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Abstract 
Measuring and modeling how plant-microbe interactions control soil carbon and nitrogen 

cycling in managed and unmanaged ecosystems 
Joanna Ridgeway 

Our understanding of how plant-microbe interactions regulate carbon (C) and nitrogen 
(N) retention in soil organic matter (SOM) remains uncertain. Conflicting evidence suggests that 
microbial decomposition can lead to the loss of unprotected particulate SOM, but also that 
microbial decomposition produces simpler compounds that preferentially form more persistent 
aggregate- or mineral-protected SOM pools. Further, uncertainty remains in how plant-microbe 
interactions alter SOM retention in these different pools through litter chemistry controls on 
microbial decomposition traits and rhizosphere priming. As a result, this uncertainty limits our 
ability to sustainably manage ecosystems and understand future feedbacks between terrestrial 
ecosystems and the global climate. In this dissertation, I address these uncertainties to answer the 
following research questions: 1) How do plant-microbe interactions between plant litter and 
microbial decomposition traits influence the formation of new soil C for different bioenergy crop 
litters in the lab?; 2) How do rhizosphere plant-microbe interactions influence soil organic matter 
stabilization and destabilization depending on nutrient levels in-situ?; and 3) Can empirical 
measurements help constrain, parameterize, and validate modeled plant-microbe interactions to 
improve representations of forest ecosystem responses to global change?  

For question 1, I examined differences between two bioenergy feedstocks, corn and 
miscanthus, in the ability of their litter to form new unprotected SOM vs. mineral-protected 
SOM. I traced the fate of isotopically enriched litter C into microbial respiration and SOM pools 
in the lab and found that corn litter promoted higher microbial uptake and carbon use efficiency, 
forming less unprotected SOM and more mineral-protected SOM than miscanthus litters. I also 
demonstrated the potential for our measurements to parameterize a microbial SOM model and 
improve predictions of soil C formation. This link between litter quality, microbial efficiency, 
and SOM formation bridges empirical uncertainty in how bioenergy crops build soil C. For 
question 2, I investigated whether living roots and their associated fungi increase or decrease 
new SOM formation from litter. I traced isotopically enriched litter C and N into SOM pools in 
root ingrowth cores incubated in a miscanthus field. I found that roots stimulated litter 
decomposition but balanced this loss by transferring carbon into aggregate-protected SOM. 
Further, roots selectively mobilized N from litter without additional C release, suggesting that 
roots efficiently mine N and build persistent soil C. This work expands our mechanistic 
understanding of how living roots shape agricultural ecosystem processes. For question 3, I 
investigated if modelling plant-microbe interactions and microbially-explicit N cycling could 
improve representations of forest soil C and N retention under changes in anthropogenic N 
deposition. I leveraged decades of C and N cycling data from a whole-watershed N fertilization 
experiment to run a microbially-explicit plant-microbe interactions model. The model accurately 
represented key ecosystem C responses to enhanced N availability, including a decline in plant C 
cost for N acquisition and an increase in soil C. By incorporating new, microbially-explicit N 
cycling, the model could also capture how enhanced N availability altered N cycling and 
streamwater N losses. When we ran the model forward under declining N deposition, the model 
predicted that N losses recovered faster than soil C pools. However, the C sequestered due to N 
deposition may be vulnerable to future loss, particularly in a warming climate. Collectively, my 
research shows that vital ecosystem services like soil C and N retention depend on microbially-
mediated processes that are regulated by plant-microbe interactions. 
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Chapter 1: Introduction 

 

Soils play a critical role in global biogeochemistry, providing essential ecosystem 

services such as carbon (C) sequestration and nitrogen (N) retention (Schmidt et al., 2011). A 

long history of environmental research has characterized the role of environmental and 

anthropogenic drivers (e.g.,, climate, elevated CO2, agricultural management) on global C and N 

cycling in soils (Davidson & Janssens, 2006; Vitousek et al., 1997). By contrast, we have only 

recently begun to understand how plant-microbe interactions modulate C sequestration and N 

retention (Van Der Heijden et al., 2008; Zak et al., 2003). Plant-microbe interactions between 

litter chemistry and microbial physiology drive soil C and N cycling through litter decomposition 

and transformation into new soil organic matter (SOM) (Talbot & Treseder, 2012). Further, 

plants also allocate C belowground to soil microbes to enhance nutrient acquisition, driving both 

SOM decomposition and formation (Bais et al., 2006; Dijkstra et al., 2013). However, 

uncertainty remains in the magnitude and direction of the impacts of plant-microbe interactions 

on soil C storage and N retention. This uncertainty is amplified in predictive models, ultimately 

limiting the ability to manage ecosystems for increased sustainability and to understand future 

feedbacks between terrestrial ecosystems and the global climate (Berardi et al., 2020; Saifuddin 

et al., 2021; Soong et al., 2020). As such, the overarching goals of my Ph.D. research are to 

investigate how plant-microbe interactions can lead to a net retention or loss of SOM C and N 

and to use empirical data on plant-microbial interactions to improve model predictions of 

coupled C and N cycling in both managed and unmanaged ecosystems. 

Recent theories have evolved to highlight the role of plant-microbe interactions in 

driving soil C and N storage (Cotrufo, 2013; Lehmann & Kleber, 2015; Phillips et al., 2013). 

Plant litter traits can control microbial decomposition and the subsequent storage or loss of C 
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and N in SOM. For example, chemically complex litter can both increase SOM by decomposing 

slowly and accumulating as undecomposed fragments in particulate SOM or decrease SOM by 

reducing the efficiency of microbial decomposition and enhancing respired C losses (Mueller et 

al., 2015; Stewart et al., 2015). For chemically simple litters, rapid decomposition that leads to 

respiratory losses or enhanced nitrification may be counterbalanced by the increased production 

of microbial necromass that preferentially sorbs to soil mineral surfaces as mineral associated 

SOM (Cotrufo, 2013; Creamer et al., 2019; Lehmann & Kleber, 2015). Further, living roots 

directly interact with microbes in the rhizosphere, or zone of soil surrounding plant roots, and 

these active plant-microbe interactions can both increase and decrease SOM pools. On one 

hand, root exudation of labile C can prime microbial activity, leading to the loss of soil C 

(Cheng et al., 2014; Jilling et al., 2021; Keiluweit et al., 2015). On the other hand, root C inputs 

can also promote the protection of SOM in soil aggregates (Six, Elliott, et al., 2000) and 

increase the production of microbial necromass and microbially-derived mineral associated 

SOM (Kallenbach et al., 2016; Liang et al., 2017). Thus, there is clear empirical uncertainty in 

the magnitude and direction of plant-microbial interactions on SOM storage. Moreover, plant-

microbe interactions appear to drive the form of SOM protection (i.e.,physically protected 

mineral associated SOM vs. chemically protected particulate SOM) and as a result they may 

alter the future vulnerability of SOM (Benbi et al., 2014; Lugato et al., 2021; Williams et al., 

2018). 

Improving our understanding of plant-microbe interactions is critical in both managed 

and unmanaged ecosystems. In managed ecosystems, increasing soil C retention could be 

particularly advantageous for bioenergy systems to help achieve C neutrality and displace 

fossil fuel emissions (Adler et al., 2007). In particular, perennial grass crops like Miscanthus 

x giganteus (herein, miscanthus) have been proposed as alternative bioenergy feedstocks to 
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traditional Zea mays (herein corn) agriculture, which consistently depletes soil C (Carvalho et 

al., 2017). Miscanthus differs from corn in traits like greater litter complexity, deeper rooting 

depth, more biomass, and more efficient N utilization (Dohleman & Long, 2009; Heaton et 

al., 2008; Studt et al., 2021). However, uncertainty remains in how these plant traits interact 

with microbial traits that control SOM decomposition and formation and influence 

observations of soil C sequestration in miscanthus (Davis et al., 2010; Ledo et al., 2020). By 

contrast, both theory  and empirical evidence provide a more robust understanding of how 

plant-microbial interactions drive C and N cycling in unmanaged ecosystems like temperate 

forests (Brzostek et al., 2015; Chen et al., 2016; Phillips et al., 2013; Terrer et al., 2016). It 

remains an open question whether temperate forests will continue to serve as a C sink in the 

face of global change (Pan et al., 2011), and this potential appears to rely on how differences 

in plant-microbe interactions allow forests to maintain productivity with increasing nutrient 

limitation (Phillips et al., 2013). Predictive modelling is a necessary tool to answer this 

question and guide efforts to address climate change, but model predictions of terrestrial C 

and N cycling lag behind our empirical understanding (Saifuddin et al., 2021; Sulman et al., 

2018). 

Empirical uncertainties in how plant-microbe interactions influence SOM and ecosystem 

C and N cycling are amplified in predictive models. Models that explicitly represent microbial 

decomposers and enzymatic decomposition vary widely in assumptions of microbial traits and 

physiology (Robertson et al., 2019; Sulman et al., 2014, 2017; Wieder et al., 2014). As such, 

uncertainty arises not only from structural differences in models (Myrgiotis et al., 2018; Shi et 

al., 2018) but also from empirically unconstrained microbial parameters and processes (Luo & 

Schuur, 2020; Sulman et al., 2018). For example, the CORPSE model (Carbon, Organisms, and 

Rhizosphere Processes in the Soil Environment, Sulman et al., 2014) simulates how microbial 
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decomposers uptake and respire or transform SOM, but this process is directly scaled by a single 

carbon use efficiency parameter that is loosely based on empirical estimates. In addition, the 

microbially-explicit decomposition (C) models which do simulate N cycling often implicitly 

represent microbially driven N losses and use microbial C:N stoichiometry to drive N 

transformations (Kyker-Snowman et al., 2020; Saifuddin et al., 2021; Sulman et al., 2017). This 

simplification reduces model complexity but also limits our predictive understanding of how 

soils retain N and how soil N availability constrains ecosystem productivity and C sequestration. 

1.1 Research Questions: 

To investigate how plant-microbe interactions drive soil C and N cycling, my three main 

research questions are: 

1) How do plant-microbe interactions between plant litter and microbial    

decomposition traits influence the formation of new soil C for different bioenergy 

crops litters in the lab? 

2) How do active rhizosphere plant-microbe interactions influence soil organic 

matter  stabilization and destabilization depending on nutrient levels in-situ? 

3) Can empirical measurements constrain, parameterize, and validate model 

representations of microbial C and N cycling?
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1.2 Research Approach: 

To meet my experimental objectives, my research utilizes stable isotope tracing to follow 

the fate of 13C and 15N enriched plant litter through microbial decomposition and into SOM. 

First, I investigate how different crop litters drive soil microbial decomposition traits and SOM 

formation using lab soil incubations. Here, we hypothesize that lower C:N, chemically simple 

litters promote more efficient microbial decomposition and lead to greater litter incorporation 

into mineral associated SOM. Next, I investigate the role of living roots and fungi on litter and 

SOM C and N transformations in situ. Here, we present competing hypotheses that living roots 

either lead to a net loss or retention of litter C and N in SOM pools. 

To meet my modelling objectives, my research incorporates empirical measurements of 

microbial C and N cycling traits into the microbially-explicit CORPSE (Carbon, Organisms, 

Rhizosphere, and Protection in the Soil Environment, Sulman et al., 2014) and FUN-CORPSE 

(Fixation and Uptake of Nitrogen-CORPSE, Sulman et al., 2017) models. First, I use data from 

my lab incubation experiment to constrain modeled microbial traits and predict litter 

transformations into SOM in the CORPSE model as part of my first chapter. Next, I leverage 

decades of C and N cycling data from the Fernow Experimental Forest in Parsons, WV 

(Eastman et al., 2021) to build and incorporate microbially-explicit N cycling in the FUN-

CORPSE model. 

Labelled Litter generation: I constructed a plant growth chamber with automated 13C-CO2 and 

12C-CO2 inputs and 15N-ammonium nitrate fertilizer to grow 13C and 15N isotopically labelled 

corn and miscanthus plants. Corn was grown hydroponically and miscanthus was grown in soil 

from rhizomes. Both crops grew in the chamber for 8 weeks, and then were drought-senesced 

before harvest. Aboveground and belowground plant material was separated, dried, and finely 
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ground. Litter characteristics for each are shown in table 1.1. 

Site Descriptions: For the lab experiment (objective 1), soils were collected from the University 

of Illinois Energy Farm (40°3′46″N, 88°11′46″W) located in Urbana, IL on October 10, 2019. 

Four replicate plots of corn-corn-soy rotations and perennial miscanthus crops were established 

in 2008. These are managed in standard agricultural practices for each crop, including inorganic 

N fertilization, yearly tillage, and leaving crop residues in the field for corn plots, and no 

fertilization, no tillage, and aboveground biomass removal for miscanthus. Prior to this 

establishment the land had been in row crops, primarily corn and soybean rotations, for over a 

century. Soils were collected from the top 20 cm, brought back to the lab in Morgantown where 

roots and stones were removed, and sieved to 2 mm. Soils were processed within one week and 

stored at 5°C until the beginning of the soil incubation. Soils from replicate plots were mixed 

within crop type, and combined soil characteristics for each are shown in table 1.1. 

For the in situ experiment (objective 2), ingrowth cores were installed at the West 

Virginia University Animal Sciences Farm (39°40'10.2"N, 79°55'53.6"W) located in 

Morgantown, WV from April-September 2021. Miscanthus plots were established in 2019 from 

rhizomes in 8 replicate blocks of 4 fertilization treatments: no fertilizer added, low inorganic 

NPK (19 kg NPK/ha), high inorganic NPK (57 kg NPK/ha), and organic fertilizer (57 kg N/ha) 

for a total of 32 plots. The plots are 5 m by 5 m square with miscanthus plants established on a 1 

m  grid for a total of 25 plants per plot. Of the plots with successful miscanthus establishment in 

year 1, 5 plots were randomly selected for each of the three nutrient treatments used in this 

experiment (control, high inorganic NPK, and organic fertilizer) for a total of 15 plots. Soil 

characteristics for miscanthus plots by treatment are shown in table 1.1. 

 For the unmanaged forest model experiment (objective 3), I leveraged decades of C and N cycling 

data from the Fernow Experimental Forest in Parsons, WV (herein, the Fernow) to build, constrain, and 
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validate N cycling in the FUN-CORPSE model. The Fernow is home to a N deposition experiment where 

an entire watershed  was fertilized with ammonium sulfate at a rate of 35.4 kg N/ha/yr for 30 years, from 

1989-2019. An adjacent, similar watershed serves as a reference. A wealth of C and N cycling data  is 

available from this site (e.g., streamwater nitrate leaching, soil and vegetation C and N pools, soil 

nitrification and N mineralization rate measurements) to build, parameterize, and validate model 

representations of ecosystem responses to N deposition. 
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Table 1.1- Litter and soil traits: Values shown are mean(SE). Letters denote p<0.05 differences 
within each category (i.e., litter  C:N). Litters for each crop are denoted by aboveground (AG) or 
belowground (BG). 

 %C C:N �13C �15N 

Energy Farm Soil 

Corn 

Miscanthus 

 

1.4(0.20)a 

1.7(0.15)a 

 

11.4(0.32)a 

12.2(0.37)a 

 

-14.8(0.3)a 

-14.5(0.2)a 

 

88(13)a 

120(42)a 

WV Miscanthus Soil     

Control 2.7(0.05)ab 10.3(0.12)a -24.1(0.08)a 8.6(0.09)a 

High NPK 2.5(0.03)a 10.2(0.15)a -24.0(0.08)a 8.4(0.2)a 

Organic 2.8(0.12)b 10.5(0.23)a -24.0(0.1)a 8.6(0.2)a 

Litter     

Corn AG 41.7(0.17)a 18.8(0.64)a 7,018(49)a 34,796(306)a 

Corn BG 42.1(0.30)a 18.6(0.30)a 5,631(131)b 38,871(120)b 

Miscanthus AG 42.1(0.06)a 31.7(0.83)b 5,941(76)b 6,585(48)c 

Miscanthus BG 43.1(0.10)b 27.0(1.30)c 3,005(43)c 3,909(143)d 

 
Model Descriptions: 

The CORPSE model (Sulman et al., 2014) predicts microbially-controlled 

decomposition of unprotected SOC and formation of physically protected SOC. Here, 

unprotected SOC is analogous to our particulate SOC, and protected SOC is analogous 

to mineral associated SOC. SOC is split between chemical types that represent 

recalcitrant, labile, and microbial necromass compounds, with preferential microbial 

uptake of labile compounds and the fastest protection rate for microbial necromass. The 

CORPSE model traditionally has 3 compartments for bulk soil, rhizosphere soil, and 
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litter. We adapted this to simulate lab microcosms with a single bulk soil compartment 

and added litter C compartment. 

