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Abstract

Characterizing & Mitigating Interstellar Scattering in Radio
Observations of Pulsars

Jacob Turner

Pulsars are rapidly rotating neutron stars that emit concentrated beams of radiation from
their magnetic poles. Measuring the arrival of these pulses via pulsar timing is a powerful tool in
efforts to detect low frequency gravitational waves (GWs). However, the interstellar medium (ISM)
presents a significant source of timing uncertainty that must be mitigated to improve the sensitivity
of pulsar timing efforts to these GW signals. By examining the effects of pulsar emission interactions
with this medium, we can properly correct for the resulting effects in pulsar timing efforts, as well
as study the astronomical unit-to-parsec scale structure and behavior of the ISM and characterize
this medium across many lines of sight in our Galaxy and localize the regions that dominate these
interactions. Emerging data processing techniques that take advantage of the periodic nature of
pulsar signals are also now allowing us to probe these features with incredible resolution. This thesis
serves to highlight some valuable studies related to understanding the structure and behavior of the
ionized ISM via the interstellar scattering of pulsar emission.

To examine scattering behavior across many lines of sight, we extract interstellar scintillation
parameters for pulsars observed by the North American Nanohertz Observatory for Gravitational
Waves (NANOGrav) radio pulsar timing program in the 12.5 year data release. We find good agree-
ment between our scattering delay measurements and electron-density model predictions for most
pulsars. For most pulsars for which scattering delays are measurable, we find that time-of-arrival
uncertainties for a given epoch are larger than our scattering delay measurements, indicating that
variable scattering delays are currently subdominant in our overall noise budget but are important
for achieving precisions of tens of nanoseconds or less.

Next, we use the Upgraded Giant Metrewave Radio Telescope to measure scintillation arc
properties in six bright canonical pulsars with simultaneous dual frequency coverage. We perform
more robust determinations of arc curvature, scattering delay, and scintillation timescale frequency-
dependence, and comparison between arc curvature and pseudo-curvature than allowed by single-
frequency-band-per-epoch measurements, which we find to agree with theory and previous literature.
We find a strong correlation between arc asymmetry and arc curvature, which we have replicated
using simulations, and attribute to a bias in the Hough transform approach to scintillation arc
analysis.

We then simulate scattering delays from the ISM to examine the effectiveness of three es-
timators in recovering these delays in pulsar timing data. Two of these estimators use the more
traditional process of fitting autocorrelation functions (ACFs) to pulsar dynamic spectra to extract
scintillation bandwidths, while the third estimator uses the newer technique of cyclic spectroscopy
on baseband pulsar data to recover the ISM’s impulse response function (IRF). We find that, given
sufficient S/N, cyclic spectroscopy is more accurate than both ACF estimators at recovering scatter-
ing delays at specific epochs, suggesting that cyclic spectroscopy is a superior method for scattering
estimation in high quality data.

Finally, we use cyclic spectroscopy to perform high frequency-resolution, frequency depen-
dent analyses of the millisecond pulsar B1937+21. We present among the most robust intra-epoch
scattering delay scaling estimations performed at 1.4 GHz, using eight individual measurements
across our observing bands, and find our results to agree with those previously quoted in the litera-
ture.
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Chapter 1. Introduction

1.1 Pulsars

Pulsars are rotating neutron stars that form within core-collapse supernovas of massive

stars between 10–25 M⊙ (Heger et al., 2003). Believed to have among the strongest magnetic

fields of any object in the universe (Güver et al., 2007), these stars act as spinning magnetic

dipoles, accelerating electrons along curved magnetic field lines. It is theorized that this accel-

eration causes these electrons to emit high-energy curvature radiation, and as these resulting

photons interact with the magnetic field and lower-energy photons, electrons-positron pairs are

produced, in turn creating more high-energy radiation, creating a cascade of radiation-emitting

charged particles (Ruderman & Sutherland, 1975). This results in groups of charged particles

emitting radio waves, eventually leading to the coherent beam of synchrotron emission from the

pulsar’s magnetosphere at the magnetic poles which we observe. If these beams sweep across

our line of sight, they can be observed as a pulsed signal, which is observed to be periodic in

most cases. However, many instances of signals turning off for periods of time (nulling) (Backer,

1970), as well as giant pulses (Staelin & Reifenstein, 1968), with signals many times stronger

than a typical observed pulse, and pulsars with incredibly sporadic pulses (RRATs) (McLaugh-

lin et al., 2006), or pulsars with no discernable periodicity, have also been observed. Pulsars

originating from the scenario described above, known as canonical pulsars, typically have ob-

served periods ranging from around 20 ms − 20 s (Dirson et al., 2022). An additional class

of pulsars, known as recycled (Bisnovatyi-Kogan & Ruzmaikin, 1974) or millisecond pulsars

(Backer et al., 1982), formed initially as in the scenario described above. However, they then

underwent accretion-powered spin-up from material siphoned from a binary pulsar’s companion
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star. These pulsars can have spin periods ranging from around 1−30 ms (Kramer et al., 1998).

Canonical pulsars have period derivatives, or spin-down rates, ranging from 10−12−10−18 s s−1;

millisecond pulsar spin-down rates are considerably smaller, with rates around 10−19 − 10−21

s s−1, as can be seen by examining a period-period derivative diagram like in Figure 1.1. Ad-

ditionally, millisecond pulsars typically have wider pulses relative to their rotation periods and

have characteristic average pulse shapes, also known as pulse profiles, that are remarkably stable

over long periods of time, making them ideal candidates for high precision timing projects such

as the search for and detection of nanohertz-frequency gravitational waves (Foster & Backer,

1990).

The flux density and features of pulses have been observed to change with frequency.

At lower frequencies of the radio band, pulsars are observed to increase in flux density with

increasing frequency, which is followed by a spectral turnover where the observed flux density

gets progressively dimmer as one observes at increasingly higher frequencies, following power-

law trends in both cases (O’Dell & Sartori, 1970; Rankin et al., 1970). Following the spectral

turnover, the spectral index of this power law seems to vary widely between pulsars, ranging

from as shallow as ν−0.4 down to ν−4, with the average spectral index being around −1.4

(Bates et al., 2013). Pulse profiles can undergo major structural changes depending on the

observing frequency as well, with features gradually emerging or receding in many pulsars,

although generally pulse widths tend to decrease and features tend to merge as we observe at

progressively higher frequencies, although this effect appears to be less pronounced in millisecond

pulsars (Kramer et al., 1998). This has been attributed to emission at different frequencies

originating at varying heights above the surface of the neutron star (Komesaroff, 1970), with

millisecond pulsars having smaller emission regions than canonical ones.

1.2 Pulsar Timing

The incredibly stable average profiles of millisecond pulsars make them valuable tools

for high-precision science, and their being widely distributed throughout the Galaxy allows for
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Figure 1.1: A period-period derivative diagram detailing a variety of physical proper-
ties for a wide range of pulsars using the most up-to-date data. Downward sloped lines
represent pulsar magnetic field strength in Gauss, while the shallower upward sloped
lines represent pulsar age in thousands, millions, or billions of years, and the steeper up-
ward sloped lines represent rotational energy loss, also known as spin-down luminosity,
in ergs s−1. Pink triangles represent pulsars visible at X-ray/γ-ray frequencies. Gray
circles represent pulsars in binary systems, while purple stars are pulsars with known
associated supernova remnants. Red squares represent magnetars, a highly magnetized
type of neutron star and green hexagons represent sporadically pulsing RRATs.
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close examination of phenomena that may be dependent on both time and physical location.

To develop a robust pulsar timing model, one needs to account for information intrinsic to the

pulsar, such as period and period derivative, as well as all potential sources that could affect

the expected arrival time of a pulse, including, but not limited to the distance, position on the

sky, and motion of the pulsar, the motion and rotation of the Earth, the changing center of

mass of the solar system, gravitational influence of any orbital companions to the pulsar, and

material along the propagation path, primarily free electrons (see next section).

For a given observation, a pulse profile of the observed pulsar is created by summing

over all pulses. These profiles are then compared with reference profiles, and the difference

in phase can be converted into a time offset between the two. This offset is multiplied by a

modeled pulse period and added to the midpoint time of the observation to determine the time

of arrival (TOA; see e.g., Lommen & Demorest (2013)). The differences in the arrival time delay

and the predicted delay from the timing model are known as timing residuals, and structure

within the residuals can provide valuable information about information that was not included

or properly corrected for in the model. For example, residuals that properly account for all

sources of timing noise will appear uncorrelated over time, whereas an improperly corrected

period derivative would result in quadratic residuals, or an improperly corrected proper motion

would result in a gradually increasing sinusoid.

The characterization of timing residual structure is of vital importance for the goal of

detecting nanohertz-frequency gravitational waves, as a gravitational wave propagating through

spacetime between Earth and a given pulsar will cause perturbations in pulse arrival times that

are dependent on what portion of the gravitational wave is interacting with that Earth-pulsar

system at the instant of observation. As an Earth-pulsar system is observed over many years,

different portions of the gravitational wave will influence the system, resulting in changes in

these residuals that are correlated in time, creating a red noise signature in the data. Since

each unique Earth-pulsar system in our detector will interact with a different portion of the

gravitational wave signal at a given time, we expect the existence of these waves to manifest

in the structure of the timing residuals as red noise that is correlated across all pulsars and
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Figure 1.2: Predicted (dashed black curve) vs. measured (blue points) correlations
between the timing residuals of pulsar pairs from the 15 year data release of the North
American Nanohertz Observatory for Gravitational Waves (NANOGrav) pulsar timing
array collaboration as a function of those pairs’ angular separation on the sky (Agazie
et al., 2023a). The results shown above represent evidence for a gravitational wave
background at least 3σ significance.

changes with pulsar location on the sky (Foster & Backer, 1990). Evidence for the existence of

a background of such gravitational waves as seen through these spatial correlations was recently

confirmed, as can be seen in Figure 1.2 (Agazie et al., 2023a).

1.3 Interstellar Medium

Pulsars can serve as valuable probes of the interstellar medium (ISM), which comprises

all space between the stars in our Galaxy. The interactions between pulsar emission and this

medium during the signal’s propagation towards Earth affects both the propagation path and
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the coherence of the received signal, providing what could be argued as one of the best tools

for examining from sub-AU up to parsec-scale structures within the medium.

1.3.1 Dispersion

While mostly empty, the matter that permeates the ISM consists of gas, mostly in the

form of molecular and atomic hydrogen, dust, as well as charged particles, such as free electrons

and ionized hydrogen. For this reason, the ISM is classified as a plasma, and, consequently,

pulsar emission will experience frequency-dependent delays as the result of charged particle

interactions with the emission, introducing different refractive indices, µ =
√

1 − (νmed/ν)2,

where νmed is the frequency of oscillations of particle density of the medium and ν is the

observing frequency, to the propagation path relative to empty space, assumed to be a vacuum

(Lorimer & Kramer, 2004).

In pulsar astronomy, we are primarily concerned with how pulsar emission interacts

with free electrons in the ISM during its propagation to Earth. They are typically assumed

to permeate the ISM at number densities of around ne ∼ 0.03 cm−3 (Ables & Manchester,

1976). While the group velocity, vg, of a wave through a vacuum is simply the speed of light,

c, with corresponding propagation time t = d/c, waves propagating through any non-vacuum

medium such as the ISM will have a refractive index less than 1, meaning that the modified

group velocity equation, vg = cµ, will result in a group velocity less than c. This will result in

a new propagation time of

tnon−vacuum =

∫ d

0

dl

cµ
(1.1)

as a result of the delayed signal.

For a given dispersion measure, DM =
∫ d

0
nedl, which represents the integrated column

density of electrons along the propagation path, the corresponding delay tDM at observing

frequency ν relative to an undispersed signal can be found by substituting the plasma frequency,

νp, as the frequency of the medium within the expression for refractive index and then taking

difference between the vacuum and non-vacuum propagation times. Here, DM has units of pc

6



cm−3 and the plasma frequency is expressed as νp =
√
e2ne/πme, where e and me are the

charge and mass of the electron, respectively. Under the assumption that the plasma frequency

is much less than our observing frequency (for pulsar observations it is typically around five to

six orders of magnitude smaller, so this is a good approximation),

tDM =

[∫ d

0

dl

cµ

]
− d

c
≈ 1

c

∫ d

0

[
1 +

1

2

(νp
ν

)2]
dl −

∫ d

0

dl

c
=

e2

2πmec

∫ d

0
nedl

ν2
= K

DM

ν2
, (1.2)

where ν is the observing frequency in MHz and K, known as the dispersion constant, is roughly

4.15×103 MHz2 pc−1 cm3 s (Lorimer & Kramer, 2004). This is one of the largest sources of

delay that arise in pulsar timing, and we can see through a simple example that a nearby pulsar

with a dispersion measure of 10 pc cm−3 observed at a typical frequency of 1 GHz will have

its signal delayed by 41.5 ms. Taking this a step further, if this pulsar were observed across

L−band (which we shall henceforth use to refer to the band spanning 1.1–1.9 GHz in pulsar

timing array observations), our detectors will measure around a 22.8 ms arrival time difference

between the top and bottom of the band.

Left uncorrected, dispersion will result in a curved “dispersion sweep” when examining

the pulsar signal’s intensity across frequency and phase (see Figure 1.3). Since measurements

are made using filterbanks with multiple discrete frequency channels, a simple way to fix this,

known as incoherent dedispersion, is by calculating the difference in expected arrival time at a

given frequency (in this case the frequency of a given frequency channel) relative to a reference

frequency, typically the center of the observing band, and retroactively applying the negative

of that delay offset. This technique, while useful, is inherently limited by the frequency channel

width of the observation, i.e., the fact that the frequency channels have a width at all means they

will retain some small level of delay related to dispersion, as we can only remove inter-channel

delays in this way. This limits the time resolution to the inverse of the frequency channel width

and can result in widened, smoothed out pulses, known as dispersive smearing, that are often

unable to resolve the finer features of a fully resolved pulse. Taking a real world example, using

NANOGrav’s L-band frequency resolution of 1.5625 MHz frequency channels (Agazie et al.,
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2023b), using incoherent dedispersion would limit us to a timing precision of approximately 130

µs at 1 GHz.

More advanced methods for dispersion measure correction also exist that examine the

voltage phase of the signal in the frequency domain and model the dispersive effect as a transfer

function of the ISM. In this way, the transfer function can be written in terms of a constant phase

offset, a time domain delay, and a phase rotation of the signal that can be used to dedisperse

the signal by taking its inverse. Since this technique, known as coherent dedispersion (Hankins

& Rickett, 1975), is not limited by the frequency channel width of the observation, we can

completely remove the dispersive delay from our signal without the side effect of dispersive

smearing, which also results in finer time resolution of the pulse. Indeed, the benefits of this

method over incoherent dedispersion make it the preferred dedispersion technique for all high-

precision pulsar timing efforts.

(a) Observation before dispersion is cor-
rected. The quadratic sweep across the
observation as a function of frequency is
quite prominent, reflecting the disparate
arrival time from data at opposite ends
of the observing band.

(b) Observation after dispersion is cor-
rected and removed. Signals from all fre-
quencies are now aligned in phase.

Figure 1.3: An example observation of PSR J1744–1134 taken from Levin (2015) that
demonstrates the effect dispersion has on arrival time as a function of frequency.
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1.3.2 Scattering

In addition to the dispersion-based time delays associated with signal propagation

through the interstellar medium, further changes to both the propagation time and the struc-

ture of the pulsar signal itself occur as the result of scattering interactions with smaller-scale

inhomogeneities (107 − 1010 cm for minutes-to-hours long timescale diffractive scattering and

1012− 1015 cm for days-to-weeks long timescale refractive scattering (Stinebring et al., 2000a)),

in the free electron density along the propagation path. Typically, this interaction is modeled

as occurring at a thin screen of free electrons, usually halfway between the pulsar and the ob-

server. As mentioned in the previous section, the refractive index µ of these free electrons is

different than the surrounding medium, and as a result of this difference, pulsar emission pass-

ing through this screen will be phase-shifted by some amount δΦ = ∆ka, where ∆k = 2π∆µν/c

is the wavenumber, or the number of wavelengths per unit distance, and a is the length of a

given inhomogeneity (Lorimer & Kramer, 2004). In the specific case of an ionized plasma, the

refractive index yields a frequency-dependent phase shift of

δΦ ≈ 2e2a∆ne

mecν
. (1.3)

Following Hewish (1980), for a propagation distance d, we would expect a signal to pass through

d/a irregularities, resulting in rms phase deviations of

∆Φ ≈ 2e2∆ne

√
ad

mecν
, (1.4)

randomly distorting the wavefront by some angle θ0, approximated as ∆Φ/ka.

Due to the turbulent nature of the ISM, each photon will interact slightly differently

with the phase screen, resulting in a multipath propagation of the signal and slightly different

phase shifts for each photon. Consequently, we see this as an interference pattern evolving over

both observing frequency and time at our telescopes in what are known as dynamic spectra

(see Figure 1.4). These intensity fluctuations, a phenomenon known as scintillation, provide
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us with an indirect way to quantify the amount of scattering in our data. When examining

these fluctuations, we can see discrete structures, known as scintles, that demonstrate slices in

frequency and time over which the pulsar signal has largely the same intensity. By quantifying

over what ranges in frequency and time these structures appear, that is, their widths in frequency

and time, known as the scintillation bandwidth (∆νd) and timescale (∆td), respectively, we can

determine the level of scintillation present in the data. If the intensity is similar over a large

range of neighboring frequencies then that means not much scattering has occurred, resulting

in wide scintles, a large scintillation bandwidth, and a small scattering delay. Conversely, if the

intensity changes noticeably across neighboring observing frequencies, then that means a greater

degree of scattering is taking place, leading to small scintles, a small scintillation bandwidth,

and a large scattering delay. The same principle applies to the time axis with scintillation

timescale.

As mentioned earlier, delays arise from phase shifts caused by pulsar emission traveling

through regions with a frequency dependent index of refraction. This means a corresponding

delay will be related to some fraction of the wavelength of a given ray, δΦc/(2πν). Using the

knowledge that interference from multipath propagation results from rays with phase differences

of less than around 1 radian (Lorimer & Kramer, 2004), the bandwidth over which rays at a given

frequency can interfere is in fact this scintillation bandwidth, also known as the decorrelation

bandwidth, mentioned earlier. The full approximation for quantifying scattering delays in pulsar

observations using this approach is consequently

τd ≈ 1

2π∆νd
, (1.5)

although in reality the numerator, usually represented as C1, can vary from around 0.6−1.5

depending on the geometry of the ISM (Lambert & Rickett, 2000).

In addition to the interference pattern phenomenon, another consequence of this mul-

tipath propagation of the signal is that the image we see will undergo angular broadening, with
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Figure 1.4: A dynamic spectrum of PSR J1509+5531 from Chapter 3. The large
structures visible in the spectrum detailing the intensity fluctuations of the pulsar signal
are a result of the multipath propagation of the signal through the ISM as a consequence
of interstellar scattering.

a radial angular diffusion

θd = θ0/2 ≈ e2

2πme

∆ne√
a

√
d

ν2
, (1.6)

where θd is the angle of the broadened image, resulting in an angular intensity that varies with

the incidental propagation angle at the observer as

I(θ)dθ ∝ e−(θ/θd)
2

2πθdθ, (1.7)

with an angle of zero indicating a signal unimpeded or undeflected during its propagation

(Lorimer & Kramer, 2004). See Figure 1.5 for an illustrative aid detailing the above described

phenomena.

A significant ramification of the angular broadening is that the signal itself is smeared

out in a process known as scatter broadening. This effect is frequency-dependent (see Figure

1.6), and we can see the pulse gets increasingly stretched out in phase as we go to lower

frequencies. More specifically, by taking the equation for geometric time delay, t = θ2d/c,
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Figure 1.5: An illustrative guide to the propagation process of the pulsar signal
through the interstellar medium and the corresponding effects of the signal once it
reaches the observer (Cordes, 2002).
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Figure 1.6: Pulse profiles from PSR B1557−50 at varying frequencies. The appearance
of a scattering tail becomes increasingly pronounced the lower in frequency at which
the observation is made (Lewandowski et al., 2013a).

and applying it to scattering, τd = θ2dd/c, we can see that the relationship between delay and

frequency follows a power law relation of τd ∝ ν−4, or −4.4 if we are assuming the medium can

be described by Kolmogorov turbulence, meaning the ISM can be described by a distribution

of inhomogeneity length scales that follows a wavenumber power law of k−11/3. Additionally,

plugging these two delay expressions into Equation 1.7, we get an expression describing the

intensity of the signal over time,

I(t) ∝ e−t/τd , (1.8)

which is a one-sided exponential decay and well-characterizes the dominant feature we see in

broadened pulses.

The scintillation bandwidth and timescale of a given observation can be measured by

examining the frequency and time autocorrelation functions (ACFs) of the dynamic spectrum,

with ∆νd defined as the half width at half maximum of central peak of the frequency ACF
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and ∆td defined as the half width at e−1 of the central peak of the time ACF fit (Cordes

et al., 1986). These quantities are typically measured through a Gaussian or Lorenztian fit

to the ACFs. However, while the Gaussian function is good approximation of the frequency

ACF, as shown above, the ISM’s impulse response function (IRF) is characterized by a one-

sided decaying exponential in the time domain. Given that the Fourier pair of the one-sided

exponential in the frequency domain is the Lorentzian function, and that the IRF is effectively

the signal codification of the scattering that is imparted onto the pulsar emission as a result of

its propagation through the medium, it makes more mathematical sense to fit the corresponding

frequency domain ACF using a Lorentzian (Bracewell, 1978).

The resulting scattering delays measured from these scintillation bandwidths are ex-

pected to increase with distance, as more ISM to travel through along a given LOS means

more material for the pulsar signal to interact with, bringing about further path deviations and

increased propagation time. The scintillation bandwidth is expected to scale with distance and

observing frequency as ∆νd ∝ ν22/5d−11/5 (Rickett, 1977). Since DM is a proxy for distance

that also accounts for the actual structure of the ISM, it can be valuable to understand how

scattering delays depend on DM, particularly when looking along different LOSs, as electron

densities are much higher in the Galactic plane than above or below. Models like NE2001

(Cordes & Lazio, 2002) attempt to accomplish this by modeling the electron density structure

in our galaxy, along with additional known features such as HII regions, to predict scintillation

bandwidths and timescales using sky location, observing frequency, and DM as input parame-

ters. We can also model the relation between delay and DM through fits over observations of

many pulsars. These fits can either rely on an assumed scaling index or treat the scaling index

an additional free parameter. These are well described in terms of a log parabolic function such

as

log τd,µs = a + b(log DM) + c(log DM)2 − α log νGHz, (1.9)

used in Bhat et al. (2004), where α is the scaling index, or exponential functions like
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τd,s = aDMγ(1 + bDMζ)ν−α, (1.10)

used in Ramachandran et al. (1997), Krishnakumar et al. (2015), and Cordes et al. (2016),

where α is again the scaling index and γ is set to 2.2 under the assumption of a Kolmogorov

medium.

Mathematically, during the propagation of the pulse through the ISM, the pulse under-

goes a convolution with the (IRF) of the ISM. This signal is generally expected to follow the

exponential decay seen in Equation 1.8, meaning that if we can deconvolve an IRF from a given

pulse and fit it the IRF intensity using this exponential decay model (or just find the centroid

of the IRF intensity if the signal is strong enough) we now have a direct way of measuring the

scattering delay in a given signal. It should be noted that the signal-to-noise (S/N) limit on cen-

troid approach stems from the ability to sufficiently align the recovered IRF intensity with the

pulse profile intensity for the centroid calculation. The direct nature of the IRF approach makes

it preferable to the dynamic spectrum approach, albeit more difficult to achieve in practice due

to the high S/N generally required for effective deconvolution. In addition, the scattering in a

given observation must be strong enough to resolve the deconvolved IRF.

1.3.3 Cyclic Spectroscopy

One promising method to perform deconvolution is a technique adopted by the pulsar

community known as cyclic spectroscopy (Demorest, 2011). Widely used in the engineering

community for decades (Gardner, 1987; Roberts et al., 1991; Brown & Loomis, 1993; Antoni,

2007) , this technique takes advantage of the periodic and amplitude-modulated nature of

pulsar signals to extract phase information from the voltage data, and exploits the fact that

the scintillation time spans many pulse periods, allowing the impulse response of the multipath

propagation to be estimated. Consequentially, this allows us to obtain information necessary

to reconstruct various extractable signals from our data, such as the ISM’s impulse response
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function, as we can recover both amplitude and phase information, which is in stark contrast

to conventional spectroscopy, which can achieve only amplitude recovery.

This technique requires the raw voltage signal, necessitating baseband observations.

The cyclic spectrum itself, which is the Fourier transform of the periodic spectrum (the time-

averaged profile intensity as a function of profile phase and observing frequency), is given by

SE(ν, αk) = ⟨E(ν + αk/2)E∗(ν − αk/2)⟩ = ⟨H(ν + αk/2)H∗(ν − αk/2)⟩Sx(ν, αk), (1.11)

where E(ν) is the electric field of the signal, given by [p(ν) ∗ N(ν)]H(ν) + Nsys(ν), p(ν) is

the frequency domain of the original, pre-convolution, pulse profile p(t) at time t mod P , with

P being the pulse period, N(ν) is the frequency domain representation of the time domain

intrinsic modulated pulsar noise, H(ν) is the transfer function of the ISM, also known as the

Fourier transform of the ISM IRF, αk = k/P is the cyclic frequency, and Sx(ν, αk) is the

Fourier transform of the intrinsic pulse profile (Dolch et al., 2021). Quickly touching on the

transfer function, dynamic spectra themselves are simply intensity representations of the transfer

function at the zeroth cyclic frequency. An example cyclic spectrum can be seen in Figure 1.7,

and an example deconvolved pulse with the recovered IRF is shown in Figure 1.8.

In conventional spectroscopy, frequency resolution is inherently tied to time resolution.

Another benefit of cyclic spectroscopy is that, by utilizing the newly accessible harmonic in-

formation, limitations on frequency resolution can be separated from the inherent pulse phase

resolution of the signal. As a result, multiple cyclic channels can be created per original pulse fil-

terbank channel, allowing for massive improvements in the frequency resolution of observations

while maintaining high pulse phase resolution. This is particularly useful in resolving finer de-

tails in intensity profiles as well as resolving previously unresolvable scintles in dynamic spectra

(see Figure 1.9). This would allow for valuable scintillation science to be performed on many

pulsars where current traditional filterbank resolution is limited such that their scintillation

bandwidths at various frequencies are unresolvable.
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Figure 1.7: A simulated cyclic spectrum from Dolch et al. (2021). The cyclic frequency
out to which there is power in the signal depends on a number of factors including pulsar
S/N and duty cycle.

Figure 1.8: (Top) An example recovered impulse response function from an obser-
vation of PSR B1937+21. (Bottom) The intrinsic profile (solid line) and pulse profile
prior to deconvolution of the IRF (dashed line) (Demorest, 2011).
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Figure 1.9: A dynamic spectrum created from archival data from 2012 of PSR
B1937+21 processed using traditional filterbanks (left) and with 1024 cyclic channels
per filterbank (right). There is a striking improvement in frequency resolution in the
CS-processed dynamic spectrum, which is now useable for various scintillation analyses
(Chapter 5).
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1.3.4 Scintillation Arcs

When scintles in a pulsar dynamic spectrum are fully resolved in observing frequency

and time, interesting parabolic structures can arise in the pulsar’s two-dimensional secondary,

or power, spectrum, which is the two-dimensional Fourier transform of the dynamic spectrum.

