults, where a specific 

method using model switching has been successful in accommodation of control surface freezing 

[20], and a similar method has been applied for sensor faults [21]. The implementations in [20] 

and [21], both were applied specifically to aerospace cases. 

 Another method based on these residuals is parameter identification, which estimates the 

characteristic variables of the system, which should change dramatically when the system is 

under the effect of an AC. This estimation has been applied in the measuring of in-cylinder 

pressure in combustion engines where it is not efficient, and sometimes not possible, to measure 

this parameter effectively. Therefore, a frequency method was used to identify the torsional 

dynamic parameters which could be used to monitor the fuel consumption [22]. The technique 

has also been applied to a 9-degrees-of-freedom robot dynamic behavior, where the controller 

applied a NN with initial weights and thresholds optimized via a genetic algorithm (GA) [23]. 

 Parameter identification has also been applied specifically in many aerospace 

applications, such as a control of a quad-rotor aircraft, where the moments of inertia of the 

aircraft were used to improve control performance [24]. Especially with respect to addressing 

ACs, parameter identification has been applied in providing estimates of the dimensionless 

stability derivatives during flight as method of detecting damage to aerodynamic control surfaces 

[25]. Additional efforts have applied this approach to fault-tolerant flight control, where the AC 

effect on the state-space matrices was estimated rather than the dimensionless stability 

derivatives [26]. 

 

2.1: Knowledge-Based Approaches and Artificial Intelligence 

 The main alternative to the model-based approaches discussed above are knowledge-

based approaches. These types of approaches have advantages over model-based approaches 

based on the flexibility of the algorithms and the ability to apply the approach without a 

mathematical model, which is advantageous as the development of very sophisticated and 

accurate models is unnecessary [7]. In general, artificial intelligence techniques fall into this 

category as they are not dependent on a model of the UAV being present. Many different 

artificial intelligence techniques have been applied for use on autonomous aerial systems, 

including NNs, fuzzy logic, and GAs, which can be applied in many different ways to achieve 

various goals in fault tolerant flight control laws. 
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 In general, NNs are comprised of a series of single computational units which connect 

with each other and relay information, where the strength of these connections is the main 

parameter to be optimized. Approaches based on NNs have been used throughout algorithms in 

fault tolerance, where they have been applied to addressing aircraft actuator malfunctions [27] 

and in estimation of sensor feedback [28] which can be used both as a form of functional 

redundancy by estimating these parameters and again in fault detection by comparing the 

estimated and measured parameters. 

 Fuzzy logic is predicated on the principle that the “truth value” of some statement does 

not necessarily need to be true (1) or false (0) but can be any value in that range. Fuzzy logic 

based approaches are generally reliant on extensive operator experience when determining if a 

specific value for a parameter, for example roll rate, is a high or low value, and to what extent it 

is of each. Fuzzy logic has been applied in a general aerospace sense through the development of 

UAV control laws [29] and in algorithms to determine pilot fatigue [30]. This type of technique 

has also been applied in sensor failure detection and identification schemes [31]. 

 A GA is an approach to the optimization problem which seeks to apply the principles of 

evolution to determine an optimal solution to a given problem [17]. This type of approach is 

generally applied when determination of an optimal solution is difficult when applying more 

traditional optimization techniques. GAs have been used in aerospace in general for aircraft [32] 

and flight controller [33, 34] design and optimization. While GAs are not as involved directly in 

fault detection, they have been applied in optimization of cluster generation specifically within 

the AIS paradigm [35]. 

 

2.2: The Artificial Immune System 

 While extensive work has been performed based both on model and knowledge based 

approaches, most of the work has been focused on addressing a singular type of failure, and work 

well in a vacuum. These methods tend to address either a single part of the AC-DIEA process or 

only address ACs affecting a particular sensor or actuator. While these efforts have been 

successful, it is desirable to develop a system which is capable of comprehensive, general, and 

integrated addressing of ACs. While previously developed systems would address particular 

known types of faults, the desired system would be capable of accommodating for a huge variety 

of ACs, in particular those which the system has not necessarily interacted with before which 

could result in unknown effects on the dynamics and control of the system. 

 However, being able to address ACs on board a UAV is a very challenging problem, as 

there are numerous potential flight conditions and different ACs which could be affecting the 

system. Consequently, solving issues regarding the accommodation of ACs becomes a highly 

multidimensional and complex problem. It is with these types of applications in mind where the 

artificial immunity paradigm and the AIS concept emerged [36]. The artificial immunity 
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paradigm seeks to emulate the function of the biological immune system (BIS) to address the 

process of accommodating the presences of ACs on a dynamic system. The architecture of the 

concept also allows for hugely multidimensional problems to be addressed, particularly when 

processing of large amounts of information is required. 

 The artificial immunity paradigm appears as an ideal approach to solving the AC-DIEA 

problem initially due to the biological inspiration. Essentially, the process of addressing an AC is 

exactly what is being performed in the BIS: the body is affected by some antigen causing the 

body to function abnormally, where the BIS must determine what is wrong and how to address it, 

which is the same general process as AC-DIEA for a dynamic system. The AIS concept is also 

designed specifically to address the challenges of AC-DIEA, in particular addressing the 

multidimensionality and complexity of accommodation, and thus is more specialized for this 

application than other potentially useful knowledge based approaches. Finally, the immunity 

paradigm has already shown success throughout the various stages of the AC-DIEA process and 

in partial integration as will be discussed in Section 2.3. 

 

2.2.1: Introduction to the Immunity Paradigm 

 Throughout the artificial immunity paradigm, one critical element is the generation of an 

AIS. This involves the collection of large quantities of data to structure both the self and non 

self, either nominal data, which will be structured as part of the self, or data under the effect of 

an AC, which can be used to structure the non-self or to tune various parameters of the immunity 

algorithms. When structuring the data collected for the AIS, one of two types of methods can be 

applied, either some direct clustering algorithm (DCA) or the partition of the universe approach 

(PUA). 

 Using a DCA [37] involves taking experimental data and clustering it into self or non-self 

clusters which take up a part of the overall universe. For example, considering only nominal 

data, there will be a large collection of data points which cover operation of the UAV under all 

conditions of interest. Then, clusters will be fit to these data points, creating n-dimensional 

hyper-bodies in the n-dimensional universe. These clusters have many potential avenues for 

optimization, which include the number of clusters, the shapes of the clusters, the sizes of the 

clusters, and so on. Due partially to the large number of potential parameters to optimize, there 

are several potential methods for clustering, including hierarchical clustering, partition 

clustering, neural network based clustering, kernel-based clustering, and large-scale data 

clustering [38]. These clustering methods can be used to cluster self data, where data points 

falling inside these clusters would make the data point representative of nominal operation. 

Conversely, if non-self data are clustered, it can be further labeled with information on the 

corresponding AC, if a data point falls inside a particular non-self cluster, the data point can be 

flagged with all the information in the label for the cluster, which can greatly simplify the AC-
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DIEA process. If non-self data are not clustered, data points can be determined to be 

representative of abnormal operation if they do not fall inside self clusters. 

 An alternative approach, the PUA [4] consists of dividing the entire universe using a 

uniform grid, rather than clustering data points. The grid then divides the universe into uniform 

partitions which make up the feature space. Then, if a sufficient number of construction data 

points fall inside a particular partition, that partition is determined to be representative of 

nominal operation. Then, the non-self is defined implicitly as all remaining partitions, where, if 

the incoming data points fall inside those partitions, it is determined to be representative of 

abnormal function. 

 The PUA has been applied in limited applications as an alternative to conventional 

clustering algorithms due to the advantages that it presents. When addressing ACs via the 

immunity paradigm, the AIS has been applied to complex systems such as powerplants [39]. 

While this particular application showed the promise of the AIS paradigm, the powerplant 

system was not heavily coupled, while a UAV would be subject to extensive dynamic coupling. 

Several DCAs have been applied in UAVs [40], while the PUA has been applied to heavily 

coupled systems like UAVs [41] for detection and identification, it has not been applied in the 

desired way, that is to integrate the entire AC-DIEA process into a single entity. 

 The main focus of this research effort was to integrate the AC-DIEA process within a 

single entity using an AIS generated through the PUA. The generated AIS can then be used to 

address the AC-DIEA process. The detection phase of the algorithm is where it is determined if 

the system is affected by some AC. The outcome from this stage is generally binary, where a 

data point is determined to represent nominal operation or abnormal operation. 

 The identification phase has multiple potential approaches which can be applied. One 

approach is based on the structuring of the non-self. For each AC, non-self data can be collected, 

generally via simulation, and each different AC can have its own data clustered. Then, each 

cluster can be labeled with all the information associated with the AC, including the affected 

subsystem, the severity, the effect on the flight envelope, and the necessary adjustments to the 

flight control laws. Each subsequent phase of the AC-DIEA process could be handled in this way 

by using different information that could be associated with the cluster. This method is not 

desirable, as it requires huge amounts of non-self data to be both available and extensively 

structured and labeled. 

 Alternatively, identification can be handled through the usage of lower-dimensional 

projections. Rather than looking at the entire universe, lower dimensional projections are used, 

where some projections are more sensitive to particular ACs than the others. Then, the patterns 

in triggering can be used to determine what subsystem is affected by the AC. The specific 

algorithm used here takes inspiration from the functionality of the dendritic cell and other 

antigen presenting cells, and their interactions with T-cells. 
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 Evaluation can be partially addressed in a similar way to identification, where lower 

dimensional projections can be used to determine the type of AC. Severity is determined via 

some mathematical relationship between the severity of the AC and generally the distance from 

the self. This distance can be calculated using either the entire n-dimensional self, a single lower 

dimensional projection, or a set of lower dimensional projections. The effect on the flight 

envelope is determined by eliminating partitions or clusters which are no longer reachable under 

the effects of the AC. 

 Finally, accommodation is addressed through adjustments of the control laws or flight 

path to address the effect of the AC. This could include, for actuator faults, fixes such as adding 

additional deflections to other control surfaces, or through direct modification of control laws, 

like modifying a gain. For sensors faults, accommodation could be as simple as adding or 

subtracting a bias out, but the particular nature of the accommodation can vary widely based on 

the different types of AC which could affect the system. 
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2.2.2: Applications of the AIS 

 The AIS paradigm has been applied through several scientific and technical fields as a 

substitute for evolutionary search and optimization. The AIS paradigm has been applied 

extensively in addressing power plants, both in terms of evolutionary search and optimization. 

While the AIS designed here addressed fault detection, immunity based approaches have been 

applied in optimization which will be discussed first. Immunity based approaches have been 

applied to solve the fixed head hydrothermal scheduling problem, where the scheduling for when 

and how much a power plant is generating is of great importance. The results based on the AIS 

showed improvements both in computational time and quality of results [42]. Additionally, the 

AIS paradigm has been applied in control and automation in general complex oil and gas 

industry objects. Here, the AIS was applied to create a control infrastructure that was more 

effective and easier to integrate into general control systems for oil and gas objects [44]. The AIS 

has also been applied to problems optimizing the control of autonomous drones, where an AIS 

was introduced to an existing control architecture for swarms of drones called SFE, based on 

stigmergy, flocking, and evolution, where each type of command had a static priority, where the 

AIS was introduced to allow for an optimal dynamic priority to be determined for each drone of 

the swarm. The approach incorporating the AIS for optimization of priority showed 

improvements both in performance and performance time [45]. The immunity paradigm has also 

been applied in power plants in scheduling for preventive maintenance. In this application, the 

AIS, interfaced with fuzzy logic, showed higher quality performance in terms of scheduling time 

and sequence of generator outage to optimize expenses and operational integrity [43]. 

 While immunity-based paradigms have been applied to optimization, another general 

field addressed extensively using the immunity paradigm is anomaly and intrusion detection, 

which are similar in design to the AIS generated here. This capability of the AIS has been used 

throughout cyber systems, where an AIS-based framework has been specifically designed for 

anomaly detection [46]. In a similar vein, the AIS has been applied for use in the cyber-sector for 

intrusion detection, where an AIS was integrated with interval temporal logic to increase 

detection range and reduce detection time while detecting cyber-attacks with high accuracy [47]. 

AISs have also been used in intrusion detection systems to optimize parameters used in their 

“receptors”, including the size and threshold values of the receptors, where the system was 

capable of very high performance in detection of anomalies into an executable file with well 

optimized size and activation thresholds [48]. 

 Regarding fault tolerance, an AIS-based monitoring system framework was designed and 

implemented for use in control and health monitoring of an advanced power plant and the 

systems and processes associated with one. Through simulation, the proposed immune system 

framework was capable of detecting, identifying, and evaluating a variety of ACs which were 

affecting various components of the power plant [39]. 



14 

 

2.3: Abnormal Condition Detection, Identification, Evaluation, and 

Accommodation 

2.3.1: Detection, Identification, and Evaluation 

 While the AIS has many applications outside of the main area of focus, due to the ability 

of the AIS to accommodate hugely multidimensional problems, as well as the ability to address 

unexpected conditions, the immunity paradigm established itself as a promising base upon which 

to build many algorithms which address either a part of or the entirety of AC-DIEA on board 

aircraft systems [4]. These systems range from completely autonomous UAVs to manned 

aircraft. 

 As detection is the first phase of the AC-DIEA process, it is the most well-established 

theoretically, and many aerial systems have applied the same basic binary-type process to 

address the detection phase. The partition of the universe approach has been applied in creation 

of an immunity-based system which was capable of detecting ACs on board a completely 

autonomous UAV [49] where the ACs would be affecting either angular rate sensor feedback 

used within the control laws or structural damage to the three primary control surfaces. Similarly, 

this has also been applied to general faults, including sensors, actuators, and engine faults, over 

the extended flight envelope [50]. The immunity paradigm has also been used in detection of 

many types of faults affecting the engine specifically [51]. In addition to larger-scale aircraft, 

with respect to engine faults, the AIS approach has also been applied to detection of actuator 

failures on board reduced size UAVs [52]. Other, more specific attributes of the immunity 

paradigm have been used to address detection, such as the dendritic cell approach to detect faults 

affecting sensors, actuators, and engines through simulation on a supersonic fighter [53]. 

Detection has also been addressed using the hierarchical multiself (HMS) strategy on board a 

simulated supersonic fighter [54] and with neural network integration [55]. 

 As mentioned, many approaches that covered detection also addressed further phases of 

the AC-DIEA process. The applications in [49], [50], [52], [53], [54], and [55] all addressed the 

identification phase of the algorithm in addition to the detection phase. While most of the 

previous approaches to the identification phase relied on pattern-recognition type algorithms, 

another type of approach that has been applied to aerial systems involves structuring of data 

obtained under the effects of an AC. One such application is through the identification of ACs 

affecting a simulated aircraft through a six degree of freedom flight simulator. Here, data 

collected under the effect of each AC were structured to create “identifiers”, which could 

determine the subsystem affected by labels on these clusters [56]. 

 As the evaluation phase is somewhat more intricate to address, more specific efforts have 

been made to address this phase. Similarly to the approach in [53], a dendritic cell-based 

mechanism was used within the AIS paradigm to evaluate ACs on a simulated supersonic flight 
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vehicle, where the ACs affected critical aircraft systems. The algorithm was capable of 

interfacing the dendritic cell algorithm with the HMS strategy to alleviate the issues with the 

multidimensionality while also using the pattern recognition properties of the dendritic cell 

algorithm to create a system capable of handling detection, identification, and evaluation of ACs 

effectively [57]. Another immunity-based approach that used the HMS strategy specifically 

addressed sensor faults whose feedback were relevant to the employed control laws [58]. The 

approach used a motion-based flight simulator to design simple models to evaluate the reduction 

in available flight envelope under the effects of the sensor ACs while also determining relevant 

performance parameters for evaluation. A similar effort was performed in [59], where prediction 

models for actuator failures were developed within the AIS paradigm. Here, variables which 

were directly impacted by ACs affecting either the ailerons, elevators, or rudders were 

established, after which secondary variables which were indirectly affected by the presence of 

the AC were determined. By creating a list of the variables which are limited by each type of 

fault, new limits on dynamic variables can be established and flight conditions which are no 

longer reachable could be identified. With similar conditions to [50], the AIS paradigm has also 

been applied to evaluation of ACs over the extended flight envelope [60]. Here, the AIS was 

applied to determine the magnitude of ACs and the prediction of available states under the 

effects of the AC, giving an overall determination of the effects of the AC on the flight envelope. 

 While there have been many approaches applied to the detection, identification, and 

evaluation phases of the AC-DIEA process, there have also been several efforts where these 

three phases of the algorithm have been integrated. The dendritic cell-based approach in [57] 

based on the interactions between those cells and the rest of the immune system solved both the 

identification and evaluation as a pattern recognition problem. Another application of a proposed 

framework for integrated detection, identification, and evaluation was applied to failures of 

aircraft subsystems, where the scheme can perform each phase well for actuator, sensor, engine, 

and structural failures [61]. The immunity paradigm has also been able to integrate the detection, 

identification, and evaluation when applied to ACs affecting a powerplant [62], further 

demonstrating the flexibility of the algorithm when applied to a different type of complex 

system. While both of these efforts integrate the first three phases of the process well, they do 

not integrate the accommodation phase in any way. Additionally, the integration efforts for 

aircraft have focused only on manned flight, while no previous efforts have been made to 

integrate the process on board a UAV. 

 

2.3.2: Accommodation Approaches 

 Despite an apparent lack of total integration, there are several different approaches which 

have been used to address the accommodation phase. One type of approach which can be used 

for addressing the accommodation phase is based on the biological feedback between antibody 
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suppression and activation [63]. The second type of approach, perhaps more relevant to full 

integration, is based on the assumption that the classification abilities of the AIS can be extended 

to addressing the accommodation phase as well [64] [65]. When applied in this way, both control 

and controlled variables must be present within the AIS. 

 Further breaking down the situation, ACs for accommodation can come into one of two 

different types of situations. One such situation is where the AC is one which the system has not 

had previous experience with, whereas the alternative is where the AC is one which has been 

encountered before. If the situation has been encountered before, extensive information about 

how to accommodate for the AC can be stored inside specialized memory cells. Then, after the 

detection, identification, and evaluation are performed, the details of the AC can be used to find 

the appropriate method of compensation to the control laws. It is worth noting that this approach 

requires substantial information about how to compensate for the AC, for each anticipated AC. 

Conversely, a more involved or specific approach is necessary when the specific AC has not 

been encountered before, with respect either to the magnitude or to the class of AC. 

 A type of approach based on this balance of antibody production still made use of a set of 

memory cells. Here, the “antigens” were the differences between an incoming data point and the 

reference input from the pilot, which, when applied to an autonomous vehicle, could be 

somewhat equivalent to control law outputs. Therefore, artificial T-cells and B-cells were used to 

fight the antigens, driving the error between the reference and real world value to zero. These 

antigens can then be compared to the artificial T-cells and B-cells, and that which best matches 

the antigen can be selected, and adjustments made based on information present in the cell [66]. 

 A more specific application where the AIS has been applied to mitigation of tracking 

errors for position and velocity for a UAV in autonomous flight when deprived of feedback from 

a global navigation satellite system (GNSS) or some other external source of information. Here, 

the AIS was designed to provide corrections to the outputs from the inertial measurement unit 

(IMU) which was used within the dead reckoning algorithms. Measurements were taken under 

nominal conditions, which meant the GNSS was functioning properly, to create artificial 

memory cells to estimate the necessary compensations for the position and velocity estimation. 

Then, when the GNSS is no longer available, the real-time measured feature values are collected 

from the onboard sensors, matched to the memory cells, and used to adjust the position and 

velocity estimations of the measurements in the feedback loop of the tracking control algorithm. 

Two potential implementations were applied, one where IMU acceleration outputs were used to 

generate the antibodies and correct the input to the dead reckoning algorithm, and one where 

position and velocity estimations were stored and used to adjust the output of the dead reckoning 

algorithm, where both approaches achieved promising results [67]. 
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2.3.3: Specific Difficulties with Integration 

 Despite both the many theoretical approaches to detection, identification, and evaluation, 

as well as the successful applications of the immunity paradigm to the accommodation phase of 

the algorithm, there has not been a system which is capable of addressing the entire process in an 

integrated way. This is mainly due to the incredible diversity of ACs which can affect an aerial 

system, which all have the potential to require more specific solutions for successful 

accommodation. 

 One such example of this specificity was described in [67], where the AIS was set up to 

address, in its entirety, flight in a GNSS denied environment. While the approach achieved very 

high performance in compensating for outages in GNSS feedback, the system was very specific 

in that respect. The approach was formulated specifically for GNSS-out situations, which shows 

the ability of the algorithm to address integration in some way, but this effort did not address any 

other type of fault, such as those affecting angular rate sensors, actuators, or engines. 

 While the development of a system which is capable of handling the entire AC-DIEA 

process is very complicated and difficult, it has been well established that it is desirable to 

develop a system which is capable of addressing the process in an integrated way. Due to this, 

several different methodologies have been introduced with the aim to integrate the entire AC-

DIEA process to a single unit. Several of these efforts have been aimed specifically at aircraft 

[65] [66] with another addressing completely autonomous flight [68]. While these types of 

frameworks have been established, due to the complexity of potential types of ACs, these have 

proven challenging to implement [4] [69] [70]. 
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Chapter 3: The Immunity Paradigm 

3.1: Biological Immune System 

 The information provided in this section does not intend to describe the entire 

functionality of the BIS. This section will instead briefly cover some of the most basic elements 

of the BIS, while also introducing the more complex features of it. Additionally, mechanisms 

which are particularly relevant to the immunity paradigm will be explored in a higher degree of 

detail. 

 Research into the function of the BIS and with it, the field of immunology itself, was first 

recognized in the 1880s with the development of phagocytic theory by Elie Metchnikoff [71]. 

Here, all that was established was the importance of inflammation, where it was emphasized over 

other biological reactions to be the most important indicator of immune reaction. About 10 years 

later, this theory was expanded into use in modern medicine in the form of immunization. This 

was established through experimentation on animals, where they would deliberately be infected 

with diseases like diphtheria and tetanus. Then, from the animal responses, neutralizing antitoxic 

serums were developed for these diseases. Since that time, the field of immunology and the 

understanding of the functioning of the BIS has continued to expand [71], introducing, most 

importantly to the AIS, the theories of positive and negative selection which appear throughout 

the algorithms involved in the immunity paradigm. While the applications in the immunity 

paradigm do not completely match the BIS, the basic ability of the BIS to distinguish between 

cells of the self and invading antigens forms the base of the AIS paradigm and is vital to its 

proper function. 

 In the most general sense, the BIS is simply a collection of various cells and organs 

which are responsible for protecting the body from attacks from various types of invading 

antigens. As the cells of the BIS function as one unit, but in different ways, the BIS is broken 

down into innate immunity and adaptive immunity [72]. Generally, the innate immune system is 

similar between individuals and is capable of activating the adaptive immune system, which is 

then able to deal with novel molecules due to the large number of receptors which work for a 

specific antigen [73]. 

 Innate immunity is the first line of defense which is a system that is present from birth. 

Innate immunity is partially characterized by the presence of assorted physical and chemical 

barriers, where the skin largely keeps antigens out, but other surfaces have antimicrobial type 

effects through manipulation of the pH of fluids and through the presence of mucosal and trap 

antigens. If these barriers are passed, the next line of defense comes from specialized cells to 

destroy the invader, perhaps more intuitively when considering the BIS. From the innate immune 

system, these cells include polymorphonuclear leukocytes, monocytes, and, of particular interest 

to the AIS paradigm, macrophages. These macrophages are widely spread throughout the body, 
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where they are given different names, though they all share a similar function where they are 

capable of binding to and ingulfing antigens upon first interactions. This function serves two 

purposes, one is that this actively removes bacteria and parasites, the second is the processing of 

the antigen and presenting them to antigen-specific T-cells, a part of the adaptive immune 

response. One particular type of antigen presenting cell (APC) is the dendritic cell. These cells 

function similarly to other innate immunity cells, but they are particularly capable in triggering 

adaptive immune responses through presentation of antigens to T-cells. 

 Another type of cell within the innate immune response is the natural killer cell. These 

cells are large granular lymphocytes which are capable of determining altered features of 

membranes of abnormal cells. Then, through cell-cell contact, these natural killer cells can 

determine if another cell it has contacted lacks a self-antigen, the major histocompatibility 

complex (MHC) class 1. Another type of natural killer cell is a natural killer T-cell. These cells 

essentially serve as a type of midpoint between innate and adaptive immunity, where the 

receptors on the natural killer T-cells are less variable than those of true T-cells. Innate lymphoid 

cells have been shown to be helpful in protective immunity at the acute phase of infections, 

wound healing, and in tissue remodeling [72]. Finally, mast cells and platelets are responsible for 

inducing and maintaining inflammation [73]. 

 While innate immunity has a certain effectiveness, the elements of innate immunity, 

those being the physical and chemical barriers, the cellular components, and germline-encoded 

pattern recognition receptors, it is not capable of handling the entire immune response itself. This 

is mainly due to the lack of ability of the innate immune system to adapt to unknown situations, 

and due to the lack of a memory for antigens which it has interacted with. These shortcomings 

are addressed via the adaptive immune system, which works together with the innate immune 

system to form the full immune response, beginning with the antigen nonspecific faster response 

of the innate immune system before moving into the slower antigen-specific processes of the 

adaptive immune system. 

 The adaptive immune system is activated when the innate immune response is unable to 

eliminate the invading antigens. While the innate immune system is essentially the same between 

humans, the adaptive immune system is more specialized due to its reliance on interactions with 

foreign antigens. Upon interaction with a particular antigen, the adaptive immune system 

undergoes a set of reactions which induces an immune response which is unique to the invading 

chemical identity. 

 Adaptive immunity is handled predominately by the responses of B-cells and T-cells, 

which vary significantly from the germline-encoded cells of the innate immune system. In the 

case of B-cells, antigen specific receptors are present, which synthesize and secrete antibodies 

into the bloodstream through humoral immunity, while the antigen specific T-cell receptors are 

more varied based on the cytokines they produce, where most T-cell mediated immune responses 
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are known as cellular immunity. While B-cells can bind directly to the antigen to which they are 

specific, T-cells interact with and bind to antigenic peptides through the APCs of the innate 

immune system which display the MHC bound peptides unique to the antigen. When T-cells are 

activated, they begin to express and release cytokines, undergo clonal expansion, and create a 

pool of memory T-cells to facilitate future reaction to the same antigen. 

 The organs which are responsible for the production of these T and B cells are the 

lymphoid organs. These organs are broken down into primary and secondary organs. The 

primary organs are where the maturation of B and T cells occurs, through the creation of 

functional B cell and T cell antigen specific receptors. The main two organs involved are the 

bone marrow and the thymus gland, where B-cells mature within the bone marrow and T-cells 

undergo final maturation within the thymus gland. The secondary organs are those where the 

antigen-driven activation of the B and T-cells occurs. The main two secondary lymphoid organs 

are the spleen and lymph nodes, as illustrated in Figure 1. 

 

 
Figure 1: Main Lymphoid Organs [73] 

 

 Due to how the generation of B and T cells is addressed, the adaptive immune response 

has several features which differentiate it from other biological systems. These advantages 

include specificity, adaptiveness, self/non-self discrimination, and memory. As the T and B-cells 

are matured through exposure to antigenic peptides, they only respond to the antigens which 
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uniquely require their activation; this also addresses adaptiveness, where the antigen to which the 

T- and B-cells are responding may not be something which the BIS has any previous experience 

with. Memory is handled by production of memory T-cells where, after an interaction with a 

particular antigen has completed, a small number of memory T-cells will be kept and, in the case 

of a similar invasion, proliferation of these types of T-cells will be faster. 

 Finally, one of the most important features of the BIS is the capability to differentiate 

between cells of the self and those which are not a part of the self. Upon initial generation, some 

T-cells may respond to cells which are a part of the body, which requires a system in place where 

these types of cells are not allowed to circulate throughout the body. Therefore, within the 

lymphoid organs, there must be a selection process which does not allow T-cells which would 

trigger an autoimmune response to be released but does allow cells which can deal with the 

antigen to be released. To this end, a two-stage process beginning with a positive selection (PS) 

followed by a negative selection (NS) is used to screen the T-cells, an overall process known as 

thymic selection [72]. To better visualize the interactions between the T-cells and APCs, the T-

cell receptors and the antigenic peptides presented by the APC can be seen as a type of lock and 

key device. 

 During the initial PS stage, the double positive T-cells interact with the epithelial cells in 

the thymic cortex which express both MHC class 1 and 2 molecules. Through this interaction, 

the double positive cell will survive so, to cause the interaction, the double positive cell must 

have some affinity for self MHC. Through this affinity, the T-cell can then be educated on self-

MHC, where the T-cell will respond to the antigen only when the antigen is bound to that MHC. 

T-cells which do not have a sufficient reaction to the self MHC will not interact with the 

epithelial cells and will die through apoptosis. The basic mechanism of PS is shown in Figure 2. 

 

 
Figure 2: Positive Selection Mechanism [38] 
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 While T-cells in development need to react to self-MHC to be positively selected and to 

interact with antigens bound to self-MHC, T-cells which react too strongly to self-MHC need to 

be removed, as they could have an undesired autoimmune response in tissues. Therefore, a NS 

process is used to remove T-cells which demonstrate excessive reactivity to self-MHC. This 

process is activated when the positively selected T-cells interact with dendritic cells which 

express both MHC class 1 and 2 and associated self peptides. Then, if the T-cell has too strong 

an interaction with these, they are eliminated through apoptosis. The basic mechanism of NS is 

shown in Figure 3. 

 

 
Figure 3: Negative Selection Mechanism [38] 

 

 Through this two-stage process, the T-cells selected through thymic selection are able to 

respond to antigens but will not react to cells of the self without any antigenic properties. Many 

types of T-cells are generated through this mechanism. The main major subsets of T-cells are 

cluster of differentiation (CD) 4+ and CD8+ cells, which differ in the type of chains being used 

as their T-cell receptors. Another type of T-cell is the natural killer T cells, which regulate 

function of other types of T-cells and vary in development from other T-cells by which 

nonlymphoid cell it interacts with. Regulatory T-cells are essentially T-cells which only survived 

negative selection but were not removed and are capable of inhibiting responses both to self and 

foreign antigens. 

 

3.2: Artificial Immune System 

 As was indicated, many types of artificial intelligence techniques take inspiration from 

the various functions of the BIS. Collectively, these approaches to computational problem 

solving are referred to as AIS techniques. These techniques seek to emulate features of the BIS, 



23 

 

particularly the adaptive immune response, which are desirable for a similar system for solving 

problems in engineering and other sciences. These general features include:  

 

• Specificity: The BIS is capable of discriminating between different molecular entities and 

responding to those which require a response, while essentially ignoring those which do 

not require an immune response. 

• Adaptiveness: The BIS is capable both of recognizing and reacting to molecules which 

are novel to the body. This extends further to those which may not have been present on 

earth before. Being able to handle entirely novel and unknown molecules is another 

critical parallel between the BIS and the AIS. 

• Discrimination between self and non-self: Expanding upon the specificity, the BIS can 

differentiate between harmless cells of the self versus other potentially harmful molecules 

within the body. This feature is particularly critical to the application of the AIS, as the 

biological structures responsible for this feature, in particular the antigen-specific 

receptors on the specialized B and T-cells of the adaptive immune system, are modeled 

and applied throughout the immunity paradigm. 

• Memory: Previous encounters with a foreign antigen are “memorized” within the BIS 

through storage of chemical fingerprints or markers in memory T-cells. A small set of T-

cells are maintained after an encounter with a foreign molecule where, if another invasion 

by that molecule occurs, the memory T-cells allow for a faster and more effective 

response [74]. 

 

 These main features make the BIS a very desirable base upon which to model or expand 

upon to develop methodologies for solving various increasingly complex problems in 

engineering and other sciences. The BIS is a very large and complex system, where the various 

mechanisms and interactions within the system have generated many different approaches to 

solving problems. These problems vary immensely, and the particular application of the AIS also 

varies in how it will be applied to solve the particular issue. Here a few AIS-based techniques are 

highlighted to show the potential benefits and applicability of the algorithm, as well as to 

demonstrate the range of diversity of the techniques and their applications. 

 

3.2.1: AIS Techniques from BIS 

 One type of application of a BIS inspired algorithm is the immune network algorithm. 

This algorithm is based on the principle that the many parts of the BIS are capable of interacting 

with one another and recognizing other parts of the same system. Through this recognition, 

differing parts can influence the production and suppression of many types of immune cells. A 

negative response between two components can lead to tolerance or suppression between 
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components, where a positive reaction leads to proliferation and reaction. This matches the result 

when a cell of the BIS is stimulated via an antigen, but the immune network algorithm leverages 

the idea where an immune cell can stimulate another immune cell, similar to how B and T-cells 

interact with one another. Cells which continue to stimulate one another survive within a group, 

whereas cells which do not receive adequate stimulation are removed from the system [75]. 

 Through this inspiration, there are several types of artificial immune networks, such as 

resource limited AISs, where links created between B-cells are modeled to cluster similar 

patterns in training data. Another approach, the aiNet, can also be applied for determination of 

groups within data and serves as a type of evolutionary immune network [76]. These types of 

approaches have shown promise in clustering [77], data mining [78], pattern recognition [79], 

NN control [80], and path planning [81]. The ability of the artificial immune network algorithm 

to aid in optimization also allows for its application in optimization of clusters for generation of 

AIS for abnormal condition detection of aircraft systems [35]. 