The FUN-CORPSE model (Fixation and Uptake of Nitrogen-CORPSE, Sulman 

et al., 2017) simulates plant-microbe interactions and coupled C and N cycles in 

terrestrial ecosystems. To meet plant N demand, the FUN model (Brzostek et al., 2014) 

uses a resistance framework to optimally allocate C belowground to the rhizosphere 

where the microbes represented in the CORPSE model can use it to prime 

decomposition and enhance N availability. N cycling is simplistic in FUN-CORPSE, 

with N mineralization driven by substrate and microbial stoichiometry. This process 

results in one inorganic N pool that can be accessed by plants and microbes to meet N 

demand. Losses of N are modeled as a first order flux that is assumed to capture both 

denitrification and leaching. 
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Chapter 2: Plant litter traits control microbial decomposition and drive soil carbon 

stabilization 

 

Reprinted from: J. Ridgeway, E.M. Morrissey, and E.R. Brzostek, 2022. Plant litter traits control 
microbial decomposition and drive soil carbon stabilization. Soil Biology and Biochemistry 
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     19 
 

2.1 Abstract:  
 

Efforts to manage soils for carbon (C) sequestration remain limited by our understanding 

of how differences in plant traits and microbial traits mechanistically drive soil organic C (SOC) 

storage. Addressing this uncertainty is particularly critical in bioenergy agriculture, due to its 

potential to enhance soil C and provide a C neutral fuel. As such, we examined differences 

between two contrasting feedstocks, Zea mays (corn) and Miscanthus x giganteus (miscanthus), 

in the ability of their litter to form new chemically resistant particulate SOC vs. protected 

mineral associated SOC and used this data to improve the parameterization of a microbial SOC 

model. We tested a hypothesized conceptual model whereby easy to decompose corn litters drive 

greater microbial carbon use efficiency (CUE) and the formation of more mineral associated 

SOC over particulate SOC than more complex miscanthus litters. To do this, we performed a soil 

microcosm experiment where we added 13C enriched aboveground and belowground litters to 

soils and traced the fate of the 13C into microbial respiration and SOC pools. We found that corn 

litters promoted higher microbial CUE (0.37) than miscanthus litters (0.24). In turn, corn litter 

formed approximately 50% more mineral associated SOC than miscanthus litters. Similarly, 

structurally complex root litters promoted a lower CUE and formed less mineral associated SOC 

than leaf and shoot litters for both crops. When we used our data to parameterize the SOC model, 

we found that modelling microbial trait differences uniquely allowed the model to capture the 

fate of litter C in SOC. Collectively, we found a robust link between litter quality, microbial 

efficiency, and the formation of SOC. This link bridges the empirical uncertainty in how 

different crops can form new soil C and provides an empirical basis for modelling SOC 

transformations. 
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2.2 Introduction:  
 

Soil carbon (C) sequestration has emerged as a potential strategy to combat climate 

change, but our predictive understanding of soil organic C (SOC) stabilization remains uncertain. 

Addressing this uncertainty is especially imperative for the bioenergy industry, as policy and 

management strategies aimed at improving the sustainability and C neutrality of bioenergy focus 

on enhancing SOC. The long-term sustainability of using Zea mays (herein, corn) as the 

dominant bioenergy crop is limited by the broadly observed pattern of SOC depletion (Carvalho 

et al., 2017) in conjunction with extensive land use (Sands et al., 2017) and energy demands 

(Cherubini et al., 2009). Given the urgent need to drastically reduce emissions (Sixth Assessment 

Report of the IPCC, 2021), perennial grasses like Miscanthus x giganteus (herein miscanthus) 

and switchgrass have emerged as a more sustainable alternative to corn owing to plant traits and 

management practices that enhance productivity and reduce SOC losses (Heaton et al., 2008; 

Anderson-Teixeira et al., 2013). However, our mechanistic understanding of how these perennial 

grasses build new SOC remains limited. In particular, the extent to which SOC persists due to 

chemical recalcitrance vs. physical protection remains a critical uncertainty in assessing the 

potential for both SOC accumulation and vulnerability. This uncertainty also impacts the 

accuracy of models used to project the impacts of bioenergy production on the soil carbon sink.  

The extent to which bioenergy crops can build new SOC depends not only on chemical 

complexity of litter inputs but also on physical protection of decomposable organic matter from 

microbial decomposers through associations with soil mineral surfaces (Cotrufo et al., 2013; 

Lehmann & Kleber, 2015; and others). Thus, SOC can be split into two main categories that 

differ in composition and characteristics: particulate SOC and mineral associated SOC. 

Particulate SOC primarily consists of undecomposed litter fragments or partially decomposed 
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organic matter that unless occluded in aggregates remains physically accessible to microbial 

decomposers (Witzgall et al., 2021). Particulate SOC may be slow to decompose due to chemical 

complexity, making this pool more vulnerable to environmental changes like warming that 

ameliorate energetic decomposition constraints (Davidson & Janssens, 2006). Mineral associated 

SOC primarily consists of chemically simple compounds (Sanderman et al., 2014; Williams et 

al., 2018), much of which is thought to be microbially-derived (Liang et al., 2017). These labile 

compounds become physically protected from microbial decomposers through sorption to clay 

and mineral surfaces in the soil, potentially allowing this C to persist over longer timescales. 

Mineral associated SOC accumulation may be limited by mineral saturation, high nitrogen (N) 

stoichiometric demand, or rhizosphere mobilization, constraining the potential for C 

accumulation in this pool (Stewart et al., 2009; Jilling et al., 2018; Schlesinger & Amundson, 

2019). Given that particulate and mineral associated SOC differ in their ability to accumulate and 

susceptibility to climate change (Lugato et al., 2021), comparing how different bioenergy crop 

litters form soil C is critical, particularly with controlled experiments where the impact of plant 

litter differences on microbial decomposers can be mechanistically determined.   

We tested a conceptual framework (Figure 2.1) for how plant-microbe interactions may 

drive differences in C accumulation between particulate vs. mineral associated SOC for corn and 

a model perennial crop, miscanthus. Here, we link distinct differences in litter chemistry like 

higher C to N or lignin to N ratios for miscanthus than corn (Meineke et al., 2014; Brancourt-

Hulmel et al., 2022) with our current understanding of SOC formation that emphasizes the 

contribution of microbially-derived products to mineral associated SOC (Cotrufo et al., 2013; 

Lehmann and Kleber, 2015; and others). While this conceptual framework is broadly accepted, 

inconsistent empirical evidence highlights the need for testing if microbial decomposition and 
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efficiency can be linked with mineral associated SOC protection in bioenergy soils.  In our 

conceptual framework (Figure 2.1), corn plants produce relatively labile (easily decomposable) 

litter to the particulate SOC pool. We expect soil microbes to decompose this SOC rapidly and 

efficiently, respiring CO2 and producing simpler compounds that can preferentially sorb to clay 

and mineral surfaces (Figure 2.1a). Miscanthus is a perennial grass that produces larger 

quantities of more recalcitrant (difficult to decompose) litter to the particulate SOC pool (Heaton 

et al., 2010; Meineke et al., 2014). Microbes may slowly and less efficiently decompose this 

litter, leading to a slower flux of litter C into mineral associated SOC. As belowground litters 

have been found to decompose more slowly than aboveground litters (Rasse et al., 2005;  Fulton-

Smith & Cotrufo, 2019; and others), we also expect that belowground litter C will preferentially 

remain as particulate SOC and aboveground litter C will form more mineral associated SOC. 

Importantly, this framework provides a linked theoretical and empirical foundation that could 

explain how these crops currently differ in SOC. 
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Fig. 2.1: Corn and miscanthus differ in the fate of litter C between SOC fractions. Corn (a) 
produces relatively labile litter that microbes can decompose rapidly and efficiently, producing 
compounds that can preferentially sorb to clay and mineral surfaces as mineral associated SOC. 
Miscanthus (b) produces greater quantities of more recalcitrant litter that enters the particulate 
SOC pool. Here, microbial uptake is slower and less efficient which leads to a reduced flux of 
litter C into mineral associated SOC.  

 
Testing this conceptual model also provides an empirical basis for improving model 

projections of the potential for bioenergy crops to deplete or build SOC. However, traditional 

soil models implicitly represent microbes through first-order decomposition processes and 

broadly lack the ability to represent the processes of microbially-driven transformations of plant 

C between the particulate vs. mineral SOC pools (Berardi et al., 2020). This omission limits their 

ability to capture how microbial processes impacting net C cycling respond to climate change 

drivers beyond the range of historical conditions. Emerging models incorporate explicit 

representations of the microbial decomposers that drive belowground C fluxes (e.g., CORPSE, 

Sulman et al., 2014; MIMICS, Wieder et al., 2014; MEMS, Robertson et al., 2019; FUN Bio-

CROP, Juice et al., 2022). While these models include formulations of the role of microbes in 
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controlling the decomposition and stabilization of particulate and mineral SOC pools, many of 

the parameters in these formulations are poorly constrained by experimental data or are only 

grounded by theoretical constraints. Specifically, the empirical uncertainty in microbial control 

over mineral protection is amplified in predictive models that use tuned parameters to drive 

microbial decomposition, production, turnover, and protection.  Thus, empirical data is necessary 

to constrain decomposition parameters and validate predictions of modeled SOC pools.  

We tested our conceptual framework by tracking the fate of 13C labelled litters of corn 

and miscanthus into microbial respiration, microbial biomass, and particulate and mineral SOC 

pools in an incubation experiment. We focused on the fate of each litter in soils that had a long 

history of corn or miscanthus cultivation (i.e., corn litter in corn soils, miscanthus litter in 

miscanthus soils) to improve our mechanistic understanding of how these crops and their 

corresponding microbial communities differ in SOC formation. We also measured how corn and 

miscanthus litter differed in their impacts on the efficiency of microbial decomposition. Based on 

our conceptual model, we hypothesized that (1) more easily decomposed corn litters will form 

more mineral associated SOC and less particulate SOC than miscanthus litters, (2) more easily 

decomposed leaf and shoot litters will form more mineral associated SOC and less particulate 

SOC than root litters, and (3) that microbial carbon use efficiency is linked to the formation of 

mineral associated SOC. Using the data generated by testing these hypotheses, we investigated 

the degree to which measured differences in microbial carbon use efficiency can inform model 

predictions of litter decomposition and mineral associated SOC formation with the CORPSE 

model.  
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2.3 Methods 
 

To investigate our hypotheses, we performed a lab experiment comparing litter 

decomposition and SOC formation for corn and miscanthus bioenergy crops.  We incubated soils 

from each crop with corresponding 13C and 15N enriched aboveground and belowground litters. 

We traced litter C transfers through microbial decomposition and into mineral associated and 

particulate pools of SOC.  

Experimental design  

Our experimental design was 2 crops (corn, miscanthus) x 3 litter treatments 

(aboveground (AG) litter, belowground (BG) litter, no (NO) litter) x 8 reps for a total of 48 

microcosms. We measured soil and litter characteristics, total and litter-derived microbial 

respiration, total and litter-derived microbial biomass, and litter C incorporation into SOC 

fractions.  

Site description and soil sampling 

Soils for this experiment were collected from the University of Illinois Energy Farm 

(40°3′46″N, 88°11′46″W) located in Urbana, IL on October 10, 2019. A more detailed site 

description is published by Anderson-Teixeira, 2013. Briefly, 4 replicate plots of corn-corn-soy 

rotations and perennial miscanthus crops were established in 2008. These are managed in 

standard agricultural practices for each crop. Notable management differences between the crop 

systems include inorganic N fertilization, yearly tillage, and leaving crop residues in the field for 

corn plots, and no fertilization, no tillage, and aboveground biomass removal for miscanthus 

(Kantola et al., 2022). Prior to this establishment the land had been in row crops, primarily corn 

and soybean rotations, for over a century.  Soils were collected from the top 20 cm using a soil 
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auger from each replicate block for each crop (4 locations within plot transects). Soils were 

brought back to the lab in Morgantown where roots and stones were removed, and soils were 

sieved to 2 mm. Soils were processed within one week and stored at 5°C before beginning the 

soil incubation. Soils from replicate plots were mixed within crop type, and combined soil 

characteristics for each are shown in table 2.1. 

Isotopically enriched litter generation 

To meet our experimental objectives of tracing the fate of litter decomposition into soil 

organic matter fractions, 13C enriched litter was generated for corn and miscanthus. A plant 

growth chamber was constructed with automated CO2 inputs set at 8 atom percent 13CO2 to grow 

isotopically enriched corn and miscanthus plants.  

Rhizomatous miscanthus was grown in the chamber using standard potting soil mixed 

with vermiculite. Rhizomes were collected from established, 5 year old plots while still dormant 

in April 2019 from the University of Illinois Energy Farm, shipped to West Virginia, and planted 

in large tubs. Of the viable plants, a subset was re-planted and moved into the isotope labelling 

chamber when the average shoot height was 6-8”. Miscanthus was watered as needed with 15N 

enriched Johnson’s nutrient solution. 

Corn was grown hydroponically in the chamber in dilute, 15N enriched Johnson’s nutrient 

solution. Corn seedlings were started in the greenhouse from seeds sent from the University of 

Illinois Energy Farm. Seedlings were moved into the chamber when roots were long enough (~2-

3”) for the hydroponic setup, at which point the average shoot height was around 2”.  

Both crops grew in the chamber for 8 weeks, and then were drought-senesced before 

harvest. Aboveground and belowground plant material was separated, dried, and finely ground. 
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Litter characteristics for each are shown in table 2.1. Differences in isotopic enrichment of litters 

were accounted for in data analysis.  

Table 2. 1- Litter and soil traits 

 %C C:N Atom % 13C 

Corn Soil 1.43(0.20)a 11.4(0.32)a 1.10(4.1E-4)a 

Miscanthus Soil 1.72(0.15)a 12.2(0.37)a 1.10(2.2E-4)a 

Corn AG Litter 41.7(0.17)a 18.8(0.64)a 8.26(0.05)a 

Corn BG Litter 42.1(0.30)a 18.6(0.30)a 6.93(0.13)b 

Miscanthus AG Litter 42.1(0.06)a 31.7(0.83)b 7.24(0.07)b 

Miscanthus BG Litter 43.1(0.10)b 27.0(1.30)c 4.31(0.04)c 

Values shown are mean(SE). Letters denote p<0.05 differences within each category (i.e., litter 
C:N or soil atom % 13C) 
 

Incubations and soil respiration sampling  

Microcosm incubations were set up in wide mouth glass mason jars (930mL volume) 

fitted with rubber septa. Each microcosm had 50.0 ± 0.05g of dry soil from each crop adjusted to 

50% water-holding capacity (30% gravimetric water content) with deionized water and 250 ±1.5 

mg litter C from each litter type gently mixed throughout the soil. Microcosms were incubated at 

lab room temperature (~22 °C) in the dark until microbial respiration levelled off to less than 

10% of the initial respiration rates at 12 weeks.  

Microcosm headspace was sampled on days 1,3, and 7 and then weekly afterwards for 12 

weeks. Total headspace CO2 concentration was measured with an infrared gas analyzer (LI-6400, 

LI-Cor Biosciences Inc.) and δ13CO2 was measured with a Picarro G2201 (Picarro Inc.). The 

respiration data was partitioned to calculate the proportion of microbial respiration from added 

litter (Morrissey et al., 2017). At the end of each sampling, all jars were equilibrated with 
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ambient lab air using a vacuum line to facilitate complete gas exchange. Jars were weighed and 

any mass change was compensated for by adding deionized water to maintain soil moisture.  

Soil fractionation, isotope analysis, and litter C fate recovery 

At the end of the incubations, microcosms were destructively harvested and a subsample 

of soil was fractionated into the particulate SOC (light and heavy particulate SOC) and mineral 

associated SOC fractions as described in Lavallee et al., 2020. Briefly, the light fraction of 

particulate SOC is first separated through density floatation. Soil particles less dense than 

1.85g/mL form light particulate SOC. Soil denser than 1.85g/mL is then separated into the heavy 

fraction of particulate SOC and the silt or clay sized mineral associated SOC fraction by wet 

sieving. Soil particles greater than 53 um diameter form heavy particulate SOC. Soil particles 

that pass through the 53 um sieve form the mineral associated SOC fraction. Mass recovery is 

calculated as: 

eq.2.1:    𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 = !"#$%	'()%"*+!(%,	-./(#)2$,(34	'()%"*+!(%,	-./(#)25"6,)(!	(778*"(%,9	-./(#)
:6"%"(!	78"!	5(77	(#)

∗

100 

Samples with 100±5% mass recovery were accepted for further analysis.  

To trace the fate of the 13C enriched litter, soil fractions were analyzed for %C and δ 13C 

using a Thermo Fisher Delta V+ isotope ratio mass spectrometer interfaced with a Carlo Erba 

NC2500 Elemental Analyzer. This data was scaled up by the dry mass of soil in the microcosms 

to determine total litter C incorporation into each SOC pool. Due to incomplete recovery datasets 

during fractionation and elemental analyzer detector saturation for some samples, sample sizes 

vary for litter C recovery in soil pools (Table 2).  
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We recovered litter C in respiration, particulate SOC, and mineral associated SOC and 

report total particulate SOC as the sum of light and heavy particulate SOC components. Litter C 

in microbial biomass is omitted from calculations of litter C recovery because it cannot be 

separated from the soil organic matter pools. With the exception of miscanthus root treatments, 

there was good recovery of the enriched litter in microbial respiration, particulate C, and mineral 

associated C pools. Table 2.2 shows the total litter C recovered in each pool using endmember 

mixing models based on the measured isotopic signatures of the litter and the unincubated soil. 

To limit the effect of inaccurate initial litter 13C characterization, particularly for miscanthus 

belowground litters, all subsequent data is reported as the percentage of labelled litter C 

recovered in respiration and SOC pools.  

Table 2. 2- Added litter C recovered in respiration and SOC pools 

Crop Litter Sample 
Size 

 Respired Particulate 
SOC 

Mineral 
associated SOC 

Total 

Corn AG 5 58.9(2.5) a 16.9(3.2) a 29.3(3.9) a 105.0(1.5) a 

Corn BG 4 56.3(0.84) a 32.5(1.5) b 19.7(2.7) b 108.5(4.3) a 

Miscanthus AG 5 55.9(1.3) a 26.2(1.8) c 22.0(3.1) b 104.1(2.0) a 

Miscanthus BG 5 72.6(3.1) b 70.5(3.6) d 14.6(2.2) c 157.8(6.0) b 
Data shown is % Litter C recovered of added litter C mean(se) for crops corn and miscanthus and litter types 
aboveground (AG) and belowground (BG) 

 

Microbial biomass extractions and carbon use efficiency 

At the end of the incubations, a subsample of soil was used to extract microbial biomass 

C in chloroform slurry fumigations (Witt et al., 2000) followed by persulfate digestion (Doyle et 

al., 2004). Briefly, soils were extracted in potassium sulfate salt solutions with and without 

chloroform for 4hrs, decanted, and filtered through a Whatman #3 filter. Next, filtered solutions 

underwent persulfate digestions where dissolved C was oxidized to CO2 and the headspace CO2 
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and δ 13CO2 was measured on a Picarro G2201. Microbial biomass C and 13C was calculated as 

the difference between chloroform-fumigated and non-fumigated samples scaled by 2.64 to 

correct for extraction efficiency (Vance et al., 1987).  