These parabolas, known as scintillation arcs (see Figure 1.10), can be a powerful tool for un-

derstanding localized scattering along a LOS. First described in Stinebring et al. (2001a), this

phenomenon is thought to be a consequence of scattering occurring at a thin screen at a distance

ds from the pulsar, which itself is located at a distance d from Earth. For interference between

two rays at angles θ1 and θ2, at an observing wavelength λ, the conjugate variables to time

and frequency, ft (also written as fD) and fν (also written as τ), known as the fringe frequency

or differential doppler shift and differential delay, respectively (Cordes et al., 2006a), can be

written as

ft =
d

λds
(θ2 − θ1)V eff,⊥ (1.12)

and

fν =
d

2cds
(d− ds)(θ

2
2 − θ2

1), (1.13)

where the effective velocity of the pulsar perpendicular to the LOS,

V eff,⊥ =
1

s
V screen,⊥ − 1 − s

s
V pulsar,⊥ − V Earth,⊥. (1.14)

Here the fractional screen distance, s, is given by s = 1 − ds/d, V pulsar,⊥ is the perpendicular

velocity of the pulsar, V screen,⊥ is the perpendicular velocity of the screen, and V Earth,⊥ is the

perpendicular velocity of Earth (Stinebring et al., 2001a; Cordes et al., 2006a; McKee et al.,

2022; Reardon et al., 2020a).

Setting one angle as a point source at the origin, therefore making θ1 = 0, orienting

the x-axis perpendicular to the pulsar effective velocity, only considering interference in this
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(a) Scintillation arcs without overlaid fits (b) Scintillation arcs with overlaid fits

Figure 1.10: Example secondary spectrum from Chapter 3 showing an observation in
which multiple scintillation arcs were visible, indicating multiple regions of pronounced
scattering along the LOS to this pulsar.

direction (Hill et al., 2003a), and setting the effective distance deff as d(1 − s)/s, the fringe

frequency and differential delay can be related via

fν =
λ2deff

2cV eff,⊥
f2
t , (1.15)

with the arc curvature

η =
λ2deff

2cV eff,⊥
. (1.16)

By examining Equation 1.16, we can see that this model predicts that arc curvature

should evolve with observing frequency as ν−2, following the same frequency dependence as

the angular deflection of the rays, and that, given knowledge of the pulsar’s effective velocity,

one can use arc curvature to determine the location of the scattering screen along that LOS.
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In practice, it can be difficult to determine V eff,⊥ without making many observations over a

long period of time, as there is a covariance between s and V screen,⊥. That being said, in many

cases it is appropriate to make the assumption that the pulsar velocity dominates, and the

effective velocity can be approximated at the transverse velocity calculated from the pulsar’s

proper motion.

Some additional information can be gained by analyzing the structure of the arcs. An

asymmetric arc, where the arc appears tilted or when one arm appears brighter, is a strong

indication of refraction, and high-cadence observing campaigns looking for when the dominant

arm switches can help place constraints on a pulsar’s refractive timescale. Additionally, some-

times inverted “arclets”, which, when fully resolved, can be seen to be inverted versions of the

arc (and identical in curvature) of which they are a part, can be seen along the arms of a scin-

tillation arc, indicating small-scale – typically AU-size – inhomogeneities in a given scattering

screen (see Figure 1.11).

Arc curvatures can be determined using a multitude of approaches, ranging from sim-

ply fitting by eye if the arcs are sufficiently resolved (Hill et al., 2003b), fitting the channels

containing the highest power at each delay along each half of the fringe frequency axis (Stine-

bring et al., 2022), or the more in-depth Hough transform approach (Bhat et al., 2016). In this

technique, a range of curvatures is sampled over the secondary spectrum, with the curvature

resulting in the greatest summed power along the resulting fit being the measured curvature for

that observation. The mean power P over a given curvature η is given by

P (η) =
1

N

N∑
i=1

S2(ηf2
t,i, ft,i), (1.17)

where S2 is the secondary spectrum and the summation uses the N points along a given cur-

vature that ignore low frequency noise and extend only as far on the delay axis as there exists

measureable power in a given arc.
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Figure 1.11: An example scintillation arc from Hill et al. (2005). Inverted arclets can
be seen throughout the structure of the arcs, with isolated arclets labeled alphabetically
with increasing position on the differential delay axis.

1.4 Thesis Overview

This thesis serves to highlight some valuable studies related to understanding the struc-

ture and behavior of the ionized interstellar medium via the interstellar scattering of pulsar

emission. In Chapter 2 we detail the scattering delays present in the 12.5 year data release of

the NANOGrav scientific collaboration. We find many pulsars exhibit typical scattering delays

of tens to hundreds of nanoseconds in a given epoch which are not accounted for in pulsar

timing models being used. We also perform many analyses using this scattering information

to characterize the structure and behavior of the ISM along 28 lines of sight in the galaxy.

In Chapter 3 we use simultaneous dual-frequency observations to analyze scintillation, with a

focus on scintillation arcs, in six bright canonical pulsars to perform robust studies of the ISM.

We measure important scaling relations with high precision, examine scintillation variations

over short timescales, and demonstrate biases in some common scintillation arc measurement

techniques.
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In Chapter 4 we examine the effectiveness of cyclic spectroscopy at recovering scattering

delays by simulating scattered pulses and attempting to recover the corresponding delays using

CS and ACF approaches. We find that the CS approach is both more precise and accurate

for individual epochs assuming sufficient S/N. In Chapter 5 we apply CS to observations of

the millisecond pulsar B1937+21. We demonstrate the power of this processing technique to

significantly improve the frequency resolution of observations, allowing for detailed scintillation

studies that would not be possible under conventional pulsar timing array observing setups.

Finally, in Chapter 6, we summarize the conclusions to this thesis and highlight the capabili-

ties of the ongoing efforts at the Green Bank Observatory to complete a near real-time cyclic

spectroscopy pipeline.
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Chapter 2. The NANOGrav 12.5-Year Data Set:

Monitoring Interstellar Scattering Delays

2.1 Introduction

The North American Nanohertz Observatory for Gravitational Waves (NANOGrav;

McLaughlin, 2013) aims to use a pulsar timing array (PTA) to detect nanohertz frequency

gravitational waves. The 12.5-year data set (Alam et al., 2020a) presents observations of 47

millisecond pulsars (MSPs) with up to sub-µs precision and finds a strong, common red-noise

process consistent with a gravitational-wave background but lacks the quadrupolar correlations

necessary to claim a detection (Arzoumanian et al., 2020a). Pulsar timing precision is largely a

result of robust timing models for each MSP, accounting for many phenomena that might affect

a pulsar time of arrival (TOA) and potentially mask a gravitational wave signal in our data.

One of the most significant sources of TOA residual uncertainty for PTAs comes from

the interaction between a pulsar’s radio emission and free electrons in the interstellar medium

(ISM). The most significant of these ISM effects is dispersion, in which a frequency-dependent

time delay arises from the radio emission propagating through free electrons in the ISM. The

delay at a given observing epoch can be related to the product of the integrated column density

of free electrons along the line of sight (LOS), known as the dispersion measure (DM), and the

inverse square of the observation frequency, ν. Since the Earth, the solar system, the ISM, and

the pulsars all have motions that vary the LOS from epoch to epoch, DM is time-dependent.

The delay can be corrected by observing a pulsar at multiple frequencies at each observing

Published as J. E. Turner et al. 2021, ApJ, 917, 10
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epoch (Roberts et al., 2005; Demorest et al., 2012; Arzoumanian et al., 2015b; Jones et al.,

2017; Keith et al., 2013).

Interstellar scattering also contributes epoch-dependent delays. The phenomenon is the

result of a pulsar’s radio emission propagating through a non-uniform distribution of free elec-

trons. These delays also vary with time. However, the nature of the propagation for dispersion

and scattering results in different frequency dependencies for each phenomenon. As mentioned

above, the dispersion delay scales as ∆tDM ∝ ν−2, and, if we assume fluctuations in the ISM can

be modeled by a Kolmogorov-like spectrum, it can be shown that time delays from scattering

go as τd ∝ ν−4.4 if inner-scale effects are ignored and if the scattering properties of the medium

are the same everywhere (or, for a screen, identical across the screen), and if refraction does

not modify the scattering (Cordes & Rickett, 1998).

We see the effects of interstellar scattering in the broadening of pulse profiles and the

delaying of pulse arrival times. Scattering also results in interstellar scintillation, which arises

from two interrelated phenomenon: diffractive interstellar scintillation (DISS) and refractive

interstellar scintillation (RISS) (Rickett, 1990). With NANOGrav’s observing cadence, DISS is

the most observable over a single epoch, primarily because the resulting variability is resolvable

over typical observation lengths and bandwidths (Arzoumanian et al., 2018). More specifically,

for gigahertz frequencies and pulsars at DMs ≃ 50 pc cm−3 the characteristic timescale from

DISS is typically on the order of minutes and the characteristic bandwidth from the accom-

panying pulse broadening is on the order of megahertz (Cordes & Rickett, 1998), although we

observe large variations in scintillation parameters for a given DM.

Levin et al. (2016) examined effects from DISS on pulsars in the NANOGrav 9-year

data set (Arzoumanian et al., 2015b) and found that, generally, NANOGrav pulsars exhibit

scattering delays on the order of 1–100 ns at 1500 MHz. However, even if delays are small

compared to TOA errors, if they are correlated over time they could contribute to noise in the

data set. Quite a few works, including Hemberger & Stinebring (2008a), Coles et al. (2015),

Lentati et al. (2017), McKee et al. (2018), and Main et al. (2020) have found at least modest

evidence that delays are correlated over time. Additionally, as NANOGrav’s timing precision
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reaches the sub-100 ns regime for more pulsars, delays from scattering become significant enough

to warrant further investigation and possibly mitigation in many pulsars. Since our current

timing pipeline does not account for scattering variability, scattering delays may be partially

absorbed in DM fits (Arzoumanian et al., 2015b). Because the frequency scaling of these two

noise sources is different, this is an additional source of noise in our timing residuals. Levin et al.

(2016) also showed that many pulsars do not follow ν−4.4 frequency scaling, instead exhibiting

shallower power-law behaviors, further motivating the need to separate the effects of dispersion

and scattering.

In this paper we aim to expand upon the work done in Levin et al. (2016) by examining

the effects of scattering on TOAs for pulsars in the NANOGrav 12.5-year data set and looking

for deviations from the ν−4.4 frequency scaling. We also explore how scattering can give us

insight into other information on MSPs and the ISM, including pulsar transverse velocities and

the large-scale structure of the ISM in the Milky Way.

2.2 Data

We used observations from the NANOGrav 12.5-year data set (Alam et al., 2020a)1.

The data were taken and coherently dedispersed with the FPGA-based spectrometers GUPPI

(Green Bank Ultimate Pulsar Processing Instrument) and PUPPI (Puerto Rico Ultimate Pulsar

Processing Instrument) at the Green Bank Telescope and the Arecibo Observatory, respectively

(DuPlain et al., 2008; Ford et al., 2010). This process was done on 47 pulsars, 11 of which are

new to the 12.5-year data set and consequently were not included in the analysis done by Levin

et al. (2016).

We reused the results from the Levin et al. (2016) analysis and augmented them by

analyzing ∼3.6 years of new data not included in the nine year data set from both telescopes,

with the MJD range for most pulsars spanning approximately 56603–57933 (2013 November–

2017 June). Observations at Arecibo were centered near 1380 MHz using bandwidths of 800

1http://data.nanograv.org
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MHz with 1 second subintegrations, while observations at Green Bank were centered near 820

and 1500 MHz using 200 and 800 MHz bandwidths, respectively, with 10 second subintegrations.

Observations at both telescopes were divided into 1.56 MHz frequency channels, and were ∼30

minutes in length. While the NANOGrav 12.5-year data set also includes 327 MHz, 430 MHz,

and 2.1 GHz data from Arecibo, the scintles are generally either too narrow to be frequency

resolved at our current resolution in the case of 327 and 430 MHz or either too wide or with an

insufficient number of scintles to be properly analyzed given our current observation bandwidth

in the case of 2.1 GHz.

All observations began with a polarization calibration scan with a 25 Hz noise diode

injection for both polarizations. A flux calibrator, QSO J1445+099, is also observed once per

epoch per frequency. All of the analyses done in this paper used total intensity profiles, which

were made by summing the polarizations of the calibrated data.

As mentioned in Alam et al. (2020a), small timing mismatches in both of these backends

led to frequency-reversed “ghost images” of pulses appearing in the data. These can result in

large offsets in residuals if uncorrected. This has been accounted for in the 12.5-year data set,

and anything left from the subtraction will negligibly affect the information contained in our

dynamic spectra.

2.3 Analysis

2.3.1 Scintillation Parameters

Following a method similar to Cordes (1986a) and identical to that of Levin et al.

(2016), we created 2D dynamic spectra from each 820 and 1500 MHz observation of all pulsars

in our analysis. To create a dynamic spectrum, we calculate the intensity, S, of the pulsar’s

signal at any given observing frequency, ν, and time, t, in that observation by the relation

S(ν, t) =
Pon(ν, t) − Poff(ν, t)

Pbandpass(ν, t)
, (2.1)
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where Pbandpass is the total power of the observation as a function of observing frequency and

time, and Pon and Poff are the power in all on- and off-pulse components of the pulse profile,

respectively. After smoothing from 2048 pulse profile bins to 64 bins, we define the on-pulse

component as the bins in the summed profile that have an intensity > 5% of the maximum

within a continuous window.

These observations were calibrated and excised of radio-frequency interference (RFI) via

the median-smoothed difference channel-zapping algorithm in psrchive’s paz function (Hotan

et al., 2004) and converted into 2D dynamic spectra, such as those seen at the top of Figures 2.1

and 2.2. As shown in Figure 2.1, to determine the scintle sizes at each epoch, we first computed

a 2D autocorrelation function (ACF) and summed separately over time and frequency to create

a 1D time ACF and a 1D frequency ACF taken at zero time lag and zero frequency lag,

respectively. We then fit Gaussian functions to the frequency and time axes at lag 0 of the ACF

to obtain estimates for the scintillation bandwidth and timescale, respectively (see Figure 2.2).

Scattering effects can be estimated based on the size of scintles (maxima) in both time

and frequency in a pulsar’s dynamic spectra. Here we focus on the scintillation timescale, ∆td,

defined as the half-width at e−1 of the values along the time axis at ACF lag 0 of the dynamic

spectrum’s 2D ACF, and the scintillation bandwidth, ∆νd, defined as the half-width at half-

maximum of the values along the frequency ACF at lag 0 of the 2D ACF. The scattering delay,

τd, can subsequently be obtained from the scintillation bandwidth via the relation

2π∆νdτd = C1, (2.2)

where C1 is a dimensionless quantity in the range 0.6 − 1.5 conditional on the geometry and

spectrum of the electron density fluctuations of the medium (Cordes & Rickett, 1998). In this

analysis we assume C1 = 1, as in Levin et al. (2016). We found the results of the 1D and 2D

Gaussian fits to the 1D and 2D ACFs, respectively, to be in agreement, and opted to use the

1D ACFs for our analysis since most of the pulsars have scintillation timescales longer than our

observation times. If our observations were long enough to resolve the scintles in both time
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and frequency, as in Shapiro-Albert et al. (2020), we would have used the 2D ACFs since there

would have been a sufficient number of scintles within the observing time.
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Figure 2.1: Example of stretched dynamic spectra (top), the corresponding 2D ACF
(middle), and the resulting values along the time axis of the ACF at lag 0 (bottom,
with the 1D ACF in blue and Gaussian fit in red) from a PSR B1855+09 observation
with the Arecibo telescope. The 1σ error shown above includes the finite scintle error.
Note in this case that the scintles are not fully resolved in time, as is typical in our
data because most of our observations are shorter than the scintillation timescales of
the pulsars under observation.
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Table 2.1: Measured Scintillation Parameters

This work Levin et al. (2016)

Pulsar ∆ν
1500
d τ1500

d N
med;1500
scint N1500

ν ∆t
1500
d N1500

t ∆ν
820
d τ820

d N
med;820
scint N820

ν ∆t
820
d N820

t ∆ν
1500
d τ1500

d

(MHz) (ns) (min) (MHz) (ns) (min) (MHz) (ns)

J0340+4130 <3.3 ± 1.3 >33 ± 17 32 10 — — — — — — — — 9 ± 3 15 ± 6

J0613–0200 4 ± 3 16 ± 11 21 40 10 ± 4 4 <1.6 ± 0.2 >78 ± 17 25 19 6 ± 3 7 11 ± 4 12 ± 4

J0636+5128 7 ± 4 12 ± 9 17 24 9 ± 3 13 <1.5 ± 1.0 >31 ± 37 23 26 8 ± 3 17 — —

J0740+6620 81 ± 30 1.5 ± 0.5 2 4 — — 18 ± 9 5 ± 3 3 16 — — — —

J0931−1902 20 ± 4 7 ± 2 9 4 > 30 — — — — — — — 50 3

J1012+5307 40 ± 18 4 ± 2 6 1 — — — — — — — — 66 ± 6 2.5 ± 0.1

J1024−0719 36 ± 3 4.4 ± 0.3 5 3 > 30 — 10 ± 3 11 ± 4 4 6 17 ± 4 1 47 ± 18 3 ± 1

J1125+7819 50 ± 20 1.9 ± 0.9 3 25 — — 7 ± 3 17 ± 8 6 37 12 ± 4 23 — —

J1455−3330 43 ± 12 3.2 ± 0.9 5 5 — — 5 ± 1 27 ± 7 8 12 — — 70 ± 18 4 ± 1

J1614−2230 6 ± 3 16 ± 6 25 16 9 ± 3 1 <2.4 ± 0.6 >33 ± 14 17 3 5 ± 1 1 9 ± 3 16 ± 5

J1640+2224 50 ± 26 1.8 ± 0.9 4 17 > 30 — — — — — — — 56 ± 15 3 ± 1

J1713+0747 23 ± 15 3 ± 2 6 72 > 30 — — — — — — — 21 ± 9 7 ± 2

J1738+0333 19 ± 8 6 ± 3 9 18 > 30 — — — — — — — 17 ± 8 9 ± 2

J1744−1134 33 ± 13 3.3 ± 1.6 5 18 ¿30 — 10 ± 3 12 ± 4 5 21 — — 42 ± 9 4 ± 1

J1853+1303 11 ± 6 8 ± 4 14 6 > 30 — — — — — — — 13 ± 5 12 ± 5

B1855+09 10 ± 5 8 ± 4 11 25 > 30 — 9 ± 3 18 ± 6 5 1 — — 5 ± 2 21 ± 10

J1909−3744 28 ± 13 4 ± 2 6 89 — — <4 ± 1 >21 ± 12 10 18 6 ± 2 5 39 ± 15 5 ± 2

J1910+1256 2.3 ± 0.8 47 ± 23 71 17 > 30 — <3.4 ± 2.6 >90 ± 44 26 3 > 30 — 2.3 ± 0.9 58 ± 17

J1918−0642 9 ± 3 13 ± 5 16 28 > 30 — — — — — — — 15 ± 5 10 ± 3

J1923+2515 18 ± 4 2.4 ± 1.6 5 8 — — — — — — — — 22 ± 10 6 ± 1

B1937+21 <1.5 ± 0.8 > 76 ± 43 30 43 9 ± 3 23 — — — — — — 2.8 ± 1.3 44 ± 21

J1944+0907 8 ± 6 7 ± 6 17 28 — — 3 ± 3 5 ± 7 14 3 — — 11 ± 5 10 ± 6

J2010−1323 8 ± 3 13 ± 6 18 29 7 ± 6 2 — — — — — — 7 ± 2 19 ± 6
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J2043+1711 56 ± 27 1.8 ± 0.9 4 2 > 30 — — — — — — — 86 2

J2145−0750 43 ± 11 3 ± 1 4 7 > 30 — 7 ± 4 9 ± 5 5 19 > 30 — 48 ± 13 2.8 ± 0.7

J2229+2643 46 ± 15 2.9 ± 0.8 4 6 — — — — — — — — — —

J2302+4442 8 ± 7 16 ± 8 20 15 — — < 1.5 ± 0.2 > 37 ± 15 26 20 — — 10 ± 2 14 ± 3

J2317+1439 46 ± 14 2.8 ± 0.8 5 13 > 30 — 12 ± 6 13 ± 5 5 1 — — 42 ± 12 3 ± 1

Table 2.1: All parameters with bars (τd, ∆νd, etc.) represent ensemble weighted averages of the individual measure-
ments, with 1σ errors shown. Nmed

scint; represents the median number of scintles and Nt and Nν indicate the number of
estimates made for that quantity. τd values represent the scattering delays, while ∆νd values represent scintillation
bandwidths. All measurements and errors have been rounded to the last significant digit shown. Values with only one
measurement use their measured uncertainties as opposed to weighted errors. Due to our short observation lengths,
it is likely that all of our ∆td values are biased lower than their true averages.
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Figure 2.2: As in Figure 2.1, but for an observation of PSR J0636+5128 with the
Green Bank telescope. For this pulsar, we are able to measure a scintillation timescale,
though it is likely an underestimate due to the short durations of our observations.
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Table 2.2: NE2001 Electron Density Model Predicted Scintillation Parameters

Pulsar Period DM τNE2001
d;1500 ∆νNE2001

d;1500 ∆tNE2001
d;1500 τNE2001

d;820 ∆νNE2001
d;820 ∆tNE2001

d;820

(ms) (pc cm−3) (ns) (MHz) (min) (ns) (MHz) (min)

J0023+0923 3.05 14.3 2.5 42.5 17.4 40 9.1 13.2

J0030+0451 4.87 4.3 0.06 1900 710 0.8 405 540

J0340+4130 3.29 49.6 50 2.1 17.1 700 0.5 12.9

J0613−0200 3.06 38.8 20 6.4 16.4 230 1.4 12.5

J0636+5128 2.87 11.1 1.9 55.1 95 30 11.8 72

J0645+5158 8.85 18.2 6.1 17.2 20.3 90 3.7 15.4

J0740+6620 2.89 15.0 3.2 33.0 12.6 50 7.1 9.5

J0931−1902 4.64 41.5 20 4.3 30.5 350 0.9 23.2

J1012+5307 5.26 9.0 1.2 88 16.6 20 18.8 12.6

J1024−0719 5.16 6.5 0.2 610 16.8 2.4 130 12.7

J1125+7819 4.2 12.0 1.5 70.1 21.9 20 15 16.7

J1453+1902 5.79 14.1 3.1 34.1 26.4 40 7.3 20.1

J1455−3330 7.99 13.6 1.0 110 103 10 23.3 78

J1600−3053 3.60 52.3 90 1.1 5.1 1,300 0.24 3.9

J1614−2230 3.15 34.5 30 3.6 5.4 420 0.8 4.1

J1640+2224 3.16 18.4 5.8 18.1 15.3 80 3.9 11.7

J1643−1224 4.62 62.3 90 1.2 5.9 1,300 0.25 4.4

J1713+0747 4.57 16.0 4.1 25.6 37.7 60 5.5 28.6

J1738+0333 5.85 33.8 20 5.00 5.5 300 1.1 4.1

J1741+1351 3.75 24.2 0.7 160 48.8 9.3 35 37.1

J1744−1134 4.08 3.1 0.02 5,700 335 0.3 1,200 253

J1747−4036 1.65 153.0 2,400 0.04 2.4 30,000 0.01 1.8

J1832−0836 2.72 28.2 20 5.9 2.9 250 1.3 2.2

J1853+1303 4.09 30.6 6.2 52.2 16.3 90 3.6 39.7

B1855+09 5.36 13.3 2.2 4.9 53.9 30 10.4 41.1

J1903+0327 2.15 297.5 240,000 0.0004 0.5 3,400,000 0.00009 0.5
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Table 2.2: NE2001 Electron Density Model Predicted Scintillation Parameters

Pulsar Period DM τNE2001
d;1500 ∆νNE2001

d;1500 ∆tNE2001
d;1500 τNE2001

d;820 ∆νNE2001
d;820 ∆tNE2001

d;820

(ms) (pc cm−3) (ns) (MHz) (min) (ns) (MHz) (min)

J1909−3744 2.95 10.4 1.5 68 7.9 20 14.6 6.0

J1910+1256 4.98 38.1 8.4 12.5 19.0 120 2.7 14.5

J1911+1347 4.63 31.0 5.0 20.8 21.7 70 4.5 16.6

J1918−0642 7.65 26.6 10 10.0 21.3 150 2.1 16.1

J1923+2515 3.88 18.9 1.7 61 22.7 20 13 17.2

B1937+21 1.56 71.0 130 0.8 62.0 190 0.2 46.1

J1944+0907 5.19 24.3 2.9 36 9.8 40 7.7 7.5

J1946+3417 3.17 110.2 210 0.5 2.0 3,100 0.1 1.5

B1953+29 6.13 104.5 240 0.43 4.3 3,500 0.09 3.3

J2010−1323 5.22 22.2 6.7 15.7 16.7 100 3.4 12.8

J2017+0603 2.90 23.9 3.8 27.9 52.7 50 6.0 40.1

J2033+1734 5.95 25.1 3.0 35.4 53.7 40 7.6 40.9

J2043+1711 2.38 20.7 2.0 51 30.8 30 11 23.8

J2145−0750 16.05 9.0 0.5 200 60.5 7.5 42.3 45.9

J2214+3000 3.12 22.5 3.1 33.8 41.2 40 7.2 31.2

J2229+2643 2.98 22.7 4.2 25.2 18.8 60 5.4 14.3

J2234+0611 3.58 10.8 0.8 136 14.9 10 29.1 11.3

J2234+0944 3.63 17.8 3.3 31.5 9.9 0.5 6.7 7.5

J2302+4442 5.19 13.8 0.9 120 103 10 26.4 79

J2317+1439 3.45 21.9 1.9 54 57.4 30 11.6 43.5

J2322+2057 4.81 13.4 1.0 104 25.3 10 22.3 19.2

Table 2.2: Predictions of scattering delays, scintillation bandwidths, and scintillation
timescales made by the NE2001 electron density model (Cordes & Lazio, 2002). We
calculated ∆td values using transverse velocities derived from proper motions rather
than the 100 km s−1 transverse velocity that NE2001 assumes. DM distances were used
for calculating transverse velocities if current parallax measurements were negative or
if errors on parallax measurements were larger than around 25%.
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Uncertainties in our scattering delay measurements are an addition in quadrature of

the finite scintle error, which can be approximated as

ϵ ≈ τdN
−1/2
scint

≈ τd[(1 + ηtT/∆td)(1 + ηνB/∆νd)]
−1/2,

(2.3)

where Nscint is the number of scintles, T and B are total integration time and total bandwidth,

respectively, and ηt and ην are filling factors ranging from 0.1 to 0.3 depending on the definitions

of characteristic timescale and scintillation bandwidth, and in our case both set to 0.2 (Cordes

& Shannon, 2010).

Since all of our observations are at most 30 minutes in length, generally T < ∆td, and

as a result 1+ηtT/∆td ≈ 1. This allows us to rely exclusively on the observing and scintillation

bandwidths when calculating ϵ. It should be noted that this is a conservative approach that

can only overestimate our reported uncertainties: if T ≳ ∆td, then Equation 5.4 shows that we

will underestimate Nscint and overestimate ϵ (Levin et al., 2016).

The limited frequency resolution also introduces selection effects into our data. We

are unable to reliably measure scintillation bandwidths smaller than our 1.5 MHz wide channel

widths. As a result, some of the average scattering delays quoted for the most highly scattered

pulsars are lower limits. Due to this bias, we treat an individual scattering measurement ≳ 30

ns (about three channel widths) as a lower limit for a given epoch.

To account for the wide bandwidth of our observations, we assumed a Kolmogorov

medium to stretch each observation’s dynamic spectrum by by ν4.4, with the frequency axis

being re-scaled to reference frequencies of 820 and 1500 MHz for the respective observing bands

as in Levin et al. (2016). If the scaling index used for the stretching is correct, then all scintles

in a given dynamic spectrum should be roughly equal in size. Understretching a spectrum

(i.e., the epoch has a true index steeper than 4.4) would result in an overestimation of the

true scattering delay at a given epoch, and vice-versa for overstretching. In some cases, this

stretching can result in scintles at the lower end of the band appearing wider than the width of

an individual channel despite physically being narrower, and vice-versa. This means we can then
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derive scintillation bandwidths smaller than our channel widths. However, we still interpret our

measurements as averages over entire observing bands. As a result, our upper limits will still

be determined based on the unstretched channel width at the center of each band.

