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ABSTRACT

Probabilistic Short Term Solar Driver Forecasting with Neural Network

Ensembles

Joshua Daniell

Commonly utilized space weather indices and proxies drive predictive models for thermosphere den-
sity, directly impacting objects in low-Earth orbit (LEO) by influencing atmospheric drag forces. A
set of solar proxies and indices (drivers), F10.7, S10.7, M10.7, and Y10.7, are created from a mixture of
ground based radio observations and satellite instrument data. These solar drivers represent heating
in various levels of the thermosphere and are used as inputs by the JB2008 empirical thermosphere
density model. The United States Air Force (USAF) operational High Accuracy Satellite Drag
Model (HASDM) relies on JB2008, and forecasts of solar drivers made by a linear algorithm, to
produce forecasts of density. Density forecasts are useful to the space traffic management commu-
nity and can be used to determine orbital state and probability of collision for space objects. In
this thesis, we aim to provide improved and probabilistic forecasting models for these solar drivers,
with a focus on providing first time probabilistic models for S10.7, M10.7, and Y10.7. We introduce
auto-regressive methods to forecast solar drivers using neural network ensembles with multi-layer
perceptron (MLP) and long-short term memory (LSTM) models in order to improve on the current
operational forecasting methods. We investigate input data manipulation methods such as back-
wards averaging, varied lookback, and PCA rotation for multivariate prediction. We also investigate
the differences associated with multi-step and dynamic prediction methods. A novel method for
splitting data, referred to as striped sampling, is introduced to produce statistically consistent ma-
chine learning data sets. We also investigate the effects of loss function on forecasting performance
and uncertainty estimates, as well as investigate novel ensemble weighting methods. We show the
best models for univariate forecasting are ensemble approaches using multi step or a combination of
multi step and dynamic predictions. Nearly all univariate approaches offer an improvement, with
best models improving between 48 and 59% on relative mean squared error (MSE) with respect
to persistence, which is used as the baseline model in this work. We show also that a stacked
neural network ensemble approach significantly outperforms the operational linear method. When
using MV-MLE (multivariate multi-lookback ensemble), we see improvements in performance error
metrics over the operational method on all drivers. The multivariate approach also yields an im-
provement of root mean squared error (RMSE) for F10.7, S10.7, M10.7, and Y10.7 of 17.7%, 12.3%,
13.8%, 13.7% respectively, over the current operational method. We additionally provide the first
probabilistic forecasting models for S10.7, M10.7, and Y10.7. Ensemble approaches are leveraged to
provide a distribution of predicted values, allowing an investigation into robustness and reliabil-
ity (R&R) of uncertainty estimates, using the calibration error score (CES) metric and calibration
curves. Univariate models provided similar uncertainty estimates as other works, while improving
on performance metrics. We also produce probabilistic forecasts using MV-MLE, which are well
calibrated for all drivers, providing an average CES of 5.63%.



I dedicate this work to the late Dr. Paul Daniell; he always believed in me. . .

iii



Acknowledgments

I want to start by thanking my advisor, Piyush Mehta, for welcoming me to do research with open

arms. Starting as a GTA for your orbital mechanics course, through our in-depth weekly research

presentations, you taught me invaluable skills for both presenting and listening. You pushed me

out of my comfort zone consistently and taught me what it means to be a hard worker. You gave

me the opportunity to travel and present at conferences, publish a paper for the first time, and

do state-of-the-art research in an interesting field. I thank you for the tools you have given me to

advance my career and the opportunity to spend a few more years in my home state.

Thank you to my committee members: Dr. Jason Gross and Dr. Hang Woon Lee. I appreciate

the time you have given to review this thesis, provide feedback, and responding to my many questions.

I also want to thank Dr. Andrew Rhodes, who always provided an ear when I felt the need to talk

about my future, or share something new I was working on. I would also like to thank the other

members of Dr. Mehta’s research group, both past and present. They were always available to

discuss problems and solutions, and provided great company; I will consider you all life-long friends.

I would also like to thank Dr. Tzu-Wei Fang, Rob Steenburgh, and John Mayers for answering my

countless questions and helping me to make comparisons to SWPC results.

I also want to thank several members of the Statler College community. Mike Brewster, thank

you for giving me a guidance when I was a FEP tutor. It helped me learn so much about dealing

with others and myself, and helped me meet a lot of the WVU community. Thank you to the

dynamic duo, LaDawn Weaver and Diane Stewart, who always made me feel welcome. You both

always listened when I needed to vent, supplied me with plenty of snacks, and made me laugh when

I had rough days. You all also helped me navigate a particularly difficult time in my life.

Lastly, I want to thank my wife, Nicole. I could not have done this without you. You gave me

constant encouragement, love, and companionship, sticking by my side while I pursued this degree.

You always gave me the break I needed from my studies, you made me laugh and kept my head on

straight. I will forever cherish the time that we got to spend together in Morgantown.

iv



The results presented in this document rely partially on data collected by the Solar Radio

Monitoring Program (https://www.spaceweather.gc.ca/forecast-prevision/solar-solaire/

solarflux/sx-en.php) operated by the National Research Council and Natural Resources Canada.

These data are available at https://www.spaceweather.gc.ca/forecast-prevision/solar-solaire/

solarflux/sx-5-en.php. These data were accessed via the LASP Interactive Solar Irradiance Dat-

acenter (LISIRD).

The JB2008 solar and geomagnetic indices are provided for scientific use courtesy of Space

Environment Technologies and are available at https://spacewx.com/jb2008/. Figures were made

with Matplotlib version 3.5.2, available under the Matplotlib license at https://matplotlib.org/.

NOAA SWPC’s Weekly publication archive is stored on FTP servers and can be accessed readily.

Processing archived data is non-trivial due to the nature of the PDF publication. Processing of the

archived PDFs was accomplished with assistance from NOAA personnel. Current NOAA SWPC

products are available at https://www.swpc.noaa.gov/products-and-data and archived products

(such as the Weekly publication) can be accessed via FTP server at ftp://ftp.swpc.noaa.gov/

pub/

v

https://www.spaceweather.gc.ca/forecast-prevision/solar-solaire/solarflux/sx-en.php
https://www.spaceweather.gc.ca/forecast-prevision/solar-solaire/solarflux/sx-en.php
https://www.spaceweather.gc.ca/forecast-prevision/solar-solaire/solarflux/sx-5-en.php
https://www.spaceweather.gc.ca/forecast-prevision/solar-solaire/solarflux/sx-5-en.php
https://spacewx.com/jb2008/
https://matplotlib.org/
https://www.swpc.noaa.gov/products-and-data
ftp://ftp.swpc.noaa.gov/pub/
ftp://ftp.swpc.noaa.gov/pub/


Contents

Abstract ii

Acknowledgments iv

List of Figures ix

List of Tables xiii

1 Motivation and Contributions 1

1.1 Space Domain in LEO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Challenge of Atmospheric Drag . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Probabilistic Forecasting of Drivers . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Striped Sampling Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Input Data Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7

2.1 Space Weather and EUV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Understanding the Thermosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Historical Thermosphere Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 JB2008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 High Accuracy Satellite Drag Model . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.3 Recent Advancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Solar Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 History and Prediction of F10.7 . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Currently Used Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

vi



2.4.3 Linear Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.4 Non-Linear Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.5 The S10.7, M10.7, and Y10.7 drivers . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Machine Learning 20

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Network Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.2 Training Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Data Preparation for Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Data Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.2 Validation Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Neural Network Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.2 Model Combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Methodology 40

4.1 Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Multi-Step and Dynamic Predictions . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Data Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Backwards Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.2 PCA Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Neural Network Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.1 Hyperparameters and Best Model Selection . . . . . . . . . . . . . . . . . . . 48

4.4.2 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Neural Network Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5.1 Univariate Approach (UV-MLE) . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5.2 Multivariate Approach (MV-MLE) . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6.1 Uncertainty Quantification (UQ) . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Results 59

5.1 Univariate Forecasting of F10.7 with UV-MLE . . . . . . . . . . . . . . . . . . . . . . 59

vii



5.1.1 Input Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.2 Diversity Through Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.3 Results of Different Univariate Models . . . . . . . . . . . . . . . . . . . . . . 62

5.1.4 Comparison with NOAA SWPC (2015-2019) . . . . . . . . . . . . . . . . . . 64

5.1.5 Solar Activity Level and Error Statistics . . . . . . . . . . . . . . . . . . . . . 65

5.1.6 Quantified Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Multivariate Forecasting (MV-MLE) . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.1 Ensemble Member Combination Methods . . . . . . . . . . . . . . . . . . . . 69

5.2.2 Comparison with Operational Models . . . . . . . . . . . . . . . . . . . . . . 71

5.2.3 Quantified Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Summary and Conclusions 76

6.1 Future Work and Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

viii



List of Figures

1.1 Since the space race in the 1950’s and 1960’s; the amount of debris has ballooned;

steep spikes can be attributed to events such as the destruction of Fengyun-1C in

2007 according to the NASA Orbital Debris Program Office (ODPO)’s LEGEND model 2

1.2 Accurate driver forecasting and uncertainty estimates are the first step in an overall

framework which can be used to help STM efforts. . . . . . . . . . . . . . . . . . . . 4

2.1 On average, the Sun follows an 11-year cycle, but it doesn’t consistently reach the

same level of solar maximum, and the duration it takes to reach that maximum point

can vary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Top: The modeled density ratio between HASDM, a machine learning approach, and

JB2008; indicate how much density can vary depending on level of solar activity! The

three models provide significantly different modeled density. Bottom: F10.7 and ap

represent the solar and geomagnetic activity levels for a given date. Licata et al. (2022) 9

2.3 Top Left: Secondary DRAO telescope provides solar flux data for F10.7. Top Right:

The SOHO spacecraft carries the SEM instrument which is used to produce S10.7.

Bottom Left: The NOAA-18 spacecraft carries the SBUV instrument, which pro-

duces MG II cwr data that is transformed into M10.7. Bottom Right: The SORCE

spacecraft provides X-ray observations and Lyman-α measurements which are used

to create Y10.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 The solar drivers (starred) are inputs used in the framework to perform orbit propa-

gation. JB2008 uses these drivers to produce a global density grid; whose nowcast is

then corrected using dynamic calibration of the Atmosphere (DCA) by HASDM. . . 13

2.5 81-day center average of indices & proxies show high correlation and long term 11-year

solar cycle trend; yet differences are seen within the 11-year cycles. . . . . . . . . . . 13

ix



2.6 The primary station where the F10.7 proxy index is measured. DRAO uses a 26-meter

single antenna telescope for observations. Photo Credit: Mark Klotz . . . . . . . . . 15

2.7 The NOAA SWPC enthusiast dashboard contains daily space weather products which

are readily available for interested groups or individuals. https://www.swpc.noaa.

gov/content/space-weather-enthusiasts-dashboard. . . . . . . . . . . . . . . . 17

3.1 A linear regression model seeks to minimize the error between the regression model

(red line) and the observed data (blue dots). The dashed lines indicate the magnitude
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Chapter 1

Motivation and Contributions

1.1 Space Domain in LEO

Just a few decades ago, the number of objects in Low-Earth orbit (LEO) was small; the detection,

tracking, and identification of artificial objects, known as catalog maintenance, was relatively easy.

However, in the last two decades there has been an exponential growth in total space objects includ-

ing spacecraft and orbital debris, which poses immediate danger to multi-billion dollar space assets

and human spaceflight missions. It is evident from Figure 1.1 that the rate at which the number of

space objects is growing is unlikely to slow down. As the total number of artificial objects in LEO

grows, catalog maintenance has become non-trivial. A need for more real-time knowledge of the

space environment has caused a shift to space domain awareness (SDA), which stresses the ability

to accurately predict an object’s orbital state.

LEO is currently the most densely populated region in space, especially due to satellite con-

stellations introduced by private organizations such as SpaceX and OneWeb in recent years. As

of August 2023, 5,000 mass-produced satellites have been launched into LEO by SpaceX; with a

planned satellite total of 12,000 and potential extension to 42,000 [2]. A dramatic increase in the

number of objects, especially from large constellations, has resulted in a shift from SDA to space

traffic management (STM). Although catalog maintenance still occurs under SDA, STM highlights

conjunction assessment and collision avoidance in the context of space safety and sustainability [3],

which is performed by many different operators and organizations. The United States Office of Space

Commerce (OSC) serves as the primary entity responsible for space commerce policy activities within

the Department of Commerce, and seeks to foster the conditions necessary for economic growth and
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Figure 1.1: Since the space race in the 1950’s and 1960’s; the amount of debris has ballooned;
steep spikes can be attributed to destructive events such as the destruction of Fengyun-1C in 2007
according to the NASA Orbital Debris Program Office (ODPO)’s LEGEND model [1].

technological advancement in the U.S. commercial space industry. The OSC plays a crucial role in

coordinating with various stakeholders and operators to ensure safe and efficient operations in space.

The OSC collects and shares data and cooperates with operators to manage space traffic and reduce

the risk of collisions and space debris proliferation. In addition, the United States Space Command

(USSC) currently maintains a catalog of space objects including debris, and provides probability of

collision (PoC) and estimated orbital state and covariance to most operators. The operators can use

these products for further assessment, risk analysis, and maneuvering, which can cost precious fuel.

1.1.1 Challenge of Atmospheric Drag

To provide improved methods for the growing STM efforts, especially in LEO, we consider one of

the largest sources of uncertainty for objects in LEO, atmospheric drag. Atmospheric drag is not

uniform, and greatly depends on current space weather conditions. Uncertainty and modeling errors

affect drag calculations through the neutral density term, ρ, and the drag coefficient, CD, which can

be seen below.

adrag = −1

2

ρ CD A

m
v2rel with B =

CDA

m
(1.1)
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Other parameters such as cross sectional area and mass, will differ from object to object but are well

known. The velocity of the orbiting object, vrel, is also well known but can introduce uncertainty in

the cases of strong neutral winds [4]. The typically used ballistic coefficient, B, allows for satellite

specific parameters to be grouped into a single term.

In the fields of space operations and space weather, it is widely recognized that changes in the

Earth’s thermosphere induce variations in satellite drag. Over the past two decades, both empirical

and physics-based density models have been developed, which have significantly enhanced our drag

modeling capabilities. These models have demonstrated an average global error of less than 10%

during solar maximum conditions [5]. Physics-based models, which utilize fundamental governing

equations, offer the potential for greater accuracy but may exhibit biases from sources such as phys-

ical assumptions and numerical approximations. Physics-based models can also demand substantial

computational resources due to the complexity of the physical processes which are modeled and the

numerical methods used, such as finite difference.

Operators who rely on thermosphere forecasts for collision avoidance are challenged by uncer-

tainty in forecasts. Uncertainty in thermosphere density forecasts can be attributed to either mod-

eling error (uncertainty and/or error in the model itself) and driver error (uncertainty or errors

in the inputs used by the model). The USSC and commercial or other operators usually perform

3-day forecasts during conjunction event assessment; such 3-day LEO forecasts assume that driver

uncertainty is dominant. Recent work has showed that the impact of model uncertainty is on the

same order as driver uncertainty [6].