A proxy for Carbon Use Efficiency (CUE) was measured using stable isotope tracing as 

the proportion of 13C incorporated into microbial biomass out of what is taken up, or the 13C in 

biomass and in respiration. Here, endpoint measurements of microbial biomass and endpoint 

respiration measurements from the last week of data were used. Thus, CUE was calculated as: 

eq.2.2: 𝐶𝑈𝐸 = 	 !"%%,)	/	"6	5"*)8;"(!	;"85(77	
!"%%,)	/	"6	5"*)8;"(!	;"85(772	!"%%,)	/	"6	!(7%	<,,=	8>	),7'")(%"86

 

Using endpoint (1 week) instead of cumulative (12 week) respiration reflects a more rapid 

average microbial turnover rate, which we believe is supported for two main reasons. The first of 

these is that estimates of microbial turnover vary widely, from 333 days to 21 hours (Koch et al., 

2018), with estimated averages on the scale of 1-2 weeks. CUE is known to decrease with long 

term incubations because of turnover, although we acknowledge this may not reflect the entire 

biomass pool (Geyer et al., 2019).  Secondly, although evidence suggests that some plant-derived 

C can directly sorb to soil minerals (Kramer et al., 2012; Sanderman et al., 2014; Angst et al., 

2021), much of the organic matter in this fraction is thought to preferentially form from 

microbial necromass and products (Bradford et al., 2013; Kallenbach et al., 2016), particularly in 

zones of high microbial activity (Sokol & Bradford, 2019). As such, we expect turnover rates to 

be much more rapid than 12 weeks in our microcosms due to the observed accumulation of litter 

C in mineral associated SOC pools.   

Statistical analyses 
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To determine the extent to which treatments differed in microbial decomposition traits 

and the fate of litter C in each pool, we performed a two-way analysis of variance (ANOVA) in 

R version 3.5.1 (Copyright © 2018 The R Foundation for Statistical Computing). We used crop 

(corn, miscanthus) and litter treatment (aboveground, belowground, no litter) as factors. Post-hoc 

comparisons were also made across treatments using the Tukey HSD test.  

Microbial modelling: incorporating measured microbial traits as parameters 

The aim of this exercise was to investigate the degree to which data-based microbial traits 

could facilitate model predictions of total decomposition and the fate of litter C in SOC pools. 

We simulated our microcosm experiment with the CORPSE model (Sulman et al., 2014). 

CORPSE (Carbon, Organisms, Rhizosphere, and Protection in the Soil Environment) predicts 

microbially-controlled decomposition of unprotected SOC and formation of physically protected 

SOC. Here, unprotected SOC is analogous to our particulate SOC, and protected SOC is 

analogous to mineral associated SOC. SOC is split between chemical types that represent 

recalcitrant, labile, and microbial necromass compounds, with preferential microbial uptake of 

labile compounds and the fastest protection rate for microbial necromass.  

We adapted the CORPSE model to simulate lab microcosms with a bulk soil pool and 

added litter C pool. We initialized the bulk soil pool using data simulated by FUN-BioCROP 

(Juice et al., 2022) from the same experimental plots and soil collection date. The model was not 

spun up to equilibrium, as the microcosms did not have any continuing C inputs to balance soil 

respiration so equilibrium conditions would only exist for C-depleted soil. Litter addition pools 

were constructed using both our measured litter chemistry and published lignin:N ratios for corn 

and miscanthus litters (Abiven et al., 2011; Meineke et al., 2014).  We then performed a nested 

suite of model experiments where we (1) modeled plant trait differences, (2) increased protection 
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and turnover to capture magnitude of treatment responses, and (3) incorporated our CUE data to 

capture differences between treatments. 

First, we tested the ability of CORPSE to represent measured litter incorporation into 

SOC pools by only modelling plant trait differences and using the original microbial 

decomposition parameters. These parameters reflect in-situ conditions parameterized for 

temperate forest ecosystems and were kept the same across all treatments. The parameter inputs 

for this model run are listed in SI table 1 as Baseline CORPSE.  

Then, we adapted the model to capture the magnitude of the average response of the 

incubation experiments. Protection rates for fast and necro pools of litter C were increased to 

reflect the greater potential for mixed-in litter C derived compounds to sorb to exposed clay and 

mineral surfaces in sieved soil. Turnover rates for microbial biomass were increased to better 

reflect a 1-2 week turnover in soil incubations (Koch et al., 2018; Wang et al., 2021). In addition, 

we removed microbial N limitation to reflect the lack of competition with plant uptake. These 

parameters were kept the same across all treatments. The parameter inputs for this model run are 

listed in SI table 1 as Microcosm CORPSE. 

Finally, we used our experimental data to constrain the CUE parameter in CORPSE. 

Here, we tested the ability of CORPSE to represent measured SOC pools when CUE differed 

across the treatments. Our CUE data best represents relative differences across treatments and as 

such we used it scale the CUE in the model for each treatment. To do this, treatment specific 

CUE parameters were generated by scaling the baseline CUE parameter by the relative 

differences across treatments so that the average CUE of all the treatments remained at the 

baseline value (equation in SI). The parameter inputs for this model run are listed in SI table 1 as 

CUE CORPSE.  
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Model performance for each run was assessed by comparing the percent error of total litter C 

fluxes out of the soil (modeled CO2 vs. measured respiration) and the percent error of litter C 

transfers into mineral associated SOC pools. 
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2.4 RESULTS 

Litter C decomposition: balance of litter C lost to respiration and remaining in SOC 

The proportion of litter C lost to respiration or remaining in soil organic matter varied by 

crop and litter treatment. Belowground (BG) litters exhibited less respiration loss and greater 

SOC remaining than aboveground (AG) litters (Figure 2.2a; p=0.013), with the lowest average 

percent of recovered litter C respired for miscanthus BG litter (46.1%), followed by corn BG 

litter (52.1%), miscanthus AG litter (53.9%), and corn AG litter (56.1%) (Figure 2.2b).  

Microbial respiration of litter C was lower for miscanthus than corn litters, especially at 

earlier stages of decomposition. Towards the end of the incubation, respiration from corn litters 

levelled off to a greater degree while miscanthus litter respiration continued such that total litter 

C lost to respiration or remaining in SOC was similar across the crops and only marginally 

significant (Figure 2.2b; p=0.059).  
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Fig. 2.2: Litter C lost as respiration varied by crop and litter type, with (a) litter C remaining in 
SOC shown as the inverse of final timepoint respiration and (b) cumulative litter respired over 
the course of the incubation 

 

Litter C transformation into particulate and mineral associated SOC pools 

Overall, our results show that the transfer of litter C into particulate and mineral 

associated pools of SOC depended on crop type with more corn litter recovered in mineral 

associated SOC and less in particulate SOC than miscanthus litters. 

More enriched litter C from miscanthus remained in particulate SOC compared to corn 

litter C (Figure 2.3a, p<0.001). Enriched BG litter also remained in particulate SOC to a greater 

extent than AG litters (Figure 2.3a, p<0.001). Miscanthus BG litter had the highest recovery in 

particulate SOC at 44.6%, followed by corn BG litter (30.0%), miscanthus AG litter (25.2%), 

and corn AG litter (16.0%) (Figure 2.3a).  

Similarly, more enriched litter C from corn formed mineral associated SOC than 

miscanthus litter C (Figure 2.3b, p <0.01). There was also greater recovery of enriched AG litter 

C in mineral associated SOC than BG litter C (Figure 2.3b, p <0.001). Corn AG litter had the 

highest recovery in mineral associated SOC at 28.0%, followed by miscanthus AG litter at 

21.0%, corn BG litter at 18.0%, and miscanthus BG litter at 9.3% (Figure 2.3b).  
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Fig. 2. 3: Litter C incorporated into (a) particulate SOC and (b) mineral associated SOC pools 

 

Crop and litter type influence microbial carbon use efficiency 

Microbial carbon use efficiency (CUE, equation 1) also differed by crop community and 

by added litter type. CUE was significantly higher for corn than miscanthus crops (p<0.001) and 

for AG than BG litters (p<0.001). Corn AG litter promoted the highest average CUE values at 

0.41, followed by corn BG litter (0.33), miscanthus AG litter (0.31), and miscanthus BG litter 

(0.17) (Figure 2.4).   
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Fig. 2.4: Microbial CUE measured at the final timepoint 

 

Modeled litter C fate is sensitive to microbial traits  

When we simulated litter decomposition in the microcosms, we found that the CORPSE 

model approximately captured the balance of total C remaining in SOC vs. C lost to respiration 

(Figure 2.5a). However, the model could not represent the observed distribution between mineral 

associated and particulate SOC and underpredicted SOC protection in the lab (Figure 2.5b). In 
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the model, constrained microbial turnover and mineral protection are more representative of field 

processes and couldn’t capture accelerated lab incubation processes.  

To better represent processes in the lab, we modified model parameters influencing 

microbial turnover and protection rate of simple compounds and microbial necromass. Increasing 

turnover rates better reflected observations of more rapid microbial turnover in the lab and 

increasing protection better reflected the ability of simple carbon compounds to sorb to available 

mineral surfaces of sieved and homogenized soil. With these adjustments, the average modeled 

litter C protection for all treatments aligned with the average observations of litter C in mineral 

associated SOC. However, the model could not represent differences across the treatments and 

modeled predictions of litter C protection fell within a narrow range from 18.9-20.2%. Although 

these differences were minor, the model predicted the opposite trend as observed with highest 

litter C in mineral associated SOC for miscanthus belowground litters.  

Finally, we incorporated our measurements of microbial differences in carbon use 

efficiency across the treatments. In the simulations with data-based parameters, model 

representations of litter C in microbial respiration slightly improved (Figure 2.5a) and modeled 

litter C protection became more representative of observations across the treatments. (Figure 

2.5b). 



     39 
 

 

Fig. 2.5: Litter C that is (a) respired or (b) incorporated into  mineral associated SOC in the lab 
(boxplots) vs. CORPSE model estimates using baseline parameters (blue) or data-based 
parameters (gold).  
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2.5 DISCUSSION:  

 

Understanding how crops differ in particulate and mineral associated SOC is necessary to 

evaluate the potential for soils to serve as a C sink or source in bioenergy systems. Here, we 

quantified differences between bioenergy crops in the fate of their litters in soil. We demonstrate 

that crops differ significantly in the distribution of this C between SOC pools (Figure 2.3) with 

corn litter C forming more mineral associated SOC and less particulate SOC than miscanthus 

litter C. We also found that microbial carbon use efficiency mirrored these differences in the fate 

of corn and miscanthus litters (Figure 2.4). Finally, when we used our data to parameterize 

CORPSE, we found that the empirically constrained microbial decomposition parameters enable 

the model to better represent the observed differences in SOC pools (Figure 2.5). Overall, these 

results suggest that differences in litter chemistry between corn and miscanthus shape microbial 

decomposition traits.  Importantly, this interaction appears to control the extent to which the litter 

of different bioenergy crops enters the particulate vs. mineral associated SOC pools and whether 

this new soil C is stable or vulnerable to future loss.  

Our results indicate that the balance of litter C in the particulate vs. mineral associated 

SOC pools depends on crop type. Lower C:N corn litter inputs to particulate SOC had more 

recovery in mineral associated SOC at the end of the incubation compared to miscanthus litter C 

(Figure 2.3). By contrast, our results show that higher C:N litter from miscanthus preferentially 

remains in particulate SOC as undecomposed or partially decomposed litter fragments (Figure 

2.3). This pattern supports our first hypothesis and aligns with recent theory (Lehmann & Kleber, 

2015; Cotrufo et al., 2013) as well as our conceptual model (Figure 2.1). In addition, these 

differences in the fate of the litters are consequential because mineral associated SOC is 
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generally understood to persist longer than particulate SOC (Six et al., 2002; Kögel-Knabner et 

al., 2008; many others) while particulate SOC is potentially vulnerable to future loss with soil 

warming lowering activation energy barriers and enhancing enzyme activity (Conant et al., 2011; 

Benbi et al., 2014 but see Robinson et al., 2020). However, particulate SOC can accumulate with 

no apparent upper limit, while mineral associated SOC has been observed to saturate (Stewart et 

al., 2009; Cotrufo et al., 2019). With the advent of new feedstocks, particularly genetically 

modified versions, these results highlight the need to characterize the impact of new feedstocks 

on total soil C as well as the balance of particulate vs. mineral associated SOC. 

Supporting hypothesis 2, we found that root litters formed less mineral associated SOC 

and more particulate SOC than leaf and shoot litters for both crops in our experiment.  This 

pattern aligns with similar findings of greater mineral associated SOC formation from shoots vs. 

roots (Lavallee et al., 2018; Almeida et al., 2021) and likely reflects differences in the chemical 

composition and structure of roots vs. aboveground tissues. Root tissues tend to exhibit chemical 

characteristics that correlate with recalcitrance and the formation of particulate SOC (Kögel-

Knabner, 2002; Geldner et al., 2013), including the presence of a casparian strip and higher 

concentrations of suberin or lignin (Hose et al., 2001; Rasse et al., 2005). In the field, this pattern 

may be enhanced due to feedstocks that promote root aggregation and the production of deep 

roots that enter soils with low microbial activity (Six et al., 2000; Hicks Pries et al., 2018).  

Opposingly, leaf and shoot litters in our incubation preferentially entered the mineral associated 

SOC pool (Figure 2.3b) owing to faster decomposition and higher microbial CUE relative to 

roots (Figure 2.4).  In the field, leaving more aboveground residues and switching to no-till or 

reduced till may enhance the accumulation of mineral associated SOC in bioenergy systems. 

Overall, these results showing different fates for root and aboveground litters highlight the need 
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for models to have representations of root litter decomposition that are distinct from 

aboveground litters.  

The correlation between CUE and mineral-associated SOC observed here (SI Figure 3) 

supports hypothesis 3 and may reflect important characteristics of our soils, including microbial 

communities, soil texture, and a history of C depletion. On the microbial side, functional 

differences in microbial communities between corn and miscanthus may have strengthened this 

link. Soil microbial communities have been observed to differ between corn and miscanthus 

agriculture (Mao et al., 2013; Cattaneo et al., 2014; Zhu et al., 2018; McGowan et al., 2019), but 

limited data exists that links microbial community structure with functional differences in how 

microbes alter soil C in bioenergy systems. Thus, directly investigating the function of different 

bioenergy soil microbial communities is a critical future research need. On the soil side, the 

availability of soil mineral surfaces controls the extent to which microbially-derived compounds 

can be protected from continuing uptake and recycling in mineral associated SOC (Castellano et 

al., 2015). The corn and miscanthus soils we used likely have a high capacity to form mineral 

associated SOC owing to a high clay content (~22%; Smith et al., 2013) and a history of 

intensive tillage. Our observations of rapid C accumulation in mineral associated SOC indicate 

that our soils remain below the maximum C saturation threshold.  Given the prevalence of 

regions with similar land use history, there may remain considerable potential to enhance SOC 

using perennial bioenergy crops (Hudiburg et al., 2016; Bell et al., 2020; Ledo et al., 2020 but 

see Schlesinger & Amundson, 2019; Anderson et al., 2019 for contrasting opinions).  

Collectively, our results indicate that miscanthus forms soil C differently than corn. 

Although we observe that corn has the potential in the lab to form more mineral associated SOC 

per gram litter C input, differences in the management and biology of these feedstocks in the 
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field likely limit the ability of corn to sequester soil C. By contrast, there are multiple plausible 

mechanisms for the potential we observed for miscanthus to form particulate and mineral 

associated SOC in the lab to be realized in the field.  First, management differences between corn 

and miscanthus play a significant role in SOC formation and retention. For example, perennial 

miscanthus systems benefit from reduced disturbance compared with yearly planting and tillage 

regimes that destabilize SOC (Six et al., 1999). Thus, our lab observations of litter C 

incorporation into mineral associated SOC may not be realized over longer timespans in the field 

for corn systems. Second, miscanthus production leads to more plant inputs to soils each year 

(Heaton et al., 2010). More miscanthus C inputs not only could enhance particulate SOC but also 

could compensate for lower microbial efficiency or even promote mineral associated SOC 

formation (Witzgall et al., 2021). Third, miscanthus produces more extensive root systems than 

corn (Dohleman & Long, 2009), which may further drive SOC retention through a myriad of 

mechanisms (Poirier et al., 2018). Deeper and more extensive root systems lead to the deposition 

of root-derived C into soils with slower microbial processing and SOC turnover (Hicks Pries et 

al., 2018). Roots can also facilitate SOC retention through protection from decomposers within 

aggregates (Six et al., 2000) and through root exudation which promotes efficient microbial 

growth and mineral associated SOC formation (Sokol & Bradford, 2019). Although only 

measured at a single timepoint, our field observations of SOC demonstrate the potential of 

miscanthus to maintain mineral associated SOC and build particulate SOC stocks (SI Figure 1). 