We have carried out simulations to determine the errors due to the assumption that

−4.4 is the proper index to use for stretching by placing discrete scintles with some characteristic

frequency scaling, stretching using the −4.4 scaling, and then measuring the resultant frequency

scaling. For index values between −1 and −5, the average fractional error due to stretching

by an incorrect index is roughly 10%. Furthermore, the index values measured will always be

biased high, i.e. a flatter scaling than −4.4.

Table 2.3: Comparison with Previously Published Scintillation Parameters

This work Previously Published Values

Pulsar τd ∆νd ∆td ν τd, scaled ∆νd, scaled ∆td, scaled νoriginal Reference

(ns) (MHz) (min) (MHz) (ns) (MHz) (min) (MHz)

J0340+4130 >33 ± 17 <3.3 ± 1.3 — 1500 43 ± 2 3.7 ± 0.2 16 ± 1 1500 Shapiro-Albert et al. (2020)

J0613−0200 16 ± 11 4 ± 3 10 ± 4 1500 61 3 26 1369 Coles et al. (2010)

= = = = = 97∗ 2∗ 75∗ 1500∗ Keith et al. (2013)

= = = = = 21 ± 1 7.7 ± 0.5 11 ± 1 1500 Shapiro-Albert et al. (2020)

= = = = = 50−200† 0.8−3.2 † — 1350† Main et al. (2020)†

J1024−0717 10 ± 3 11 ± 4 17 ± 4 820 5 33 56 685 Coles et al. (2010)

= 4.4 ± 0.3 36 ± 3 >30 1500 0.59∗ 268∗ 70∗ 1500∗ Keith et al. (2013)

J1614−2230 16 ± 6 6± 3 9 ± 3 1500 29 ± 2 5.5 ± 0.4 12 ± 1 1500 Shapiro-Albert et al. (2020)

J1713+0747 3 ± 2 23 ± 15 >30 1500 7∗ 24∗ 48∗ 1500∗ Keith et al. (2013)

J1744−1144 12 ± 4 10 ± 3 — 820 27 6.0 26 660 Johnston et al. (1998)

= = = = = 6 28 58 685 Coles et al. (2010)

= 3.3 ± 1.6 33 ± 13 >30 1500 3∗ 59∗ 35∗ 1500∗ Keith et al. (2013)

B1855+09 18 ± 6 9 ± 3 — 820 16 10 21 685 Coles et al. (2010)

= 8 ± 4 10 ± 5 > 30 1500 13 12 37 1369 Coles et al. (2010)

= = = = = 29∗ 6∗ 24 1500∗ Keith et al. (2013)

J1909−3744 >21 ± 12 <4 ± 2 6 ± 2 820 10 17 41 685 Coles et al. (2010)

= 4 ± 2 28 ± 13 — 1500 2 ± 0.8 81 ± 31 ¿ 82 1500 Shapiro-Albert et al. (2020)

= = = = = 4∗ 37∗ 38∗ 1500∗ Keith et al. (2013)

B1937+21 >76±43 <1.5 ± 0.8 9 ± 3 1500 48 3 7 1369 Coles et al. (2010)

= = = = = 127 1 8 1400 Cordes et al. (1990)

= = = = = 130∗ 1∗ 6∗ 1500 Keith et al. (2013)
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Table 2.3: Comparison with Previously Published Scintillation Parameters

This work Previously Published Values

Pulsar τd ∆νd ∆td ν τd, scaled ∆νd, scaled ∆td, scaled νoriginal Reference

(ns) (MHz) (min) (MHz) (ns) (MHz) (min) (MHz)

J2145−0750 9 ± 5 7 ± 4 >30 820 6 25 58 685 Coles et al. (2010)

= 3.3 ± 0.8 43 ± 11 >30 1500 0.82∗ 194∗ 57∗ 1500∗ Keith et al. (2013)

Table 2.3: Published values were reported at observing frequency νoriginal and con-
verted to the values at the frequency closest to that used in our paper using a scaling
index of ξ = −4.4. For consistency, we only examined scintillation measurements taken
at comparable frequencies. Additionally, as is discussed below, we do not find consistent
scaling behavior along the LOSs to different pulsars, and as a result of this variability
we felt that attempting to scale scintillation measurements taken at largely disjointed
frequencies would not make for a sound comparison. Our scintillation timescale av-
erages are lower than many of the previously measured values at similar frequencies,
further providing evidence for the possibility of our timescale averages being biased low
as a result of our short observation lengths.
∗Only values that were already scaled were reported in the original publication.
†No average value was quoted, but scattering delays were found within this range.

2.3.2 Scaling Behavior

With a large enough observation bandwidth, it is possible to place constraints on the

scaling behavior of scattering delays as a function of frequency. Levin et al. (2016) were able

to break up a few unstretched wideband observations at 1500 MHz into four equal subbands

of 200 MHz each, determine ∆νd and τd in each unstretched subband using the ACF method

described in Section 2.3, and perform a weighted linear fit for τd in semi-log space of the form

νξ to estimate the scaling index ξ for a given epoch. Some examples of these fits can be seen in

Figure 2.3.

We applied this method to four of the pulsars and, as discussed in more detail in Section

2.5.2, found similar results to Levin et al. (2016). We also used this method to look at the time

dependence of this scaling index. We found it feasible to perform this method only in the

1500 MHz band, as the 800 MHz band has only 200 MHz of bandwidth and we would have an

insufficient number of scintles per subband to effectively utilize this approach.
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Figure 2.3: Top: A subband fit for PSR J2302+4442 at MJD 57921. Bottom: A
subband fit for PSR B1855+09 at MJD 57608.

For many of the other pulsars in our data set, we took advantage of our dual frequency

measurements to examine scaling indices across a wider frequency range. In this multiband

method, we took the weighted averages of scattering delays at 820 and 1500 MHz for pulsars

with measurements at both frequencies and performed the same fit described above. An example

of one of these fits is shown in Figure 2.4. While this multiband method examines scaling indices

differently than Levin et al. (2016), our ability to utilize multiple frequency bands augments
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Figure 2.4: Example fit in semi-log space of the scaling index ξ over the 820 and 1500
MHz bands for PSR J1125+7819. Each point indicates a measured epoch of scattering
delay in a given frequency band with its corresponding 1σ error.

Levin et al. (2016), who only used 1500 MHz band data. Examining time variability was not

possible using the multiband method, since we rarely, if ever, had epochs (observations within

a span of about a week) in which we had detectable measurements for two frequencies.

In addition to our multiband method, we were able to utilize the original scaling analysis

from Levin et al. (2016) on four pulsars to determine the variation in scaling index over time,

as well as PSRs B1855+09 and J2302+4442 to compare the results of the two analyses.

It is important to note that these weighted averages from the multiband analysis are

determined using measurements from dynamic spectra that have already been stretched by ν4.4

to account for the wide bandwidth. This will result in some errors on the calculated scaling

index. Note that, however, a true ν−4.4 scaling would still yield ξ = −4.4.

In the future, new developments such as wideband receivers should allow us to achieve

the signal-to-noise ration (S/N) and frequency range necessary to determine the scaling index of

an epoch by looking at unstretched spectra and maximizing the S/N of that epoch’s frequency

ACF (Lam et al., 2017).
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2.3.3 Transverse Velocities

After recovering interstellar scattering parameters, we estimated transverse velocities

for pulsars with measured scintillation timescales. Transverse velocities for many NANOGrav

pulsars have already been inferred from proper motions, defined as

Vpm = 4.74µDkpc, (2.4)

where Vpm is in units of km s−1, µ is proper motion in units of mas yr−1, and Dkpc is the distance

to the pulsar in kiloparsecs, but they can also be estimated from scintillation behavior, assuming

the surrounding ISM can be interpreted as stationary relative to the pulsar in question.

Merging the expressions for transverse velocity from Gupta et al. (1994) and Cordes &

Rickett (1998) for greater generality, we have

VISS = AISS

√
∆νd,MHzDkpcx

νGHz∆td,s
, (2.5)

where ∆νd,MHz is the scintillation bandwidth in MHz, ∆td,s is the scintillation timescale in

seconds, Dkpc is the distance to the pulsar in kpc, νGHz is the observation frequency in GHz,

and AISS is a factor dependent on assumptions regarding the geometry and uniformity of the

medium.

In this analysis, we have assumed a thin screen and a Kolmogorov medium as in Cordes

& Rickett (1998), and so AISS = 2.53 × 104 km s−1. As used in Gupta et al. (1994), we define

x = Do/Dp, where Do is the distance from the observer to the screen and Dp is the distance

from the screen to the pulsar. For the calculation of VISS, we assume the screen is halfway

between us and the observed pulsars, and so Do = Dp, meaning x = 1. Additionally, we

ignore orbital velocities (for binary pulsars) and the Earth’s velocity, and assume the screen

is isotropic. We encourage our readers to look at Rickett et al. (2014), Reardon et al. (2019),

Reardon et al. (2020b), and Main et al. (2020) for examples of significant orbital and annual

variations of scintillation timescales, non-zero screen velocities, and non-isotropic scattering. For
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the calculation of Vpm, we used distances determined by parallax measurements if σD/D < 0.25,

otherwise we used the DM distance determined by the NE2001 electron density model.

The ability to independently determine transverse velocities from different sets of physi-

cal quantities also helps us determine whether the ISM behaves as Kolmogorov with a scattering

screen at the halfway point. We expect transverse velocities derived from proper motions to be

more accurate, as proper motions are generally measured with much greater precision and with

fewer selection effects than scintillation parameters. Consequently, comparisons of those results

serve as a strong indicator of the accuracy of ISS-derived transverse velocities. In addition,

there are a number of pulsars, in particular, non-recycled, for which we are unable to measure

high quality timing-derived proper motions, so it is useful to have alternative ways of measuring

transverse velocities.

2.4 Results

2.4.1 Scintillation Parameters and Variations

Our measurements of interstellar scattering delays, scintillation bandwidths, and scin-

tillation timescales are given in Table 2.1, with barred parameters (τd, ∆νd, etc.) representing

the ensemble weighted averages of the individual observations. We determined values for τd

by calculating τd values for individual epochs and then averaging them, rather than directly

converting ∆νd. For comparison, in Tables 2.2 and 2.3, we also list the predicted scintilla-

tion parameters from the NE2001 Galactic electron density model (Cordes & Lazio, 2002) and

the results from previous studies of these pulsars, respectively. Due to our short observation

lengths, our ∆td values should probably be taken as lower limits in most cases since there were

many epochs where scintles were not resolvable in time. An clear exception to this rule is

PSR B1937+21, for which all scintles were smaller than our observation length. Other likely

exceptions to this rule likely include but are not necessarily limited to PSR J1125+7819 at 820

MHz and PSR J0636+5128. There are a few pulsars where we quote scintillation bandwidths
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but neither scintillation timescales nor timescale upper limits; since many epochs from these

pulsars contain the beginnings and ends of many scintles but never complete scintles, these

pulsars all likely have scintillation timescales within 5−10 minutes of our observation lengths

of 30 minutes.
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Figure 2.5: Variation of τd with time from this paper and Levin et al. (2016) at
820 and 1500 MHz along with flux density measurements and ∆DM values that have
been mean subtracted and do not account for solar wind effects. Histograms showing
the distributions of τd and S are shown on the right side of each plot. Errors shown
on ∆DM represent the variance. Only pulsars with at least 10 τd measurements are
shown. Vertical red lines indicate dates separating measurements from Levin et al.
(2016) and this paper. Horizontal dashed green lines indicate the maximum scattering
delay below which we consider measurements lower limits, taken as the scattering delay
corresponding to three channel widths (approximately 30 ns). Fluxes and DMX values
were obtained from NANOGrav’s wideband timing analysis (Alam et al., 2020c).
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Figure 2.6: Dynamic (top) and secondary (second from top) spectra of PSR B1855+09
on MJD 56640 and dynamic (second from bottom) and secondary (bottom) spectra of
PSR B1937+21 on MJD 56892. For PSR B1855+09, the intensity in the secondary
spectrum drops off at higher delays, indicating we are fully resolving most of its power
and properly measuring its scattering delays. For PSR B1937+21, the intensity in
the secondary spectrum does not drop off at higher delays, indicating we are not fully
resolving its power and are therefore underestimating its scattering delays.
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For Table 2.2, the predicted ∆td values were calculated using transverse velocities

derived from proper motions. Additionally, DM distances were used for calculating transverse

velocities if σPX/PX > 0.25. The values are weighted averages over all measured epochs.

Scattering delays over time from this paper and Levin et al. (2016) can be found in Figure 2.5.

A more detailed discussion of these plots can be found in Section 2.5.1.

In our new observations we were unable to measure scintillation parameters for five

pulsars (PSRs J0023+4130, J1741+1451, B1953+29, J2017+0603, and J2214+3000) that had

measureable parameters in Levin et al. (2016). All of these pulsars had 10 or fewer usable

observations in that paper and three of them had five or fewer usable measurements. For

some of these pulsars, the scintles were too faint, or RFI corrupted too large a portion of each

spectrum to obtain scintillation parameters. For example, in quite a few 1.5 GHz observations,

the bottom 100–200 MHz of the band was completely corrupted by RFI, and so we either were

unable to use many of those epochs or were forced to work with reduced-bandwidth data. In

general, the number of measurements obtained on a pulsar-by-pulsar basis in this paper is still

largely consistent with Levin et al. (2016) over a similar period of time.

Some of the pulsars in Figure 2.5 show more variability in their scattering delays in our

data than in Levin et al. (2016) (see PSR J1614–2230 for a good example of this). One reason

for this is our ACF calculation method: Levin et al. (2016) limited their scintillation bandwidth

estimates to integer multiples of the channel bandwidths, whereas our fit interpolated between

bins, which means we had more possibilities for quoted scintillation bandwidths and therefore

a higher likelihood of variation in our values. The errors in some pulsars are also noticeably

larger in our data; this can be attributed largely to RFI, which resulted in larger finite scintle

errors due to the smaller effective observing bands.

We treat the weighted average scintillation bandwidth measurements for five pulsars at

820 MHz and two pulsars at 1500 MHz as upper limits, as their estimates are less than three

times the channel width. For these pulsars, in particular PSRs B1937+21 and J1910+1256, there

are typically many epochs on which the bandwidth was unresolved. We can also demonstrate

insufficient frequency resolution for some pulsars through the calculation of secondary spectra,
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which are the two-dimensional Fourier power spectra of the dynamic spectra. The delay axis

in a given secondary spectrum is directly proportional to the relative time delay incurred from

scattering (Stinebring et al., 2001b; Hemberger & Stinebring, 2008a). The Fourier relation

between the two spectra is also especially useful, as small features such as unresolved scintles

in a dynamic spectrum will manifest as large, clearly visible features in a secondary spectrum.

As an example, in Figure 2.6, we show dynamic and secondary spectra of PSRs B1855+09 and

B1937+21.

In Figure 2.7, we show the average power in the secondary spectrum as a function of

delay over the fringe frequency channels in the secondary spectra where power was visible. This

corresponds approximately to the middle four channels for PSR B1855+09 and the middle seven

channels for PSR B1937+21. We find little dependence on the exact number of channels used

for this analysis. PSR B1937+21 displays no decrease in intensity with delay in its secondary

spectrum, indicating its scintles are not fully resolved. For this pulsar, we see this effect in all

of its secondary spectra, meaning we should interpret all measured delays as lower limits. The

flux density in PSR B1855+09’s secondary spectra drops off at higher delays, indicating we are

resolving more of its scintles, even if narrower ones may not be completely resolved. Some of

the remaining power at higher delays could also be due in part to unmitigated RFI.

Overall, we find that power does not dissipate for epochs on which the scintillation

bandwidth is less than three channel bandwidths, supporting our decision to treat these mea-

surements as upper limits.

2.4.2 Scaling over Multiple Frequency Bands

Since we were unable to resolve scintles at 820 MHz, power-law indices for PSRs

B1937+21 and J2010–1323 as shown in Table 2.4 were found exclusively by splitting the 1500

MHz passband into 200 MHz subbands, measuring the scattering in each, and fitting via a

power law (as in Levin et al. (2016)). Indices for PSRs B1855+09 and J2302+4442 were found

using both this method and extended fits that included the 820 MHz passband. The measured
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Figure 2.7: Power in the secondary spectra of PSRs B1855+09 and B1937+21 as a
function of delay, calculated by summing over only the fringe frequencies with visible
power. The power of PSR B1937+21 does not decrease at higher delays, indicating that
we are underestimating scattering delays. Conversely, the power of PSR B1855+09 falls
off with delay, indicating we are more accurately estimating its scattering delays and
resolving a greater fraction of its scintles.

indices for all four of these pulsars were shallower than the −4.4 expected for a Kolmogorov

medium, with only PSR B1937+21 yielding an index steeper than −3 while the other three

pulsars clustered around −2.5.

We were also able to obtain first-order estimates of the scaling index for 15 pulsars

using the method described in Section 2.3.2. These results, along with the results described

above, are shown in Table 2.4. As in Levin et al. (2016), all of our measured scaling indices are

shallower than the value of −4.4 that is expected for a Kolmogorov medium under the simplest

assumptions, with only two of these indices being steeper than −3. There was also considerable

range in the indices measured, with values spanning from −0.7 to −3.5. We quote upper limits

on indices where the majority of 820 MHz scattering delays are lower limits.

Levin et al. (2016) found noticeably different scaling indices from multiple measurements

of various pulsars, indicting that a pulsar’s scaling index may vary with time as it moves through
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the ISM. As mentioned earlier, examining time variability was not possible using the multiband

method, since we rarely, if ever, had detectable measurements for two frequencies within about

a week of each other. A large part of this was because RFI contamination was much more

prominent at the 1500 MHz band than in the 820 MHz band, so it was generally easier to

get consistent measurements only at lower frequencies. This RFI contamination also made it

difficult to get many epochs that were useable for the subband analysis. Overall, since our

multiband method can tell whether a scaling index is shallower or steeper than −4.4, even if

it is not as precise due to the frequency scaling, and both methods found shallower indices, we

can conclude that these two methods agree with each other.

2.4.3 Transverse Velocity Measurements

A comparison between transverse velocities derived from scintillation parameters and

those derived from proper motions is shown in Table 2.5 and below in Figure 2.8. Because we

expect that VISS and Vpm should be equal under the assumptions made in Section 2.3.3 and

based on surveys such as Nicastro et al. (2001), we use the Pearson correlation coefficient,

rp =
σ2
x,y√
σ2
xσ

2
y

, (2.6)

where σ2
x,y is the covariance between some parameters x and y and σx and σy are the variances

of x and y, respectively. Relative screen distances calculated by assuming that VISS is equal to

Vpm are also shown. All Vpm values were calculated using proper motions found in Alam et al.

(2020a). We are not sensitive to epoch-to-epoch variations in VISS because our scintles are not

always resolved in time for every epoch that they are resolved in frequency. Because of this,

all VISS values were calculated by using the weighted averages of scintillation bandwidth and

timescale from Table 2.1 in Equation 2.5 for pulsars with at least two epochs for which ∆νd

was measured.

For pulsars where we could not resolve scintles in time, we have assigned ∆td lower

limits of 30 minutes, resulting in upper limits on transverse velocity. We used parallax distances
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for calculating VISS and Vpm if the distance error was < 25%; otherwise we used distances

determined by DM from NE2001 and assumed a 20% uncertainty (Cordes & Lazio, 2002).

Figure 2.8: Transverse velocities derived from proper motion vs those determined
through scintillation. Downward-facing arrows indicate upper limits. The modest cor-
relation suggests that our assumption of a screen at the midpoint between us and the
pulsar is roughly correct.

Table 2.4: Estimated Scattering Delay Scaling Indices

Pulsar ξ

J0613−0200 < −1.8 ± 0.8

J0636+5128 < −2.5 ± 0.1

J0740+6620 −2.4 ± 0.6

J1024−0719 −1.5 ± 0.6
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Table 2.4: Estimated Scattering Delay Scaling Indices

Pulsar ξ

J1125+7819 −3.5 ± 0.2

J1455−3330 −3.5 ± 0.4

J1614−2230 < −1.3 ± 0.9

J1744−1134 −1.8 ± 0.3

B1855+09 −0.7 ± 0.5

B1855+09 −2.4 ± 0.3†

J1909−3744 < −2.9 ± 0.3

J1910+1256 < −1.0 ± 0.3

B1937+21 −3.6 ± 0.1†

J1944+0907 −1.0 ± 0.3

J2010−1323 −2.5 ± 0.4†

J2145−0750 −2.1 ± 0.4

J2302+4442 < −1.3 ± 0.4

J2302+4442 −2.6 ± 1.1†

J2317+1439 −2.3 ± 0.8

Table 2.4: Measurements with a dagger were calculated using non-stretched subbands,
and others used measurements at two frequencies based on stretched spectra. Uncer-
tainties on values with daggers represent the weighted error of all measured indices,
while uncertainties on values without daggers represent the 1σ errors on ξ in the model
fits. We quote upper limits on indices where the majority of 820 MHz scattering delays
are lower limits.
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Table 2.5: Pulsar Transverse Velocities Inferred from Interstellar Scattering and
Proper Motions

Pulsar Frequency VISS Vpm Do/Dp

(MHz) (km s−1) (km s−1)

J0613−0200 820 110 ± 45 55 ± 8 0.3 ± 0.2

J0613−0200 1500 63 ± 35 55 ± 8 0.8 ± 0.8

J0636+5128 820 <75 ± 43 15 ± 5 0.04 ± 0.05

J0636+5128 1500 70 ± 32 15 ± 5 0.05 ± 0.04

J0931−1902 1500 <44 ± 16 26 ± 18 >0.4 ± 0.3

J1024−0719 820 86± 12 220 ± 90 6.7 ± 4.4

J1125+7819 820 84 ± 21 86 ± 12 1.1 ± 0.8

J1614−2230 820 140 ± 20 110 ± 10 0.5 ± 0.1

J1614−2230 1500 65 ± 16 110 ± 10 2.6 ± 1.3

J1640+2224 1500 <94 ± 35 110 ± 60 >1.4 ± 1.0

J1713+0747 1500 <44 ± 12 36 ± 1 >0.7 ± 0.3

J1738+0333 1500 <72 ± 31 130 ± 100 >3.3 ± 2.9

J1744−1134 1500 <34 ± 7 41 ± 1 1.4 ± 0.6

J1853+1303 1500 <45 ± 14 32 ± 10 >0.5 ± 0.3

B1855+09 1500 <35 ± 9 39 ± 7 >1.2 ± 0.6

J1909−3744 820 <160 ± 60 190 ± 4 >1.4 ± 1.1

J1910+1256 820 <48 ± 19 79 ± 11 >2.7 ± 2.1

J1910+1256 1500 <22 ± 4 79 ± 11 > 12.9 ± 4.9

J1918−0642 1500 <29 ± 5 48 ± 7 >2.7 ± 0.9
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Table 2.5: Pulsar Transverse Velocities Inferred from Interstellar Scattering and
Proper Motions

Pulsar Frequency VISS Vpm Do/Dp

(MHz) (km s−1) (km s−1)

B1937+21 1500 < 70 ± 29 6 ± 1 > 0.01 ± 0.01

J2010−1323 1500 190 ± 170 85 ± 29 0.2 ± 0.3

J2145−0750 820 <41 ± 12 52 ± 11 >1.6 ± 0.9

J2145−0750 1500 <57 ± 9 52 ± 11 >0.8 ± 0.3

J2317+1439 1500 <86 ± 14 32 ± 5 >0.1 ± 0.1

Table 2.5: VISS values were calculated using the weighted averages of ∆νd and ∆td
found in Table 2.1 and the assumption that the scattering screen is equidistant from
the pulsar and Earth. Uncertainties are calculated by propagating the weighted errors
on the scintillation measurements with the uncertainties on pulsar distance and proper
motion. Many of the VISS estimations are upper limits, since scintillation timescale
lower limits were used. We calculated Do/Dp by assuming that Vpm is correct, setting
it equal to VISS, and solving for Do/Dp. Some measurements are also upper limits
due to resolution limits on scintillation bandwidths. Due to the large uncertainty in
both PSRs J1125+7819 and J1910+1256’s parallax measurements, their distance was
determined by DM via NE2001. All measurements and errors have been rounded to
the last significant digit shown.

2.5 Discussion

2.5.1 Scattering Variability and Correlations with Dispersion Mea-

sure & Flux Density Variations

We have searched for correlations between scattering delays and DM variations and

scattering delay and flux density for pulsars with at least 10 scattering measurements. These

coefficients were determined using only epochs where both scattering delay and ∆DM or flux
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data were available. The data and their corresponding correlations with ∆DM and flux density

are shown in Figure 2.5 and Table 2.6, respectively. Here, we only examine the linear Pearson

correlation (Equation 2.6) since theoretical predictions in the literature show support for this

type of correlation. DMs and flux densities were obtained from NANOGrav’s wideband timing

analysis (Alam et al., 2020c). DMX determines DM variations by treating DM(t) as a piecewise

constant and fitting for a new DM at up to six day intervals along with the rest of the parameters

in our timing model.

In order to examine the variability of the flux density in each pulsar as a function of

time, we performed a reduced χ2 analysis using a model consisting of the weighted average of

the combined flux densities. For a given time series with measurements of a parameter, x, we

define our reduced χ2 as

χ2
r =

1

N − 1

∑ (x(t) − x)2

σ2(t)
, (2.7)

where N is the number of measurements, x is the weighted average of the measurements, x(t)

is the measurement at time t, and σ2(t) is the measurement variance at time t. In the case of

the fluxes, x(t) and x in Equation 2.7 represent the flux density as a function of time and the

weighted average of the flux density, respectively. We list these values in Table 2.6.

While there may visually be correlations between scattering delay and DM or flux, these

correlations do not appear linear. For this reason, in addition to examining linear correlations

using the Pearson correlation coefficient (Equation 2.6), we examine general correlations using

the Spearman correlation coefficient,

rs = 1 −
6
∑N

i=1[rg(yi) − rg(xi)]
2

N(N2 − 1)
, (2.8)

where rg(yi) and rg(xi) are the ranks of the ith values of y and x, respectively, and N is the

number of data points being used. The rank of a value is defined by its size relative to other

quantities in a shared data set, with the smallest value having a rank of one, the second smallest

value having a rank of two, and so on.
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We also examined the variability of scattering delays as a function of time by performing

a reduced χ2 analysis using the combined scattering delays from this paper and Levin et al.

(2016), with x(t) and x in Equation 2.7 representing the scattering delays as a function of time

and the weighted average of the scattering delays, respectively. The results are shown in Table

2.6.

Finally, we explored the variability of scattering delays by examining the scintillation

bandwidth modulation index, defined as

mb =
1

⟨∆νd⟩

(
1

Nobs − 1

Nobs∑
i=1

(
∆νd,i − ⟨∆νd⟩

)2)1/2

, (2.9)

where ⟨∆νd⟩ is the average scintillation bandwidth, Nobs is the number of observations, and

∆νd,i is the scintillation bandwidth at the ith epoch (Bhat et al., 1999a). We correct these

indices for the estimation error following Bhat et al. (1999a),

m2
b;corrected = m2

b;measured −m2
b;error, (2.10)

where mb;measured and mb;error are the modulation indices found from using the scintillation

bandwidth measurements and errors, respectively, in Equation 2.9. The estimation error-

corrected modulation indices for pulsars with more than 10 measurements can be found in

Table 2.6. Some low-DM pulsars had negative mb;corrected values due to the finite scintle effect;

we do not list modulation indices in these cases. There are also likely some instances where the

scintles are not fully resolved, such as PSR B1937+21. In cases like this, the m2
b;error may be

overestimated.