 Another immunity-based approach is the clonal selection algorithm. This algorithm is 

based on the principle of clonal selection which is used to create strong antibodies within the 

BIS. The principle of clonal selection is based on the idea that the maturation of T-cells is similar 

to evolution, where the fitness of each T-cell is based on their ability to match the antigen and 

self MHC in an optimal way [82]. In this way, the algorithm selects the individuals which are 

most fit and applies mutations to these fit individuals to better mature the individuals which are 

presently most optimal at the solution. Candidate solutions are selected based on their affinity 

with an optimization function or by an antigen pattern. These selected solutions are then subject 

to cloning, where those which have lower affinity for the optimization function are more subject 

to mutation than those with higher affinity. This is the case, however, until solutions have very 

high affinity, where they will be subject to very high mutation to adequately explore the solution 

space around the high-scoring solution. Then, the mutated clones compete against the original 

solutions for membership into the next generation, and solutions with sufficiently low affinity are 

then replaced by randomly generated antibodies [83]. The clonal selection algorithm has been 

successfully applied in learning and optimization [84, 85], maintenance scheduling [86], data 

prediction [87], anomaly detection [85, 88], feature selection [89], and detection of vulnerability 

in firmware [90]. 

 The dendritic cell algorithm is another approach, based on the interaction of the innate 

and adaptive immune systems through the use of dendritic cells. In the BIS, dendritic cells are 

responsible for engulfing invading antigens and presenting specific antigenic material to T-cells. 

The algorithm itself is broken down into four phases, which are the initialization, detection, 

context assessment, and classification phases. The dendritic cell algorithm is population based, 

where each “cell” can collect data from antigens for classification, where the classification of the 

antigen is either a binary 0 if it is normal or 1 if it is anomalous. 
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 The first phase of the dendritic cell algorithm is the pre-processing and initialization 

phase, where the two most important steps are feature reduction and signal categorization. This 

step essentially poses to find the most important features within the training data set and apply to 

each a specific signal category. Correctly determining these features and types could require 

input from users or experts in the field to determine optimally. The detection phase is where the 

values for the inputs are determined to be safe or not. Each artificial dendritic cell is used to 

sample a given antigen and based on the signal definitions; each cell can give an output value on 

the “safeness” of the antigen. Then, based on a predetermined threshold value, the antigen can be 

determined to be either safe or not. Context assessment is where each dendritic cell can process 

and collect signals and antigens. Through the generation of a cumulative output signal, artificial 

dendritic cells receive a “cell context” which is used in the classification phase. In the 

classification phase, the cell context is used to derive the nature of the response, based on the 

number of fully matured dendritic cells [91]. 

 One particular application of the dendritic cell algorithm is in detection, identification, 

and evaluation of abnormal conditions affecting actuators, sensors used in control laws, 

structural components, and propulsion systems through simulation [53, 57]. When used in this 

type of application, for example in detection, lower dimensional subselves can each be used to 

produce individual discrimination outcomes, that is if the system is affected by an AC or not. 

The values from these projections can be merged into a detection matrix, where the artificial 

dendritic cells will be used to extract information from that matrix to determine if the system is 

affected by an AC or not. After an artificial dendritic cell is matured, its feedback will be used in 

the final decision making process. This process also involves the determination of self 

performance weights for capturing self and non self, and matrices corresponding to triggered and 

non-triggered features. [4]. Other successful applications of dendritic cell based approaches are 

in machine learning and classification [92] and fault and anomaly detection [93, 94, 95]. 

 In addition to these more specific techniques, both aspects of thymic selection, that is the 

two-step positive/negative selection, have many applications within the immunity paradigm. PS 

is the process by which T-cells are initially screened where, if the T-cell has some ability to 

recognize self MHC, they are positively selected to survive. NS is the second stage, where cells 

that are too reactive to the self MHC when combined with the self peptides are removed and the 

remaining T-cells are negatively selected for release [74]. 

 Within the AIS, PS can be used in self-non-self discrimination, that is to determine 

whether or not an incoming data point is representative of function under the effect of an AC. 

When self data is clustered, an incoming data point can be compared to each cluster of self data 

where, if the point is found to fall within the cluster, it is positively selected to be representative 

of nominal function. Conversely, if non-self data is structured, a data point could be positively 

selected as representative of abnormal function if it is within one of these clusters. Due to this, 
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the PS algorithm requires that each non-self cluster be checked to determine if a point is 

representative of abnormal function. In general, it should not be assumed that clustered non-self 

data is available, as it is computationally and physically expensive enough to collect nominal 

data under all conditions of interest given the huge multidimensionality of the system, and that 

issue is only intensified in the case where structured non-self data would be required [96]. 

 As opposed to PS, NS can also be applied for self/non-self discrimination within the 

immunity paradigm. Here, to determine if a point is representative of function under the effects 

of an AC, the incoming data point would be compared to each self cluster and, if the point was 

found to not belong to any self clusters, it would be negatively selected as representative of 

function under the effect of an AC. Conversely, each cluster of a structured non-self could be 

checked where, if the data point did not fall within any of these, it would be negatively selected 

as representative of nominal function. NS based algorithms form the basis of many self/non-self 

discrimination processes and are central to the development of an AIS, where it primarily 

functions as a method of fault detection [97], which extends to many different types of dynamic 

systems. 

 Either PS or NS based algorithms can be used to determine if the system is functioning 

under the effect of an AC and can be applied by either comparing incoming data points to self or 

non-self clusters. Structured non-self data may not be available, so it may not be possible to 

compare incoming data points to non-self data. Under nominal conditions, the incoming data 

point should fall inside a self cluster. Therefore, it would likely be faster to check the self 

clusters, as the entire set of non-self clusters would have to be checked to determine if the data 

point is nominal if the non self clusters were used. Conversely, AC detection would likely be 

faster by checking non-self clusters by the same merit. However, this is only valid if the sizes of 

the self and non-self sets are similar and may not be the case if the sets are very different sizes. 

 

3.2.2: Definition of the Self vs Non-Self 

 As it is central to the AIS paradigm, the ability of the AIS to discriminate between the 

self and non-self is critically important to the function of the AIS, so we will first define what the 

self is in terms of the AIS. Within the immunity paradigm, in general the self is a collection of 

dynamic variables, or features, which fully describe the dynamics of the system at any given 

state, under nominal conditions. The selection of what features are used is fundamental to the 

proper function of the AIS and of course varies by dynamic system. In general, the feature space 

should include all variables necessary to completely describe the dynamic state of the system 

under both nominal conditions and under the effects of any potential ACs which the system 

could encounter. This can make determination of features to use tricky as, theoretically, there is 

at least one feature which would be relevant to every AC, but determining these variables may 

not be possible, considering the vast number of potential ACs. The AIS could also be designed to 
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work over a subset of different dynamic states, for example, in the case of an aircraft, the AIS 

may not be designed to cover the entire flight envelope, but to cover some normal operation 

given a specific control architecture. 

 While, in theory, selecting the proper features should allow for any potential AC to be 

addressed, there are a few issues related to the feature space. One issue is in determination of all 

appropriate features. In the case of aircraft, there is a somewhat well-established list of potential 

features, it is possible that certain ACs would only be detectable by the inclusion of some 

relatively unintuitive or difficult to measure variables, like the total displacement of a certain 

screw. Another issue is that each included feature adds another dimension to the feature space. 

As the dimensionality of the AIS increases, computational effort grows with it, which can affect 

the rate at which the AIS can process data, or the quality of hardware required to address 

computational time requirements. Adding additional dimensions also increases issues with 

thresholds and distance calculations, which become important in certain phases of the AC-DIEA 

process. 

 Next, the data must be structured in some way. This structuring generally starts with 

normalization of the data based on assumed or experimental ranges for each of the feature 

values. A common way data structuring is achieved is through some conventional direct 

clustering algorithm, such as K-means. These types of algorithms can have issues, however, with 

optimization of cluster size and shape, which is compounded by the multidimensionality issues 

mentioned before. Another way that the self can be structured is through the PUA, which divides 

the universe with a uniform grid to alleviate issues related to optimization, cluster overlap, and 

empty space. 

 In addition to structuring of the self, the non-self can be structured in a similar way, 

where data recorded under the effect of an AC can be clustered. Then, these clusters can be 

labeled with all the information necessary to address the AC, that is, based on the AC data which 

generated the cluster, it can be labeled with the affected subsystem, the type and severity of the 

AC, its effect on the flight envelope, and how it is accommodated for in the flight control laws. 

 Finally, during operation, if all the feature values match one of the self clusters, that 

incoming data point will be determined to be a part of the self and thus representative of nominal 

operation. Conversely, if the feature values do not fall inside a self-cluster, or if they do fall 

inside a non-self cluster, the data point is a part of the non-self and representative of abnormal 

function. If the point is determined to be a part of the non-self, more processing is necessary to 

determine what AC is affecting the system. If the non-self is structured, information can be taken 

from the non-self cluster itself to determine important information about the AC, but often 

structured non-self data is not available. If structured non-self data is not available, other types of 

pattern recognition type algorithms can be applied to determine the nature of the failure. 
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 When selecting the features for use in the AIS, an aerial system generally has eight major 

variable types, although other, more specific variables could be considered. These types of 

variables include [61]:  

 

1. Aircraft state variables, such as bank angle and Euler angles 

2. Pilot input and/or commanded variables, such as stick displacements in the case of 

manned flight or commanded pitch angle in the case of autonomous flight 

3. System characteristic parameters, such as stability and control derivatives 

4. Variables generated within control laws, such as virtual control inputs from non-linear 

dynamic inversion 

5. Derived variables and parameters including estimated values, such as angular rate 

estimations from neural networks, model outputs, or residuals 

6. Maneuver or task characteristics, like binary type indicators if the aircraft is turning or 

not, or if the aircraft is climbing or not 

7. Environmental parameters, such as measured wind speed or turbulence 

8. Other external factors 

 

 In general, the total set of all features 𝐹 can be denoted as:  

 

 𝐹 = {𝜙𝑖|𝑖 = 1,2, … , 𝑁} (3-1) 

 

where a single incoming data point 𝑃 is a vector which contains all the values for each feature 𝜙𝑖 

at that time step, in other words the coordinates of a point P in the hyperspace of the features. At 

this point, it is irrelevant whether the aircraft is under the effect of an AC or not. Therefore, an 

incoming data point at a moment 𝑡 = 𝑡̅ can be denoted as:  

 

 𝑃 = [𝜙1(𝑡̅)𝜙2(𝑡)̅ … 𝜙𝑁(𝑡)̅] (3-2) 

 

 Each one of these data points will fall somewhere inside the “universe” 𝑈, where the 

universe is defined as any reachable dynamic state, in terms of the included features. As a result, 

the universe will be an 𝑁-dimensional hyperspace, where 𝑁 is the total number of features 

considered. Within this universe, the self 𝑆 can be defined as the set of all feature points which 

are representative of nominal operation. However, the self will be represented as the series of 

clusters or partitions made from the data collected under nominal operation. Implicitly, the non-

self 𝑆̅ is then defined as all the feature points which are not a part of the self, and are thus 

representative of function under the effect of an AC. These sets are defined such that:  
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 𝑆⋃𝑆̅ = 𝑈 and 𝑆⋂𝑆̅ = ∅ (3-3) 

 

 The selection of what dynamic variables will be included within the feature space is 

fundamental to the proper function of the AIS. Theoretically, features can be selected such that 

the entire AC-DIEA process can be addressed for all ACs considered. While possible, the 

features which describe particular ACs may be difficult to determine, especially for an 

unanticipated AC, or measure, when considering hardware as opposed to simulation. 

Additionally, the feature space should also include as few features as possible to optimize 

computational time and effort. If too many features are selected, the system becomes 

overcomplicated and computational time and effort both increase. This becomes particularly 

important when considering hardware limitations, as increased computational effort would 

require more powerful computers to maintain similar computational speed to cases where less 

features are used. If too many features are included, the rate at which incoming data is processed 

will decrease, either in terms of onboard systems or potential communication with a more 

powerful remote computer. This could cause additional delays in AC-DIEA outcomes, as 

sampling rates would need to decrease to accommodate the rate at which data can be processed, 

and these delays could cause issues in addressing the AC. However, if too few features are 

selected, in particular if critical features are missing, the AIS could have difficulty in any stage of 

the AC-DIEA process, where certain faults could be impossible to differentiate and where others 

may be missed entirely. Consequently, the features used within the feature space must be 

balanced to address as many potential ACs as possible without introducing undue computational 

effort. This can be addressed by including mainly features which are easier to measure and are 

useful for multiple ACs, such as measured angular rates and control system outputs. There is, 

however, no specific “correct” number of features to include, as individual systems will have 

unique computational speed and individual missions may have specific requirements both in 

terms of performance rates and ACs of particular interest. 

 Once the universe, including all features, has been fully defined, the self will correspond 

to some 𝑁-dimensional hyper-volume contained within this 𝑁-dimensional universe. Through 

the various algorithms used in the immunity paradigm, the distance between data points becomes 

important, where these distances can become very unintuitive in the higher dimensional space. 

To slightly simplify this, each feature value is normalized, based either on expected values for 

the features or experimental limits. After normalization each feature value will be between zero 

and one:  

 

 𝜙𝑖 ∈ [0,1] (3-4) 
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After which, the universe will be shaped as a unit hyper-cube with dimension 𝑁 and with a 

volume of 1. Note that according to a hyper-dimensionality paradox [96], when N goes to 

infinity, the volume of the unit hyper-cube is still 1, while the volume of the inscribed hyper-

sphere goes to 0, which creates counter-intuitive issues when considering distances and 

thresholds. 

 

3.2.3: Self/Non-Self Generation 

 When generating the self or non-self of the AIS, it is necessary to have an accurate 

representation of both the self and the non-self, that is the function of the system under nominal 

conditions and under the effect of an AC. These data, in the case of nominal data, must be 

structured to create the self, where structured non-self data are not absolutely necessary, but can 

be helpful throughout the AC-DIEA process. Typically, the self is created through some 

clustering algorithm, where a PS [98] type algorithm is used, where incoming data points can be 

determined to be abnormal if they fall inside any self clusters. Conversely, if the non-self is 

structured, these clusters can be labeled with all information to address the AC, where they can 

also be used to determine if a point is abnormal. If a sufficient number of data points fall within 

these detectors or outside the self clusters, the system will be declared to be under the effects of 

an AC. 

 As this discrimination is central to beginning the entire AC-DIEA process, knowledge of 

what regions of the universe are representative of either nominal or abnormal operation is central 

to the function of the algorithm. Therefore, to get the best idea of the shape of the self, a huge 

amount of data must be collected under all potential operating conditions under nominal 

conditions. As features are added to the feature space, this can become extremely problematic, as 

if you include potentially important features like heading angle or altitude, the number of 

different “flight conditions” may explode to an incredibly large number. To keep this issue in 

check, we often consider smaller sections of the flight envelope, such as limiting the states to 

certain commanded bank angles during turns. This form of limiting states is an advantage of 

addressing autonomous flight, as, for example, the commanded bank angle in autonomous laws 

can simply be set to a specific angle, while, during manned flight, it is much more difficult to 

limit bank angle in this way, as a human operator is unlikely to be able to consistently command 

an exact bank angle. Ideally though, this data would cover the entire flight envelope. Data used 

to generate the self can come either from actual flight tests, simulation, analytically, or through 

some combination of these sources. AC data can also be recorded from the same sources, 

however collecting this type of data from real flight tests may or may not be reasonably possible. 

 After the features have been selected, which define the operational envelope, and the data 

collected, the AIS can be generated. This stage will, most importantly, involve the determination 

of the overall structure of the AIS, though the structure used can vary depending on the stage of 
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the AC-DIEA process which is being addressed. In general, the structure of the AIS can be 

divided into two main classes. One of these classes is where the entire multidimensional feature 

space is used. In theory, this approach seems the most intuitive, but using the hugely 

multidimensional space can cause issues both in computational time and in determination of 

distances and thresholds. Conversely, the problem can be simplified by using lower dimensional 

projections of the self/non-self. This involves selecting only some features rather than all of 

them, which can greatly alleviate issues with the unintuitive nature of hugely multidimensional 

spaces. Additionally, these lower dimensional projections have the property where, in general, 

certain lower dimensional projections will be more sensitive to certain types of ACs. For 

example, a projection which includes variables like roll rate or roll acceleration is likely to be 

triggered more extensively than other projections if the aircraft is under the effect of an AC 

which is affecting an aileron. Through this, these lower dimensional projections are very useful 

in the identification phase, but the more intuitive perspective of distances also makes these 

projections useful in evaluation as well. The technique of using lower dimensional projections 

instead of the whole multidimensional self is called the HMS strategy [99]. 

 Theoretically, the HMS strategy was created to take a hugely multidimensional problem 

and divide it into many lower-dimensional problems which are generally easier to deal with. In 

practice, this can increase the computational effort to develop the AIS, as determining 

appropriate projections for use itself can be a complex task because  if we consider all lower 

dimensional projections, the number can get very high, so limitations on the dimensionality of 

the considered projections can be, in the simplest case, down to only 2-dimensional projections. 

Lowering the dimensionality of the problem both lowers computational time, as checking all 

possible two dimensional clusters is both computationally easier and there are less clusters to 

check, and makes the entire space more intuitive and accessible. An example of a three 

dimensional projection is shown in Figure 4, where the three features used to create the 

projections are the roll rate 𝑝, the pitch rate 𝑞, and the yaw rate 𝑟. 
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Figure 4: 3D Subself [4] 

 

 Finally, duplicate data points are removed to reduce storage size and better optimize 

computational resources. Other stages, which can be included in the process, are the 

normalization of the data as well as an analysis of the quality of data. The general process for 

data processing for generation of the self/non-self is shown in Figure 5. 
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Figure 5: Data Processing for Self/Non-self Generation 

 

 A part of the data processing for the generation of the self or structured non-self is to 

determine how the data are going to be clustered. Traditionally, this clustering was performed via 

some DCA which creates hyper-bodies based on the locations of the construction data points. 

When clustering using a DCA, the main design parameters of these hyper-bodies are the shape, 

size, and number of clusters used. While intuitively using hyper spheres makes the most sense, 

many different hyper-shapes can be used, such as hyper-rectangles, cubes, or ellipses. Size 

mainly becomes an issue where, if too small a maximum size is selected, many more clusters 

will be necessary to accurately form the self which, as mentioned previously, is detrimental, 

whereas if clusters are too large, is becomes more likely that areas which represent abnormal 

function will be included in self clusters. The number of clusters presents similar issues, where 

more clusters can increase computational time unnecessarily, while too few clusters do not 

accurately represent the self or non-self. As a result, when using a DCA, it is very challenging to 

optimize all of the available design parameters. When a DCA is applied to cluster the data, each 
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𝑁-dimensional point is assigned to a cluster via some specific algorithm, such as the K-means 

algorithm [100]. 

 The K-means algorithm itself works by using Euclidean distance to cluster data points 

where points which are close together will theoretically be assigned to the same cluster, creating 

a set of hyper-spheres where the union of these spheres defines the self/non-self [101]. Each 

hyper-sphere will have a centroid, and the algorithm itself seeks to minimize the sum of the 

residuals of the feature points to the centroid to which they are assigned. To initialize the 

algorithm, a K-partition is generated, where the partition is the set of centroids for each cluster. It 

is worth noting that, at this stage, the centroids will be assigned randomly. Then, each feature 

point is assigned to the nearest centroid. This is accomplished by an iterative process which 

compares the distance of the feature point to each centroid, after which the location of each 

centroid will be updated based on the current assignment of data points. These locations will be 

assigned to minimize the total distance between the centroid of the hyper-sphere and each point 

within the sphere. This will generate a new set of centroids, where the process of assigning each 

point to a centroid and recalculating the centroids can be repeated. The iterations stop when 

either the centroids do not move, or the total movement of each centroid is lower than an 

established tolerance. The K-means algorithm is shown graphically in Figure 6. 
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Figure 6: K-means Algorithm 

 

 While this type of clustering algorithm can be applied both to self and non-self clustering, 

issues with optimization and computational time are intensified by the highly multidimensional 

space and the incredible amount of data under all considered ACs as well as under nominal 

operation. Therefore, many efforts have been made to better optimize K-means type algorithms 

particularly in the clustering of the non-self. 

 One approach to clustering these “detectors” is through the Enhanced Negative Selection 

Algorithm for Real-Values Representation with Variable Detector Radius (ENSA-RV) algorithm 

[61]. This algorithm is designed specifically around the unique issues of the AIS paradigm while 

still being an iterative method like K-means. The algorithm has two main advantages with 

respect to the AIS paradigm. One advantage is a guarantee that there will be no overlap between 

the clusters of the self and the clusters of the non-self. This is evidently advantageous as, if a 
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point fell inside both a self and non-self cluster, it would be unclear as to whether it was 

representative of function under an AC or not. The other advantage is a guarantee of a certain 

level of coverage of the non-self, that is the universe which is not a part of the self will have a 

certain degree of coverage guaranteed, as it could adversely affect the algorithm if an incoming 

data point did not fall inside any cluster. 

 The algorithm begins with an initial set of candidate detectors, which are located 

throughout the 𝑁-dimensional non-self, where each cluster has its radius set to the largest value 

that it can be without overlapping any self clusters. To cover the non-self as completely as 

possible, it is the most optimal if no overlapping between clusters occurs, so, for the remaining 

stages of the algorithm, an overlapping metric 𝑤𝑖 is introduced, which quantifies the degree to 

which a detector overlaps with other detectors [102]. If, after all detectors are generated, a 

detector has an overlapping factor of zero, a clone of the detector will be placed above it exactly 

one radius away, such that there is no overlap. Then, clones of the detector will be placed 90 

degrees away from the initial clone, creating a new set of detectors to optimize. Alternatively, if 

the overlapping metric is not zero but is lower than a certain threshold, a single clone will be 

placed adjacent to the detector, but in the direction opposite of the nearest detector. The distance 

at which this clone will be placed is updated iteratively [99]. 

 While both the ENSA-RV and K-means algorithms have certain drawbacks, particularly 

with respect to optimization and computational intensity, both have been applied extensively for 

the generation of clusters for use in both the self and the non-self. However, an alternative 

approach to the structuring of the AIS which has been proposed recently is the PUA. This 

approach has emerged as an alternative to DCAs, where it has shown promise being applied to 

both a complex power plant [103] as well as, partially, in aerospace systems [41]. 

 

3.2.4: Self/Non-Self Generation using Partition of the Universe Approach 

 When using the PUA, the generation of the self and non-self is simplified by, rather than 

to cluster a set of data points, the feature space is divided into “partitions” which function as the 

clusters. This division is performed using the universe grid, which divides the universe into those 

partitions with a pre-defined shape and resolution. Each data point is then compared to the 

universe grid, and if a sufficient number of these raw data points fall inside a particular partition, 

that partition is determined to be either a part of the self, if the data points are from nominal 

operation, or a part of the non-self, if the data is from flight under the effect of an AC. While 

partitions can be labeled with non-self data, is it worth noting that, with only nominal data being 

used, the remaining partitions which are not a part of the self are implicitly a part of the non-self. 

By dividing the self in this way, each partition can be identified by a single string of integers, 

making the self a matrix of values which defines where in each dimension the partition is 
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located. This also poses the significant advantage of allowing the entire 𝑁-dimensional universe 

to be used without significant computational issues [39, 103]. 

 After the data to create the self are collected, they must then be normalized. This 

normalization both makes the universe easier to understand, as the shape is now an 𝑁-

dimensional hypercube of unit length, as well as it makes determination of distances and 

thresholds more intuitive than if the raw data values were used. The normalization boundaries 

used are based on both the expected values for the features both under the effects of an AC and 

nominally, and values for the features obtained from experimental data. 

 Next, the sizes of the partitions must be determined. The size of the partitions is 

determined both by the normalization values used for each of the features, as well as the number 

of partitions assigned to each variable. Most simply, each feature can be given the same number 

of partitions, which will make each partition itself another hypercube. Conversely, if some of the 

features vary more slowly or for some other reason, a lower number of partitions could be 

assigned to that feature. Using more partitions per feature will decrease the volume of each of the 

partitions, which allows for a more precise representation of the self. This increase in precision is 

contingent upon having sufficient data to not leave holes in the self, as generating the self with 

many smaller partitions means that it is necessary to have enough nominal data to ensure that 

each partition which represents self data has a data point inside it. Additionally, by creating more 

partitions, we also increase computational effort, so a balance between the computational effort, 

available data, and self accuracy must be achieved [103]. 

 As mentioned, each feature 𝜙𝑖 will have a variable 𝜋𝑖 which will define the resolution of 

the partitions for that feature by dividing the space into 𝜋𝑖 intervals for that feature. As each 

feature can have this value set independently, there is a resolution set which can be defined as:  

 

 𝛱 = {𝜋𝑖| 𝑖 = 1,2, … , 𝑁} (3-8) 

 

where this vector will determine the shape of each of the partitions. If the values are different, 

then the shape of the partitions will be hyper rectangles. Different shapes can also be 

implemented, though it is not as computationally simple as using hyper cubes or rectangles. If 

each feature is selected to have the same number of partitions, such that:  

 

 𝜋𝑖 = 𝜋, 𝑖 = 1,2, … , 𝑁 (3-9) 

 

then the partitions will become a set of 𝜋𝑁𝑁-dimensional hypercubes, which is referred to as the 

universe grid. This is the case regardless of whether the universe was structured as hypercubes or 

hyperrectangles. To facilitate optimization of the size of the universe grid, the data acquisition 

process can be designed such that data are sampled at a sufficient rate to capture the system 
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dynamics both under normal operation and when under the effects of an AC, the partition size 

for each feature can be better optimized by selecting the size such that:  

 

 
𝜋𝑖 = 𝑟𝑜𝑢𝑛𝑑 (

1

mean(𝛥𝜎𝑖)
) (3-10) 

 

where Δ𝜎 is the difference between two normalized consecutive measured samples of a given 

feature. Dividing these partitions in this way guarantees that each consecutive data point will fall 

into consecutive partitions, theoretically creating the self in a continuous way. If partitions are 

selected to be larger, then a single partition may cover too much volume and include both self 

and non-self, while if the partitions are smaller than this, there may be a partition or partitions 

between consecutive data points, which is not desirable because, intuitively, these areas also 

likely correspond to nominal conditions, but there will be no data points inside these partitions so 

they will be interpreted as non-self. 

 With the universe divided in this way, all that is necessary to do to create the self is to 

compare each normalized data points to the universe grid. Each normalized data point will fall 

inside one of the partitions on the grid and, if a sufficient number of data points fall inside a 

particular partition, that partition will be determined to be a part of the self. Then, the label for 

that partition can be added to the matrix containing all self partition labels. We define a raw data 

point as:  

 

 𝑃𝑘 = [𝜙1(𝑘), 𝜙2(𝑘), … , 𝜙𝑁(𝑘)] (3-11) 

 

After normalization, this point is represented as:  

 

 �̅�𝑘 = [�̅�1(𝑘), �̅�2(𝑘), … , �̅�𝑁(𝑘)]�̅�𝑖(𝑘) ∈ [0,1] (3-12) 

 

Then, each normalized data point will fall inside one particular partition, 𝐶𝑘, where that partition 

will be used as the new part of the self, where the partition can be represented as:  

 

 𝐶𝑘 = [𝑝𝑘1, 𝑝𝑘2, … , 𝑝𝑘𝑁]𝑝𝑘𝑖 = 𝛼 > 0      𝛼 ∈ 𝐼 (3-13) 

 

where 𝐼 is the set of integers and:  

 

 𝛼 − 1

𝜋
≤ �̅�𝑖 <

𝛼

𝜋
 (3-14) 
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If the partitions are selected to be hyper-rectangular, the self partition label finally becomes:  

 

 𝐶𝑘 = [𝑝1𝑝2  … 𝑝𝑁], 𝑝𝑖 ∈ {1,2, … , 𝜋} (3-15) 

 

 Then this process is repeated for each data point, giving the list of partitions 𝐶𝑘 which are 

a part of the self. While approaches based on conventional clustering generally benefit from the 

removal of duplicate data points, having these duplicate points present does not cause any 

significant issues when using the PUA. These duplicate points do not cause any functional issues 

for the PUA, but if there is extensive duplication it will increase the computational time to 

generate the AIS. Conversely, if there is not significant duplication of data points, it could be 

more computationally intensive to remove the duplicates rather than consider them. 

 After this process is completed, the self is represented as a series of hyper-rectangles. 

These hyper-bodies then take the place of the clusters that would be generated using some DCA. 

Despite the two approaches accomplishing similar tasks, the PUA is much less computationally 

expensive than a DCA, as each self partition is represented as a single string of 𝑁 elements 

between 1 and 𝜋, and the incoming data points only need to be normalized, the partition labels 

found, and a comparison made to the list of self partitions contained within the array. The 

process of the PUA is shown in Figure 7, where the structure of the self when using the PUA is 

shown in Figure 8. 
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Figure 7: Partition of the Universe Clustering Algorithm 
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Figure 8: Self as Defined by PUA 

 

In this representation, the variable 𝑝 corresponds to the partition index for each of the 𝑁 features 

and will be a number between 1 and 𝜋𝑖 for each value, and 𝑁𝐶 is the total number of partitions 

which make up the self. 

 While this is how the self is formed, the non-self then implicitly consists of all partitions 

which are not a part of the self. A sample of a 2-dimensional self generated using the PUA is 

shown in Figure 9. 
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Figure 9: 2D Self Generated Using a Uniform Square Grid Using PUA 
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Chapter 4: Generation of the AIS and AC-DIEA Integration 

4.1: Experimental Design and Considered ACs 

 When generating the self or non-self of the AIS, data can be used from several potential 

sources, which include simulation data, data from actual flight tests, and analytical data. Here, 

data were collected exclusively through simulation, where the simulation environment used was 

the WVUUAS Simulation Environment [5]. This in-house developed simulation environment is 

designed specifically to address issues related to UAV health and comes with a variety of 

customization options related to the control architecture and potential ACs. The simulation 

environment used will be discussed in greater detail in Chapter 5. As the dynamic states which 

would correspond to a healthy aerodynamic system are dependent on the design, a single aircraft 

was used for this AIS, which was a reduced size YF-22, a fixed wing autonomous aircraft. 

 As the aircraft was completely autonomous, a few other decisions are critical for 

determining how the aircraft will function, what features are usable from the control laws, and 

what dynamic states constitute healthy or abnormal function. One of these decisions is the 

trajectory generation algorithm, which will mainly determine what types of maneuvers the 

aircraft will perform. For this effort, only a single trajectory generating algorithm was 

considered, which was the Dubins waypoints planning algorithm [104]. 

 Using the Dubins waypoints planning algorithm, the trajectory is generated using only 

straight segments and circular arcs. Therefore, the Dubins vehicle, in our case the UAV, is 

constrained to move either in a straight line or along a circular arc. In the context of the UAV, 

this means that the aircraft, within the plane, will either be flying straight and level flight or 

turning with a constant bank angle, where these maneuvers can be performed either when 

ascending, descending, or level. By defining the path in this way, each curve will be twice 

differentiable at almost all points, which is useful for control purposes. During any part of the 

trajectory, both the commanded location and the actual location can be defined by the x, y, and z 

locations and the heading angle of the vehicle. It is through these dynamic variables where the 

twice differentiable nature of the Dubins curves is advantageous. In the developed trajectories, 

the two-dimensional maneuvers are described by the Dubins algorithm, while the three-

dimensional trajectories use the Dubins algorithm, either ascending or descending at a constant 

velocity. 

 While the path is generated in this way, there must be some control laws which are used 

to command the UAV to follow that trajectory. In the development of the AIS, the control laws 

used were based on nonlinear dynamic inversion (NLDI), while a second set of controls based on 

proportional integral derivative (PID) control was also used in accommodation efforts. 

 A PID controller, in general, uses various manipulations of the error signal to compensate 

for when the variable to be controlled is no longer at the commanded condition. The proportional 
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part of the controller addresses the error at the current time step, the derivative part of the 

controller addresses the rate at which the error is growing, and the integral part addresses the 

build-up of the error over time. Each of these is then multiplied by some constant gain and added 

together to give a commanded output to the plant. These gains can be manipulated to achieve 

certain desirable dynamic properties, such as a low rise time or fast settling time, but are 

generally at odds with each other, where increasing a particular gain may have a positive impact 

on the settling time, but a negative impact on another dynamic response characteristic such as 

overshoot percentage. 

 Within the control laws, each of the control inputs are the commanded deflections of the 

primary control surfaces, those being the ailerons and rudders for the lateral controller and the 

elevators for the longitudinal controller. In general, the dynamic state of the aircraft and the 

commanded trajectory are used to calculate commanded values for the Euler angles Θ and Φ. 

Then, the current dynamics of the system are used to ultimately determine the command for the 

control surfaces. For elevator control, the error signal is the difference between the commanded 

and reference Θ, where additional compensations are present based on the current z-acceleration, 

pitch rate, and lift generated from the roll rate. For aileron control, the architecture uses the 

difference between the commanded and reference Φ, with an additional factor coming from the 

current roll rate. Finally, the rudders use the difference between a specific commanded state and 

the current yaw rate to determine rudder deflection. 

 The primary control architecture which was used throughout the AIS generation and 

validation was based on NLDI. In general, NLDI is a control method for control of nonlinear 

systems, based on knowing the desired values for dynamic variables and using that information 

to calculate the necessary control inputs based on the dynamic effect these inputs would have on 

the system. Within this control architecture, a virtual command is generated using state feedback 

and is used to derive a normal command in a linear way. 

 In the architecture used here, the input states were the total velocity, the velocities in the 

x, y, and z directions, and the x, y, and z locations. The value for these states and the reference 

virtual values are used to calculate the trajectory variables, including variables like the lateral 

velocity and the vertical velocity difference. Then, the command for the pitch angle is calculated 

through manipulation of the difference in commanded and current height and the difference in 

commanded and current vertical velocity. While the calculation used for the commanded pitch 

angle is relatively straightforward, the calculations for the commanded bank angle and throttle 

use the NLDI architecture. Finally, the commanded pitch angle, bank angle, and throttle are fed 

through a slow mode and fast mode NLDI, where the slow mode determines the virtual 𝑝, 𝑞, and 

𝑟, and the fast mode uses these references, the real values, and the commanded throttle to 

calculate the final commands for the elevator, aileron, rudders, and throttle. 