Most methods for forecasting drivers rely on models which produce deterministic predictions.

Operators who rely on short-term driver forecasts receive linearly forecasted values, with no asso-

ciated uncertainty estimates. Typically, uncertainty in both model and drivers are simplified or

overlooked. In order to make more informed decisions on conjunction risks, operators should be

supplied with accurate forecasts which also provide driver uncertainty estimates. By including prob-

abilistic density and driver models, associated uncertainty can be coupled with orbital state and

covariance, as seen in Figure 1.2.

Recent work in probabilistic thermosphere density models, has allowed for investigation into the

coupling of model uncertainty to the state and covariance of objects in LEO [7]. A similar proba-

bilistic forecast and associated coupling must be established for the model drivers to be combined

with model uncertainties. Robust and reliable uncertainty estimates for orbital state and covariance

must be provided so that operators can make more informed decisions, especially when considering

costly space assets with limited available fuel.
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Figure 1.2: Accurate driver forecasting and uncertainty estimates are the first step in an overall
framework which can be used to help STM efforts.

1.2 Contributions

Recent work using machine learning techniques have allowed for the enhancement of thermosphere

density models, by providing probabilistic forecasts. Models such as HASDM-ML[8], CHAMP-ML,

MSIS-UQ[9], and TIE-GCM ROPE[10], have allowed for the effects of density uncertainty on orbit

uncertainty estimation to be investigated [11]. It has also been seen that sources of uncertainty from

drivers and models significantly affect orbital state uncertainty estimates, with driver uncertainties

dominating after several days [6]. This thesis aims to investigate and provide contributions to

address solar driver uncertainty, which can be used stand-alone or incorporated with probabilistic

density models such as HASDM-ML to address model and driver uncertainty simultaneously. This

work provides higher accuracy and probabilistic modeling of solar drivers, which can be sampled for

operations. This thesis aims to provide a significant step in the overall planned framework (seen in

Figure 1.2), to provide robust and reliable orbit state uncertainty estimates to STM stakeholders.

1.2.1 Probabilistic Forecasting of Drivers

If density models were perfected, errors would still exist due to errors in forecasted drivers; inability

to accurately forecast density prevents drag from being modeled accurately. Neural network ma-

chine learned models have been used for the historic F10.7, with only one approach considering a

probabilistic forecast [12]. This work provides machine learned models which improve over that work

and current state-of-the-art forecasting methods for all solar drivers, and are capable of providing

probabilistic forecasts. This work marks the first time probabilistic forecasting methods have been

successfully applied to the S10.7, M10.7, and Y10.7 solar drivers.
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1.2.2 Striped Sampling Technique

Several of the drivers used by the state-of-the-art JB2008 density model have only been recorded daily

since 1997. Due to the lack of a substantial dataset, previous machine learning (ML) approaches,

which followed traditional data splitting methods, were biased and performed poorly on new data.

In Chapter 3 (Section 3.3.2), we identify the issues associated with poorly sampled data and provide

a novel method to prepare statistically consistent data for use in machine learning training schemes.

By utilizing the new striped sampling technique, limited datasets can be used effectively for future

ML approaches in all time series forecasting fields.

1.2.3 Input Data Manipulation

Auto regressive (AR) models use only previous data to predict future values. Current operational

methods for forecasting drivers rely on AR methods, which can be limited in their predictive ability.

We consider several methods for manipulating input data to improve AR predictions for solar drivers.

We present a new method, which uses a statistical technique known as principal component analysis

(PCA) to transform multivariate model input data. This work marks the first time that PCA has

been applied to solar drivers, which is capable of improving forecasts and uncertainty estimates. In

Chapter 4 (Section 4.3), we introduce a new method to improve univariate forecasting by supplying

a backwards averaged value to current model inputs. This work represents the first instance of

manipulating solar driver data in this manner, and its applications extend beyond space weather, it

can enhance AR forecasting in any domain where forecasting is essential.

1.3 Outline

There currently exists a gap in the overall modeling of uncertainty for orbital state because there

lacks adequate uncertainty estimates for model drivers. This thesis focuses on providing more ac-

curate driver forecasts which are probabilistic and can be used to provide more robust and reliable

uncertainty estimates to the STM community. This work begins with essential background informa-

tion on the interaction between the Sun and Earth, modeling approaches for thermosphere density

and solar drivers, and ML techniques, which have been applied successfully to the field of space

weather. The background of ML techniques include a discussion of ensemble approaches which have

shown success in probabilistic forecasting and novel techniques to combine individual model predic-

tions, providing an improved overall forecast. We then provide an in depth discussion of methods
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for probabilistic solar driver forecasting using neural network ensembles, followed by a comparison

with state-of-the-art methods. Lastly, we present the conclusions of this work and provide recom-

mendations for future work for solar driver forecasting as well as a discussion of the work necessary

to couple driver uncertainty to uncertainty estimates in orbital state.
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Chapter 2

Background

This chapter’s goal is to establish the essential background information required for comprehending

the influence of the Sun on the thermosphere, explaining the connection between the thermosphere

and STM, and examining the current methods and challenges associated with forecasting of ther-

mosphere conditions, specifically density.

2.1 Space Weather and EUV

When we use the phrase “space weather”, we are referring to the processes of the Sun that affect the

space environment, as well as the Earth. The Sun’s inner core is a nuclear reactor, which produces

massive amounts of energy that radiate to its surface [13]. The energy which is released from the

Sun, in the form of plasma, follows the complex and ever-changing magnetic field lines of the surface.

As a result, these highly coupled energetic processes can be difficult to predict.

The Sun directly affects all of us, it is complex and not well understood, it is also constantly

changing. Since the 17th century, astronomers have observed and meticulously recorded sunspots.

A sunspot is a temporary, dark area on the Sun’s surface caused by intense magnetic activity. These

spots appear darker than their surroundings because they are cooler regions. Historical records

reveal that, on average, the Sun follows an eleven year cycle of activity. The dramatic change in

solar activity can be seen by historical observations of sunspot number, seen in Figure 2.1. The

number of observed sunspots correlate well to solar activity, but they do not tell the whole story.

Instead we must rely on scientific measurements of the solar-based electromagnetic radiation.

Although the Sun is on average 150 million km from Earth; the solar wind constantly bombards

the Earth with high energy radiation. We focus on specific wavelength bands of this solar elec-
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tromagnetic radiation to aid us in determining solar processes and potential effects on the Earth

environment. Extreme-ultraviolet (EUV) radiation is electromagnetic radiation that lies on the

electromagnetic spectrum with wavelengths between 121 nm and 10 nm. EUV radiation emitted by

the Sun is absorbed by the thermosphere and is unable to pass all the way through to the Earth’s

surface. Consequently, Earth’s atmosphere is considered opaque to EUV radiation, making ground-

based measurements of EUV impossible. Since we cannot directly measure solar EUV, we must rely

on measurements of other terms, solar indices and proxies. These indices and proxies are used to

determine current solar activity levels, represent heating for a variety of thermosphere layers, and

are inputs to a state-of-the-art model for density in the thermosphere.

Figure 2.1: On average, the Sun follows an 11-year cycle, but it doesn’t consistently reach the same
level of solar maximum, and the duration it takes to reach that maximum point can vary.

2.2 Understanding the Thermosphere

The thermosphere is one of the upper-most neutral layers of the Earth’s atmosphere; spanning

roughly 90 km to 1000 km above Earth’s surface, depending on current space weather conditions.

The thermosphere maintains a much lower density than lower altitudes of the atmosphere; but

solar EUV absorption can cause the thermosphere to heat and expand. Similarly, when solar EUV

is reduced, the thermosphere cools and contracts [14]. During phases of high solar activity, the

thermosphere is subjected to increased solar EUV irradiance. The high energy EUV radiation is

absorbed predominately by the upper atmosphere, which causes heating and bulk movement (due to

buoyancy) of air, expanding the thermosphere. The bulk movement effect creates a property change

and density in the thermosphere can increase or decrease significantly.
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Due to the chaotic nature of the Sun, such density changes can be unexpected, leading to chal-

lenges in density modeling. It is important to provide forecasts of expected density changes; but

current models can provide drastically differing density values during storms and high solar activity

levels [15]; seen in Figure 2.2. The STM community lacks a unified modeling approach, there-

fore many models have been developed (and are operational) for providing thermosphere density

forecasts.

Figure 2.2: Top: The modeled density ratio between HASDM, a machine learning approach, and
JB2008; indicate how much density can vary depending on level of solar activity!
Bottom: F10.7 and ap represent the solar and geomagnetic activity levels for a given date. Licata et
al. (2022) [8]

2.3 Historical Thermosphere Modeling

Much of our understanding of physical systems rely on observations, many thermosphere models

are no different. Empirical thermosphere models rely on observation and data to make generaliza-

tions about physical processes. We have seen advancement in empirical modeling by the scientific

community, especially with empirical models [14], such as MSIS [16], DTM [17], and Jacchia [5]

groups.

Mass Spectrometer Incoherent Scatter Radar (MSIS) models use a mixture of mass spectrometer,

incoherent scatter radar, and accelerometer-derived density estimates. The Drag Temperature Model

(DTM) group relies on orbit-derived density data and accelerometer-derived density data. The
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Jacchia group, such as JB2008, use orbit and accelerometer derived density estimates. More recent

advances in modeling involve real-time data assimilation; an assimilative model integrates empirical

data and observations to create a robust representation of a phenomenon or system. One such

example of an assimilative model, the High Accuracy Satellite Drag Model (HASDM) [18] uses

Dynamic Calibration of the Atmosphere (DCA) to adjust the density nowcast given by JB2008 from

a set of calibration satellites.

Recent advances with accelerometers have enabled acceleration-derived density estimates to

improve models. Using accelerometer data throughout the operational period of a spacecraft,

e.g. CHAllenging Minisatellite Payload (CHAMP) and Gravity Recovery and Climate Experiment

(GRACE), data is gathered across many space weather conditions and altitudes, and can be used

for model development. By removing acceleration contributions from other sources, researchers have

been able to isolate drag based acceleration and derive density [19], [17], [20].

Physics-based models are also effective for the upper atmosphere, such as the model for thermo-

sphere density Thermosphere-Ionosphere-Electrodynamics General Circulatory Model (TIE-GCM)

[21]. Some physics-based models, including TIE-GCM, use a finite difference method to solve the

governing equations which couple the thermosphere and ionosphere, and are used to generate self-

consistent electric fields at lower latitudes [14]. When short-term forecasts are needed, empirical

and assimilative models may be more useful, as physics-based models are computationally expensive

and challenging to develop; especially when considering the sheer number of LEO objects.

2.3.1 JB2008

The most recent Jacchia type empirical model, JB2008, improved over previous Jacchia family

models by incorporating new solar and geomagnetic indices and proxies as inputs. JB2008 uses

four solar indices and proxies, F10.7, S10.7, M10.7, and Y10.7, which are referred to as drivers. The

drivers are used to represent variations caused by solar heating, specifically in different layers of

the thermosphere. In addition to the four solar drivers, JB2008 utilizes two geomagnetic indices,

Dst and ap to improve density modeling during high geomagnetic activity. JB2008 reduces non-

storm density errors by over 5% and reduced storm-time errors from Jacchia-70 by over 60% from

NRLMSISE-00 by more than 35% and from JB2008 with only ap by 16% [5].
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2.3.2 High Accuracy Satellite Drag Model

Used solely by the Department of Defense (DoD), HASDM relies on an adjustment of the nowcast

made by the density prediction of the JB2008 model. HASDM modifies 13 global temperature

correction coefficients using the DCA algorithm; improving on the work done by [22] and [23].

HASDM relies on observations made on 70 calibration satellites to estimate local density values.

The calibration satellites range from altitudes of 190-900 km. The DCA algorithm used by HASDM

relies on a prediction filter that uses wavelet and Fourier analysis for calculating correction coefficients

[18]. HASDM is a state-of-the-art model for thermosphere density, but is limited by its deterministic

forecast and accuracy of the solar drivers input to JB2008. Recent enhancements to HASDM and

other density models, have been introduced to provide probabilistic modeling of density, which

would overcome the limitations of a deterministic forecast and provide operators with uncertainty

estimates.

2.3.3 Recent Advancements

Recent work has demonstrated enhanced density modeling capabilities through the introduction

of machine learning techniques that offer probabilistic density models, as exemplified by HASDM-

ML[8], CHAMP-ML, MSIS-UQ[9], and TIE-GCM ROPE[10], which, rather than explicitly improv-

ing existing models, primarily focus on providing uncertainty estimates for density modeling, thus

facilitating the study of density uncertainty’s effects on orbit uncertainty propagation [11]; these

advancements also pave the way for similar modeling of solar drivers to explore their impacts on

uncertainty in modeled density and orbit propagation.

2.4 Solar Drivers

JB2008 and HASDM rely on the four solar drivers, F10.7, S10.7, M10.7, and Y10.7 as inputs (driver

collection sources can be seen in Figure 2.3.) Without accurate forecasts of these drivers, HASDM

and JB2008 cannot produce accurate density forecasts, even with perfect density modeling (the

connection between JB2008 drivers and HASDM can be seen in Figure 2.4.) The United States Air

Force (USAF) currently contracts Space Environment Technologies (SET) to provide the operational

forecasts of solar drivers for use with HASDM. SET uses a linear algorithm to provide deterministic

forecasts for all drivers over a period of 6 days.

All solar drivers are scaled using linear regression, to units consistent with the historical F10.7,
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Figure 2.3: Top Left: Secondary DRAO telescope provides solar flux data for F10.7. Top Right:
The SOHO spacecraft carries the SEM instrument which is used to produce S10.7. Bottom Left:
The NOAA-18 spacecraft carries the SBUV instrument, which produces MG II cwr data that is
transformed into M10.7. Bottom Right: The SORCE spacecraft provides X-ray observations and
Lyman-α measurements which are used to create Y10.7.

which are known as solar flux units (SFU).

1 SFU = 10−22 W

Hz m2
(2.1)

Scaling of solar drivers to a consistent unit is done to more easily quantitatively compare the differing

drivers. Additionally, drivers can be reported in either an observed or an adjusted form, which scales

the driver value to be as though the Earth was located 1 AU (≈ 150 million km) from the Sun. This

work deals with the observed form of the solar drivers.

The F10.7cm solar radio flux proxy, denoted as F10.7 for the remainder of the work, is one of the

most widely used proxies for solar activity. F10.7 is described by Tapping [24] as a “determination of

the strength of solar radio emissions in a 100 MHz-wide band centered on 2800 MHz (a wavelength

of 10.7 cm) averaged over an hour”. Three additional solar indices and proxies were introduced by

the Jacchia-Bowman 2008 thermosphere density model [5]. S10.7, M10.7, and Y10.7 are used to map

energy from specific solar irradiances to major thermosphere layers [25]; their relationship to one

another (and F10.7) can be seen in Figure 2.5.