Importantly, transitioning to crops that can more effectively build particulate and mineral 

associated SOC could help meet the critical need to rapidly accumulate SOC, even in less 

persistent forms (Matthews et al., 2022).   
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While there are some artifacts associated with our use of soil incubations, these 

incubation experiments are still useful for identifying mechanisms that can inform our predictive 

understanding of how bioenergy crops impact SOC stabilization.  The duration of an incubation 

experiment can affect the magnitude of litter that remains in soil or is respired. We acknowledge 

that there is the potential for processes like abiotic sorption or microbial recycling to alter the 

fate of litter C in long-term incubations. Moreover, we acknowledge that our 12-week incubation 

does not reflect soil C cycling processes that operate over decades or centuries.  Given the 

stabilization of respiration (Figure 2.2b), our incubation is likely more indicative of intermediate 

litter decay.  However, our recovery of added litter C in mineral associated SOC ranged from 5% 

to 40%, which suggests that our incubation was long enough to test the mechanisms in our 

conceptual model and supports recent empirical evidence that mineral associated SOC is more 

dynamic than previously thought (e.g., Keiluweit et al., 2015; Jilling et al., 2018, 2021; Fossum 

et al., 2022). We also note that there is the potential for differences we observed between our 

treatments in the ratio of particulate to mineral associated SOC formation (Figure 2.3) could 

change over time.  A shift in these ratios is unlikely though because it would require a dramatic 

shift in microbial carbon use efficiency and in the proportion of mineral associated SOC formed 

vs CO2 respired from the litter inputs (SI Figure 2). In support, observational evidence shows 

that litters that initially decompose rapidly lead to a higher mineral associated to particulate SOC 

ratio over ~100 years of ecosystem development than those that decompose slowly (Craig et al., 

2018).   

In addition to the length of the incubation, we also acknowledge that how we measured 

and modeled CUE could influence the interpretation of our results and our modeling efforts. On 

the measurements side, using the endpoint and not cumulative measurements of microbial 
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biomass and respiration to calculate a proxy for CUE relies on assumptions of rapid microbial 

turnover (~ 1 week vs. 3 months) that we were unable to directly measure. However, we 

emphasize the utility of this trait as a comparative rather than absolute value.  The significant 

correlation between microbial CUE and mineral associated SOC (SI Figure 3) supports the 

theory that microbial efficiency drives mineral stabilization (Cotrufo et al., 2013).  On the 

modeling side,  we acknowledge that measurements of microbial decomposition, microbial CUE, 

and mineral associated SOC formation likely reflect optimal or potential rates rather than 

realistic processes in the field.  Rather than reducing the applicability of our work, potential rates 

are often easier to integrate into microbial models. For example, in the COPRSE model, 

microbial parameters (e.g.,, maximum enzymatic decomposition rates, CUE) generally represent 

theoretical maximums which are scaled down by influential factors like temperature, soil 

moisture, and soil porosity (Sulman et al., 2014). Despite these limitations, our work lays the 

foundation for future empirical and modelling efforts to investigate how fluctuations in 

microclimate and living roots and mycorrhizal fungi impact the formation of new SOC in situ for 

bioenergy cultivation.  

Soil biogeochemical models represent plant traits, but often lack similar detail on how 

plant traits influence microbial traits that control soil organic matter dynamics (Kallenbach et al., 

2016; Domeignoz-Horta et al., 2021). Even models that explicitly represent microbial traits often 

rely on tuned or poorly constrained microbial parameters (Craig et al., 2021). Here, our model 

exercise shows that lab measurements of microbial carbon use efficiency have the potential to 

constrain model parameters and improve representations of the distribution of new C inputs 

between particulate and mineral associated SOC. When we attempted to capture our incubation 

results with only plant litter chemistry differences, the model failed to capture the distribution of 
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litter C that entered particulate vs. mineral associated SOC (Figure 2.5b, baseline parameters). 

By contrast, when we updated parameters that are directly or indirectly controlled by microbial 

traits (i.e., CUE, turnover, protection rate), the model better captured the entire fate of the litter 

(Figure 2.5b, data-based parameters). However, we note that only CUE was constrained by direct 

measurements.  The finding that we also needed to adjust parameters that controlled the 

protection rate and microbial turnover highlight important avenues for future empirical research 

to inform models.  For example, our assumption that microbial turnover was the same across 

treatments shows a clear need for empirical efforts to examine how turnover varies across 

gradients in soil chemistry, microbial communities, and plant communities due to the relative 

importance of this trait (Sokol et al., 2022). While limited, our modeling exercise indicates that 

linking measurements of microbial traits with SOC formation in the lab and in the field is critical 

to improving our predictive understanding of the potential for bioenergy soils to sequester C.  

Collectively, our results suggest that bioenergy crops differ in the mechanisms by which 

their litters form new SOC, which can inform ecosystem model projections of how, why, and to 

what extent bioenergy crops can slow climate change. Importantly, we show a mechanistic link 

between plant litter quality (i.e., C:N ratio, lignin content), microbial carbon use efficiency, and 

mineral associated SOC formation. Corn litters decomposed faster, led to higher microbial CUE, 

and formed more mineral associated SOC than miscanthus litters.  While this result may suggest 

that corn cultivation leads to more stable mineral associated SOC than miscanthus cultivation; 

the lack of tillage, high root C inputs, and the ability of miscanthus inputs to form substantial 

particulate SOC (Figure 2.3a), suggest that miscanthus cultivation can be an effective way to 

build overall soil C stocks.  As such, efforts that focus solely on building mineral associated SOC 
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neglect the ability of perennial bioenergy grasses to rapidly build particulate SOC and slow 

climate change. 
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Chapter 3: Roots selectively decompose litter to acquire nitrogen and build new soil carbon 
 
 

Reprinted from: J. Ridgeway, J. Kane, H. Starcher, E.M. Morrissey, and E.R. Brzostek. Roots 
selectively decompose litter to acquire nitrogen and build new soil carbon. In press, Ecology 
Letters  
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3.1 Abstract: 

Plant-microbe interactions in the rhizosphere shape carbon and nitrogen cycling in soil organic 

matter (SOM). However, there is conflicting evidence on whether these interactions lead to a net 

loss or increase of SOM. In part, this conflict is driven by uncertainty in how living roots and 

microbes alter SOM formation or loss in the field.  To address these uncertainties, we traced the 

fate of isotopically labeled litter into SOM using root and fungal ingrowth cores incubated in a 

Miscanthus x giganteus field. Roots stimulated litter decomposition, but balanced this loss by 

transferring carbon into more persistent, aggregate associated SOM. Further, roots selectively 

mobilized nitrogen from litter without additional carbon release. Overall, our fundings suggest 

that roots can efficiently mine nitrogen and build persistent soil carbon.  
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3.2 Introduction: 

Managing soils in agricultural systems to sequester carbon (C) in soil organic matter (SOM) 

may be a powerful approach to offset anthropogenic C emissions (Lal, 2004). Soils are the 

largest terrestrial C pool, and experimental manipulations such as changing vegetation type, 

increasing organic inputs, or altering management practices demonstrate the potential for 

significant and rapid SOM accumulation (Minasny et al., 2017; Paustian et al., 2016). However, 

there is a high degree of uncertainty in understanding, predicting, and optimizing soil C 

accumulation (Sulman et al., 2018). Much of this uncertainty arises because plant roots and soil 

microbes, the active drivers of soil biogeochemical cycling, both build and deplete SOM through 

simultaneously occurring processes. As such, our ability to optimize soil C sequestration relies 

on improving our understanding of how roots and microbes drive the transfer of new litter C 

inputs into SOM.  

 

As per the current understanding of SOM formation, litter inputs are decomposed into 

simpler compounds that can be physically protected from microbial decomposers by occlusion in 

soil aggregates or sorption to mineral surfaces (Lehmann & Kleber, 2015). As such, SOM is 

often delineated into three main pools (Fig. 3.1a): undecomposed or partially-decomposed 

particulate organic matter (here, light POM), aggregate-occluded SOM (here, heavy POM), and 

mineral associated organic matter (MAOM) (Lavallee et al., 2020). Light POM accumulation 

depends upon the balance between litter inputs to soil and litter decomposition, and can 

accumulate with no apparent upper limit but is also vulnerable to factors like warming that 

enhance decomposition rates (Benbi et al., 2014; Cotrufo et al., 2019). Heavy POM is 

operationally separated from light POM by density fractionation and is linked with stable soil 
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aggregates (Lavallee et al., 2020). Accumulation in this pool may saturate and is vulnerable to 

factors like soil disturbance and land use change (Bronick & Lal, 2005). MAOM is generally 

considered to be the most persistent or protected form of SOM (Cotrufo et al., 2013; Liang et al., 

2017). However, optimizing MAOM accumulation may only be practical in soils like those in 

degraded agricultural ecosystems that have lost nearly 50% of their C since ploughing the prairie 

(Stockmann et al., 2015), as MAOM accumulation appears to saturate (Cotrufo et al., 2019; but 

see Georgiou et al., 2022). To manage ecosystems for soil C sequestration, it is critical to 

understand what drives the transfer of new litter inputs between these SOM pools to enhance our 

predictive understanding of how much soil C can accumulate and how persistent this soil C may 

be in a changing climate.  

 

Fig. 3. 1a: Litter inputs join SOM as light POM, which is largely composed of undecomposed 
litter fragments. As decomposition progresses, litter-derived SOM can more easily become 
incorporated into aggregates in heavy POM or microbial decomposition products and necromass 
can preferentially sorb to soil mineral surfaces as MAOM. 3.1b: Roots and root-associated 
fungal symbionts can enhance both retention or loss of litter in light POM (top), heavy POM 
(middle), and MAOM (bottom) pools.  
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Living roots and their associated fungi alter SOM formation by sending C-rich exudates to 

the rhizosphere to enhance decomposition and acquire N (Bais et al., 2006; Grayston et al., 

1997).  However, a high degree of uncertainty remains in whether this increases or decreases soil 

C accumulation. In Figure 3.1b, we diagram potential hypotheses for how roots could alter litter 

loss from light POM and the accumulation of new heavy POM and MAOM through distinct 

mechanisms. First, root stimulation of microbial decomposition to mineralize soil N can increase 

the loss of unprotected light POM through the rhizosphere priming effect (Cheng et al., 2014). 

However, there is also evidence that roots and symbiotic fungi can outcompete saprotrophic 

microbes for resources like water and nutrients leading to the suppression of decomposition 

(Fernandez & Kennedy, 2016). Second, as litter inputs are transferred into more protected heavy 

POM, root ingrowth has the potential to both invade aggregates and increase the formation rate 

of new aggregates (Six, Paustian, et al., 2000). Finally, roots can enhance new MAOM formation 

by increasing the efficiency of microbial litter decomposition, resulting in greater microbial 

biomass production and the formation of microbial necromass (Liang et al., 2017). This 

necromass can associate with mineral surfaces and is the main precursor to MAOM in grassland 

ecosystems (Angst et al., 2021). However, roots may also deplete new, litter-derived MAOM as 

recent evidence suggests that roots can actively mine MAOM for nutrients (Jilling et al., 2021) 

and that root exudate compounds can displace MAOM from soil minerals (Keiluweit et al., 

2015). As such, predicting whether roots will drive a net gain or loss of soil C is hindered by 

uncertainty in how roots impact SOM formation in these different pools.  

  

The extent to which roots and mycorrhizal fungi facilitate SOM formation or loss in 

agricultural ecosystems may be modulated by fertilization. For example, some N-limited plants 
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can dynamically shift C allocation belowground to root exudation and mycorrhizal symbionts to 

stimulate microbial decomposition in the rhizosphere and increase N acquisition (Brzostek et al., 

2014; Kane et al., 2022). When N limitation is alleviated by fertilization, plants can also reduce 

belowground C allocation, suppressing SOM decomposition (Eastman et al., 2021; Frey et al., 

2014). The degree to which fertilization alters SOM cycling also depends upon the activity of 

saprotrophic soil microbial decomposers. In contrast to plants, soil microbes are primarily 

understood to be energy, or carbon, limited (Soong et al., 2020). As such, organic fertilizer that 

contains C and N can prime microbial activity and decomposition relative to inorganic N 

fertilizer (Cui et al., 2022; Ndung’u et al., 2021). However, uncertainty remains in the extent to 

which the priming of microbial activity leads to net soil C losses by enhancing decomposition or 

net C gains by promoting the production of microbial necromass that can form MAOM. 

Collectively, the effect of fertilization on SOM formation depends upon the strength of plant-

microbe interactions and the form of fertilizer applied, but the magnitude of this effect is 

uncertain.  

 

Given the uncertainty above, our objectives were to: 1) determine how living roots and 

symbiotic fungi influence litter decomposition and SOM formation in distinct SOM pools 

and 2) assess how microbially-driven SOM formation is altered by fertilization. For the first 

objective, we assayed the net effect of the opposing hypotheses illustrated in Figure 3.1.  For the 

second objective, we tested two hypotheses: (1) the effect of living roots on SOM formation 

would be strongest in unfertilized soil and (2) organic fertilizer would accelerate microbial 

decomposition and SOM cycling to a greater extent than inorganic fertilizer (SI Figure 4). To 

meet our objectives, we measured the effects of living roots and fungi on new SOM formation 
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from isotopically enriched litter over one growing season. We incubated litter inputs in soil cores 

that were open to roots and fungal ingrowth (root), that excluded roots but were open to fungal 

ingrowth (fungal), or that excluded both roots and fungi (none) to quantify the effect of living 

roots and fungi on new SOM formation (SI Fig. 5). We installed ingrowth cores in Miscanthus x 

giganteus (herein miscanthus) plots with different nutrient treatments to investigate the effect of 

soil N and C availability on how roots, mycorrhizal fungi, and saprotrophic microbes drive the 

transfer of litter C and N into light POM, heavy POM, and MAOM.  We used the bioenergy 

feedstock crop miscanthus as a study system because it produces extensive root systems to 

overcome nutrient limitation (Dohleman & Long, 2009; Heaton et al., 2008) and because 

miscanthus agriculture typically increases SOM levels (Harris et al., 2015). Further, because 

bioenergy offers the potential to become a C neutral or C negative alternative to fossil fuels, it is 

particularly critical to investigate what drives SOM accumulation in these ecosystems (Hanssen 

et al., 2020).  
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3.3 Materials and Methods 

Site description and location selection  

 This experiment was performed at the West Virginia University (WVU) Animal Sciences 

farm in Morgantown, West Virginia (39°40'10.2"N, 79°55'53.6"W).  This site is located next to 

the former Baker’s Ridge Mine Site (National Mine Repository 304559) and is managed as a 

cool-season grass pasture (detailed site description available in Kane et al. 2023, in review). 

Miscanthus plots were established in 2019 using a fully randomized block design with 4 

fertilization treatments replicated 8 times for a total of 32 plots (Kane et al. 2023, in review). 

Each plot is 5 m2 and was established by planting 25 miscanthus rhizomes using 1 m2 grid 

spacing (site map, SI Fig. 6a). Plots are fertilized yearly with treatments that include no 

fertilization, low-level inorganic N additions (28.5 kg N/ha), high-level inorganic N additions 

(57 kg N/ha), and organic fertilization (local manure, ~57 kg N/ha). Due to logistical constraints 

for sample size, we utilized the control, high-level inorganic, and organic fertilization treatments 

for this experiment.   

 

Experimental design 

 We incubated isotopically enriched litter in soil ingrowth cores and traced the fate of 

litter C and N into SOM over one growing season. Our experimental design included 3 levels of 

root/hyphal ingrowth: root and fungal ingrowth (root), root exclusion and fungal ingrowth 

(fungal), and root and fungal exclusion (none) and 3 fertilization treatments: no fertilization 

(control), high-level inorganic fertilization (high N), or organic fertilization (organic). We 

randomly selected 5 plots from each fertilization treatment from those which had successful 

rhizome establishment during initial plot development. Within each plot, we replicated each 
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ingrowth core treatment twice, where we installed ingrowth cores by 2 of the plot’s 25 plants (SI 

Fig. 6b). This resulted in a total of 90 experimental ingrowth cores (3 cores x 3 fertilization 

treatments x 5 plots x 2 locations/plot).  

 

Ingrowth core construction and installation 

Ingrowth core treatments included root and fungal ingrowth (root), root exclusion and 

fungal ingrowth (fungal), and root and fungal exclusion (none) (SI Fig. 5). Each ingrowth core 

was constructed with 10 cm long, 4.5 cm diameter rigid plastic 5 mm mesh tubing. The top 2.5 

cm of each core was inserted into 5cm long PVC collars and attached with elastic sealant. Mesh 

bases were sewn onto each core with 12 lb. nylon fishing line and each core was wrapped with 

mesh that was glued on with 100% silicon adhesive. Root and fungal ingrowth (root) cores were 

constructed with 1.5 mm polyacrylic mesh that allowed fine root ingrowth. Root exclusion 

(fungal and none) cores were constructed with 50 um nylon mesh that was too fine for root 

ingrowth but allowed hyphal ingrowth (Phillips et al., 2012). Root and fungal exclusion (none) 

cores were constructed with the same root exclusion mesh and were also twisted once or twice a 

week to break off hyphae and prevent significant fungal ingrowth and establishment (SI Fig. 5). 

Ingrowth cores were prepared in the lab using isotopically enriched litter amendments 

and soil harvested from the corresponding plot. In April 2021, soils from the top 10 cm were 

collected from each future ingrowth core location and were brought back to the lab where they 

were sieved to 2 mm and stored at 5°C when not being processed. Soils were homogenized 

within each nutrient treatment (control, high N, or organic) and were mixed with sand that had 

been acid washed and separated from particles less than 53 um diameter in a 9:1 soil:sand ratio 

to prevent soil compaction. 250 mg of isotopically enriched corn leaf litter, generated as 
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described in Ridgeway et al., 2022, was used as the substrate in each ingrowth core. This 

addition rate was selected to be lower than litter production at the site to limit experimental 

artefacts from introducing a new decomposition substrate and high enough to ensure that the 13C 

inputs were traceable into SOM pools. This litter had a %C of 41.7% (±0.17%), C:N of 18.8 

(±0.64), δ 13C of 7020 (±49), and δ 15N of 34,800 (±310) and was dried and coarsely ground. 