45 

 

 The final parameter of interest for the simulation is related to random events which 

happen during flight. The main form that these random events would take is in gusts of wind or 

turbulence. Presently, these types of disturbances are not activated, though the effects of 

turbulence on the proper function of the AIS are worth exploring. 

 Using these flight control laws, the simulated aircraft will fly a list of prescribed 

trajectories under both nominal conditions and abnormal conditions for construction and later 

validation. The first set of trajectories are the construction trajectories, which consider some 

simple 2-dimensional and 3-dimensional trajectories. These trajectories will be flown with a 

commanded bank angle of either 15, 20, or 25 degrees. Each trajectory begins at the x-y origin 

with an altitude of 1000 feet, at the point (0, 0, 304.8). 

 The first trajectory among the development trajectories is a simple 2-dimensional oval. 

The aircraft makes two right turns before arriving where the flight began. Information about the 

trajectories can be seen in Table 1 while the trajectory with a 20 degree bank angle can be seen 

in Figure 10. 
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Figure 10: 2-Dimensional Oval with 20 Degree Bank Angle 

 

Table 1: 2-Dimensional Oval Trajectory Information 

Bank Angle (degrees) Flight Time (seconds) Data File Size (KB) 

15 156 2074 

20 131 1773 

25 115 1580 

 

 The next trajectory considered for construction was a series of s-turns. This trajectory 

involves taking a set of turns that form the shape of an s. Information about the second set of 2-

dimensional construction trajectories can be seen in Table 2 while the trajectory itself with a 20 

degree bank angle can be seen in Figure 11. 



47 

 

 
Figure 11: 2-Dimensional S-Turns Trajectory with 20 Degree Bank Angle 

 

Table 2: 2-Dimensional S-Turns Trajectory Information 

Bank Angle (degrees) Flight Time (seconds) Data File Size (KB) 

15 244 3358 

20 206 2888 

25 183 2589 

 

 The next set of trajectories used for construction are all 3-dimensional. These trajectories 

start with two different types of ovals. One set of ovals turns to the left, while the second set 

turns to the right. Information about the two sets of 3-dimensional construction trajectories can 

be seen in Tables 3 and 4 while the rightward oval trajectory with a 20 degree bank angle can be 

seen in the two-dimensional plane in Figure 12 and in three-dimensions in Figure 13. 
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Figure 12: 3-Dimensional Oval Trajectory with 20 Degree Bank Angle (2D View) 

 
Figure 13: 3-Dimensional Oval Trajectory with 20 Degree Bank Angle (3D View) 
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Table 3: 3-DimensionalOvals (Left) Trajectory Information 

Bank Angle (degrees) Flight Time (seconds) Data File Size (KB) 

15 156 2116 

20 131 1790 

25 115 1587 

 

Table 4: 3-Dimensional Ovals (Right) Trajectory Information 

Bank Angle (degrees) Flight Time (seconds) Data File Size (KB) 

15 156 2114 

20 131 1790 

25 115 1586 

 

 The next family of 3-dimensional trajectories is a set of s-turns. To make sure that all 

different turning states are reached, the aircraft must go through both the 90 degree and 180 

degree left and right turns while both ascending and descending. Information about these 

trajectories can be seen in Table 5 while the trajectory with a 20 degree bank angle can be seen 

in two dimensions in Figure 14 and three dimensions in Figure 15. 
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Figure 14: 3-Dimensional S-Turns Trajectory with 20 Degree Bank Angle (2D) 

 
Figure 15: 3-Dimensional S-Turns Trajectory with 20 Degree Bank Angle (3D) 
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Table 5: 3-Dimensional Sturns Trajectory Information 

Bank Angle (degrees) Flight Time (seconds) Data File Size (KB) 

15 467 6592 

20 392 5601 

25 345 4988 

 

 The final family of 3-dimensional trajectories used for construction is a simple straight 

line maneuver where the aircraft ascends and then descends during the flight. Two versions of 

this trajectory were performed, one where the aircraft immediately received the command to 

descend while ascending, and another where straight and level flight was reached before the 

command to descend was given. It is worth noting that the bank angle is not relevant here as 

there is no turning performed. Information about these trajectories can be seen in Table 6 while 

the two trajectories can be seen in two dimensions in Figures 16 and in three dimensions in 

Figures 17 and 18. 

 

 
Figure 16: 3-Dimensional Line Trajectories A and B (2D View) 
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Figure 17: 3-Dimensional Line Trajectory (A – 3D View) 

 
Figure 18: 3-Dimensional Line Trajectory (B – 3D View) 

 

Table 6: 3-Dimensional Line Trajectory Information 

Trajectory Flight Time (seconds) Data File Size (KB) 

Version A 60 510 

Version B 75 630 

 

 In addition to all of the above trajectories, a full second version of these trajectories was 

performed, but with each of the lengths of the straight segments increased in length. This was to 

ensure that each turning maneuver from straight and level flight was included in the construction 
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data. Images of these trajectories with a commanded bank angle of 20 degrees are shown in 

Figures 19 to 26 with each trajectory’s corresponding information in Tables 7 to 11. 

 

 
Figure 19: 2-Dimensional Oval with 20 Degree Bank Angle (Version 2) 

 

Table 7: 2-Dimensional Oval Trajectory Information (Version 2) 

Bank Angle (degrees) Flight Time (seconds) Data File Size (KB) 

15 216 2523 

20 191 2224 

25 175 2031 
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Figure 20: 2-Dimensional S-turns with 20 Degree Bank Angle (Version 2) 

 

Table 8: 2-Dimensional S-turns Trajectory Information (Version 2) 

Bank Angle (degrees) Flight Time (seconds) Data File Size (KB) 

15 304 3809 

20 266 3341 

25 243 3043 
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Figure 21: 3-Dimensional Oval Trajectory with 20 Degree Bank Angle (2D) (Version 2) 

 
Figure 22: 3-Dimensional Oval Trajectory with 20 Degree Bank Angle (3D) (Version 2) 
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Table 9: 3-Dimensional Oval Trajectory Information (Version 2) 

Bank Angle (degrees) Flight Time (seconds) Data File Size (KB) 

15 216 2575 

20 191 2252 

25 175 2050 

 

 
Figure 23: 3-Dimensional S-turns Trajectory with 20 Degree Bank Angle (2D) (Version 2) 
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Figure 24: 3-Dimensional S-turns Trajectory with 20 Degree Bank Angle (3D) (Version 2) 

 

Table 10: 3-Dimensional S-turns Trajectory Information (Version 2) 

Bank Angle (degrees) Flight Time (seconds) Data File Size (KB) 

15 647 8747 

20 572 7797 

25 525 7192 

 

 
Figure 25: 3-Dimensional Line Trajectory (2D View) (Version 2) 
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Figure 26: 3-Dimensional Line Trajectory (3D View) (Version 2) 

 

Table 11: 3-Dimensional Line Trajectory Information 

Trajectory Flight Time (seconds) Data File Size (KB) 

Version A 315 3579 

 

 These trajectories were all performed under nominal conditions to generate the data that 

was used to create the self of the AIS. This set of data was used for verification throughout the 

AC-DIEA process, where, for detection, zero points of the construction data should fall outside 

the self, and similar conditions could be applied to other phases of the process, such as requiring 

certain level of performance in point to point identification rate. The trajectories from the first 

version only were also flown under the effect of a prescribed list of ACs for use in creation of the 

logic for each phase of the AC-DIEA process. 

 Next, a second set of trajectories of the same “family” as the first set must be considered. 

These trajectories include maneuvers that are performed in the previous set of trajectories but in 

different orders or at different times. When using an artificial intelligence technique such as the 

AIS, it is important that the system we are trying to use the AIS for is the same as the system we 

have used for construction. For example, if the construction data does not contain a certain 

maneuver, the AIS cannot necessarily be expected to function properly if applied to a trajectory 

using that particular maneuver. The trajectories used in validation are shown in Figure 27 to 

Figure 41, and other information about the trajectories is in Table 12. 
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Figure 27: 2D Validation Trajectory 1 (Left) and 2 (Right) with 15 Degree Bank Angle 

 

 
Figure 28: 2D Validation Trajectory 1 (Left) and 2 (Right) with 20 Degree Bank Angle 
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Figure 29: 2D Validation Trajectory 1 (Left) and 2 (Right) with 25 Degree Bank Angle 
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Figure 30: 3D Validation Trajectory 1 with 15 Degree Bank Angle (2D View) 

 
Figure 31: 3D Validation Trajectory 1 with 15 Degree Bank Angle (3D View) 
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Figure 32: 3D Validation Trajectory 1 with 20 Degree Bank Angle (2D View) 

 
Figure 33: 3D Validation Trajectory 1 with 20 Degree Bank Angle (3D View) 
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Figure 34: 3D Validation Trajectory 1 with 25 Degree Bank Angle (2D View) 

 
Figure 35: 3D Validation Trajectory 1 with 25 Degree Bank Angle (3D View) 
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Figure 36: 3D Validation Trajectory 2 with 15 Degree Bank Angle (2D View) 

 
Figure 37: 3D Validation Trajectory 2 with 15 Degree Bank Angle (3D View) 
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Figure 38: 3D Validation Trajectory 2 with 20 Degree Bank Angle (2D View) 

 
Figure 39: 3D Validation Trajectory 2 with 20 Degree Bank Angle (3D View) 
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Figure 40: 3D Validation Trajectory 2 with 25 Degree Bank Angle (2D View) 

 
Figure 41: 3D Validation Trajectory 2 with 25 Degree Bank Angle (3D View) 
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Table 12: Validation Trajectory Information 

Trajectory No. Dimension 
Bank Angle 

(degrees) 

Flight Time 

(seconds) 

Data File Size 

(KB) 

1 2 15 356 4892 

1 2 20 299 4208 

1 2 25 264 3770 

2 2 15 332 4591 

2 2 20 281 3971 

2 2 25 250 3579 

3 3 15 381 5353 

3 3 20 324 4616 

3 3 25 289 4162 

4 3 15 381 5350 

4 3 20 324 4616 

4 3 25 289 4160 

 

 This set of new trajectories was flown both under nominal conditions and under a set of 

prescribed ACs. Under nominal conditions, we would expect that very few points would be 

detected as abnormal and that an AC would never be triggered. The abnormal cases, however, 

will be udes to validate the AIS and associated logic does work as intended. In AC cases, the AC 

was injected 5 seconds into the simulation as the aircraft is flying the designated trajectory. The 

ACs considered for actuators are summarized in Table 13, while the ACs considered for sensors 

are summarized in Table 14. 
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Table 13: Test Matrix for Actuator Faults 

Actuator Abnormal Condition Severity 

Aileron (L/R) Lock Trim 

Aileron (L/R) Lock 2° 

Aileron (L/R) Lock 4° 

Aileron (L/R) Lock 6° 

Aileron (L/R) Lock 8° 

Aileron (L/R) Lock 10° 

Aileron (L/R) Missing 50% 

Aileron (L/R) Missing 100% 

Rudder (L/R) Lock Trim 

Rudder (L/R) Lock 2° 

Rudder (L/R) Lock 4° 

Rudder (L/R) Lock 6° 

Rudder (L/R) Lock 8° 

Rudder (L/R) Lock 10° 

Rudder (L/R) Missing 50% 

Rudder (L/R) Missing 100% 

Stabilator (L/R) Lock Trim 

Stabilator (L/R) Lock 2° 

Stabilator (L/R) Lock 4° 

Stabilator (L/R) Lock 6° 

Stabilator (L/R) Lock 8° 

Stabilator (L/R) Lock 10° 

Stabilator (L/R) Missing 50% 

Stabilator (L/R) Missing 100% 
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Table 14: Test Matrix for Sensor Faults 

Sensor Abnormal Condition Severity 

Roll Rate Sensor Bias 1
𝑑𝑒𝑔 

𝑠
 

Roll Rate Sensor Bias 3
𝑑𝑒𝑔

𝑠
 

Roll Rate Sensor Bias 5
𝑑𝑒𝑔

𝑠
 

Pitch Rate Sensor Bias 1
𝑑𝑒𝑔

𝑠
 

Pitch Rate Sensor Bias 3
𝑑𝑒𝑔

𝑠
 

Pitch Rate Sensor Bias 5
𝑑𝑒𝑔

𝑠
 

Yaw Rate Sensor Bias 1
𝑑𝑒𝑔

𝑠
 

Yaw Rate Sensor Bias 3
𝑑𝑒𝑔

𝑠
 

Yaw Rate Sensor Bias 5
𝑑𝑒𝑔

𝑠
 

 

 Considering both the creation and validation trajectories and the given ACs, this will total 

1679 different test cases. 

 

4.2: General Structure of the AIS 

 The process described for AC-DIEA relies on an expansive and accurate collection of 

data under nominal conditions to create the self as well as data under ACs for generating non-self 

data that are relevant in the identification, evaluation, and accommodation phases of the AC-

DIEA process. The general structure of the AIS depends on what the system is meant to 

accomplish and what variables can be feasibly collected by the system, both in simulation and 

with actual flight data. In the case of aircraft AC-DIEA, the primary objective of the system is to 

be able to detect when an AC begins affecting the aircraft, identify which subsystem is 

experiencing the AC, evaluate the severity of the AC, and finally adapting the control laws to 

accommodate for the presence of the AC. More specifically, in this research effort, the AIS is 

used for AC-DIEA on the WVU-YF-22 [105] for actuator faults on the three primary control 

surfaces and the sensor faults on the three primary channels. 

 The faults considered for the actuators will be control surface locks, where the control 

surface in question will not be permitted to move from a specified deflection, and missing 

control surfaces, where a portion of a control surface is considered to be missing. The fault 

considered for the sensors will be sensor biases, where a sensor will return a value that is a set 

amount different from the actual value for the variable the sensor is detecting. 
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 The proper function of the AIS is critically affected by the features that are going to be 

selected for construction. For the proposed AIS, the variables that are used for creation are:  

 

• Angle of attack (𝛼) 

• Sideslip angle(𝛽) 

• Pitch attitude angle (Θ) 

• Roll attitude angle (Φ) 

• Roll rate (𝑝) 

• Pitch rate (𝑞) 

• Yaw rate (𝑟) 

• Roll acceleration (�̇�) 

• Pitch acceleration (�̇�) 

• Yaw acceleration (�̇�) 

• Decentralized neural network estimate of roll rate (�̂�𝐷𝑁𝑁) 

• Decentralized neural network estimate of pitch rate (�̂�𝐷𝑁𝑁) 

• Decentralized neural network estimate of yaw rate (�̂�𝐷𝑁𝑁) 

• Velocity on all axes (𝑉𝑥, 𝑉𝑦, 𝑉𝑧) 

• Acceleration on all axes (𝑎𝑥, 𝑎𝑦, 𝑎𝑧) 

• Mean quadratic estimation error (𝑀𝑄𝐸𝐸) 

 

 
𝑀𝑄𝐸𝐸(𝑘) =

1

2
[(𝑝(𝑘) − �̂�𝑀𝑁𝑁(𝑘))

2

+ (𝑞(𝑘) − �̂�𝑀𝑁𝑁(𝑘))
2

+ (𝑟(𝑘) − �̂�𝑀𝑁𝑁(𝑘))
2

] 

(4-1) 

• Output quadratic estimation error (𝑂𝑄𝐸𝐸) 

 

 
𝑂𝑄𝐸𝐸(𝑘) =

1

2
[(�̂�𝐷𝑁𝑁(𝑘) − �̂�𝑀𝑁𝑁(𝑘))

2

+ (�̂�𝐷𝑁𝑁(𝑘) − �̂�𝑀𝑁𝑁(𝑘))
2

+ (�̂�𝐷𝑁𝑁(𝑘) − �̂�𝑀𝑁𝑁(𝑘))
2

] 

(4-2) 
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• Decentralized quadratic estimation error (𝐷𝑄𝐸𝐸) 

 

 
𝐷𝑄𝐸𝐸𝑝(𝑘) =

1

2
(�̂�𝐷𝑁𝑁(𝑘) − 𝑝(𝑘))

2
 

𝐷𝑄𝐸𝐸𝑞(𝑘) =
1

2
(�̂�𝐷𝑁𝑁(𝑘) − 𝑞(𝑘))

2
 

𝐷𝑄𝐸𝐸𝑟(𝑘) =
1

2
(�̂�𝐷𝑁𝑁(𝑘) − 𝑟(𝑘))

2
 

(4-3) 

 

• Commanded pitch angle (𝐶𝑀𝐷𝑝𝑖𝑡𝑐ℎ) 

• Commanded bank angle (𝐶𝑀𝐷𝑏𝑎𝑛𝑘) 

• Commanded throttle (𝐶𝑀𝐷𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒) 

• Commanded aileron, elevator and rudder angles (𝛿𝑎, 𝛿𝑒, 𝛿𝑟) 

• Aileron, elevator, and rudder angles (𝛿𝑎𝑝, 𝛿𝑒𝑝, 𝛿𝑟𝑝) 

• AIS Δ𝑋, Δ𝑌, Δ𝑍 

• AIS Δ𝑉𝑥, Δ𝑉𝑦, Δ𝑉𝑧 

 

 While these variables make up the entire feature space, some variables needed to be 

excluded for some phases of the AC-DIEA process. For the detection phase, all variables can be 

used, but when further phases are performed, the actual deflection angles for the control surfaces 

must be excluded, as if there is an AC affecting the control surface, it is also likely that the 

sensor that is monitoring the surface deflection angle will also be returning flawed or no 

information. The final two sets of variables (those denoted with 𝚫s) are also not used in the final 

logic schemes, but were introduced initially for an attempt at integration of the accommodation 

phase with the other three phases of the AC-DIEA process and will be discussed with the 

accommodation results. 

 Another difference between the phases is how the AIS will be structured. The full AIS 

(excluding 𝚫 terms) is in 36 dimensional space, and is used in its entirety for the detection phase. 

The identification phase, however, leverages the HMS strategy and uses 3-dimensional 

projections of the AIS instead. A particular subset of these 3-dimensional projecitons will be 

selected for use in identification based on their sensitivity to particular ACs. The evaluation and 

accommodation phases are anticipated to function in a similar way to the detection and 

identification phases and leverage information from both the full 36-dimensional AIS and the 

selected 3-dimensional projections. 
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4.2.1: Detection Logic 

4.2.1.1: Positive/Negative Selection 

 When detection is being performed, one of the advantages of the PUA is that it allows for 

the entire 𝑵-dimensional self to be considered without great computational effort. At each point 

in time, the values for each of the features will be considered. These raw data are treated 

similarly to the construction data for the self, where they are normalized and it is determined 

which cluster the data point falls inside. Then, the cluster is compared to the list of self partitions. 

If there is a match, the data point is classified as a self data point, otherwise, it is classified as 

non-self. This single data point being classified as non-self will not be sufficient to declare that 

the aircraft is experiencing an AC, but will be used in further logic to determine the state of the 

aircraft. This process is shown graphically in Figure 42. 

 

 
Figure 42: Point to Point Detection Logic 
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4.2.1.2: Time Window 

 While each individual data point will have a normal or abnormal label associated with it, 

there will be a second step of the detection process which will be used to finally declare whether 

the aircraft is under the effect of an AC or not, based on applying a moving time window of 

individual data points. This simple step counts the number of data points that are flagged as 

abnormal in a certain size of moving time window. If this value excedes a certain threshold that 

is in place, an AC will be declared. Adding this second layer of detection logic has several 

effects on the function of the detection logic scheme. The main drawback of the second layer is a 

small increase in detection time; if only a single point were considered, an AC could be declared 

in one time step, whereas the moving time window will require at least a number of time steps 

equal to the size of the threshold to declare an AC. This effect is minimal especially when 

compared to the ability of the moving time window to create a great robustness to false alarms. 

Under non-construction nominal conditions, it could be possible for a data outlier to fall outside 

the self but just for a single time step. Without this second layer of logic, that single outlier 

would trigger a false alarm, where the second logic step works like a filter to remove the 

potential false alarm that could be caused by an outlier. This process is shown graphically in 

Figure 43. 

 

 
Figure 43: Detection Logic Scheme Based on Moving Time Window 

 

 The main advantage of this set-up is the ability to ensure the validity of the detection 

performance. Due to the robustness of the system to outliers, a single triggered detection (that is, 

a single 𝑫𝒘(𝒕) = 𝟏) is enough to say with a very high degree of confidence that an AC is 

affecting the aircraft. This balance around 0 false alarms creates a somewhat unintuitive 
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performance situation, where a detection rate of about 20% still constitutes good detection 

performance despite the seemingly poor nature of that statistic. 

 

4.2.2: Identification Logic 

 The identification phase is reached once a detection has been triggered. For solving the 

identification problem, a few different solutions can be considered. One potential solution is to 

structure the non-self. For this approach, data from simulations under an AC can be structured 

similarly to how the self is structured. Then, if a data point falls inside the partitions associated 

with that AC, that can be used to identify the AC. This approach, however, may be more 

challenging to applydue to the fact that it requires a great abundance more data, and these data 

must be acquired under an AC, which is much more difficult than for nominal flight. For this 

research effort, the focus will be on an approach using the HMS strategy. 

 

4.2.2.1: Structured Non-Self 

 When structuring the non-self, all data collected under the effect of an AC will be 

processed similarly to how they are when the self is structured. Using conventional clustering 

methods, this will result in hyperspheres or other hyper shapes, whereas when using the PUA, 

there will be lists of partitions which are associated to each AC. By structuring the data in this 

way, these clusters can be used to perform each phase of the AC-DIEA process. Each cluster 

created from data while under a certain AC can be given a “flag”, that is a set of parameters 

which includes the subsystem which is affected by the AC, the type and severity of the AC, and 

the compensatory commands required to accommodate for the AC. 

 While this approach is proven to be effective, the main issue with it is the massive 

amount of non-self data which must be available, and the amount of structuring which must be 

performed on the data. The HMS based approach which is applied here does require that data or 

analytical information under the effect of each AC be available, as it is used in selecting the 

projections which are used to perform identification and in tuning the various AC-DIEA 

algorithms, but it does not require that the data are labeled extensively, as it is the case when 

using approaches based on a structured non-self. 

 

4.2.2.2: HMS Strategy 

 When used for the identification of ACs, the HMS strategy is employed by considering 

the lower dimensional projections of the AIS instead of the AIS as a whole. For this effort, all 

possible three dimensional projections were initially considered, whereas in practice projections 

of any dimensionality could be used. These lower dimensional projections vary in sensitivity to 

particular ACs; one projection may be particularly sensitive to an aileron fault or a fault effecting 

a yaw rate sensor. Based on the different triggering of these projections, an identification scheme 
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can be created using the patterns of how the projections are triggered. By selecting proper 

projections, it is possible to differentiate between ACs. This process is shown graphically in 

Figure 44. 

 

 
Figure 44: Identification Approach Using HMS Strategy 

 

4.2.2.3: Projection Selection 

 The selection of a suitable list of projections is integral to the proper functioning of the 

HMS strategy. Due to the huge number of projections of different dimensionality in the 36-

dimensional feature space, all possible three dimensional projections were considered, for a total 

of 4,060 different potential projections for use in the scheme. This dimension was selected due to 

its ability to better capture dynamics than two dimensional projections while also remaining 

intuitive to visualize and apply thresholds and distances. Projections with a dimensionality 

higher than 3 become difficult, if possible, to visualize in an intuitive way, which can cause 

additional problems with intuitive application of distances. While the selection was limited in 

this effort, all projections could be considered to better optimize the function of the identification 

strategy, as higher dimensional projections have shown promising performance when used in 

detection and identification schemes [99]. 
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 The selection of which 3-dimensional projections to use was based on the amount that 

each projection was triggered during a flight where a prescribed AC was injected. Essentially, a 

detection process was performed only considering the 3 features of the projections rather than the 

entire AIS, creating 4,060 different “detection” performances for each of the projections. Then, 

the top three most triggered projections were considered for each AC at each severity of AC used 

in construction data. Considerations were also made for projections which were triggered 

substantially more for some types of faults than others, as some projections would be triggered 

greatly by essentially any AC. Additionally, due to initial poor performance on missing elevator 

cases, an additional projection was considered for that case. The projections that were selected 

based on this procedure are found in Table 15 for control surface faults. 

 

Table 15: Projections Used in Identification Logic for Actuators 

Actuator Features 

Aileron 

𝛼 �̇� 𝛿𝑟 

𝜙 𝑝𝑒𝑠𝑡 𝛿𝑎 

𝜙 𝑉𝑦 𝛿𝑎 

𝑝𝑒𝑠𝑡 𝑟𝑒𝑠𝑡 𝛿𝑎 

𝑝𝑒𝑠𝑡 𝑎𝑦 𝛿𝑎 

𝑝𝑒𝑠𝑡 𝐶𝑀𝐷𝑏𝑎𝑛𝑘 𝛿𝑎 

𝑟𝑒𝑠𝑡 𝑉𝑦 𝛿𝑎 

 

Elevator 

𝛼 𝐶𝑀𝐷𝑝𝑖𝑡𝑐ℎ 𝛿𝑟 

𝛽 𝑟 𝛿𝑒 

𝛽 �̇� 𝛿𝑒 

𝜙 𝛿𝑒 𝛿𝑎 

𝑟 𝛿𝑒 𝛿𝑎 

𝑎𝑦 𝛿𝑒 𝛿𝑎 

𝑉𝑥 𝑉𝑧 𝛿𝑒 

𝐶𝑀𝐷𝑏𝑎𝑛𝑘 𝛿𝑒 𝛿𝑎 

 

Rudder 

𝛼 𝛽 �̇� 

𝑝 𝑟 �̇� 

𝑟 �̇� 𝑟𝑒𝑠𝑡 

𝑟 �̇� 𝛿𝑎 

𝑝𝑒𝑠𝑡 𝑟𝑒𝑠𝑡 𝛿𝑟 

𝑟𝑒𝑠𝑡 𝑉𝑦 𝛿𝑟 

𝑉𝑥 𝑎𝑦 𝛿𝑟 

 

Based on which projections were being triggered the most, seven projections were selected for 

each control surface. The final projection listed for elevators was used to assist in the missing 
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elevator cases, highlighted in blue. The projections selected for use based on the sensor results 

are shown in Table 16. 

  



78 

 

Table 16: Projections Used in Identification Logic for Sensors 

Sensor Features 

Roll Rate 

𝛼 𝑉𝑦 𝐶𝑀𝐷𝑏𝑎𝑛𝑘 

𝛽 𝑉𝑦 𝐶𝑀𝐷𝑝𝑖𝑡𝑐ℎ 

�̇� 𝑎𝑦 𝛿𝑎 

𝑝𝑒𝑠𝑡 𝑟𝑒𝑠𝑡 𝐶𝑀𝐷𝑝𝑖𝑡𝑐ℎ 

𝑉𝑥 𝐶𝑀𝐷𝑏𝑎𝑛𝑘 𝛿𝑟 

𝑉𝑦 𝑎𝑦 𝛿𝑟 

𝑉𝑦 𝐶𝑀𝐷𝑏𝑎𝑛𝑘 𝛿𝑟 

 

Pitch Rate 

𝜙 𝑉𝑦 𝐶𝑀𝐷𝑝𝑖𝑡𝑐ℎ 

𝜙 𝑉𝑧 𝐶𝑀𝐷𝑝𝑖𝑡𝑐ℎ 

𝑟 𝐶𝑀𝐷𝑝𝑖𝑡𝑐ℎ 𝛿𝑟 

𝑝𝑒𝑠𝑡 𝑉𝑧 𝐶𝑀𝐷𝑝𝑖𝑡𝑐ℎ 

𝑉𝑥 𝑉𝑧 𝐶𝑀𝐷𝑝𝑖𝑡𝑐ℎ 

𝑉𝑧 𝑎𝑥 𝐶𝑀𝐷𝑝𝑖𝑡𝑐ℎ 

𝑎𝑦 𝐶𝑀𝐷𝑝𝑖𝑡𝑐ℎ 𝛿𝑎 

 

Yaw Rate 

𝛽 𝜃 𝜙 

𝛽 𝜃 𝑉𝑦 

𝛽 𝑝𝑒𝑠𝑡 𝛿𝑟 

𝛽 𝑉𝑥 𝛿𝑟 

𝛽 𝛿𝑎 𝛿𝑟 

𝑉𝑥 𝐷𝑄𝐸𝐸𝑟 𝛿𝑟 

𝑉𝑦 𝑎𝑦 𝛿𝑟 

 

4.2.2.4: Identification Scheme 

 The projections selected above were then used to create an identification scheme capable 

of identifying all of the different ACs considered. While the identification phase would generally 

include the determination of the specific actuator experiencing the fault (either left or right), due 

to limitations of the simulation environment this is not presently possible for the aileron and 

rudder cases. For the aileron cases, this is because a positive deflection of one aileron is 

extremely similar dynamically to a negative deflection of the other aileron, and this small 

dynamic difference is not presently modeled. A similar case arises for the two rudders when both 

are deflected in the same direction. 

 The identification algorithm created gets inspiration from the processes of the adaptive 

immune system and the biology of T-cells and APCs. T-cells are trained and capable of 

recognizing and binding to antigenic peptides through their T-cell receptors. These T-cell 

receptors are exposed to the antigenic peptides via contact with APCs, such as dendritic cells and 

macrophages, which display the processes MHC bound peptides from the antigen [72]. In the 
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AIS identification scheme, the presented antigenic peptides correspond to the patterns which are 

captured through the projections which were selected for the identification process. Then when a 

particular AC,which corresponds to an antigen, is affecting the aircraft, the “peptides” of that AC 

will correspond to the triggering pattern of the projections. 

 Once the T-cell receptor has been activated, the reaction of the T-cell is then considered 

for the identificaiton algorithm. The triggered projections essentially correspond to a particular 

APC which is showing the pattern of the AC. This means that, as time passes, the artificial T-cell 

receptors will be exposed to more artificial APCs triggering the reaction to the AC which 

corresponds to that pattern, similar to the phenomenon of the exposure of T-cells to many APCs 

over time. So, as the time window moves in the AIS identification scheme, the artificial T-cell 

receptors are exposed to more patterns corresponding to a particular AC for longer periods of 

time, influencing the response of the system to match the desired identification outcome [106] 

[107]. The parallels between the artificial and biological processes are shown in Figure 45. 

 

 
Figure 45: Identification Approach Using HMS Strategy 

 

 The designed identification scheme can be divided into three steps, two somewhat similar 

to the detection phase. First, a point-to-point type metric is considered, where a “pre-

identification” label is given to an incoming data point. Then, a moving time window of these 

outcomes is considered and, if it is greater than a selected threshold, the identification outcome 
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of that time step is that particular AC. Finally, after another threshold of sums of AC outcomes is 

met, the AC will be identified. 

 The identification scheme was created based on establishing “baseline” logic which was 

very simple and adding other logical conditions based on the peformance of the baseline logic. 

These types of considerations were applied mainly to address situations where the algorithm 

would struggle, however the baseline logic also does not differentiate between which side of the 

UAV is affected, so additional logical considerations were also added to differentiate between 

left and right side elevator faults. This would, for each case where a logical condition was added, 

grow the logic scheme to a point where it would be able to identify all considered ACs. The 

intial identification scheme that was considered was to take a sum of all projections which were 

triggered at a particular time step, and set the outcome to whichever control surface or sensor had 

the highest triggering. For the rudder’s sum of triggerings, the first three projections listed were 

counted twice when triggered. If the sums for two different cases were equal, the case would be 

classified as unable to be identified. 

 The additional steps in the “pre-identification” scheme were based on a set of threshold 

values for triggering of each of the sets of projections used in the identification scheme, whether 

or not the aircraft was engaging in a turning maneuver, and the maxmium triggering of each of 

the sets of seven projections. These conditions were mainly to differentiate between rudder and 

sensor faults, and the actuator and sensor faults on the same channel. Additionally, the total 

identification outcomes as sensors and actuators will be tracked for accommodation purposes. 

Specifically, these conditions were:  

• For rudder versus sensors, during full flight:  

o If the pre-identification outcome is a roll or yaw rate sensor and the sum of the 

total triggering is greater than 12, the outcome will change to a rudder fault. 

o If the pre-identification outcome is yaw and the maximum triggering of rudder 

projections is greater than or equal to the total yaw triggering and greater than 2, 

the outcome is changed to a rudder fault. 

o If the pre-identification outcome is roll and the max rudder triggering is greater 

than 2 plus the max roll triggering, the outcome is changed to a rudder fault. 

• For roll versus yaw rate sensors, during full flight:  

o If the pre-identification outcome is yaw, if the maximum triggering of roll rate 

sensors is 4, or the maximum triggering of roll during a positive bank is greater 

than that of yaw, the outcome becomes a roll rate sensor. 

o If the pre-identification outcome is roll, if the maximum roll triggering is less than 

4 and the maximum roll during a positive bank is less than that of yaw rate, the 

outcome is changed to yaw rate. 

• For elevator faults, 
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o During full flight:  

▪ If the pre-identification outcome is unknown and the sum of total 

triggering is greater than 35, the outcome is changed to elevator. 

▪ If the pre-identification outcome is roll rate, pitch rate, yaw rate, or aileron 

and the missing elevator projection is triggered, if the sum of total 

triggering is less than 8 the outcome is changed to elevator. 

o During turn:  

▪ If the sum of total triggering is between 11 and 14, the outcome is changed 

to elevator. 

• For sensor versus actuator faults, during full flight:  

o If the pre-identification outcome is roll rate and the triggering of the aileron 

projections is greater than 3, the outcome is changed to aileron. 

o If the pre-identification outcome is yaw rate and the triggering of the rudder 

projections is greater than 3, the outcome is changed to rudder. 

 In addition to these considerations, an additional step must be included to differentiate 

between the left and the right elevators. This was approached in an intuitive way, based on the 

effect that either elevator being locked would have on both the pitching and rolling dynamics of 

the system. Essentially, each case (ie: rolling left while pitching down) would correspond to a 

certain elevator condition (ie: left elevator deflected down) and the logic would capture that 

dynamic response. The differentiation was achieved by:  

• If commanded elevator deflection was positive:  

o If commanded aileron deflection is negative, it is the left elevator. 

o If commanded aileron deflection is positive, it is the right elevator. 

o If the commanded deflection is close to zero, it is an unknown elevator fault. 