The S10.7 index [5] is the integrated 26-34 nm irradiance measured by the Solar Extreme-

ultraviolet Monitor (SEM) instrument on the NASA/ESA Solar and Heliospheric Observatory

(SOHO), and is used to represent heating in regions near 180 or 200 km. SET provides an op-
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Figure 2.4: The solar drivers (starred) are inputs used in the framework to perform orbit propagation.
JB2008 uses these drivers to produce a global density grid; whose nowcast is then corrected using
dynamic calibration of the Atmosphere (DCA) by HASDM.

erational backup for SEM data processing as well as provides values of S10.7. SEM has been making

measurements since December 1995. A more specific description of the process for scaling the data

and converting to solar flux units (SFU), units consistent with other drivers, are discussed by Tobiska

et al. [25]. Daily values for index are archived and available since January 1, 1997;

The M10.7 proxy [5] is created from the Magnesium II (Mg II) core to wing ratio, which originates

from the NOAA (National Oceanic and Atmospheric Administration) satellites (NOAA -16,-17,-18).

The satellites host the Solar Backscatter Ultraviolet (SBUV) spectrometer, which can make solar

Figure 2.5: 81-day center average of indices & proxies show high correlation and long term 11-year
solar cycle trend; yet differences are seen within the 11-year cycles.
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UV measurements. MG II is a proxy for solar FUV and EUV emissions that is mapped into the

lower thermosphere and represents heating in the thermosphere regions between 95-110 km. MG II

is translated into SFU as discussed in the work by Tobiska et al. [25]. Daily values for M10.7 are

archived and available since January 1, 1997.

The Y10.7 index [5] is created from the combination of both GOES/XRS 0.1-0.8 nm x-ray obser-

vations and Lyman-α, which is measured by the SOLSTICE instrument on the UARS and SORCE

satellites as well as the SEE instrument on TIMED. The observations made are represented by an

L10.7 and X10.7 index, which are combined by Tobiska et al. [25] to form the Y10.7 index, representing

heating in regions between 85-100 km. Data for Y10.7 has been reported daily and archived since

January 1, 1997.

2.4.1 History and Prediction of F10.7

The F10.7 proxy has been recorded consistently since 1947 by sites in Canada. Originally, these

observations were performed by a site south of Ottawa, Ontario. Due to expansion of city infras-

tructure, large amounts of disturbances were noted in observations and, in 1962, a new observation

site was constructed at the Algonquin Radio Observatory. A secondary flux measurement station

was established at the Dominion Radio Astrophysical Observatory (DRAO), seen in Figure 2.6.

Since the establishment of DRAO, both the Algonquin and Ottawa sites have closed, and measure-

ments are made solely at DRAO [24]. Daily observed values of the Penticton F10.7 proxy have been

recorded and archived since 1947. The data used in this work contains many missing values during

the initial year of operation, and these gaps have been excluded from analysis in this work. The

historical data for F10.7 used in this study spans from 1/1/1948 to 12/10/2021, as depicted in Figure

3.8. This time frame aligns with previous studies, such as [26] and [12]. To address any missing daily

flux values, they have been substituted with the most recent observed value for the corresponding

dates. As an input to the JB2008 model, future values of F10.7 are necessary to provide density

forecasts. Forecasting of F10.7 varies in skill with solar activity level as cycles over an 11 year period

and various activity levels are encountered during forecasting periods. Due to the chaotic nature of

the Sun and importance of F10.7, many forecasting methods exist, but can be weak in some areas.

2.4.2 Currently Used Models

Commonly used prediction methods for the F10.7 proxy using historical values include a mixture of

statistical, auto-regressive, linear, and deep learning methods. These varied methods have produced
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Figure 2.6: The primary station where the F10.7 proxy index is measured. DRAO uses a 26-meter
single antenna telescope for observations. Photo Credit: Mark Klotz [27]

a variety of conclusions, some models claim that linear methods outperform neural networks seen in

[28] and [29]. Other authors have claimed that they can use machine learning methods to outperform

linear methods like [12] and [30]. Forecasting methods, such as these, must be carefully compared

in order to reduce contradictory conclusions.

The National Oceanic and Atmospheric Administration (NOAA) operates the National Space

Weather Prediction Center (SWPC) which provides many space weather related products and is

a crucial source of data and forecasts for space operations. SWPC offers in-depth space weather

products and includes an enthusiast’s dashboard, an example of dashboard products is seen in Figure

2.7. The dashboard offers, forecasts, solar imaging, ionosphere, solar wind, and many more data

products. SWPC also issues a publication called The Weekly, providing a 27-day forecast for F10.7,

created by SWPC personnel. Additionally, SWPC retransmits a 45-day F10.7 forecast made by the

USAF. Both forecasts use a combination of observations and recurrence. Recurrence is captured by

monitoring H-α imagery, STEREO satellite observations, and monitoring of solar active regions. [31]

The Weekly publication’s user guide further explains forecasting methods but cautions against using

these forecast results for research purposes. By providing improved F10.7 forecasting with neural

network ensembles, forecasts distributed by NOAA could include a probabilistic driver forecast

created by this work.

To provide forecasts of the solar drivers used by the operational HASDM, SET uses a linear

prediction algorithm that captures recurrence and persistence. The algorithm used by SET is the
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“TS FCAST” subroutine in the Interactive Data Language (IDL). This linear prediction algorithm

fits and uses a pth order auto regressive model on p days lookback. The model is re-fit on data every

time a prediction is to be made.

xt = ϕ1xt−1 + ϕ2xt−2 + ... + ϕpxt−p + wt (2.2)

The short term (6-day) predictions made by this method have been benchmarked and analyzed

thoroughly by [26] and will be used for comparison with the solar driver predictive models in this

work. This algorithm uses auto regression and relies on a predictive method called “dynamic predic-

tion” for which one-step predictions are calculated recursively to reach the desired forecast horizon

ahead of the day the forecast is made, known as the forecast epoch.

2.4.3 Linear Methods

The persistence model is usually considered a näıve model and is a common first step used to compare

the performance of various time series forecasting methods. Persistence is simple, easy to implement,

and is used often as a baseline model to compare results; we choose the persistence model as the

baseline model in this work. To model persistence, the previous time step value is persisted up to

the desired forecasting horizon, H, where t is the day a forecast is made.

F10.7t = F10.7t+1 = F10.7t+2 = ... = F10.7t+H
(2.3)

A similar method to the SET algorithm was introduced by [28] for multi-step linear prediction

of F10.7. The authors used a linear regression method for predicting values at multiple time steps,

rather than dynamic prediction, using a set of linear regression coefficients calculated for each horizon

day. The authors also compared a machine learning approach using artificial neural networks, for

prediction of F10.7 with that of the linear model. The authors concluded that “forecasting via

sophisticated artificial neural networks is not any better than a simple linear forecasting approach”.

An additional method by [32], performs multi step prediction using linear methods which considers

both the correlation between predicted time steps as well as the heteroscedastic properties. While

linear methods serve as a valuable initial approach, it’s worth considering non-linear methods, which

may yield more accurate results for modeling the complex and chaotic nature of solar irradiance.
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Figure 2.7: The NOAA SWPC enthusiast dashboard contains daily space weather products which
are readily available for interested groups or individuals. https://www.swpc.noaa.gov/content/

space-weather-enthusiasts-dashboard.

2.4.4 Non-Linear Methods

Huang et al. [29] investigated the usage of a Support Vector Regression (SVR) model to perform

short term (3 day) predictions of F10.7. An SVR approach uses a non-linear mapping of input

data into a higher dimensional feature space, which is then fitted via linear regression. This linear

regression on the higher dimensional space is optimized via minimization of a cost function. The

authors determined that “our approach can perform well by using fewer training data points than

the traditional neural network.”
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Stevenson et al. [12] discussed an approach for F10.7 forecasting using neural networks. The

authors implemented the network architecture created by [33], Neural Basis Expansion Analysis

for Interpretable Time Series Forecast (N-BEATS), for multi step forecasting proxy values up to

a horizon of 27 days. N-BEATS uses fully connected layers linked to non-linear basis functions to

make both a forecast and back cast while training.

N-BEATS was proposed for usage without the need for knowledge of the domain. A neural

network ensemble approach suggested by [33] for the direct predictions of F10.7 and associated un-

certainty was considered by [12]. N-BEATS was also used due to the computational efficiency over

typical recurrent neural networks. It was determined that the NBEATS ensemble approach “sys-

tematically outperformed” both the statistical British Geological Survey (BGS) approach and the

persistence model. The N-BEATS ensemble demonstrated either improved or comparable perfor-

mance when contrasted with the CNES (French Space Agency) CLS model, which is a shallow neural

network based on 4 different radio flux wavelengths.

Luo et al. [30] acknowledged previous methods for forecasting F10.7 rely heavily on linear meth-

ods and propose the usage of Convolutional Neural Networks (CNNs) and a recurrent neural network

(RNN) method known as long-short term memory (LSTM). The usage of linear methods for fore-

casting F10.7 results in relatively stable for mid to long term predictions but fall short when high

quality predictions on a smaller horizon are required. The author also proposes that a CNN will be

of use in extracting features of the F10.7 time series, and an LSTM will be useful in prediction of

future values, the authors found an improvement over the linear methods by using such ML methods.

Some models for forecasting F10.7 rely on inputs other than previous observations such as [29],

who proposed the addition of a flux tube expansion factor, fs, to the input of the SVR prediction

method. The authors proposed that by including this as an input, the prediction of F10.7 may be

improved during large spikes in solar activity. The authors acknowledge that the SVR method is

general and could use improvement, and that the addition of an input that represents general solar

magnetic activity may help F10.7 prediction, due to subtle changes in the solar magnetic field.

Benson [34] used an LSTM model to forecast various solar proxy and geomagnetic indices simul-

taneously. The authors considered the interaction between F10.7, F30, F15, geomagnetic indices, and

solar imaging in forecasting of proxy values one solar rotation (27 days) in advance. The authors

concluded that machine learning methods outperform linear regression, persistence, and statisti-

cal mean value models. It was also determined that the addition of solar imaging data improves

predictions in comparison to using proxy values alone.

Henney et al.[35] introduce an approach for forecasting of F10.7 using solar magnetic flux trans-
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port modeling. This physics based approach by the authors is incorporated into the Solar Indices

Forecasting Tool (SIFT), which utilizes solar magnetic field distribution estimated with the ADAPT

flux transport model to empirically predict space weather parameters. The authors discuss that

the ADAPT driven model seems to be practical for estimating F10.7 over short time periods, and

further improvements on solar far-side magnetic activity estimates are key for improvements on this

method’s forecasting efforts over longer time periods.

It should be noted, that apart from the ML approach using N-BEATS [12], none of these models

provide uncertainty estimates with their forecasts. A key issue that needs to be addressed in the

field of forecasting F10.7 is uncertainty in the predicted value. By providing a probabilistic forecast,

steps may be taken in operations with the knowledge of forecast uncertainty, such as best or worst

case situations. This work extends prior machine learning techniques and incorporates neural net-

work ensembles to enhance predictive capabilities beyond current operational linear methods. This

work also offers probabilistic forecasts that can be sampled for operational purposes by the STM

community.

2.4.5 The S10.7, M10.7, and Y10.7 drivers

The dataset for the F10.7 proxy is the largest, with observed values being recorded since 1947. The

other 3 drivers are newer, and thus limited by data being produced by spacecraft. For example,

S10.7 data prior to the launch of the SOHO spacecraft would not be possible as no measurements

could have been made. Due to this limitation, available data for all four drivers (at a one-day

cadence) exist between January 1, 1997 and the present day. Missing values are noticed in the

S10.7 driver between 6/25/1998 and 10/24/1998 and linear interpolation was used to fill in missing

data, accounting for about 1% of the S10.7 driver data. An 81-day averaged value of the drivers,

illustrating the high correlation, can be seen in Figure 2.5.

Currently, SET provides the only forecasts for non-F10.7 drivers. SET relies on the same uni-

variate forecasting methods used for F10.7, providing independent forecasts of all drivers using the

pth order auto-regressive linear model (Equation 2.2). There are no current methods for providing

probabilistic forecasts for these drivers. This work deals with providing methods which utilize ma-

chine learning to provide for the first time ever, probabilistic driver forecasts for S10.7, M10.7, and

Y10.7. This work also aims on utilizing machine learning approaches and novel combination methods

to improve driver single point forecasting and provide uncertainty estimates.
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Chapter 3

Machine Learning

The chapter introduces the critical concepts for machine learning techniques and application. This

work utilizes ML models to effectively capture trends based on historical driver observations and

produce probabilistic forecasts for each of the solar drivers. In order to discuss the ML methods

applied in this work (Chapter: 4 Methodology), it is first necessary to introduce the key concepts of

machine learning.

3.1 Background

Data is the foundational building block of machine-learned models. To effectively discuss how

machine learning occurs, we must begin with a discussion on the importance of the data that is

used to drive ML models. Data is the fundamental source of information that enables ML models

to learn from patterns, make generalizations to new situations, adapt to changing conditions, and

aid in decision making. The quality and representativeness of the data is crucial, as biased or

incomplete data can lead to biased or inaccurate predictions. Data is not only essential for initial

model development but also for continious improvement in models, making it critical for applying ML

in the real world. The importance of good data for ML cannot be understated, poorly sampled data

does not represent the overall data well and leads to poorly performing models, which is discussed

further in Chapter 4.

Machine learning is a branch of computer science which aims to allow computers to ”learn”

without being directly programmed [36]. Originating in the 1950’s, machine learning emphasizes

practical objectives and applications; such as prediction and classification. Learning occurs when a

computer ”experiences”; occurring when a computer is exposed (fit) to data. An exact definition of
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machine learning can be a bit unclear. Bi et al. [37] argues a divide between machine learning and

other statistical methods; ”machine learning emphasizes prediction accuracy over hypothesis-driven

inference, usually focused on large, high-dimensional data sets.” A growing focus in the machine

learning field, is to create models for which common statistical methods fail. Machine learning

models can range from very simple to incredibly complicated.

A fundamental example of a data-driven machine learning technique which most people know,

is linear regression. In linear regression, data is needed to fit a linear curve. It may seem, at first,

that linear regression is too simple to be called machine learning. However, according to the general

description of machine learning, linear regression is indeed an example of machine learning! In

order to fit a linear regression model; data is needed to ”teach” the model what trends occur and

predictions on new data can be made without the need for explicit programming. With simple linear

regression, the standard equation for a line is used for modeling,

ŷ = mx + b + ϵ (3.1)

where ŷ is the output of the linear regression model, m is the slope, x is the input, ϵ is the

random error, and b is the intercept. A linear regression model is fit to data by first assuming an

initial value for m and b. As input data is passed into the model, the output is compared to the

truth and an associated error is calculated. The goal of linear regression, is to minimize the error by

varying the parameters, m and b. An example of a fit linear regression model and associated errors

can be seen in Figure 3.1.

Linear regression works reasonably well in the case where data is close to linear. In the case

of non-linear data, linear modeling approaches will inevitably fail and non-linear methods can be

utilized, which can be seen in Figure 3.2. Once data is highly non-linear and contains more than a

few dimensions, typical regression methods become difficult.