Each core was filled with corresponding soil, and the labeled litter was gently mixed in to the top 

2 cm.  

Within 5 days of initial soil collection, the assembled cores were transported to the field 

location where they were installed into the top 10 cm of soil in each corresponding treatment plot 

(SI Fig. 6a). This occurred in April 2021 when miscanthus shoots were beginning to emerge. 

Within each plot, ingrowth cores were installed 8” north of visibly emerged miscanthus shoots 

(SI Fig. 6b). After 20 weeks, the ingrowth cores were carefully cut from the soil in September 

2021 and were brought back to the lab for processing. Although each treatment combination 

began with a planned replicate of n=10, two cores were removed from analysis due to animal 

interference. Additionally, five cores intended for the root exclusion fungal ingrowth treatment 

(fungal) were invaded by roots. After determining that these cores did not significantly vary from 

the rest of the root ingrowth (root) cores, these were also analyzed as root ingrowth (root) cores. 

Given these adjustments, the total replication ranged from 5-15 for each treatment (provided in 

SI table 2). 

  

Soil fractionation 

 Ingrowth cores were destructively harvested in September and litter C and N inputs were 

traced into SOM pools (Ridgeway et al., 2022). A 5 g subsample of dry soil from each core was 
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separated into light POM, heavy POM, and MAOM by density and size fractionation as 

described in Lavallee et al. (2020). In brief, the light POM was separated through density 

floatation in 1.85 g/mL sodium polytungstate salt solution. The remaining soil was separated into 

heavy POM and MAOM fractions by size separation where the MAOM fraction passes through a 

53 um sieve.  

Tracing litter C and N fate 

 To trace the fate of 13C and 15N litter amendments, the soil fractions were analyzed for 

%C, %N, δ 13C, and δ 15N using a Thermo Fisher Delta V+ isotope ratio mass spectrometer 

interfaced with a Carlo Erba NC2500 Elemental Analyzer. First, the proportion of litter-derived 

C or N in each soil fraction (flitter) was determined with two endmember mixing models (eq. 1) 

(Derrien & Amelung, 2011; Poeplau et al., 2018). Here, the C and N isotope signatures were 

measured from the enriched litter substrate and each of the 3 SOM fractions from control, high 

N, and organic soils.  

eq. 3.1:  flitter = 	7(5'!,	"78%8',	7"#6(%+),?-.@	"78%8',	7"#6(%+),
!"%%,)	"78%8',	7"#6(%+),?-.@	"78%8',	7"#6(%+),

 

 Next, the litter C and N recovered in each SOM pool (shown in Fig. 3.2, Fig. 3.5) was 

determined for each ingrowth core (eq. 2). Here, the mass proportion of each SOM fraction was 

determined from lab fractionation and the %C, %N, δ 13C, and δ 15N were measured on an 

elemental analyzer as described above. The distribution of litter C between the SOM fractions 

(shown in Fig. 3.3) was calculated as the litter mass in each SOM fraction out of the total litter 

mass remaining in the ingrowth core soil.  

eq. 3.2:       litter mass = dry soil mass in each core × SOM fraction mass proportion ×  

SOM fraction %C/100 or %N/100 × flitter 
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Root biomass, root colonization, and microbial biomass 

 All roots that were inside of the cores were separated from soils and washed in the lab. 

Dry root biomass was measured, and microbial biomass C was measured from a subsample of 

soil from each core using chloroform slurry fumigations (Witt et al., 2000) followed by 

persulfate digestion to CO2 (Doyle et al., 2004; Kane et al., 2022). In brief, soils were extracted 

in potassium sulfate with and without chloroform for 4 hrs. Filtered supernatant was digested in 

persulfate solution where dissolved C was oxidized to CO2. Total CO2 and δ 13CO2 was measured 

on a Picarro G2201 (Picarro Inc). Microbial biomass C was calculated as the difference between 

chloroform-fumigated and non-fumigated samples scaled by 2.64 (Vance et al., 1987) and litter 

C-derived microbial biomass was determined using two endmember isotope mixing models.  

A sample of roots was separated for root arbuscular mycorrhizal (AM) colonization 

measurements. To remove pigment, root samples were cleared in 10% potassium hydroxide 

followed with 85% ethanol to leach excess pigmentation. Roots were acidified in 5% 

hydrochloric acid and then stained for 5 minutes in 0.05% trypan blue (Comas et al., 2014). AM 

colonization was determined by suspending root samples in water on a 1x1 cm gridded petri dish 

and measuring how often arbuscules or hyphae were present at each root-gridline intersect 

(Giovannetti & Mosse, 1980).  

 

Net mineralization and nitrification 

 Net N mineralization and net nitrification were measured immediately after ingrowth 

core harvest.  These were expressed as the difference in pools of ammonium (NH4+) and nitrate 

(NO3-) between an initial sample that was extracted within 24 hours of collection and a sample 

that was incubated for 2 weeks at room temperature. Inorganic N was extracted from 5 g of soil 
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from each core in 10 mL of 1M KCl solution, and dissolved inorganic N was determined through 

phenol-hypochlorite and azo-dye colorimetric assays for NH4+ and NO3-, respectively (Finzi et 

al., 1998). 

 

Statistical analysis 

 To determine the extent to which ingrowth core treatments and fertilization treatments 

altered the fate of litter C and N amendments, we performed two-way analyses of variance in R 

version 3.5.1 (R Core Team 2021). Model factors were ingrowth core treatment, fertilization 

treatment, and their interaction. Post-hoc comparisons between groups were made using the 

Tukey’s HSD test. Differences were considered statistically significant at an alpha level of 0.05 

(p<0.05) and marginally significant at an alpha level of 0.10 (p<0.10). Linear regression was 

used to investigate the effect of living roots or microbial decomposers on litter C incorporation 

into MAOM. Data was checked for normality and heteroscedasticity.  Outliers, defined as 

samples where decomposer biomass was greater than 2 standard deviations from the mean, were 

omitted from linear regression.  
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3.4  Results 

Root impacts on litter C and N transformations did not depend on fertilization 

Root ingrowth core treatments and fertilization treatments both altered the fate of litter C 

and N in SOM, but the root effect did not depend on fertilization. All p-values for ingrowth core 

treatment x fertilization treatment interactions are above 0.05 (SI Table 3) and root biomass did 

not vary across fertilization treatment (SI Fig. 7a). As such, subsequent data shown for each 

factor are aggregated over the other factor.  

Root ingrowth reduces litter N remaining in SOM 

Root ingrowth did not significantly alter litter C in total SOM (Fig. 3.2a, p>0.10) but reduced 

the litter N in total SOM by 20% relative to both root exclusion treatments (Fig. 3.2b, p<0.001). 

Within the SOM fractions, root ingrowth reduced both litter C (Fig. 3.2a, light green, p=0.001) 

and litter N (Fig. 3.2b, light green, p<0.001) remaining in the unprotected light POM fraction.  
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Fig. 3. 2: The total mass of litter C (left) and litter N (right) recovered in the light POM fraction 
(light green), heavy POM fraction (dark blue), and MAOM fraction (brown) for root and fungal 
ingrowth (root),  root exclusion and fungal ingrowth (fungal), or root and fungal exclusion 
(none) soil cores.  Litter mass is calculated from measurements of isotopic signature, and mean 
data is shown with standard error bars. Letters denote statistically significant differences between 
the ingrowth core treatments in total C or N recovered in all SOM pools (p<0.05).  

 

Root ingrowth alters the balance of C in SOM pools 

Of the litter C that remained in SOM, root ingrowth altered the balance of C between SOM 

pools. Root ingrowth decreased the proportion of litter C remaining in light POM by 32% (Fig. 

3.3a, p<0.001) and increased the proportion of litter C incorporation into protected heavy POM 

by 30% (Fig. 3.3b, p=0.001) relative to both root exclusion treatments. Roots did not 

significantly alter the incorporation of litter C into MAOM (Fig. 3.3c). There were no significant 

differences between fungal only and fungal exclusion treatments.  
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Fig. 3. 3: Distribution of litter C between light POM, heavy POM, and MAOM pools shown as the % of litter C in 
each pool of the litter C remaining in the soil after the field incubation for root and fungal ingrowth (root),  root 
exclusion and fungal ingrowth (fungal), or root and fungal exclusion (none) soil cores. 

 
 

Roots mine light and heavy POM for litter N  

Root ingrowth selectively mined N from organic matter in both POM pools. Root 

ingrowth preferentially reduced the litter N remaining in light and heavy POM fractions (Fig. 

3.2b, green light POM N is 55 % lower with root ingrowth, p<0.001; blue heavy POM N is 26% 

lower with root ingrowth, p<0.01). In turn, root ingrowth increased the C:N ratio of litter-derived 

SOM in light POM (Fig. 3.4a, p<0.001) and heavy POM (Fig. 3.4b, p<0.001).   

Fig. 3. 4: Litter C:Litter N in light POM(3.4a), heavy POM (3.4b), and MAOM (3.4c) fractions 
compared to added litter C:N (18.8, gold dashed line) for root and fungal ingrowth (root),  root 
exclusion and fungal ingrowth (fungal), or root and fungal exclusion (none) soil cores.  
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Organic fertilization reduces litter retention in SOM 

 Organic fertilization reduced litter C and N remaining in the soil relative to control 

treatments, but there were no significant differences between control and high N fertilization 

treatments.  

Net litter C remaining in SOM was reduced by 14% under the organic fertilization treatment 

(Fig. 3.5a, p<0.01) relative to the unfertilized control treatment soils. Within the SOM fractions, 

the loss of litter C was driven by an 18% reduction in litter C incorporation into MAOM (Fig. 

3.5a, brown, p=0.018). Organic fertilization reduced litter N remaining in total SOM by 12% 

(Fig. 3.5b, p=0.020) relative to unfertilized control treatments. Within the SOM fractions, the 

loss of litter N was primarily driven by a 16% reduction in litter N incorporation into MAOM 

(Fig. 3.5b, brown, p<0.001).  

Organic fertilization treatments had 25% greater microbial biomass (SI Fig. 7b, p=0.09) 

relative to unfertilized treatments. Microbial decomposition in organic fertilization treatments 

was more effective with less litter C remaining in each SOM pool per gram microbial biomass 

compared to control fertilization (SI Fig. 8, a-c). However, this decomposition was less effective 

for litter N than litter C, with no significant difference in litter N in POM pools per gram of 

microbial biomass across nutrient treatments (SI Fig. 8, d-e). Litter C and N incorporation into 

MAOM was lower per gram of microbial biomass with organic fertilization compared to control 

fertilization (SI Fig. 8c, 5f).   
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Fig. 3. 5: The total mass of litter C (left) and litter N (right) recovered in the light fraction (light 
green), heavy POM fraction (dark blue), and silt/clay fraction (brown) for control fertilization, 
high inorganic N fertilization, or organic fertilization plot treatments. Mean data is shown and 
error bars represent plus or minus one standard deviation. Letters denote statistically significant 
differences between the plot treatments in total C or N recovered in all SOM pools (p<0.05).  
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3.5 Discussion 

Collectively, this work identifies how roots and soil microbes drive SOM loss and 

formation in miscanthus systems that can promote soil C sequestration and support plant 

productivity. Root ingrowth did not promote a net litter C loss from soil (Fig. 3.2) despite 

increased light POM decomposition due to the enhanced transfer of C into heavy POM (Fig. 

3.3). Notably, we document the potential for roots to mobilize litter-derived N from POM 

without priming litter C loss (Fig. 3.2, Fig. 3.4). We also identified that microbial nutrient or 

carbon limitation may alter how microbes grow and decompose litter-derived SOM, with more 

litter decomposition and less MAOM formation from litter in organically fertilized soils (Fig. 

3.5).  

 

It appears that miscanthus roots can mine N from litter without stimulating corresponding 

litter C losses (Fig. 3.2) and can increase the C:N of litter-derived light and heavy POM (Fig. 

3.4). This raises the question of how miscanthus accesses N from decomposing litter without 

priming C losses that are commonly observed in other ecosystems (Cheng et al., 2014; Zhu et al., 

2014). One plausible mechanism may be that miscanthus roots engineer their rhizosphere 

microbiome composition or function to preferentially decompose N-rich litter compounds like 

proteins, potentially by stimulating proteolytic enzyme production (Brzostek & Finzi, 2011). 

While the specific mechanism remains uncertain, preferential N mining from litter has important 

implications for miscanthus sustainability (e.g.,, the propensity of miscanthus to be high yielding 

and build soil C). The resulting increase in remaining litter C:N may make new litter-derived 

SOM even more resistant to further decomposition. In addition, there has been a long-standing 

question of how miscanthus can maintain relatively high yields with limited N inputs (Cadoux et 
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al., 2012). Previous research has posited that high nutrient use efficiency (Beale & Long, 1997) 

or the promotion of N-fixing symbionts (Davis et al., 2010) sustains N nutrition by miscanthus. 

Overall, our results suggest that miscanthus may also meet its N nutrition by effectively mining 

N from litter and SOM.  

 

Our research suggests that roots can actively support the transfer of litter derived C into 

more protected forms. We observed that the priming of litter decomposition from light POM was 

balanced by litter C incorporation in heavy POM (Fig. 3.3).  The composition of heavy POM is 

not as well-characterized as light POM or MAOM, but this pool is commonly assumed to be 

composed of stable soil macro- or micro-aggregates (Lavallee et al., 2020). Aggregate-occluded 

SOM is largely formed through root and mycorrhizal symbiont activity (Rillig & Mummey, 

2006) and often consists of partially decomposed plant and microbial organic matter fragments.  

This pool has a higher activation energy for decomposition than low C:N compounds like those 

in MAOM (Williams et al., 2018) and is more protected from decomposers than free light POM 

(Keiluweit et al., 2017; Kögel-Knabner et al., 2008). As such, there is an opportunity to build soil 

carbon in high C:N, heavy POM rather than lower C:N MAOM. The N requirements of low C:N 

SOM retention have often been cited as a criticism to efforts to use soil C management to 

mitigate global change (Schlesinger & Amundson, 2019). Future research efforts that investigate 

how roots can build new, persistent, and high C:N SOM could help realize the potential of soil C 

sequestration to combat climate change.  

 

We found that the organic fertilizer treatments had the greatest microbial biomass and 

litter-derived light POM decomposition, in support of our second fertilization hypothesis, but 
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less litter C and N were incorporated into MAOM (Fig. 3.5, SI Figs. 7, 8). On one hand, 

differences between fertilization treatments could arise from a shift in the microbial community 

structure or function with organic fertilization (Pan et al., 2014). However, other research at the 

site has found no significant effects of nutrient treatment on microbial diversity or mycorrhizal 

abundance between treatments (Kane et al. 2023, in review). On the other hand, C vs. N 

limitation over microbial decomposition can regulate the rate and efficiency of SOM cycling 

(Averill & Waring, 2018; Schimel & Weintraub, 2003). As organic fertilization deposits both C 

and N, our observations could be explained by the alleviation of C limitation and induction of N 

limitation. In support, we observed a reduction in nitrification rates with organic fertilization 

relative to unfertilized plots (SI Fig. 9) and other research found that organic fertilization 

increases plot-scale microbial respiration (Kane et al., 2023, in review). Here, microbial 

decomposers could increase decomposition and growth while respiring excess C and 

immobilizing N in living biomass rather than forming more microbially-derived MAOM 

(Schimel & Weintraub, 2003).  

 

 While our experiment identified several important ways living roots and soil microbes 

control litter decomposition and SOM formation, some mechanisms may not have been fully 

captured. Our experiment was designed to separate the effects of roots vs. mycorrhizal fungi on 

litter C and N transformations, but our data only identifies a root effect despite the presence of 

mycorrhizal fungal symbionts (SI Fig. 10).  The lack of differences between fungal ingrowth and 

total exclusion cores could be linked to the greater dependence of AM plants on root than hyphal 

foraging for nutrient uptake (Chen et al., 2016). As such, our experiment may not have isolated 

fungal effects on litter decomposition and SOM formation. Future efforts should quantify 
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mycorrhizal fungal ingrowth to better investigate the contribution of symbiotic fungi to root-

driven SOM transformations. In addition, our observations that fertilization did not impact root 

biomass (SI Fig 7a) and that there was no significant interaction between fertilization and 

ingrowth treatments (SI Table 3) do not support our first fertilization hypothesis that roots would 

have the greatest effect in unfertilized soils. While miscanthus root systems do not always 

respond to fertilization treatments (Amougou et al., 2011), this pattern may have been driven by 

the stand age of miscanthus in our experiment. These plots were in the third year of growth 

whereas older, more nutrient limited stands exhibit greater differences in root C allocation and N 

acquisition (Kantola et al., 2022). As such, future efforts to investigate how nutrient availability 

alters living root impacts on SOM formation should leverage ecosystems with longer-term 

fertilization history. Despite these limitations, our data has identified several important 

mechanisms of SOM formation in situ and provides the foundation for future efforts to study 

how living roots and fungi alter SOM dynamics with more sophisticated measurements, under 

different environmental conditions, or across different ecosystems and plant-microbe 

interactions.  

  This work has expanded our mechanistic understanding of how living roots shape 

ecosystem processes in agricultural systems. Our finding that miscanthus roots can 

simultaneously prime N release from litter without an additional C release and transfer C into a 

more persistent form of SOM has important implications for the sustainability of bioenergy 

production as well as the viability of restorative agricultural to offset carbon emissions. Overall, 

our work suggests that living roots can selectively mine N while sequestering soil C. This 

knowledge can help improve the predictive understanding of SOM cycling that is critical to 

meeting the goals of restorative agriculture. 
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of how forest carbon and nitrogen cycles respond to declining nitrogen 
deposition 
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4.1 Abstract 
 

As anthropogenic nitrogen (N) deposition declines across the eastern US, uncertainty 

remains in whether temperate forests will continue to provide a critically important carbon (C) 

sink. This uncertainty is amplified by the inability of ecosystem models to accurately capture the 

microbial mechanisms that drive greater soil C sequestration and N loss under enhanced N 

availability. To address this limitation, we leveraged decades of C and N cycling data from a 

whole-watershed N fertilization experiment at the Fernow Experimental Forest in Parsons, WV 

to run the microbially-explicit plant-microbe interactions model FUN-CORPSE (Fixation and 

Uptake of Nitrogen- Carbon, Organisms, Rhizosphere, and Protection in the Soil Environment). 