We can also compare these results with the theoretic prediction, assuming a Kolmogorov

medium with a thin screen halfway between us and the pulsar, as in Romani et al. (1986):

mb;Kolmogorov ≈ 0.202(C2
n)−1/5ν

3/5
obsD

−2/5, (2.11)
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where νobs is the observing frequency in GHz, D is the distance to the pulsar in kpc, and C2
n

describes the strength of scattering effects in units of 10−4 m−20/3 (Bhat et al., 1999a), and is

given by

C2
n = 0.002∆ν

−5/6
d D−11/6ν

11/3
obs m−20/3 (2.12)

for a Kolmogorov medium, with ∆νd in MHz (Cordes, 1986a). We calculated mb;Kolmogorov for

each pulsar with at least 10 measurements. The results are shown in Table 2.6.

As mentioned in Section 2.1, dispersion is the largest source of delay from the ISM

and is usually the only ISM effect that is corrected for by PTAs. Since both dispersion and

scattering are ISM effects originating from the same structures along the LOS, it would be rea-

sonable to expect a correlation between the two quantities on an epoch-to-epoch basis. Rankin

& Counselman (1973) examined correlations between dispersion and scattering for the Crab

pulsar during a period of activity from late 1969 to late 1970. It appears that there may be

an approximately one-month lag between changes in dispersion and scattering, although it is

difficult to say these events are actually correlated. McKee et al. (2018) looked at around six

years of observations of the Crab pulsar and claimed evidence of correlations between τd and

DM. However, the strength of these correlations is mild, with a correlation coefficient of only

0.56±0.01. Kuzmin, A. et al. (2008) also made observations of the Crab pulsar over a 200 day

period coinciding with a large ISM event due to an ionized cloud or filament crossing the LOS,

over which time both τd and DM followed very similar time signatures. Correlations between

these two parameters have also been explored in MSPs in many contexts. Coles et al. (2015)

examined case of extreme scattering events and found sharp increases in DM are seen to clearly

mirror sharp increases in scattering delay in by-eye examinations of the data. In simulated data,

Lentati et al. (2017) found scattering delays to be correlated in a non-linear way with both the

pulse TOA and DM. McKee et al. (2019) looked at giant pulses from PSR B1937+21 and found

no correlation between scattering and DM despite earlier studies finding such correlations using

giant pulses in the Crab pulsar (McKee et al., 2018). Main et al. (2020) examined the scintil-

lation arcs of PSR J0613–0200 and found that the arc curvature followed the annual variation
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seen in DM. It is possible that in our data the scattering delays are partially absorbed into

DMX fits, decreasing any measured correlation, as suggested by Shapiro-Albert et al. (2021).

It is well known that RISS affects flux densities. Stinebring et al. (2000b) found that

pulsars with larger DMs had more stable flux densities, suggesting that flux density variations

in nearby pulsars were due to propagation effects such as RISS. Romani et al. (1986) found

that scintillation bandwidth and flux should be strongly anticorrelated, given a thin-screen ISM

model. In addition, both Stinebring et al. (1996) and Bhat et al. (1999b) observed these same

correlations, though weaker than those predicted by Romani et al. (1986), in different samples

of pulsars. RISS and DISS are related through flux density, and therefore we might also expect

DISS properties to be correlated with flux.

Despite these predictions and earlier work, we do not find any meaningful correlations

between τd and flux or τd and DM in our data. Some also show anti-correlations, although this

is likely just due to the small sample of delay measurements relative to ∆DM measurements

(e.g., PSRs J2317+1439 and J1614−2230).

While the evidence for linear correlations between the flux density variability and both

τd and DM is rather weak, with Pearson coefficients of −0.18 and −0.35, respectively, there

was moderate evidence for general correlations, with Spearman coefficients of −0.64 and −0.54,

respectively. These results are shown in the top and middle panels of Figure 2.9. This indicates

that flux density variability decreases as τd and DM increase, likely due to the higher number

of scintles at larger DMs.

We expect that the flux density distributions in Figure 2.5 should be exponential at low

DMs and small scattering delays and Gaussian at higher DMs and scattering delays (Scheuer,

1968; Hesse & Wielebinski, 1974) as we transition from small to large numbers of scintles. In-

deed, most of the pulsars analyzed have low DMs and show exponential flux distributions. Pul-

sars with high DM and high scattering, such as PSRs J0340+4130, J0613–0200, and B1937+21,

all exhibit Gaussian flux density distributions.
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Table 2.6: Scattering Delay Trends & Correlations

Pulsar Freq χ2
r(τd) χ2

r(S) r(τd, S) S(mJy) r(τd, DM) mb;corrected mb;Kolmogorov

J0340+4130 1500 10.1 0.1 -0.2 ± 0.2 0.5 ± 0.00 0.7 ± 0.1 — 0.13 ± 0.01

J0613−0200 820 21 0.1 -0.5 ± 0.2 6.7 ± 0.00 -0.1 ± 0.2 — 0.12 ± 0.00

J0613−0200 1500 9.2 0.1 0.2 ± 0.1 1.9 ± 0.00 -0.4 ± 0.1 — 0.13 ± 0.01

J0636+5128 820 13.1 0.9 -0.2 ± 0.2 1.9 ± 0.00 0.1 ± 0.2 — 0.12 ± 0.01

J0636+5128 1500 7.7 0.2 -0.4 ± 0.2 0.7 ± 0.00 0.3 ± 0.2 — 0.15 ± 0.01

J0740+6620 820 0.7 10.5 -0.1 ± 0.2 2.7 ± 0.00 0.2 ± 0.2 — 0.20 ± 0.02

J1024−0719 1500 0.7 3.8 -0.1 ± 0.4 1.7 ± 0.00 -0.5 ± 0.3 0.30 0.19 ± 0.00

J1125+7819 820 1.0 3.1 -0.4 ± 0.2 4.1 ± 0.00 0.2 ± 0.2 — 0.20 ± 0.02

J1125+7819 1500 0.7 1.1 -0.3 ± 0.2 0.9 ± 0.00 0.2 ± 0.2 — 0.16 ± 0.01

J1455−3330 820 0.5 3.2 -0.1 ± 0.3 2.9 ± 0.00 0.1 ± 0.3 — 0.15 ± 0.01

J1614−2230 1500 3.0 0.2 0.3 ± 0.1 1.1 ± 0.00 -0.5 ± 0.2 — 0.14 ± 0.01

J1640+2224 1500 1.0 1.1 -0.4 ± 0.2 0.1 ± 0.00 -0.03 ± 0.2 — 0.20 ± 0.02

J1713+0747 1500 3.0 2.2 -0.4 ± 0.1 4.7 ± 0.00 0.5 ± 0.1 — 0.18 ± 0.02

J1738+0333 1500 2.8 2.2 -0.3 ± 0.2 0.70 ± 0.00 0.1 ± 0.2 0.44 0.16 ± 0.01

J1744−1134 820 0.3 1.7 0.1 ± 0.2 7.2 ± 0.00 0.1 ± 0.2 0.13 0.17 ± 0.01

J1744−1134 1500 0.8 4.4 -0.4 ± 0.2 2.6 ± 0.00 -0.04 ± 0.19 — 0.19 ± 0.01

J1853+1303 1500 8.5 0.5 -0.4 ± 0.3 0.3 ± 0.00 -0.3 ± 0.3 0.24 0.15 ± 0.01

B1855+09 1500 13 0.4 -0.3 ± 0.1 4.6 ± 0.00 -0.06 ± 0.15 — 0.15±0.01

J1909−3744 820 0.4 1.1 -0.2 ± 0.2 4.5 ± 0.00 -0.7 ± 0.2 0.18 0.14 ± 0.01

J1909−3744 1500 1.0 3.0 -0.1 ± 0.1 1.60 ± 0.00 -0.4 ± 0.2 — 0.18 ± 0.01

J1910+1256 1500 18 0.3 0.3 ± 0.2 0.6 ± 0.00 -0.1 ± 0.2 — 0.12 ± 0.01

J1918−0642 1500 1.7 0.8 0.02 ± 0.13 1.5 ± 0.00 -0.2 ± 0.1 — 0.15 ± 0.01

J1923+2515 1500 2.4 1.4 -0.4 ± 0.3 0.4 ± 0.00 0.3 ± 0.3 — 0.17 ± 0.02

B1937+21 1500 22 0.4 0.1 ± 0.1 12.3 ± 0.0 -0.2 ± 0.2 — 0.11 ± 0.01

J1944+0907 1500 11 1.2 -0.2 ± 0.2 2.6 ± 0.00 -0.1 ± 0.2 — 0.14 ± 0.02

J2010−1323 1500 4.3 0.3 -0.2 ± 0.1 0.7 ± 0.00 0.3 ± 0.1 — 0.14 ± 0.01

J2145−0750 820 0.5 13.0 0.03 ± 0.24 23.2 ± 0.00 -0.2 ± 0.3 0.16 0.16 ± 0.01
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Table 2.6: Scattering Delay Trends & Correlations

Pulsar Freq χ2
r(τd) χ2

r(S) r(τd, S) S(mJy) r(τd, DM) mb;corrected mb;Kolmogorov

J2145−0750 1500 0.2 5.0 0.3 ± 0.2 6.4 ± 0.00 0.2 ± 0.3 — 0.20 ± 0.01

J2302+4442 820 0.1 0.2 -0.2 ± 0.2 3.30 ± 0.00 0.3 ± 0.2 — 0.12 ± 0.00

J2302+4442 1500 2.3 0.7 -0.3 ± 0.2 1.3 ± 0.0 -0.2 ± 0.2 — 0.14 ± 0.01

J2317+1439 1500 0.4 5.0 -0.1 ± 0.3 0.04 ± 0.00 -0.9 ± 0.1 0.23 0.20 ± 0.01

Table 2.6: Reduced χ2 measurements, flux density and ∆DM correlations, and mea-
sured and predicted modulation indices for all pulsars with at least 10 scattering delay
measurements. We find that no strong correlations between scattering delays and flux
density and scattering delays and ∆DM. The unusually strong correlation coefficient
seen in PSR J2317+1439 is likely not physical, as the scattering delay data is very
sparsely sampled relative to ∆DM estimates. A similar argument can be made for PSR
J1614−2230 for correlations between flux and scattering delay. For most, if not all, of
the pulsars shown above, the difference in sample rates between scattering delay and
flux density and ∆DM are too different to draw any meaningful conclusions on corre-
lations. All correlations in this table use the Pearson correlation coefficient. We have
not reported modulation indices in cases of negative m2

b;corrected.

Of the 24 pulsars we analyzed for scattering delay variability at 1500 MHz, seven showed

no variation (χ2
r ≤ 1), 11 had moderate variations (1 < χ2

r ≤ 10), and six had significant varia-

tions (χ2
r > 10), indicating that scattering delays can be variable among MSPs and are highly

dependent on the LOS to each pulsar. We also performed the same analysis on the nine pulsars

with more than 10 τd measurements at 820 MHz. Seven of the nine pulsars showed no varia-

tion, while the other two showed significant variations. Pulsars with at least 10 measurements

at both frequencies generally had a similar degrees of variation at both frequencies, although it

is unclear if this independence would hold if the observing frequencies were much farther apart.

The exception to this was PSR J0613–0200, although the level of variability was still high at

both frequencies.

Both the Pearson and Spearman coefficients also indicate greater scattering delay vari-

ability for pulsars with higher DMs (see the bottom of Figure 2.9). Note that all of the χ2
r(τd)
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values are slightly underestimated due to the finite scintle approximation we made in Equation

5.4 in Section 2.3.

Predicted modulation indices range from around 0.1≲ mb;Kolmogorov ≲ 0.2, which is in

agreement with most of our mb;corrected values. As expected, those that disagree with theoretical

predictions tend to be biased high, likely either due to excess refraction or an overly simplistic

thin screen model.

2.5.2 Measuring Scaling Indices

We have determined the scaling of scattering delays with frequency by splitting each

frequency band into subbands for four pulsars and by using an average delay measurement at

each frequency for 15 pulsars.

Every scaling index we found using our multiband method was significantly shallower

than −4.4, with a weighted average of −2.6 ± 0.1. We find that our results agree with those

of (Levin et al., 2016), who found an index weighted average of −3.1 ± 0.1 for 10 pulsars over

26 epochs, with the vast majority of measured scaling indices being shallower than −4.4. This

also agrees with the −3.4 ± 0.1 weighted average we found for scaling indices determined using

the subband method. In the two pulsars for which we were able to use both scaling analyses,

the index measured using the multiband analysis was at least twice as shallow (−2.4 ± 0.3

compared with −0.7 ± 0.5 for PSR B1855+09 and −2.6 ± 1.1 compared with −1.3 ± 0.4 for

PSR J2302+4442). This could indicate that the index of −4.4 used for stretching may not be

properly scaling the scintles in each band, with the stretching index being too shallow in these

two cases. However, this could partially be the result of the large discrepancy in the number of

measurements used at 820 and 1500 MHz for the multiband analysis, as is discussed below.

There are several reasons why these indices may not agree with the −4.4 expected for

a Kolmogorov medium. The thin screen approximation which is commonly used assumes an

infinite scattering screen. However, many of the pulsars have lower DMs, which means they

could be subject to finite or truncated scattering screens (Cordes & Lazio, 2001). Scaling indices
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shallower than −4.4 (as low as −4.0) have been found to be better fits to the data for assuming

the existence of these finite screens for a given inner scale cutoff (Rickett et al., 2009).

While using a wider frequency range for this analysis is an improvement over Levin et al.

(2016), they were able to measure scaling indices for individual days, whereas, as mentioned

earlier, we rarely, if ever, had days in which we had detectable measurements for two frequencies

in a given epoch.

We may also be biased by the ratio of our measurable observations from both frequen-

cies. For five of the 15 pulsars we analyzed, only one to three measurements at 820 MHz were

obtained, and so these fits are much more constrained at higher frequencies. We were able

to make at least six measurements for the other pulsars at both frequencies, although for two

of them there are more than twice as many 820 MHz measurements. As mentioned earlier,

for PSR B1855+09, for which we have many more measurements at 1500 MHz, the subband

method returns a much steeper scaling index at each frequency than the multiband method.

This implies that similar effects may impact the measurements for other pulsars, for which we

were unable to apply the subband measurements.

Finally, as we discussed in Section 2.3.1 and the beginning of Section 2.5, our limited

bandwidths and frequency resolution may cause underestimations on high scintillation band-

widths and overestimations on low ones. Because scintillation bandwidths are smaller at lower

frequencies, there will be more underestimations of scattering delay at lower frequencies and

more overestimations at higher frequencies. With wider bandwidths and better resolution, our

scaling indices would likely be closer to −4.4.

The trend of shallow scaling indices has been found in multiple studies in addition to

this paper and Levin et al. (2016). Bansal et al. (2019) performed observations on seven pulsars

and found five of them to have shallower indices than −4.4. While the other two were close

to −4.4 when considering their weighted averages, there were deviations on an epoch-to-epoch

basis. Bhat et al. (2004) observed several pulsars at at least two frequencies and determined

scaling indices with a pulse broadening function that assumed a thin screen between the Earth

and the pulsars. While a few of their pulsars were consistent with a −4.4 scaling index, the
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average index for their sample was −3.12 ± 0.13. Using a pulse broadening function that

assumed scattering material uniformly distributed along the LOS, they found an average index

of 3.83±0.19. The latter was in better agreement with the global fit to their data, which resulted

in an index of −3.86 ± 0.16, which they found via a parabolic fit of τd vs DM using a variation

of the model from Cordes & Lazio (2003). They determined that such trends could still be

expected for a Kolmogorov medium if the spectrum of turbulence had an inner cutoff between

around 300–800 km. Other studies show higher DM pulsars seem to exhibit indices that are

shallower than expected for a Kolmogorov medium (Löhmer et al., 2002) (although this can be

explained by a truncation of the scattering region), while lower DM pulsars tend to have indices

much more in line with a Kolmogorov medium (Cordes et al., 1985). New techniques such as

cyclic spectroscopy will allow for more accurate single-epoch scaling index measurements than

are currently obtainable by ACF analyses (Demorest et al., 2012).

A benefit of the subband method is that we can look for variability in the scaling index

of a given pulsar over time, which was not possible with our multiband method due to limited

epochs having frequency-resolvable, same-day measurements. As briefly mentioned in Section

2.4.2, and clearly visible by eye in both Figures 2.10 and 2.11, for pulsars with fully resolved

scintles there appears to be a low degree of variation in the scaling index from epoch to epoch,

which is further evidenced by both pulsars having χ2
r ≤ 1.0. This consistency implies that scaling

indices are intrinsically stable, as expected. Conversely, for a pulsar like PSR B1937+21, which

likely has many epochs with unresolved scintles, we found a much larger degree of variation,

with χ2
r = 7.7. However, it is likely this variation would decrease significantly once sufficient

resolution was achieved.

We have also computed Pearson correlation coefficients between average scaling index

and ∆νd and average scaling index and DM for both the subband and multiband methods. We

find no current evidence of correlations for any of these quantities for either approach.
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2.5.3 Transverse Velocity Measurements

Transverse velocity measurements listed in Table 2.5 are shown in Figure 2.8. We find,

under the assumption of an equidistant scattering screen between us and a given pulsar, poor

agreement between velocities derived from both methods, as indicated by the low correlation

coefficient. As mentioned earlier, we are likely biased low on most of our average scintillation

timescales due to our short observation lengths, and as a result more of our VISS values may

be upper limits than our averages would indicate. The exception to this is PSR B1937+21,

for which we are confident in our measurement of its scintillation timescale, as all of its epochs

had scintles that were clearly resolved in time. However, as mentioned before, we are likely

overestimating its scintillation bandwidth, which will also lead to an overestimation of its VISS.

67



Figure 2.9: Top: A semi−log comparison of a pulsar’s average scattering delay and the
χ2
r variability in its flux density. The Spearman correlation coefficient shows moderate

evidence of an inverse correlation, indicating flux densities are less variable for more
distant pulsars. Middle: A semi−log comparison of a pulsar’s DM and the χ2

r variability
in its flux density. The Spearman correlation coefficient shows moderate evidence an
inverse correlation, indicating flux densities are less variable for more highly scattered
pulsars. We are able to examine DM variations at scales of 10−4 pc cm−3 using DMX,
and so the errors on DM in this plot are too small to see. Bottom: The DM vs the χ2

r

variability in the scattering delay. The Pearson correlation coefficient shows moderate
evidence for linear correlations, indicating that pulsars at higher DMs (≳ 20 pc cm−3)
experience greater variability in their scattering delays, and the Spearman correlation
coefficient also shows moderate evidence of general increasing correlations. We are able
to examine DM variations at scales of 10−4 pc cm−3 using DMX, and so the errors on
DM in this plot are too small to see.
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Figure 2.10: Measured scaling indices from individual epochs of PSR J2010–1323.
The level of variation from epoch to epoch is low and the weighted average scaling
index is much shallower than −4.4.

Figure 2.11: Measured scaling indices from individual epochs of PSR B1855+09. The
level of variation from epoch to epoch is low and the weighted average scaling index is
much shallower than −4.4.

69



Additionally, the discrepancy between VISS and Vpm also demonstrates that knowledge of the

scattering screen distance is crucial to accurately determine transverse velocities in this manner,

provided other assumptions about the geometry and electron density of the ISM are correct.

Many of the VISS upper limits are consistent with their corresponding Vpm values.

We used weighted averages of the scintillation parameters to estimate VISS. However,

even though scintillation variability seen on shorter timescales in many pulsars is comparatively

small (see Figure 2.5 for many examples of this), these changes can have drastic effects on the

calculated transverse velocity. For example, McLaughlin et al. (2002) measured scintillation pa-

rameters for the pulsar PSR J1740+1000 at seven epochs that spanned over 700 days and found

the changes in scintillation behavior led in the most extreme cases to factor-of-two variations in

transverse velocity estimations. While some of this fluctuation was due to measurement uncer-

tainties, they also partially attributed it to ISM effects, particularly modulations in RISS. There

are also quite a few pulsars in Figure 2.5 where we can see at least factor-of-two variations in

the scattering delay, which would either imply significant changes in VISS or significant changes

in the screen location from epoch to epoch. As a result, the average of VISS is a better measure

of velocity than the measurement at a single epoch. We do not expect VISS and Vpm to fully

agree without accounting for the screen distance. However, Reardon et al. (2020b) were able

to use 16 years of scintillation measurements for PSR J0437–4715 to determine orbital param-

eters with higher precision than through timing, indicating that similar levels of precision and

accuracy may be obtainable for scintillation-derived transverse velocities. Among pulsars for

which both Vpm and VISS measurements were possible, proper motion provided higher precision

for the majority of the pulsars. However, there are still benefits to using VISS, as discrepancies

between VISS and Vpm could imply a significant motion of the ISM along a LOS or whether a

uniform medium or thin screen structure is more accurate for a LOS (Reardon et al., 2019).

Calculated scattering screen fractional distances are also shown in Table 2.5, with values

greater than one indicating a screen closer to the Earth, and less than one indicating a screen

closer to the pulsar. Of the pulsars with measurements that are not upper limits, two pulsars at

820 MHz and three at 1500 MHz require screens that are closer to Earth, three pulsars at 820
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MHz require screens that are equidistant, and one pulsar at 1500 MHz and one at 820 MHz had

a screen closer to the pulsar. If we look at pulsars with upper limits, two pulsars at 820 MHz

and three pulsars at 1500 MHz require a screen closer to the pulsar, while it could be argued

that four of the pulsars at 1500 MHz and one pulsar at 820 MHz likely have screens that are

equidistant.

We assume that velocities from the ISM provide negligible contributions to a given

pulsar’s transverse velocity. Additionally, contributions to the ISM velocity from the transverse

component of differential Galactic rotation (DGR), even if the latter’s velocity is large, can be

ignored for nearby pulsars for which the ISM will co-rotate with the LOS. As most of the pulsars

we analyzed are no more than 1.5 kpc away, and only one is more than two kpc away, we are

unable to probe the regime where contributions from Galactic rotation become significant and

whether our assumptions about a uniform Kolmogorov medium break down at these distances.

2.5.4 Scaling of Scattering Delay with DM

The most commonly used model for mapping electron densities in the Milky Way is

NE2001 (Cordes & Lazio, 2002). This model uses a pulsar’s DM and position in the Galaxy

to estimate its distance, as well as scintillation parameters such as scintillation bandwidth and

timescale. We have plotted the predicted scattering delay vs. the measured weighted means for

all pulsars in Figure 2.12. As indicated by the high correlation coefficient, we find reasonably

strong agreement between our measured delays and those predicted by NE2001. Improved

frequency resolution and/or wider observing bandwidths are necessary in order to probe the

relationship between NE2001 predictions and our measurements at high and low delays. Other

models, such as those of Bhat et al. (2004), Yao et al. (2017), and Krishnakumar et al. (2015)

use an empirical fit to scattering delays versus DM for prediction.

In Figure 2.13, we plot average scattering delay as a function of DM. Bhat et al. (2004)

surveyed over 100 pulsars and fit a parabolic relation of the form

log τd,µs = a + b(log DM) + c(log DM)2 − α log νGHz, (2.13)
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Figure 2.12: Average scattering delay measured at 1500 MHz from this paper com-
pared with the predicted delays by the NE2001 model. The dotted red line indicates
a trend with a Pearson correlation coefficient of one, the gray dotted lines indicate the
largest and smallest scattering delays we can resolve, corresponding with three channel
widths and our effective bandwidth at 1500 MHz, respectively, and the points with
arrows indicate delay averages that are lower limits. Generally, values above 0.7−0.8
indicate a fairly strong correlation, depending on how precisely it is expected a given
model will agree with data.

where a, b, and c are dimensionless scaling coefficients and α is the scaling index of the medium.

In their fit, they found a, b, and c to be 6.46, 0.154, and 1.07, respectively, with a resulting scaling

index of α = 3.86 ± 0.16. While this index is slightly shallower than the fiducial Kolmogorov

index of 4.4, they provide a number of detailed explanations for this discrepancy, including a

finite wavenumber cutoff based on the inner scale for a Kolmogorov medium and abrupt changes

in the medium transverse to the LOS.

Krishnakumar et al. (2015) used the relation from Ramachandran et al. (1997), fitting

an exponential equation of the form
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τd,s = aDMγ(1 + bDMζ)ν−α, (2.14)

where a, b, γ, and ζ are dimensionless coefficients and α is again the scaling index of the medium.

They set γ = 2.2, as expected for a Kolmogorov medium.

Figure 2.13: Comparison between measured scattering delays at 1500 MHz and fits
made by Bhat et al. (2004), Cordes et al. (2016), and Krishnakumar et al. (2015),
along with the 1σ errors from Cordes et al. (2016), shaded in green. The scales shown
in the plot were chosen based on the spread of data over which the fits were initially
determined.

Krishnakumar et al. (2015) then set α = 4.4 and fit for a, b, and ζ using scattering

data from 358 pulsars, finding values of 4.11×10−11, 1.94×10−3, and 2.0, respectively. However,

unlike our approach, in which we set C1 = 1, scattering delays used in this fit were calculated

with C1 = 1.16. It should be noted that since these three fits are not direction dependent, they

can only serve as first-order approximations for how DM correlates with τd within our galaxy.
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Cordes et al. (2016) set α = 4 and fit for all remaining parameters using 531 lines of

sight from pulsars, magnetars, and FRBs and found a = 2.98 × 10−7, b = 3.55 × 10−5, γ = 1.4,

and ζ = 3.1.

We compared these three fits with our measured scattering delays in Figure 2.13, with

the 1σ errors from Cordes et al. (2016). The scales shown were chosen based on the scales over

which the initial models were fit. The delays we measure are comparable to those predicted

by all of these models, but we do not have data over a wide enough DM range to discriminate

among them. Also note that the delays we measure for the lowest DM pulsars are much higher

than model predictions, indicating the LOS dependence of scattering at these low DMs.

2.6 Conclusions

We used dynamic spectra made from observations with the GUPPI and PUPPI spec-

trometers to obtain scintillation parameters of pulsars in the NANOGrav 12.5-year data set.

We looked for correlations between scattering delays and both DM and flux density

as a function of time. We did not find any significant correlations, and any instances of high

correlation could be attributed to the scale of our scattering delays and their limited sample

size. Additional contributions to flux density may also be masking existing correlations with

DISS, and a lack of change in the electron density structure of the ISM along our LOSs may be

further limiting correlations with DMX.

We then examined the variability of our scattering delay measurements via a reduced

χ2 analysis on 24 of the pulsars. We also found that, for most pulsars where at least 10

measurements of τd were available at both 820 and 1500 MHz, the degree of variation was

virtually the same at both frequencies, meaning that scattering variation might be independent

of observing frequency.

We measured scaling indices for 17 pulsars and found that all of the pulsars exhibited

a shallower than ν−4.4 scaling. We concluded that, although the ISM along these LOSs might
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follow shallower scaling laws than expected, biases introduced by uneven sampling of our two

frequencies and resolution issues provide plausible explanations for this.

We were able to use scintillation parameters to estimate transverse velocities. We also

calculated the location of the scattering screen, assuming that VISS and Vpm are equal. Much

of the disagreement is likely the result of our scintillation timescale averages being biased low

as the result of our short observation length.

We were also able to determine scattering screen fractional distances using our measured

scintillation parameters and Vpm values.

Finally, we examined how scattering delays compare with electron density models as

well as scale with DM and plotted our results against empirical fits of scattering delay vs DM

(Cordes et al., 2016; Bhat et al., 2004; Krishnakumar et al., 2015). We find that, on the DM

scales these fits consider, both the spread of and trends in our data agree with all three fits

above a DM of around 10 pc cm −3, below which the models begin to follow a steeper trend than

our measurements. We also found our results largely agree with predictions made by NE2001

for pulsars where scintles were resolvable.