To tackle difficult regression tasks where data is non-linear, such as time series forecasting of

solar drivers, state-of-the-art machine learning techniques can be applied. One of the newest models

for sequential data tasks, transformers, have shown success in capturing long range dependencies in

data [38]. Transformers rely, in part, on attention mechanisms; an identification of importance of

a previous value. As a state-of-the-art model, initial investigation into application of transformers

for solar driver forecasting was performed but did not show an improvement over baseline methods.

Transformer application is discussed further in Section 6.1. Due to the challenge in usage of trans-

formers, other well researched methods such as neural networks are investigated. Although prevalent

21



Figure 3.1: A linear regression model seeks to minimize the error between the regression model (red
line) and the observed data (blue dots). The dashed lines indicate the magnitude of error, |ŷ − y|
associated with the model for a given input, x.

in science and technology today, many treat neural networks as ”black boxes”; using them without

understanding of how they function. To explain the approaches used in this work, it is critical to

explain several of the key concepts used by neural networks.

3.2 Neural Networks

Over the past few decades, neural networks have emerged and become quite popular for both classifi-

cation and regression tasks. Originally theorized by McCulloch and Pitts [39], application of models

known as Artificial Neural Networks (ANNs) for tasks has shown a great deal of promise. With a

similarity to the way neurons function in the human brain, an ANN is used as a universal function

approximation which is considered a supervised learning approach using nonlinear functions. A

typical usage for ANN regression models is to predict future time series values, which is the primary

goal of this work. A ”neural network” a subset of general machine learning algorithms.

3.2.1 Network Architectures

Neural networks can refer to many types of machine learning algorithms such as; convolutional

neural networks, recurrent neural networks, multi-layer perceptron, and long short term memory

models. The various neural networks can be used for many different tasks. The various NNs are
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Figure 3.2: Even mildly non-linear data can be better suited by modeling with a non-linear approach,
like a quadratic model.

skilled at specific tasks; CNNs are effective at processing grid like data, such as pictures and videos

[40]; and recurrent neural networks are skilled at sequential data like natural language processing

(NLP). For this work, it is necessary to investigate methods which have shown promise in time

series forecasting. We choose to investigate two main neural network types. MLPs have shown to be

effective in atmospheric sciences [41], geomagnetic index forecasting [42], and solar flare forecasting

[43]. Long-short term memory models are skilled at time series tasks and have also had success in

space weather such as the works by [12], [44], and [45].

3.2.1.1 Multi Layer Perceptron (MLP)

One of the most common types of neural network is the Multi-Layer Perceptron (MLP). Introduced

in 1958 by Rosenblatt [46]; an input (or set of inputs) are introduced into a layer of neurons. A

general example of the structure of an MLP can be seen in Figure 3.3. A chosen activation function

is applied to inputs (or weights in further) layers. For the case of regression, the penultimate layer

outputs pass through a linear activation function and are output from the model. These outputs

can be taken, post processed if necessary, and are considered a prediction made by the model.

An MLP is a fundamental type of neural network which can solve non-linear tasks. By using

architectures which contain sequential hidden layers; an abstract representation of data can provide

better results than a single hidden layer. MLPs can have a single hidden layer or many hidden layers;

with few or many neurons each. Given a single hidden layer with a finite number of neurons and
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Figure 3.3: An ANN has an input layer, one (or more) hidden layers, and an output layer. Weights
are updated via a backpropagation algorithm to minimize a chosen loss function [47].

weights, any continuous function can be approximated arbitrarily well [48]. In practice, there exists

computational limitations for very large models. RAM (random access memory) for a CPU (central

processing unit) and VRAM (video random access memory) for a GPU (graphics processing unit)

are potential bottlenecks. Available memory limits the ability to store all necessary weights and

perform calculations with those weights. A near infinitely large NN may be great but is impractical.

Network complexity must be balanced; too many weights can overload the available memory, while

too few weights limit the model performance. Too many weights may also cause difficulty for training

and overfitting when limited data is available. MLPs lack features which identify trends outside of

the explicitly provided inputs. It may be beneficial for sequential data models to have features which

consider previously seen inputs and outputs; an important property seen in long-short term memory

models.

3.2.1.2 Long-Short Term Memory (LSTM)

Specifically created for sequential tasks; Long-Short Term Memory (LSTM), was introduced by [49].

LSTM is a modification of the traditional Recurrent Neural Network (RNN), which prevents the

vanishing/exploding gradient problems that were encountered during training of the original RNN.

LSTM leverages previously seen time series values stored in the LSTM cell’s hidden state “short-term

memory”, seen in Figure 3.4, to make a skilled prediction. This makes an LSTM model suitable for

space weather applications where it is important to capture the hysteresis of the system.

During training, the LSTM learns not only the short term trends and how to predict data, but

also the relevance of previous information, even with large time lags. This feature makes LSTMs
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versatile and capable of picking up general trends. In the context of solar driver forecasting, the

LSTM can learn underlying patterns in the data, allowing it to potentially outperform baseline

models.

Figure 3.4: Overall construction of the LSTM cell (a) with the input gate (b), forget gate (c), and
output gate (d) highlighted in red. Green is used to denote point-wise operations. [10]

In Figure 3.4, x refers to the input to the cell, c refers to the cell’s internal state/memory, and

h is the output. t and t − 1 denote the current and previous step, respectively. The three σ nodes

refer to internal layers with the sigmoid activation function, and tanh refers to either a layer with

the tanh activation function or a point-wise operation – dependent on the color. The LSTM cell

(a) is shown with each aforementioned gate highlighted: input gate (b), forget gate (c), and output

gate (d). The internal sigmoid layers function similar to typical binary gates. If a gate is open (1),

information passes through. Conversely if a gate is closed (0), no information gets through. As

sigmoid has a continuous range between zero and one, it is ideal to function as a gate while keeping

the LSTM cell differentiable. For the input gate, the input and previous output information get

passed both the the sigmoid and tanh layers. The tanh layer acts as a normal neural network layer,

while the sigmoid layer determines how much out the tanh output passes through.

3.2.2 Training Neural Networks

The desire, when using a neural network, is to create a model such that predictions and/or decisions

can be made without the need for explicit programming. Supervised training is the process of

using known data (separated into input/output pairs) to minimize the difference between model

predictions and the ground truth. Training is typically done using optimization algorithms such as
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gradient descent, which adjusts model parameters in the direction of the largest decrease of model

loss function to minimize the error. The training process of a neural network is similar to the

”fitting” of a linear regression model.

Training of a neural network model is the step where changes are made to weights and biases

within the model in order to improve the output (similar to changing of the slope and intercept in

Equation 3.1). Wasserman and Schwartz [50] provide a metaphor for the training step, claiming that

training can be thought as ”teaching by example”. The model makes an educated guess based on the

inputs, compares with the expected output, changes weights/biases, and makes another educated

guess and compares once more. Training allows for the weights and biases to be adjusted to minimize

a given optimization loss function. The weights and biases are internal to the model and act like

“dials” that can be turned to improve results.

Figure 3.5: Left: Although an over fit model captures all of the data, it is expected to perform poorly
on unseen data, becoming too specialized on the training data set. Right: An under fit model does
not have much skill and may either need further training or a different architecture altogether.

A loss function is used to ”score” the output of the model against the expected result and is

necessary for training. Many regression tasks use Mean Squared Error (MSE) or Mean Absolute

Error (MAE) as a loss function. Quantile loss and Huber Loss can also be used, but are generally

less common. In this work, we use the two most common regression loss functions,

MSE =
1

N

N∑
i

(yi − ŷi)
2 (3.2)
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MAE =
1

N

N∑
i

|yi − ŷi| (3.3)

where N is the number of predictions made for a given set, yi is the expected value of a given

sample, and ŷi is the output of the model for a given sample. There are a few key challenges that

arise when training a model. Two of these key challenges are overfitting and underfitting of a model.

In the case of overfitting; a model may learn the training data too well and essentially memorize

rather than learn. A model which experiences overfitting, is expected to perform well on training

data but poorly on unseen data. This lack of performance on new data is a critical issue, since the

purpose of training a model is to use it on new data! Underfitting occurs when a model may not

have received enough data to train correctly and is unable to identify underlying patterns during

prediction. In both cases, poor generalization is expected on unseen data. To prevent overfitting of

a model, regularization techniques such as the use of a validation set are often used.

As described by [51]; in the context of deep learning, regularization is a technology aimed at

improving the generalization ability of a model. Regularization can be done a few ways, two of

the most common techniques include the use of a validation set, and dropout [52]. A validation

set is a set of data which has been hidden from a model during the training process. After a step

of training is performed, the model makes predictions using the inputs of the validation set. The

model predictions are compared to the validation set ground truths and an error term is calculated.

Another training step is taken and validation predictions are evaluated again. If the error decreases,

we say that the model has improved and is generalizing better. The validation set is not used to

update model weights, but is instead used to ”check” if a model is generalizing well. Regularization

with a validation set is a popular approach, but can be difficult to implement in cases where data is

not abundant [53].

Dropout is another powerful tool for regularization in deep learning. During training, a random

subset of neurons are ”dropped out” (output set to 0). When dropout occurs, the network output

is perturbed significantly; many important connections between neurons are severed. In response

to these severed connections, the network is encouraged to spread important connections across its

architecture. By spreading the important connections across the network, regularization is greatly

affected and has been studied extensively [54], [55], [56]. Multiple regularization techniques can be

used. By combining dropout and validation data, regularization becomes more robust.
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3.2.2.1 Hyperparameters

Hyperparameters are model parameters that are user specified and control the learning process.

Examples of hyperparameters can include learning rate, batch size, number of layers, optimizers,

and activation functions. When a set of hyperparameters are used to construct a model; it is

referred to as a model’s architecture. Models with different architectures can provide vastly different

levels of performance. It should be noted that with number of model parameters is proportional to

computational power. Choosing a suitable architecture is an incredibly important and challenging

step in applying machine learning. A neural network with a given architecture may reach a point

where it can no longer improve on the task. A model may result in a minimized loss function but does

not perform as needed for the task. It may become necessary to change a model’s hyperparameters

in order to reduce the loss further.

Hyperparameter tuning, or tuning, is the process of experimenting with a variety of model hyper-

parameters to find optimal values. To perform tuning, hyperparameters are chosen, several training

steps are taken, and an error value is calculated. The parameters which produce a minimum error

are considered optimal and are used for further training. The initial ranges of hyperparameters to

try are supplied by the user and tuners can follow schemes such as ”Grid Search” or ”Bayesian

Optimization”. Hyperparameter tuning can be performed via KerasTuner, a hyperparameter op-

timization framework in the Keras Machine Learning API. A range of hyperparameters (seen and

discussed in Sections 4.4 and 5.2.4) are considered. KerasTuner is capable of outputting a list of

models and hyperparameters which produced the lowest loss values for given inputs. A key hyper-

parameter in producing different outputs, an activation function changes all outputs in a given layer

and may lead to more favorable results.

3.2.2.2 Activation Functions

An activation function is chosen by the user and assigned to each layer in a neural network. The

activation function is used to determine the activation level of a specific neuron and can add nonlinear

approximations to the model (if the activation function is non-linear). For each neuron, a weighted

sum of inputs is passed through an activation function to produce an output, seen in Figure 3.3. In

this work, we consider several activation functions for use in both the MLP and the LSTM models;

whose functional forms can be seen in Table 3.1.
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3.2.2.3 Optimizers

During the training process, a model’s weights and biases need to be updated. If model weights

and biases were never changed, a model would produce the same output and no skill would exist.

Backpropagation is the fundamental algorithm which leads to this updating. The algorithm leads

to ”learning” and improved model performance. Backpropagation can be broken down into several

main steps:

1. Forward Pass: A sample of data is input into the model and predictions are made on that

sample.

2. Error Calculation: A comparison between prediction and expected output leads to an asso-

ciated error.

3. Backwards Pass: Weights and biases of a model are adjusted starting near the output layer

and working toward the input layer in order to change the error value.

4. Weight Update: Based on the amount that each weight or bias contributed to error, an

update is performed using an optimization algorithm such as gradient descent.

Table 3.1: A range of activation functions which are used in this work.

Name Activation Function, f(X)

Linear f(X) = X

Tanh f(x) = eX−e−X

eX+e−X

ReLU f(X) = max(0, X)

ELU

f(X) = X if X > 0

f(X) = α(eX − 1) if X ≤ 0

Softsign f(X) = X
1+|X|

Sigmoid f(X) = 1
eX+e−X
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Figure 3.6: Depending on starting position (weight initialization), going in the direction of largest
descent (gradient descent algorithms) will lead to a wide variety of minimum values. Such a loss
architecture in high dimensionality becomes exponentially more difficult.

5. Repeat: This process is repeated many times through the entire data set (epochs), to con-

tinually improve performance.

After many training steps, one can expect the weights and biases to produce a minimal loss

value. Ideally, a global minimum is achieved and the calculated weights and biases result in the

best possible performance of a model. A global minimum is not guaranteed to be reached and a

training process may lead to only a local minimum. The minimum loss reached heavily depends on

the initial values of the weights and biases, as well as the overall architecture of the model. A visual

representation of minimums in a loss landscape can be seen in Figure 3.6. Models which have the

same architecture but different weight initialization may reach drastically different minimum loss

values after training occurs [57] [58] . To encourage models to reach a more favorable minimum, a

variety of weight initializations and architectures should be tested.

3.3 Data Preparation for Neural Networks

It is necessary to carefully preprocess data to effectively apply and train neural network models.

It was shown that standardization of data is a critical step to both improve results and decrease
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computational time. Data is standardized to improve convergence rates during training, as model

parameters are encouraged to be lower and differentiation steps are more easily calculated [59]. To

standardize the data, we use the standardization equation,

X̃ =
X −mean(X)

standard deviation(X)
=

X − X̄

σX
(3.4)

where X represents any arbitrary variable, X̄ is the average of X, and σ is the standard deviation.

To transform the data set into a form that can be learned by a neural network, one must split

the data into input and output (or target) pairs. Inputs and output pairs are needed for supervised

learning. For time series forecasting, it is common to consider both lookback and forecast horizons

to split the data. Lookback, L, represents the past observations to include into a sample for the

model. An example of creating an array of lookback values from previous F10.7 is given as,

−→
L = [F10.7t−1 , F10.7t−2 , F10.7t−3 , ..., F10.7t−L

] (3.5)

where t− i represents the day at which the F10.7 value was recorded. The lookback can have a

significant effect on the predicted value by a model. A larger lookback may allow a long-term trend

to be identified by the model but may hinder the models’ short-term performance due to lack of

short-term trends that would have been seen directly in input data. It is necessary to investigate the

effects of various lookbacks on the performance of a model as it may be beneficial to combine various

lookbacks, gaining the benefits of both. For both MLP and LSTM models, we must specify both an

amount of time steps to make the prediction for, the horizon (H) and the amount of previous days

to use as an input, the lookback (L). An example of creation of a horizon array of F10.7 is given as,

−→
H = [F10.7t , F10.7t+1

, F10.7t+3
, ..., F10.7t+H

] (3.6)

To prepare the data for both model types, the inputs and outputs are concatenated. The model

inputs for a given time-step are a stacked input and output combination. Typically, this kind of data

preparation can be accomplished using a sliding window approach. To be consistent in the analysis

with the original benchmarking of driver forecasts done by Licata et al. [26] on the SET algorithm,

we consider a short term prediction H = 6 Days, which will facilitate direct comparison.