We had three objectives, including: 1) Reproducing key ecosystem responses to N fertilization, 

2) Modeling microbially-explicit inorganic N cycling, and 3) Assessing how modeled soil C and 

N retention respond to shifts in N deposition and other future climate drivers.  

FUN-CORPSE accurately represents overarching ecosystem C and N cycling at the 

Fernow (e.g., soil C pools, streamwater N losses) and captures key responses to experimental N 

deposition, including the 25% decline in plant C cost of N acquisition that reduces root-primed 

decomposition and increases soil C. We validated our newly integrated inorganic N cycling in 

FUN-CORPSE against measured inorganic N pools, nitrification rates, and the relative 

abundance of nitrifying microbes. With microbially-explicit inorganic N cycling, FUN-CORPSE 

captures the 100% increase in nitrification rates and the 50% increase in streamwater nitrate loss 

under N fertilization. When we ran the model forward under projected declining N deposition, 

FUN-CORPSE predicted that N losses recovered more quickly than soil C pools. However, the 

eventual return of soil C to pre-fertilized levels indicates that additional C sequestered due to N 

deposition may be vulnerable to future loss, particularly with global changes like warming.  
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4.2 Introduction 
 

Human activities like fossil fuel burning, fertilizer synthesis, and planting N-fixing crops 

have increased the global production rate of bioavailable nitrogen by approximately an order of 

magnitude since the industrial revolution (Galloway et al., 2004). This effect has been 

particularly apparent in the temperate forests of the Eastern US, a historical hot spot for 

atmospheric N deposition from fossil fuel combustion (Gilliam et al., 2019). Among other 

deleterious impacts, elevated N deposition has acidified forest ecosystems, shifted tree 

community composition, and exacerbated streamwater N leaching and aquatic eutrophication 

(Bobbink et al., 2010; Clark et al., 2013; Gundersen et al., 2006). However, N deposition has 

also stimulated forest uptake of excess atmospheric CO2, facilitating the globally-critical 

terrestrial C sink (Pan et al., 2011; Schimel, 1995). In recent decades, the institution of the Clean 

Air Act (CAA) and its successive amendments has limited reactive N emissions and drastically 

reduced N deposition across the eastern US (NADP https://nadp.slh.wisc.edu). As such, 

predictions of the continuing ability of these forests to sequester C remain highly uncertain.  

Much of the uncertainty in predicting C cycling responses to N deposition results from 

ecosystem models lacking robust representations of plant-microbe interactions (Sulman et al., 

2018). Specifically, most models do not represent the central role of belowground C investment 

by trees in driving soil C and N cycling. Decades of empirical research has shown that the 

allocation of C belowground by trees to roots, symbiotic fungi, and soil microbes in the 

rhizosphere, or zone of soil surrounding plant roots, stimulates SOM decomposition and 

enhances plant N uptake (Cheng et al., 2014). Under elevated N availability, however, this 

mechanism appears to weaken.  Research from a 30-year, whole-watershed N fertilization 

experiment at the Fernow Experimental Forest has shown that excess inorganic N availability 

https://nadp.slh.wisc.edu/
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drove trees to reduce belowground C allocation (Eastman et al., 2021). In turn, this decline in 

belowground C allocation suppressed microbial decomposition potential, extracellular enzyme 

activity, and SOM decomposition (Carrara et al., 2018; Eastman et al., 2022; Moore et al., 2020) 

(Fig. 4.1a). Because they do not represent these processes, most terrestrial biogeochemical 

models simulate the opposite response. For example, in the Community Land Model (CLM), N 

deposition removes N limitation controls on photosynthesis, stimulating both leaf and root 

production and litter inputs. However, because CLM simulates SOM cycling with first-order rate 

kinetics, enhanced litter inputs stimulate decomposition (Lawrence et al., 2019). It is imperative 

for models to better capture the mechanisms driving observed ecosystem responses to N 

deposition to capture C and N cycling in a changing world.  

 

Fig. 4. 1a: Observations show that N deposition reduces tree C allocation belowground, 
suppresses microbial decomposition, and enhances the retention of unprotected SOM. 4.1b: 
Conventional ecosystem process models predict that N deposition alleviates tree N limitation, 
enhancing belowground C allocation and priming SOM decomposition.  

 
While microbially-explicit decomposition models can capture ecosystem C cycling, 

model predictions of ecosystem N losses are hindered by a simplification of soil N 

transformations where N transformations are not microbially mediated. N transformations (e.g.,, 
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nitrification, denitrification, N leaching) are commonly modeled with simple rate constant 

equations (Berardi et al., 2020; Kyker-Snowman et al., 2020; Saifuddin et al., 2021; Sulman et 

al., 2017). Here, N losses from a pool of size S are controlled through a rate constant k, where the 

N losses are modeled as S * k.  These simple rate constant equations are unlikely to capture how 

rates of N transformation are impacted by the physiological traits, biomass, and environmental 

responses of microbes that drive them.  Given that N availability constrains ecosystem C uptake, 

the lack of microbially-mediated N transformations in these models may limit model 

representations of N availability and C uptake under N deposition.  

However, robust theoretical and empirical understandings of microbial N cycling offer 

the potential to incorporate data-based microbial N cycling in models. In terrestrial ecosystems, 

functionally and often phylogenetically distinct microbes perform key inorganic N cycling 

processes like nitrification, denitrification, and N fixation (Kuypers et al., 2018). Of these, 

nitrification is the best starting point for improving modeled N cycling through explicit microbial 

representation. Nitrification, or the conversion of inorganic N from ammonium to nitrate, is one 

of the most critical N transformations that is second in magnitude only to N mineralization from 

SOM (Kuypers et al., 2018). Nitrification is typically performed by microbes who can use the 

energy gained from the oxidation to fix inorganic C into biomass (Norton & Ouyang, 2019).  

Nitrification controls bioavailable N and regulates the potential for inorganic soil N to be lost 

through pathways like nitrate leaching to streamwater that can harm aquatic ecosystems or 

gaseous losses that enhance greenhouse gas accumulation (Lehmann & Schroth, 2002). As such, 

the potential exists to model microbially-explicit, empirically-constrained, and more mechanistic 

N cycling to improve predictions of soil C and N retention.  
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Improving model representations of forest responses to N deposition is imperative to 

projecting the response of eastern temperate forests to future shifts in N availability. At a broader 

scale, this work is critical because of the potential for inorganic N cycling and N availability to 

interact with other projected environmental changes like altered precipitation patterns and 

elevated temperatures to drive how ecosystems feedback to global change (Thornton et al., 

2009). As a result, models that lack N cycling mechanisms and dynamic plant-microbe 

interactions may exacerbate the high degree of uncertainty in predictions of the future of the 

globally important land C sink (Meirholt et al., 2020). To address this uncertainty, the 

overarching objectives of this research were to: 1) Reproduce key ecosystem responses to N 

fertilization in a plant-microbe interactions model; 2) Model microbially-explicit inorganic 

N cycling; and 3) Assess how modeled soil C and N retention respond to declining N 

deposition and a warming climate.  

To meet these objectives, we leveraged decades of C and N cycling data from the Fernow 

Experimental Forest, located in Parsons, WV, to develop, constrain, and validate modeled 

ecosystem responses to N deposition and fertilization using the FUN-CORPSE (Fixation and 

Uptake of Nitrogen: Carbon, Organisms, Rhizosphere, and Protection in the Soil Environment) 

model (Sulman et al., 2017). First, we tested whether FUN-CORPSE could capture key C 

cycling responses to N deposition by modelling how trees invest C belowground to prime 

microbial decomposition and mineralize N. Next, we incorporated microbially-explicit 

nitrification to investigate if this process could facilitate model projections of N cycling 

responses to N deposition. Finally, we ran the model forward to look at how future changes in 

climate could alter forest N and C retention.  
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4.2 Methods 
 
Site Description 

 The Fernow Experimental Forest (herein, the Fernow) is located near Parsons, WV, USA 

(39.03N, 79.67W). A long-term, whole-watershed N fertilization experiment was perfomed at 

the Fernow from 1989-2019. Here, N additions in the form of ammonium sulfate were aerially 

applied to an entire watershed at a rate of 35.4kg N/ha/yr, which was roughly double ambient N 

deposition in 1989. A similar, adjacent watershed was maintained with only ambient N 

deposition to serve as an unfertilized reference. A more detailed site description is published by 

Adams et al., 2006. Briefly, the Fernow is dominated by broadleaf deciduous trees, and the soils 

are predominantly loams and silt loams. Both watersheds have similar tree species, including 

Betula lenta, Prunus serotina, Acer rubrum, Liriodendron tulipifera (more dominant in the 

fertilized watershed), and Quercus rubra (more dominant in the reference watershed) (Eastman 

et al., 2021). Forest stands were roughly two decades old at the beginning of the fertilization 

experiment, where the reference watershed was clearcut and maintained barren with herbicide 

prior to 1969 and the fertilized watershed was clearcut prior to 1972 (Adams et al., 2006).  

 A wealth of long-term, ecosystem C and N cycling data exists for both the fertilized 

(watershed 3) and reference (watershed 7) watersheds at the Fernow, much of which is 

summarized in Eastman et al., 2021. Below, we detail how data from the Fernow was used to 

drive the model, constrain model parameters, and validate model predictions.  

The main C and N cycling data from the Fernow used as inputs to drive the model 

include tree aboveground net primary productivity (ANPP), leaf litter inputs, fine root biomass 

and turnover, and atmospheric and applied N deposition. ANPP was estimated at the Fernow 

using measurements of leaf litterfall mass data collected from 25 plots in each watershed from 
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1989-2015 and tree growth measured from changes in tree diameter at breast height (DBH) and 

species-specific allometric equations at 25 plots in each watershed from 1990 (WS3) or 1991 

(WS7) through 2018 (M.B. Adams, unpublished data; Eastman et al., 2021). Leaf litterfall mass 

data was scaled by litter C and N content data collected from 2015-2017 to estimate litter C and 

N inputs (Eastman et al., 2021). Fine root biomass was estimated from measurements made at 

varying depths and time points from 1991-2018 and was scaled by the C and N content of fine 

roots measured in 2012, 2013, and 2016 (Eastman et al., 2021). Fine root production and 

turnover were estimated using ingrowth core data collected from 2016-2018 (Eastman et al., 

2021). Ambient atmospheric N deposition data inputs were estimated from measurements of wet 

deposition and modeled estimates of historical N deposition (Adams et al., 2006) 

New model N cycling parameters were constrained by observations from the Fernow, 

including soil nitrification rates, microbial nitrifier relative abundance, and nitrate leaching 

losses pre-fertilization. Soil nitrification parameters were selected to allow the model to reflect 

measured nitrification rates and ammonium vs. nitrate soil N pool (Carrara et al., 2018). Nitrifier 

growth efficiency and turnover rates were selected such that model representations of nitrifiers 

vs. decomposer microbes reflected measurements of relative abundance of microbial nitrifiers 

from 2019 and 2020 (Chansotheary Dang, unpublished data). First-order nitrate loss rate 

constants were selected to reflect measurements of streamwater nitrate leaching losses from 

before fertilization began. Streamwater nitrate leaching since 1983 or earlier has been monitored 

through continuous streamflow measurements and weekly or biweekly streamwater chemistry 

measurements at weirs at the base of each watershed (Edwards & Wood, 2011).   

Model representations of Fernow C and N cycling responses to fertilization were 

validated against data from the Fernow, including streamwater nitrate losses as well as soil C and 
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N pools and tree C cost of N acquisition both with and without N fertilization. Mineral soil C and 

N pools were measured from soil C and N concentrations measured to 45cm depth for 15 soil 

pits in each watershed in 2016 and measurements of soil bulk density from each watershed and a 

nearby reference site (Gilliam et al., 2018). Tree C cost of N acquisition was calculated in 

Eastman et al. (2021) as the ratio of total belowground carbon flux (approximated as soil 

respiration – leaf litter C inputs) to tree N acquisition for the unfertilized and fertilized 

watersheds.  

 

FUN-CORPSE Model Description 

The  FUN-CORPSE (Fixation and Uptake of Nitrogen-Carbon, Organisms, Rhizosphere, 

and Protection in the Soil Environment) model (Sulman et al., 2017) was used to simulate how N 

deposition shifted ecosystem C and N cycling. A detailed description of the core model 

equations is available in Sulman et al. (2017). This model couples FUN, a tree C allocation 

model, with CORPSE, a SOM decomposition model, to mechanistically represent critical plant-

microbe interactions that traditional first-order models broadly lack. To meet plant N demand, 

the FUN model (Brzostek et al., 2014) uses a resistance framework to optimally allocate C 

belowground to the rhizosphere where the microbes represented in the CORPSE model (Sulman 

et al., 2014) can use it to prime SOM decomposition and enhance N availability (Fig. 4.2). As 

such, FUN-CORPSE is uniquely equipped to capture how shifts in plant-microbe interactions 

may drive observed ecosystem responses to N deposition.  
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Fig. 4. 2: FUN-CORPSE Model Diagram from Sulman et al. (2017). This model couples FUN, a 
plant C allocation model highlighted in green, with CORPSE, a SOM cycling model highlighted 
in brown.  

 
The FUN model (Brzostek et al., 2014) determines N demand to meet growth 

requirements and dynamically allocates C to different pathways of N acquisition: biological N 

fixation, retranslocation, non-mycorrhizal root uptake, mycorrhizal uptake, or N from storage. 

This model uses a resistance framework where a C cost associated with each pathway determines 

the uptake rate to optimize N uptake per C allocated.  
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The CORPSE model (Sulman et al., 2014) simulates soil C and N cycling through 

microbially-explicit SOM decomposition. CORPSE has litter, rhizosphere, and bulk 

compartments that each have three SOM chemical types representing fast (easily decomposable), 

slow (decomposition-resistant), and microbial necromass organic matter. Further, this organic 

matter can be incorporated into protected SOM pools in the bulk and rhizosphere soil 

compartments, with the highest protection rate for microbial necromass. Microbial biomass in 

each compartment controls the decomposition and transfer of C and N between SOM pools 

through reverse Michaelis-Menten kinetics (eq. 1). Here, SOM decomposition is scaled by a 

temperature-dependent maximum enzymatic conversion rate (Vmax) and soil moisture scalar 

(q). Decomposition is limited by the size of the microbial biomass pool (M), a proxy for the 

decomposition enzymes in Schimel and Weintraub (2003) and scales linearly with the substrate 

(S) when the ratio of microbial biomass to unprotected C (uC) is constant.  

𝐞𝐪. 𝟒. 𝟏:										Decomposition	rate = Vmax	´	q	´		S	´	
M
uC

M
uC + k

 

Like most terrestrial biogeochemical models, FUN-CORPSE implicitly represents the 

microbes responsible for driving N cycling. FUN-CORPSE has a single inorganic N pool that is 

shared across the soil compartments. Inorganic N is supplemented through external N inputs or 

through excess microbial N mineralization, taken up to meet plant or microbial N demand, and 

drained through a first-order rate loss equation to capture nitrate leaching (Fig. 4.3a).  

 

Running FUN-CORPSE at the Fernow 

FUN-CORPSE was run with plant productivity and litter input files reflected Fernow data 

as described above. Default parameters were used as published in Juice et al. (2021), the majority 
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of which were calibrated using ecosystem C and N cycling measurements from temperate 

broadleaf deciduous forest plots in Indiana (Sulman et al., 2017). FUN-CORPSE was spun up at 

the Fernow under pre-industrial estimates of ambient N deposition (0.25g N/m2/yr) until soil C 

and N pools equilibrated. Following spinup, forest C and N cycling was simulated with estimates 

of anthropogenic N deposition from 1900-2100 and inorganic N inputs reflecting the 30-year N 

fertilization experiment at the Fernow.  Disturbance legacies (e.g., clear-cutting) prior to the 

fertilization experiment were not simulated. The fertilized and reference watersheds were run 

with the same input data despite some differences between the sites including lower wood 

production and ANPP in the reference watershed to better identify mechanistic differences in 

how N availability alters soil C and N cycling alone rather than with an interaction with tree N 

demand. FUN-CORPSE runs at a daily timestep and a scale of 1x1m area and simulates the top 

30cm of soil. Model results are validated against data from the Fernow that has been scaled to 

per m2 (Eastman et al., 2021) and measured or corrected to estimate to 30cm depth.  

 

Incorporating Microbially-Explicit Nitrification in FUN-CORPSE:  

 Nitrification splits soil inorganic N between ammonium and nitrate, which is more 

mobile in the soil. To incorporate this process, the model shared inorganic N pool was parsed 

into 4 pools where each soil compartment (litter, bulk, and rhizosphere) has a distinct ammonium 

pool and the combined soil shares a nitrate pool (Fig. 4.3b). Microbial nitrifiers in each 

compartment drive the transfer of inorganic N from ammonium to nitrate. Decomposer microbes 

in each compartment can immobilize N from both their corresponding ammonium pool and from 

the shared nitrate pool. Microbially-mineralized N and the proportion of microbial biomass 

turnover that forms inorganic N joins the corresponding ammonium pool for each compartment. 
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Tree roots can access ammonium in the mineral soil (bulk and rhizosphere) compartments and 

the shared nitrate pool.  Inorganic ammonium inputs to the soil join the litter inorganic N pool. 