As we continue to observe PTAs with higher precision and get closer to gravitational

wave detection, additional sources of TOA residual uncertainty will become significant enough

that they cannot be ignored by our timing models. We have already reached that stage with

scattering delays in some pulsars, as we have shown that they exhibit average delays comparable

in magnitude to the 10 ns precision believed to be necessary for gravitational wave detection.

Additionally, pulsars such as PSR B1937+21 already have scattering delays comparable to or

greater than their median TOA uncertainty at certain frequencies (Arzoumanian et al., 2018).

Many more pulsars are on track to reach these levels of precision in TOA uncertainty within

the next few years, at which point it will be increasingly detrimental to ignore effects from

scattering. It is crucial to incorporate methods to mitigate these delays in our timing pipelines

as soon as possible.

Our analysis illustrates the need for finer frequency resolution in our standard timing

observations. New techniques like cyclic spectroscopy allow for the determination of ISM-related
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delays and unscattered pulse profiles from single observations, making it much more efficient

to mitigate these delays than the current method of ACF fitting (Demorest, 2011; Palliyaguru

et al., 2015). This technique, which will allow us to obtain much better scattering estimations

for highly scattered and high-S/N pulsars (Dolch et al., 2020) has already been used with fine

frequency resolutions (Archibald et al., 2014). Efforts are ongoing to implement real-time cyclic

spectroscopy pipelines into NANOGrav’s existing observing pipelines, with the goal of removing

scattering effects before any further timing analysis has taken place.
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Chapter 3. A Simultaneous Dual-Frequency Scintillation

Arc Survey of Six Bright Canonical Pulsars Using the

Upgraded Giant Metrewave Radio Telescope

3.1 Introduction

The scintillation of pulsar emission occurs as the result its propagation through non-

uniform distributions of free electrons in the ionized interstellar medium (ISM). This interaction

results in frequency-dependent and time-evolving variations in the flux density of the pulsar

signal as measured at a detector. When these variations are examined across observing frequency

and time in so-called dynamic spectra, representations of the change in the pulsar signal’s

intensity across frequency and time, for a given observation, they can provide valuable insight

into the structure of these electron density variations along our line of sight (LOS) to a given

pulsar. Information can be gained about the ISM structure along the LOS by examining the

parabolic arcs, known as scintillation arcs, that can emerge by examining the power spectrum

of the dynamic spectrum, generally known as the secondary spectrum (Stinebring et al., 2001c).

Successful analysis requires sufficient resolution in time and frequency of the scintles, or bright

patches in the dynamic spectrum, due to constructive interference between different ray paths

through the IISM. Refractive shifts due to, e.g., wedge-like plasma structures cause scintillation

drift patterns that cause asymmetries in the scintillation arc intensity distribution and an offset

of the parabola origin (Cordes et al., 2006b). Some current hypotheses on the physical origins

Submitted to ApJ as J. E. Turner et al. 2023
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of these arcs postulate that they originate from compressed plasma along the boundaries of

50−100 pc size bubbles in the ISM (Stinebring et al., 2022).

Scintillation arc studies require high S/N to obtain quality data. As a consequence,

large surveys of scintillation arcs have typically focused on canonical (i.e., non-recycled) pulsars

with high flux densities and low dispersion measures (Stinebring et al., 2022) or observations at

low observing frequencies where pulsars are typically brightest (Wu et al., 2022). Some recent

large surveys have used newer, more sensitive instruments and observing configurations, in some

cases detecting scintillation arcs in over 100 pulsars across a wide range of dispersion measures

(Main et al., 2023a) and in others performing large scintillation arc surveys using generally

lower flux density millisecond pulsars (Main et al., 2023b). Pulsar scintillometry, which uses

observations of scintillation arcs over many years, has allowed for high precision estimations on

the localization of scattering screens along a given LOS (Sprenger et al., 2022; McKee et al.,

2022). Thanks to long term campaigns to detect low frequency gravitational waves using arrays

of millisecond pulsars (Agazie et al., 2023c; Antoniadis et al., 2023; Zic et al., 2023; Tarafdar

et al., 2022), measurements of annual arc variations via high precision scintillometry have also

recently been accomplished using a few millisecond pulsars (Main et al., 2020, Reardon et al.,

2020., Mall et al., 2022).

Traditional measurements of scintillation arcs have typically been limited to either one

observing band over all epochs (e.g., Trang & Rickett (2007)), or alternated between observing

bands from epoch to epoch (e.g., Stinebring et al. (2019)). While generally sufficient for most

analyses, this band limit results in a bottleneck for examining the evolution of various frequency-

dependent effects over shorter timescales, including scintillation arc curvature, structures within

individual arcs, and asymmetries in both arc brightness and power as a function of differential

time delay. By making use of the subarray capabilities of the upgraded Giant Metrewave

Radio Telescope (uGMRT) (Gupta et al., 2017), we can effectively create an ultra wideband

receiver by setting multiple groups of dishes to simultaneously observe at different frequencies.

This work is primarily data-focused and aims to highlight the results of some multi-frequency

analyses performed on a small survey of six strong canonical pulsars , all known to exhibit
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scintillation arcs in at least one of the frequency bands, using this approach. In Section

3.2 we discuss the data taken as part of our survey. Section 3.3 describes the analyses performed

and the physical parameters extracted. Section 3.4 details the results of these analyses. Finally,

Section 3.5 summarizes our results and discusses possible next steps.

3.2 Data

Our data were taken across eight epochs spanning MJD 58987−59497 using 22 dishes

split into subarrays for simultaneous multi-frequency observations at uGMRT’s Band 3 and

Band 4, centered at 400 MHz and 650 MHz, respectively, each with 200 MHz of bandwidth.

This simultaneous low-frequency accessibility is comparable to instruments like CHIME that

can observe continuously between 400−800 MHz (Collaboration et al., 2022) and better than in-

struments such as the Green Bank Telescope, which, while having a wide range of low frequency

coverage, can only observe below 1 GHz with at most 240 MHz of bandwidth at frequencies

close to 1 GHz and less than 200 MHz of bandwidth in lower frequency ranges (Staff, 2017).

Observations were also made at Band 5 centered at 1360 MHz, although due to a combination

of RFI and low signal-to-noise (S/N) no scintles were detectable in the dynamic spectra. The

observing bands were split into 4096 (49 kHz wide) frequency channels and observed with 10

second subintegrations. These data were flux calibrated using observations of either 3C147 or

3C286 taken at the beginning of every observing session, and every pulsar was phase calibrated

with a nearby source for five minutes once every 40 minutes of observing time on the pulsar.

Two to three pulsars were observed at each epoch for 40 minutes, except for MJD 59497, where

three pulsars were observed for 155 minutes each. As a result of the phase calibration, each

of those observations comprised three 40 minute scans plus an additional 20 minute scan. A

summary of the observations made can be found in Table 3.1.

Table 3.1: Pulsars Observed

Pulsar Nobs Frequencies
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J2000 Epoch B1950 Epoch (MHz)

J0630−2834 B0628−28 1 300−500, 550−750

J1136+1551 B1133+16 4 300−500, 550−750

J1509+5531 B1508+55 4 550−750

J1645−0317 B1642−03 1 550−750

J1932+1059 B1929+10 3 300−500, 550−750

J2048−1616 B2045−16 1 300−500, 550−750

Table 3.1: Summary of pulsar observations.

The raw data were reduced using the publically available pipeline for uGMRT data

reduction, PINTA (Susobhanan et al., 2021). Here, first radio frequency interference (RFI)

was excised from the raw data using RFIclean (Maan et al., 2021). Then, the data were folded

with the full frequency resolution using a pulsar ephemeris obtained from the ATNF pulsar

catalog (Manchester et al., 2005a) to obtain partially folded sub-banded profiles in PSRFITS

format (Hotan et al., 2004). All the subsequent analysis used these reduced PSRFITS files.

3.3 Analysis

All observations were processed to extract their dynamic spectra by calculating the

intensity, S, of the pulsar’s signal at each observing frequency, ν, and time, t, via

S(ν, t) =
Pon(ν, t) − Poff(ν, t)

Pbandpass(ν, t)
, (3.1)

where Pbandpass is the total power of the observation as a function of observing frequency and

time, and Pon and Poff are the power in all on- and off-pulse components, respectively, as a

function of frequency and time. In this process, we smoothed from 512 pulse profile bins to

64, and defined the on-pulse region as the bins in the summed profile with an intensity >5%
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of the maximum in a continuous window. Each dynamic spectrum was then broken up into

four 50 MHz spectra to allow for more in-depth frequency-dependent analyses and manually

zapped of interference by examining dynamic spectra data arrays and removing pixels that were

brighter than the brightest scintle maxima. Secondary spectra were then created by taking the

squared modulus of the two-dimensional Fourier transform (i.e., the power spectrum) of the

corresponding 50 MHz dynamic spectrum and displaying it logarithmically (dB). While this

is certainly one of the more commonly used methods for obtaining the secondary spectrum,

alternative approaches have recently been explored (Os lowski & Walker, 2023).

To determine the arc curvature in the primary (brightest) scintillation arc on both the

positive and negative side of each secondary spectrum’s fringe frequency axis, we followed the

approach described in Stinebring et al. (2022) in which we divided each secondary spectrum

along the center of its fringe frequency axis and further divided the secondary spectrum into

horizontal slices up the delay axis until we reached the approximate end of a given arm. Search-

ing only in the region of the spectrum surrounding a given arc, we determined the maximum

in each delay slice and fit the resulting trends using fν = ηf2
t fits, where fν is the differential

time delay, η is the arc curvature, and ft is the fringe frequency.

Normalized secondary spectrum power profiles were acquired using the scintools pack-

age (Reardon et al., 2020), which creates these profiles from normalized secondary spectra, which

are secondary spectra that have been manipulated such that their scintillation arcs are fully

vertical. This package utilizes a Hough transform approach for fitting arcs, in which a range

of possible η values is explored by calculating the summed power along each corresponding fit,

with the resulting curvature of the observation being the one with the greatest summed power.

We also determined scintillation parameters by fitting Gaussians and Loren- tzians

to frequency slices of a given observations’s two-dimensional autocorrelation function (ACF)

to determine their scintillation bandwidth, ∆νd, defined as the half-width at half-maximum

(HWHM) of the frequency ACF at lag 0, Gaussians to the time slices of the same ACF to

determine their scintillation timescale, ∆td, defined as the half-width at e−1 of the time ACF lag

0, and scintillation drift rate, dν/dt, defined as the rotation of the 2D Gaussian fit to the 2D ACF
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in the plane of the frequency and time lags. The decision to measure scintillation bandwidths

using both Gaussian and Lorentzian fits serves as a compromise between literature consistency

and mathematical rigor; virtually all studies that use an ACF analysis to determine scintillation

parameters do so using Gaussian fits. However, given that the ISM’s impulse response function,

a time domain function, is characterized by a one-sided decaying exponential, it makes more

mathematical sense to fit the corresponding frequency domain ACF using a Lorentzian, as the

two functions are a Fourier pair.

These scintillation parameter fits were accomplished using code that was heavily based

on pypulse (Lam, 2017), but modified to allow for more user flexibility regarding data ranges

over which fits took place, as well as the inclusion of algorithms that allowed for Lorentzian fits.

3.4 Results & Discussion

3.4.1 Scintillation Arc Curvature Scaling Behavior

As mentioned earlier, Hill et al. (2003b) demonstrated through both theoretical and

observational means that the arc curvature η should follow a ν−2 dependence, following the

same power law as the angular deflection of the pulsar signal. While over 2 GHz of bandwidth

was used in those observations (10-12.5 MHz of bandwidth centered at 430 MHz and either 50

or 100 MHz of bandwidth centered at 1175 MHz, 1400 MHz, and 2250 MHz), the frequency

coverage was discontinuous and all η measurements used in their corresponding fits were from

different epochs. Generally the latter point should not be an issue as long as the observations

were taken within a period shorter than the pulsar’s refractive timescale and the measured

effective velocity has changed minimally. Indeed, for the data used in their fits, their measured

arc curvatures at a given frequency did not vary significantly on day or week timescales, making

them suitable for this type of analysis. However, the ideal situation would be to obtain many

measurements at many frequencies during the same observation, preferably at the same time for

optimal consistency. With our high resolution and sufficient observing time, we have the ability
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to make up to eight concurrent arc measurements over 450 MHz of bandwidth at low frequency

and can consequentially provide a more definitive examination of the theory. Additionally, since

all of our measurements for a given scaling fit are taken on the same day, they all have the same

effective velocity.

Following the methodology of Hill et al. (2003b), for a scaling index α, we performed a

weighted linear least-squares fit of the form

log10 η = α log10 ν + β (3.2)

on the curvatures for each pulsar with at least three measurements at a given MJD, weighted

by the squared inverses of the arc curvature uncertainties. Example fits can be seen in Figure

3.1, with all measured indices listed in Table 5.2. We find that, overall, our scaling indices

are consistent with a theoretical index of −2, with PSRs J1136+1551 and J1932+1059 being

especially consistent. Interestingly, a weighted average of all curvature fits across all pulsars

shows that our left arm fits are overall more consistent with an index of −2 than our right arms,

with a weighted average of −1.99±0.03 across all left arm fits compared with −1.69±0.02 across

all right arm fits, indicating that refraction may play a role in how closely arc curvature scales

as expected with frequency. However, we strongly emphasize that there is significant variation

in curvature indices across pulsars and epochs, and that this is only an average.
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(a) Arc curvature scaling index fit for both left (solid
blue with dots) and right (dashed green with triangles)

for PSR J1932+1059 on MJD 58997

(b) Arc curvature scaling index fit both left (solid blue
with dots) and right (dashed green with triangles) for

PSR J1136+1551 on MJD 58997. The inclusion of
multiple points at certain frequencies is the result of this
epoch containing a 155 minute observation instead of the
40 minutes of the other observations, and so a new η was

measured after every 40 minutes.

Figure 3.1: Example fits for the arc curvature scaling index
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Table 3.2: Fitted Pulsar Scintillation Arc Curvature Scaling Indices

Pulsar MJD Scaling Index Left Arc Scaling Index Error Left Arc Nη Scaling Index Right Arc Scaling Index Error Right Arc Nη

J0630−2834 58987 — — — −2.48 0.31 8

J1136+1551 58987 −1.79 0.11 7 −1.89 0.12 7

J1136+1551 58991 −1.65 0.12 8 −1.94 0.08 8

J1136+1551 59115 −1.36 0.13 8 −1.52 0.15 8

J1136+1551 59497 −2.12 0.12 15 −1.99 0.10 15

J1509+5531 58987 −1.49 0.83 3 −1.34 0.55 3

J1509+5531 59064 −1.62 0.26 4 −1.41 0.22 4

J1509+5531 59115 −0.93 0.21 4 −2.31 0.18 4

J1509+5531 59497 −2.01 0.87 9 −1.34 0.21 9

J1645−0317 59074 −2.09 0.26 4 — — —

J1932+1059 58997 −1.93 0.05 8 −1.93 0.09 8

J1932+1059 59062 −2.08 0.07 8 −1.75 0.07 8

J1932+1059 59497 −1.77 0.09 8 −1.53 0.04 8

J2048−1616 59062 −2.52 0.07 6 −1.68 0.05 6

Table 3.2: Fitted arc curvature scaling indices for both left and right primary arcs. Nη indicates the number of arc
curvature measurements used in each fit. Measurements on MJD 59497 may have Nη > 8 due to this epoch being 155
minutes rather than the 40 minutes of the other observations, and so a new η was measured after every 40 minutes,
although arcs may not have been sufficiently resolved/detected in each 40 minute segment.
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3.4.2 Scintillation Bandwidth & Scintillation Timescale Scaling Be-

havior

Our wide frequency coverage also allowed us to examine the scaling index of scintillation

bandwidths and scintillation timescales. Under the assumption that ISM fluctuations follow be-

haviors consistent with a Kolmogorov medium and that the subinertial part of the wavenumber

spectrum dominates, we should expect that scintillation bandwidths scale with frequency as

∆νd ∝ ν4.4 and ∆td ∝ ν1.2 (Romani et al., 1986; Cordes & Rickett, 1998). Previous studies

examining the scattering indices of various pulsars have done so using a number of methods,

including multi-frequency measurements within one week (Krishnakumar et al., 2017), simul-

taneous multi-frequency measurements (Bhat et al., 2004; Bansal et al., 2019) (although the

former primarily used two, and occasionally three, measurements and the latter was at frequen-

cies less than 100 MHz), splitting up measurements from a single frequency band into multiple

subbands (Levin et al., 2016; Krishnakumar et al., 2019; Chapter, 2), and using measurements

from many epochs taken at two observing bands non-simultaneously (Chapter, 2). Since more

measurements and more frequency coverage in a single epoch is ideal, the method used in Bhat

et al. (2004) and Bansal et al. (2019) is the most preferred of the three. The method in this

chapter utilizes a combination of this approach and the subband approach to maximize the

number of delay measurements per epoch, which can be done thanks to our high frequency

resolution and sensitivity in both observing bands. Not as many studies exist that examine

scintillation timescale frequency scaling, in part due to the longer observing times required to

measure these timescales in most pulsars. Most studies that do explore this behavior use mea-

surements taken from disparate observations (Lewandowski et al., 2011), with those that have

made measurements simultaneously at multiple frequencies being limited to ranges at much

lower frequencies (Bhat et al., 2018).

Similar to Equation 5.5 that is used to determine the arc curvature scaling index,

our scintillation bandwidth and scintillation timescale scaling indices ξ at each epoch were
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determined by performing a weighted linear least-squares fit of the form

log10 ∆νd = ξ log10 ν + b (3.3)

and

log10 ∆td = ξ log10 ν + b (3.4)

for pulsars with at least four measurements at a given MJD. Example fits can be seen in

Figure 3.2, with all measured indices listed in Table 5.1. We find that the majority of our

scintillation bandwidth indices fit with Gaussians are consistent with scaling shallower than

characteristic of a Kolmogorov medium, while half of our scintillation bandwidth indices fit

with Lorentzians are consistent with scaling for a Kolmogorov medium. We also find half of

our scintillation timescale indices to be consistent with a Kolmogorov medium and half to

be consistent with a shallower spectrum. This behavior agrees well with general trends seen

in previous studies, as both Bhat et al. (2004) and Bansal et al. (2019) found indices either

consistent with a Kolmogorov medium or a shallower index than a Kolmogorov medium using

delays measured by fitting pulse broadening functions, while Levin et al. (2016) and Chapter

(2) only found indices that were shallower than a Kolmogorov medium using Gaussian fits to

frequency ACFs. Krishnakumar et al. (2017) measured delays in 47 pulsars over a range of

frequencies by fitting pulse broadening functions to pulse profiles and found almost 65% of

those pulsars to exhibit scaling indices shallower than −4.4. Additionally, while Gaussians have

been used to fit frequency ACFs in many scintillation studies, which is why we include them

in our analyses, it is more mathematically appropriate to use Lorenztians given the Fourier

relationship between the Lorentzian distribution and the one-sided exponential function that

is assumed to characterize the impulse response function of the ISM. As such, our scintillation

bandwidth indices obtained using Lorentzian-derived scintillation bandwidths likely provide a

more accurate reflection of the turbulence of the ISM than our Gaussian measurements.

Many explanations have been given for why shallower-than-Kolmogorov medium behav-

ior has been observed so frequently. Physical arguments have called into question the validity
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of the simple infinite, thin screen model, demonstrating that shallower scaling indices are more

consistent with finite, thin screens (Rickett et al., 2009). This is expected to be much more

common among low DM pulsars (Cordes & Lazio, 2001), which agrees with our results, as all

of the pulsars have dispersion measures below 40 pc cm−3. Shallower indices have also been

attributed to the existence of multiple finite screens along the LOS (Lewandowski et al., 2013b).

This hypothesis agrees well with our measured indices for PSR B1133+16, as its indices are

consistently shallower than that of a Kolmogorov medium and it is also known to have at least

six distinct scattering screens (McKee et al., 2022).

Quality-of-data arguments have also been proposed. Chapter (2) suggested their shal-

lower indices may be at least partially attributable to an imbalance of lower frequency data to

higher frequency data for their multiple epoch approach as well as a lack of sufficient frequency

resolution in their lower frequency band in some epochs. However, neither of these issues should

affect our results, as our observations have a consistently even balance of low and high frequency

measurements at all epochs and all of our measurements are well-resolved in frequency.
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(a) Scintillation bandwidth scaling index fit for PSR
J1136+1551 on MJD 58991

(b) Scintillation timescale scaling index fit for PSR
J1932+1059 on MJD 59062.

Figure 3.2: Example scaling index fits
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Table 3.3: Fitted Pulsar Scintillation Bandwidth & Scintillation Timescale Scaling Indices

Pulsar MJD ∆νd Gaussian ∆νd Gaussian Error ∆νd Lorentzian ∆νd Lorentzian Error N∆νd
∆td Index ∆td Index Error N∆td

J0630−2834 58987 4.85 0.66 4.85 0.65 8 1.02 0.25 8

J1136+1551 58987 2.63 0.78 3.47 1.05 7 1.51 0.21 7

J1136+1551 58991 3.74 0.25 4.46 0.28 8 0.70 0.12 8

J1136+1551 59115 2.72 0.35 2.87 0.37 8 0.56 0.27 8

J1136+1551 59497 3.46 0.64 4.07 0.58 14 0.71 0.16 14

J1509+5531 59064 0.56 1.39 0.42 1.26 4 0.40 0.38 4

J1509+5531 59115 1.87 0.81 1.09 1.53 4 1.22 0.69 4

J1509+5531 59497 0.73 0.81 0.38 1.03 9 −0.58 0.48 9

J1645−0317 59074 3.70 0.80 3.55 0.75 8 0.55 0.06 8

J1932+1059 58997 1.89 0.46 2.47 0.48 8 −0.28 0.49 8

J1932+1059 59062 2.02 0.42 2.53 0.46 8 1.28 0.27 7

J1932+1059 59497 3.71 0.37 4.16 0.58 8 0.89 0.57 8

J2048−1616 59062 3.75 0.33 4.21 0.44 6 0.37 0.08 6
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Table 3.3: Fitted Pulsar Scintillation Bandwidth & Scintillation Timescale Scaling Indices

Pulsar MJD ∆νd Gaussian ∆νd Gaussian Error ∆νd Lorentzian ∆νd Lorentzian Error N∆νd
∆td Index ∆td Index Error N∆td

Table 3.3: Fitted scintillation bandwidth and scintillation timescale scaling indices, with a minimum of four mea-
surements (N) required in a given epoch to obtain a scaling index. Errors are uncertainties from parameter fits.
The majority of our scintillation bandwidth indices fit with Gaussians are consistent with scaling shallower than
characteristic of Kolmogorov medium, while the majority of our scintillation bandwidth indices fit with Lorentzians
are consistent with scaling for a Kolmogorov medium. Measurements on MJD 59497 may have N > 8 due to this
epoch being 155 minutes rather than the 40 minutes of the other observations, and so a new η was measured after
every 40 minutes, although arcs may not have been sufficiently resolved/detected in each 40 minute segment.
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3.4.3 Relation Between Arc Curvature and Scintillation Parameters

Under the assumption that scattering resulting in a given scintillation arc is both one-

dimensional and occurring at a thin screen, it becomes possible to relate arc curvature to the

scintillation bandwidth and timescale (Cordes et al., 2006b; Stinebring et al., 2022). This

relation can be described by the so-called pseudo-curvature, ηISS, given by

ηISS =
2π∆t2d
∆νd

. (3.5)

While the relation between ηISS and η has been strongly demonstrated in large surveys

across many pulsars (Stinebring et al., 2022), our wide frequency coverage and high resolution

uniquely allow for the exploration of this relation within individual epochs. To accomplish this,

in each epoch, for a given pulsar that had at least four measurements of arc curvature in a given

arm and four measurements of both scintillation bandwidth and timescale, we determined the

weighted linear correlation coefficient in log space between ηISS and η. We also determined the

power law relation between ηISS and η using relations of the same form as Equations 5.6 and

3.4 to determine the degree of one-to-one correspondence, with a scaling index of one and 10b

of one indicating perfect equivalence. The results of these analyses can be seen in Table 3.4,

while an example can be seen in Figure 3.3.

Overall, we found strong correlations between these two estimates of curvature, with

the majority of correlation coefficients being above 0.8, and the majority of fits closely following

a one-to-one correspondence, with a weighted average index of 1.16±0.05 and weighted average

10b of 0.13±0.01, indicating our assumption of one-dimensional, thin-screen scattering is justified

across these LOS’s. A comparison of the measured η, ∆νd, and ∆td power laws in 3D space using

the corresponding correlation coefficients as a gauge shows some evidence that these correlation

coefficients generally increase the closer all three power laws converge to their expected scaling

indices given our various physical assumptions, as shown in Figure 3.4.
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Figure 3.3: Example comparison between ηISS and η for PSR J1136+1551 on MJD
58991 for both the left (solid blue with dots) and right (dotted-dashed green with
triangles) arms of the scintillation arc visible in the observation, with corresponding
power law fits, and correlation coefficients ρL and ρR, respectively. The dashed red line
indicates a perfect one-to-one correspondence.
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Figure 3.4: A comparison of the measured η, ∆νd, and ∆td power laws with the
correlation coefficients of the η − ηISS relation (dots), with the red star indicating a
power law in η of −2, a power law in ∆νd of 4.4, and a power law in ∆td of 1.2. There
is minor evidence that, the closer these three quantities get to their expected scaling
indices, the closer the correlation coefficient gets to one.
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Table 3.4: Relation Between η and ηISS

Pulsar MJD ρL Left Index Left 10b Nη,L ρR Right Index Right 10b Nη,R

J0630−2834 58987 — — — — 0.91 1.35 ± 0.26 0.72 ± 0.12 8

J1136+1551 58987 0.42 0.56 ± 0.60 0.38 ± 0.50 7 0.60 0.61 ± 0.41 0.36 ± 0.28 7

J1136+1551 58991 0.89 1.93 ± 0.40 20.6 ± 19.3 8 0.91 1.56 ± 0.29 3.89 ± 2.13 8

J1136+1551 59115 0.86 1.24 ± 0.30 2.70 ± 2.39 8 0.83 1.15 ± 0.31 1.64 ± 1.38 8

J1136+1551 59497 0.66 1.12 ± 0.37 2.77 ± 3.04 14 0.73 1.30 ± 0.36 4.80 ± 5.09 14

J1509+5531 59064 0.98 1.03 ± 0.14 0.13 ± 0.01 4 0.99 1.21 ± 0.15 0.14 ± 0.01 4

J1509+5531 59115 0.52 0.52 ± 0.61 0.10 ± 0.09 4 0.28 0.12 ± 0.29 0.06 ± 0.02 4

J1509+5531 59497 0.72 0.70 ± 0.25 1.23 ± 0.51 9 0.31 0.67 ± 0.78 0.96 ± 0.97 9

J1645−0317 59074 0.95 1.14 ± 0.26 0.95 ± 0.39 4 — — — —

J1932+1059 58997 0.84 1.48 ± 0.39 6.44 ± 4.62 8 0.87 1.56 ± 0.37 8.09 ± 5.65 8

J1932+1059 59062 0.57 0.90 ± 0.76 1.97 ± 2.25 7 0.55 0.91 ± 0.80 2.39 ± 3.23 7

J1932+1059 59497 0.84 2.17 ± 0.59 52.0 ± 53.9 8 0.87 2.45 ± 0.69 128 ± 168 8

J2048−1616 59062 0.97 1.36 ± 0.18 3.26 ± 1.24 6 0.98 2.01 ± 0.23 39.3 ± 23.3 6
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Table 3.4: Relation Between η and ηISS

Pulsar MJD ρL Left Index Left 10b Nη,L ρR Right Index Right 10b Nη,R

Table 3.4: Linear correlation coefficients, ρ, and power law fits in log space between measured arc curvature η and
pseudo-curvature ηISS for both left and right arms of scintillation arcs. Nη indicates the number of arc curvature
measurements used in each fit. Measurements on MJD 59497 may have Nη > 8 due to this epoch being 155 minutes
rather than the 40 minutes of the other observations, and so a new η was measured after every 40 minutes, although
arcs may not have been sufficiently resolved/detected in each 40 minute segment.
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3.4.4 155 Minute Observation

The inclusion of a 155 minute observation in our survey on MJD 59497 allowed for an

analysis of short-term arc curvature variation in some pulsars, as observations had to be paused

every 40 minutes for a five minute phase calibration, resulting in multiple 40 minute scans. For

pulsars with at least two arc curvature measurements in a given scintillation arc at a given

observing frequency, we examined how a given arc curvature measurement at a given observing

frequency, ην,i varied with respect to the weighted average curvature for that arm and frequency

over the entire epoch, ην . The percent difference χ between these two quantities is then given

by

χ = 100
|ην − ην,i|

ην+ην,i

2

. (3.6)

For PSR J1136+1551, all observing frequencies centered at or below 475 MHz had

three arc curvature measurements (the higher frequency observations only had one arc cur-

vature measurement) in each primary arm (the brightest arm, overwhelmingly often the arm

with the highest curvature) at each frequency, with the accumulation of all percent differences

yielding a bimodal distribution with peaks around percent differences of 2% (16 arc curvature

measurements) and 7% (eight arc curvature measurements). The mean was 3.7% and the me-

dian was 2.8%, while largest percent difference away from a weighted mean was 7.9±0.2% and

the smallest was 0.14±1.91%, although the majority of all percent differences were below 3%.