The sliding window approach, seen in Figure 3.7, is used to separate the data into input/output

pairs, called samples. The sliding windows create a set of samples. The samples created have input

of size (Input Features x L) and output of size (Output Features x H). In the case of univariate
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Figure 3.7: An example sliding window approach using a lookback of L = 3 days and a horizon of
H = 2 days, with predictions starting on Day 4.

forecasting, we only consider the forecasting of a single feature. When performing multivariate

forecasting, the number of features change to the number of drivers.

Licata et al.[8] discussed the necessary data preparation for LSTM model training. A standard

feed forward NN requires the samples to have the same length about the first axis to achieve super-

vised training. ”Consider the number of inputs (ninp) and number of outputs (nout)) for a given data

set with n samples. The concatenation will result in an array of shape n × (nout + ninp). The data

must be stacked, so each row contains outputs and inputs for each lag-step (nLS) and the current

step. This orders in least-to-most recent from left-to-right. The data will now be of the shape n

× (nLS + 1)(nout + ninp). The last ninp columns are then dropped as they are not needed. The

data can be split into training inputs and outputs where the first n × nLS(nout + ninp) columns are

inputs and the last nout columns are the associated output. The final step is to reshape the input

data to the shape n × nLS × (nout + ninp).”

Once input and output pairs have been created; it must be decided how to train a given model.

Applying the training algorithm on all known data would provide a model that seems to work very

well. If a model were created that way, it would be hard to tell if the model were skilled; there would

be no way to test it! It is critical when training a model to maintain data that has not been seen

during training, so that a model’s performance can be truly evaluated. Without any testing data,

the model would memorize everything and would lead to unrealistic performance. The question

must be asked, ”how can we effectively create such a testing set and still have enough data for our

model to train?”

3.3.1 Data Splitting

For typical regression and model selection/training work flows, the data is split into 3 subsets;

training data, validation data, and testing data (seen in Figure 3.8). The training data is what is
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Figure 3.8: An example of a 70%-15%-15% holdout splitting technique used to train predictive
models for F10.7 [60].

used to teach the model by example; it is provided an input, makes a prediction, and compares

against an expected output. This training set is used to adjust model weights and biases, which

will change future outputs; A validation set is used as a method to mitigate model over-fitting, or a

“remembering” of the training data, seen in Figure 3.5. The test set, is a set of data that has been

entirely hidden from models during training steps. By keeping a hidden set, the model is “tested” on

entirely new data and the model’s ability to form generalizations can be evaluated. Regularization

techniques must also be considered when determining the training data. Xu et al. [61] claim that

the model validation step is the most important part of building a supervised learning model. The

validation data is used after a training step and can provide insight into how well the model can

generalize on data it has not seen yet.

In machine learning, the amount of data used to train a model greatly impacts the performance

seen in final models. By providing larger number of samples to the model during training, better

generalization can be expected. However, when training data is limited, worse generalization can

be expected. It is important to ensure that the validation scheme chosen supplies the models with

enough training data so that models can learn on a statistically similar subset to the full data set;

this is done in this work to ensure that subsets capture similar levels of solar activity. Choosing

what validation data to use and how much to use is non-trivial, especially when the amount of data

is limited.
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3.3.2 Validation Schemes

The holdout method is one of the most typical methods for splitting data into the three sets. A

percentage for splitting, typically given in machine learning (ML) texts, is a 70%/15%/15% split

for training/validation/testing sets. When considering time series data, such as the data set used

in this work, typical holdout methods would preserve the temporal order of data by partitioning a

percentage of data at the end of the full set, referred to as the test set. After the first partition is

made, a second partition is made using a specified percentage of data at the end of the non-test set.

This second partition will contain the data which can be used for training and validation steps, seen

in Figure 3.8.

The holdout scheme has been used with great success in time series forecasting but other tech-

niques, such as K-fold cross validation, have also shown promise [62]. However, when data lacks the

sheer number of values typically seen for traditional validation schemes, holdout lacks the ability

to create data sets which are statistically inconsistent and can lead to biased models, so we must

choose a different validation method. A challenge arises due to the nature of time series and LSTM,

data must maintain its time order, so we cannot randomly select samples throughout the dataset, as

this would lead to out-of-order data. To combat this challenge, we introduce a novel method which

samples data while maintaining its time-ordering and creates statistically consistent subsets, which

is discussed in Section 4.1. With a robust scheme for splitting data into the three necessary sets, we

can effectively train a set of neural network models.

3.4 Neural Network Ensembles

Typical probabilistic forecasting via machine learning methods involves generating a distribution of

values for each time step, essentially predicting both a mean and variance of future time steps. With

this method, inherent assumptions of the distribution of future values are made during training or

sampling. Assumptions such as a specific distribution, like Gaussian or Poisson, are made. Extensive

work in the field of machine learning has led to advancements in deterministic forecasting but due

to limitations encountered in the learning process, a single machine learning architecture may not

perform well in all areas of forecasting. For example, a model may be more skilled at predicting

only low values, providing predictions with a constant bias. This lack of skill in certain areas can

be addressed by considering a neural network model ensemble.

A neural network ensemble can be used to provide an improved forecast when compared to even
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the best performing individual models [63]. Neural network ensembles are created using multiple

models to provide outputs for a given set of inputs. Typical regression models provide a deterministic

forecast, which only provides a single output for a given input. A neural network ensemble uses the

concept of diversity [64], to allow for predictions to be spread across models with different strengths.

An ensemble can be thought of as a divide and conquer approach. Neural network model ensemble

diversity can be encouraged by considering varying architectures, model types, weight initialization,

varying loss functions, and varied inputs. Variation of inputs have been used successfully in proxy

forecasting [60] and [12].

A successful ensemble is one with accurate predictors that makes errors in different parts of the

input space [65]. The authors further discuss the problem of combining ensemble predictions, or

ensemble integration, and a process for removing models for which redundancy occurs. The ensemble

process can be reduced to three main steps [66] and is referred to as the overproduce and choose

method. The steps for creating an ensemble are as follows:

1. Generation

2. Pruning

3. Integration

Generation is the first step of this method and involves creating a set of models that attempt to fit

the data. Pruning involves eliminating some of the models generated in the first step, usually models

that provide redundant predictions. Integration involves determining the best way to combine these

models. Using these 3 steps, a set of models can be transformed into an ensemble. To generate the

models used in this work, we consider the nature of local minimums in the loss function landscape.

Due to the stochastic nature of the training process when weights are initialized randomly, differ-

ent local minima may be encountered, seen in Figure 3.6. Models may reach different local minimums

and can be combined to produce a favorable result. To select skilled architectures and to improve

model performance, one can consider creating and training models several times per architecture,

with varied initial weights. Since model hyperparameters (Section 3.2.2.1 greatly effect the indi-

vidual performance of models; they can be leveraged to produce different models. By considering

models created with a wide variety of hyperparameters, one can use them together as members

of a neural network ensemble. Once the ensemble members are generated; it is a difficult task to

determine which models should be used and how to combine them to create a probabilistic forecast.
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Figure 3.9: Toy Problem: We see that there are cases where a simple ensemble (average prediction)
performs both better and worse than individual models. An ensemble’s effectiveness depends greatly
on its constituent models.

3.4.1 Diversity

By leveraging the concept of neural network ensembles, a combination of various models may improve

prediction when compared to even the best performing single model [63]; a simple example is given

in Figure 3.9. In addition to an improvement of direct value forecasting, an ensemble approach will

create a distribution of predicted values, for which statistics can be evaluated and an uncertainty

analysis can be performed. Even though each model is deterministic, a collection of models can be

trained and combined so that a distribution of outputs is seen for any given sample. By evaluating

the statistics associated with the ensemble prediction, uncertainty in prediction can be quantified

which is referred to as uncertainty quantification (UQ). It is desired to achieve robust and reliable

uncertainty estimates as well as accurate forecasting; to do this, various skills are needed across the

ensemble members.

A difficult question is posed when generating a set of models for an ensemble, “which models

should be used and which discarded?” This can be addressed by a key concept in model ensembles

known as diversity. Model diversity is defined as the study of the degree of disagreement between

models [65][64]. Another method of ensemble generation, discussed by [20], involves using interaction

between ensemble members during training, in an evolutionary ensemble. To use neural networks
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for regression tasks; we must decide what data to include; what base models to begin with; how

these models perform; and whether using ensemble methods is advantageous.

A neural network model ensemble uses diversity to allow for predictions to be spread across

models with different strengths. Model ensemble diversity can be encouraged by considering varying

architectures, model types, weight initialization, varying loss functions, and varied inputs. Variation

of inputs have been used successfully in deep learning approaches for proxy forecasting [60][12].

Several methods for promoting diversity in model generation are discussed by Sagi et al. [67]

• Input Manipulation: Base models are fitted using different input data.

• Manipulated Learning Algorithm: Manipulation of the way each base model traverses

the hypothesis space. In the case of neural networks, this can be achieved by varying hyper-

parameters, weights, optimizer, etc.

• Partitioning: Dividing the original training set into subsets then using each subset to train

different models.

• Ensemble Hybridization: A combination of 2 or more of the other methods when generating

an ensemble.

The authors also discuss methods for combining outputs of the ensemble members in the integration

step. It is important to gain a single meaningful prediction from a set of individual predictions.

Ensemble members can be combined using various weighting methods. In the most basic form, one

could take a simple average of ensemble members,

ŷ =
1

M

M∑
m=1

ŷm (3.7)

where M is the number of ensemble members used, ŷm is the prediction made by the mth model,

and ŷ is the ensemble prediction. It is important to ensure that the ensemble members are skilled

in different tasks.

To promote further diversity in ensemble members, we consider manipulation of the learning

algorithm by varying the model hyperparameters, an idea discussed by [67]. To accomplish this task,

we consider manipulation via two methods. First, we explore diversity through varied architecture

using KerasTuner. Secondly, we explore diversity via random weight initialization. Due to varied

performance, it may be beneficial to also consider using more than one model type at a time. For

example, there may be periods of time where an MLP outperforms an LSTM (or other model type).

Combination of models (or model types) is critical to the overall performance of an ensemble.
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3.4.2 Model Combination

Once the ensemble members are selected, one must carefully consider combination methods. The

simplest method of combination is equal weighting (EW) [68]. The EW method is identical to the

mathematical mean or average of prediction. Equal weighting is a good initial choice for combination;

it is computationally inexpensive and has shown to outperform constituent models [12], [68].

Another method of combination to consider, is the mathematical median,

Median(x) =


x[n+1

2
] if n is odd

x[n
2
]+x[n

2
+1]

2
if n is even

(3.8)

where x is an ordered list of values in the data set and n is the number of values in the data set.

The median has outperformed the mean in certain machine learning model ensemble tasks [69] [70].

By using the median output value, we avoid issues associated with the mean, such as outliers.

One must also consider that certain models are more skilled than others; that a model’s output

should be weighted more heavily than a model with worse performance. Weighted ensembles per-

formed better than unweighted for upper atmosphere models [68]. We consider a stacked ensemble

approach [71], which uses linear regression to optimally combine predictions. The stacking algorithm

can be used to provides a set of weights, indicating which models have ”more say” in the ensemble

output.

Figure 3.10: Twenty four linear regression models are fit using the validation data set, providing a
2-D array of weights. The weight array has 2 dimensions, 180: The number of models to combine
and 24: The number of outputs per model (6-day prediction x 4 drivers).

Stacking, in practice, is the process of fitting a linear regression (Equation 3.4) of all model

outputs and expected value over a set of samples. An ensemble made of 180 models will result in

38



180 coefficients (or weights), θ, associated with a single output. In order to implement stacking, a

set of predictions and ground truths must be used, most often a hidden subset such as the validation

set. The use of a validation set avoids any potential leakage into the test set, keeping it completely

isolated from prior knowledge. A representation of the stacking process can be seen in Figure 3.10, for

an ensemble with 180 models and 24 outputs. Once models are combined the result is deterministic,

and with a deterministic forecast important information related to uncertainty is lost; so one must

consider the distribution of predictions as well as the combined prediction.
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Chapter 4

Methodology

This chapter discusses the methods applied for probabilistic forecasting of solar drivers using neural

network ensembles. We introduce several new methods for manipulating solar driver data to en-

hance ensemble diversity and improve forecasting. We also provide methods for making univariate

and multivariate probabilistic forecasts, investigate different forecasting methods, and introduce the

performance metrics necessary to compare predictions.

4.1 Data Sampling

The data available for F10.7 has been available since 1947, shown by the black curve in Figure 4.1.

Previous works for F10.7 forecasting relied on this substantial dataset to create ML models which

performed well, including the probabilistic forecasting method by [12]. Previous works were able to

apply the holdout validation scheme directly to this dataset, as there have been many solar cycles

between since 1947. The holdout method applied to F10.7, seen in Figure 3.8, allowed for four solar

cycles of training data, and one solar cycle each for validation and testing data. The various solar

cycles seen in the training set allowed for model to be trained which had seen a good mixture of

high and low solar activity levels. Additionally, by validating and testing on full solar cycles, models

would be less biased and a better measure of performance could be seen. However, applying a similar

method for the other drivers did not yield well trained models.

For direct comparison against other F10.7 forecasting methods, we carefully consider our training,

testing and validation subsets, seen in Table 4.1. The testing chosen for our original work of F10.7

contained the test set used by N-BEATS [12] and the data set used for the benchmarking of the

SET model discussed by [26].
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Table 4.1: Splitting of the original F10.7 dataset using holdout techniques.

Set Dates (YYYY/MM/DD) Ratio of Total Data [%]

Training 1950/01/01 - 1993/12/12 63

Validation 1993/12/13 - 2004/12/31 16
aTesting 2005/01/01 - 2020/01/01 21
aContains sets used by both [12] and [26] for consistency in comparison.

The historical solar driver data for S10, M10, and Y10, existing only from 1997-present, have

fifty less years of observations than F10.7, seen in Figure 4.1.As seen in Figure 4.1, approaches for

forecasting F10.7 by [60] and [12] contained data across approximately seven solar cycles, the other

drivers (available since 1997) have only about two and a half solar cycles of data. Due to the

number of solar cycles between 1997 and present, there is a lack of statistical similarity between

the three datasets when using traditional holdout methods, seen in Figure 4.2a. It was deemed

necessary to introduce a novel method for sampling the driver data such that data maintains its

sequential nature and is statistically consistent across the three sets. This novel method, referred to

as striped sampling, involves sampling data for week long chunks. A statistical analysis is performed

to compare the traditional holdout validation scheme and the new striped sampling scheme. By

using striped sampling, we effectively capture consistent statistics between our training, validation,

and testing sets; seen in Figure 4.2b. This result indicates that with limited data, striped sampling

Figure 4.1: It is desired for a neural network model to see many repeated patterns during training.
In the case of the newer drivers, parts of the solar cycle have only been seen a few times.
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can create more useful datasets for ML methods. Once the data has been prepared and separated

into sets using this new sampling, it is possible to train forecasting models effectively.