Nitrate is available to be lost through first-order rate constant loss flux that simulates nitrate 

leaching.  

 

Fig. 4. 3a: Simple inorganic N cycling in FUN-CORPSE is modeled with a single shared 
inorganic N pool. Decomposers in each compartment can mineralize inorganic N from SOM 
decomposition and roots and decomposers can take up inorganic N. N is externally amended 
through fertilization and ambient N deposition, and N is lost through first-order kinetics. 4.3b: 
FUN-CORPSE inorganic N cycling was modified to incorporate the microbial nitrifiers that 
transform inorganic N from ammonium inputs into more mobile nitrate that can be lost from the 
soil. Each soil compartment (litter, rhizosphere, and bulk) has an ammonium pool that can be 
built through inorganic N mineralization from SOM decomposition. This ammonium can be 
nitrified by nitrifiers in each soil compartment to a single nitrate pool, which is shared across all 
soil compartments as nitrate is highly mobile in soil. Roots and microbes in each compartment 
can take up ammonium and nitrate. N inputs can be added to the corresponding inorganic N pool 
and are added to the top compartment of soil (e.g., ammonium fertilization is initially added to 
the litter compartment ammonium pool). Nitrate leaching is lost from the nitrate pool through 
first-order kinetics.  
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 Nitrification rates were modeled using Michaelis-Menten enzyme kinetics as in equation 

2, where nitrification rates are a function of the maximum nitrification enzyme conversion rate 

(VmaxN), soil moisture scalar (q), the biomass of microbial nitrifiers (MICN), ammonium 

substrate (NH4), and the half-saturation constant (kN).  

𝐞𝐪. 𝟒. 𝟐:										Nitrification = 𝑉𝑚𝑎𝑥A	´	q	´		𝑀𝐼𝐶A	´	
𝑁𝐻B

𝑁𝐻B + 𝑘A
 

Model nitrifiers are chemoautotrophic and fix C to grow biomass at an assumed rate of 1 

C fixed per 10 N transformed (Berg et al., 2015; Sharma & Ahlert, 1977). Beyond this, microbial 

nitrifiers use the same processes and parameters as the decomposer microbes (described in 

Sulman et al., 2017) to control growth, death, and necromass transfers into inorganic and organic 

soil C and N pools.   

The model with microbial nitrifiers was calibrated with data from the Fernow such that 

the model roughly captured measurements of nitrification rates and the distribution of inorganic 

N between ammonium and nitrate made by J Carrara (2015), unpublished data. Modeled nitrate 

leaching losses were tuned to match pre-fertilization (year 1980) N leaching losses from the 

microbially-implicit model. Model representations of microbial nitrifiers relative to microbial 

decomposers were validated against microbial biomass data and the relative abundance of 

nitrifiers as measured by Chansotheary Dang (2020), unpublished data.  

 

Predictions of Future Forest Ecosystem Services in Response to Declining N Deposition and 

Elevated Temperatures 

 Whether forest ecosystem can maintain productivity and sequester C under reduced N 

deposition and future climate change remains uncertain. In particular, temperatures are predicted 

to rise as N deposition declines in the eastern US (Sixth Assessment Report of the IPCC, 2021). 
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Elevated temperatures stimulate microbial decomposition, N mineralization, and the loss of soil 

C in FUN-CORPSE. As such, the potential for soils to sequester C and retain N to fuel plant 

productivity may depend on an interaction between N inputs and soil temperature. This model 

was run forward to predict Fernow soil C and N retention until year 2100 from fertilized and 

unfertilized watersheds. Following modeled trajectories of rainwater nitrate concentrations 

(Adams et al., 2006), ambient N deposition was projected to decline at the same rate as it 

increased in the 20th century. A +2o C increase in soil T was also modeled beginning in 2025 to 

investigate how elevated temperature could impact soil N losses and C retention.  
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4.3 Results:  
 
Objective 1: Model ecosystem responses to N fertilization 
  

 
FUN-CORPSE accurately represents the Fernow’s soils and captures key responses to N 

deposition. Model representations of soil carbon captured both the total soil C pool (Fig. 4.4a) 

and the proportion of this pool that was observed to be in unprotected particulate SOM vs. 

MAOM (Fig. 4.4b) were within observed ranges at the Fernow. Fertilization increased soil C in 

the topsoil at the Fernow (Eastman et al., 2021), which is captured by a modeled increase in soil 

C (Fig. 4.4a).   

Fig. 4. 4a: Soil C pools at the fertilized (pale red barplot) and reference (purple barplot) Fernow 
watersheds compared to model projections of soil C (magenta lines) 4.4b: Soil C distribution as 
the ratio of unprotected to protected SOM-C from the Fernow fertilized (pale red) and reference 
(purple) watersheds  (Eastman et al., 2022) compared with model projections of unprotected to 
protected SOM-C (magenta lines).  
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 Further, a key response of the Fernow ecosystem to elevated N deposition includes the 

decoupling of plant-microbe interactions through a 25% reduction in tree C allocation 

belowground in exchange for N acquisition, as calculated in Eastman et al. (2021). By 

dynamically shifting tree C allocation in response to soil N availability, FUN-CORPSE predicts 

a similar 21% decrease in the C trees allocate to the rhizosphere per N acquired (Fig. 4.5a). This 

decoupling of tree-stimulated SOM mineralization is linked with observations of a 56% 

reduction in arbuscular mycorrhizal root colonization from roots in the mineral soil (Carrara et 

al., 2022) and a 30% reduction in microbial biomass in the mineral soil (Chansotheary Dang, 

unpublished data). The model predicts similar patterns of a reduction in C allocated to symbiotic 

fungal decomposers (80%, Fig. 4.5b) and mineral soil microbial biomass (11%, Fig. 4.5c). 

 
Fig. 4. 5: Model values for the reference (light purple) and fertilized (light red) watersheds from 
1989-2019.  (a) average yearly C allocated belowground to fine roots, mycorrhizae, and exudates 
per average yearly N acquired by trees; (b) average yearly fungal C production from FUN; (c) 
average yearly mineral soil microbial decomposer biomass in CORPSE.  
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Objective 2: Incorporate microbially-explicit inorganic N cycling: 
 
 While FUN-CORPSE captures key C cycling responses to N deposition, the model does 

not accurately represent soil N retention. In particular, due to its simplistic representation of soil 

N cycling (Fig. 4.3a), when N is deposited to the shared inorganic N pool, nitrate leaching 

linearly increases and leads to greater N losses than observed at the Fernow. At the Fernow, N 

fertilization led to 5x greater N inputs (roughly 100 g N/m2 over 30 years) in the fertilized than 

reference watershed, but only increased cumulative stream N export by roughly 12 g N/m2 over 

30 years (Fig. 4.6e,f). 

 Incorporating the microbial nitrifiers responsible for transforming inorganic N inputs into 

nitrate (Nitrification Model, purple) improved model representations of seasonal inorganic N 

leaching relative to the model without N microbes (Baseline Model, blue) for both the fertilized 

watershed in red (Fig. 4.6a) and the unfertilized watershed in gray (Fig. 4.6b). When averaged 

for each year during the fertilization period from 1989-2019, the Baseline Model (blue) 

simulated roughly double the yearly nitrogen loss as the Nitrification Model (purple) during 

fertilization (Fig. 4.6c). The N loss rates for each model were tuned to capture yearly nitrate loss 

rates pre-fertilization, so the models performed similarly when nitrate losses were averaged over 

each year for the unfertilized watershed (Fig. 4.6d).  

 Over the fertilization period from 1989-2019, the observed cumulative N loss for the 

fertilized watershed was roughly 42 g N/m2 (Fig. 4.6e, red) while the reference watershed was 

roughly 27 g N/m2 (Fig. 4.6f, gray). The model with microbial nitrifiers slightly underestimated 

observed N losses during fertilization at roughly 38 g N/m2, as the lag in microbial nitrification 

led to an increase in the ammonium available for trees to take up (Fig. 4.6e, purple). The model 

without explicit nitrifiers increased N losses linearly with total inorganic N availability and as 
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such overestimated cumulative N losses at roughly 55 g N/m2 (Fig. 4.6e, blue).    

Fertilized Watershed    Reference Watershed  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. 6: Modeled nitrate losses for the explicit Nitrification Model (purple) and implicit 
Baseline Model (blue) compared with data from the fertilized watershed (left panels, pale red) 
and reference watershed (right panels, gray). 4.6a,b: Mean daily streamwater nitrate loss from 
years 1989-2019 (USDA Forest Service, https://www.fs.usda.gov/rds/efrdata/efr/2) compared to 
daily model N losses. 4.6c,d: Yearly patterns of streamwater nitrate losses from 1989-2019 
compared with yearly model N losses. 4.6e,f: Cumulative streamwater nitrate losses from 1989-
2019 compared with cumulative model N losses.  
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Objective 3: Model Projections of recovery from N fertilization and elevated temperature: 

 FUN-CORPSE predicts that the soil C gained during N fertilization declines more 

gradually during recovery than streamwater nitrate leaching. When running the model with N 

microbes forward under recovery from N fertilization, it takes more than 150 years for 95% of 

the soil C gained from fertilization to be lost (Fig. 4.7a, the fertilized watershed soil C shown in 

solid red remains elevated compared to the reference in solid purple). The model predicted that 

soil C accumulated during the 30 years of fertilization at an average rate of 9 g C/m2/yr and lost 

soil C at an average rate of 2.5 g C/m2/yr in 30 years post-fertilization.  However, streamwater 

nitrate leaching recovers to pre-fertilization levels in roughly 30 years (Fig. 4.7b, nitrate leaching 

from the fertilized watershed shown in solid red more rapidly returns to reference levels in solid 

purple). While the Fernow has only been in recovery from N fertilization for 3-4 years, nitrate 

leaching from the fertilized watershed is still higher than from the reference watershed (USDA 

Forest Service, https://www.fs.usda.gov/rds/efrdata/efr/2), which better aligns with the model 

projections of a decades-scale return in streamwater nitrate leaching as modeled with N microbes 

compared to the elastic response of nitrate leaching to fertilization in the model without N 

microbes (Fig. 4.7c, Nitrification Model in purple vs. Baseline Model in blue).  

 FUN-CORPSE predicts that increased temperatures accelerate soil C losses to a greater 

degree than streamwater nitrate leaching.  Elevated temperatures reduce temperature constraints 

on unprotected SOM decomposition by model decomposer microbes, which leads to a greater 

loss of unprotected SOM C (Fig. 4.7a) and a smaller subsequent increase in organic N 

mineralization, nitrification, and streamwater N losses (Fig. 4.7b). N fertilization history had a 

minor impact on predictions of soil C losses, where the model predicted that soil C was lost at an 

average rate of 21 g C/m2/yr in the fertilized watershed and 17 g C/m2/yr in the unfertilized 
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watershed (Fig. 4.7a). The model predicts that elevated temperatures had a similar impact on 

nitrate leaching regardless of fertilization history (Fig. 4.7b).   

 

Fig. 4. 7a: Model representations of soil carbon projected past 2020 (thin lines) for the fertilized 
(red) and unfertilized (purple) watersheds. Soil C under a 2°C stepped temperature increase 
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beginning in year 2025 is shown in dashed lines. 4.7b: Model representations of nitrate leaching 
projected past 2020 (thin lines) for the fertilized (red) and unfertilized (purple) watersheds. 
Streamwater nitrate leaching under a 2°C stepped temperature increase beginning in year 2025 is 
shown in dashed lines. 
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4.5 Discussion:  
 

The ability of FUN-CORPSE to capture key C cycling responses of forest ecosystems to 

increased N availability depended on how the model simulates plant-microbe interactions in the 

rhizosphere. In FUN-CORPSE, fertilization allows the FUN model to acquire N with a lower 

root C allocation to exudates and symbiotic fungi (Fig. 4.5a,b). When FUN sends less of this C 

belowground during fertilization, decomposition of unprotected SOM is slowed in the CORPSE 

model. As a result, modeled soil C increases due to an increase in unprotected SOM remaining in 

the soil (Fig. 4.4). This mechanism aligns well with observations from the Fernow and from 

other N deposition experiments at the Harvard Forest and in Michigan where N fertilization leads 

to an increase in particulate SOM through the suppression of microbial SOM decomposition 

(Eastman et al., 2022; Frey et al., 2014; Zak et al., 2008). Further, the model captures 

observations that drive reduced decomposition under increased N availability, like a reduction in 

mycorrhizal symbionts and reduced microbial decomposer enzyme activity (Argiroff et al., 2019; 

Carrara et al., 2018; Treseder, 2004). As such, inorganic N availability plays a key role in 

regulating plant-microbe interactions and driving model C cycling.  

However, in contrast to the explicit plant-microbe interactions governing decomposition 

in FUN-CORPSE, the model (herein, baseline model) lacks microbially-explicit N cycling 

(Sulman et al., 2017). As a result, the baseline model simulates an elastic response of N leaching 

losses to N inputs, where streamwater N losses immediately triple in magnitude at the onset of N 

fertilization and return to ambient levels within one year of ending fertilization (Fig. 4.6c). At the 

Fernow, N fertilization inputs are added as ammonium, which is less mobile in the soil than 

nitrate. By separating inorganic N and using microbially-driven nitrification to transfer N inputs 

from ammonium into more mobile nitrate, the microbial nitrification model simulates an 
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attenuated response of nitrate production and streamwater N loss to N fertilization. This gradual 

increase in nitrate losses following N inputs better reflects observations of the seasonality (Fig. 

4.6a,b) and pattern of streamwater nitrate losses during fertilization (Fig. 4.6c).  

Explicitly representing nitrifiers and nitrification in the microbial nitrification model 

improves seasonal model nitrate production and leaching in both the fertilized and reference 

watersheds (Fig. 4.6a,b). Over the growing season (May-October), the microbial nitrification 

model simulates that trees are highly competitive for inorganic N uptake. As a result, less 

ammonium remains in the soil to fuel nitrification, which reduces nitrifier growth, nitrate 

production, and nitrate leaching in the summer months. This modeled pattern reflects 

observations from the Fernow and other ecosystem experiments where streamwater nitrate losses 

decline sharply during the summer (Edwards & Williard, 2006; Rusjan & Mikoš, 2010; White et 

al., 1983). By contrast, after new litter inputs are added to the soil in the fall, the microbial 

nitrification model simulates that decomposer microbes can begin to mineralize N from SOM to 

ammonium. This substrate fuels microbial nitrification, leading to greater nitrate production and 

predicted streamwater nitrate losses in the early spring when temperatures increase but before the 

trees start growing and taking up inorganic N. Overall, incorporating these microbial 

mechanisms allows the microbial nitrification model to capture a similar nitrate leaching pattern 

as observed at the Fernow, where nitrate leaching peaks around March and declines during the 

growing season in both fertilized and reference watersheds (Fig. 4.6c,d).  

The more accurate seasonal representation of nitrate production improves the microbial 

nitrification model’s representation of nitrate leaching over multiple years (Fig 4.6c,d). Here, the 

microbial nitrification model projects that ammonium inputs from fertilization more slowly 

move through the soil and increase nitrate leaching more gradually as soil N levels increase to 
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surpass tree N uptake, reflecting the gradual increase in streamwater nitrate leaching observed 

from 1989-2019 at the Fernow (Gilliam et al., 2020). Further, the microbial nitrification model 

simulates a more gradual decline in N losses post-fertilization than the baseline model (Fig. 

4.6c). This model projection is supported by observations from other older reference watersheds 

at the Fernow as well as Hubbard Brook, NH, which show that reductions in ambient N 

deposition due to the Clean Air Act lead to gradual declines in streamwater nitrate over several 

years (Aber et al., 2002; Adams et al., 2006; Campbell et al., 2007). Overall, the ability of the 

microbial nitrification model to capture seasonal and annual patterns in streamwater N losses at 

the Fernow suggests that explicit representations of microbial nitrifiers could enable ecosystem 

and larger terrestrial biosphere models to capture coupled C-N cycling responses to shifts in N 

deposition and global change.  

 The microbial nitrification model supports the hypothesis that soil N retention accounts 

for the missing sink of N observed in the fertilization experiment at the Fernow (Eastman et al., 

2021). Field measurements of N cycling are difficult to mass balance due to uncertainty in using 

limited spatial and temporal measurements of ecosystem N pools and fluxes. This difficulty is 

apparent at the Fernow, where a missing N sink in the fertilized watershed accounts for more 

than ¾ of the N inputs to the fertilized watershed (Eastman et al., 2021). This missing sink was 

posited to be accounted for by an increase in soil N in the top layer of soil during fertilization. 

The microbial nitrification model supports this hypothesis because it predicts an increase in soil 

N from the accumulation of inorganic N and organic N in undecomposed plant litter during 

fertilization. This model prediction aligns with other observations of a soil N sink with N 

deposition (Gundersen et al., 1998; Nadelhoffer et al., 1999; Templer et al., 2012). While there 

have been other hypotheses that have focused on abiotically driven sinks (Compton & Boone, 
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2002; Davidson et al., 2003), the observations and microbial nitrification model results at the 

Fernow suggest that microbes may be an equal or more important driver of N retention in 

temperate forest ecosystems.  

Although FUN-CORPSE captured several key forest responses to N fertilization, there 

remain gaps in the model’s representation of empirically-derived mechanisms of biogeochemical 

cycling at the Fernow. For example, fertilization may alter ecosystem C and N cycling by 

shifting microbial community composition and function (Carrara et al., 2018; Frey et al., 2004; 

Levy-Booth et al., 2014). On the C side, FUN-CORPSE predicts that N fertilization reduces 

plant C transfers to soil microbes, but the model cannot capture commonly observed shifts in 

bacterial and fungal community composition that have been implicated as a driver of declines in 

overall microbial decomposition and lignin-degrading enzyme activity with N fertilization 

(Carrara et al., 2021; Morrison et al., 2016; Zak et al., 2008). On the N side, while the microbial 

nitrification model represents an important advance, the model lacks microbially explicit 

representations of other processes like N fixation and denitrification that also impact plant N 

availability and drive gaseous losses of N.  To address these gaps in microbial representations of 

C and N cycling in FUN-CORPSE as well as other plant-microbial interactions models, our 

efforts to model microbial nitrifiers may provide an important roadmap for using long-term 

ecosystem experiments to parameterize and validate future efforts.  