• If commanded elevator deflection was negative:  

o If commanded aileron deflection is negative, it is the right elevator. 

o If commanded aileron deflection is positive, it is the left elevator. 

o If the commanded deflection is close to zero, it is an unknown elevator fault. 

• If commanded elevator deflection is close to zero, it is an unknown elevator fault. 

The proposed identification scheme is shown graphically in Figures 46 through 51, and the 

threshold values used are shown in Table 17. 
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Figure 46: Top Level View of Identification Logic 
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Figure 47: Block A: Expanded Pre-Identification Logic 
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Figure 48: Block B: Expanded Additional Logic 1 
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Figure 49: Block C: Expanded Additional Logic 2 

 

 
Figure 50: Block D: Expanded Logic Determining Elevator Fault Side 
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Figure 51: Block E: Expanded Using Sums for Most Common Identification Outcomes 

 
Table 17: Threshold Values 

𝜏1 𝜏2 𝜏3 𝜏4 𝜏5 𝜏6 𝜏7 𝜏8 𝜏9 𝜏10 𝜏11 𝜏12 𝜏13 

7 30 20 35 12 2 2 4 10 15 8 3 5 

 

Throughout the identification scheme, the various threshold values and limit conditions used are 

determined experimentally, through the performance of the logic on the construction data. 

 While the ideal goal of the identification scheme would be to identify every point 

properly, the logic scheme developed here will achieve good performance with a reasonable 

effort. This scheme, with the set up and restrictions that were imposed, should be able to achieve 

acceptable performance with no claims being made to optimality of the simplified projection 

selection and threshold values, much less the system as a whole. A better optimized system could 

likely be created by considering other lower dimensional projections and more complex logic 

than simple sums. 
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4.2.3: Evaluation Logic 

 The evaluation phase is divided into three separate steps where the type, severity, and 

effects of the AC are determined. These steps will be the qualitative evaluation, where the main 

nature of the AC is determined, the direct quantitative evaluation, where the magnitude or 

severity of the AC is determined, and the indirect quantitative evaluation step, where the effects 

the AC has on the flight envelope will be determined. The general formuation for the evaluation 

phase is shown in Figure 52. 

 



88 

 

 
Figure 52: Overview of Evaluation Phase 
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4.2.3.1: Qualitative Evaluation 

 The qualitative evaluation step starts the evaluation phase and  determines the main 

classification of the AC that is affecting the identified subsystem. For the ACs considered, this 

process will already be completed for sensors, as the only ACs that were considered were biases 

to the rate sensors. For the actuators considered, this step will determine whether the actuator is 

damaged, which is expressed as a reduction in the control authority of the surface, or if the 

actuator is locked at a certain deflection. Discrimination between different types of ACs affecting 

the same subsystem can conceptually be achieved based on criteria relying on the quantitative or 

qualitative effects. The first approach somewhat overlaps with the direct quantitative evaluation 

steps, because it is based on an evaluation of AC severity and can be achieved considering the 

the distance from the self. For the actuator failures considered, loss of control authority is the 

immediate effect, which has been verified to be captured quite similarly by the distance metric. 

The second approach is rather based on the hypothesis that feature points, at the occurrence of a 

failure, will migrate outside the self along specific directions, depending on the type of the 

failure. In other words, within the HMS strategy, certain projections will be preferentially 

triggered by specific ACs types.  

 The method that was applied within this effort was based on the HMS strategy, similar to 

how the identification phase was performed. The 50% and 100% missing cases would be 

compared to the 0 degree locked case and, depending on the differences in the triggering 

patterns, the case would be evaluated as either missing or locked. Based on the control surface 

and severities, sometimes it was more effective to consider projections which were triggered 

more when the control surface is missing and sometimes is was more effective to consider those 

which are triggered more when the control surface is locked. Data obtained for use in evaluation 

begin when a detection is triggered, and the evaluation for the correct subsystem is applied after 

the identification is performed. While each control surface had a similar logical process, the 

approach to each was somewhat unique. 

 For the aileron cases, each trajectory was considered individually, and a list of 10 

projections were considered per trajectory. For aileron cases, these 10 projections were 5 which 

are associated with the actuator being missing, which were selected from the differences between 

the 50% missing and 0 degree lock cases, and 5 which were associated again with missing cases, 

which were selected from the differences between the 100% missing and 0 degree lock case. 

After these projections were established, a set of thresholds were identified that, if they were 

reached, the actuator was considered missing. These thresholds were based on the number of 

times the projections were triggered in the last 30 time steps. In the case where no projections 

were triggered, the more common of the two qualitative evaluation outcomes was selected for 

the outcome at that step. Finally, if the total triggering for 5 additional projections was greater 
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than a final threshold, the actuator would be evaluated as missing. The projections selected for 

both ailerons are shown in Tables 19, 20, and 21, while the threshold values used are shown in 

Table 22. Each table follows the key in Table 18. 

 

Table 18: Variable Key for Qualitative Evaluation 

Key 

1 𝛼 11 𝑝𝑒𝑠𝑡 21 𝑂𝑄𝐸𝐸 

2 𝛽 12 𝑞𝑒𝑠𝑡 22 𝐷𝑄𝐸𝐸𝑝 

3 𝜃 13 𝑟𝑒𝑠𝑡 23 𝐷𝑄𝐸𝐸𝑞 

4 𝜙 14 𝑉𝑥 24 𝐷𝑄𝐸𝐸𝑟 

5 𝑝 15 𝑉𝑦 25 𝐶𝑀𝐷𝑝𝑖𝑡𝑐ℎ 

6 𝑞 16 𝑉𝑧 26 𝐶𝑀𝐷𝑏𝑎𝑛𝑘 

7 𝑟 17 𝑎𝑥 27 𝐶𝑀𝐷𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒 

8 �̇� 18 𝑎𝑦 28 𝛿𝑒 

9 �̇� 19 𝑎𝑧 29 𝛿𝑎 

10 �̇� 20 𝑀𝑄𝐸𝐸 30 𝛿𝑟 

 

Table 19: Qualitative Evaluation Projections for Aileron Cases from 50% Missing Case 

Aileron Projections Mostly Triggered When Missing 

Bank/Dimension 50% Missing 

15/2D 5 11 21 5 11 22 5 21 22 5 14 22 18 20 22 

20/2D 11 12 22 11 21 22 11 20 22 5 21 22 11 16 22 

25/2D 11 17 22 6 11 22 11 19 22 8 11 22 11 22 23 

15/3D 5 11 21 5 21 22 5 11 22 5 14 22 5 10 22 

20/3D 11 20 22 11 21 22 5 21 22 11 12 22 6 11 22 

25/3D 6 11 22 11 19 22 11 22 23 11 22 28 11 21 22 

 

Table 20: Qualitative Evaluation Projections for Aileron Cases from 100% Missing Case 

Aileron Projections Mostly Triggered When Missing 

Bank/Dimension 100% Missing 

15/2D 11 13 22 5 11 22 5 8 22 8 11 22 11 18 22 

20/2D 11 15 22 8 11 22 5 11 22 5 8 22 11 14 22 

25/2D 5 17 22 5 21 22 8 21 22 5 20 22 5 6 22 

15/3D 5 11 22 11 13 22 5 8 22 8 11 22 11 18 22 

20/3D 8 11 22 11 15 22 5 11 22 5 8 22 5 21 22 

25/3D 5 21 22 8 21 22 5 20 22 5 15 22 5 6 22 

 

  



91 

 

Table 21: Qualitative Evaluation Projection for Aileron Cases for Higher Severity Cases 

Aileron Projections Mostly Triggered When Locked 

High Severity 4 8 29 2 4 29 5 29 30 10 29 30 2 13 29 

 

Table 22: Threshold Values 

Threshold Values for Aileron Qualitative Evaluation 

Bank/Dimension 50% Missing 100% Missing 

15/2D 25% 25% 

20/2D 20% 20% 

25/2D 20% 20% 

15/3D 20% 20% 

20/3D 17% 17% 

25/3D 20% 20% 

 

The threshold for the high severity case was 90%. 

 The rudder faults followed the exact same design process as the aileron faults, and the 

logic is identical, save the projections and thresholds being used, which are shown in Tables 23 

to 26. 

 

Table 23: Qualitative Evaluation Projections for Rudder Cases from 50% Missing Case 

Rudder Projections Mostly Triggered When Missing 

Bank/Dimension 50% Missing 

15/2D 15 26 30 15 18 30 4 15 30 13 15 30 13 14 30 

20/2D 15 26 30 15 18 30 4 15 30 14 18 30 7 15 30 

25/2D 15 18 30 15 26 30 4 15 30 7 15 30 10 29 30 

15/3D 15 26 30 15 18 30 13 15 30 4 15 30 13 14 30 

20/3D 15 26 30 15 18 30 14 18 30 2 14 18 2 15 18 

25/3D 15 26 30 15 18 30 4 15 30 7 15 30 13 15 30 
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Table 24: Qualitative Evaluation Projections for Rudder Cases from 100% Missing Case 

Rudder Projections Mostly Triggered When Missing 

Bank/Dimension 100% Missing 

15/2D 15 26 30 15 18 30 2 15 30 13 15 30 4 15 30 

20/2D 10 12 24 10 17 24 10 17 20 15 18 30 10 15 24 

25/2D 2 15 30 4 15 30 15 18 30 15 26 30 2 14 15 

15/3D 15 26 30 15 18 30 2 15 30 13 15 30 4 15 30 

20/3D 2 3 4 3 4 15 3 4 13 3 5 13 3 13 26 

25/3D 2 15 30 4 15 30 15 18 30 15 26 30 2 14 15 

 

Table 25: Qualitative Evaluation Projection for Rudder Cases for Higher Severity Cases 

Rudder Projections Mostly Triggered When Locked 

High Severity 10 27 30 1 10 30 3 10 30 10 17 30 10 25 30 

 

Table 26: Threshold Values 

Threshold Values for Rudder Qualitative Evaluation 

Bank/Dimension 50% Missing 100% Missing 

15/2D 5% 10% 

20/2D 6% 15% 

25/2D 9% 18% 

15/3D 8% 10% 

20/3D 3% 8% 

25/3D 10% 15% 

 

The threshold for the higher severity cases was again 90%. 

 For the elevator faults, the logic is somewhat different than for the other two control 

surfaces. Firstly, each elevator has a set of 5 projections which are associated with missing, from 

the 100% missing case, and a set of 5 which are associated with the surface being locked. The 

threshold for the locked case is checked first, followed by the check for the threshold associated 

with a missing surface. Additionally, the elevator case was also divided into whether or not the 

aircraft was performing a maneuver, which doubles the number of projections which were 

considered. Finally, just like the other two control surfaces, a final 5 projections were selected 

which were associated with higher severity elevator locks. The projections and thresholds used 

for the left elevator are in Tables 27 to 32, whereas the same information for the right elevator is 

shown in Tables 33 to 38. 
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Table 27: Qualitative Evaluation Projections for Left Elevator Cases from 50% Missing Case When Flying 

Straight 

Left Elevator Projections Mostly Triggered When Locked 

Bank/Dimension 50% Missing 

15/2D 18 28 29 26 28 29 13 28 29 4 28 29 7 28 29 

20/2D 26 28 29 18 28 29 13 28 29 4 28 29 7 28 29 

25/2D 26 28 29 19 28 29 13 28 29 4 28 29 7 28 29 

15/3D 6 28 29 13 28 29 18 28 29 13 29 30 4 28 29 

20/3D 6 28 29 13 28 29 18 28 29 12 28 29 4 28 29 

25/3D 12 28 29 26 28 29 6 28 29 19 28 29 4 28 29 

 

Table 28: Qualitative Evaluation Projections for Left Elevator Cases from 50% Missing Case During a 

Maneuver 

Left Elevator Projections Mostly Triggered When Locked 

Bank/Dimension 50% Missing 

15/2D 13 29 30 2 18 29 2 26 29 2 13 29 2 4 29 

20/2D 2 4 29 2 18 26 2 26 29 2 13 26 4 5 29 

25/2D 2 12 26 2 10 26 2 5 26 2 4 26 2 18 26 

15/3D 2 4 5 2 4 13 2 26 29 2 13 29 2 4 29 

20/3D 2 4 13 2 4 29 2 18 26 2 26 29 2 13 26 

25/3D 2 4 13 2 5 26 2 10 26 2 4 26 2 18 26 

 

Table 29: Qualitative Evaluation Projections for Left Elevator Cases from 100% Missing Case When Flying 

Straight 

Left Elevator Projections Mostly Triggered When Missing 

Bank/Dimension 100% Missing 

15/2D 15 26 30 15 18 30 2 15 30 13 15 30 4 15 30 

20/2D 10 12 24 10 17 24 10 17 20 15 18 30 10 15 24 

25/2D 2 15 30 4 15 30 15 18 30 15 26 30 2 14 15 

15/3D 15 26 30 15 18 30 2 15 30 13 15 30 4 15 30 

20/3D 2 3 4 3 4 15 3 4 13 3 5 13 3 13 26 

25/3D 2 15 30 4 15 30 15 18 30 15 26 30 2 14 15 
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Table 30: Qualitative Evaluation Projections for Left Elevator Cases from 100% Missing Case During a 

Maneuver 

Left Elevator Projections Mostly Triggered When Missing 

Bank/Dimension 100% Missing 

15/2D 5 28 29 5 29 30 8 28 29 6 26 29 5 7 29 

20/2D 8 28 29 2 4 30 11 28 29 5 28 29 7 28 29 

25/2D 1 26 28 1 5 18 1 15 18 1 15 28 1 14 28 

15/3D 5 29 30 5 28 29 6 26 29 8 28 29 11 28 29 

20/3D 1 26 28 1 15 28 1 14 28 1 25 28 1 16 25 

25/3D 2 12 30 2 26 28 2 11 12 2 4 7 2 21 26 

 

Table 31: Qualitative Evaluation Projection for Left Elevator Cases for Higher Severity Cases 

Left Elevator Projections Mostly Triggered When Locked 

High Severity 2 3 28 3 28 29 1 28 29 23 28 29 23 26 28 

 

Table 32: Threshold Values 

Threshold Values for Left Elevator Qualitative Evaluation 

Bank/Dimension 
Straight Flight During a Maneuver 

50% Missing 100% Missing 50% Missing 100% Missing 

15/2D 10% 40% 10% 20% 

20/2D 8% 55% 10% 70% 

25/2D 10% 55% 10% 50% 

15/3D 20% 75% 10% 65% 

20/3D 20% 65% 10% 15% 

25/3D 10% 75% 10% 70% 

 

Table 33: Qualitative Evaluation Projections for Right Elevator Cases from 50% Missing Case When Flying 

Straight 

Right Elevator Projections Mostly Triggered When Locked 

Bank/Dimension 50% Missing 

15/2D 18 28 29 2 4 29 7 28 29 26 28 29 4 28 29 

20/2D 12 28 29 18 28 29 7 28 29 4 28 29 2 4 29 

25/2D 19 28 29 12 28 29 4 8 28 7 28 29 2 4 29 

15/3D 4 13 29 4 8 29 13 29 30 2 18 29 2 4 29 

20/3D 4 8 29 2 18 29 4 13 29 13 29 30 2 4 29 

25/3D 2 18 29 4 29 30 4 10 29 13 29 30 2 4 29 
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Table 34: Qualitative Evaluation Projections for Right Elevator Cases from 50% Missing Case During a 

Maneuver 

Right Elevator Projections Mostly Triggered When Locked 

Bank/Dimension 50% Missing 

15/2D 2 11 13 2 4 13 2 18 29 2 13 26 2 13 29 

20/2D 2 5 29 2 29 30 2 11 29 2 7 29 2 4 29 

25/2D 2 29 30 2 7 29 2 4 26 2 12 26 2 18 26 

15/3D 4 13 29 2 18 29 2 4 13 2 13 29 2 13 26 

20/3D 2 5 29 2 11 29 2 29 30 2 7 29 2 4 29 

25/3D 2 7 29 2 10 26 2 12 26 2 4 26 2 18 26 

 

Table 35: Qualitative Evaluation Projections for Right Elevator Cases from 100% Missing Case When Flying 

Straight 

Right Elevator Projections Mostly Triggered When Missing 

Bank/Dimension 100% Missing 

15/2D 5 26 30 4 10 30 2 10 26 2 18 29 5 29 30 

20/2D 4 10 30 5 26 30 2 18 29 2 10 26 2 13 29 

25/2D 4 10 30 5 26 30 2 13 29 2 18 29 2 10 26 

15/3D 5 26 30 4 10 30 1 16 25 1 3 25 1 25 27 

20/3D 5 26 30 4 10 30 3 5 29 3 4 28 3 13 29 

25/3D 5 26 30 4 10 30 3 5 29 3 4 28 3 13 29 

 
Table 36: Qualitative Evaluation Projections for Right Elevator Cases from 100% Missing Case During a 

Maneuver 

Right Elevator Projections Mostly Triggered When Missing 

Bank/Dimension 100% Missing 

15/2D 10 29 30 10 11 30 10 26 30 5 10 30 4 5 30 

20/2D 2 10 30 2 13 18 2 4 13 2 18 26 2 5 26 

25/2D 1 26 28 1 18 29 1 15 28 1 14 28 1 15 18 

15/3D 13 25 26 18 25 26 2 4 26 8 13 26 5 13 26 

20/3D 1 26 28 2 13 18 2 18 26 2 4 13 2 5 26 

25/3D 3 4 29 5 28 29 8 29 30 18 28 29 8 28 29 

 

Table 37: Qualitative Evaluation Projection for Right Elevator Cases for Higher Severity Cases 

Right Elevator Projections Mostly Triggered When Locked 

High Severity 9 28 29 1 28 29 2 23 28 23 28 29 23 26 28 
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Table 38: Threshold Values 

Threshold Values for Right Elevator Qualitative Evaluation 

Bank/Dimension 
Straight Flight During a Maneuver 

50% Missing 100% Missing 50% Missing 100% Missing 

15/2D 5% 70% 7% 14% 

20/2D 5% 70% 10% 65% 

25/2D 5% 70% 10% 45% 

15/3D 70% 35% 7% 30% 

20/3D 7% 30% 10% 70% 

25/3D 10% 30% 13% 45% 

 

For both cases, the threshold for the higher severity case is 90%. The general process for the 

qualitative evaluation phase can be seen in Figure 53. 
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Figure 53: General Process for Qualitative Evaluation Step 

 

4.2.3.2: Direct Quantitative Evaluation 

 The direct quantitative evaluation step is where the magnitude of the AC which is 

affecting the aircraft is determined. In the cases where the actuator is missing, this will be the 

determination of how much of the actuator is missing. For locked actuator cases, this consists of 

determining how far the control surface is deflected. For sensor bias cases, this step will 

determine the magnitude of the angular rate bias. This step of the algorithm is handled using a 

“distance to the self” type approach where the number of partitions a point is away from the self 

is the metric of interest. 

 For cases where the actuator is locked, the distance from the self alone was used to 

determine the severity of the AC. From construction data, each subsystem (left or right aileron, 

left or right elevator, or rudder), has a set of average distances from the self associated with each 
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maneuver (straight and level flight either “away” from the origin or not, and turns in either 

direction), which corresponds to a partiuclar severity of the AC. These data points are then 

interpolated between or extrapolated from to create a mathematical relationship between the 

severity of the AC and the distance from the self. For the fault on the right side, the two straight 

and level flight relationships would be switched. Finally, the output severity of the AC at a 

particular time step would be limited to be between a 12 degree and 0 degree lock. Ideally, the 

actuator lock data would cover up until saturation, which would be where the limit was drawn. 

The distances used to create the mathematical relationships are shown in Tables 39 to 41. 

 
Table 39: Distances Used for Aileron Lock Direct Quantitative Evaluation 

Left/Right Aileron 

Lock Angle (deg) Straight (away) Straight (otherwise) Turns 

0 0 0 0 

2 2.5 5.5 6 

4 5.2 8 12 

6 9.5 12 16 

8 13.5 15.2 19.25 

10 14.5 16 23 

 

Table 40: Distances Used for Elevator Lock Direct Quantitative Evaluation 

Left/Right Elevator 

Lock Angle (deg) Straight (away) Straight (otherwise) Turns 

0 3 3 3 

2 7 8 8.5 

4 10.5 10.5 13.1 

6 14 16 17.75 

8 18.5 20 26.5 

10 30 32 33 
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Table 41: Distances Used for Rudder Lock Direct Quantitative Evaluation 

Left Rudder 

Lock Angle (deg) Straight (away) Straight (otherwise) Turns 

0 0 0 0 

2 9 9 11 

4 18 18 19 

6 20 20 22 

8 22 22 24 

10 25 25 26 

 

In addition to the actuator lock cases, the missing elevator case was handled in the same way. 

The distance information for missing elevator cases is found in Table 42. 

 
Table 42: Distances Used for Elevator Missing Direct Quantitative Evaluation 

Left/Right Elevator 

Missing (%) Straight (away) Straight (otherwise) Turns 

50 1 1.4 2 

100 2 3 3.9 

 

 For each of the cases addressed above, issues arose with large spikes in the distance from 

the self when the aircraft would enter or exit a coordinated turn, or go from an ascending 

maneuver to a descending maneuver. To partially mitigate these issues, if the distances from the 

self of two consecutive points were greater than or equal to two partitions, it would be 

determined that the aircraft was performing one of these changes and for the next 5 seconds, the 

average of all direct quantitative evaluation outcomes up to that point would be used instead. 

These spikes, however, could potentially also be leveraged for more useful information with 

additional processing. 

 The remaining two types of missing cases, those which were affecting the aileron or 

rudder, needed to be handled differently than the other actuator fault cases. This is due to the fact 

that, when these particular faults occur, the only times where the data points fall outside the self 

arewhen the aircraft is between types of maneuvers, where the distances are highly variable. To 

capture what is happening during these spikes, a type of integration was performed where, once 

the data left the self, the number of paritions away from the self would be tracked for each time 

step. Then, when the data re-entered the self, that “peak” would have the total number of 

partitions at each time step added together, and these areas would be used instead of the raw 

distances. As these areas depending on the type of trajectory, the dimension (either 2D or 3D) 
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and the commanded bank angle (15, 20, or 25 degrees) were also used as inputs when 

determining the relationship. As a result, the outcome was not updated as frequently as during 

the other actuator faults. The areas used to calculate the severity for the missing aileron and 

rudder cases are shown in Tables 43 and 44. 

 

Table 43: Areas Used for Aileron Missing Direct Quantitative Evaluation 

Left/Right Aileron 

Maneuver Type 
Severity 

50% Missing 100% Missing 

2D-Bank 15 deg 302.93 1374.1 

2D-Bank 20 deg 553.55 2008.5 

2D-Bank 25 deg 869.34 2791.4 

3D-Bank 15 deg 328.90 1400.0 

3D-Bank 20 deg 577.09 2029.3 

3D-Bank 25 deg 876.54 2880.1 

 

Table 44: Areas Used for Rudder Missing Direct Quantitative Evaluation 

Left/Right Rudder 

Maneuver Type 
Severity 

50% Missing 100% Missing 

2D-Bank 15 deg 208.81 345.70 

2D-Bank 20 deg 292.90 495.77 

2D-Bank 25 deg 409.67 651.41 

3D-Bank 15 deg 227.92 370.68 

3D-Bank 20 deg 322.28 509.48 

3D-Bank 25 deg 441.01 737.63 

 

 Finally, sensor cases were considered. Sensor cases used a similar approach to that of the 

aileron and rudder missing cases, except, in the case of sensor faults, the area was only 

considered during a coordinated turn. Additionally, due to performance issues with pitch rate 

sensor faults, the area would stop increasing if, for 15 consecutive time steps, the distance from 

the self remained at 1. These areas were then normalized based on the time spent performing the 

manuever. These areas for each sensor fault can be seen in Tables 45 to 47. 
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Table 45: Normalized Areas Used for Roll Rate Sensor Direct Quantitative Evaluation 

Roll Rate Sensor 

Maneuver Type 
Severity 

1 deg/sec 3 deg/sec 5 deg/sec 

2D-Bank 15 deg 0.0207 0.1165 0.7551 

2D-Bank 20 deg 0.3699 0.7907 1.0352 

2D-Bank 25 deg 0.0690 0.9005 1.1328 

3D-Bank 15 deg 0.0598 0.2418 0.9394 

3D-Bank 20 deg 0.1481 0.6659 0.8566 

3D-Bank 25 deg 0.2426 0.6768 1.1364 

 
Table 46: Normalized Areas Used for Pitch Rate Sensor Direct Quantitative Evaluation 

Pitch Rate Sensor 

Maneuver Type 
Severity 

1 deg/sec 3 deg/sec 5 deg/sec 

2D-Bank 15 deg 0.9217 0.9433 0.9897 

2D-Bank 20 deg 0.0571 0.0999 0.1644 

2D-Bank 25 deg 0.0604 0.1404 1.0043 

3D-Bank 15 deg 0.4624 0.4913 0.5433 

3D-Bank 20 deg 0.0750 0.3018 0.4964 

3D-Bank 25 deg 0.0398 0.1196 0.9829 

 

Table 47: Normalized Areas Used for Yaw Rate Sensor Direct Quantitative Evaluation 

Yaw Rate Sensor 

Maneuver Type 
Severity 

1 deg/sec 3 deg/sec 5 deg/sec 

2D-Bank 15 deg 0.0362 0.5599 1.372 

2D-Bank 20 deg 0.3177 0.8401 1.415 

2D-Bank 25 deg 0.1078 1.0293 1.3352 

3D-Bank 15 deg 0.0417 0.7834 1.3745 

3D-Bank 20 deg 0.0617 0.4665 1.1955 

3D-Bank 25 deg 0.4126 1.0333 1.3609 

 

 Finally, some method of interpolation and extrapolation needed to be determined for each 

case. Generally, a fit with lines between points, a linear fit, and a fit using cubic splines were 

used. However, for the missing actuator cases and sensor, the data had few enough data points 
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that most fits were very simliar. Consequently, for the aileron and rudder missing cases, as well 

as the sensor cases, just a linear fit was considered. An example case of each fit is shown in 

Figure 54. 

 

 
Figure 54: Fit Types for Left Elevator During Turn 

 

 Due to the simplified nature of this method, there are several approaches that could be 

taken to change the logic of this step. One potential approach could be to change the distance that 

is being considered. The current approach being analyzed uses the entire feature space when 

calculating distance, but it could be possible to improve the performance by considering 

distances for some lower dimensional projections similar to the identification phase of the 

process. Additionally, different types of distances could be considered. For this effort, Euclidean 

distance is being used, but other types of distances could be used for the calculation.The general 

process for the direct quantitative evaluation step is shown in Figure 55. 
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Figure 55: General Process for Direct Quantitative Evaluation Step 

 

4.2.3.3: Indirect Quantitative Evaluation 

 The evaluation phase will conclude with the indirect quantitative evaluation step, which 

will determine the effect that the AC will have over the flight envelope, over the flight control 

laws, and over the performance of the aircraft. The approach which will be used will vary based 

on the actuator which is being affected by the AC. Generally, the approach to estimate the 

reduction of the self will be based on removing partitions which are no longer reachable under 

the effect of the AC, which will be determined by calculating the effective deflection. The total 

deflection of a control surface is formulated, using an aileron and the reachable roll rates as an 

example, is: 

 

 
𝛿𝑎 =

𝛿𝑎𝐿 − 𝛿𝑎𝑅

2
 (4-4) 
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where: 

 

 𝛿𝑎𝐿𝜖[𝛿𝑎𝐿𝑚𝑖𝑛𝑖𝑚𝑢𝑚
, 𝛿𝑎𝐿𝑚𝑎𝑥𝑖𝑚𝑢𝑚

] 

𝛿𝑎𝑅𝜖[𝛿𝑎𝑅𝑚𝑖𝑛𝑖𝑚𝑢𝑚
, 𝛿𝑎𝑅𝑚𝑎𝑥𝑖𝑚𝑢𝑚

] 

𝛿𝑎𝐿𝑚𝑎𝑥𝑖𝑚𝑢𝑚
= 𝛿𝑎𝑅𝑚𝑎𝑥𝑖𝑚𝑢𝑚

= 𝛿𝑎𝑚𝑎𝑥𝑖𝑚𝑢𝑚 

𝛿𝑎𝐿𝑚𝑖𝑛𝑖𝑚𝑢𝑚
= 𝛿𝑎𝑅𝑚𝑖𝑛𝑖𝑚𝑢𝑚

= 𝛿𝑎𝑚𝑖𝑛𝑖𝑚𝑢𝑚 

(4-5) 

 

Therefore: 

 

 𝛿𝑎𝐿𝜖[𝛿𝑎𝑚𝑖𝑛𝑖𝑚𝑢𝑚, 𝛿𝑎𝑚𝑎𝑥𝑖𝑚𝑢𝑚] 

𝛿𝑎𝑅𝜖[𝛿𝑎𝑚𝑖𝑛𝑖𝑚𝑢𝑚, 𝛿𝑎𝑚𝑎𝑥𝑖𝑚𝑢𝑚] 
(4-6) 

 

Here, we will assume a linear relationship between the roll rate and the aileron deflection, and 

that the aileron is the only contributor to the roll rate. For nominal conditions, this gives: 

 

 𝛿𝑎𝜖[𝛿𝑎𝑚𝑖𝑛𝑖𝑚𝑢𝑚, 𝛿𝑎𝑚𝑎𝑥𝑖𝑚𝑢𝑚] → 𝑝𝜖[𝑝𝑚𝑖𝑛𝑖𝑚𝑢𝑚, 𝑝𝑚𝑎𝑥𝑖𝑚𝑢𝑚] (4-7) 

 

When one of the ailerons is affected by an AC, the total deflection will be considered and used to 

establish the dynamic limits of the AC. If we assume 𝛿𝑎𝐿 = 𝛿𝑎𝐿𝑙𝑜𝑐𝑘𝑒𝑑
, then: 

 

 
𝛿𝑎 =

𝛿𝑎𝐿𝑙𝑜𝑐𝑘𝑒𝑑
− 𝛿𝑎𝑅

2
 

𝛿𝑎𝜖 [
𝛿𝑎𝐿𝑙𝑜𝑐𝑘𝑒𝑑

− 𝛿𝑎𝑅𝑚𝑎𝑥𝑖𝑚𝑢𝑚

2
,
𝛿𝑎𝐿𝑙𝑜𝑐𝑘𝑒𝑑

− 𝛿𝑎𝑅𝑚𝑖𝑛𝑖𝑚𝑢𝑚

2
] 

(4-8) 

 

The reduction in 𝛿𝑎 will then be expressed as a reduction of the available maximum and 

minimum deflections available and, assuming linearity between aileron deflection and roll rate, 

gives: 

 

 
𝛿𝑎𝑚𝑖𝑛𝑖𝑚𝑢𝑚%

=
𝛿𝑎𝐿𝑙𝑜𝑐𝑘𝑒𝑑

− 𝛿𝑎𝑅𝑚𝑎𝑥𝑖𝑚𝑢𝑚

2𝛿𝑎𝑚𝑖𝑛𝑖𝑚𝑢𝑚
 

𝛿𝑎𝑚𝑎𝑥𝑖𝑚𝑢𝑚%
=

𝛿𝑎𝐿𝑙𝑜𝑐𝑘𝑒𝑑
− 𝛿𝑎𝑅𝑚𝑖𝑛𝑖𝑚𝑢𝑚

2𝛿𝑎𝑚𝑎𝑥𝑖𝑚𝑢𝑚
 

𝛿𝑎𝜖[𝛿𝑎𝑚𝑖𝑛𝑖𝑚𝑢𝑚%
∗ 𝛿𝑎𝑚𝑖𝑛𝑖𝑚𝑢𝑚, 𝛿𝑎𝑚𝑎𝑥𝑖𝑚𝑢𝑚%

∗ 𝛿𝑎𝑚𝑎𝑥𝑖𝑚𝑢𝑚] 

𝑝𝜖[𝛿𝑎𝑚𝑖𝑛𝑖𝑚𝑢𝑚%
∗ 𝑝𝑚𝑖𝑛𝑖𝑚𝑢𝑚, 𝛿𝑎𝑚𝑎𝑥𝑖𝑚𝑢𝑚%

∗ 𝑝𝑚𝑎𝑥𝑖𝑚𝑢𝑚] 

(4-9) 
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 In the case of missing actuators, the process is similar, except the locked condition is 

replaced by a factor relating to the percentage of the actuator which is missing: 

 

 
𝛿𝑎𝑚𝑖𝑛𝑖𝑚𝑢𝑚%

=
𝛿𝑎𝑚𝛿𝑎𝐿 − 𝛿𝑎𝑅𝑚𝑎𝑥𝑖𝑚𝑢𝑚

2𝛿𝑎𝑚𝑖𝑛𝑖𝑚𝑢𝑚
 

𝛿𝑎𝑚𝑎𝑥𝑖𝑚𝑢𝑚%
=

𝛿𝑎𝑚𝛿𝑎𝐿 − 𝛿𝑎𝑅𝑚𝑖𝑛𝑖𝑚𝑢𝑚

2𝛿𝑎𝑚𝑎𝑥𝑖𝑚𝑢𝑚
 

(4-10) 

 

where 𝛿𝑎𝑚 varies from 0 to 1 as the surface is 0 to 100% missing. 

 Within the AIS, this parameter is used to limit the deflections of the control surface 

which is being affected by the AC. Then, any partitions which require the affected control 

surface to deflect beyond these limits are removed. 

 Additionally, a special consideration is given to the yaw rate. While the rudder deflection 

is used to determine limits on yaw rate, the assumption that the rudder is the primary contributor 

to the yaw rate is not completely valid, as the selected control laws minimally use the rudder. 