(a) Approximate PDFs indicate that the average solar activity level of the sets are drastically different,
leading to difficulty with traditional machine learning sampling methods.

(b) By capturing similarly approximated PDFs between datasets using striped validation, we give machine
learning models the best chance to effectively generalize and reduce potential bias.

Figure 4.2: Top: Holdout methods are used to split the data into the three ML subsets, which
produces inconsistent statistics. Bottom: Striped sampling allows for consistent statistics between
subsets.

The process of machine learning heavily relies on data, providing improperly sampled data pre-
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vents models from learning effectively. The newly introduced approach to sampling data results

in sets that are similar, but still have minor differences, as seen in Figure 4.2b. As solar activity

level increases, notable differences are seen in Y10.7, especially in the range of 70-130 SFU. Small

variations can be seen in the other drivers, especially in the right tails of Figure 4.2b.

4.2 Data Preparation

Before employing training algorithms to apply machine learning techniques and create a neural

network ensemble, it is necessary to complete data preparation steps, providing models with in-

put/output pairs to learn from. To prepare our data, we apply the sliding window approach (Section

3.3). Additionally, to help models train more quickly, data is standardized (Equation 3.4), based

on the statistics of the training data set. The statistics are used to standardize the data for the

training, validation, and testing data sets. An additional step for processing data for use in LSTM

models is discussed in Section 3.3. Once these preparation steps have been performed data can be

fed used to create neural network models, and we must choose what length of forecast is desired.

4.2.1 Multi-Step and Dynamic Predictions

One notable difference between N-BEATS and the SET model, are their prediction types. The

SET model relies on iterative forecasting, which we refer to as ”dynamic forecasting” or ”dynamic

prediction”. Dynamic forecasting relies on forecasts to be ”chained” together to reach a desired

forecast horizon. This method is inherent when using the linear approach seen in Equation 3.1. The

N-BEATS ensemble approach relies on a different forecasting method; where multiple time steps

are forecasted at once for a given input. We refer to forecasting where multiple days are predicted

simultaneously as ”multi-step forecasting”. These very different types of forecasting may provide

ensemble diversity and may improve overall performance when combined. An investigation into the

benefits and shortcomings associated with both prediction types is necessary.

When splitting the data set using the sliding window approach, the outputs are of size H, and

a model is directly trained to predict values for a horizon of H days. [72] concluded that dynamic

forecasting typically outperform direct multi-step forecasts. To explore dynamic predictive methods,

consider setting the training targets to a size of one, teaching the model to predict the next day. The

model training is limited to prediction of only the next day and may perform very well at predicting

one day rather than attempting to generalize multiple days at once. To create a dynamic forecast,

we perform a single step prediction, shift the input by a time step, and append the predicted value
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to the new input. This recursive method is done H times to generate our forecast over the desired

horizon, illustrated in Figure 4.3. A benefit of this dynamic forecasting approach is the ability to

actively change the prediction length. The model is trained for one day at a time but operationally

could be used for any desired horizon, without the need for further training.

Figure 4.3: Consider a lookback of L = 4 days, we can predict a horizon of H = 3 days either by
predicting all days at once (Multi-Step) or by recursively predicting single steps 3 times.

One potential problem with dynamic forecasting occurs when one considers a large forecast

horizon. Every time a model makes a prediction, there will be an associated error with the output.

As a model uses dynamic prediction, error terms can accumulate and led to instability and large

errors. This instability occurs due to compounding errors [73], a prediction uses already predicted

values as inputs, which each contain some predictive error. Since this work deals with short term

forecasting, compounding errors from dynamic forecasting may not contribute as much as when long

term forecasting occurs. It is important to investigate whether dynamic predictions have instability,

if they can be used to enhance driver forecasts, and what inputs provide the best modeling capability.
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4.3 Data Manipulation

There have been several investigations that have performed space weather proxy forecasting us-

ing both single-input and multi-input input models for F10.7. These inputs usually contain auto-

regressive (AR) information, represented as previous observations of the proxy called the lookback

window. In [12] the authors were able to improve upon the persistence baseline and other opera-

tional models, using only previous F10.7 values by leveraging models created with different lookback

windows. We build off of the previous work, considering AR forecasting methods which use a range

of lookback values and additional novel data manipulation methods. We choose to limit our work

to AR methods to enable a direct comparison between novel neural network ensembles and the

operational baseline methods. In the original probabilistic F10.7 work, there was little justification

presented for choice of lookback window. To address this, we apply a range of lookback values and

discuss affects on model performance in Section 5.1.1.

4.3.1 Backwards Averaging

Since an AR model only has previous values to use for forecasting, there may be difficulty in predic-

tion using only those previous values, especially if a drastic change (a storm) occurs in the lookback

window. We introduce an additional input known as a backwards average to extract more informa-

tion from the previous values and provide a source for potential forecast stability,

F 10.7B =
1

B

B∑
j=1

(F10.7T−j
) (4.1)

where B is the window of values to use for the backwards average. By providing AR models with

backwards average, a short-term trend may be identified and may guide model towards more accurate

predictions. The sensitivity of model performance to this backwards average value is evaluated and

further discussed in Section 5.1.1.

4.3.2 PCA Rotation

Principal component analysis (PCA) is considered the most popular multivariate statistical technique

and likely to be the oldest multivariate technique. PCA is typically used on large dimension data;

compressing the size of the set while keeping the more important information. PCA involves a

transformation from the original data into linear combinations of the original variables known as

principal components (PCs). The PCs are calculated to maximize variance between the PCs and
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constrains the components to be orthogonal [74].

Typical methods using PCA would truncate PCs to reduce the dimension of the dataset, allowing

for easier applications of machine learning techniques; especially those involving very large or high

dimension data. Since the PCs are a linear combination of the initial space, the dimensions are not

interpretable; these new components no longer represent driver values explicitly, the steps to apply

PCA algorithm are as follows:

1. Starting with a time series of four drivers (which are separated into the training, validation,

and test sets), standardize the data based on statistics if the training set.

2. Calculate the covariance matrix based on the training set; a 4x4 symmetric matrix that contains

the covariances associated with all pairs of variables, which is performed via Numpy.cov() in

Python.

3. Compute eigenvectors and eigenvalues of covariance matrix C to identify PCs.

4. Sort eigenvalues and associated eigenvectors based on scale of eigenvalue (maximizing variance)

and construct a feature vector matrix.

5. Perform ML methods (training, validation, and prediction) in the PCA rotated space using

the feature vector matrix.

6. Transform predictions back into the original space and reverse standardize the outputs.

Redundant information is contained within the solar drivers and it may be considered less im-

portant to forecast them all at once. Applying ML techniques to make multivariate forecasts on

highly correlated variables could be less useful. By applying a technique like PCA, we “untangle”

our data, and force our dimensions to be orthogonal and have a maximized variance (less correlated

than in Figure 4.4a). We have not seen a PCA rotation method used in the forecasting of density

model drivers and introduce a rotation similar to the one discussed by [74]. Most ML applications

for machine learning truncate PCs due to the small amount of variance that they capture [75]. We

consider the typical PCA algorithm with no truncation, simply a “rotation” to maximize variance

and create orthogonal PCs.

As a model attempts to learn from multiple variables, one must consider how similar the variables

are. We aim to de-correlate the model inputs, to investigate the affect on multivariate model perfor-

mance. We show the ability for PCA rotation to provide variables which have reduced correlation.
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(a) The correlation matrix suggests that the S10.7, M10.7, and Y10.7 drivers are great candidates for transfer
learning (Section 4.4.2) due to their high correlation with the F10.7 driver.
Main Diagonal: Approximate distributions for individual drivers. Lower Entries: Correlation between
pairs of drivers.

(b) Main Diagonal: Approximate distributions for individual PCs. Lower Entries: Correlation between
pairs of PCs.

Figure 4.4: Top: Raw driver data is highly correlated and may hold promise for an ML approach
known as transfer learning. Bottom: PCA rotation yields PCs which are significantly less correlated
and should be investigated as ML model inputs.

Applying PCA rotation transforms the original drivers into principal components (PCs) with

markedly distinct distributions. While the initial driver distributions were similar (Figure 4.4a),

PCA rotation yields more unique distributions for the PCs, which are also less correlated, seen in

Figure 4.4b. The rotated data can be used by neural networks in nearly the same way as unrotated

47



data. The only difference in the process of evaluating models with PC inputs, is that PCA based

models will require data to be rotated back to the original driver space after predictions are made.

After a reversal of the PCA transform is applied, predictions can be directly compared to other

models. To our knowledge, this is the first investigation of applying a PCA rotation technique in

the field of solar driver forecasting.

4.4 Neural Network Training

To promote further diversification in ensemble members, we consider manipulation of the learning

algorithm by varying the model hyperparameters, an idea discussed by [67]. To accomplish this task,

we consider manipulation via two methods. First, we explore diversity through varied architecture

using a hyperparameter tuner. To select skilled architectures, hyperparameter tuning is performed

via KerasTuner. KerasTuner is capable of outputting a list of models and hyperparameters which

achieve optimal loss function values during the tuning process. We consider these results to be the

best performing architectures for a given lookback and these architectures can be used to generate the

individual ensemble members. Next, we explore diversity via random weight initialization, which was

successfully used in ensemble models for forecasting of F10.7 [12]. We also consider diversity which

comes from the use of various types of models and predictions; MLP, LSTM, multi-step prediction,

and dynamic prediction may all provide substantial diversity for neural network ensembles.

Tuner results from each architecture are used to create 10 random weight initialized copies and

further training of models occur. The prediction of test set data is then made by each individual

model and is saved for combination later, which is shown in Figure 4.5. Due to varied model

performance, it may be beneficial to consider using more than one model type at a time. For

example, there may be periods of time where an MLP outperforms an LSTM (or other models), so

a hybrid ensemble approach like [76], will be considered. For univariate methods, we will evaluate

the performance of combining the ensemble prediction across multiple model types, leveraging their

differing skill. In the case of univariate predictions work, we first consider an unweighted average of

predictions made by both MLP and LSTM ensembles.

4.4.1 Hyperparameters and Best Model Selection

One can create a large amount of models easily, but care should be taken to have model diversity. It

is important to generate models with diversity in mind, and a scheme for generating and selecting

models is needed, such as hyperparameter tuning. During hyperparameter tuning, it is necessary to
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Figure 4.5: Predictions are made by 30 models of each architecture for each lookback step and are
saved for combination later. A total of 180 models are used to generate a probabilistic forecast and
associated uncertainty estimates.

specify ranges to perform a search over, which are seen in both Table 4.2 and Table 4.3. A Bayesian

optimization scheme was used for selecting the best hyperparameters, as Bayesian optimization has

been shown to optimize model hyperparameters, saving time and improves performance [77]. Based

on the hyperparameter tuning results, the architectures which produce a minimal loss value on the

validation set are selected as best performers. After tuning, the top 3 architectures are selected and

saved to generate the base ensemble members. These architectures are used to generate individual

models whose weights are initially randomized using a normal distribution, which is the default when

creating a model in the ML API, Keras. These randomly initialized models are then trained further

with an early stopping criterion, which is used to end training if performance is not improved. After

training, predictions on the test set occur and are saved to files individually. It should be noted that

ensemble integration has not occurred yet and that the predictions are independent at this point.

Table 4.2: Tuning configurations used to generate ensemble members at each lookback for MLP
models.

MLP (Multi Layer Perceptron)

Tuner Option Choice Parameter Value/Range

Scheme Bayesian Optimization Number of Dense Layers [1-8]

Total Trials 100 Dense Neurons [4-256]

Initial Points 5 Activation [relu,tanh,sigmoid]

Repeats per Trial 3 Optimizer [adam, SGD]

Minimization Parameter MSE Learning Rate [.01, .001, .0001]

Epochs 100 Early Stopping Criteria Validation Loss (MSE)

Early Stopping Patience 30
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Table 4.3: Tuning configurations used to generate ensemble members at each lookback for LSTM
models.

LSTM (Long-Short Term Memory)

Tuner Option Choice Parameter Value/Range

Scheme Bayesian Optimization Number of LSTM Layers [1-3]

Total Trials 75 LSTM Neurons [4-128]

Initial Points 5 LSTM Activation tanh

Repeats per Trial 3 Number of Dense Layers [1-4]

Minimization Parameter MSE Dense Neurons [4-256]

Epochs 50 Dense Activations [relu, tanh, sigmoid]

Early Stopping Criteria Validation Loss (MSE) Learning Rate [.01, .001, .0001]

Early Stopping Patience 10 Optimizer [adam, SGD]

In previous probabilistic forecasting work for F10.7 [60], the author developed a neural network

multi-lookback ensemble, which had better performance metrics than the prior NBEATS approach,

but lacked a significant improvement in uncertainty estimates. It is believed that the variation in

loss function considered by [12], led to more favorable uncertainty estimates and an overall better

calibrated probabilistic forecast. Based on the results of [60], it is necessary to determine if the

training loss function has a substantial impact on probabilistic model performance. The affects of

optimization loss on the performance of models and ensemble diversity are covered in Section 5.1.2.

4.4.2 Transfer Learning

A common practice in the field of machine learning involves using a previously trained model (or set

of models) as a starting point, known as transfer learning. Transfer learning is a powerful tool that

allows the use of an already made model without the need for excessive training or hyperparameter

selection. Due to the lack of a large available data set for S10.7, M10.7, and Y10.7, seen in Figure 4.1,

a transfer learning approach should be investigated, specifically using univariate models which were

trained on the data abundant F10.7 driver. It can be seen in Figure 4.4a, the drivers with limited data

correlate well with the F10.7 proxy. Transfer learning may provide reasonable forecasts for tasks that

are related; such as highly correlated variables [78]. Transfer learning can also significantly improve

the efficiency in learning by exploiting the relatedness between a data-scarce target task and a

data-abundant source task [79].

To accomplish transfer learning, NN models which have been created for forecasting F10.7 can be

considered for the other drivers. To prepare for transfer learning, data for the newer drivers must be

formatted identically to the data used by the original models. Models loaded for transfer learning

may be starting “ahead” of newly created models and may be able to provide good performance
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without the need for excessive training, only needing a small amount of training to “fine-tune” model

weights and biases [80]. The models can then be evaluated on the training, validation, and test data.

Based on the work done by [60], we select the univariate MLE created from individual LSTM

models due to its good performance metrics and well behaving uncertainty estimates. The model

ensemble showed reasonable performance improvements over the SET algorithm when forecasts of

F10.7 were made and provided robust uncertainty estimates.