The microbial nitrification model predictions that streamwater nitrate losses return to 

ambient levels faster than soil C after N fertilization ends (Fig. 4.7a,b) have important 

implications for our understanding of the recovery of eastern temperate forests from elevated N 

deposition. While there is empirical evidence supporting the model’s trajectory of declining 

streamwater N losses (Adams et al., 2006; Campbell et al., 2007), there are few observations of 
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how declines in external N inputs will alter soil C, especially given concurrent environmental 

changes (Gilliam et al., 2019). Following first order principles, the most parsimonious hypothesis 

is that the soil C accumulated over 30 years of N fertilization will decrease at a similar rate. By 

contrast, the model predicts that previously fertilized soil C declines roughly 4 times more 

slowly than the rate it accumulated, remaining elevated above the unfertilized reference for over 

a century (Fig. 4.7a). However, there is the potential for the stability of the N-induced soil C 

gains to be threatened by future increases in soil temperature.  In response to a 2o C increase in 

soil temperature, the microbial nitrification model predicts that soil C remains higher in the 

previously fertilized watershed after 30 years, but it also predicts a 23.5% higher rate of carbon 

loss from the previously fertilized than the reference watershed.  This greater temperature 

sensitivity of the N-induced soil C gains in the model is due to an increase in unprotected C 

pools that mirrors empirical evidence of an increase in particulate organic matter at the Fernow 

(Eastman et al., 2021). Collectively, across both ambient and elevated temperatures, these model 

results suggest that the good effects of N deposition may be more stable than the bad effects. 

 

 Overall, this work demonstrates the importance of explicitly modelling microbial controls 

over soil C and N transformations to predicting how ecosystem C and N cycling respond to 

anthropogenic perturbations. First, we show that key ecosystem responses to N deposition could 

be captured by modelling the potential for trees to dynamically reduce belowground C allocation, 

limiting microbially-driven SOM mineralization. Next, by incorporating nitrifiers and more 

realistic N cycling, we show that the model is better able to represent seasonal and multi-year 

changes in streamwater nitrate losses. Finally, in recovery from N fertilization, streamwater N 

leaching rapidly declines while the soil C gained under N fertilization is more persistent and 
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remains elevated. However, this soil C is vulnerable to future losses, particularly under warming. 

Collectively, we show that model efforts should prioritize the role of dynamic plant-microbe 

interactions and microbially mediated C and N cycling to predict forest ecosystem services and 

feedbacks on global change.    
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Chapter 5: Conclusions 

Summary of results: 

 This dissertation explored how plant-microbe interactions drive soil C and N cycling in 

managed and unmanaged ecosystems. To do this, I performed experiments in the lab, in situ, and 

in silico to address key uncertainties limiting our understanding of how ecosystems can retain 

soil C and N to answer three broad questions: 1) How do plant-microbe interactions between 

plant litter and microbial decomposition traits influence the formation of new soil C for different 

bioenergy crop litters in the lab?; 2) How do rhizosphere plant-microbe interactions influence 

soil organic matter stabilization and destabilization depending on nutrient levels in-situ?; and 3) 

Can empirical measurements help constrain, parameterize, and validate modeled plant-microbe 

interactions to improve representations of forest ecosystem responses to global change? 

 Overall, I found strong evidence that vital ecosystem services like soil C sequestration to 

combat climate change and soil N retention to fuel plant productivity depend on microbially-

mediated processes that are regulated by interactions between plants and soil microbes. First, I 

found that plant litter quality controls the efficiency of microbial decomposers, which in turn 

drives the potential for C in litter inputs to form persistent, mineral-associated SOM. 

Additionally, I found that using measurements of microbial carbon use efficiency to constrain 

model microbial decomposition parameters enabled the model to capture how bioenergy crops 

differ in new SOM formation. In the field, I found that living roots stimulated microbial litter 

decomposition but balanced this C loss through building more persistent aggregate-associated 

SOM. Further, roots selectively mobilized nitrogen from litter without additional carbon release, 

suggesting that roots prime their rhizosphere microbes to efficiently mine nitrogen while 

building persistent soil carbon. Finally, I found that modelling how trees stimulate microbial 
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decomposition to mineralize N in the rhizosphere and modelling microbially-explicit N cycling 

processes were integral to capturing key ecosystem C and N cycling responses to elevated soil N 

availability. 

 Collectively, the findings of this dissertation underscore the important role of plant-

microbe interactions and microbial processes in driving soil C and N retention in both managed 

and unmanaged ecosystems. Below, I provide further detail on how each dissertation chapter 

answers one of the broad research questions above.  

 

Chapter 2: How do plant-microbe interactions between plant litter and microbial decomposition 

traits influence the formation of new soil C for different bioenergy crop litters in the lab? 

 Understanding how new soil C is formed is imperative for evaluating the potential 

sustainability of bioenergy agricultural systems through soil C retention. In Chapter 2, I 

examined the extent to which litter differences in two bioenergy crops, corn and miscanthus, 

altered microbial decomposition and formed new soil C. To do this, I performed a soil 

microcosm experiment where I added 13C enriched aboveground and belowground litters to soils 

and traced the fate of the 13C into microbial respiration and soil C pools. I then used 

measurements of microbial carbon use efficiency (CUE) from this experiment to constrain model 

parameters and investigate if the model could represent how these crops differentially form soil 

C.  

In this experiment, I found that corn litters promoted higher microbial CUE (0.37) than 

miscanthus litters (0.24) (Fig. 2.4). In turn, corn litter formed approximately 50% more mineral 

associated soil C than miscanthus litters (Fig. 2.3). Similarly, structurally complex root litters 

promoted a lower CUE and formed less mineral associated soil C than leaf and shoot litters for 
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both crops (Fig. 2.3). When I used the CUE data to parameterize the SOC model, we found that 

modelling microbial trait differences uniquely allowed the model to capture the fate of litter C 

(Fig. 2.5). Collectively, we found a robust link between litter quality, microbial efficiency, and 

soil C formation. This link bridges the empirical uncertainty in how different crops can form new 

soil C and provides an empirical basis for modelling soil C cycling. 

 

Chapter 3: How do rhizosphere plant-microbe interactions influence soil organic matter 

stabilization and destabilization depending on nutrient levels in-situ? 

 Results from Chapter 2 suggest that plant traits like litter quality interact with soil 

microbes to alter soil C cycling. However, this experiment was unable to capture how living 

roots actively engineer soil microbes to drive soil C and N cycling. There is a great deal of 

conflicting evidence and theory on whether root-microbe interactions lead to soil C and N 

retention. In Chapter 3, I build upon my work in Chapter 2 to examine the role of living roots on 

microbial decomposition and the transfer of litter C and N between SOM pools. To do this, I 

incubated 13C and 15N enriched plant litter for one growing season in the field. I added litter to 

soil cores that were open to roots and fungal ingrowth, excluded roots but allowed fungal 

ingrowth, or excluded both roots and fungal ingrowth. I installed these cores in miscanthus plots 

with different nutrient treatments to investigate the effect of soil C and N availability on root-

altered decomposition and SOM formation.  

 In this experiment, I found that roots primed litter decomposition and led to a 32% loss in 

litter C remaining in the soil C pool associated with undecomposed plant litter fragments 

compared with root exclusion treatments (Fig. 3.3). However, roots balanced this C loss with a 

30% increase in litter C incorporation into more persistent, aggregate-associated SOM (Fig. 3.3). 
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Notably, root ingrowth reduced litter N in both of these pools, suggesting that roots prime 

rhizosphere microbes to preferentially mine N from litter without net C losses (Fig. 3.4). As a 

result, these plant-microbe interactions may increase the potential for litter C to persist in higher 

C:N, aggregate-protected SOM.  

 

Chapter 4: Can empirical measurements help constrain, parameterize, and validate modeled 

plant-microbe interactions to improve representations of forest ecosystem responses to global 

change? 

 In Chapters 2 and 3, I studied how plant-microbe interactions alter soil C and N cycling 

in managed bioenergy agricultural ecosystems. This work is critical because optimizing 

ecosystem services like C sequestration could help actively combat climate change. However, it 

is also vital to understand how unmanaged ecosystems like temperate forests have contributed to 

the globally important terrestrial C sink (Pan et al., 2011) and predict whether we can continue to 

rely on this ecosystem service in the future. In Chapter 4, I studied whether modelling explicit 

plant-microbe interactions could facilitate model representations of how N deposition and soil N 

availability has facilitated the forest soil C sink.  I leveraged decades of C and N cycling data 

from a whole-watershed N fertilization experiment at the Fernow Experimental Forest in 

Parsons, WV to run the microbially-explicit plant-microbe interactions model FUN-CORPSE 

(Fixation and Uptake of Nitrogen- Carbon, Organisms, Rhizosphere, and Protection in the Soil 

Environment). The three objectives of this work included 1) Reproducing key ecosystem 

responses to N fertilization, 2) Modeling microbially-explicit inorganic N cycling, and 3) 

Assessing how modeled soil C and N retention respond to shifts in N deposition and other future 

climate drivers. 
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 By simulating rhizosphere priming, FUN-CORPSE was able to capture key ecosystem 

responses to N fertilization, including a 25% decline in the tree C cost of soil N acquisition that 

reduces root-primed decomposition and increases soil C (Fig. 4.4; Fig. 4.5). I used data from the 

Fernow to build and constrain a new model component where nitrifying microbes control 

inorganic N transformations. After incorporating these N microbes, FUN-CORPSE captured the 

seasonality of nitrate production and the 50% increase in streamwater nitrate loss under N 

fertilization (Fig. 4.6). Finally, the model predicts that declining N deposition will lead to a 

gradual loss of the soil C gained during fertilization, particularly under elevated temperatures 

(Fig. 4.7). This indicates the potential for a weakening forest C sink under projections of future 

climate change.  
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Future directions:  

 In this dissertation, I studied how plant-microbe interactions drive the potential for 

ecosystem soil C retention to combat climate change. I have employed a broad range of 

approaches to tackle uncertainties that limit our predictive understanding of how C and N cycle 

in soils. My research has helped to lay the foundation for several ongoing projects in my lab, 

including 1) studying how tree roots alter SOM formation and retention from litter and root 

exudates (DeHetre and Ridgeway et al., in progress); 2) studying how fungal necromass is 

incorporated into SOM (DeHetre et al., in progress); 3) studying how different bioenergy crop 

roots impact new SOM formation (Brzostek et al., in progress); and 4) investigating how a 

legacy of N deposition has impacted SOM decomposition and temperature sensitivity (Kangi et 

al., in progress).  

 I will build upon the skills and experience I have gained in my graduate research to tackle 

new projects as a post-doctoral researcher in the Department of Biological Sciences at 

Dartmouth College. Here, I will help establish a winter climate change experiment that 

investigates how snowmelt alters forest biogeochemical cycling. This experiment simulates 

changes in winter climate characterized by intermittent snow events punctuated by regular winter 

‘heat waves’ that melt snowfall. As winters are warming three times faster than summers, this 

research addresses important uncertainties in how climate change will impact forest ecosystem 

function in the northeastern US.  

 Finally, I hope to expand upon my experience using empirical measurements to inform 

model representations of soil processes in my future research career. I believe that the potential 

remains to manage or protect ecosystems to address climate change and environmental 

degradation, and that leveraging data to improve model projections is vital to these efforts.  
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Appendix: Supplementary Tables and Figures 
 
SI Table 1: Model parameters from Chapter 2 
 
Parameter Baseline CORPSE 

values 
Microcosm CORPSE 
values 

CUE CORPSE values 

Protection rate: 
 
protected carbon 
formation rate 
(year-1) 

protection_rate_Fast 
0.6 
 
protection_rate_Slow 
0.001 
 
protection_rate_Necro 
4 
 

protection_rate_Fast  
2.4 
 
protection_rate_Slow 
0.004 
 
protection_rate_Necro 
16 
 

protection_rate_Fast 
2.4 
 
protection_rate_Slow 
0.004 
 
protection_rate_Necro 
16 
 

Turnover rate:  
 
protected carbon 
turnover time (year) 
 

Tmic 
0.25  
(approx. 3 months) 
 

Tmic 
7/365  
(1 week) 
 

Tmic 
7/365  
(1 week) 
 

Maximum CUE:  
 
carbon uptake 
efficiency 
 

eup_Fast 
0.6 
 
eup_Slow 
0.001 
 
eup_Necro 
0.6 
 

eup_Fast 
0.6 
 
eup_Slow 
0.001 
 
eup_Necro 
0.6 

eup_Fast 
Corn AG = .79 
Miscanthus AG = 0.60 
Corn BG = 0.66 
Miscanthus BG = 0.34 
 
eup_Slow 
0.001 
 
eup_Necro 
Corn AG = .79 
Miscanthus AG = 0.60 
Corn BG = 0.66 
Miscanthus BG = 0.34 

 
SI Table 2: replication for each treatment  
 

 Control High N Organic Total 
Root 9 13 15 37 
Fungal 10 7 5 22 
Twist 9 10 10 29 
Total 28 30 30 88 
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SI Table 3: Two-way ANOVA p-values for selected dependent variables for ingrowth core 

treatments, fertilization treatments, and ingrowth core x fertilization interaction.  

 

Dependent variable Ingrowth core 

treatment 

Fertilization 

treatment 
Ingrowth core ´ 

fertilization   

Litter C in SOM 0.11 <0.01 0.29 

Litter N in SOM <0.001 0.054 0.19 

mg litter C in light POM <0.01 0.48 0.10 

mg litter C in heavy POM 0.16 <0.01 0.64 

mg litter C in MAOM 0.40 <0.05 0.54 

litter C % in light POM <0.001 0.47 0.06 

litter C % in heavy POM <0.01 0.35 0.52 

litter C % in MAOM 0.51 0.80 0.31 

mg litter N in light POM <0.001 0.82 0.14 

mg litter N in heavy POM <0.05 0.80 0.49 

mg litter N in MAOM 0.21 <0.01 0.56 

litter N % in light POM <0.001 0.66 0.14 

litter N % in heavy POM 0.48 0.67 0.52 

litter N % in MAOM <0.001 0.74 0.37 
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SI fig. 1: Soil organic matter pools in mineral associated SOC (left) and particulate SOC (right) 
for field soils from corn (green) and miscanthus (purple). 

 
SI fig. 2: Mineral associated SOC formation efficiency: Litter C in mineral associated SOC out 
of litter C respired and in mineral associated SOC
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SI fig. 3: CUE vs. Mineral Associated SOC: CUE measured with endpoint microbial biomass 
and respiration vs. litter incorporation into mineral associated SOC 

 
 

  
 
 
 
 
 
 
 
SI Figure 4a: In nutrient limited soils, roots exchange C with soil microbes in exchange for N 
mineralization from soil organic matter. 4b: When fertilized with plant-available inorganic N, roots 
exchange less C with microbes and reduce soil organic matter decomposition. 4c: When fertilized with 
organic C & N inputs, roots still rely on microbes to mineralize N from organic fertilizer and accelerate 
microbially-driven soil organic matter cycling 
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SI Figure 5: Root and fungal ingrowth (R), root exclusion and fungal ingrowth (F), and root and fungal 
exclusion (T) cores. R cores were constructed with 1.55mm mesh, F cores were constructed with 50um 
mesh, and T cores were constructed with 50um mesh and were twisted. In each core, isotopically labelled 
litter inputs are traced into SOM pools, microbial biomass, and respiration. 
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SI Figure 6a: 5x5m miscanthus plots are established in a fully randomized block design of eight 
blocks (B1-B8) and four nutrient treatments (Low, Control, Organic, and High). Plots selected 
for use in this experiment are circled in gold. 6b: Each miscanthus plot had 25 individual plants 
on a 1m x 1m grid. Ingrowth cores were installed by two plants per plot. Plants were randomly 
selected of a subset that allowed ingrowth cores to be surrounded by established miscanthus 
plants. Cores were placed in random order from left to right and were installed 8” from visibly 
emerged miscanthus shoots in April 2021.   
 

a.  

b.  
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SI Fig. 7a: There were no significant differences in root biomass across the fertilization 
treatments (p=0.42) Fig. 7b: Cores in organic fertilization plots had marginally higher microbial 
biomass relative to cores in unfertilized control plots (p=0.09) 
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SI Figure 8: Litter C (a-c) and litter N (d-e) recovered in each SOM pool per gram of microbial 
biomass.  More litter C was transferred from light POM per gram of microbial biomass for 
organic fertilization treatments (8a, p=0.064), but less litter C was incorporated into heavy POM 
(8b, p=0.057) and MAOM (8c, p=0.038) for organic fertilization treatments relative to control 
fertilization treatments. There was no difference between treatments in the transfer of litter N 
from light POM per gram of microbial biomass with organic fertilization treatments (8d), and the 
reduction in MAOM-C stabilization was mirrored with a reduction in MAOM-N stabilization per 
gram of microbial biomass (8f, p=0.038) relative to unfertilized control. 
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SI Figure 9: Net nitrification rates expressed as ug N of nitrate produced per gram of dry soil per 
day were significantly lower for organic fertilization treatments relative to unfertilized control 
(p=0.015). 
 
 
 

 
 
SI Figure 10: Example of a subset of roots that were cleared and stained with trypan blue to 
determine the presence of arbuscular mycorrhizal colonization. There were no significant 
differences between fertilization treatments in mycorrhizal colonization as determined by the 
root-gridline intersect method.  
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