Therefore, the effect that aileron locks have on the roll attitude angle, which drives the yaw rate, 

is also determined. Theoretically, any bank angle is reachable as long as some roll rate can be 

acquired, so this will be analyzed in terms of the delay in response time. The general approach to 

the indirect quantitative evaluation step can be seen in Figure 56. 
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Figure 56: General Process for Indirect Quantitative Evaluation Step 

 

 The output from each of these steps combined is the output of the evaluation phase, 

where some combination of the outputs from each step are used in the determination of the mode 

of accommodation which is going to be applied. 

 

4.2.4: Accommodation Logic 

 The accommodation logic and the interfacing of the accommodation phase with the 

previous three phases is of the great interest within this effort. The accommodation phase is 

broken down into three steps, the strategic decision making, tactical decision making, and 

execution steps. These steps are discussed in more detail in the following sections. The 

approaches which are analyzed in detail are the compensatory features approach and the 

alternative control laws approach, while specific sub-self definition, supporting algorithms, and 

external augmentation could also potentially be applied. 

 The compensatory features approach involves the addition of new features into the 

feature space to directly address the accommodation phase, though these features could be 

potentially useful throughout the AC-DIE process. Typically, the same set of variables can be 

used for detection, identificaiton, and evaluation, but some other variables may be necessary for 



107 

 

accommodation. This approach would involve adding these variables to the feature space for the 

entire process to integrate the accommodation phase, where these variables must allow for the 

other steps of the process to function. However, if these specific accommodation features are 

incompatible with the other three phases, the two sets of features could still potentially be 

interfaced by using projections of the AIS, where one projection excluding the accommodation 

feautres could be used for detection, identification, and evaluation, while the entire AIS could be 

used for accommodation. 

 The alternative control laws approach seeks to address accommodation by modifying 

either the trajectory generation or trajectory tracking algorithm, or both. For example, after 

evaluation was performed, a limit on reachable bank angles was found, the trajectory generation 

could be modified to remove turns which did not comply with that limit, and a new trajectory 

could be generated to best optimize the mission with the new dynamic limitations of the system. 

Conversely, the trajectory tracking algorithm could be modified, by adjusting a gain or some 

other parameter, or changed completely to a set of control laws, which are more robust to ACs, 

or are specialized to address a particular class of AC. 

 Specific sub-self definition involves selecting projections, similar to how identification 

was performed, which would be specifically useful for the evaluation or accommodation of a 

particular AC. The projections used, for example, in the identification phase may be considered 

as the self when performing the evaluation and accommodation of the particular AC. 

Considering only the lower dimensional projections also has advantages in simplifying the 

problem, as we are no longer using the entire multi-dimensional space. This will make 

definitions of distance more intuitive and decrease computational effort. 

 

4.2.4.1: Strategic Decision Making 

 The strategic decision making step will determine if the AC is one which can be 

accommodated for or not. Specifically, multiple cases will be considered where, based on the 

method of strategic decision making, the module will produce a specific outcome, where an 

example set of possibilities for a UAV are to: 

 

1. Activate the tactical decision making module 

2. Return to base and land 

3. Land as soon as possible 

4. Self-destruct as safely as possible 

 

where higher severity faults will likely fall later on the list. The strategic decision making 

module will determine which case to activate based either on some predetermined library of limit 

conditions or through some dynamic state of the vehicle. 
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 If a predetermined library of limit conditions is available, each class of AC can have a set 

of thresholds where, if the magnitude or severity of the AC is lower than that value, it 

corresponds to that output. For example, for a left aileron locked fault, a magnitude lower than 

12 degrees could mean accommodation is possible, a magnitude between 12 and 14 degrees 

could require returning to base, between 14 and 16 could require immediate landing, and greater 

than 16 degrees could require self-destructing. The issue with this approach is in the 

determination of optimal limit conditions, as they would depend on the type of AC, class of AC, 

dynamics of the commanded trajectory, available modes of accommodation, and so on. 

 Conversely, the dynamic state of the UAV could be considered, in particular the tracking 

error could be monitored. As the severity of an AC increases, the ability of the UAV to properly 

track the commanded trajectory would likely deteriorate, which would cause the tracking error to 

grow through time. Then, another set of limit conditions could be considered based on the 

growth of the tracking error, where, as the rate of tracking error growth increases, the system 

begins to move toward the more extreme responses. This setup encounters similar issues to the 

library of limit conditions, where it would be difficult to determine exactly what growth rates of 

tracking error should correspond to certain responses. 

 While there is essentially no limit to the number of strategic decision making outcomes, 

they can be broken down into two different classes, where the first class activates the tactical 

decision making module and the second abandons the mission. Here we will be particularly 

interested in the first case where the next stages of the accommodation process will be triggered. 

The general process of the strategic decision making module is presented in Figure 57. 
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Figure 57: General Process of Strategic Decision Making Module 

 

The thresholds 𝜏 and the variable of interest 𝑢 need not be numerical values. These could be 

numerical, such as if a control surface lock is greater than a value, logical, such as if a certain 

class of AC does not require accommodation at all, or categorical. 

 

4.2.4.2: Tactical Decision Making 

 After it has been determined that accommodation is possible, the tactical decision making 

module will be activated. This module is where it is determined how the failure will be 

accommodated. The first step of the tactical decision making module will be to determine if 

accommodation is necessary, or if the mission can be continued relying on the robustness of the 

baseline control laws. Whether an accommodation needs to be made can be determined in a 

similar way as the strategic decision making module, that is a library of limit conditions where 

accommodation is necessary or a limit on growth rate of tracking error. 
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 After it has been determined that accommodation is necessary, the specific mode of 

accommodation must then be determined. This stage itself can immediately pose problems due to 

the specificity of each AC as well as the specifics of the defined mission, which is of an even 

more emphasized importance when considering unmanned aircraft. In general, the methods of 

accommodation within the tactical decision making module can be broken down into three main 

classes: those which change the objectives or requirements of the mission without changing 

control laws, those which change the control laws but do not change the mission, and those 

which change both. Based on the mission itself, some methods of accommodation may or may 

not be possible, even for the same AC. For example, one potential method of accommodating a 

high severity aileron lock may be to take wider turns in the direction where the lock is fighting 

the turn. However, simply taking wider turns and adjusting the remaining trajectory to track as 

closely as possible to the original would not be possible if the tracking was of critical 

importance, such as if the UAV is flying in an urban setting where deviating from the original 

trajectory in any serious way could cause significant problems. In this case, some adjustment to 

the control laws would likely be required to complete the mission. However, if the mission is to 

survey a larger, more open area, adding wider turns may be an acceptable form of 

accommodation for the same fault. Additionally, some methods of accommodation may not be 

applicable for certain types of ACs. Sensor biases, for example, could be addressed via adding or 

subtracting the biases back from the measured value, while adding a compensatory deflection to 

the opposite side control surface from the faulted surface would not be likely to work for high 

severity faults. Here, as the mission is only defined as to follow the commanded trajectory as 

closely as possible, and specifics of the mission are not present, some approaches from both 

types will be analyzed. While they will be addressed individually, there is no reason that multiple 

modes of accommodation could not be applied, which could be necessary for very high severity 

faults. The general process of the tactical decision making module is shown in Figure 58. 
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Figure 58: Overview of Tactical Decision Making Module 

 

4.2.4.3: Execution 

 The final step of the accommodation phase will be putting these changes into action. This 

will involve taking the command from the baseline control laws and adjusting it to match the 

new constraints. This three step accommodation process with strategic decision making, tactical 

decision making, and execution steps is outlined in Figure 59. 
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Figure 59: Accommodation Overview 
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Chapter 5: WVU UAS Simulation Environment 

 This chapter will discuss the various features of the WVU UAS Simulation Environment 

both in terms of the various modules and customization options throughout the environment as 

well as the interfacing of the environment with external programs for visualization and other 

features. The general method of setting up and using the simulation environment will also be 

discussed, including various images of the graphic user interfaces (GUIs) used throughout the 

setup process. Additionally, the interconnectivity of the MATALB® and Simulink® based WVU 

UAV Simulation Environment will be discussed. 

 

5.1: General Architecture 

 The WVU UAS Simulation Environment [5] is an in-house developed tool to facilitate 

the design and analysis of autonomous vehicles while allowing for extensive customization of 

the flight conditions of the aircraft, including both variables relevant to the state of the aircraft 

and its trajectory and those related more to the environment. While the primary function of the 

environment is to simulate unmanned vehicles, the environment is also capable of simulating 

manned flight, where inputs are given by an externally connected throttle and stick. In the case of 

autonomous flight, the necessary inputs would be the flight control laws and the commanded 

trajectory, or a set of waypoints to which a selected trajectory planning algorithm will create a 

trajectory. If manned flight is used, the pilot’s inputs control the commanded deflections of the 

ailerons, elevators, rudders, and the throttle. Through these commands, the developed Simulink® 

model can generate the actual trajectory given the different aircraft dynamic characteristics and 

how the commanded control surface deflections affect the response of the system. 

 The simulation environment can generate the trajectory for an autonomous vehicle 

through one of two ways. One approach relies on a set of waypoints, which then uses one of the 

trajectory planning algorithms, including Voronoi [108], Dubins Waypoints, and Clothoid 

Waypoints [109]. Additionally, the environment allows for the placement of potential obstacles 

or risk zones which can be used in trajectory generation, given they are accounted for within the 

selected trajectory planning architecture. The other approach is to supply different commands, 

such as a command to fly straight for a certain time period or turn over a certain time period, 

where these commands can be combined to generate the trajectory. 

 The commanded trajectory will then be followed based on a selected set of control laws. 

As described in Chapter 4, both approaches based on PID and NLDI control are available. These 

sets of control laws both fall under the classification of conventional controllers which can be 

selected. In addition to the two mentioned previously, alternative architectures based on PID and 

NLDI control are available, as well as a set of laws based on linear quadratic regulation. 
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 Another feature which is customizable within the simulation environment is related to the 

atmospheric conditions. The effects of the wind are modeled and can be added to the simulation, 

where customization options include settings based on a constant wind or wind gusts. For 

constant wind, the inputs are the direction in which the wind is blowing, which is determined 

through a set heading and pitch angles, and the speed which can be set. Gusts are slightly more 

involved, where the same parameters as the constant wind are necessary, but the duration of the 

gust and the time at which the gust occurs must also be provided. The effects of wind shear can 

also be specified, where it will act in the direction of the constant wind during a specified time 

window. The final condition which is modeled is turbulence, where certain discrete settings can 

be used to customize the severity of the turbulence. 

 While the real-time simulation of the UAV is handled through the MATLAB® and 

Simulink® packages, there are no visuals provided from these programs during the flight, where 

the only information provided in real time by these packages are the variables used in the 

simulation. Visualization is mainly handled through the UAVDashboard, where the initial 

location of the aircraft can be selected and the trajectory can be monitored in real time. This can 

also be used in trajectory planning, as waypoints and risk zones can be set, and the trajectory of 

the aircraft can be monitored. While the trajectory of the UAV can be seen in a simple way from 

the UAVDashboard, the simulation environment is also interfaced with FlightGear® to provide a 

more traditional view of the aircraft and what it is doing. 

 

5.2: GUIs and Functions 

 When setting up the flight scenarios through the simulation environment and the 

UAVDashboard, there are many different GUIs which will facilitate the simplest setup of the 

desired experiment as possible. In the simulation environment, these GUIs will be where critical 

system characteristics, such as what aircraft is used, where the UAVDashboard relies on one 

GUI to both communicate with MATLAB® and Simulink® and to set up waypoints and risk 

zones. FlightGear also allows for some minimal customization of the perspective of the aircraft. 

Here we will discuss the main GUIs used throughout the setup of the simulation environment 

and the various customization options throughout the process. 

 

5.2.1: MATLAB and Simulink Implementation 

 The WVU UAS Simulation Environment is first launched through MATLAB® through 

the command WVUUAV which will open the first of the series of GUIs to set up the simulation. 

The first of these allows for the selection of the number of vehicles where, throughout the 

experimentation, only a single vehicle was used. After the number of vehicles has been selected 

and launched, the first of the more involved GUIs will appear, which will allow for the 

determination of some of the basic attributes of the simulation. This will include the selection of 
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the particular UAV and, while the WVU YF-22 was the only aircraft used in this effort, other 

aircraft are available. Next, the map upon which the flight is taking place can be selected where, 

at present, the only map available is the San Francisco Bay Area, but other maps could be 

implemented and added within the current architecture. 

 This GUI is also where the navigation and control settings will be selected. For 

navigation, the first option is whether there will be trajectory planning or not. If trajectory 

planning is not being used, manned flight will be required. If trajectory planning is used, an 

additional menu will be opened where the desired trajectory planning algorithm can be selected. 

Selecting a planning algorithm itself is not sufficient for autonomous flight, for this a type of 

controller must be selected, which are divided into the categories of conventional or adaptive 

control, where conventional controllers have a fixed approach, and the adaptive approaches use 

some type of artificial intelligence technique within the laws. 

 Finally, after the desired settings are input, they can be loaded into the environment using 

the grey buttons as the bottom. These buttons also allow for the visuals interfaces with the 

environment to launch, where the button will open the UAVDashboard and FlightGear®. This 

GUI is shown in Figure 60. 
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Figure 60: WVU UAS Simulation Environment Main Portal GUI 

 

 After the launch button is pressed, the next GUI of the simulation environment is 

launched. This is where the settings related to system ACs can be selected, or it can be selected 

to be nominal flight. If a failure is selected, options will open to customize the failure. These 

options vary based on whether a sensor or actuator fault is selected but, in either case, the time 

before the failure occurs must be set. In the case of an actuator failure, a dropdown menu is used 

to select the faulted control surface. The type of fault is then selected where, for actuator faults, 

the two implemented ACs are a locked surface or a partially missing surface. After one is 

selected, the option to set either the lock angle or percentage of the control surface which is 

missing is opened. An example implementation is shown in Figure 61, where the right aileron 

will be locked at 10 degrees after 15 seconds pass from the start of the simulation. 
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Figure 61: Failure Options GUI for Control Surface Lock 

 

 If a sensor failure is selected instead, the time to failure must still be specified, as well as 

the type of bias which is affecting the sensor. An example case, a large step bias of 5 degrees per 

second will be applied to the roll rate sensor after 5 seconds, is shown in Figure 62. 
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Figure 62: Failure Options GUI for Sensor Failures 

 

 After the desired flight control laws and failure scenario have been selected, the launch 

button will send the information to MATLAB® where the dynamic characteristics of the selected 

aircraft will be loaded, as well as the information necessary to execute the failure within the 

Simulink® model. The Simulink® model for the selected aircraft will also be opened, where some 

of the selections will be visible within the model itself, such as the selected controller being 

highlighted in green. The top level of the Simulink model for the UAV used in this effort, the 

WVU YF-22, is shown in Figure 63. 
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Figure 63: WVU YF-22 Simulink® Model 

 

 Within this Simulink® model, the various stages of the simulation of the WVU YF-22 can 

be set up. The first set of blocks, the Manual Flight, Follow Leader, and Follow Trajectory 

blocks, use the variables within MATLAB® to determine the mode of flight for the aircraft, 

where the block highlighted in green is the one selected through the GUIs. Then, based on the 

type of flight being used, a suitable control architecture is selected from the blocks in pink, 

where the one selected is in green. Within the Conventional Controllers and Adaptive Controller 

blocks are the blocks corresponding to the different control architectures which could be selected 

through the GUIs. While a set of control laws are selected within the GUIs, they can be adjusted 

here if a different setup is necessary. 

 The next block down the line is the WVU YF-22 UAV block which contains the 

information about the dynamics of the UAV. Within this block, the control surfaces are 

decoupled, the dynamics of the actuators themselves are modeled, and finally the effects that 

moving the control surface has on the rest of the aircraft are modeled. This set of blocks are 

where the actuator faults are implemented where, if there is an actuator fault, there will be either 

a modification in the output deflection of the control surface or a change in the control surface’s 

influence on the aerodynamic coefficients with respect to that faulted actuator. In a similar way, 

the next block downstream, the sensors block, contains the subsystems used both to organize 

sensor feedback and to implement faults on the various sensors on board the UAV. Within the 

sensor failure subsystem, the variables within MATLAB® from the GUIs determine what sensor 

is being affected by what type of AC.  

 The other blocks at the top of the model are the Wind Scenario, Turbulence, and Global 

Positioning Service (GPS) blocks. The Wind Scenario block is where the information pertaining 

to the wind is stored, both in the case of constant wind and wind gusts and can be customized 
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through the block. The Turbulence block contains the blocks which are responsible for 

implementing the effects of the turbulence, where the magnitude of the turbulence, either no 

turbulence, light turbulence, moderate turbulence, severe turbulence, or extreme turbulence, can 

be selected by double clicking the box. Finally, the GPS block can be used, rather than the 

sensors block, to give feedback to the control laws, and is where faults pertaining to GPS 

services can be implemented. 

 Finally, the blue blocks at the bottom of the model can be used to modify simulation 

setup and address simulation output. The blocks here can be used both to load in a previously 

defined trajectory as well as save a trajectory which has been flown. Additionally, the failure 

scenario can be changed here rather than requiring the environment to be re-launched. The next 

block toggles the simulation environment between running in real time or running in an 

accelerated time, and the final two blocks are used for visualizing data either during the flight or 

after a flight has been completed. 

 

5.2.2: FlightGear 

 FlightGear® [110] is an open-source software package used in the WVU UAS Simulation 

Environment. As the simulation environment itself does not have any visualization of the 

aircraft, FlightGear® allows for a 3 dimensional view of the aircraft which can be adjusted during 

the flight, where the view shows the environment which was selected in the environment setup. 

The simulation environment provides FlightGear® with the necessary dynamic variables to 

provide an accurate view in 3 dimensions of the state of the aircraft throughout the flight. The 

default viewpoint starts on the inside of the aircraft, where a simple head up display (HUD) 

shows some important parameters to the flight, including the aircraft’s speed, altitude, heading 

angle, pitch angle, and bank angle. For visualization purposes, the v-button can be used to adjust 

the view as desired. A fly-by view of the WVU YF-22 in FlightGear® is shown in Figure 64. 
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Figure 64: FlightGear® Fly-By View 

 

5.2.3: UAVDashboard 

 The UAVDashboard is the other tool used for assisting in visualization and trajectory 

planning within the simulation environment. Here, at a minimum, the origin of the coordinate 

system can be defined and the location and heading angle of the aircraft are set, and the visual 

representation of the placed aircraft will follow the trajectory set in the simulation environment. 

A sample flight of the aircraft autonomously following a section of 2-dimensional s-turns is 

shown in Figure 65. 
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Figure 65: Trajectory Following Through UAVDashboard 

 

 Conversely, a set of waypoints or risk zones can be defined through the UAVDashboard, 

and the simulation environment will generate a trajectory based on these points depending on the 

selected trajectory tracking algorithm. Figure 66 shows a trajectory which was generated using 

waypoints, shown by the red circles, within the UAVDashboard. 

 

 
Figure 66: Trajectory Generated Through UAVDashboard 
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 The final tool assisting in analysis is the development of the AIS was the WVU AIS 2-D 

Projections Viewer. This tool facilitates the development of the AC-DIEA algorithms, mainly in 

the identification phase, by allowing for all 2 dimensional projections of the AIS to be viewed. 

The ability to access each 2 dimensional projection allows for easier determination of which 

projections could be useful within the AC-DIEA process, along with other advantages which will 

be discussed as the features are summarized. A view of the visualization tool is shown in Figure 

67 [111]. 

 

 
Figure 67: Top Level View of 2-D Visualization Tool 

 

 Within this tool, the drop-down menus allow for the various projections of the AIS to be 

viewed. The first set of options allows first for the shape of the partitions to be selected, where, 

in this effort, data was provided to allow for square shaped partitions only. The remaining 

options allow for the feature variables to be selected, where the projection can be seen in the plot 

on the right. The second set of options allow for data from a particular nominal or abnormal case 

to be displayed, which can be helpful in determining where data leaves the self. 
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Chapter 6: Results 

 The results of applying the AIS to the AC-DIEA process are presented in this chapter. 

This includes a detailed analysis for the AC-DIE phases individually, considering all ACs which 

are used in the development of the AIS. The accommodation phase, however, will have specific 

additional ACs used to demonstrate the primary function of the accommodation logic in addition 

to some analysis of cases which were used in development. A discussion and demonstration of 

the function of the fully integrated system will also be presented here. 

 

6.1: Detection Performance 

 The detection performance will be evaluated based on the time required to declare an AC, 

the number of individual data points flagged as abnormal, also known as the point-to-point 

detection rate, and the number of data points flagged as abnormal after the moving time window 

is applied. It is important to note a few things about detection performance before analyzing the 

values. First, as the detection scheme is balanced around zero false alarms, even what may 

appear as “low” detection rates actually constitute acceptable performance. For example, a 50% 

detection rate would represent very good performance for the detection algorithm, whereas 

intuitively it seems to be the same probability as a coinflip. It should be emphasized that the 

detection rate evaluation metric should not be interpreted as a probability of detection. Second, 

the time window detection rate will never reach 100%, no matter the severity of the AC. This is 

because all points up until the detection will be assessed as normal, and at least a certain quantity 

of points must come in as abnormal before the AC will be declared. Therefore, there will always 

be some delay in the first point being flagged as abnormal after the time window is applied. For 

simplicity, the results highlighted here are the averages for each AC over each validation 

trajectory. Additionally, the results for the right rudder cases will not be shown as, due to 

limitations in the simulation environment, the results for the right rudder are identical to the left 

rudder. The average detection rates for the failures affecting each control surface for each of the 

12 validation trajectories are summarized in Figure 68. 
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Figure 68: Actuator Average Detection Rate Performance 

 

These results match roughly what would be expected, where the elevator faults are generally 

higher severity than the faults of the aileron and rudder. It is also worth noting that the detection 

rate using the moving time window does not significantly affect the detection rate but does 

increase robustness to false alarms. To highlight the effects of the severity of the AC on the 

detection rates, the average detection rates for the left aileron ACs are shown in Figure 69. 
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Figure 69: Left Aileron Average Detection Rate Performance 

 

Again, the pattern matches what we would expect from the detection algorithm. The lower 

severity faults, mainly the 0 degree lock and two missing cases, all have lower detection rates 

than the other faults. The two missing cases and 0 degree lock have this substantially lower 

detection rate because the AC is not severe enough to cause triggering when straight and level 

flight is commanded. Additionally, it shows that all severity cases considered have comparable 

performance using the moving time window. The point-to-point detection rates for the sensor 

cases are shown in Figure 70. 
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Figure 70: Sensor Fault Average Detection Rate Performance 

 

These results also are consistent with what we would expect, as the sensor cases generally have 

lower overall detection rates, which is because their measurements are only used lightly within 

the control laws. The moving time window also does not cause huge changes in the detection 

rate, but it boosts the overall detection performance on average for all considered sensor faults. 

 The other main variable of concern with the detection process is the time to detection. 

This is defined only in the case of the moving time window and, due to the size of the moving 

time window, the detection will always be delayed. The current scheme used for the detection 

window requires that 4 out of the last 10 points are abnormal, which requires 3 additional time 

steps after the AC is injected, which, at 50 Hz, corresponds to a 0.06 second delay in detection. 

The average detection time performance for actuator cases is shown in Figure 71. 
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Figure 71: Actuator Fault Average Detection Time Performance 

 

Where the results here match what would be expected from the detection rates. It is worth noting, 

however, that the average may not be the only metric that is of importance, although all averages 

are under 6 seconds. Another pattern becomes apparent when looking at the detection time 

performance for the aileron or rudder based on the severity of the AC. The results for detection 

time by AC for the left aileron are shown in Figure 72. 
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Figure 72: Left Aileron Fault Average Detection Time Performance 

 

Figure 61 shows that the detection time for all ACs either is almost instantaneous or takes 

approximately 15 seconds. This is due to the nature of the validation trajectories and the injection 

of the AC. Each validation trajectory begins with a straight flying section where the AC is 

injected and, if the aircraft is flying straight, where the commanded rudder and aileron 

deflections are zero. Consequently, if the commanded deflection is zero, there is no difference in 

the dynamic response when under the effect of the AC. This is also the case for the missing 

cases, as they are modeled as a reduction in control authority. Next, the results for the detection 

time for the sensor fault cases are presented in Figure 73. 
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Figure 73: Sensor Fault Average Detection Time Performance 

 

Where the detection time for each sensor falls within 1/10 of a second of the injection of the 

sensor rate bias. 

 

6.2: Identification Performance 

 The identification performance of the AIS is evaluated based on several different 

performance metrics. The main parameters of interest common to both sensors and actuators are:  

• Identification rate: percentage of the number of data points where an identification was 

attempted with respect to the total number of points after the occurrence of the failure. 

• Identification success rate: The percentage of the number of data points where a correct 

identification was made with respect to the total number of points after the detection. 

• Identification time: The amount of time required for an imposed number of correct 

identifications to be made. In the current implementation, this number is 5. 

For elevator faults, this will include determining the correct side of the aircraft upon which the 

AC is acting. As mentioned previously, due to limitations of the simulation environment, it is 

effectively not possible to determine which side an aileron or rudder fault is on. 

 The sensor cases, however, will have another set of identification performance criteria of 

interest. These metrics are:  
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• Small sensor identification: percentage of the number of data points where a small sensor 

fault was identified with respect to the total number of data points after the detection. 

• Small sensor identification time: The amount of time required for an imposed number of 

small sensor identifications to be made. In the current implementation, this number is 5. 

These additional metrics were introduced due to the low impact nature of the sensor biases. 

Using only 3-dimensional projections, there were many cases where very little triggering 

occurred for a sensor fault. In this case, it was also determined that the fault was of very low 

severity and would be the type that the baseline control laws would be able to accommodate for. 

As a result, this classification was introduced to handle cases where the total triggering was very 

low. The average identification rate and average success rate for the actuator cases are shown in 

Figure 74. 

 

 
Figure 74: Actuator Fault Average Identification Rate Performance 

 

Figure 74 shows that on average, for all actuator faults considered, almost 100% of points had 

been attempted to be identified, while 85% to 95% of these points were identified correctly. To 

see the impact severity has on identification performance, the average identification rates for 

only left elevator faults are shown in Figure 75. 
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Figure 75: Left Elevator Fault Average Identification Rate Performance 

 

The data show that the overall identification rate is largely unaffected by the severity of the fault, 

while the correct identification outcome increases with increasing severity of the fault. This 

matches expectations where, as the AC becomes more severe, the dynamic fingerprint of the AC 

becomes more pronounced. The overall identification performance for sensor faults is shown in 

Figure 76. 
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Figure 76: Sensor Fault Average Identification Rate Performance 

 

Here the data show that the total amount of points where an identification is attempted is similar 

to the control surface cases and is almost entirely split between small scale sensor failures and 

the correct angular rate sensor. This is again related to the lack of impact that the sensor input 

has on the output of the control laws. To get a better idea of the distribution of these 

identification outcomes, Figure 77 shows the results for the yaw rate sensor failures, divided into 

the different magnitudes of failure. 
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Figure 77: Yaw Rate Sensor Fault Average Identification Rate Performance 

 

Figure 77 shows clearly how the identification algorithm approaches the fault on the rate sensors. 

For the lowest magnitude case considered, the outcome is almost entirely composed of “small 

scale sensor fault” outcomes. Then, as the magnitude of the rate sensor bias increases, the 

identification rates shift toward the sensor in question as opposed to a general small magnitude 

label. 

 The other metric of concern for the identification performance is the time to a correct 

identification. By the used logic scheme, this corresponds to the time the fifth correct 

identification is made. For the sensor cases, an identification time will be made both for a small 

magnitude sensor fault and the fault on the sensor itself. The average results for identification 

time for the considered actuator faults are shown in Figure 78. 
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Figure 78: Actuator Fault Average Identification Time Performance 

 

These data show that the identification time is relatively consistent across all the major control 

surfaces. The identification time performance for the sensor bias cases is shown in Figure 79. 
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Figure 79: Sensor Fault Average Identification Time Performance 

 

In addition to these data, it is important to note that the average identification time for each rate 

sensor being identified as a small magnitude sensor fault is 0.08 seconds, which is the minimum 

time for an identification to be made. These much higher identification times are due in part to 

the lack of impact that the sensor fault itself has and in part to the tendency of the logic scheme 

to be cautious about a false identification. Essentially, when the fault is injected, a detection is 

made, but no 3-dimensional projections are triggered. After 5 time steps with this phenomenon, 

the identification result will arrive as a small magnitude sensor fault. Then, particular maneuvers 

will add a varied amount of data points which are identified as the correct rate sensor, which will 

eventually add up to create an identification result of the sensor itself. 

 

6.3: Evaluation Performance 

6.3.1: Qualitative Evaluation 

 The performance of the algorithm in the qualitative evaluation stage is based on similar 

metrics to the identification phase. For actuator faults, this will comprise the percentage of data 

points where an evaluation is attempted, and the percentage of data points where the output 

evaluation was correct. The average performance for each actuator is shown in Figure 80. 

 



137 

 

 
Figure 80: Qualitative Evaluation Averages for Actuator Faults 

 

Where the results show similar patterns to what was found in the identification stage. An 

evaluation outcome was generated over 95% of the time on average, while the average correct 

qualitative evaluation outcome averaged over 85% performance. The performance of specifically 

the left elevator is shown in Figure 81. 
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Figure 81: Qualitative Evaluation Averages for Left Aileron Faults 

 

These data show the pattern for successful qualitative evaluation performance again matches 

expectations, where higher severity faults are evaluated more accurately. The missing actuator 

cases are shown again to be less severe than any actuator lock, which has been apparent in each 

stage of the AC-DIEA process. However, for each case, evaluation attempts are made on more 

than 90% of points, where at least 85% are evaluated correctly. Qualitative evaluation was not 

performed for the sensor cases, as there was only a single type of sensor fault considered. 

 

6.3.2: Direct Quantitative Evaluation 

 The metrics used for the assessment of the performance of the direct quantitative 

evaluation step were the average assessed fault severity and the standard deviation of the direct 

quantitative outcomes. The average outcome should match the prescribed AC as closely as 

possible with a standard deviation which is as low as possible. The results for each fit for 

actuator lock cases are shown in Figures 82 to 86. 
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Figure 82: Direct Quantitative Evaluation Average (Left) and Standard Deviation (Right) for Left Aileron Locks 

 

The results for the left aileron locks show consistently high performance across each 

interpolation method. All averages were very close to the true value for the control surface 

deflection, all within 1 degree. The standard deviations were also close to expected values, where 

the higher severity faults also tended to have higher standard deviations. All standard deviations 

were less than 2.5 degrees, but most fell between 0.75 and 1.5 degrees. 

 

 
Figure 83: Direct Quantitative Evaluation Average (Left) and Standard Deviation (Right) for Right Aileron 

Locks 

 

The results for the right aileron locks show similar results to the left aileron performance, where 

all methods show promising performance with averages within 1 degree of the true value. The 

standard deviations generally follow the expected patterns, aside from the lower deviations on 

the highest severity case. This can be explained by how each method handles higher severity 

faults, where there is a set maximum which cannot be exceeded. All standard deviations were 

less than 2 degrees, where most fell between 0.6 and 1.2 degrees. 

 



140 

 

 
Figure 84: Direct Quantitative Evaluation Average (Left) and Standard Deviation (Right) for Left Elevator Locks 

 

The results for the left elevator locks show again promising results for each method. All averages 

remain within 1 degree of the true value, but there is substantially more error for the linear fit, 

indicating a non-linear relationship between the distance index and the magnitude of the fault. 

The standard deviations matched expected patterns and fell between 0.25 and 1.5 degrees. 

 

 
Figure 85: Direct Quantitative Evaluation Average (Left) and Standard Deviation (Right) for Right Elevator 

Locks 

 

The performance on right elevator locks matches very closely the patterns that were obtained for 

the left elevator case. All fits are within 1 degree of the true value, but with increased error in the 

case of the linear fit. Standard deviations varied from 0.2 to 1.2 degrees, with higher faults still 

experiencing higher standard deviations. 
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Figure 86: Direct Quantitative Evaluation Average (Left) and Standard Deviation (Right) for Left Rudder Locks 

 

Finally, the performance for left rudder locks shows a distinct difference in overall performance 

for each of the fits. The linear fit starts to introduce substantial errors in determining the 

magnitude of the fault. This again is indicative of a non-linear relationship between the distance 

from the self and the magnitude of the fault. The remaining two fits continue to give promising 

results for determination of the magnitude of the lock by remaining, in this case, within half of a 

degree of the true deflection. The pattern for the standard deviations was somewhat more erratic 

than the others, but the values were still very acceptable, where no standard deviation was 

greater than 1 degree. 

 Next, the missing cases are considered. For the aileron and rudder cases, only the linear 

fit will be considered, while each elevator case will still use all three fits. The results for the 

missing actuator cases are shown in Figures 87 to 91. 

 

 
Figure 87: Direct Quantitative Evaluation Average (Left) and Standard Deviation (Right) for Left Aileron 

Missing 
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The left aileron missing cases show accurate results in determining the amount of the control 

surface which is missing. Both cases have averages very close to the true amount of the surface 

missing, within 2%, with low standard deviations. It is worth noting that, in the case of missing 

actuators, the highest percentage which can be missing at a particular data point is 100%, so the 

average will always be lower than 100% missing. 

 

 
Figure 88: Direct Quantitative Evaluation Average (Left) and Standard Deviation (Right) for Right Aileron 

Missing 

 

The results for the right aileron missing cases match very closely the results obtained from the 

left aileron cases. 

 

 
Figure 89: Direct Quantitative Evaluation Average (Left) and Standard Deviation (Right) for Left Elevator 

Missing 

 

The results for the left elevator missing case continue to show promising performance, as the 

average for each fit is still very close to the true value. The deviations, however, are much higher 

than for the missing aileron case. This is due to the nature of the algorithm, as the approach 
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which relied on the area of the peaks would update much less frequently than the case 

considering the distance at each time step, which could cause the higher deviation. 