All of this strongly indicates the ISM underwent very little change along the LOS to this pul-

sar over the course of a given observation. This result is supported by this pulsar’s incredibly

low dispersion measure, meaning it does not sample a sizeable portion of the ISM along its

LOS relative to many pulsars that are observed (Bilous et al., 2016; Manchester et al., 2005b;

Pilkington et al., 1968).

For PSR J1509+5531, all observing frequencies centered at or above 575 MHz had at

least two arc curvature measurements in each arm at each frequency (no arcs were sufficiently

resolved in the lower frequency band), with the accumulation of all percent differences resulting

in a one-sided distribution peaked around 6% (18 arc curvature measurements). The mean was

98



10.1% and the median was 6.6%, while the smallest percent difference away from a weighted

mean was 1.2±2.1%, and the largest was 36.4±0.1%, although the next largest after that was

only 21.7±0.1%, meaning this maximum was an extreme outlier. The majority of all percent

differences were below 7%. As with the previous pulsar, this also strongly indicates the ISM

underwent very little change along the LOS to this pulsar over the course of a given observation,

a result again supported by this pulsar’s fairly low dispersion measure (Huguenin et al., 1968;

Manchester et al., 2005b). The fact that this pulsar shows higher variation compared to PSR

J1136+1551 is likely due to PSR J1509+5531 having a dispersion measure four times higher

and a transverse velocity 45% larger (Bilous et al., 2016; Huguenin et al., 1968; Manchester

et al., 2005b; Pilkington et al., 1968; Stovall et al., 2015), so a significantly larger fraction of the

ISM was sampled during its observation, increasing the likelihood of larger scintillation-based

variations.

Only one arc curvature measurement in each frequency was obtainable at this MJD for

PSR J1932+1059, and so the above analysis was not possible.

The next few subsections highlight the features of a few pulsars in the survey.

3.4.5 J0630-2834

In the one epoch for which we were able to resolve a scintillation arc, only the right

arm was resolvable across all frequencies, with its relative brightness with respect to the left

side of the fringe frequency axis consistently decreasing as frequency increased. An example of

this asymmetry can be seen in Figure 3.5. This strong asymmetry is known to be the result

of refraction leading to scintillation drifting in the dynamic spectra (Cordes et al., 2006b).

Interestingly, although one would expect an increase in scintillation drift to coincide with an

increase in the asymmetry, the magnitude of our measured scintillation drift rates seem to mildly

favor an increase with frequency whereas the asymmetry appears to decrease with frequency.
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Figure 3.5: An example dynamic (top) and secondary (bottom) spectrum from PSR
J0630-2834 on MJD 58987 centered at 425 MHz. There is a clear asymmetry in the
secondary spectrum, with the right arm being the dominant feature. This is likely the
result of refraction along the line of sight. The blue line represents the arc curvature
fit.
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3.4.6 J1136+1551

This pulsar is well known for having the uncommon feature of multiple scintillation arcs,

implying multiple scattering screens along its LOS (Hill et al., 2003b; Stinebring et al., 2019).

In the literature, six distinct sets of arcs have been found over a ∼34 year span of observations

(McKee et al., 2022). In three of the four epochs in which we observed this pulsar, we detected

multiple arcs, an example of which can be seen in Figure 3.6.

(a) Scintillation arcs without overlaid fits (b) Scintillation arcs with overlaid fits

Figure 3.6: Secondary spectrum of PSR J1136+1551 at 650 MHz on MJD 58987
showing the detection of three distinct scintillation arcs. The dynamic spectrum used
to make these figures was resampled to be uniform in wavelength rather frequency in
order to better resolve the additional distinct arcs, which were not quite as resolved
using the latter sampling approach.

After scaling our measurements to 1400 MHz and using the convention from McKee

et al. (2022), we can conclude that we detected arcs B, C, and E on MJDs 58987 and 58991

and arcs C and D on MJD 59115, with arc C being the only detectable arc on MJD 59497.
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All multiple-arc detections were made only in the observations using uGMRT’s band 4, which

was centered at 650 MHz. The fact that the two epochs closest to each other in our survey

(MJDs 58987 and 58991) both detected the same sets of arcs may hint at a timescale over

which certain screens have a larger influence over the pulsar signal propagation. McKee et al.

(2022) demonstrates how for this pulsar anywhere from one to six arcs may be visible in a

given observation, with the number of visible arcs possibly changing on approximately week

timescales, assuming the ISM along the LOS to this pulsar is consistent modulo one year. This,

along with our results showing observations within a four day window to be dominated by the

same screen, suggests a fairly short but currently unknown window within which the influence

of a given screen will fluctuate, likely on the order of one week.

The existence of multiple screens along the LOS to this pulsar may also help to partially

explain discrepancies between our scintillation bandwidth power-law fits and those of Wu et al.

(2022), where two of our four Gaussian ACF fit-derived scaling indices are shallower than the

index acquired from their observation. While we observed anywhere from one to three arcs in

our observations, indicating anywhere from one to three scattering screens having a dominant

influence over the pulsar emission’s propagation, their observation of this pulsar only had one

visible arc and therefore one dominant scattering screen. As discussed earlier, Lewandowski

et al. (2013b) mentions that deviations from a single thin screen scattering geometry (e.g.,

multiple thin screens) can result in scaling indices shallower than −4. The observations in Wu

et al. (2022) are also taken at significantly lower observing frequencies (148−152 MHz), where

it is much more likely for only single arcs to be observed. This is a consequence of the ISM

looking more like a continuous medium when observed at lower frequencies, whereas at higher

frequencies we are more likely to observe single scatterings off of individual screens.

An examination of the power in each of the arms show notable levels of asymmetry

along the delay axis, and consequently a notable amount of refraction, in all detectable arms

and across all frequencies in the first two epochs, with the right arm having more power and

extending further out on the delay axis. This asymmetry clearly decreases over the course of our

observations across all frequencies until our final observation, where the arcs have approximately
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even levels of power or the left arc starts to dominate in the asymmetry. This trend is generally

supported by the measured scintillation drift rates as well, especially for data taken at band

4 (650 MHz), i.e., the same band where the multiple arcs were visible, as measured drifts are

generally negative during the first three epochs and then considerably positive during the final

epoch.

Perhaps the most interesting finding from our observations of this pulsar is the discovery

of a strong correlation between the measured arc curvatures and the arc asymmetry index, A(fν),

which is a metric that describes the relative power between the left and right arms and is found

by comparing the average power along each arm via

A(fν) =
PR(fν) − PL(fν)

PR(fν) + PL(fν)
, (3.7)

with a larger index magnitude indicating greater asymmetry. We believe this correlation has

never before been reported and wish to use it as a cautionary tale for those attempting similar

analyses in the future, as we suspect this correlation to be a consequence of a bias in the Hough

transform approach used to acquire these asymmetry measurements. To test our conjecture, we

used the screens package (van Kerkwijk & van Lieshout, 2022) to simulate a one-dimensional

phase screen where rays scattered at positive angles were 30% brighter than those scattered at

negative angles for a pulsar with the same astrometrical properties as PSR J1136+1551 under

the assumption that the pulsar motion dominates the effective velocity and using the same

observing setup as our observations. We then repeated the simulation at 50 fractional screen

distances between 0.5−0.8 while using the same image on the sky in each setup. This fractional

screen distance range was chosen to allow for significant exploration of the phenomenon along

the LOS while limiting the proximity of the screen to Earth so that we could safely ignore the

motion of the Earth in our simulation.

An example dynamic and secondary spectrum pair from our non-simulated observations

is shown in Figure 3.7, with its corresponding normalized secondary spectrum power profile,

which is used to determine the asymmetry index, shown in Figure 3.8, while the scatter plot
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Figure 3.7: Dynamic (top) and secondary (bottom) spectra of PSR J1136+1551 cen-
tered at 650 MHz on MJD 58987. The top half of the secondary spectrum shows the
overlaid arc fits in blue.

showing the relation between measured arc curvature and arc asymmetry index across all mea-

surements taken in the 650 MHz band, along with our simulated data, is shown in Figure 3.9.

As seen in Figure 3.9, despite the image on the sky remaining the same in each of our simula-

tions, the asymmetry gets progressively larger as we go to higher curvatures. For this reason

we conclude this correlation to be the result of a bias in the Hough transform approach for

measuring arc curvatures and the resulting normalized secondary spectra. Of particular note in

Figure 3.9 are the three distinct clumps in our measured data, which we believe are the result

of our observations being dominated by a different scattering screen at each epoch (two of our

observations were taken four days apart, and so are dominated by the same screen). It is likely

that this pulsar’s at least six known scattering screens are the main reason why we were able

to see this correlation in our data in the first place, as individual scattering screens likely do

not vary enough in distance over time for this trend to become apparent. Indeed, the limited
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number of pulsars with multiple known screens is probably the main reason why this trend has

not been reported in earlier studies.

Figure 3.8: Normalized secondary spectrum power profile of PSR J1136+1551 cen-
tered at 650 MHz on MJD 58987. The vertical dashed lines indicate where the arcs fall
on the normalized delay axis.

3.4.7 J1509+5531

In the observations of this pulsar in the 650 MHz band, all secondary spectra featured

patchy rather than continuous arcs, particularly in the left arm. This patchiness indicates a

detection of this pulsar’s arclets, which result from substructures in the ISM thought to arise

from scattering interference between an inhomogeneously scattered distribution of material

and some distinct offset region (Walker & Stinebring, 2005; Cordes et al., 2006b). Under

the assumption that these substructures are lens-like, they are expected to be roughly AU

in scale (Hill et al., 2005). Unique to these arclets is their distinctly flat nature, which has been

attributed to its exceptionally high transverse velocity of 960+61
−64 km s−1 (Chatterjee et al.,
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Figure 3.9: Scatter plot showing simulated (orange triangles) and measured (dots of
various colors) arc curvatures and the corresponding asymmetry indices for all mea-
surements of PSR J1136+1551 taken with Band 4. The three distinct clumps in the
measured data are the result of the observations being dominated by three different
scattering screens.

2009). Interestingly, the arc curvatures measured in the last two epochs (MJDs 59115 and

59497) are a factor of two to three times smaller than the first two epochs (MJDs 59064 and

58987), possibly indicating a detection of multiple scattering screens along the LOS to this

pulsar. This result augments the results of Sprenger et al. (2022), who also found significant

variability along the LOS to this pulsar during the same period of time and propose a double

screen model as a possible explanation. An example observation from the earlier two epochs is

shown in Figure 3.10, while an example from the later two epochs is shown in Figure 3.11.
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Figure 3.10: Dynamic (top) and secondary (bottom) spectra of PSR J1509+5531
centered at 625 MHz on MJD 58987. The top half of the secondary spectrum shows
the overlaid arc fits in blue. During this period of observations, visible arcs were con-
siderably narrower than later observations.

3.4.8 J1645-0317

In the one epoch for which we were able to resolve a scintillation arc in this pulsar, its

power was found to be highly concentrated towards the origin, indicating strong scintillation

with the majority of the power in its brightness distribution originating from around θ = 0

(Cordes et al., 2006b). There is also considerably more power on the left side of the fringe

frequency axis, indicating strong refraction occurring during this epoch. An example observation

is shown in Figure 3.12.
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Figure 3.11: Dynamic (top) and secondary (bottom) spectra of PSR J1509+5531
centered at 650 MHz on MJD 59115. The top half of the secondary spectrum shows
the overlaid arc fits in blue. During this period of observations, visible arcs were con-
siderably wider than earlier observations.

3.4.9 J1932+1059

Due to having the lowest DM in our survey, this pulsar showed the least variation in arc

curvature from epoch to epoch across all frequencies. Its close proximity to Earth also resulted

in wide scintles in frequency, leading to high scintle resolution and very bright, narrow, and well

defined arcs. The sharpness of these arcs may also indicate scattering that is highly anisotropic

along the LOS (Walker et al., 2004; Cordes et al., 2006b), as well as originating from a discrete,

localized source (Stinebring et al., 2001c). Overall this was our most consistent pulsar in all

aspects of scintillation.

This consistency lines up with its other astrophysical parameters, as its dispersion

measure of 3.18 pc cm−3 (Large et al., 1968; Manchester et al., 2005b) was the lowest in our

survey and its transverse velocity of 152 km s−1 (Bilous et al., 2016; Manchester et al., 2005b)
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Figure 3.12: Dynamic (top) and secondary (bottom) spectra of PSR J1645-0317
centered at 675 MHz on MJD 59074. The top half of the secondary spectrum shows
the overlaid arc fits in blue.
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was the second lowest. While its transverse velocity is a bit larger than that of PSR J0630−2834

and their distances are almost equivalent, PSR J0630−2834 has a dispersion measure 10 times

higher than PSR J1932+1059 (Large et al., 1968, 1969; Manchester et al., 2005b). This means

that a much denser ISM was sampled in PSR J0630−2834 than in PSR J1932+1059, meaning

that PSR J1932+1059 had decisively the least amount of ISM sampled over our survey, making

it the least likely to experience large scintillation-related variations. An example observation is

shown in Figure 3.13.

Like in the case of PSR J1136+1551, two of our three Gaussian frequency ACF-derived

scintillation bandwidth scaling indices are shallower than the measured index using lower ob-

serving frequencies from Wu et al. (2022). In the case of this pulsar, our observations also

overlap theirs in time, meaning we would expect similar LOS behavior, although it has been

observed that the measured scaling index along the LOS to a given pulsar can vary over time

(Levin et al., 2016; Chapter, 2). Interestingly, when comparing the discrepancies between our

scaling indices and Wu et al. (2022) using the time of year in which the observations were made,

the closer our observing epochs are to theirs as a fraction of a year, the more our measured

scaling indices agree. More specifically, looking at the difference between epochs in days relative

to a calendar year, they measured a scaling index of 4.00±0.37, and we found scaling indices of

1.89±0.46, 2.02±0.42, and 3.71±0.37 with day differences of 151, 149, and 82 from their epoch,

respectively. It is known that other ISM-related quantities such arc curvature (Main et al., 2020;

McKee et al., 2022) and dispersion measure (Hazboun et al., 2022) have annual variations, and

it is expected that scintillation bandwidth should correlate with dispersion measure (Kuzmin,

A. et al., 2008; Coles et al., 2015; Lentati et al., 2017; McKee et al., 2018), meaning we might

expect some annual trend in scintillation bandwidth measurements as well. However, it seems

unlikely that the annual variations in electron density contributions from the solar wind would

noticeably affect measured ISM turbulence, much less to the degree seen in our data.
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Figure 3.13: Dynamic (top) and secondary (bottom) spectra of PSR J1932+1059
centered at 725 MHz on MJD 58987. The top half of the secondary spectrum shows
the overlaid arc fits in blue.
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3.4.10 J2048-1616

This pulsar exhibited strong pulse intensity variability at all observing frequencies,

resulting in significant flux density variation within individual scintles. The scintillation arcs

for this pulsar exhibit high levels of asymmetry, potentially a consequence of refraction. This

strong asymmetry is also accompanied by a highly asymmetric scaling of the arc curvature

in both arms (see Table 5.2), with the left and right arms exhibiting noticeably steeper and

shallower arc curvature scaling indices, respectively, than would be expected as a consequence

of pure plasma refraction. This asymmetry diminishes noticeably with observing frequency,

visible both by eye and by looking at A(fν) as a function of frequency, possibly a consequence

of weaker refraction at higher observing frequencies. Additionally, the thickness of these arcs

also sharply decreases with frequency, being barely visible over the power near the origin at low

frequencies and very sharply defined at higher frequencies. Stinebring et al. (2019) examined

how the width of scintillation arcs change with frequency in PSR J1136+1151, also observing

a decrease in thickness with frequency. They concluded these effects could be explained by a

linear, one-dimensional brightness function and an anisotropic brightness distribution, which

describe how the brightness of the scattered image changes with the angular deflection of the

scattered ray in 1D and 2D, respectively. An example observation is shown in Figure 3.14.

3.5 Conclusions & Future Work

We performed simultaneous dual-frequency observations of six bright canonical pulsars

using the uGMRT. We extracted scintillation arc, bandwidth, and timescale measurements for

each of these pulsars to examine a variety of science. We examined how arc curvature scaled

with frequency and found our observations to be consistent with the index predicted by theory

and demonstrated in the literature, while at the same time using a more astronomically ideal

setup to perform these measurements. We also measured scintillation bandwidth and scintil-

lation timescale scaling indices for five of our six pulsars and found indices consistent with
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Figure 3.14: Dynamic (top) and secondary (bottom) spectra of PSR J2048-1616
centered at 725 MHz on MJD 58987. The top half of the secondary spectrum shows
the overlaid arc fits in blue.
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or shallower than Kolmogorov turbulence, agreeing with previous literature. We examine the

relation between arc curvature and scintillation bandwidth and timescale within epochs and

find strong correlation between the measured curvature and pseudo-curvature, indicating our

assumptions of one-dimensional, thin screen scattering are justified. Finally, we find an inter-

esting and strong correlation between arc curvature and arc asymmetry in PSR J1136+1551,

which we attribute to a bias in the Hough transform method for measuring arc curvatures.

This study demonstrates the value of array-based telescopes such as uGMRT to the

pulsar astronomy community, as well as the strengths of simultaneous multiband studies of

pulsars and the wide variety of science that can be done with such an approach. This also

shows strong promise for the future observations using ultrawideband (UWB) receivers, which

are coming online at instruments such as the Green Bank Telescope.
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and matplotlib Hunter (2007).
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Chapter 4. Scattering Delay Mitigation in High Accuracy

Pulsar Timing: Cyclic Spectroscopy Techniques

4.1 Introduction

High-accuracy pulsar timing has been a transformative technique across a wide range of

astrophysical fields, including neutron star mass measurements, binary star evolution, exacting

tests of general relativity, pulsar astrometry, and studies of the interstellar medium (ISM). Now,

in the era of pulsar timing arrays (PTAs), astronomers are poised to explore a gravitational-

wave background due to supermassive black hole binaries (SMBHBs) located in galaxies at

cosmic distances. Hints at the existence of such a background are already emerging in the

data sets of PTAs through the presence of a common red noise process in the times-of-arrival

(TOAs) of pulsars observed by the three major world-wide PTA collaborations (Arzoumanian

et al., 2020b; Chen et al., 2021; Goncharov et al., 2021; Antoniadis et al., 2022). Such studies

require attention to a myriad of details and careful understanding and correction for systematic

effects due to a wide variety of sources: Earth rotation irregularities, solar system ephemeris

inaccuracies, and even atomic time wander relative to an ensemble of highly accurate pulsar

clocks (Alam et al., 2020b). Propagation of radio waves from pulsars to the Earth through the

ionized, inhomogeneous ISM is a substantial source of noise, if not modeled properly, because

the line of sight (LOS) from pulsar to Earth moves with respect to the medium due to motion

of the endpoints and, subdominantly, motion of the medium itself (Alam et al., 2020b; Jones

et al., 2017; Levin et al., 2016; Chapter, 2).

Published as J. E. Turner et al. 2023, ApJ, 944, 191
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The major contributor to ISM-induced timing delays is due to frequency-dependent

(ν−2, where ν is the observing frequency) cold plasma dispersion along the LOS. This phe-

nomenon has been studied in great detail since the early days of pulsar timing and can largely

be corrected for, although important subtleties remain (e.g. Cordes et al. (2016)). However,

multi-path propagation through the inhomogeneous ISM, or scattering, results in time-variable

perturbations to pulsar TOAs. The resulting delays are expected to be proportional to ν−4.4 for

a homogeneous Kolmogorov medium (although power laws ranging from around −2.5 to around

−4.5 have been reported (Bhat et al., 2004; Bansal et al., 2019; Levin et al., 2016; Chapter, 2)),

and can be discerned via the delay of and structural broadening in an observed pulse. Effects of

scattering, although understood theoretically and observed empirically in many high-accuracy

timing programs, are not generally mitigated in major timing programs such as the NANOGrav

(North American Nanohertz Observatory for Gravitational Waves) PTA and other global PTA

efforts. As PTAs make their first detections and begin characterizing the low-frequency gravita-

tional wave sky, it will be important to mitigate all possible delays. The goal of this chapter and

subsequent work that we envision over the next several years is to develop effective mitigation

strategies for time-variable scattering delays.

Cyclic spectroscopy (CS; Demorest (2011)) is central to our approach to this problem.

CS is a powerful signal-processing technique that is already well-known and frequently used

in the engineering community (Gardner, 1987; Roberts et al., 1991; Brown & Loomis, 1993;

Antoni, 2007) and applicable to periodic signals such as those from pulsars. In the few studies

since its introduction to pulsar timing by Demorest (2011), CS has been successful at producing

high-resolution pulsar secondary spectra (Walker et al., 2013), scattering measurements using

CS-enabled fine channelization (Archibald et al., 2014), and simulated recovery of the impulse

response function (IRF) corresponding to a pulsar signal’s passage through the ionized ISM

(Palliyaguru et al., 2015). As detailed in Dolch et al. (2021), using CS to fully recover the IRF

of the ISM, although a good long-term goal, has requirements, particularly signal to noise ratio

(S/N), that are often not met with the current generation of radio telescopes. Here, we present

a CS-derived quantity, τCS, obtained from CS-based recovery of the IRF, which is more highly
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correlated with total scattering delay than other commonly utilized estimators. This work

serves as proof of concept for the recoverability of scattering-based delays with CS, sometimes

in conjunction with an autocorrelation function (ACF) estimator, addressing concerns about

the accuracy of ACF-based estimators raised by authors such as Coles et al. (2010).

The organization of this chapter proceeds to a presentation of the basic theoretical

framework in §4.2. Following this, we present the methodology and the results of a simulation

in which we compare the effectiveness of τCS to other estimators of scattering delay, specifically

the widely used estimators based on the ACF of the scintillated spectrum in §4.3 and §4.4,

respectively. We conclude with a discussion of future possibilities in §4.5.

4.2 Theoretical Basics

As is standard practice in pulsar studies, we adopt an amplitude modulated noise

(AMN, Rickett (1975)) model for the pulsar signal. The electric field (single polarization) can

then be represented as

E(t) = [p(t)n(t)] ∗ h(t) + nsys(t), (4.1)

where p(t) is the original pulse profile at time t mod P , with P being the pulse period, n(t)

is the intrinsic modulated pulsar noise, h(t) is the IRF, nsys(t) is the noise from the sky and

receiver present in the system, uncorrelated across pulse periods, and we have used the notation

of Dolch et al. (2021). We choose to represent the signal as complex-valued, hence N(t), h(t),

and nsys(t) are complex. Additionally, we can write this electric field as

E(t) = E0(t) ∗ h(t) + nsys(t), (4.2)

where which E0(t) = p(t)n(t). The corresponding frequency domain signal model is

E(ν) = [p(ν) ∗N(ν)]H(ν) + Nsys(ν) (4.3)

= E0(ν)H(ν) + Nsys(ν), (4.4)
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where we use E0(ν) instead of p(ν) ∗N(ν) because the convolution occurs upon emission at the

pulsar. H(ν), which is the Fourier transform of h(t), is the transfer function (TF) of the ISM.

The resulting cyclic spectrum of E(t) is

SE(ν, αk) = ⟨E(ν + αk/2)E∗(ν − αk/2)⟩, (4.5)

where ν is the bandpass frequency at which the signal is measured and αk = k/P is the cyclic

frequency, also known as the modulation frequency, and the average is over an integer number

of pulses. The cyclic spectrum is a complex-valued function with amplitude and phase for each

(ν, αk) pair, and is undefined for non-periodic signals. It is important to keep in mind that,

in practice, Equation 4.5 is averaged over a period of time over which the transfer function

must remain unchanged, which must be less than the diffractive timescale of the ISM along a

particular LOS.

If we make the assumption that a scattering delay can be seen in a pulse profile as a

translation in the time domain, then as a consequence of the shift theorem of Fourier Transforms

this results in a phase slope in the frequency domain. For this reason, it can be useful to examine

the CS phase slope, ϕcyc(ν, αk), which is found via

ϕcyc(ν, αk) = tan−1

(
Im{SE(ν, αk)}
Re{SE(ν, αk)}

)
. (4.6)

It can also be found by examining ϕH , the phase of the transfer function

ϕcyc(ν, αk) = ϕH(ν + αk/2) − ϕH(ν − αk/2)

= αk
ϕH(ν + αk/2) − ϕH(ν − αk/2)

αk
.

(4.7)

Under the assumption that the cyclic frequency αk is much less than the diffractive

bandwidth, ∆νd, we can make the approximation
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ϕcyc(ν, αk) ≈ αk
dϕH

dν
=

k

P

dϕH

dν
. (4.8)

When the S/N is large enough, the transfer function phase can be recovered by simply

integrating the CS phase,

ϕH(ν, αk) =

∫
ϕcyc(ν, αk)

αk
dν. (4.9)

At lower S/N ratios this is not possible and more sophisticated recovery algorithms are required

(Demorest, 2011; Walker et al., 2013). The transfer function amplitude for a given αk can then

approximated as the square root of the CS amplitude for that αk. Finally, the reconstructed

transfer function can then be inverse Fourier transformed back into a reconstructed IRF, and

the recovered scattering delay can be found by calculating the centroid of the intensity IRF,

τCS(αk) =

∫
t |hCS(t, αk)|2dt∫
|hCS(t, αk)|2dt

. (4.10)

4.3 Simulation Methodology

Our simulations began by creating real and imaginary components of white noise, which

we call n(t), and multiplying them by a complex, one-sided decaying exponential to form our

IRF,

h(t) = Re{n(t)}e−t/2τ + Im{n(t)}ie−t/2τ , (4.11)

where the length t is the value in time at which the one-sided exponential is sampled. The

inclusion of this amplitude-modulated white noise, which varies from realization to realization,

serves to mimic how the ISM changes over the course of many observations by emulating the

time-varying effects of scintillation (Narayan & Goodman, 1989). Each realization corresponds

to a pattern of scintles, meaning h(t) can be considered constant on scales shorter than the

scintillation time. The injected value of the scattering delay for a given realization is given by
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the centroid of the resulting pulsar signal, τcent, which can be found via

τcent =

∫
t |h(t)|2dt∫
|h(t)|2dt

. (4.12)

It is worth noting that, in real observations, scattering variations are in fact correlated with

each other, since scintillation is often dominated by compact structures at a fixed or close-to-

fixed angular position that moves between observations, primarily as a consequence of a pulsar’s

proper motion (Hill et al., 2005).