4.5 Neural Network Ensembles

With the basics of model ensembles discussed in Section 3.4 and currently used methods discussed

in Section 2.4.2; it must be decided how best to approach forecasting solar drivers and whether

ensembles will be useful. To use neural networks for prediction of the drivers; it must be decided

what data to include, what base models to begin with, how these models perform, and whether

using ensemble methods is advantageous. An overview of the methods used by our work is covered

in Figure 4.6.

Figure 4.6: Example of how various ensemble diversity methods can be implemented. In this case
between this work and the N-BEATS approach used by Stevenson et al. [12]

To create a neural network ensemble, one must consider models which have skill in various areas.

The 27-day forecasting work done by [12], used a few methods, seen in Figure 4.6, to encourage

model ensemble diversity. One successful source of diversity seen by the authors, involved com-

bining models with various lookbacks. We refer to an ensemble which has been created using a

mixture of lookbacks as a multi-lookback ensemble (MLE). The authors were able to improve over

several forecasting methods and provide a probabilistic forecast for F10.7. Short term prediction may

function differently to the 27-day predictions; the sensitivity of model performance on lookback is
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investigated to determine the best lookback values to use during training. Lookback is not the sole

source of diversity in model ensembles and it is important to investigate other potential sources.

4.5.1 Univariate Approach (UV-MLE)

A logical step for forecasting F10.7, S10.7, M10.7, and Y10.7 is to use the method described by [60]

in Section 4.4 to create neural network ensembles which are tuned and trained, specifically for a

single driver. The same steps are used to construct a set of models to forecast the drivers, using the

training, validation, and test data splitting methods discussed in Section 3.3.1. Initial investigation

into univariate approaches for F10.7 made comparisons with prior work using the holdout validation

scheme. However, when comparisons for forecasting all drivers are considered, models are created

using the striped sampling scheme. A hyperparameter tuner is constructed for each driver and a set

of lookbacks and backwards averaged values are considered for generating neural network ensemble

members. A set of models are created for each driver and are trained and used to predict separately.

After individual driver predictions are made, predictions are concatenated in a post-processing step

to provide outputs for all drivers. We refer to models created this way as univariate multi-lookback

ensembles (UV-MLE).

4.5.2 Multivariate Approach (MV-MLE)

Due to the high correlation between drivers, seen in Figure 4.4a, trends seen in one driver are most

likely to be seen in the other drivers. Rather than limit a model to a single stream of data, we can

consider a model which is input four sets of previous driver values and provides a forecast for all

four simultaneously. Such a model would increase the dimensions of considered data by a factor of

four; all inputs and outputs would involve all four drivers as opposed to just one.

By considering all drivers simultaneously, patterns seen in one driver may be useful for forecasting

of another driver. For example, a short term decrease in S10.7 may indicate a similar drop would

occur in M10.7, even if a pattern is not necessarily seen in previous M10.7 data. In this work,

simultaneous multivariate forecasting is performed using similar ensemble methods to the univariate

models discussed in (Section 4.4) but using all drivers. This work is done to determine if such

multivariate methods are more beneficial than univariate methods, and we refer to models created

this way is multivariate multi-lookback ensembles (MV-MLE). We additionally choose to use LSTM

models due to their skill and stable prediction type [60].

After creating and assessing the individual models for an ensemble, it is essential to establish
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overall performance metrics based on a combined forecast and uncertainty estimates. We aim to use

performance metrics to determine whether multivariate forecasting is better than univariate, and

what data manipulation methods are beneficial.

4.6 Metrics

With regards to machine learning models, [81] poses a set of questions for the general ML community;

1. Are the developed machine learning models accurate?

2. Are the developed machine learning models useful to our task or field?

3. Are we properly validating the developed ML models?

4. How can we confidently answer ”yes” to questions 1, 2, and 3?

Machine learning models need to be rigorously assessed. An assessment is required to ensure the

validity of the developed model for understanding complex phenomenon, such as space weather; and

to validate proper extension of a model toward a new/future data set. Traditionally, ML models use

error metrics to assess their capability. Metrics are mathematical constructs which allow a measure

of the closeness between the truth and prediction. A single metric may be useful, but is incapable of

”telling the whole story.” Similar to the ensemble diversity methods, error metrics should be diverse;

allowing insight into the overall performance of a model [81].

Metrics used in the field of solar proxy forecasting vary from work to work, but [12] argues

that the addition of many metrics allows for robust model evaluation. It is important to provide a

diverse set of metrics for future analysis, as a large set of metrics can be used to compare future

models more easily. When performing univariate forecasting, metrics apply to a single variable and

performance is easily captured by error metrics. Although it may seem easiest to evaluate metrics

for multivariate methods across the entire output, it is important to investigate performance on each

individual driver. When we evaluate combining models with unequal weighting, it is inevitable to

find models that may perform better on certain drivers. We consider using common metrics like root

mean squared error (RMSE), mean absolute percentage error (MAPE), and the Pearson Correlation

Coefficient (R); Equations 4.2, 4.3, and 4.4 respectively. We select these metrics to show general

model performance, yet metrics should be generated for all drivers to better quantify the actual

model skill for forecasting multiple drivers.
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RMSE =

√√√√ 1

N

N∑
i

(yi − ŷi)2 (4.2)

MAPE =
100%

N

N∑
i

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (4.3)

R =
cov(ŷ, y)

σŷ, σy
(4.4)

The MAPE error metric is linear and, unlike MSE, does not give as much weighting to large

errors [12]. The MAPE error metric is a good indicator of model performance but is aimed at single

point prediction. Error in forecast is proportional to the number of days a forecast is made, for

example, an error in a 1-day prediction is more than likely to be smaller than the errors associated

with a 6-day prediction. The discussed metrics are no different and errors associated with 6-day

prediction would dominate, and errors associated with 1 or 2-day predictions would not be apparent.

To remedy the issue with dominant terms, a relative metric is considered. Relative metrics are an

extension of the work in [82], which allows for a single metric over all days forecasted. Relative

metrics distill error metrics down to a single easy to compare value for a given metric. The relative

metric can be defined as a metric value which has been averaged over all forecast days, and is scaled

against the baseline persistence model.

Relative X =
1

Hmax

Hmax∑
h=1

Xmodel,h

Xpersistence,h
(4.5)

where X can be any metric, and Hmax is the maximum forecast length, which in this work is

6 days. Once a relative metric is calculated, a general percentage improvement over the baseline

model can easily be seen. A relative metric greater than 1 would indicate that the metric is worse

than the persistence baseline and less than 1 would indicate improvement. For example, a relative

MSE of 0.85 (85%), would indicate a 15% improvement over the persistence model MSE; and a

relative MSE of 1.03 would indicate that a model is 3% worse than persistence.

To identify potential bias in predicted values, we evaluate the univariate error statistics and

compare using the binned results method presented in [26]. By creating a set of bins of predicted

values, the model uncertainty and biases at various solar activity levels can also be highlighted.

It is necessary to create models that perform well during all parts of the solar cycle, and not just

minimum or maximum. The binning method involves placing a prediction into a bin depending on
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the first predicted value. The binning values (bounds) used in [26] are seen in Table 4.4.

Table 4.4: F10.7 Binning ranges used by Licata et al. [26]

Solar Activity Level Lower Bound [SFU] Upper Bound [SFU]
Low <75 75

Moderate 75 150
Elevated 150 190

High 190 >190

4.6.1 Uncertainty Quantification (UQ)

Deterministic approaches such as the operational SET method, lack the ability to provide an associ-

ated uncertainty with their predictions. By providing both a predicted value (ensemble combination)

and an associated uncertainty, proper response can be made by agencies that rely on a predicted

solar driver, such as F10.7. In addition to performance error metrics, it is important to provide

UQ for our probabilistic forecasting methods to better understand uncertainty estimates, which can

be used evaluate the robustness and reliability of the probabilistic forecast, as can be seen in the

previous work by [83]. This can be performed by calculating the confidence interval using the true

data,

CI = x̄± z ∗ σ√
n

(4.6)

where x̄ is the sample mean, z is the z-score of an assumed distribution, σ is the sample standard

deviation, and n is the number of samples. An example of a confidence interval from associated

probabilistic models can be seen in Figure 4.7.

A set of deterministic forecasts can be used together to form a probabilistic forecast, and evalu-

ating statistics across the forecast distribution allows the uncertainty of forecast to be quantified. A

neural network model ensemble approach can generate a combined (single point) forecast (red-line

in Figure 4.7) as well as a distribution for each output. The CES metric, originally by [84], is mod-

ified by [8] for use in uncertainty quantification. CES quantifies the average deviation from perfect

calibration in percentage, averaged across each output and is given as,

CES =
100%

r ∗m

r∑
i=1

m∑
j=1

| p(αi,j) − p(âi.j) | (4.7)

where r is the number of model outputs, m is the number of prediction intervals investigated, p

is the expected cumulative probability, and p̂ is the observed cumulative probability. By calculating
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Figure 4.7: Toy Problem: Using 100 random forest regressors (grey lines) to construct an ensemble.
In this case, the model ensemble outputs a distribution of predictions. Predictions can be averaged
(red line) and statistics evaluated (pink CI).
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the calibration error score (CES), a quantitative measure of a model’s ability to provide reliable

uncertainty estimates can be provided.

It is also desired to generate a qualitative measure of uncertainty, which is referred to as a

calibration curve. A calibration curve is a plot that shows the expected and observed cumulative

probability, plotting of p vs p̂ from Equation 4.7. Calibration curves show how well calibrated the

uncertainty estimates are at capturing the expected percentage of true samples, in the distribution.

A model that is perfectly calibrated has a calibration curve with a slope of one. Models which under

fit or over fit the uncertainty have calibration curves with slopes of less than one or greater than

one respectively. In the event that a model is not calibrated well, steps such as applying a scaling

factor can be taken.

A scaling factor can be applied to the uncertainty estimates, which is referred to as σ scaling.

Sigma scaling, introduced by [85], uses the validation set to “check” the validity of uncertainty

estimates. This check provides a scaling factor based on the results and adjusts the uncertainty

estimates based on over or under prediction. For example, if a calibration curve shows a tendency to

over predict on validation data, then a scaling factor can be generated to “correct” the uncertainty

estimates. Applying σ scaling, better CES metrics and a generally more reliable uncertainty estimate

may be found. The scaling factor is generated as follows,

σS =
√
S ∗ σ =

√√√√ 1

N

N∑
i=1

σ−2
i ∗ (y − ŷ)2 ∗ σ (4.8)

where S is the scaling factor , N is the number of samples in the validation set, σi is the sample

standard deviation at step i, σS is the scaled standard deviation and (y− ŷ)2 is the squared error of

prediction. Sigma scaling is not guaranteed to improve results.

Another method for combining models, ensemble model output statistics (EMOS) was introduced

by [86]. EMOS is a post-processing technique which addresses forecast bias, underdispersion, and

spread-skill relationship. EMOS relies on linear regression, to yield a probabilistic forecast; formed

by a Gaussian predictive probability density function (PDF). The general form of the Gaussian

predictive distribution,

N (a + b1X1 + ... + bmXm, c + dS2) (4.9)

where a, bi, c, and d are regression coefficients, Xi are individual model forecasts, and S2

is the ensemble variance. EMOS uses either the continuous ranked probability score (CRPS) or
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ignorance (IGN) scoring, to determine the linear regression coefficients. This distribution provides

a probabilistic forecast which may outperform both the raw output and σ-scaling methods. EMOS

techniques are investigated for their potential well calibrated probabilistic forecasts. With a thorough

explanation for how performance is measured and how uncertainty is quantified, we are able to

effectively discuss the results provided by ensemble methods for probabilistic solar driver forecasting.
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Chapter 5

Results

To make meaningful contributions to the field of space weather forecasting, we must provide an

approach that is both realistic and has been supported by necessary testing. In order to support

the methods used, it is important to provide results which show a) new models outperform current

operational methods and b) probabilistic forecasts can be relied upon. This chapter discusses the

performance of UV-MLE and MV-MLE against the baseline persistence model, the linear opera-

tional method known as TS FCAST, and the NBEATS neural network ensemble model. We begin

with a discussion of results for univariate forecasting using the methods from Section 4.4, with a

focus on results regarding the F10.7 driver. After the comparisons between UV-MLE and current

F10.7 forecasting methods are made, we turn our attention to the results of MV-MLE, specifically

comparing the multivariate approach to univariate methods and the operational linear model for

F10.7, S10.7, M10.7, and Y10.7.

5.1 Univariate Forecasting of F10.7 with UV-MLE

We choose to first examine the UV-MLE performance on F10.7 because there exist many methods for

F10.7 forecasting (Section 2.4.2) which we seek to outperform. F10.7 has been extensively studied and

has a significant dataset to apply ML approaches. Additionally, there exists a univariate probabilistic

model, N-BEATS, which we seek to outperform using the methods from this work. We begin our

analysis with results related to input data manipulation.

59



5.1.1 Input Sensitivity

In Figure 5.1a, a range of lookback values were considered over 3 solar rotations (81 days). Random

architectures were trained and evaluated on a validation set for each lookback. This study resulted

in a varied performance over different lookback windows and can be evaluated to identify impor-

tant inputs for this work. Based on the results from this analysis, we select a range of lookbacks

L = [7, 10, 13, 16, 19, 22] days. We spread the lookbacks out by differences of 3 days, to prevent

redundancy within models.

In Figure 5.1b, we clearly see an increase in performance by including back average values during

tuning/training. Based on the performance metrics, we select the best value from this sweep to be

used as an additional input to the neural network models. Based on the results of the backwards

averaging study, we select a value for backwards average, B= 12 days.

(a) Averaged validation loss for a variety of archi-
tectures indicated a short term lookback between
2 and 3 weeks is better than very short or very
long lookbacks.

(b) Training of models with different B values
indicates that short term backwards averaging
helps but longer term averaging performed the
same or worse than B=0.

Figure 5.1: By manipulating input information, models with a wide range of performance can be
produced.

Once we determined that varying model inputs can have an effect on performance, it is necessary

to investigate the effects of including more models, so a set of models are created with the methods

described in Section 4.4. With the created models, we can determine if combining models can offer

an improvement over a single model approach (i.e. are ensemble approaches even useful?)

Using the optimal lookback and backwards average values, the performance of including addi-

tional models can be seen in Figure 5.2. This ensemble is created using MLP models with various

lookbacks, random weighting, and architectures. The MAE metric is calculated based on the com-

bined forecast, which is the average predicted value. In Figure 5.2, it can be seen that inclusion of
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Figure 5.2: By incorporating more predictions, we are able to improve performance when compared
to a single model.

more ensemble members, lowers the error substantially. The MAE decreases from 6.4 to 3.9 (ap-

proximately 48%) from 1 member to 180 members. The fluctuation in error, seen when including a

small number of models, can be attributed to the stochastic training process and individual model

performance. Model outputs are averaged for this error and a limited number of models contribute

more to the average error, when using more models error is decreased on average. We also see a

plateau and a lack of improvement at the end of the study, so 180 ensemble members are chosen

as the total number of models to be used in this work. Since it is clear ensembles are useful for

this work, it is necessary to determine the impact of changing the training loss used to create the

ensemble members.