 

 
Figure 90: Direct Quantitative Evaluation Average (Left) and Standard Deviation (Right) for Right Elevator 

Missing 

 

The results for the right elevator case match very closely the results for the left elevator missing 

cases. For each case, all three fits give almost identical results. However, it should be noted that 

this is due to the small number of data points which are available, as being limited to 2 data 

points causes the linear fit and spline fit to be the same as well as being very similar to the linear 

between points fit. 

 

 
Figure 91: Direct Quantitative Evaluation Average (Left) and Standard Deviation (Right) for Left Rudder 

Missing 

 

For the left rudder missing cases, the only noteworthy point is the general pattern for standard 

deviations being flipped, where the standard deviation for the 100% missing case was higher 
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than that of the 50% missing case. Both cases, however, still had acceptable performance in 

terms of the standard deviation of the direct quantitative evaluation outcomes. 

 The final set of data for the direct quantitative evaluation step is the one for each sensor 

fault. Due to the fact that only 3 different conditions were considered, only a single fit type was 

used, where each data point was connected with a line. The results for each sensor are shown in 

Figure 92 to 94. 

 

 
Figure 92: Direct Quantitative Evaluation Average (Left) and Standard Deviation (Right) for Roll Rate Sensor 

Faults 

 

The data for the roll rate sensor faults show consistently high performance for both considered 

parameters. The average outcome for the roll rate sensor faults is within half a degree per second 

for each magnitude of AC, with a standard deviation that is generally low, maximizing at about 

1.6 degrees per second, but the standard deviation is proportional to the magnitude of the fault, 

where the higher severity fault causes a higher standard deviation. 

 

 
Figure 93: Direct Quantitative Evaluation Average (Left) and Standard Deviation (Right) for Pitch Rate Sensor 

Faults 



145 

 

 

The results for the pitch rate sensor fault were similar in terms of standard deviation, but the 

mean values for the magnitude of the sensor fault were all lower by one half to one degree per 

second. This pattern was likely due to a unique issue with the pitch rate sensor, where the 

distance from the self during particular maneuvers would remain at one, which caused the areas 

under the peaks to be much higher for some maneuvers than others. This was tentatively 

addressed by stopping the area calculations if the distance remained at 1 for 15 consecutive time 

steps, which may cause issues in calculations in general. 

 

 
Figure 94: Direct Quantitative Evaluation Average (Left) and Standard Deviation (Right) for Yaw Rate Sensor 

Biases 

 

Data for the yaw rate sensor show similar results to the roll rate sensor bias cases, where the 

average outcome is within half a degree of the injected value for the angular rate bias, and the 

standard deviations are all less than 1 degree per second. The most noteworthy aspect of the 

results is that the standard deviation for the 5 degree per second case does not match the 

expected pattern, as it was much lower than the standard deviation for both other cases 

considered. 

 

6.3.3: Indirect Quantitative Evaluation Performance 

 The performance of the indirect quantitative evaluation stage will be determined based on 

the differences between the reduction of control authority captured through simulation and the 

reduction in control authority estimated by the reduction of the self obtained from the effective 

deflection calculations. To estimate the reduction in control authority, each control surface will 

have features associated with it which are assumed to be limited based on the nature of the AC. 

For ailerons cases the main feature of interest will be the roll rate, for elevators the main feature 

of interest is the pitch rate, and for the rudders the main feature of interest is the yaw rate. While 



146 

 

these do not form a comprehensive list, as, for example, an aileron AC would likely also create 

limits on roll acceleration, but here we will focus on the penalty on the angular rate control 

authority on the same channel as each control surface.  

 

6.3.3.1: Indirect Quantitative Evaluation Methods 

 In general, the indirect quantitative evaluation methodology attempts to determine the 

effect the AC has on the overall flight envelope, which is addressed via a six step process. First, 

the AC itself must be completely defined from the output of the direct quantitative evaluation 

step. This includes the directly affected feature which, for a left aileron AC, would be the left 

aileron deflection, a metric for the severity of the AC, which would be the lock angle, and the 

targeted features in the flight envelope, which in this case is the associated angular rate to the 

control surface. Second is to obtain experimental data for the reduction from the AC. In this 

effort, these data will come from simulating manned flight and maximizing the inputs to the 

control surfaces. Third, a theoretical approach to estimating the reduction of the flight envelope 

based on the failure must be applied. Here, this will consist of using the effective deflection of 

the faulted control surface and the maximum and minimum angular rates under nominal 

conditions to estimate the limits on the angular rates. Fourth, the approaches from the second and 

third steps are compared to each other to validate the approaches. Fifth, a methodology must be 

designed to extract the new limits from the AIS, where the approach is based on the theoretical 

approach. For example, the effective deflection calculations can be used as new limits on the 

control surface deflection in the AIS and the projection between the affected control surface and 

the variable of interest can be used to estimate a reduction of the angular rate. Finally, the values 

extracted from the AIS will be compared to the values of the second and third steps, as 

validation. 

 In the analysis, a few additional considerations must be made depending on the failure 

and the subsystem that is affected. For the scenarios considered in this research effort, we will 

first attempt to isolate the effect of each control surface for each angular rate. Therefore, the 

theoretical maxima and minima for the angular rates for each control surface will be determined 

through manned flight by saturating the input on the control surface of interest. This leads to the 

next main consideration where, as the purpose of the step is to determine limits on control 

authority, we must consider when the aircraft is in a state which is not controllable. For example, 

if, through manned flight, the system can be destabilized and angular rates continue to grow, this 

would not be considered to be a “reachable” angular rate. Reachable angular rates will only 

include those which are obtainable through control authority on the corresponding channel. For 

example, the “reachable” roll rates will be found by maximizing the input on the ailerons only. 

Additionally, the indirect quantitative evaluation step will only seek to capture these effects, 

ignoring effects on angular rates which are the results of coupling, instability and oscillations 
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induced from control inputs, and external factors. Neglecting some of these factors may 

contribute to potential error from coupling. Finally, some attempt will be made to isolate the 

effect that the AC has on the angular rates. During flight, many different parameters can affect 

the maximum and minimum reachable angular rates, such as the current values for each of the 

Euler angles and the injection of the AC, where we will again attempt to insulate these effects 

during data collection during manned flight. Within the AIS, however, these types of 

considerations will be much more difficult to apply. This is due to the lack of single control 

surface maneuvers within the AIS construction data as well as the lack of considerations based 

on time within the AIS. 

 As a result of these considerations, the exact method applied for acquiring experimental 

data for each control surface varies from one another. Additionally, to better illustrate the effect 

that the AC will have on the self of the AIS, the saturation condition of each control surface will 

be reduced from the nominal case to ensure that some reduction of the self will be present for 

some of the considered ACs for each control surface. Additionally, these maneuvers will be 

designed specifically to address only the input from a single control surface, although these 

single control surface maneuvers do not exactly match the maneuvers used in the AIS. 

 The first considered control surface is the aileron. Nominally, the ailerons can be 

deflected between −20° to +20°, but here we will consider the case where the nominal range of 

deflections is limited to −12° to +12°. To obtain the data for the maximum and minimum 

reachable roll rates, the input on the stick for ailerons was maximized and the simulation was 

allowed to run until the aircraft crashed. 

 For the elevator cases, the nominal deflection range was shifted from a −20° to +20° 

range to a −15° to +15° range. To attempt to isolate the effect that the AC has on pitch rate, a 

supplementary symmetric deflection of the ailerons was introduced at the same time as the 

injection of the AC. This is to counter the immediate rolling behavior which is introduced by the 

asymmetric positioning of the elevators. The maximum and minimum pitch rates were obtained 

by allowing the aircraft to pitch down for 1 second after the AC and supplementary aileron 

deflections are injected and then saturating the input for the other elevator until the aircraft is at a 

close to either a −90° or +90° pitch attitude angle. 

 Finally, rudder cases will change the nominal deflection range from −30° to +30° to 

−10.3° to +10.3°. This value represents a much more significant reduction of the available 

rudder deflections, which was selected due to the relatively low involvement of the rudder under 

nominal conditions, as the rudder deflections varied from about −0.6° to +0.6° nominally. The 

effects of the rudder deflections were difficult to isolate, due partially to the Dutch roll type 

behavior upon injection of the AC and the complex dynamic behavior associated with the rudder 

faults, therefore a consistent method was developed for all ACs as a “compromise” between 

determining the maximum and minimum early in the simulation to isolate the effects of the AC 
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versus waiting for the effects of the injection of the AC to pass. For this consistency, the AC is 

injected, one second is allowed to pass after the injection, then the input on the controllable 

rudder is saturated, and the first peak in angular rate is used as the controllable maximum and 

minimum. 

 When discussing the results for the indirect quantitative evaluation stage, three different 

cases are compared to determine the reduction of the flight envelope and the performance of the 

AIS in predicting this reduction. The three approaches used follow the six step process and are 

through the effective deflection calculations, through simulation of manned flight, and through 

the actual reduction of the AIS, which are the second, third, and sixth steps respectively. While 

each approach seeks to produce the same result, some key differences are present between each 

approach based on the dynamics which are considered. 

 When using the effective deflection calculation, the relationship between the control 

surface deflection and angular rate is assumed to be linear. While this is a major simplifying 

assumption, the quality of the assumption may not be the most valid for all situations, especially 

while the UAV is under some more extreme dynamic conditions. Additionally, the assumption of 

linearity may be more valid for some control surfaces for some angular rates, where the quality 

of the assumption can be gauged through the projection between the two variables in the AIS 

being checked for linearity. This projection then could potentially be adjusted to better match the 

linearity present in this assumption and the values obtained through simulation. This type of 

adjustment is shown in the projection figures in Section 6.3.3.2 (Figure 96 and Figure 98). 

 The situation using manned flight then becomes somewhat more complex than the 

previous effective deflection calculation. When using manned flight, some simplifications are 

still present, such as the ability to isolate a particular control surface, but not all simplifications 

are maintained in this approach. The main difference between the two is based on the dynamic 

coupling between the modes. While the effective deflection calculation is only interested in the 

reduction in the corresponding angular rate, such as the roll rate when considering aileron faults, 

that fault would also cause a yaw rate and consequently a pitch rate. While these values could 

also be predicted using the effective deflection calculations, the presence of the other angular 

rates will have an effect on the angular rate of interest due to dynamic coupling, where this 

consideration is not present using the previous calculation. 

 Finally, the reduction of the flight envelope within the AIS using the effective deflection 

calculation has additional dynamic considerations which are not present in the other two 

methods. The reduction in the AIS also is subject to the coupling between angular rates induced 

by the deflection of a control surface, implying that the data obtained from simulated manned 

flight will better match the reduction within the AIS. Additionally, the AIS will also have the 

nonlinear relationship between the control surfaces and angular rates captured which also better 

matches the manned flight situation. While there are more similarities between the manned flight 
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case and the AIS reduction case, a critical difference between the two is the lack of control 

surface isolation in the AIS. The control laws used in trajectory generation and the trajectories 

themselves do not tend to use either aileron-only or rudder-only maneuvers, that is there is an 

additional form of coupling between control surface deflections in addition to the coupling 

between angular rates, where this control surface coupling is not considered in the previous two 

methods. During flight, there is also a dynamic delay between the input to the control surfaces 

and the associated angular rate. While the control surface can relatively quickly go from a trim 

case to a saturation case, the dynamic state of the aircraft can take some time to “catch up”. This 

effect is most present between pitch rate and elevator deflection but is somewhat present between 

roll rate and aileron deflection. This delay in dynamics is not present with the current feature 

values within the AIS which consequently only captures the current angular rate and the current 

deflection in one instant, which does not completely describe the dynamics as it does not capture 

that delay. 

 The differences in dynamic considerations between the three cases can sometimes be 

accounted for, as is attempted when considering the non-linear nature of the elevator faults, but 

some cases cannot be addressed in the same manner. For example, the rudder is both minimally 

involved within the control laws and coupled with the aileron deflections, so the aileron is the 

main control surface which is affecting both roll and yaw, while the rudder deflection is 

somewhat arbitrary, having little effect compared to the aileron contribution. Due to these 

differences in dynamic considerations, some smaller-scale discrepancies are expected between 

each case and some more involved adjustments may be necessary to acquire consistent, 

meaningful, and effective results between the three approaches. 

 

6.3.3.2: Indirect Quantitative Evaluation Aileron Results 

 The results for the limits on roll rate for left and right side aileron faults are shown in 

Table 48 and 49. These tables show the results for the experimental and calculated values for the 

limits based on a determined practical maximum and minimum obtained from simulation. 
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Table 48: Theoretical Limits on Roll Rate for Left Aileron Faults 

Experimental Roll Rate Limits for Left Aileron Failures 

Fault 
Calculated Values Simulated Values 

𝛿𝑎𝑚𝑖𝑛  𝛿𝑎𝑚𝑎𝑥  𝑝𝑚𝑖𝑛 (°/𝑠) 𝑝𝑚𝑎𝑥 (°/𝑠) 𝑝𝑚𝑖𝑛 (°/𝑠) 𝑝𝑚𝑎𝑥 (°/𝑠) 

Nominal 1 1 -219.00 219.00 -212.12 225.39 

0° Lock 0.50 0.50 -109.50 109.50 -112.20 120.77 

2° Lock 0.42 0.58 -91.98 127.02 -93.03 134.48 

4° Lock 0.33 0.67 -72.27 146.73 -73.90 161.05 

6° Lock 0.25 0.75 -54.75 164.25 -52.73 172.31 

8° Lock 0.17 0.83 -37.23 181.77 -33.76 188.26 

10° Lock 0.08 0.92 -17.52 201.48 -16.07 207.76 

50% Missing 0.75 0.75 -164.25 164.25 -158.68 166.44 

100% Missing 0.50 0.50 -109.50 109.50 -106.31 119.06 

 

Table 49: Theoretical Limits on Roll Rate for Right Aileron Faults 

Experimental Roll Rate Limits for Right Aileron Failures 

Fault 
Calculated Values Simulated Values 

𝛿𝑎𝑚𝑖𝑛  𝛿𝑎𝑚𝑎𝑥  𝑝𝑚𝑖𝑛 (°/𝑠) 𝑝𝑚𝑎𝑥 (°/𝑠) 𝑝𝑚𝑖𝑛 (°/𝑠) 𝑝𝑚𝑎𝑥 (°/𝑠) 

Nominal 1 1 -219.00 219.00 -212.12 225.39 

0° Lock 0.5 0.5 -109.50 109.50 -110.74 111.01 

2° Lock 0.58 0.42 -127.02 91.98 -132.71 96.05 

4° Lock 0.67 0.33 -146.73 72.27 -150.88 75.83 

6° Lock 0.75 0.25 -164.25 54.75 -169.06 56.58 

8° Lock 0.83 0.17 -181.77 37.23 -189.25 38.81 

10° Lock 0.92 0.08 -201.48 17.52 -205.25 18.79 

50% Missing 0.75 0.75 -164.25 164.25 -169.99 169.64 

100% Missing 0.5 0.5 -109.50 109.50 -113.95 114.17 

 

 Where the results show that the limits obtained from the use of the equivalent deflections 

match very closely those which were obtained by simulation both for the left side and right side 

aileron faults, where the maximum percentage error is around 12% but most cases vary between 

0.5% and 5% error. The relatively low error between the two approaches supports the validity of 

the theoretical approach in determination of the new limits on roll rate. These results can then be 

compared to the reduction in the self using the effective deflection calculation, which are shown 

in Table 50 for the left side and in Table 51 for the right side aileron faults. 
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Table 50: Estimation of Roll Rate Reduction for Left Aileron Faults Using AIS 

Roll Rate Limits for Left Aileron Faults 

Fault Reachable Self Partitions 𝑝𝑚𝑖𝑛 (°/𝑠) 𝑝𝑚𝑎𝑥 (°/𝑠) 

Nominal 81890 -45.03 46.65 

0° Lock 81890 -45.03 46.65 

2° Lock 81890 -45.03 46.65 

4° Lock 81613 -45.03 46.65 

6° Lock 75306 -37.39 46.65 

8° Lock 67298 -25.93 46.65 

10° Lock 59657 -18.29 46.65 

50% Missing 81890 -45.03 46.65 

100% Missing 81890 -45.03 46.65 

 

Table 51: Estimation of Roll Rate Reduction for Right Aileron Faults Using AIS 

Roll Rate Limits for Right Aileron Faults 

Fault Reachable Self Partitions 𝑝𝑚𝑖𝑛 (°/𝑠) 𝑝𝑚𝑎𝑥 (°/𝑠) 

Nominal 81890 -45.03 46.65 

0° Lock 81890 -45.03 46.65 

2° Lock 81890 -45.03 46.65 

4° Lock 81651 -45.03 46.65 

6° Lock 75620 -45.03 39.01 

8° Lock 67791 -45.03 27.55 

10° Lock 60181 -45.03 23.73 

50% Missing 81890 -45.03 46.65 

100% Missing 81890 -45.03 46.65 

 

 The results from the reduction of the self show a similar pattern. The maximum and 

minimum within the AIS are not the same as the nominal limits, so no reduction is seen for the 

lower severity faults, which matches expectations. The reduction from the AIS does start to 

appear earlier than the calculated values would suggest, as the calculated values for the faults 

would limit the values within the AIS starting at 8 degree locks while the AIS shows significant 

reduction at a 6 degree lock, however the limits are still similar to what was predicted for both 

left side and right side aileron failures. The small scale discrepancy can likely be explained by 

the effect of the rudder, as the experimental manned flight used aileron-only maneuvers which 

are not present within the AIS construction data. It is worth noting that the predictions within the 

AIS are based on using the new limit on available roll rate partitions and converting this partition 

value back to the real-world value for roll rate. As a result, faults which produce the same 

partition limits on roll rate will produce an identical predicted limit on roll rate which is unlikely 

to match the actual effect. The effect that this will have is based on the resolution of the AIS, 
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where for the roll rate, the resolution is 3.82 degrees per second, so if the real difference in roll 

rate between two cases is less than that value, the output from the AIS may be identical between 

the two cases. This issue will be present in all predictions made by the AIS and is not exclusive 

to the roll rate/aileron prediction. 

 Another noteworthy feature of these data is how well the dynamics of the aileron match 

the assumptions and methods of the indirect quantitative evaluation step. Firstly, the relationship 

between the aileron deflection and the roll rate is very linear, matching the assumption of the 

effective deflection-based approach. Additionally, the response of the roll channel is very fast, 

that is there is a minimal dynamic delay between the input on the ailerons and the reached roll 

rate. These two effects result in a very predictable pattern as shown in the projection in Figure 

95, where an overall linear relationship between the two is present in the manned flight data, 

effective deflection calculation, and finally the projection within the AIS. 

 

 
Figure 95: Left Aileron Deflection/Roll Rate Projection 

 

6.3.3.3: Indirect Quantitative Evaluation Elevator Results 

 The results for the reduction on pitch rate for the left and right side elevator faults were 

more involved than those from the aileron cases. Initially, the relationship between pitch rate and 
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elevator deflection did not present a linear relationship which differed from the aileron case. This 

can be seen in the projection for the left elevator deflection versus pitch rate shown in Figure 96. 

 

 
Figure 96: Left Elevator/Pitch Rate Projection 

 

 Where the projection shows that the maximum pitch rate does not correspond to the 

maximum elevator deflection due to the delay in dynamic response of the system. While the 

control surface very quickly is moved to the commanded deflection, the UAV does not instantly 

reach the pitch rate which corresponds to that deflection. Additionally, the input from the 

elevators changes quickly in time when beginning to pitch up or down as shown in Figure 97. It 

is, however, reasonable to assume that the maximum and minimum pitch rates are only 

achievable due to the higher elevator deflection. To validate this, a single trajectory was analyzed 

comparing the pitch rate and elevator deflection, where a delay between the pitch rate and 

elevator deflection was found, as shown in Figure 97. 
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Figure 97: Delay in Dynamics on Pitch Channel 

 

 Where the delay between the input of the command and the maximum angular rate is 

about 0.06 seconds. Using this delay, the data were shifted such that the minimum value for pitch 

rate corresponded with the maximum value for elevator deflection. While this delay adjusted AIS 

generated much better results than using the standard AIS, an approach based on what was 

already within the AIS was to sort the left elevator versus pitch rate projection such that the 

maximum pitch rate corresponded to the minimum elevator deflection and vice versa. As a 

result, a new amplitude sorted projection was made, which is shown in Figure 98. 
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Figure 98: Left Elevator/Pitch Rate Projection (sorted) 

 

 Where the results obtained from the sorted projection were compared to the values from 

the time delayed projection. The results from the sorted projection for left and right side elevator 

faults are shown in Tables 52 and 53, while the results from the time delayed projections for left 

and right side elevator faults are shown in Tables 54 and 55. 

 

Table 52: Results from Sorted Left Elevator Projection 

Left Elevator (sorted) 
Effective Deflection 

Calculation 
Simulated Values 

Fault 𝑞𝑚𝑖𝑛 (°/𝑠) 𝑞𝑚𝑎𝑥 (°/𝑠) 𝑞𝑚𝑖𝑛 (°/𝑠) 𝑞𝑚𝑎𝑥 (°/𝑠) 𝑞𝑚𝑖𝑛 (°/𝑠) 𝑞𝑚𝑎𝑥 (°/𝑠) 

Nominal -50.95 44.14 -72.88 70.43 -72.88 70.43 

0° Lock -42.30 31.17 -36.44 35.22 -31.99 33.44 

2° Lock -46.62 31.17 -41.30 30.52 -36.78 31.01 

4° Lock -46.62 26.85 -46.16 25.82 -41.81 27.73 

6° Lock -46.62 22.53 -51.02 21.13 -46.28 24.76 

8° Lock -50.95 18.20 -55.87 16.43 -52.71 22.86 

10° Lock -50.95 9.56 -60.73 11.74 -57.49 21.27 

50% Missing -42.30 44.14 -54.66 52.82 -50.5 43.76 

100% 

Missing 
-25.01 44.14 -36.44 35.22 -27.76 29.43 
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Table 53: Results from Sorted Right Elevator Projection 

Right Elevator (sorted) 
Effective Deflection 

Calculation 
Simulated Values 

Fault 𝑞𝑚𝑖𝑛 (°/𝑠) 𝑞𝑚𝑎𝑥 (°/𝑠) 𝑞𝑚𝑖𝑛 (°/𝑠) 𝑞𝑚𝑎𝑥 (°/𝑠) 𝑞𝑚𝑖𝑛 (°/𝑠) 𝑞𝑚𝑎𝑥 (°/𝑠) 

Nominal -50.95 44.14 -72.88 70.43 -72.88 70.43 

0° Lock -42.30 31.17 -36.44 35.22 -32.06 38.37 

2° Lock -46.62 31.17 -41.30 30.52 -36.71 33.15 

4° Lock -46.62 26.85 -46.16 25.82 -41.71 26.75 

6° Lock -46.62 22.53 -51.02 21.13 -47.18 24.85 

8° Lock -50.95 18.20 -55.87 16.43 -52.71 21.68 

10° Lock -50.95 9.56 -60.73 11.42 -58.25 19.07 

50% Missing -42.30 44.14 -54.66 52.82 -50.37 43.26 

100% 

Missing 
-25.01 44.14 -36.44 35.22 -27.73 28.97 

 

Table 54: Results from Time Delayed Left Elevator Projection 

Left Elevator (time delayed) 
Effective Deflection 

Calculation 
Simulated Values 

Fault 𝑞𝑚𝑖𝑛 (°/𝑠) 𝑞𝑚𝑎𝑥 (°/𝑠) 𝑞𝑚𝑖𝑛 (°/𝑠) 𝑞𝑚𝑎𝑥 (°/𝑠) 𝑞𝑚𝑖𝑛 (°/𝑠) 𝑞𝑚𝑎𝑥 (°/𝑠) 

Nominal -50.95 44.14 -72.88 70.43 -72.88 70.43 

0° Lock -42.30 35.49 -36.44 35.22 -31.99 33.44 

2° Lock -46.62 35.41 -41.30 30.52 -36.78 31.01 

4° Lock -46.62 31.17 -46.16 25.82 -41.81 27.73 

6° Lock -46.62 26.85 -51.02 21.13 -46.28 24.76 

8° Lock -50.95 22.53 -55.87 16.43 -52.71 22.86 

10° Lock -50.95 18.20 -60.73 11.74 -57.49 21.27 

50% Missing -42.30 39.81 -54.66 52.82 -50.5 43.76 

100% 

Missing 
-25.01 39.81 -36.44 35.22 -27.76 29.43 
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Table 55: Results from Time Delayed Right Elevator Projection 

Right Elevator (time delayed) 
Effective Deflection 

Calculation 
Simulated Values 

Fault 𝑞𝑚𝑖𝑛 (°/𝑠) 𝑞𝑚𝑎𝑥 (°/𝑠) 𝑞𝑚𝑖𝑛 (°/𝑠) 𝑞𝑚𝑎𝑥 (°/𝑠) 𝑞𝑚𝑖𝑛 (°/𝑠) 𝑞𝑚𝑎𝑥 (°/𝑠) 

Nominal -50.95 44.14 -72.88 70.43 -72.88 70.43 

0° Lock -42.30 35.49 -36.44 35.22 -32.06 38.37 

2° Lock -46.62 35.49 -41.30 30.52 -36.71 33.15 

4° Lock -46.62 31.17 -46.16 25.82 -41.71 26.75 

6° Lock -46.62 26.85 -51.02 21.13 -47.18 24.85 

8° Lock -50.95 22.53 -55.87 16.43 -52.71 21.68 

10° Lock -50.95 18.20 -60.73 11.42 -58.25 19.07 

50% Missing -42.30 39.81 -54.66 52.82 -50.37 43.26 

100% 

Missing 
-25.01 39.81 -36.44 35.22 -27.73 28.97 

 

 The first critical element of the results is that the limits on pitch rate predicted from the 

reduction on the self are identical for both left side and right side elevator faults. This is due to, 

under nominal conditions, complete symmetry of the inputs. Due to the two elevators being 

deflected to the same position at all times, the projection between either elevator deflection and 

pitch rate are identical and therefore produce the same outcome for pitch rate reduction. Another 

noteworthy point is that the minimum and maximum pitch rates for the calculation and from the 

simulation are identical. For the aileron and rudder cases, the simulated results are slightly 

different for the maximum and minimum, though theoretically they should be symmetric. 

Therefore, for the aileron cases, the average between the simulated values was used for the 

effective deflection calculation. For the elevator cases, however, the trim condition is at -1 

degree rather than zero, so the maximum and minimum should theoretically not be symmetric, so 

the raw simulated values are used for the calculation as well. 

 The results themselves from each case match very closely, making the case for the 

validity of simply sorting the data which are already within the AIS. The similarity between the 

results for approach factoring for time delay and sorting the projection shows that the sorting 

provides some degree of accounting for the time delay in dynamics and could be useful if no 

features within the AIS can capture this delay. Errors between the simulated values and the 

values from the effective deflection calculation were generally low, varying from about 5% to 

15%, where values which were higher than expected simulated values were present for the 

higher severity faults, though the errors are within reason considering the difference in 

considered dynamics between the two cases, which shows reliable performance from the 

effective deflection calculation. The difference in results could also be partially attributed to the 

nonlinear nature of the relationship between elevator deflection and pitch rate, as the farther the 



158 

 

elevator is deflected the less valid the assumption of linearity becomes. When comparing the 

values from the reduction of the AIS, the errors between the AIS prediction and the calculated 

values ranged from about 0.5% to 25% error, and the errors between the AIS prediction and the 

simulated values ranged from about 0.5% to 20% error. Some higher severity cases had higher 

than expected error percentages, as the real values for the available pitch rate began to approach 

zero, though all results agree within an acceptable degree of error which can be attributed to the 

difference in considered dynamics between the approaches. 

 

6.3.3.4: Indirect Quantiative Evaluation Rudder Results 

 The results obtained for the reduction in available yaw rates obtained through simulation 

and those obtained with the effective deflection calculation are shown in Table 56. 

 

Table 56: Results for Theoretical Limits on Yaw Rate for Left Rudder Faults 

Experimental Yaw Rate Limits for Left Rudder Failures 

Fault 
Calculated Values Simulated Values 

𝛿𝑟𝑚𝑖𝑛 𝛿𝑟𝑚𝑎𝑥 𝑟𝑚𝑖𝑛 (°/𝑠) 𝑟𝑚𝑎𝑥 (°/𝑠) 𝑟𝑚𝑖𝑛 (°/𝑠) 𝑟𝑚𝑎𝑥 (°/𝑠) 

Nominal 1 1 -26.60 25.80 -26.60 25.80 

0° Lock 0.50 0.5 -13.30 12.90 -13.35 13.35 

2° Lock 0.60 0.40 -15.88 10.40 -15.26 11.31 

4° Lock 0.69 0.31 -18.47 7.89 -17.52 9.36 

6° Lock 0.79 0.21 -21.05 5.39 -21.49 7.33 

8° Lock 0.89 0.11 -23.63 2.88 -21.81 5.64 

10° Lock 0.99 0.01 -26.21 0.38 -22.63 3.79 

50% Missing 0.75 0.75 -19.95 19.35 -21.28 21.2 

100% 

Missing 
0.50 0.50 -13.30 12.90 -15.17 15.12 

 

 The data presented in Table 56 show that, for the lower severity faults, the results 

between the two approaches match very closely, whereas the error grows as the severity of the 

AC grows. This is due partially to the dynamics which are introduced due to the injection of the 

AC. While the undesired rolling motion in the case of elevator faults could be counteracted by a 

supplementary aileron deflection, the higher severity faults on the rudder affected all three 

channels, which would result in substantial interference from the dynamic state of the aircraft. 

Consequently, the method for data collection occurred quickly after the AC was injected, so the 

Dutch-roll type dynamic mode introduced by the injection of the AC has not completely 

dissipated. This reaction combined with the control input to generate additional yaw and roll 

rates, which is why the maximum yaw rates in the simulation tended to be higher while the 

minimum values tended to be lower than expected for the higher severity faults. The error here 
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again is within expectations showing the effective deflection calculations with rudder faults can 

be used to effectively predict the limitations on yaw rate. 

 These results were then compared to the reduction of the self using the effective 

deflection calculation, where the results are shown in Table 57. 

 

Table 57: Limits on Yaw Rate within the AIS for Left Rudder Faults 

AIS Limits on Yaw Rate for Left Rudder Faults 

Fault Reachable Self Partitions 𝑟𝑚𝑖𝑛 (°/𝑠) 𝑟𝑚𝑎𝑥 (°/𝑠) 

Nominal 81890 -13.10 13.58 

0° Lock 81890 -13.10 13.58 

2° Lock 81890 -13.10 13.58 

4° Lock 81890 -13.10 13.58 

6° Lock 81890 -13.10 13.58 

8° Lock 81890 -13.10 13.58 

10° Lock 61577 -13.10 13.58 

50% Missing 81890 -13.10 13.58 

100% Missing 81890 -13.10 13.58 

 

 The data show that, as expected, the reduction in the self does not occur until the fault 

becomes very severe. It is also worth noting that, despite the presence of a reduction of the self 

for the 10 degree lock case, there is no reduction in the maximum or minimum reachable yaw 

rates. This is caused mainly due to the lack of use and therefore lack of impact that the rudder 

deflection has on the yaw angular rate. Within the construction data, the rudder deflection varied 

only between about −0.6 to 0.6 degrees, which has a minimal impact on the overall dynamics of 

the aircraft. Therefore, during the maneuvers which were using the rudders, the ailerons were the 

control surfaces affecting the angular rates the most, so the maximum and minimum rudder 

deflections do not correspond to the maximum and minimum yaw rates, a similar case to what 

happened with the elevators. However, in this case, it does not make sense to assert that the 

maximum and minimum roll rates correspond to the minimum and maximum rudder deflections, 

as the ailerons are the control surfaces which are having the most impact in the construction data. 

Due to these factors, it is not possible to determine the effect that the rudder faults will have on 

control authority within this AIS, though adjustments could be made to the AIS itself to allow for 

some meaningful analysis to be made. 

 One such approach would be to modify the control laws in a way which makes the rudder 

more involved in maneuvers. As noted previously, due to the lack of rudder involvement, to get 

any reduction of the self very strict limits must be placed on the saturation limits for the rudder. 

To see the effect that ACs affecting the rudder has, including maneuvers which use the rudder 

more reliably, like for the aileron and elevator faults, would be more helpful in determining the 

effect that rudder faults have. Another potential approach could be to include a feature within the 
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AIS which captures the overall control effort which is being exerted where, for example, if an 

AC locks the left rudder at 15 degrees and the control laws move the right rudder to -15 degrees 

to counteract it, the “control effort” made here to fly straight and level would be much higher. 

 

6.3.3.5: Indirect Quantiative Evaluation Yaw Rate Reduction 

 While looking directly at the data for the corresponding control surface for roll and pitch 

rate are fairly consistent between all three cases, using the effective deflection of the rudder and 

the rudder/yaw rate projection generates very poor results with a lack of consistency between the 

higher severity faults and the predicted reduction from the AIS. While an accurate prediction in 

yaw rate loss cannot be determined using the effective deflection of the rudder within this AIS, 

the limitation itself is unique to this AIS and not the artificial immunity paradigm in general. 

While the roll rate and pitch rate are clearly determined mostly due to the input on the ailerons, 

as the rudder is rarely used, and the elevator, yaw rate is determined mostly by another variable, 

the bank angle, in the case of coordinated turns as used by the flight control laws. The two main 

control surfaces which impact the bank angle are the aileron deflection and rudder deflection, 

which consequently do not affect the yaw rate in a linear or predictable way. During nominal 

flight, a consistent yaw rate was achieved regardless of either the aileron or rudder instantaneous 

deflection, and the projections between the aileron and rudder versus yaw rate, shown in Figures 

99 and 100, show the lack of a consistent relationship between either control surface deflection 

and yaw rate. 
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Figure 99: Projection Between Yaw Rate and Left Aileron Deflection 
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Figure 100: Projection Between Yaw Rate and Left Rudder Deflection 

 

 This lack of direct relationship is because the yaw rate largely does not depend on the 

deflection of either control surface at that particular instant. The yaw rate is based on the bank 

angle of the aircraft where, for the other two control surfaces, the angular rate was directly 

determined by the control surface. As the bank angle is roughly the integral of the roll rate, a 

non-zero bank angle can be achieved by putting an input onto the ailerons, banking the aircraft, 

and returning the ailerons to trim, creating a state where that bank angle is achieved with no 

input from the control surfaces, as is the case with the coordinated turns within the AIS 

construction data. As a result, we get the relationships shown in Figures 99 and 100, which are 

roughly squares in shape, reflecting the lack of a direct relationship between the two. 