For simplicity we treat the pulse profile p(t) as a delta function of height unity. This

model acts as a best-case scenario pulse, removing all other factors that might interfere with our

aim of solely comparing the effectiveness of various estimators at recovering a delay imparted

by the ISM on radio signals of varying strengths. We appreciate that this technique would not

be necessary for a true delta-like pulse, as if p(t) is truly delta-like, then the IRF can also be

obtained directly, as was shown using narrow pulses from PSR B1957+20, where consistent

delay values have been obtained from fitting a recovered IRF and from scintillation bandwidth

measurements (Main et al., 2017).

We then follow Equations 4.1-4.5, deviating only in that our noise is added only once

we are in the frequency domain, to get the cyclic spectrum, an example of which can be seen

Figure 4.1. Next, the cyclic spectrum phase is calculated using Equation 4.6. An example

cyclic phase plot can be seen in Figure 4.2. We then calculate τCS by following the methodology

described after Equation 4.7 and up to Equation 4.10. An example injected and recovered IRF

intensity can be seen in Figure 4.3. It is important to note that, in our simulations, p(t) and

h(t) are identical for each pulse, while n(t) and nsys(t) are randomized. If there were significant

variations of p(t) beyond AMN, we suspect our method would still be accurate, although CS in

general becomes decreasingly effective as p(t) gets wider and S/N gets lower, which we believe

are more significant factors.

In real pulsar data, the Fourier coefficients, Ak, of a pulse drop off at higher harmonics,

with a non-scattered CS effectively being the Fourier transform of the pulse shape and more
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Figure 4.1: An example normalized cyclic spectrum as a function of the normalized
bandpass taken at the cyclic frequency α1 for a simulated scattering delay of 2 µs using a
spin period of 2 ms and a sampling interval of 100 ns. Here νcent is the center frequency
of the observation and B is the observing bandwidth.
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or less constant in radio frequency. For this reason, we weight our transfer function at the kth

cyclic frequency by the corresponding kth Fourier coefficient of a pulse with a reasonable period

and width. In this simulation we chose a period of 2 ms and a width of 110 µs. This pulse

width was chosen simply because it is the pulse width of PSR J1713+0747 (Manchester et al.,

2013), which has a sharp pulse that can be well-approximated as a Gaussian. Effectively, our

simulation is using the Fourier coefficients of a slightly faster rotating PSR J1713+0747.

The precision of the recovered delay estimation improves as we utilize more delays from

higher cyclic frequencies, although the number of cyclic frequencies that have usable information

depends on a number of factors, including the S/N of the pulsar signal and the pulsar duty cycle.

For these simulations we make use of the first 50 cyclic frequencies in the cyclic spectra and, to

calculate τCS for a given noise realization, take a weighted average of the recovered delays from

these cyclic frequencies, with the weight at the kth cyclic frequency being the kth Ak value of

the pulsar signal mentioned above.

We then compared this estimator to the more traditional methods of recovering scat-

tering delays, which involve calculating the ACF of a dynamic spectrum, or the intensity of the

pulsar signal in both frequency and time. The changes in the intensity of the dynamic spectrum

over frequency and time can create patchy features known as scintles, and the corresponding

scattering delay associated with a given scintle is inversely proportional to that scintle’s width

in frequency. An ACF is able to pick up on a dynamic spectrum’s scintillation pattern, with

the width of the ACF’s central peak then being relatable to the typical scintle width in that

dynamic spectrum. The dynamic spectrum in the case of our delta-function pulse with unity

flux at all frequencies is simply |E(ν)|2, and has the form of Equation 4.5 for α = 0. From there,
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the ACF is found by normalizing the mean-subtracted filter function cross-correlated with itself,

ACF(ν) =

[∑
ν

(
|E(ν)|2 − |E(ν)|2

)

×

(
|E(ν + ∆ν)|2 − |E(ν + ∆ν)|2

)]

÷ Max

[∑
ν

(
|E(ν)|2 − |E(ν)|2

)

×

(
|E(ν + ∆ν)|2 − |E(ν + ∆ν)|2

)]
, (4.13)

where the horizontal bar indicates we are taking the average.

The ACFs were then fit with both a Gaussian and Lorentzian distribution, and the

scattering delay was found via

2π∆νdτ = C1, (4.14)

where ∆νd is the scintillation bandwidth, defined as the half-width at half-maximum of the ACF

along the frequency axis, and C1 is a dimensionless quantity ranging from 0.6−1.5 conditional on

the geometry and spectrum of the electron density fluctuations of the medium (Cordes & Rickett,

1998). In this analysis we assume C1 = 1. Mathematically, using the Lorentzian to fit the ACF

makes more sense because the Lorentzian distribution is the square of the Fourier transform of

the one-sided decaying exponential (Cordes et al., 1985), although Gaussian distributions are

close approximations that have been used in a number of scintillation studies (Bhat et al., 1999a;

Wang et al., 2005; Levin et al., 2016; Chapter, 2). An example ACF fit with both Lorentzian

and Gaussian distributions is shown in Figure 4.4.

4.4 Simulation Results

Our main simulation consisted of 1000 random noise draws for a τ of 2 µs using 20,000

time samples, nsamp, and a sampling interval, sint, of 100 ns, corresponding to P = 2 ms. Here,
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Figure 4.2: (Top) An example cyclic phase as a function of the normalized bandpass
taken at the cyclic frequency α1 (red) as well as using the weighed average of the first
50 cyclic frequencies (dashed blue) for a simulated scattering delay of 2 µs using a spin
period of 2 ms and a sampling interval of 100 ns, corresponding to P = 2 ms. (Bottom)
A zoomed in version of the top plot to better visualize structure. The dashed black line
indicates the average cyclic spectrum phase, while the solid black line indicates a phase
of zero. As seen in the top figure, the phase only utilizing the first cyclic frequency
has much more extreme outliers. In fact, over many noise realizations at a S/N of 10,
weighted average cyclic phases using 50 cyclic frequencies typically exhibit around 79%
smaller standard deviations compared to just the phase at the first cyclic frequency.
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Figure 4.3: (Top) An example injected IRF intensity prior to the inclusion of additive
noise and the corresponding recovered IRF intensities using information from only the
first cyclic frequency using a S/N of 10 and 30. (Bottom) Differences between the noise-
less injected IRF intensity and recovered IRF intensities at a S/N of 10 and 30. Despite
recovering the IRF quite well at these S/N, small differences between the injected and
recovered IRF intensities can lead to noticeable differences in the recovered delay.
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Figure 4.4: The frequency ACF (blue) of a dynamic spectrum for a scattering delay
of 2 µs. Green and red dotted lines correspond to fits to the ACF using Lorentzian
and Gaussian distributions, respectively. Delays in the title correspond, from left to
right, to injected τcent delay, the Gaussian ACF estimator, and the Lorentzian ACF
estimator.
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Figure 4.5: Cyclic spectrum estimator simulation results for random noise draws for
a τ of 2 µs for 300 values of S/N using a spin period of 2 ms and a sampling interval of
100 ns using one (left) and 50 (right) cyclic frequencies. The dashed red lines represent
the mean plus or minus one standard deviation of the injected τ at each S/N, with the
mean and standard deviation of the recovered values at each epoch shown in black and
light blue, respectively.
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nsamp refers to phase bins rather than baseband voltage samples. This framework assumes we

are using baseband data recording with a bandwidth of 10 MHz. For larger bandwidths on the

order of hundreds of MHz, individual scintles get progressively wider at higher frequencies, which

other studies have compensated for by “stretching” the entire dynamic spectrum (Levin et al.,

2016; Chapter, 2). In these studies, the spectrum is scaled by ν−β , with β being the scattering

scaling index determined for a given pulsar’s LOS, relative to the center frequency to give all

scintles approximately equal width across the band. This small 10 MHz bandwidth was chosen

to avoid the scintle stretching that would be required at larger bandwidths. Additionally, this

bandwidth and scattering delay combination results in a similar number of scintles on average

across the band as is seen for many NANOGrav pulsars (Chapter, 2), meaning that we have

approximately the same amount of data informing our ACFs, and consequently similar precision

for a comparable S/N. This series of 1000 random noise draws was repeated over 300 different

values of S/N ranging from around 0.3 to 100, with the S/N defined as the square of the inverse

of the standard deviation of Nsys(t), since our transfer functions are normalized prior to noise

being added.

The results of these simulations using the cyclic spectrum and Lorentzian and Gaussian

ACF estimators for the recovery of τ are shown in Figures 4.5, 4.6, respectively. The cyclic

spectrum estimator using 50 cyclic frequencies appears to converge to a stably recovered value of

τ at a S/N around 100, while the two ACF estimators have already converged at the lowest S/N

in our simulation, which may imply that, given sufficient frequency resolution, there appears to

be a range of lower S/N where these estimators are superior to the cyclic spectrum estimator.

In fact, the lack of improvement in the ACF estimators demonstrates that good fre-

quency resolution, specifically the ratio of the scintillation bandwidth to the overall observing

bandwidth, and consequently, the total number of scintles across the observing band, is much

more important than S/N for accurate ACF estimator recovery. This effect, known as the finite
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Figure 4.6: Lorentzian (left) and Gaussian (right) ACF estimator simulation results
for random noise draws for a τ of 2 µs for 300 values of S/N using a spin period of 2
ms and a sampling interval of 100 ns. The dashed red lines represent the mean plus
or minus one standard deviation of the injected τ at each S/N, with the mean and
standard deviation of the recovered values at each epoch shown in black and light blue,
respectively.
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scintle error, can be determined via

ϵ ≈ τdN
−1/2
scint

≈ τd[(1 + ηtT/∆td)(1 + ηνB/∆νd)]−1/2,

(4.15)

where Nscint is the number of scintles in the dynamic spectrum, T and B are total integration

time and total bandwidth, respectively, ∆td is the scintillation timescale, defined as the half-

width at e−1 of the dynamic spectrum’s ACF along the time axis, and ηt and ην are filling

factors ranging from 0.1 to 0.3 depending on the definitions of characteristic timescale and

scintillation bandwidth, and in our case both set to 0.2 (Cordes, 1986b). Since scattering delays

only depend on the scintillation bandwidth, the scintillation timescale is not important for

these simulations. As a result, for simplicity, we can assume these simulated observations had

observing times much less than the scintillation timescale, and so Equation 5.4 can be reduced

to

ϵ ≈ τd(1 + ηνB/∆νd)−1/2. (4.16)

Taking the results of a typical 1000 sample run, we find that the average Lorentzian

delay spread is around 0.66 µs and the average Gaussian delay spread is around 0.52 µs, while

the average Lorentzian finite scintle error is around 0.40 µs and the average Gaussian finite

scintle error is around 0.36 µs. Further, we did a series of tests in which we varied the sampling

interval, hence the bandwidth, of the simulation. These tests verified that the spread of ACF

values follows the B−1/2 scaling of Equation 4.16 in the many-scintle regime.

This limitation on the effectiveness of estimation ACF-based techniques also means

that methods such as those demonstrated by Hemberger & Stinebring (2008b), which estimate

scattering delays by integrating along the differential delay axis of the secondary spectrum, will

face the same constraints. Other non-CS techniques do exist to reconstruct the IRF, such as

interstellar holography demonstrated by Walker et al. (2008), although this particular technique

requires a high S/N. Our simulations have shown that an IRF recovery approach based on CS,

albeit one that uses a simple, non-iterative phase reconstruction, is quite effective at moderate
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S/N. That being said, future work will be required to fully evaluate the relative merits of these

different approaches.

Figures 4.5 and 4.6 also show that all three estimators converge to roughly the correct

value, although there are slight biases in the mean values for the ACF estimators, whereas none

is seen for the cyclic spectrum estimator. Additionally, for an ideal estimator, at sufficiently

high S/N the standard deviation in the recovered delays should end up matching the standard

deviation in the injected τcent delays, which we see only in the cyclic spectrum estimator. For

reasons that will be discussed later, we do not believe that the biases in the ACF estimators

are simply an indicator that a different C1 should be used for our choice of impulse response.

A significant difference is also noticeable in the mean and standard deviation at low

S/N between using only one cyclic frequency and using 50 cyclic frequencies. While the single

cyclic frequency estimator appears to converge at a similar, if not slightly higher, S/N, its

standard deviation is still significantly larger than the 50 cyclic frequency estimator at lower

S/N. Overall, this presents a strong argument that using many cyclic frequencies is superior.

The extreme variability seen at low S/N in the one cyclic frequency cyclic spectrum

estimator, and the trend toward average recovered delays around zero µs in both cyclic spectrum

estimators, is the result of the white noise overwhelming an IRF that has both positive and

negative components, resulting in a signal that is on average centered around zero on the time

axis. As the IRF becomes more discernible from the additive white noise at higher S/N, a

signal that is increasingly centered in a positive region on the time axis is recovered, resulting

in positive recovered delay values.

On a related note, if our ACF estimators did not have sufficient frequency resolution

at lower S/N, the excess noise would have resulted in scintles appearing narrower and therefore

yielding higher measured scattering delays, leading to the ACF estimators being biased high in

addition to having large variability. This high bias is also a consequence of ACF fitting always

producing a positive definite value, whereas the cyclic spectrum estimator’s ability to return

both positive and negative values results in more manageable behavior at low S/N.
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Figure 4.7: The fractional error of the recovered delay for 100 values of τ with a
sampling interval sint of 100 ns using a spin period of 2 ms with 50 cyclic frequencies
at a S/N of 10. The fractional error scales as the inverse square root of the number
of scintles across the observing band for a typical observation, or, equivalently, the
inverse square root of the delay divided by the sampling interval. Throughout much of
the abscissa range, the cyclic spectrum estimator has a fractional error approximately
64% smaller than that of the ACF estimators. ACF estimators can be seen to flatten
out in the smaller delay-to-sampling interval ratio regime as they are no longer able to
detect a signal above the noise. The improvement in precision as the delay gets larger
while maintaining this sampling interval demonstrates the benefits of proposed wider
bandwidth observing programs.

Supplemental simulations also show that, after reaching a sufficient S/N, additional

gains in precision for all estimators are also partially limited by the ratio of the delay to the

sampling interval, regardless of the number of time samples in use. This is under the assumption

that we are already using a sufficient number of time samples such that accurate scattering

estimations are possible. As shown in Figure 4.7, when we run our simulation at a S/N of

10 at various values of delay with a constant sampling interval of 100 ns, we find a significant

improvement in our fractional error (or in this case, the standard deviation of the recovered
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values divided by delay) as the delay-to-sampling interval ratio increases, following an inverse

square root power law for all estimators. This quantity is also equivalent to the inverse square

root of the number of scintles across the observing band for a typical observation. Since both

the number of scintles across the observing band and the sampling interval are inherently tied

to the maximum possible bandwidth we can utilize, i.e., the inverse of the sampling interval,

these results provide strong support for the introduction of ultra wideband (UWB) observation

programs.

In addition to examining the precision and accuracy over many realizations, we also

looked at how this behavior tracked over individual realizations. A typical example of this at

a S/N of 10 can seen in Figure 4.8, where we show every 20th realization of the simulation for

visual ease. While all three estimators generally follow the injected delays, the cyclic spectrum

estimator clearly tracks these injected values much better than the ACF estimators.

Figure 4.8: A sample of realizations for a S/N of 10 for the simulation described
above. The accuracy of the different estimators compared to the injected value found
by τcent follows the behavior seen in Figures 4.5, and 4.6.
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(a) Cyclic spectrum estimator using 50 cyclic frequencies. The slight offset from the line of
equality is expected at a S/N of 10, as our 50 cyclic frequency CS results in Figure 4.5 were not
fully converged at this S/N.

(b) Lorentzian ACF estimator (c) Gaussian ACF estimator

Figure 4.9: Estimators vs injected delay for 1000 random noise draws for a τ of 2 µs
using a spin period of 2 ms and a sampling interval of 100 ns at a S/N of 10. σx is the
standard deviation of the data in the x direction, σy is the spread of the data in the
y direction, and σz is the standard deviation of z = y − x. Dashed red lines represent
lines of equality between the two axes.
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These discrepancies become even clearer when we examine how well individual draws

correlate between the injected delay and the various estimators for a given S/N. As shown

in Figure 4.9, while there is nearly a one-to-one correspondence between the injected delay

and the cyclic spectrum estimator, epoch-to-epoch variations for the ACF estimators are both

significantly larger. In these plots ρ represents the correlation coefficient between the two

variables, σx is the standard deviation of the data in the x direction, σy is the spread of the

data in the y direction, and σz is the standard deviation of z = y − x. Additionally, the σy

and σz values for the ACF estimators are much more similar to each other than to the cyclic

spectrum estimator. Larger σz indicates a larger typical difference between the injected delay

and the estimator for a given noise realization.

The lack of correlation seen in the ACF estimator plots in Figure 4.9 also present a

strong argument against the ACF estimator biases seen in Figure 4.6 simply being an indication

that a different C1 should be used for our choice of impulse response, as just choosing a C1 that

removes the bias in Figure 4.6 would not alter the lack of correlation seen in Figure 4.9. The C1

would also have to be different for each ACF approach, since the biases are in opposite directions

relative to the injected delay. Additionally, attempting to retroactively find C1 by comparing the

ratios of the injected delays and ACF-recovered delays in Figure 4.9 shows significant variation

among individual realizations in a recovered purported C1.

We can also compare how these correlation coefficients change as a function of S/N.

For each S/N value, we calculated the correlation coefficients for each estimator over the 1000

random draws. The results are shown in Figures 4.10 and 4.11. As with Figures 4.5 and

4.6, we see the cyclic spectrum estimator eventually converge whereas the ACF estimators have

already converged. The convergence in the ACF plots, like in Figure 4.6, are the result of already

having sufficient frequency resolution and a sufficient number of scintles over our S/N range,

as once the scintle structure in the dynamic spectrum has been resolved, further improvements

in S/N will not affect an ACF estimator’s ability to recover scattering delays. For the cyclic

spectrum estimator, the S/N where it plateaus corresponds well with what is seen in Figure 4.5.

Significantly, the cyclic spectrum correlation plateaus at a much higher value than the ACF
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Figure 4.10: Cyclic spectrum estimator correlation coefficients for random noise draws
for a τ of 2 µs for 300 values of S/N using a spin period of 2 ms and a sampling interval
of 100 ns.

estimators (around 1.0 compared to around 0.25−0.45). This behavior further indicates the

improvement the cyclic spectrum estimator provides over the ACF estimators. Additionally,

our 50 cyclic frequency estimator converges at a S/N around an order of magnitude earlier

than the single cyclic frequency estimator, further emphasizing the benefits of utilizing multiple

cyclic frequencies.

We also examined how much these estimators deviate from τcent as we vary the injected

scattering delay. To do this, we repeated the simulation described at the beginning of this

section for 45 scattering delays ranging from 0.1−2 µs spaced apart evenly in log space at a

S/N of 10. The delay range was chosen based on the breadth of delays we might expect to see

from observing many PTA-quality pulsars. We then compared |z|, the differences between the

estimators and τcent, over each delay in that range. The results are shown in Figure 4.12. While

at the lowest delays for this sampling interval the Gaussian estimator has greater accuracy than

the Lorentzian estimator, at higher delays both the Lorentzian and cyclic spectrum estimators
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are noticeably more accurate than the Gaussian estimator, which is shown to deviate from τcent

more significantly as the injected delay increases.

4.5 Conclusions and Future Developments

We simulated scattering delays from the ISM to test the effectiveness of three delay

estimators: fitting Lorentzian and Gaussian distributions to frequency ACFs calculated from

pulsar dynamic spectra to recover the scintillation bandwidth and the cyclic spectrum-derived

quantity τCS. We find that, at sufficient S/N, in terms of both precision and accuracy, the

cyclic spectrum estimator is superior to both ACF estimators, which are accurate over many

realizations, but not as reliable as the cyclic spectrum estimator on an epoch-to-epoch basis.

Importantly, for actual pulsar timing with additional sources of timing noise, ACF and CS esti-

mators are necessary to discriminate between ISM-based propagation delays and other sources

of delay. We believe the results described in this paper provide significant motivation for further

pursuing CS implementation in general, especially through the lens of deconvolution-based IRF

recovery.

As PTAs close in on sensitivities sufficient for detecting gravitational waves, understand-

ing and mitigating all non-gravitational wave delays will be critical for accurate gravitational

wave characterization. Many pulsars in the NANOGrav PTA are already known to have scatter-

ing delays of 10s of nanoseconds, which is a non-negligible fraction of the µs to sub-µs residuals

we see in many pulsars (Alam et al., 2020b). Many of these estimations, and indeed many

estimations of scattering delays in millisecond pulsars, have been performed by fitting Gaus-

sian functions to ACFs, indicating the true effects of scattering delays in PTAs may currently

be improperly estimated by a few percent, although additional efforts within NANOGrav are

currently in place to estimate scattering delays by fitting ν−4 delays to output TOAs. Addi-

tionally, these effects are not currently accounted for in NANOGrav’s timing pipeline, or the

pipelines of other PTAs such as the European Pulsar Timing Array (EPTA), Parkes Pulsar

Timing Array (PPTA), or, consequently, the global pulsar timing array effort, the International
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Figure 4.11: Lorentzian (top) and Gaussian (bottom) ACF estimator correlation
coefficients for random noise draws for a τ of 2 µs for 300 values of S/N using a spin
period of 2 ms and a sampling interval of 100 ns.
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Figure 4.12: Absolute differences, |z|, between the various estimators and τcent as a
function of the average injected scattering delay, τ . For each of the three curves, the
solid line indicates the mean value and the shaded region indicates the 1-σ error range.

Pulsar Timing Array (IPTA), furthering the need for more accurate techniques such as cyclic

spectroscopy to be both developed and implemented into future pulsar timing efforts. Efforts

are currently ongoing to implement a real-time cyclic spectroscopy backend into existing timing

pipelines with the goal of removing scattering effects before any further timing analysis has

taken place. This work is currently being done on pipelines operating at the Green Bank Tele-

scope, currently the primary observing site for NANOGrav, but may be implemented in the

future at other NANOGrav telescopes such as CHIME and VLA or next-generation telescopes

such as DSA-2000 should this endeavor prove successful.
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major facility funded by the National Science Foundation operated by Associated Universities,
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Chapter 5. A Cyclic Spectroscopy-Aided Scintillation

Study of Multi-Hour L-Band Observations of PSR

B1937+21

I. Intra-Epoch Frequency Evolution

5.1 Introduction

Pulsar scintillation is one of the most valuable tools we have for understanding the

small scale structure of the ionized interstellar medium (ISM), while also acting as a significant

source of noise in pulsar timing efforts. In many cases, gaining a better understanding of the

former can lead to better mitigation efforts of the latter. It is also crucial to understand the

frequency dependence of propagation through the ISM, as the effects seen in pulsar scintillation

evolve with these frequencies.

As a consequence of interactions between interactions between pulsar emission and free

electrons along the signal’s propagation path, which we approximate as occurring at an infinite

or finite thin screen around halfway between the pulsar and the observer, the emission will

experience multipath propagation and its image will undergo angular broadening, resulting in

interference between out-of-phase photons at our telescope and a broadening of the observed

pulsar signal (Lorimer & Kramer, 2004). The effects of this interference can be seen in pulsar

dynamic spectra, which track the intensity of the observed signal over frequency and time. The

width of bright patches in these spectra, known as scintles, provide insight into the rapidity of

these intensity fluctuations and therefore a means to quantify the level of scattering and the

In prep to be submitted to ApJ as J. E. Turner et al. 2023

141



corresponding arrival time delay a given pulse may experience. Additionally, if the broadened

pulse can be deconvolved into the intrinsic pulsar signal and the impulse response function

(IRF) of the ISM, the signal imparted by the ISM onto the pulse as a result of their interaction,

fitting this IRF to an exponential decay function provides another way to quantify the level of

scattering present in an observation. These delays, τd, are expected to scale as ν−4.4 under the

assumptions that the ISM can be accurately characterized by Kolmogorov turbulence and that

the subinertial part of the wavenumber spectrum dominates (Cordes & Rickett, 1998).

Additional information can be gained about the structure of the ISM along a given

line of sight (LOS) by examining the secondary spectrum of an observation, where interference

patterns in the dynamic spectrum can give rise to parabolic structures known scintillation arcs

(Stinebring et al., 2001c), whose curvature, in conjunction with the pulsar’s effective velocity,

Veff,⊥, and distance, can be used to determine the location of the corresponding scattering

screen along the LOS. Structures within these arcs can also be used to gain insight into the

structure of the scattering region (Hill et al., 2005). Under the assumption that pulsar scattering

occurs at a thin screen, the arc curvatures are expected to scale with frequency as ν−2 (Hill

et al., 2003b).

For many highly scattered pulsars, for which information about scattering effects are

the most pertinent for mitigation in pulsar timing efforts and whose LOS’s through the ISM are

often the most interesting, observations that use filterbanks and incoherent dedispersion lack

the filterbank channel resolution necessary to see scintillation structures within their dynamic

spectra, particularly at L-band where wider bandwidths are typically used, leaving observers

unable to effectively quantify the level of scattering present or resolve scintillation arcs. However,

there exist techniques that can take advantage of the periodic and amplitude-modulated nature

of the pulsar signal to drastically improve the resolution of baseband observations. Cyclic

spectroscopy, used for years within various engineering communities, was first introduced to

pulsar timing in Demorest (2011), where the technique made use of the phase information in the

voltage data and exploited the fact that the scintillation time spans many pulse periods, allowing

the impulse response of the multipath propagation to be estimated. The cyclic spectrum is
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defined as

SE(ν, αk) = ⟨H(ν + αk/2)H∗(ν − αk/2)⟩Sx(ν, αk), (5.1)

where H(ν) is the transfer function of the ISM, also known as the Fourier transform of the ISM

IRF, αk = k/P is the cyclic frequency at the kth harmonic for pulse period P , and Sx(ν, αk)

is the Fourier transform of the intrinsic pulse profile (Dolch et al., 2021), and be found by

taking the 2D Fourier transform of the periodic spectrum in a cyclic spectroscopy-processed

observation.

As a result of the additional information made available in the pulsar signal through this

technique, while maintaining a given number of pulse phase bins, one can acquire significantly

higher frequency resolution than accessible through the use of traditional filterbank channels,

allowing for the emergence of previously unresolved features in periodic and dynamic spectra

while maintaining high pulse phase resolution. This resolution improvement has already been

used to great effect in low-frequency millisecond pulsar (MSP) observations (Walker et al., 2013;

Archibald et al., 2014) and could hypothetically lead to PTAs where scintles and scintillation

arcs (assuming observing times where scintillation timescales are obtainable) are resolved in all

epochs. This would allow for scintillation arcs to be studied with preexisting high-cadence ob-

servations using many pulsars utilizing the wide bandwidths required for high timing sensitivity

without the need to alter the observing parameters crucial to PTA feasibility, and providing

many lines of sight through the ISM over which to examine arc evolution over frequency and

time.

Additionally, this scintle resolution would make it possible for scattering delays to be

estimated in all epochs, provided flux density is sufficient for visible scintles in dynamic spectra.

This would provide a compelling case for the inclusion of scattering delays in pulsar timing

models used by PTAs, as, while PTAs monitor these delays over time, many do not account for

them in timing models, resulting in a noise floor of tens to hundreds of nanoseconds at L-band

depending on the pulsar, and even higher at lower observing frequencies (Chapter, 2). There

are attempts within PTAs to indirectly account for the effects of scattering, such as fitting
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ν−4 delays to output TOAs, although this approach ignores that different scaling indices have

been observed across many lines of sight and that indicies within single lines of sight appear to

vary slightly from epoch to epoch, which could result in improper correction of these scattering

effects and thus introducing unnecessary noise into PTA data (Chapter, 2).