Conversely, the projection between the yaw rate and the Euler angle 𝜙 can be seen in Figure 101. 
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Figure 101: Yaw Rate Versus 𝝓 Projection 

 

 Where the projection shows a much more linear, predictable relationship between the 

two. The main challenge then becomes to use the injected AC to determine a limit on the 

obtainable bank angle, as the effect that the AC has on the bank angle can then be used to 

determine a limit on the available yaw rates. The relationship between the angular rates of the 

aircraft and the rate of change of the bank angle �̇� can be calculated by: 

 

 �̇� = 𝑝 + (𝑞 sin(𝜙) + 𝑟 cos(𝜙)) tan(𝜃) (6-1) 

 

Where an issue immediately becomes apparent that there is no theoretical limit on the obtainable 

bank angle. By equation 6-1, as long as some roll rate can be acquired during straight and level 

flight, a constant rate of change of bank angle will be generated, and there will be consequently 

no limit on an obtainable bank angle, as long as the roll rate is maintained for some period of 

time. This roll rate will theoretically be able to be acquired if some differential input between the 

ailerons is achievable during straight and level flight, which can be reached for any considered 

AC. If a control surface was locked at a saturation condition, it is possible that some real 

limitation on the bank angle could be found, as if the ailerons cannot produce a roll rate in a 
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particular direction, the aircraft would be unable to bank in that direction, but an AC of this 

magnitude was not considered in this effort. 

 Results obtained via simulation follow these claims. While, within the AIS, the nominal 

conditions for 𝜙 only cover around a ±40° bank angle, where the coordinated turns within the 

flight control laws use a commanded constant 15°, 20°, or 25° bank angle. Figure 102 shows 

simulated manned flight under nominal conditions where the aileron input is saturated at ±12° to 

induce a maximum roll rate, where the input is applied for the first 5 seconds of flight. 

 

 
Figure 102: Euler Angles with Saturated Aileron Input 
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Where it can be seen that, after 5 seconds of input, the aircraft is able to complete two 360 

degree rotations, implying that there is no limit to how far the aircraft could bank, despite 

interference from yaw and pitch rates which could be adjusted for. However, if the saturation 

conditions for the ailerons is moved to ±0.1°, after 50 seconds of input, the Euler angles shown 

in Figure 103 are obtained. 

 

 
Figure 103: Euler Angles with Low Aileron Input 
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Where it can again be seen that the bank angle continues to grow throughout the maneuver, 

despite the pitch and yaw rates which could again be accommodated for via pilot input. 

Therefore, a different metric than a raw maximum or minimum bank angle must be considered, 

as there is no theoretical limit to either except for very specific ACs. 

 A metric to determine an “effective” maximum and minimum bank angle is the time 

required to get to a specific bank angle. In the nominal case shown in Figure 102, the rate at 

which the bank angle changes is very quick, showing that the aircraft is responsive to the input 

and could attain any bank angle within ±180°in about 1 second. Conversely, when the saturation 

condition was shifted to simulate a condition where very little control over the total aileron input 

is present, the rate at which the bank angle grows is substantially smaller, where in the first 

second of flight only about a 1.5 degree bank angle is achieved. During actual flight conditions, 

it is important that the aircraft can reach a commanded bank angle in a relatively timely fashion 

as, intuitively, it is not reasonable to claim that a high-performance aircraft can still controllably 

reach a certain bank angle if it requires a long time of a constant input, as, during the time it 

takes to reach the bank angle to make the desired coordinated turn, tracking error will start to 

grow. This would then theoretically require a larger bank angle turn to get back to the 

commanded trajectory, where the same problem will occur. Depending on the bank angle of the 

turn and the severity of the AC, the tracking error could potentially grow to the point where it 

could pose significant problems both to the completion of the trajectory and to the performance 

of the baseline flight control laws. Therefore, a limit on the available bank angle can be implied 

by enforcing a time limit to reach the desired bank angle. This time limit will be based on how 

long the aircraft takes to reach the “desired” maximum and minimum bank angle within the AIS 

(±40°), where a new maximum and minimum for a particular AC can be assumed by providing 

the same 0.8 seconds to get to each state. Conversely, a limit on the available bank angles could 

be calculated from the effective deflection value, which assumes a linear relationship between 

the magnitude of the AC and the rate of change of the bank angle. 

 The first case determined the reduction in control authority by using the time required 

nominally to get to the maximum bank angle within the AIS, then allowing this time for each AC 

and using the bank angle at this time as the maximum and using the reduction in bank angle to 

estimate the reduction in yaw rate. Nominally, at the saturation case for ailerons, the aircraft took 

0.8 seconds to reach the ±40° maximum and minimum within the AIS when starting at straight 

and level flight. Then, each considered AC was injected and manned flight was used to get the 

aircraft flying straight and level. Finally, the input was saturated in each direction and a 

minimum and maximum bank angle were found after 0.8 seconds. These results were also 

compared to a minimum and maximum yaw rate which were obtained via manned flight in 

simulation. These limits were determined in a similar way, where the inputs to the ailerons were 

saturated under nominal conditions and the time to achieve the maximum yaw rate was found, 
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which was determined to be around 1.3 seconds. After, each AC case was given that same 

duration of time, under manned flight, to achieve an experimental maximum and minimum yaw 

rate starting from straight and level flight. The results for this case are shown in Table 58 for left 

aileron faults. 

 

Table 58: Yaw Rate Limits for Left Aileron Faults 

Experimental Yaw Rate Limits for Left Aileron Failures 

Fault 
Calculated Values Simulated Values 

𝛿𝑎𝑚𝑖𝑛  𝛿𝑎𝑚𝑎𝑥  𝜙(°) 𝜙(°) 𝑟𝑚𝑖𝑛 (°/𝑠) 𝑟𝑚𝑎𝑥 (°/𝑠) 𝑟𝑚𝑖𝑛 (°/𝑠) 𝑟𝑚𝑎𝑥 (°/𝑠) 

Nominal 1 1 -40 40 -19.9 19.85 -19.9 19.85 

0° Lock 0.5 0.5 -19.16 19.49 -9.95 9.925 -14.6 14.74 

2° Lock 0.42 0.58 -13.78 16.21 -8.358 11.513 -11.48 12.11 

4° Lock 0.33 0.67 -10.71 14.89 -6.567 13.2995 -10.46 13.78 

6° Lock 0.25 0.75 -10.22 17.9 -4.975 14.8875 -9.46 14.31 

8° Lock 0.17 0.83 -8.36 20.99 -3.383 16.4755 -6.7 18.22 

10° Lock 0.08 0.92 -4.99 25.4 -1.592 18.262 -3.21 18.42 

50% 

Missing 
0.75 0.75 -28.92 28.47 -14.925 14.8875 -18.91 19.02 

100% 

Missing 
0.5 0.5 -19.25 18.93 -9.95 9.925 -14.63 15.07 

 

 The data in Table 58 show that the determined limits on bank angle do not match 

expectations, as the maximum bank angle does not continually increase with severity of left 

aileron AC. This is likely due to the time delay with the input. When getting the aircraft to 

straight and level flight, the right aileron has to be deflected to approximately the same positive 

deflection of the left aileron. Then, as the aircraft only has 0.8 seconds to move the control 

surface, the right aileron does not have time to move from the current location to the negative 

saturation case. A similar phenomenon is present in the simulated values for the maximum yaw 

rate. The comparison between the calculated and simulated values shows decent matching, 

however the simulated values are larger for almost every considered AC, which is likely due to 

the non-linear variation of yaw rate in time. The results for using these bank angles as limits in 

the projection in the AIS are shown in Table 59. 
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Table 59: Predicted Yaw Rate Reduction from AIS 

Yaw Rate Reduction 

Fault 𝑟𝑚𝑖𝑛 (°/𝑠) 𝑟𝑚𝑎𝑥 (°/𝑠) 

Nominal -13.1038 13.5754 

0° Lock -8.6573 11.3521 

2° Lock -8.6573 9.1289 

4° Lock -8.6573 9.1289 

6° Lock -8.6573 9.1289 

8° Lock -8.6573 11.3521 

10° Lock -7.5456 13.5754 

50% Missing -9.7689 13.5754 

100% Missing -6.434 9.1289 

 

 The results presented in Table 59 show a pattern that matches the expectations given the 

reductions in bank angle obtained from manned flight. The estimates from the AIS do, however, 

vary in a somewhat significant way from the experimental and calculated results, with an error 

maximizing at about 5 degrees per second. Some of this error can be attributed to the resolution 

of the AIS, where each partition for yaw rate is 1.11 degrees per second wide, which could 

contribute up to 20% of the maximum error. 

 The second proposed approach uses the effective deflection calculation itself to 

determine an experimental “equivalent” bank angle which could be reached in the same 0.8 

second interval. This approach takes the maximum and minimum bank angles within the AIS 

and uses the values for the effective deflections for each AC to calculate a range of effective 

bank angles which can be used within the AIS to determine limits on yaw rate. The results for 

the reduction in bank angle are shown in Table 60, while Table 61 shows the estimated reduction 

in yaw rate from the AIS. 
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Table 60: Yaw Rate Limits for Left Aileron Faults 

Experimental Yaw Rate Limits for Left Aileron Failures 

Fault 
Calculated Values Simulated Values 

𝛿𝑎𝑚𝑖𝑛 𝛿𝑎𝑚𝑎𝑥  𝜙(°) 𝜙(°) 𝑟𝑚𝑖𝑛 (°/𝑠) 𝑟𝑚𝑎𝑥 (°/𝑠) 𝑟𝑚𝑖𝑛 (°/𝑠) 𝑟𝑚𝑎𝑥 (°/𝑠) 

Nominal 1 1 -36.9658 37.03 -19.9 19.85 -19.9 19.85 

0° Lock 0.5 0.5 -18.4829 18.518 -9.95 9.925 -14.6 14.74 

2° Lock 0.42 0.58 -15.5256 21.4815 -8.358 11.513 -11.48 12.11 

4° Lock 0.33 0.67 -12.1987 24.81 -6.567 13.2995 -10.46 13.78 

6° Lock 0.25 0.75 -9.24145 27.77 -4.975 14.8875 -9.46 14.31 

8° Lock 0.17 0.83 -6.2841 30.740 -3.383 16.4755 -6.7 18.22 

10° Lock 0.08 0.92 -2.9572 34.074 -1.592 18.262 -3.21 18.42 

50% 

Missing 
0.75 0.75 -27.724 27.77 -14.925 14.8875 -18.91 19.02 

100% 

Missing 
0.5 0.5 -18.4829 18.5186 -9.95 9.925 -14.63 15.07 

 

Table 61: Predicted Yaw Rate Reduction from AIS 

Yaw Rate Reduction 

Fault 𝑟𝑚𝑖𝑛 (°/𝑠) 𝑟𝑚𝑎𝑥 (°/𝑠) 

Nominal -13.1038 13.5754 

0° Lock -8.6573 9.1289 

2° Lock -8.6573 11.3521 

4° Lock -8.6573 11.3521 

6° Lock -8.6573 13.5754 

8° Lock -8.6573 13.5754 

10° Lock -7.5456 13.5754 

50% Missing -9.7689 13.5754 

100% Missing -6.434 9.1289 

 

 The results from Table 61 match the pattern in bank angle obtained from the calculation. 

The values for the reduction also match fairly closely the results from both the calculation and 

simulation, but also tends to underestimate the effects that the AC will have, similarly to the first 

case. 

 

6.3.3.6: Bank Angle Reduction as Time Delay Penalty 

 Without a very severe AC present, the equations of motion of the aircraft indicate that 

any potential bank angle may be achievable, as long as the AC is not so severe that no roll rate 

can be generated. While the above approaches set out to assume a reduction on available bank 

angles based on a lack of control authority, that is the range of available bank angles will be 

reduced due to the time it takes to get to those higher bank angles, another potential approach is, 
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rather than enforcing a reduction in available bank angles, to track the additional time it takes to 

settle down at a commanded bank angle with the AC injected rather than under nominal 

conditions. 

 While this approach more intuitively and directly captures the effect that the AC will 

have on bank angle and yaw rate control, directly using the time delay currently is not usable 

within the AIS. Presently, the AIS does not have the features necessary to perform this estimate. 

While the AIS contains features which are time dependent, an additional feature or derivative 

would be necessary to directly quantify the delay. Despite the inability for the generated AIS to 

estimate this delay, an immune system could be constructed with more features based on time to 

capture the delay. However, the efficacy of approaching the reduction in yaw rate and bank angle 

by looking at the time delay can be assessed, also an approach for estimating this delay using the 

effective deflection calculation can be applied and evaluated. 

 To determine this effect, a single 2-dimensional and 3-dimensional trajectory were 

selected and each version of the trajectories with 15, 20, and 25 degree bank angles were 

analyzed. During these trajectories, a turn was performed in both directions, and the 1% settling 

time of the bank angle was found. These times would then be compared to capture the delay in 

reaching the bank angle which should be present when an AC is affecting the aircraft. In addition 

to the effect on the time to reach the steady state bank angle, the error between the steady state 

and the commanded bank angle were analyzed. While the results for the ACs considered 

throughout the logical schemes are present, another case, a positive 13 degree left aileron lock, is 

also analyzed due to its significance in illustrating the effect that the increasing aileron AC 

severity has on the bank angle. 

 The analysis of the data will be broken down into two different cases. The first case will 

be where the AC facilitates the turn. This means that the turn will be commanded such that the 

commanded bank angle would require the left aileron to be deflected positively (downward), 

which is the same direction of the AC. The results for the time delay are shown in Table 62, 

where the results for the steady state values are shown in Table 63. 
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Table 62: Effects on Bank Angle Time Delay for Positive Left Aileron Locks Which Facilitate the Turn 

AC Facilitates Turn 

 
Time Delay 

Trajectory Type and Commanded Bank Angle 

AC 
2D 3D 

15 20 25 15 20 25 

Nominal 7.18 7.00 6.56 7.10 6.92 6.62 

0° Lock 10.02 10.14 10.04 9.92 10.18 10.10 

2° Lock 9.98 9.86 9.86 10.20 9.90 10.76 

4° Lock 9.66 9.74 10.64 9.90 9.78 10.76 

6° Lock 9.70 9.56 10.36 9.66 9.60 10.52 

8° Lock 9.70 9.48 10.32 9.66 9.50 11.44 

10° Lock 9.42 9.40 10.28 9.40 9.34 11.56 

50% Missing 7.20 7.06 6.80 7.14 7.02 6.84 

100% Missing 10.04 10.14 10.08 10.26 10.18 10.14 

13° Lock 9.12 9.42 11.92 9.28 9.46 12.14 

 

Table 63: Effects on Bank Angle Steady State Value for Positive Left Aileron Locks Which Facilitate the Turn 

AC Facilitates Turn 

 
Steady State Bank Angle 

Trajectory Type and Commanded Bank Angle 

AC 
2D 3D 

15 20 25 15 20 25 

Nominal 14.90 19.88 24.81 14.95 19.94 24.92 

0° Lock 14.90 19.88 24.81 14.95 20.00 24.98 

2° Lock 15.18 20.11 25.10 15.30 20.23 25.21 

4° Lock 15.41 20.40 25.32 15.53 20.51 25.44 

6° Lock 15.70 20.63 25.61 15.76 20.74 25.73 

8° Lock 15.99 20.91 25.84 16.04 21.03 25.96 

10° Lock 16.21 21.20 26.07 16.27 21.26 26.24 

50% Missing 14.90 19.88 24.81 14.95 19.94 24.92 

100% Missing 14.90 19.88 24.81 15.01 20.00 24.98 

13° Lock 16.62 21.54 26.48 16.67 21.66 26.59 

 

 The results for the time delay initially seem to defy expectations, where the effect on 

response to the AC seems to be binary, where the AC is either not severe enough to cause an 

effect, as the 50% missing case takes about the same time to bank as the nominal case, while 

every other case takes between 2 and 4 seconds longer. Additionally, neither the bank angle nor 

the dimension of the maneuver have a significant effect on the time delay, where the dimension 

likely should not have a significant effect, but the commanded bank angle could feasibly have an 
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effect. The data, however, do make sense, as for each AC the main feature is the lack of ability to 

control one of the ailerons. During flight under nominal conditions, if a turn is commanded, both 

ailerons are deflected in opposite directions to create a difference in deflection of the two 

ailerons to bank the aircraft. For example, if a turn requires a total of a 10 degree difference in 

aileron deflection, nominally, the two ailerons will move from the straight and level condition of 

0 degrees each to a configuration where one is deflected at +5 degrees and one is deflected to -5 

degrees, so the time to bank will be based on how long it takes to deflect an aileron 5 degrees. 

 However, the situation changes when an AC is present. If the left aileron were locked at 

zero, straight and level flight would be unaffected but, when the turn is commanded, the total 

difference in aileron deflection must still be 10 degrees, so the right aileron must move 10 

degrees to get the desired differential. The most critical element of this, however, is that this 

requirement is constant for all ACs. Even if the left aileron is locked at 13 degrees, this means 

the right aileron must be moved to 13 degrees to fly straight and level. Then, when the turn is 

commanded, the right aileron must move to a positive 3 degree deflection to create the 10 degree 

desired differential, which still only moves one aileron 10 degrees. Therefore, as long as the 

desired difference in deflections is reachable, the delay should be roughly the same for each AC, 

which is the case when the aileron is locked in the direction which facilitates the turn. There are 

some potential reasons for the values to be somewhat different despite this, as higher values for 

deflections are more likely to reach cases where the control is not as linear. 

 The steady state error matches a very intuitive expectation, where the steady state error 

increases with the amplitude of the AC, and the steady state values for each AC are higher than 

the nominal case, which makes sense as the higher positive deflections tend to make the aircraft 

bank in the positive direction. As the considered ACs are not so severe to have major effects on 

the controllability of the aircraft, the steady state error only varies by a few degrees for each 

case, as the trajectory is still tracked with high accuracy despite the presence of the considered 

ACs. 

 The second case for analysis is when the left aileron is locked in a direction which fights 

the turn. In this case, the aircraft will attempt to bank in the negative direction, which nominally 

requires that the left aileron is deflected in the negative direction. The results for the time delay 

for this case are shown in Table 64, where the steady state error is shown in Table 65. 
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Table 64: Effects on Bank Angle Time Delay for Positive Left Aileron Locks Which Fights the Turn 

AC Facilitates Turn 

 
Time Delay 

Trajectory Type and Commanded Bank Angle 

AC 
2D 3D 

15 20 25 15 20 25 

Nominal 7.18 7.00 6.58 7.46 7.12 6.78 

0° Lock 10.04 10.16 10.08 10.24 10.18 10.1 

2° Lock 9.98 10.28 11.34 10.26 10.32 10.38 

4° Lock 10.46 10.70 10.54 10.64 10.64 10.6 

6° Lock 8.88 9.28 9.30 10.66 9.20 10.58 

8° Lock 11.04 9.36 11.26 11.18 9.44 11.46 

10° Lock 9.82 10.02 11.84 11.04 10.12 11.98 

50% Missing 7.18 7.06 6.78 9.22 9.16 9.26 

100% Missing 10.02 10.14 10.08 10.24 10.18 10.12 

13° Lock 10.54 12.80 14.60 12.26 12.86 14.72 

 

Table 65: Effects on Bank Angle Steady State Value for Positive Left Aileron Locks Which Fights the Turn 

AC Facilitates Turn 

 
Steady State Bank Angle 

Trajectory Type and Commanded Bank Angle 

AC 
2D 3D 

15 20 25 15 20 25 

Nominal -14.90 -19.88 -24.81 -15.01 -20.00 -24.98 

0° Lock -14.90 -19.88 -24.81 -15.01 -20.00 -24.98 

2° Lock -14.61 -19.60 -24.58 -14.73 -19.71 -24.75 

4° Lock -14.38 -19.37 -24.35 -14.50 -19.48 -24.52 

6° Lock -14.09 -19.08 -24.12 -14.21 -19.25 -24.29 

8° Lock -13.87 -18.85 -23.89 -13.98 -18.96 -24.06 

10° Lock -13.58 -18.62 -23.66 -13.69 -18.74 -23.84 

50% Missing -14.90 -19.88 -24.81 -15.01 -20.00 -24.98 

100% Missing -14.90 -19.88 -24.81 -15.01 -20.00 -24.98 

13° Lock -13.18 -18.22 -23.32 -13.35 -18.39 -23.49 

 

 The results in Tables 64 and 65 follow the expectations from the previous case. The time 

delay for each case is approximately the same but, for some of the more severe lock cases and 

the higher commanded bank angle there is a significant period of time where the desired 

difference in aileron deflection is not reachable. These cases are the 13 degree lock with a 20 or 

25 degree bank angle, and the 10 degree lock with the 25 degree bank angle. Rather than varying 

between around 9 and 11 seconds, these cases have a time delay of 11.84, 12.80, and 14.60 
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seconds, which are significantly higher than most cases, in particular both when the AC is 

higher, which would impose more severe limits on reachable deflection differences, and when 

the commanded bank angle is higher, which would require larger deflection differences. 

 

6.4: Accommodation Performance 

 The performance of the accommodation algorithm is much more difficult to evaluate by a 

universal type of metric. This is due to the multitude of types of approaches that can and must be 

applied to address accommodation, as well as to the situation the particular accommodation 

approaches will be applied to. The selection of these approaches is based both on the output from 

the evaluation phase, that is the type of failure and the severity of the failure, as well as the main 

purpose or objective of the mission. For example, if following the commanded trajectory very 

closely is of critical concern, then accommodating the AC via control law adjustment as opposed 

to trajectory regeneration or mission adjustment would be more desirable. 

 While the specific approaches for accommodation are highly varied, the general approach 

to accommodation is broken down into the three stages of strategic decision making, tactical 

decision making, and execution. While each stage of the accommodation phase will be addressed 

here, the main step which we will be exploring issues with and solutions to is the tactical 

decision making phase, where the validity of the solution will be based predominately on the 

ability of a proposed tactical decision making module to allow for the safe completion of a 

mission which, without accommodation, would not be able to be completed. 

 

6.4.1: Strategic Decision Making Module 

 To determine what strategic decision making outcome will be selected, the algorithm is 

inherently reliant on some threshold values. Regardless of what features or variables are being 

used to determine the outcome, there must be limits to the values which are being used to select 

these outcomes, whether it is real values from a sensor, outputs from the evaluation phase, or 

some other parameter. A few of these approaches will be highlighted here. 

 When looking at the baseline NLDI control laws, we will find that, as the severity of the 

AC increases, a point will be reached where the UAV can no longer complete the trajectory as 

commanded, and some accommodation would be necessary. However, if the magnitude of the 

AC were to continue to grow, a point would eventually be reached where the UAV could not be 

effectively controlled. For example, the used NLDI control laws limit the aileron deflection to 

±15°, which differs from the physical limits of the ailerons, where these types of limits may 

exist within the design of the flight control laws. Therefore, if an aileron was locked at a 

deflection which was particularly higher than that, the UAV would be rendered inoperable. In 

this case, a limit condition could be applied at 𝛿𝑎𝐿 = 16°, though finding an exact limit here is 

quite complex, as this case should theoretically be based on being unable to be accommodated 
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for, which would require in-depth exploration of every potential accommodation method, a 

problem which will persist when discussing the growth rate of tracking error, where the growth 

rate of the tracking error would again have to be compared to some library of thresholds, where 

again determining optimal thresholds would be challenging. 

 The rate at which tracking error grows could also theoretically be used to determine if 

accommodation is possible. For example, Figures 103 to 105 show the tracking error over the 

first 5 seconds after the injection of a left aileron AC of either 11°, 14°, and17° at 5 seconds, on 

a single trajectory, which are expected to not require accommodation, require accommodation, 

and be unable to be accommodated. 

 

 
Figure 103: Tracking Error on 2D Oval Trajectory with 25 Degree Bank Angle with Left Aileron Locked at 11 

Degrees 
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Figure 104: Tracking Error on 2D Oval Trajectory with 25 Degree Bank Angle with Left Aileron Locked at 14 

Degrees 
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Figure 105: Tracking Error on 2D Oval Trajectory with 25 Degree Bank Angle with Left Aileron Locked at 17 

Degrees 

 

These data show that, in the case of an AC which does not require accommodation, the tracking 

error grows when the AC is injected, but settles fairly quickly. In the case where accommodation 

is required, the tracking error grows higher but still, briefly after the injection of the AC, 

decreases and finally, when accommodation is assumed to be impossible, the tracking error 

continues to grow. These data could be leveraged to determine if an AC is one which could be 

accommodated for, but a detailed analysis of all potential modes of accommodation would be 

necessary to determine which cases, both in terms of tracking error growth and limit conditions, 

would directly correspond to a case in which accommodation is impossible.  

 

6.4.2: Tactical Decision Making Module 

 When addressing the tactical decision making module, a collection of limit conditions 

should be determined where accommodation is necessary or not. However, as the ACs 

considered in construction data did not have a severe enough effect on the UAV to adversely 

affect tracking in a major way, all considered ACs would likely be considered, in the specific 

flight conditions used in construction, as cases where accommodation is not required. 

Consequently, other, higher severity ACs will be considered here. Based on the method of 
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accommodation being analyzed, we will consider aileron faults of either 14 or 18 degrees, where 

accommodation will be both required and possible. Here we will apply the compensatory 

features approach and the alternative control laws approach. 

 

6.4.2.1: Compensatory Features Approach 

 The compensatory features approach seeks to address the accommodation phase by 

adding specific features to the feature space designed mainly to address only the accommodation 

phase without adversely affecting the other stages of the algorithm, though these features could 

potentially and ideally be useful in addressing the other AC-DIE phases. Determining exactly 

what these features should be is complicated and could vary depending on the type of AC which 

is being considered. Previous efforts have been made to address specific types of faults which 

could potentially be added and expanded upon to cover all considered ACs for autonomous 

flight. Some examples of these types of features will be provided, as well as an introductory 

analysis of these features. 

 One previously used feature was pilot compensation for actuator faults [66]. This was 

performed by injecting an AC and recording how a pilot was compensating for the AC. The 

commands from the pilot would then be incorporated within the AIS as compensation features 

such that, when the output from the AC-DIE was finished, the compensatory command can be 

matched with the determined AC. A similar approach could potentially be applied here, but the 

situation is somewhat different when considering unmanned flight. Under the architecture of 

manned flight, the effect of the AC will cause a change in dynamics which will be handled by 

the pilot which can be recorded to accommodate the AC automatically. If the response of the 

automatic control laws was recorded as compensatory commands for addressing the AC, the 

compensation would function in the exact same way as if the baseline control laws were used. 

The approach could potentially be modified to better match a UAV situation, for example an AC 

could be introduced which requires accommodation, that is the baseline control laws will not 

keep the UAV functioning, and a pilot could be introduced to address the AC via manned flight, 

which could then be implemented in the same way as it was for strictly manned flight. 

 Another potentially useable approach is based on ACs which are affecting sensors on 

board an aircraft, where the specific sensor which was explored was the GPS [67]. Here, 

corrections to the dead reckoning sensor feedback were stored from data obtained under nominal 

conditions, and these corrections were stored within the AIS. Then, in GPS out situations, the 

corrections to the sensor feedback can be applied to accommodate for the AC. These correction 

features were used specifically for the accommodation of sensor ACs and, even more 

specifically, GPS sensor ACs, and only in the accommodation phase. The features used were 

differences in the position and velocity in the x, y, and z directions between the GPS feedback 

and the feedback of a mounted three axis IMU. As an introductory look at integrating this type of 
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accommodation, these specific “accommodation features” were included into the AIS feature 

space in the initial generation. However, when used outside of accommodation, the “deltas” 

between the IMU and GPS measurements essentially added 6 random numbers to each time step, 

so an incoming data point with these 6 values included would never match a self partition and 

would report 100% false alarm rates. Therefore, these specific features cannot be directly used 

within the constructed AIS for AC-DIE and would have to be considered separately for 

accommodation. Additionally, errors in GPS feedback were not considered in this effort, and the 

errors affecting the angular rate sensors all had a very mild effect which would not require 

accommodation, though an effort in accommodation was explored. 

 

6.4.2.2: Alternative Control Laws Approaches 

 Another approach which is covered in more detail due to its more general applicability is 

the alternative control laws approach. This approach seeks to accommodate the presence of the 

AC by switching between pre-installed sets of control laws through either adjustment of the 

navigation algorithm, adjustment of the tracking algorithm, or both. Generally, this can be 

described as either a case where the trajectory is redefined, still based on completing a particular 

mission, or the trajectory tracking algorithm, such as switching from control laws based on PID 

control to control laws based on NLDI. These approaches, while here are explored individually, 

could also be applied together to address certain very high severity ACs. 

 The first of these types of approaches is to recalculate the commanded trajectory for the 

UAV. This is based on some limitation on particular dynamic variables obtained from the 

indirect quantitative evaluation phase. In the example case listed, a high severity aileron lock has 

prevented the UAV from effectively reaching a commanded bank angle, where the baseline 

control laws are a position PID based controller and the aileron is locked at 18 degrees. The 

results for the case where no accommodation is made is shown in Figure 106 for the left aileron 

fault and in Figure 107 for the right aileron fault. 
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Figure 106: 2D Oval with 25 Degree Bank Angle Trajectory Tracking with Left Aileron Locked at 18 Degrees 

 

 
Figure 107: 2D Oval with 25 Degree Bank Angle Trajectory Tracking with Right Aileron Locked at 18 Degrees 

 

 Figures 106 and 107 show that, without accommodation, the UAV struggles to a great 

degree to complete the trajectory. Additionally, these data show that even the shape of the 

trajectory is important in selection of the accommodation method, as in the left aileron lock case, 

the UAV struggles with the first turn while during the right aileron lock it struggles with the 

second, but the accumulation of the tracking error from the first turn causes the UAV to 
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completely deviate from the commanded path, where the right aileron lock case does not have 

this huge deviation, though there is still substantial errors in tracking which would likely require 

accommodation. 

 Formulating exactly how the trajectory should be changed, however, is particularly 

challenging for a UAV, as the definition of the mission is critical to how the UAV is going to 

function, and the specifics of the mission here were not completely defined. As a sample case 

here, we will consider two potential missions; one which seeks to mitigate tracking errors as 

much as possible to the entire original trajectory and one which seeks to maintain the straight 

segments with priority. In practice, the new trajectories would need to be regenerated online but, 

for this example case, the trajectories shown in Figure 108 were calculated offline. 

 

 
Figure 108: Accommodated Trajectories Versus Baseline 

 

The main goal of the accommodation trajectories was to fulfill the prescribed missions and 

maintain more predictable and safer flight than the case without accommodation. It is worth 

noting that, while these two trajectories were considered, other trajectories could also be 

generated which would accomplish the mission as well while potentially better accommodating 

the AC. The results for the trajectory tracking when attempting to mitigate tracking error are 

shown in Figure 109 and 110 for the left aileron and right aileron locks respectively. 
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Figure 109: Trajectory Tracking Attempting to Mitigate Tracking Error for Left Aileron Fault 

 

 
Figure 110: Trajectory Tracking Attempting to Mitigate Tracking Error for Right Aileron Fault 

 

The trajectories here show some improvement over the case where accommodation is not 

present, shown visually and by the tracking error shown for the left and right ailerons in Figures 

111 and 112 respectively. 
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Figure 111: Tracking Error when Attempting to Mitigate Tracking Error for Left Aileron Fault 

 

In the case of the high severity AC being on the left aileron, there is still substantial error with 

the tracking, particularly at the end of the trajectory when the tracking error has had time to 

accumulate. However, the aircraft does not completely miss the second half of the trajectory as it 

does with the case where accommodation is not present, where the average tracking error in the 

case without accommodation is 592.93 meters which results in a crash, and it is 95.69 meters 

when the accommodation is made. It is additionally worth noting that the accommodation also 

allows the UAV to complete each turn of the trajectory, while this was not the case when 

accommodation was not present. 
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Figure 112: Tracking Error when Attempting to Mitigate Tracking Error for Right Aileron Fault 

 

When the fault is on the right aileron, the first turn is handled well as expected and, while the 

tracking error is still significant, the new trajectory can be completed more accurately, where the 

average tracking error for the baseline case is 143.31 meters, and the average tracking error for 

the accommodated case is 62.97 meters. The results for the case where the straight segments 

were maintained are shown in Figure 113 and 114 for the left aileron and right aileron locks 

respectively. 
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Figure 113: Trajectory Tracking Attempting to Maintain Straight Segments for Left Aileron Fault 

 

 
Figure 114: Trajectory Tracking Attempting to Maintain Straight Segments for Right Aileron Fault 

 

In these cases, the tracking performance has substantially improved, particularly when 

comparing the left aileron cases, as shown in the trajectories and in the tracking errors for each 

straight section shown in Tables 66 and 67 for the left and right aileron faults respectively. 
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Table 66: Tracking Error During Straight Segments for Left Aileron Fault 

Average Tracking Error (m) 

Straight Section Unaccommodated Accommodated 

1 12.40 12.40 

2 534.06 80.93 

3 1368.21 83.55 

 

Table 67: Tracking Error During Straight Segments for Right Aileron Fault 

Average Tracking Error (m) 

Straight Section Unaccommodated Accommodated 

1 12.40 12.40 

2 21.59 78.49 

3 539.06 77.67 

 

The results show that, in all cases, the initial straight segment is performed with no difficulty for 

each case, which makes sense for aileron faults where no problems have been introduced by 

commanded turns. In the second straight segment, the accommodation for the left aileron case 

greatly increases performance, as the average tracking error decreases by about 85%. This is not 

the case for the right aileron fault, where the accommodation scheme actually increases the 

tracking error. This is because the positive right aileron fault on the left turn actually does not 

require accommodation. On the third straight section, both trajectories have passed through a 

turn which required external accommodation, so the unaccommodated cases both had very high 

tracking error. In the case of the left aileron failure, the average tracking error decreased by about 

94% and by about 86% for the right aileron failure. 

 One major contributor to the increase in performance is attributed to the longer straight 

segments, which serves as a time for the trajectory tracking to eliminate the tracking error which 

is being accumulated. These results show that, even with very good knowledge of the AC and the 

effect that the AC will have on the dynamics of the system, it can still be challenging to create an 

optimal new trajectory both in terms of the features of the trajectory which are present and in 

terms of best optimizing the modified mission. 

 The other approach which is applied is where the trajectory tracking algorithm is 

redefined rather than the trajectory itself. In theory, the trajectory tracking would initially be 

handled by a particular set of control laws where, if the AC was high enough severity on a 

particular subsystem, the control laws would be shifted to a set specifically designed to address 

that particular AC. Development of these specific control laws has its own challenge, while here 

we will use more generic types of control laws which respond to the presence of the AC 

differently. 

 While the goal of the process is complete integration, we must again look at the same 

specific case, where the left aileron is locked at 14 degrees, which was not used to tune the 
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various algorithms of the AC-DIE process. As a result, the outputs from the AC-DIE phases of 

the process may not produce the correct output but are nonetheless important as the control laws 

would not get the command to switch until the AC has been evaluated completely. 

 Here we will look at an example case to show the efficacy of the proposed approach. The 

output from the detection phase matches the expectations set from the construction data where, 

once the AC is high enough severity, it is detected in the minimum number of time steps after the 

injection, which is 0.06 seconds. The identification phase produces the incorrect output, where 

the outcome is determined to be either a left or right side elevator fault, where the uncertainty on 

which side is affected comes from the extreme commands to the control surfaces which occur 

when the NLDI control laws are failing. The output is incorrect as, within the construction data, 

the elevator faults were the highest severity faults so, when the more extreme elevator faults 

were present, extensive triggering of each subsystems’ projections would occur, so high 

triggering of all projections was associated with elevator faults, which is what is happening here. 

Therefore, the correct output of the identification phase is never reached, and an identification 

time is not produced. However, the identification output of a faulted control surface for other 

high severity aileron faults occurs after 1.1 seconds, which gives an idea of about how long it 

would take to identify the faulted control surface in this extreme case, though an improvement on 

this time could be achieved through adjustment of the identification logic. The evaluation phase 

in general is able to produce an output that represents a high severity aileron fault around 10°at 

the first possible time step after identification is complete, however, the amplitude is 

underestimated as the explored ACs were limited to 10°, so the output from the evaluation stage 

was limited to 12°. In total, this means it would take around 1.18 seconds to receive the 

command to switch to the second set of control laws. Here, we will switch from the NLDI 

control laws, which cannot complete the trajectory under the effect of the AC, to the position 

PID based control laws, which are able to complete the trajectory, where the switch will occur 

1.18 seconds after the injection of the AC. The results for the 25° commanded bank angle oval 

are shown in Figures 115 and 116, without and with accommodation respectively. 
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Figure 115: Trajectory Tracking With no Accommodation 

 

 
Figure 116: Trajectory Tracking Switching Control Laws After Predicted AC-DIE Completion 

 

These results show that, without accommodation, the UAV will begin to act erratically, would be 

uncontrollable, would be unable to complete the mission, and potentially dangerous. However, if 

the control laws are switched in a relatively timely fashion, which should be the case for higher 

severity faults which require the accommodation, the UAV is capable of completing the 

trajectory with minimal tracking issues. It is worth noting however that, due to the buildup of 
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tracking error, the time it takes to go through the AC-DIE process and switch the control laws is 

of critical importance. While high severity ACs will likely go through this process quickly, as the 

highest considered aileron faults took around 1.18 seconds as shown above, if the switch is 

delayed in too significant a way the performance of the switch may deteriorate or cause 

additional accommodation to be necessary. To demonstrate this effect, Figures 117 and 118 

show the effect of the control laws being switched after either a 13 second or 15 second delay as 

opposed to the predicted 1.18 second delay. 

 

 
Figure 117: Trajectory Tracking Switching Control Laws After 13 Seconds 
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Figure 118: Trajectory Tracking Switching Control Laws After 15 Seconds 

 

This tracking performance shows that, for some delay, the accumulated tracking error causes 

issues with the accommodation method. After the 13 second delay, the tracking has more 

significant issues initially, but it is able to get back on the trajectory later. However, if this mode 

of accommodation is applied after 15 seconds, the UAV completely deviates from the 

commanded path, indicating that, at this point, some other accommodation would be necessary. 

 

6.4.2.3: Other Methods of Accommodation 

 While these two methods are addressed in the most detail, other methods could be 

developed to address the accommodation step or could be used for accommodation of specific 

ACs. An approach specific to sensor faults is to address the feedback from the sensor directly 

after the AC-DIE has been completed. The output from this will be, in this case, a sensor with a 

certain magnitude of step bias. An example case is shown in Figure 119, where the fault 

considered is a 5 degree per second step bias on the pitch rate sensor, and the plots show the 

vertical tracking error for the first 50 seconds of the 3-dimensional s-turns trajectory with a 

commanded 25 degree bank angle. 
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Figure 119: Tracking Error for 5 Degrees per Second Pitch Rate Sensor Bias 

 

These data show that, despite the minimal effect that angular rate biases have on the tracking 

error, adding the result from the indirect evaluation to adjust the sensor feedback does have an 

effect on the tracking error, where it is substantially reduced by the accommodation method. It is 

worth noting that, for this case, accommodation may be unnecessary, but the approach could be 

applied for different types of sensor faults which are more readily used within the control laws or 

within control laws where the feedback from angular rate sensors is more readily used. 

 In addition to these three approaches, there are some potential other methods which could 

be applied based on the results from the approaches explored here. A direction in which future 

accommodation could be addressed is through using the outcomes from the AC-DIE process 

more directly in determination of what mode of accommodation will be selected. When the 

affected subsystem is determined, the mode of accommodation could also be selected, such as 

adjusting the trajectory tracking control laws if the fault is affecting a control surface or adjusting 

sensor feedback in cases where the sensor is faulted. This could be done while also using 

multiple methods of accommodation to better optimize how the AC is accommodated as well as 

allowing for the process to be more optimized, as it will be pre-determined what method of 

accommodation will be applied for what types of AC and the methods can be developed with this 

in mind. 

 

  



192 

 

6.4.2.4: Specific Accommodation Challenges 

 Throughout the tactical decision making module analysis, several different issues have 

been identified both in terms of the accommodation methods themselves and when they can or 

should be applied. Some of these aspects were easily anticipated, mainly those based on the 

specificity of the accommodation methods based on the AC, while some were not as evident. 

 The first type of issue is related to establishing when accommodation is necessary. While 

the main idea of the tactical decision making would be to have a limit case to determine if 

accommodation is necessary, this limit case would need to be adjusted based on the mission. As 

the example cases showed, if the AC is a high severity right aileron positive lock, a left turn 

theoretically does not need to be accommodated. However, if this left turn has occurred after a 

right turn, the accumulated tracking error would mean that accommodation would be necessary 

at this point. Consequently, it is important, when determining if accommodation is necessary, to 

consider both the AC and the mission. 

 Some accommodation schemes may involve completely changing the control laws. 

Between different sets of control laws, certain variables which are used within the AIS may take 

on different meanings or perhaps be completely unavailable. Depending on how accommodation 

is applied, it may be important that consistency is ensured between definitions and conventions 

used in building the AIS and those within the algorithms in the alternative library. For example, 

between the NLDI and position PID based controllers, the convention for which bank angle is 

positive is flipped, which could potentially cause issues in implementation. Another issue with 

changing the control laws is the duration at which the accommodation occurs. For high severity 

faults, if the AC is not accommodated in a timely fashion, the AC becomes much more difficult 

to accommodate and the previously selected accommodation method may not work anymore. 

This means that the time taken to go through the AC-DIE process is critical to ensuring that the 

determined mode of accommodation will work properly and should potentially be considered in 

the tactical decision making process. 

 Finally, some issues with optimizing the accommodation method are also present. In the 

trajectories commanded here, there was not a particular mission in mind, outside of just to 

complete the trajectory as accurately as possible. In a real-world scenario, the mission of the 

UAV will typically be more specific, such as to go through a series of waypoints, where certain 

methods of accommodation may be more valid than others. The environment can also be 

consequential as, if the area is very wide open, recalculating the trajectory may be possible, but 

may not be as desirable a solution if the area is somewhere with more obstacles. These types of 

unspecified factors can make it very difficult to determine what an optimal mode of 

accommodation would be. For example, if we are adjusting the trajectory for accommodation, 

we need to know what features of the trajectory are most important to keep or, if the trajectory is 

generated from a list of waypoints, which waypoints could be removed or replaced, and which 
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ones cannot. If we are adjusting control laws, for example by modifying a gain, it can again be 

difficult to ensure any degree of optimality. This is because there are many values which could 

improve the performance, but which value would cause the most improvement would again 

depend on many factors, and thus it is difficult to guarantee any degree of optimality. 

 

6.4.3: Execution Module 

 After the method of accommodation has been selected, the changes must then be put into 

action. With the architecture of the simulation environment, it is straightforward to replace the 

commanded trajectory or to shift which control laws are being used. However, when considering 

actual hardware, more considerations may be necessary to optimize the execution, as some 

methods of accommodation are less effective if delays occur and the tracking error is allowed to 

accumulate. 

 

6.5: Integrated Results 

 To determine that the components of the AC-DIEA process work in an integrated way, 

scenarios which apply each stage of the process together are considered to ensure that the 

transitions between phases take place properly. To analyze this, a few cases were selected to 

show that this integration does not cause problems. These cases start with a 10 degree left aileron 

lock, which will show where accommodation is performed implicitly by the robustness of the 

control laws or through minor modification of the control laws. The second case is a 14 degree 

left aileron lock, which seeks to show the application of shifting the flight control laws 

completely. Next are two sensor cases, one 5 degree per second yaw rate sensor fault and one 5 

degree per second pitch rate sensor fault, both of which will not require accommodation through 

the AIS but could show improvement if accommodation is applied. These cases will show how 

the integrated system itself works, however, it should be noted that the AIS construction data 

include lower severity failures for which the AC DIE phases are more challenging, and the 

accommodation is possible through either baseline control laws robustness or switching to 

alternative control laws. In addition to that, the different decisions needed during the 

accommodation phase depend on the requirements of the mission and the specifics of the 

commanded trajectories. This makes the analysis and determination of some of the thresholds 

used throughout the logic difficult and somewhat limited., Despite this issue, the illustrative 

cases shown here will still demonstrate the effectiveness of the integrated AC-DIEA algorithm. 

To better address these thresholds and for more widespread testing, data supporting each 

strategic decision making outcome should be available throughout the development process. This 

could depend on and involve using a set of baseline control laws less robust to ACs, using more 

challenging commanded trajectories, and/or considering more severe ACs. 
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 The results for each phase will be shown here and analyzed in terms of their promise and 

how the potential issues above influence them. While all results should illustrate the efficacy of 

the algorithm, the detection time, identification time, and the direct quantitative evaluation 

output will be of particular interest, as they are directly involved in when the accommodation 

method will be activated. Additionally, the rates of success may not be as important as, in the 

case where no accommodation is made, the UAV begins to act erratically, and accommodation 

should be triggered before this occurs. The cases presented here will be a 10 degree left aileron 

lock, a 14 degree left aileron lock, a 5 degree per second yaw rate bias, and a 5 degree per second 

pitch rate bias. 

 

6.5.1: 10 Degree Lock Case: Baseline Control Laws 

 The 10 degree locked case will show the performance of the algorithm based on a 10 

degree lock being imposed on the left aileron after 5 seconds on the 2D oval trajectory with a 25 

degree commanded bank angle. The outcome for each phase will be shown, where the final 

outcome from the accommodation step is of particular interest. 

 The results for the detection phase of interest are the point to point detection rate, which 

was 100%, the detection rate when using the moving time window, which is 99.95%, which is 

the maximum the value can be, and the detection time is 0.06 seconds, which is the minimum.  

 The results for the identification and successful identification rate are shown in Table 68. 

 

Table 68: Identification Performance for Left Aileron Locked at 10 Degrees 

Identification Performance 

Lock 

Angle 

ID 

Rate 

(%) 

 Identification Rates (%) 

Aileron 
Left 

Elevator 

Unknown 

Elevator 

Right 

Elevator 
Rudder 

Roll 

Rate 

Sensor 

Pitch 

Rate 

Sensor 

Yaw 

Rate 

Sensor 

Small 

Sensor 

10° 100 97.23 1.30 0 0.13 0 0 0 0 1.35 

 

The data show that the identification outcome is correct over 97% of the time and the 

identification outcome is generated after 1.17 seconds. 

 For the 10 degree lock, qualitative evaluation is performed with 99.64% accuracy where 

the outcome is again generated at the first possible time step resulting in a 0.02 second delay as 

well. 

 The outputs and distances of the direct quantitative evaluation phase for the 10 degree 

case are shown in Figures 120 and 121. 
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Figure 120: Output Lock Severities from Direct Quantitative Evaluation Stage For 10 Degree Lock 
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Figure 121: Distance from the Self During Flight for 10 Degree Lock 

 

The results for the 10 degree lock are very predictable and match the expectations where the 

distance is relatively constant during maneuvers with spikes when entering and exiting 

coordinated turns. The estimated threshold for requiring accommodation is below 14 degrees; 

therefore, accommodation may be achieved due to baseline control law robustness. However, 

some improvement may be possible by applying some additional accommodation method. 

 For the considered accommodation methods, results from the indirect quantitative 

evaluation step are not used. As this fault is also affecting an aileron, the results of interest will 

be the reduction in roll rates. The results from the prediction from the effective deflection 

calculation are shown in Table 69, while the prediction from the AIS is shown in Table 70. 

 

Table 69: Reduction in Reachable Roll Rates for 10 Degree Left Aileron Lock 

Roll Rate Limits 

Fault 
Calculated Values 

𝛿𝑎𝑚𝑖𝑛 𝛿𝑎𝑚𝑎𝑥 𝑝𝑚𝑖𝑛 𝑝𝑚𝑎𝑥 

Nominal 1 1 -295.97 295.97 

10° 0.25 0.75 -73.99 221.98 
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Table 70: Predicted Reduction in Roll Rates from AIS for 10 Degree Left Aileron Lock 

AIS Predicted Reduction 

Fault Reachable Self Partitions 𝑝𝑚𝑖𝑛 𝑝𝑚𝑎𝑥  

Nominal 81890 -45.03 46.65 

10° 81890 -45.03 46.65 

 

The results in Tables 69 and 70 show that, when considering the full available range of aileron 

deflections, the 10 degree left aileron fault will not affect the flight envelope for the considered 

dynamic maneuvers. This makes sense as the AIS predicts no reduction while the calculated 

range goes beyond the values within the AIS. As the entire 20 degree saturation conditions for 

the ailerons are considered here, the 10 degree lock becomes essentially less severe than it was 

when previously analyzed, which contributes to why the AC no longer causes reduction in the 

self. 

 As mentioned previously, 10 degree case would fall below the minimum threshold and 

would be determined to not require accommodation. The performance in trajectory tracking is 

shown in Figure 122, and the tracking error itself is shown in Figure 123. 

 

 
Figure 122: Trajectory Tracking with 10 Degree Lock Relying on Robustness of Baseline Control Laws 
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Figure 123: Trajectory Tracking Error with 10 Degree Lock Relying on Robustness of Baseline Control Laws 

 

Both the qualitative shape of the trajectory and the tracking error show that accommodation is 

addressed through the robustness of the baseline control laws and addition input from the AIS is 

not necessary to successfully complete the trajectory. 

 

6.5.2: 10 Degree Lock Case: Modifying Gain 

 While no accommodation beyond intrinsic base robustness is strictly necessary to 

complete the trajectory, an accommodation method can be performed to improve the trajectory 

tracking in some way. Here, as the ailerons are the channel where the control authority is being 

reduced, the gain affecting the output of the commanded aileron deflection is modified, being 

increased from -1 to -1.75. This modified value could also be optimized in some way. The result 

for implementing this accommodation after the 1.25 seconds to generate the outcome are shown 

in Figure 124 
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Figure 124: Difference in Trajectory Tracking Error with Modifying Gain 

 

Figure 124 shows that, although good performance is attained without additional accommodation 

provided by the AIS, modifying the control laws can have a benefit in reducing tracking error, 

particularly when going into and out of turns. The average tracking error without modifying the 

gain was 1.31 meters, which is reduced to 1.18 meters with the modified gain, a reduction of 

10.04% error. 

 

6.5.3: 14 Degree Lock Case 

 The 14 degree locked case will show the performance of the algorithm based on a 14 

degree lock being imposed on the left aileron after 5 seconds on the 2D oval trajectory with a 25 

degree commanded bank angle. The outcome for each phase will be shown, where the final 

outcome from the accommodation step is of particular interest, similar to the previous locked 

case. 

 Starting with detection, the point to point detection rate was 100%, which was reduced to 

99.95% after applying the moving time window. This also caused a detection time of 0.06 

seconds as the results were identical to the 10 degree lock case. These results make sense as, 

even for the less severe left aileron ACs, these types of results were common, so it stands to 

reason that the more severe AC will also be detected in a very timely fashion. 
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 The results for the initial identification outcomes for sensor vs actuator cases are shown 

in Table 71. 

 

Table 71: Identification Sensor vs Actuator Performance for Left Aileron Locked at 14 Degrees 

Identification Performance 

Lock Angle ID Rate (%) 
Identification Rates (%) 

Actuator Fault Sensor Fault 

14° 100 99.11 0.89 

 

The results shown in Table 71 match expectations, where the AC is high severity, so an 

identification outcome is produced at all time steps where, during the beginning of the process 

not enough data points are in to generate an outcome other than small sensor, and afterward all 

outcomes are actuator faults. This would indicate that the accommodation phase would be 

triggered for actuator faults. However, the specific actuator outcomes produce mostly elevator 

faults, as the AC is high enough severity to trigger projections associated with all subsystems. 

However, the outcome of an actuator fault would likely trigger accommodation correctly. 

Considering this, one of two approaches could be used: 

 

1. Assume that the control laws which will be shifted to are “more robust” to actuator ACs 

in general, therefore the outcome of the incorrect control surface is not particularly 

detrimental, and the main concern is the actuator versus sensor fault outcomes. 

2. Extrapolate the results from the aileron cases which are used within the development 

data. 

 

 In theory, approach 1 could be used, as there is no requirement that the control laws to 

shift to are only more robust to one subsystem of actuator ACs, where in this case the 

identification time would be the earliest possible time. However, the approach we will consider 

is to extrapolate from the previous aileron cases, as this will give a more “conservative” 

identification time, as it will not be the earliest possible time step. The average identification 

times for the left aileron locked faults are shown in Table 72. 
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Table 72: Average Identification Times for Left Aileron Faults 

Average Left Aileron Identification Time 

Lock Severity Identification Time (s) 

0° 0.19 

2° 1.58 

4° 1.61 

6° 0.62 

8° 1.08 

10° 1.17 

 

The data in Table 72 show that, for aileron faults, the identification time varies from 0.19 at a 

minimum to 1.61 seconds at a maximum for the various aileron lock cases. As a result, we will 

use the maximum case of 1.61 seconds as our identification time. 

 A potential alternative to these approaches is to use an intermediate outcome to prompt 

the shifting of the control laws. For example, rather than using the final output of “left aileron”, 

the intermediate output of “actuator” may be used to determine which control laws will be 

switched to. If this approach was used, the output “actuator” would be produced 99.11% of the 

time, and the identification outcome would occur at the first possible time step. As this approach 

would cause the implemented accommodation to be performed faster, the more conservative 

approach described above will be used. 

 Qualitative evaluation is performed for the 14 degree lock with 99.61% accuracy, where 

the outcome that the control surface is locked occurs at the first possible time step, resulting in a 

0.02 second delay. 

 The outputs from the three interpolation methods for direct quantitative evaluation are 

shown in Figure 125. 
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Figure 125: Output Lock Severities from Direct Quantitative Evaluation Stage For 14 Degree Lock 

 

These results immediately do not match expectations, as there are long sections where the output 

does not change, and the output is based on distance which should be constantly changing. This 

is due to, in the development data, how going into and out of turns was addressed. In 

development data, the distance during maneuvers was very predictable, and tended to sit around 

a single value until another turn was commanded, where the distance would spike, and it was 

more difficult to determine severity. As a result, these spikes were ignored and a constant value 

was used in their place, based on the average of the previous outcomes. Unfortunately, for the 

higher severity fault than was considered in development, these spikes occur at times other than 

going into and out of maneuvers, as shown in Figure 126. 
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Figure 126: Distance from the Self During Flight for 14 Degree Lock 

 

Figure 126 shows that these spikes which were previously ignored are essentially occurring all 

the time, which causes the outcome to defy expectations. Additionally, as previously mentioned, 

the step underestimates the severity of the AC, as it is not designed to work on ACs which are 

that severe. We can see, however, that the average outcome is around a 9 degree lock, which is 

very severe in terms of development data as the maximum severity was 10 degrees, which would 

indicate that accommodation is likely necessary. 

 For the explored methods of accommodation here, an output from the indirect 

quantitative evaluation phase is not necessary. However, to highlight the integrated nature of the 

process, they will be shown here. For aileron faults, we consider the reduction in available roll 

rates, which is shown in Table 73 using the effective deflection calculation and Table 74 using 

the AIS. 
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Table 73: Reduction in Reachable Roll Rates for 14 Degree Left Aileron Lock 

Roll Rate Limits 

Fault 
Calculated Values 

𝛿𝑎𝑚𝑖𝑛 𝛿𝑎𝑚𝑎𝑥 𝑝𝑚𝑖𝑛 𝑝𝑚𝑎𝑥 

Nominal 1 1 -295.97 295.97 

14° 0.15 0.85 -44.40 251.57 

 

Table 74: Predicted Reduction in Roll Rates from AIS for 14 Degree Aileron Lock 

AIS Predicted Reduction 

Fault Reachable Self Partitions 𝑝𝑚𝑖𝑛 𝑝𝑚𝑎𝑥  

Nominal 81890 -45.03 46.65 

14° 75306 -37.39 46.65 

 

The results in Tables 73 and 74 show that, when considering the full available range of aileron 

deflections, the 14 degree left aileron fault has a minor effect on the flight envelope, where the 

nominal limits of the roll rate are slightly reduced at the minimum, which matches expectations 

for a positive left aileron lock. 

 As previously addressed, the strategic decision making module, where it is determined if 

accommodation is possible, and the beginning of the tactical decision making module, where it is 

determined if accommodation is necessary, cannot be performed due to the lack of data where 

accommodation is necessary. Consequently, the case considered where the left aileron is locked 

at 14 degrees, has been determined to be one where accommodation is both necessary and 

possible. Within the architecture of these phases, the 14 degrees would theoretically be below the 

first threshold in the strategic decision making module and above the threshold in the tactical 

decision making module. As sufficient data is unavailable, we cannot determine exactly what 

these thresholds should be, just where the 14 degree value is with respect to these unknown 

thresholds. While extensive testing would be necessary to determine which threshold values 

should be used, limited testing was performed for the aileron locked cases which indicated that 

the threshold of 13.85 degrees would separate cases which did and did not require specific 

accommodation from the AIS. 

 Accommodation will then be performed by switching to the set of control laws which is 

more robust to the injected AC. During actual application, the system would select a mode of 

accommodation based on not only the AC but also the specifics of the mission but, as these 

results are intended to be illustrative and the mission is not so clearly defined, we will assume 

that this is the mode of accommodation which will be applied. Based on the output from the AC-

DIE process, there will be a delay of 1.69 seconds between the injection of the AC and when the 

command to switch control laws is made. Shown here again for clarity, the results of the case 
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where accommodation is not performed is shown in Figure 127, while the case where 

accommodation is performed is shown in Figure 128. 

 

 
Figure 127: Trajectory Tracking for 14 Degree Lock With no Accommodation from AIS 

 

 
Figure 128: Trajectory Tracking for 14 Degree Lock Switching Control Laws After 1.69 Seconds 

 

These plots show that, from a qualitative standpoint, that the tracking improves massively when 

the control laws are shifted. If the NLDI-based control laws are allowed to continue, the UAV 
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deviates completely from the commanded trajectory, whereas if the accommodation is triggered, 

the trajectory is completed without any real difficulty. 

 

6.5.4: 5 Degree per Second Pitch Rate Bias 

 The 5 degree per second pitch rate bias case will show the performance of the algorithm 

based on a 5 degree per second pitch rate bias injected after 5 seconds on the 3D s turns 

trajectory with a 15 degree commanded bank angle. The outcome for each phase will be shown, 

including the final outcome from the accommodation step. 

 The point to point detection rate for this case was 73.14% which increased to 73.90% 

after the moving time window was applied. While this is lower than the outcome for the actuator 

cases, this still constitutes good performance of the system. The time to detection remained at 

0.06 seconds, as soon as the AC can be detected. The results for the identification phase are 

shown in Table 75. 

 

Table 75: Identification Performance for 5 Degree per Second Pitch Rate Bias 

Identification Performance 

Bias 

(deg/sec) 

ID 

Rate 

(%) 

Identification Rates (%) 

Aileron 
Left 

Elevator 

Unknown 

Elevator 

Right 

Elevator 

Roll Rate 

Sensor 

Pitch 

Rate 

Sensor 

Yaw 

Rate 

Sensor 

Small 

Sensor 

5 100 0 0 0.81 0 0 98.98 0 0.20 

 

The results shown in Table 75 show that the AC is correctly identified at almost every time step. 

The outcome which would generate the AIS accommodation to be triggered would be the correct 

angular rate sensor outcome rather than the small sensor outcome. The outcome is produced 4.78 

seconds after the detection is triggered. 

 For sensor faults, there is no required output for the qualitative evaluation phase. This is 

because the only type of AC considered for the angular rate sensors. For the direct quantitative 

evaluation phase, the first outcome is triggered after 44.2 seconds due to how the pitch rate logic 

is designed, with an outcome of 6.07 degrees per second. While this is a significant delay, it is 

important to note the very minor effect that the sensor rate biases have on the aircraft. 

 Based on this fault, no accommodation from the AIS is necessary, however, the approach 

to add or subtract the bias out can still be applied to improve the performance. Based on the 

performance in the previous phases, the accommodation will be applied 49.04 seconds after the 

AC is injected. The tracking error for each case remains almost constant, as the sensor fault has 

very little effect, therefore the accommodation method will be evaluated based on how closely 

the accommodation method brings the performance to match the nominal case. This is shown in 

Figures 129 and 130 for the commanded elevator deflection. 
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Figure 129: Commanded Elevator Deflections for Different Accommodation Cases 

 



208 

 

 
Figure 130: Commanded Elevator Deflections for Different Accommodation Cases (Zoomed) 

 

Figures 129 shows that, despite the presence of the AC, the command to the elevators is almost 

exactly the same in terms of the overall action. Figure 130 shows that, however, in the more 

dynamically interesting case where the UAV is going from ascending to descending, the overall 

action of the actuator matches much more closely to the nominal case when the AC is 

accommodated for. 

 

6.5.5: 5 Degree per Second Yaw Rate Bias 

 The 5 degree per second yaw rate bias case will show the performance of the algorithm 

based on a 5 degree per second yaw rate bias injected after 5 seconds on the 2D oval trajectory 

with a 25 degree commanded bank angle. The outcome for each phase will be shown, where the 

final outcome from the accommodation step is of particular interest. 

 For the considered yaw rate sensor bias, the point to point detection rate was 99.80%, 

which increased to 99.95% when using the moving time window of data points. Consequently, 

the time to detection again was 0.06 seconds. The results for the identification phase are shown 

in Table 76. 
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Table 76: Identification Performance for 5 Degree per Second Yaw Rate Bias 

Identification Performance 

Bias 

(deg/sec) 

ID 

Rate 

(%) 

Identification Rates (%) 

Aileron 
Left 

Elevator 

Unknown 

Elevator 

Right 

Elevator 

Roll Rate 

Sensor 

Pitch 

Rate 

Sensor 

Yaw 

Rate 

Sensor 

Small 

Sensor 

5 100 0 0 0 0 3.17 1.00 43.83 52.00 

 

The results in Table 76 show that the identification performance matches expectations, where the 

identification outcomes are largely split between the small sensor output and the yaw rate sensor 

output, where the intermediate sensor output is produced at all time steps. In terms of the 

identification time, the small sensor output comes after the minimum time of 0.06 seconds. 

However, the outcome which could trigger an accommodation, the actual yaw rate sensor output, 

does not occur until 18.22 seconds. For angular rate sensors, no qualitative evaluation is 

performed, as only one type of AC was considered. The first output from the direct quantitative 

evaluation phase comes after 47.62 seconds with an output magnitude of 5.25 degrees per 

second. 

 For this sensor fault, as well as all the other considered sensor faults, no accommodation 

is necessary outside of the baseline robustness of the control laws based on the overall tracking 

error. However, despite the lack of effect the sensor ACs have on tracking error, other 

parameters could be improved by applying the proposed accommodation to the sensor feedback. 

One specific way in which this accommodation could improve performance is to cause the UAV 

to complete the trajectory as similarly to the nominal case as possible. This improvement is 

shown by the commanded rudder deflections, which are shown in Figure 131 and 132. 
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Figure 131: Commanded Rudder Deflections for Each Accommodation State 
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Figure 132: Commanded Rudder Deflections for Each Accommodation State (Zoomed where Accommodation is 

Applied) 

 

The data shown in Figures 131 and 132 show that, after the AC is injected, both the 

unaccommodated and accommodated cases command the rudder differently than under nominal 

cases. However, once the accommodation is applied, the commanded rudder deflection begins to 

much more closely match the nominal case compared to the unaccommodated case and, briefly 

after the accommodation is applied, the commanded rudder inputs are almost identical. While 

this has a minimal effect on the overall tracking error, it does cause the UAV to act much closer 

to the prediction from nominal cases. 

 Both angular rate sensor cases show, to some extent, the challenges of accommodating 

this type of fault, where the fidelity of the control laws can play a significant part in the overall 

effect of the AC, as the AC itself has a very minimal effect on the actual performance, and the 

trajectory itself can cause the AC to have unexpected effects on performance based on the 

maneuvers which are being performed. 
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Chapter 7: Conclusion 

 An AIS was developed for the purpose of addressing the entire AC-DIEA process in an 

integrated way, and the various algorithms involved within this process were developed for 

sensor and actuator faults affecting a simulated UAV. The AIS was constructed using data from 

the simulation, and simulation was also used to validate the various algorithms applied and 

developed for integrating the AC-DIEA process. 

 Candidate performance metrics have been defined and investigated for each of the 

different phases of the process. 

 The performance of the developed AC-DIEA methodology is evaluated based initially on 

the performance at each stage of the process, that is the detection rates and times, identification 

rates and times, qualitative evaluation output, error in AC magnitude estimation, predicted flight 

envelope reduction, and finally a qualitative look at improvement in trajectory tracking with 

accommodation and the overall change in tracking error. These parameters were used to judge 

each stage individually, while the times and accommodation outputs were used to determine the 

overall performance of the integrated AC-DIEA process. 

 Detection rate averages ranged from 25% to almost 100%, with detection times ranging 

from the minimum 0.06 seconds for most higher severity ACs to 15 seconds. Identification rate 

averages ranged from 75% to 100% with times between 0.5 seconds to 70 seconds for 

particularly low severity ACs. For each step of the evaluation phase, qualitative evaluation rates 

ranged from 70% to 99%, quantitative evaluation average errors were generally less than 1 

degree, and indirect quantitative evaluation showed consistency between the 3 reduction 

prediction approaches. Finally, the proposed accommodation methods showed reduction in 

overall tracking error and, in the more extreme example cases, the ability to allow for successful 

mission completion. The results at each stage, as well as the integrated cases, showed promising 

function of the AIS. 

 The proposed methodology for integrated UAV AC-DIEA shows the potential of the 

immunity paradigm to address the entire process in an integrated way not only for UAVs, but for 

dynamic systems in general. The potential of the algorithm was shown through the ability of the 

AIS to correctly detect, identify, evaluate, and accommodate sensor and actuator faults on board 

a simulated UAV, where extensive testing was performed for the AC-DIE process and several 

illustrative cases were presented for the integration of accommodation into the process. 

 The results show the promise of the methodology, which motivates further effort into its 

development. While the proposed methodology has shown the ability to handle these specific 

ACs for this specific dynamic system, many potential avenues for expanding upon this effort are 

present. These options for expansion include: 
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• Addressing the specific issues with accommodation and developing the algorithms with 

cases where different strategic decision making outcomes are present. 

• Analysis of other potential accommodation features. 

• Considering different sets of control laws and expansion of the immune system to cover 

multiple types of control laws and maneuvers. 

• Addressing multiple simultaneous failures. 

• Analysis of the threshold values which are used in the accommodation stage and 

determination of effective methods of finding more optimal threshold values. 

• General optimization of various parameters of the algorithms. 

• Analysis of projections beyond 3-dimensional ones in identification and evaluation. 

• Analysis of different types of ACs, such as those affecting engines or those affecting GPS 

feedback. 

• Addressing other dynamic systems and analysis of issues which are specific to that 

system. 

 

 The development of an AIS capable of addressing the entire AC-DIEA process with a 

single computational unit represents a novel step forward in the development of the immunity 

paradigm. This type of integrated system could allow for future operation of UAVs to be safer 

and perhaps, in the long run, allow other dynamic systems to operate more safely under the 

effects of ACs. 
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