The ideal situation when performing frequency-dependent analyses of pulsar propaga-

tion through the ISM is to obtain all measurements at the various frequencies simultaneously

so that the same LOS is being sampled in throughout. Typically when frequency-dependent

analyses are performed, they are limited by the frequency resolution and bandwidth of the

observations, as well as the observing cadence. Some of these analyses used a large frequency

range, but only 2−4 measurements (Bhat et al., 2004), with these measurements sometimes

taken on different days (Hill et al., 2003b; Liu et al., 2022), which should not generally affect

results provided they were taken with in a pulsar’s refractive timescale and the effective ve-

locity remains similar over the course of the observations. Other methods make simultaneous

measurements across many frequencies, with some breaking up those observations into smaller

frequency slices for additional robustness (Krishnakumar et al. (2019); Chapter 3), although

all such studies have been performed at lower frequency ranges (Archibald et al., 2014; Bansal

et al., 2019). Studies in L-band have taken the approach of breaking up large bandwidth obser-

vations into smaller frequency slices as well, although this appears to have been limited to 200

MHz slices across 800 MHz bands (Levin et al., 2016; Chapter, 2).

In this chapter we used cyclic spectroscopy to acquire fine-frequency resolution across

a relatively small bandwidth, allowing for eight simultaneous measurements per epoch for

frequency-dependent analyses. In Section 5.2 we briefly discuss the data used for this work.

In Section 5.3 we discuss the data processing and analyses performed on these data. Section 5.4

discusses the results of these analyses and their comparison to theory and previous literature.

Finally, in Section 5.5 we discuss our conclusions and the potential for future work that can

take full advantage of the cyclic spectroscopy techniques discussed in this work.
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5.2 Data

Our observations (P2627 PI Dolch) took place on MJDs (and fractional years) 56183

(2012.70), 56198 (2012.74), and 56206 (2013.01). They spanned approximately 2.5 hours each

and were taken in baseband mode with the FPGA-based PUPPI spectrometer at the Arecibo

Observatory using 200 MHz of bandwidth with 6.25 MHz wide filterbank channels centered

at 1373.125 MHz using standard NANOGrav observing methods (Arzoumanian et al., 2015a).

Our raw baseband data were then processed via cyclic spectroscopy using dspsr1 (van Straten

& Bailes, 2011) with 1024 pulse phase bins and 1024 cyclic channels per filterbank channel,

for a final channel resolution of around 6.1 kHz. Originally the data were taken in 170 second

subintegrations, although we later resampled into 10 and 30 second subintegrations for our

analyses using the “-L” flag in dspsr. An example dynamic spectrum processed traditionally

from this baseband data compared with the same spectrum processed with cyclic spectroscopy

is shown in Figure 5.1.

5.3 Analyses

To examine the frequency dependence of the scintillations we divided the total band

into eight 25 MHz wide subbands, which are wide enough to contain a large number of narrow

scintles. This frequency slice size was chosen to allow for a high degree of robustness in our

analyses while limiting the effects of both the finite scintle effect and the filterbank gaps. In all

observations, each frequency slice had its two hands of polarization summed and had its dynamic

spectrum recovered by determining the intensity, S, of the pulsar signal at each observing

frequency, ν, and time, t, using

S(ν, t) =
Pon(ν, t) − Poff(ν, t)

Pbandpass(ν, t)
, (5.2)

1http://dspsr.sourceforge.net/

145



Figure 5.1: A 100 MHz slice of the dynamic spectrum on MJD 56198 showing pro-
cessed data using conventional methods (left) and using cyclic spectroscopy (right),
both using 1024 pulse phase bins. The resolution improvement and resulting scintilla-
tion structure that emerges as a result of this processing method is quite remarkable.

where Pbandpass is the total power of the observation and Pon and Poff are the power in all on-

and off-pulse components, respectively, at each frequency and time. The secondary spectrum

for each observation was then acquired by performing a two-dimensional Fourier transform of

the dynamic spectrum.

At each frequency slice, to measure the curvature of each arm in a given arc, we followed

the approach described in Stinebring et al. (2022) whereby we divided each secondary spectrum

along the center of its fringe frequency axis and took slices up the delay axis until we reached

the approximate end of a given arm. After we found the maximum in each delay slice, we fit

the resulting trend using fν = ηf2
t , where fν is the differential time delay (Fourier conjugate
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variable to observing frequency), η is the arc curvature, and ft is the fringe frequency (Fourier

conjugate variable observing time).

To determine our scintillation bandwidth for a given frequency slice, we first acquired

the corresponding dynamic spectrum’s 2D autocorrelation function (ACF), from which we re-

trieved its 1D frequency and time ACFs. We then fit the frequency ACFs with a Lorentzian

and measured the scintillation bandwidth, ∆νd, by finding the half width at half maximum of

the frequency ACF fit.

The corresponding scattering delays τd, were then found via

2π∆νdτd = C1, (5.3)

where the dimensionless value C1 can range between 0.6 − 1.5 depending on the geometry of

the medium and spectrum of the electron density fluctuations therein (Cordes & Rickett, 1998).

In this work we chose C1 = 1, as is common in many scintillation studies (Levin et al., 2016;

Chapter, 2; Liu et al., 2022). As with all pulsar scintillation studies, our precision was limited

by the number of scintles visible in a given observation, and as such our uncertainties was

dominated by this finite scintle effect, which is given by

ϵ ≈ τdN
−1/2
scint

≈ τd[(1 + ηtT/∆td)(1 + ηνB/∆νd)]−1/2,

(5.4)

with Nscint being the number of scintles observed over the course of the observation, T and

B being the total integration time and total bandwidth, respectively, and ηt and ην being

filling factors that can range from 0.1 to 0.3 depending on how one defines the characteristic

timescale and scintillation bandwidth, which for this chapter are both set to 0.2 (Cordes, 1986a).

An example dynamic spectrum, along with its 2D ACF and 1D ACF fits is shown in Figure

5.2. Also of note in our observations, and visible in Figure 5.2, is the strong slant in the 2D

ACF, indicating a non-zero scintillation drift rate, dν/dt, indicative of strong refraction in our

observations.
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Figure 5.2: (Top) A dynamic spectrum from MJD 56198 taken at 1335.625 MHz. (Sec-
ond from top) The corresponding 2D autocorrelation function. (Second from bottom)
The 1D frequency slice (blue) of the 2D autocorrelation function with its corresponding
Lorentzian fit (green). (Bottom) The 1D time slice of the 2D autocorrelation function
(blue) with its corresponding Lorentzian fit (green). Note the strong slant in the 2D
ACF, indicating strong refraction and a non-zero scintillation drift rate (Cordes, 1986a).
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Following Hill et al. (2003b), to acquire our scintillation arc scaling indices, which we

refer to as α, we performed a weighted linear least-squares fit of the form

log10 η = α log10 ν + β, (5.5)

where ν is the observing frequency, using the measured curvatures of a given arm across all

frequency slices within a given MJD.

In an analogous method to Equation 5.5, our scattering delay scaling indices ξ at each

epoch were determined by performing a weighted linear least-squares fit of the form

log10 τd = ξ log10 ν + b (5.6)

across all delay measurements from a given MJD.

5.4 Results & Discussion

5.4.1 Scintillation Bandwidth Measurements & Scaling

Although scattering delays are not currently accounted for explicitly in PTA timing

models, it has been shown that many pulsars can introduce delays on the order of tens to hun-

dreds of nanoseconds (Levin et al., 2016; Chapter, 2; Liu et al., 2022). With the introduction of

wideband timing into PTA efforts (Alam et al., 2020c), we can use larger observing bandwidths

to improve precision of timing model parameters. However, wider band widths also means a

wider range of frequencies over which effects of the ISM can vary in influence. In the North

American Nanohertz Observatory for Gravitational Waves (NANOGrav) PTA collaboration,

currently, for the most dominant source of delay from the ISM, dispersion measure (DM), wide-

band measurements of pulse time of arrival (TOA) assume a cold-plasma dispersion law and

use an assumed ν−2 dependence to model the DM at a particular epoch. If a similar approach

were to be used to account for scattering delays at a given epoch, we might assume the medium
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exhibits Kolmogorov turbulence and use a ν−4.4 dependence for scattering delays across the

band. However, it has been shown that many LOS frequently deviate from this dependence and

have scaling indices that fluctuate across epochs. As such, this approach could result in TOA

misestimations of tens to hundreds of nanoseconds depending on the pulsar. For this reason,

it becomes crucial to understand how scattering delay vary across these wide observing bands

when attempting to correct for scattering effects.

Thanks to our ability to fit eight simultaneous measurements across our observing band,

our scattering delay scaling analyses are possibly to most robust scaling index measurement

performed at L-band. The results of this effort are shown in Table 5.1, with an example fit from

MJD 56206 shown in Figure 5.3.

Table 5.1: Fitted Pulsar Scattering Delay Scaling Indices

MJD Index

56183 −2.40 ± 0.67

56198 −3.18 ± 1.50

56206 −2.84 ± 0.67

Table 5.1: Fitted scattering delay scaling indices to the eight frequency ACFs across
the observing band. Errors are uncertainties from parameter fits. Our measurements
are all consistent with a shallower power law than that expected of a Kolmogorov
medium, agreeing with previous measurements in the literature.

Our scaling indices agree with those previously been reported in the literature, with

sources generally reporting indices between 3−3.6 within error both on indices averaged over

many epochs as well as for individual epochs (Cordes et al., 1990; Ramachandran et al., 2006;

Levin et al., 2016; Chapter, 2; Liu et al., 2022), although Levin et al. (2016) reported indices

on individual days as shallow as 1 and as steep as 5.

While we have established that the approximation of scattering occurring at a thin

screen along the LOS to this pulsar is proper, it is possible that the treatment of this screen
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Figure 5.3: Example fit for scattering delay scaling index on MJD 56206. Our fits
agree well with the scaling indices quoted in the literature.

as infinite is not appropriate, as it has been shown that shallower scaling indices such as the

ones seen for this pulsar are more characteristic of finite thin screens (Rickett et al., 2009). It

has also been observed that higher DM pulsars in general tend to exhibit shallower scaling laws

(Löhmer et al., 2001), although this may also be a consequence of a truncated scattering region.

5.4.2 Scintillation Arcs

With our high frequency resolution measurements, we have the ability to analyze the

intra-epoch evolution of scintillation arcs across a wide range of frequencies with significant

depth, as we were able to resolve a scintillation arc in each of our 25 MHz slices across 200

MHz of bandwidth in all epochs. This represents a substantial improvement in arc sensitivity

and indicates the use of cyclic spectroscopy in future studies of MSPs could lead to important

developments in our understanding of intra-epoch arc evolution, particularly when observed

over the large bandwidths used in PTAs. Some example scintillation arcs with overlaid fits can

be seen in Figure 5.4.
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(a) Secondary spectrum on MJD 56183 at
1310.625 MHz, with the fits to both arms in the

scintillation arc shown in red.

(b) Secondary spectrum on MJD 56198 at 1310.625
MHz, with the fits to both arms in the scintillation

arc shown in orange.

Figure 5.4: Example scintillation arcs with overlaid fits. The blob-like structures
in the arcs, known as arclets, indicate AU-scale inhomogeneities within the scattering
screen.

5.4.2.1 Arc Features & Evolution Over Frequency

Scintillation arcs for this pulsar have been previously shown once in the literature at

427 MHz also utilizing cyclic spectroscopy (Walker et al., 2013) and twice at L-band using

conventional filterbank methods (Main, 2020; Main et al., 2023). While the arc power seen

in Main (2020) is roughly symmetric, the arcs in both Walker et al. (2013) and this work all

display noticeable asymmetry, believed to be an indicator of refraction (Cordes et al., 2006b).

This asymmetry can be quantified by means of an asymmetry index, A, describing the relative

power between the left and right arms by comparing the average power along each arm via

A(fν) =
PR(fν) − PL(fν)

PR(fν) + PL(fν)
, (5.7)
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with a larger index magnitude indicating greater asymmetry. As discussed below, we noticed

that arc evolution over frequency was more characterized by various features changing in log

power than by growing or shrinking on the delay axis. As a result, our asymmetry analysis was

limited to a fairly constant fν limit across all frequencies, with a maximum fν of 20 µs up to

1410 MHz and 10 µs for 1435 MHz and above.

Given that scintillation drift rates and arc asymmetry are related to refraction, and

drift rates exhibit frequency dependent behavior (∝ ν3) as a result of this relation, one might

expect arc asymmetry to also be strongly correlating with observing frequency, linearly or

otherwise. This would require multiple arc measurements simultaneously across a range of fre-

quencies and sign reversals in scintillation drifts can occur within hour to day timescales in

some cases (Bhat et al., 1999a), although it has been demonstrated through simulations that

the bias of the asymmetry may reverse over periods longer than the refractive timescale (Coles

et al., 2010). Fortunately for us, there do not appear to be any indications of drift rate sign

reversal during individual observations, signaling we are well within a given refractive timescale,

making this test feasible. Indeed, an examination of our asymmetry index evolution over ob-

serving frequency yields highly linear trends and strong correlations (correlation coefficients

with magnitudes between 0.89−0.97) in all epochs, with the magnitude of the asymmetry index

increasing with increasing frequency, confirming this relation. This successfully demonstrates

another avenue through which we can quantify the effects of refraction over observing frequency

in cyclic spectroscopy-aided PTA measurements. An example asymmetry index evolution over

frequency can be seen in Figure 5.5.

Arclets, which are thought to be the result of AU-scale inhomogeneities within the

scattering screen (Hill et al., 2005), can be seen in our secondary spectra, and indeed can be

seen in all of our scintillation arcs on MJDs 56183 and 56198 in both arms and in the left arm

on MJD 56206. These were also seen in the arcs shown in Walker et al. (2013), although only

visible in the right arm, which perhaps relatedly is the brighter arc in those observations, but

not in Main (2020) or in Main et al. (2023) (they mention their arcs are largely featureless,

although they do report some discrete structures in a single epoch), making our observations
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Figure 5.5: Asymmetry index vs observing frequency on MJD 56206 with a linear
correlation coefficient given by ρ. There is a strong relation between the observed
asymmetry in the scintillation arcs and the observing frequency, following the behavior
seen in other proxies for refraction such as the scintillation drift rate.

the first reported detections of arclets in this pulsar at L-band. Per (Hill et al., 2003b), we

expect arcs at lower frequencies to be wider and have more diffuse features. While difficult to

discern throughout the evolution in our own arcs, the secondary spectrum seen in Walker et al.

(2013) displays arcs agreeing with this expectation.

When examining how the arc structure evolves across observing frequency within our

own observations, a consistent behavior across epochs is arcs gradually dimming over frequency,

with arclets staying stationary and dimming inward from the cusps to the centers of the arclets.

The first structures to fade away are the dim portions of the arc higher up the delay axis and

the final structures to remain are the apexes of the arclets, which were in fact the brightest

structures in the arc aside from the concentrated power at the base of the fringe frequency axis,

which also remains visible. It is well established that pulsar flux decreases with frequency over

the ranges we observe (Alam et al., 2020a), and we can quantitatively see this in our dynamic

spectra, as the mean and median flux of our 25 MHz frequency slices of these spectra clearly
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get progressively smaller at higher frequencies. As a result, it may be that we simply are unable

to see some dimmer features in the higher frequency arcs as a consequence.

5.4.2.2 Curvature Measurements & Scaling

The results of our scintillation arc scaling analysis are shown in Table 5.2, with example

fits from MJD 56183 shown in Figure 5.6. We can see that the majority of our scaling indices

agree with the η ∝ ν−2 theory laid out in (Hill et al., 2003b), confirming that these arcs scale

with frequency following the same power law as the angular deflection of the scattered rays.

Other arc curvature analyses of MSPs have been performed (Bhat et al., 2016; Reardon et al.,

2020c; Main et al., 2020; Mall et al., 2022), but only one (Bhat et al. 2016) has attempted to

fit for frequency-dependent arc curvature evolution in an MSP. Unlike our fits, for which all

eight measurements were taken simultaneously within the same observation, their fits used two

measurements which were taken two weeks apart. They found a scaling index (−2.35 ± 0.07)

steeper than predicted by Hill et al. (2003b), which they attribute to a change in Veff,⊥ between

their two epochs, an issue that we do not need to be concerned with for our observations, as

all of our measurements for a given scaling fit are taken on the same day, and therefore have

the same Veff,⊥. As such, our results mark the first agreement with the predicted arc curvature

scaling relation for an MSP.

Table 5.2: Fitted Pulsar Scintillation Arc Curvature Scaling Indices

MJD Scaling Index Left Arc Scaling Index Right Arc

56183 −2.05 ± 0.68 −1.84 ± 0.35

56198 −1.76 ± 0.16 −1.83 ± 0.36

56206 −2.02 ± 0.59 −1.86 ± 0.39
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Table 5.2: Fitted arc curvature scaling indices for both left and right arcs. We can
see that the majority of our fits agree with arc curvatures scaling in the same way as
angular deflection of the scattered rays Hill et al. (2003b). Different power laws and
curvatures of the left and right arms on a given day can largely be attributed to high
levels of refraction occurring during these observations.

5.5 Conclusions & Future Work

We have used cyclic spectroscopy to improve the frequency resolution of L-band base-

band observations of PSR B1937+21 and performed among the most robust pulsar frequency

scaling analyses performed at L-band, especially for an MSP. These results have yielded the

first arc curvature scaling fits for an MSP that agree with theory, as well as scattering delay

scaling indices that match previous observations and the first detection of arclets in this pulsar

at L-band.

The thorough analysis in this work made possible through cyclic spectroscopy demon-

strates the strong potential for larger scale efforts using this technique and adds to a growing

case towards what we hope is its eventual adoption by PTAs as the primary method for correct-

ing for scattering delays through IRF recovery. Many ISM studies on highly scattered pulsars

have been limited to narrow bandwidths at low observing frequencies using traditional filter-

banks, but future works may be able to incorporate valuable higher frequency data as well.

Additionally, the ability to use cyclic spectroscopy to recover a pulsar’s IRF through deconvolu-

tion (Walker et al., 2013) or other methods (Chapter, 4) adds another element to these studies,

especially given that the IRF may present a more accurate picture of the scattering present in

a given observation than the traditional ACF fitting approach (Chapter, 4).

Efforts are currently underway at the Green Bank Observatory to implement a real-

time or near real-time cyclic spectroscopy backend, with development nearing completion and

testing on real data to begin shortly. This will provide exciting opportunities for new science to

all pulsar astronomers using this facility, as well as aid in the timing efforts of the NANOGrav
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Figure 5.6: Scintillation arc curvature scaling indices in both arms on MJD 56183.
The fits agree quite well with the frequency dependence of angular deflections as detailed
in Hill et al. (2003b). The offset between the two fits can be largely attributed to the
strong refraction visible in the scintillation arcs.

PTA collaboration, for whom the 100 meter telescope at the observatory plays a significant role

in their efforts to detect low-frequency gravitational waves.
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Chapter 6. Conclusions

We have examined various properties of interstellar scattering of radio pulsar emis-

sion. These studies have allowed for improved understanding of the structure of the interstellar

medium across many lines of sight in our Galaxy as well as demonstrated the promise of newer

data processing methods for future observations. We have shown that nontrivial amounts of

delay from interstellar scattering exist within the NANOGrav 12.5-year data set, the mitigation

of which will be crucial for improvement in sensitivity to gravitational wave sources. Simulta-

neous dual-frequency measurements of bright canonical pulsars revealed rich dynamic spectra

and the detections of scintillation arcs, leading to valuable analyses of scintillation evolution

across a wide range of observing frequencies. Simulations demonstrated the effectiveness of

cyclic spectroscopy at quantifying the degree of interstellar scattering present in data, particu-

larly when compared to conventional autocorrelation function methods. We also applied cyclic

spectroscopy to L-band observations of the millisecond pulsar B1937+21 in the first such study

using this technique in this frequency range, demonstrating strong promise for the widespread

adoption of cyclic spectroscopy by pulsar timing arrays in the near future, particularly with the

nearly-completed real-time cyclic spectroscopy observing mode at the Green Bank Observatory.

6.1 Assessing the Effects of Scattering Delays Within NANOGrav Data

Understanding and effectively mitigating all sources of non-gravitational wave timing

noise in pulsar timing data is crucial to improving the sensitivity of pulsar timing arrays for

nanohertz frequency gravitational waves. We used dynamic spectra from the NANOGrav 12.5-

year data release to measure scintillation bandwidths and (in some cases) timescales, in many

cases across multiple observing bands, from 28 pulsars within this data set.
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We determined that in most cases these pulsars exhibit tens to hundreds of nanoseconds

of scattering delay that are unaccounted for in current pulsar timing models, with the epoch to

epoch variations of the delays for a given pulsar appearing to be directly tied to the dispersion

measure of the pulsar. The delays we measured also agreed well with predictions of Galactic

electron density models and predictions for how scattering delay should scale with dispersion

measure (Bhat et al., 2004; Krishnakumar et al., 2015; Yao et al., 2017; Cordes et al., 2016).

We were also able to measure delay scaling indices and found all of them to exhibit shallower

behavior than one would expect from a medium displaying Kolmogorov turbulence, with pulsars

for which many indices were measured exhibiting minimal changes from epoch to epoch.

Significant number of pulsars had scattering delays measured as upper limits due to

unresolved scintles in our dynamic spectra, necessitating the need for finer frequency channel-

ization in our observations. Newer techniques like cyclic spectroscopy (Chapter 4, Chapter 5)

will allow for this finer resolution while also allowing for the determination of scattering delays

via deconvolution of the intrinsic pulse from the ISM’s impulse response function.

6.2 Studying Scintillation Arcs Using Simultaneous Dual-Frequency

Observations

Scintillation arcs provide a valuable probe of the structure and behavior of the ISM.

Examining this behavior over a wide range of frequencies allows for a more thorough probe of

the ISM over a wider variety of length scales. We used the Upgraded Giant Metrewave Radio

Telescope (uGMRT) to perform simultaneous dual-frequency observations of bright pulsars

across 450 MHz of bandwidth at low frequencies. This allowed for examinations of frequency-

dependent scintillation properties within the same epoch, whereas similar studies may have

multiple days between observations at different frequency bands.

We performed robust scaling law analysis of arc curvature, scintillation bandwidth,

and scintillation timescales, which we find to agree with earlier measurements that were taken

over multiple epochs and/or contained fewer measurements. We also were able to compare
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intra-epoch values of curvature and pseudo-curvature across a wide variety of frequencies, and

found general agreement in all epochs, indicating assumptions of one-dimensional, thin screen

scattering are valid in these observations. Finally, we found a strong correlation between arc

asymmetry and curvature in PSR J1136+1551, which attribute to a bias in the Hough transform

method used to determine arc curvatures. Future work on this data, along with upcoming high-

cadence measurements of PSR J1136+1551, will perform even more in-depth analsis on this

rich data set.

6.3 Determining the Effectiveness of Cyclic Spectroscopy at Recover-

ing Scattering Delays in Pulsar Timing Data

Scattering delays are a sizeable but currently uncorrected source of timing noise in

pulsar timing data. One highly promising approach for mitigating this noise is with the use of

cyclic spectroscopy, which can deconvolve the intrinsic pulse from the impulse response function

of the ISM. This would allow for a more direct measure of scattering present in the data, as it

uses both the amplitude and phase of the observed signal rather than just the amplitude as is

measured in the dynamic spectrum.

We simulated many scattered pulses over a wide range of S/N and compared the preci-

sion and accuracy of delays measured from the impulse response function recovered using cyclic

spectroscopy and from the scintillation bandwidth measured autocorrelation functions (ACF)

of dynamic spectra. While the ACF approach had greater accuracy at low S/N, once the cyclic

spectroscopy approach converged at moderate S/N, the latter had noticeably greater precision

and accuracy on average compare with the ACF-based estimators, especially as more cyclic

frequencies were used. We also found much higher correlation between cyclic spectroscopy-

estimated delays and injected delays for individual epochs, which is crucial for effective mit-

igation in pulsar timing efforts. These results demonstrate strong promise for the upcoming

real-time cyclic spectroscopy pipeline at the Green Bank Observatory, which aims to perform

cyclic spectroscopy-based deconvolution of the signal as observations are taking place.
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6.4 Using Cyclic Spectroscopy to Reveal Rich Scintillation Information

In L-Band Observations of a Millisecond Pulsar

Cyclic spectroscopy is poised to provide massive benefits to pulsar timing, one of par-

ticular significance being significant improvements in frequency resolution. We used cyclic

spectroscopy to improve the frequency resolution of L-band observations of the millisecond

pulsar PSR B1937+21 by around a factor of 1000, resulting in rich structures being revealed

in dynamic and secondary spectra across 200 MHz of bandwidth. The spectra were detailed

enough that our observations were able to be broken up into 50 MHz subbands for robust

frequency-dependent analyses of arc curvature, scintillation bandwidth and timescale, and arc

asymmetry.

Well-resolved arclets were also visible across all subband secondary spectra, allowing

for examination of arc structure evolution over frequency. We found the various features within

the spectra to get gradually dimmer with increasing frequency, which matches expectations

based on flux density spectral index. Clear asymmetries in the arcs across all epochs were also

detected. The striking detail made possible through cyclic spectroscopy demonstrates both the

power and utility of this processing technique and this paper presents a strong case for the

benefits of its widespread adoption within the pulsar timing community.

6.5 Looking to the Future

Having finally seen strong evidence of a gravitational wave background, pulsar timing

arrays are poised to pave the way for groundbreaking physics discoveries in the near future. To

accomplish this goal, further improvements in both precision and accuracy of our detectors are

paramount. For this reason, careful mitigation of all non-gravitational wave sources of noise,

such as effects from interstellar scattering, will undoubtedly help to unveil this new science.

Cyclic spectroscopy’s ability to deconvolve IRFs, which has been demonstrated to be

both more precise and accurate than ACF approaches to recovering scattering delays, (Chapter
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4), may prove crucial to this effort. We are currently in the final stages of implementation

of a real-time cyclic spectroscopy backend at the Green Bank Observatory, which will allow

for cyclic spectroscopy-based processing of pulsar timing data either in parallel with or shortly

following PTA observations, allowing for speedy and accurate removal/accounting of scattering

delays present in data. This backend will also allow for improvements in frequency resolution

previously infeasible with PTA observing setups, allowing for significant, high resolution studies

of the ISM across tens or hundreds of LOS, providing unparalleled opportunities to study the

AU-to-pc-scale structure of our Galaxy.
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Appendix A: Derivation of Fractional Error and

Uncertainty As Related To Observable Quantities

The following work uses Equations A9 and A10 of Appendix A of Dolch et al. (2021).

The first part of A9 defines cyclic merit as

mcyc =
b

δb
, (A.1)

where b = 2πτCS/P and δb = 2πδτCS/P , while equation A10 defines it as

mcyc =
2πτCSWe

P 2
(S/N)

√∑
k

k2ak, (A.2)

where We is the effective pulse width and ak = Ak/A0, the ratio of the kth coefficient and

the 0th coefficient of the intensity pulse profile’s Fourier transform. For a sharp pulse, Fourier

coefficients should stay substantial out to some high number kmax before falling off rapidly, with

the number of cyclic frequencies we go up to being roughly the inverse of the duty cycle. This

means that kmax should be roughly P/We. If we assume that ak stays constant out to kmax,

the radical becomes

√√√√kmax∑
k=1

k2 =

√
kmax(kmax + 1)(2kmax + 1)

6
≈
√
k3max ≈

(
P

We

)3/2

. (A.3)

From here we can say that

b

δb
≈ 2πτCSWe

P 2
(S/N)

(
P

We

)3/2

=
2πτCS(S/N)√

PWe

. (A.4)
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We can then express this inverse fractional error as

b

δb
=

2πτCS

Pδb
=

2πτCS(S/N)√
PWe

(A.5)

=⇒ δb =

√
We

P

1

(S/N)
, (A.6)

meaning the uncertainty in τCS can be expressed as

δτCS =

√
PWe

2π(S/N)
. (A.7)
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