5.1.2 Diversity Through Loss Function

As a potential source of ensemble diversity, variation of the loss function is investigated. By evaluat-

ing models with different loss functions, we can identify if the introduced diversity provides enhanced

probabilistic forecasts. We perform a sweep analysis by creating an ensemble composed of models

with different loss functions. For this investigation, a model ensemble of size 100 was constructed

using the 10 best architectures from KerasTuner, which were trained 10 times, with random weight

initialization.

It is clear from Figure 5.3, seeing a clear minimum appear in the CES metric, that introducing

diversity to an ensemble by augmenting the learning process indeed changes performance, especially
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uncertainty estimates. Using an equal contribution from MSE and MAE models, we see an improve-

ment in the calibration of the ensemble approach. To produce reliable probabilistic forecasts, we

seek to minimize CES, and by using a neural network model ensemble with varied loss functions,

we decrease the CES metric by about 1% in the training and validation sets, as well as close to 2%

in the testing set. Performance metrics seen in Figure 5.3 indicates that diversity, by way of loss

function variation, does not contribute much to the ensemble’s performance metrics. Due to the

improvement seen in CES and insignificant changes in performance error metrics; we opt for a neural

network model ensemble which is constructed using an equal split of models trained with MSE and

MAE loss functions.

5.1.3 Results of Different Univariate Models

To compare model performances directly we must ensure that metrics are reported for the same

test set data. We use the original F10.7 data sets presented in Figure 3.8 to make predictions using

the N-BEATS ensemble, the SET model, and our novel UV-MLE created with a variety of model

types. When directly compared over the short term, the proposed ensemble method outperforms

persistence and the SET method in all cases, as seen in Figure 5.4, this indicates that ensemble

methods are better suited for capturing non-linearity in the F10.7 proxy. It can be concluded from

Table 5.1, that the ensemble methods outperform persistence, the SET method, and N-BEATS for

Figure 5.3: Left: A mixture of loss functions provide better calibrated uncertainty estimates. Right:
The RMSE metric is not nearly as sensitive to loss function but may benefit from other sources of
diversity.
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Figure 5.4: The subscripts MLE,D and MLE denote a dynamic prediction and multi-step predic-
tion respectively. These metrics are non-relative and are not scaled to the baseline performance.
Evolution of metrics over forecast horizon indicate short term prediction is improved by UV-MLE
ensemble methods.

short term F10.7 forecasting. It should be noted that dynamic prediction methods were found to

improve performances in MLP models but hindered the predictions of the LSTM models. LSTMs

did not seem to not benefit from the recursive prediction the same way MLPs did, especially in the

test case. It is also important to note that various models perform differently across the various

metrics and sets. This result indicates the importance of examining more than one metric at a

time, providing a ”fuller picture” of model performance. This may be attributed to instabilities in

predicted values, where large error predictions continued to be fed into the model, magnifying small

errors. It should also be noted that the validation set had a higher solar maximum than the test

set, and may have contributed to a few metrics being worse on the validation set. An investigation

and discussion into the statistical consistency of validation sets is performed in Section 4.1.

It was also found that mixing prediction type helped significantly, using a mixed prediction

(average prediction of MLPMLE,D and LSTMMLE), we see an approximate 14% MSE improvement

over the single best non ensemble model on the validation set; this may be attributed to the greater

number of models combined (360 models). These results indicate that when using an ensemble,

we improve on single model approaches. The relative Pearson correlation coefficient across various

approaches reinforces that deep-learning approaches all out perform the baseline model. Based on
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Table 5.1: Relative metric comparison of Multi Lookback Ensemble (MLE) and Dynamic (D) methods with

other forecasting methods. Metrics are scaled against the persistence baseline, and averaged over forecast

horizons. Lower error metrics and higher correlation metrics are preferred, with a value of 1 exhibiting the

same performance as persistence. The best performing values in each metric are highlighted in bold.

Model Relative Metric
Training Set Sample (1964-1974) RMSE MAPE R

(Corr. Coefficient)
SET 0.819 0.816 1.034

N-BEATS 0.799 0.922 1.011

Single MLP 0.747 0.910 1.031

MLPMLE 0.800 0.878 1.038

Single LSTM 0.762 0.769 1.066

LSTMMLE 0.723 0.877 1.071

MLPMLE + LSTMMLE 0.766 0.878 1.024

MLPMLE,D 0.818 0.989 1.009

LSTMMLE,D 0.898 0.975 1.008

MLPMLE,D + LSTMMLE,D 0.814 0.881 1.067

MLPMLE,D + LSTMMLE 0.731 0.838 1.065

MLPMLE + LSTMMLE,D 0.764 0.830 1.022

Validation Set (1994-2004)
SET 0.854 0.850 1.020

N-BEATS 0.843 0.835 1.022

Single MLP 0.820 0.822 1.024

MLPMLE 0.813 0.814 1.024

Single LSTM 0.827 0.832 1.023

LSTMMLE 0.815 0.822 1.024

MLPMLE + LSTMMLE 0.813 0.816 1.024

MLPMLE,D 0.921 0.967 1.034

LSTMMLE,D 0.927 0.981 1.034

MLPMLE,D + LSTMMLE,D 0.918 0.936 1.033

MLPMLE,D + LSTMMLE 0.692 0.703 1.042

Test Set (2006-2020)
SET 0.888 0.881 1.021

N-BEATS 0.839 0.893 1.027

Single MLP 0.840 0.875 1.028

MLPMLE 0.826 0.857 1.029

Single LSTM 0.680 0.773 1.041

LSTMMLE 0.637 0.722 1.043

MLPMLE + LSTMMLE 0.644 0.718 1.042

MLPMLE,D 0.662 0.713 1.046

LSTMMLE,D 1.070 1.194 1.027

MLPMLE,D + LSTMMLE,D 0.807 0.904 1.046

MLPMLE,D + LSTMMLE 0.713 0.803 1.049

the current results, the ensemble approach should be compared to the NOAA SWPC forecast, which

is issued electronically to stakeholders.

5.1.4 Comparison with NOAA SWPC (2015-2019)

The NOAA SWPC Weekly publication is distributed every week, providing an F10.7 forecast for a

27-day period. We choose a range of dates, for which Weekly forecast data is archived, which also

align with our testing data set. The data selected for comparison also incorporates a mixture of

high, moderate, and low activity levels over 5 years. We truncate Weekly publication forecasts from

27 days, to 6 days, to align with prediction horizons in this work.

In Figure 5.5, we see that the SWPC forecast has larger errors in both RMSE and MAE metrics
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Figure 5.5: The non-relative RMSE and MAE plotted over forecast horizon indicate a substantial
decrease in error when using neural network methods.

for all horizons than the neural network model ensembles. It is seen that a forecast horizon of one

day is substantially improved by using the LSTMMLE . The LSTMMLE provides a 58% and a 76%

drop in RMSE and MAE over SWPC for a one day forecast horizon. As the horizon increases, the

forecasting methods seem to approach similar errors. When average metrics are analyzed, as seen

in Table 5.2, the ensemble approaches outperform the SWPC model.

Table 5.2: Comparison of metrics between the SWPC forecast and the neural network methods,
averaged across the entire forecast horizon. Relative metric column indicates % change of metric
compared to the SWPC method, negative (bold) indicates lower error than the NOAA SWPC
method.

Model RMSE [SFU] Relative RMSE [%] MAE [SFU] Relative MAE [%]

SWPC 8.41 0 4.76 0
MLPMLE 7.18 -14.6 4.26 -10.4
LSTMMLE 7.31 -13.0 3.73 -21.6

MLPMLE,D+LSTMMLE 6.04 -28.2 4.22 -10.4

5.1.5 Solar Activity Level and Error Statistics

To identify uncertainty in prediction over forecast horizon we plot mean error (ME) vs the horizon;

the ME indicate the average over or under predictions made by a model. This analysis uses the

same dates for predictions as [26] which is October 1st 2012 through December 31st 2018 and uses

the binning criteria in Table 4.4.

It can be seen in Figure 5.6, that predictions are less biased than persistence and the SET model

at high solar activity levels. At low activity, the biases are worse than those for the more simple

methods, indicating a tendency to over predict by 1.5 SFU on average by the 6th day. At elevated
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and high activity levels, the dynamic prediction tended to under predict in some cases. We see that

the ensemble that incorporates both multi step prediction and dynamic, made less biased predictions

at both elevated and high activity levels but made more biased predictions at low activity levels.

This indicates it may be useful to combine the predictions from the members of an ensemble in a

way other than averaging. The bias at low activity levels may be due to the training scheme; during

training, the MSE loss function was minimized, penalizing larger errors greater than smaller errors.

With large errors, training would skew the model to make better predictions at higher activity levels,

to minimize the loss function. The error statistics at the high activity level are only analyzed for a

small number of predictions (about 20 forecasts) and may not be statistically significant. The low,

moderate, and elevated activity levels have approximately 500, 1400, and 200 forecasts respectively.

Errors in prediction are suspected to be larger during periods of high solar activity. We break

down the performance of the best ensemble approach and the SET method, along with the F10.7

value from the maximum of solar cycle 24 to the minimum of solar cycle 25. The trends seen in

Figure 5.7 highlight the high correlation between activity level and error. Our work is in agreement

with the results seen in [26] and [12]; forecasting of F10.7 is more challenging at higher solar activity

Figure 5.6: Bias of well performing models on test data indicates that ML methods provide much
less biased predictions when solar activity is increased. The black line at zero indicates no bias.

66



Figure 5.7: Top: 180 day averaged mean absolute error (MAE) for a forecast horizon of 6 days.
Bottom: The F10.7 driver changes with solar activity level over part of the test set, as solar cycle
24 turns into solar cycle 25.

levels. We have identified performance metrics in general, and at various solar activity levels, it is

now crucial to compare the probabilistic forecast uncertainty estimates with the other probabilistic

method.

5.1.6 Quantified Uncertainty

The UV-MLE ensemble approach would allow a user to sample from a probabilistic range of values,

rather than use a single deterministic value, like the SET method. By outputting a range of F10.7

values, a prediction contains both an average and associated uncertainty bounds, which creates

a more robust and operationally useful forecast. By considering a large number of models and

combining their output, the ensemble prediction should produce robust and reliable uncertainty

estimates.

We clearly see in Figure 5.8, that models that have good metric scores are not necessarily the

best when predicted uncertainties are evaluated. Based on work done, multi-step prediction models

tend to be under confident in the predicted uncertainty bounds and dynamic prediction causes the

prediction to be over confident. The use of σ-scaling (Section 4.6.1) is indicated by the dotted line

in Figure 5.8. This scaling provides a better grouping of models along the 45o line, indicating a
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Figure 5.8: Test set calibration curves for ensemble predictions. The dashed red line indicates σ-
scaling has been applied to the probabilistic forecast.

general improvement in uncertainty estimates after adjustments are made.

Table 5.3: Calibration Error Score (CES) of an ensemble with good performance metrics
(MLPMLE,D + LSTMMLE) and another ensemble approach by (Stevenson et al., 2022). A bold
values indicates the best metric.

Model Test Scaled Test Val. Scaled Val. Train Scaled Train

(Raw Output) (σ-scaled) (Raw Output) (σ-scaled) (Raw Output) (σ-scaled)

UV-MLE 13.4 9.8 14.34 5.22 18.20 14.51

NBEATS 2.87 2.38 12.52 8.65 14.79 11.8

After σ-scaling was applied based on validation performance, we improve the uncertainty esti-

mation significantly for our ensemble methods. The CES was improved by 4% and 9% on the test

and validation sets respectively, while using the MLPMLE,D + LSTMMLE ensemble. This indi-

cates that σ-scaling can be useful for making more robust and reliable uncertainty estimates when

validation data is available. It should also be noticed that uncertainty estimation on the test set

is better than both validation and training sets, which may be attributed to the difference in solar

activity levels (higher maximums), seen in Figure 3.8.

It is interesting that a model with worse performance metrics (error) has better uncertainty

estimates, as seen in Table 5.3. One possibility for the NBEATS performance may be due to the

diversity through varied loss function. The initial implementation of UV-MLE (Figure 5.8) did not

consider a varied loss function, as there was not enough evidence from previous works to support its

consideration. By varying loss function, NBEATS may be more suited for uncertainty estimation
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than direct value prediction and indicates that without scaling, the NBEATS approach is well

calibrated. Even with a single loss function in UV-MLE, once σ-scaling was applied, the approaches

were similarly calibrated on the validation and training sets. Further investigations into improving

the uncertainty estimates by improving ensemble diversity is discussed in the next section.

5.2 Multivariate Forecasting (MV-MLE)

Univariate methods showed substantial improvement over the operational SET method when error

metrics were compared. We saw a similar uncertainty estimates between UV-MLE and the NBEATS

method; it is now important to discuss the results for approaches of forecasting the other drivers.

5.2.1 Ensemble Member Combination Methods

Although a probabilistic forecast provides a distribution, it is critical to provide single point, or a

combined forecast value. We believe it necessary to investigate methods for a combined forecast

other than the historically used mean. Using both a stacked ensemble and by combining predictions

using the mathematical median, we determine more sophisticated methods which outperform the

previously used mean predicted value.

Figure 5.9: Ensemble combination methods using stacking or median (green & orange) show im-
proved errors over all horizons when compared to persistence and the SET method.

In Figure 5.9 it is clear that combining an ensemble using the mean value leads to improved

predictions across all forecasting horizons, outperforming both persistence and the linear SET al-
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gorithm. We observe that the predicted mean performs effectively, but additional enhancements in

performance metrics are achieved when employing methods like median prediction or stacking. We

believe that by using the median of predicted values, we eliminate the outliers that may occur when

considering the mean.

We perform a stacking approach using the validation data set, providing a weight associated with

each model. Once the models have been combined using these weights, we see a dramatic increase

in performance for nearly all drivers and horizons. We see that stacking increases performance at

larger horizons more so than smaller horizons. This result may indicate that some models are better

learners at larger horizons and have an associated larger weight. We see that predictions of S10.7

using the mean of prediction provided similar errors to the SET method, it is not until stacking is

performed do we see noticeable improvements.

When using median and stacking, we see a considerable improvement over the mean approach,

seen in Table 5.4. When RMSE is averaged over the 6-day horizon, we see improvements in all

drivers. Stacking outperforms median combination on the training, validation, and test sets. It

should be noted that the significant improvement seen in the validation set is expected due to the

procedure used to create model weights; stacking weights were created to fit the validation data and

therefore are expected to perform well. Instead, we consider the training and test sets to be better

measures of true stacking performance. Comparing stacking to mean combination, the smallest

improvement observed is 0.57 SFU, while the most significant improvements reach up to 2.19 SFU.

Table 5.4: The RMSE metric was averaged over a 6-day horizon for each combination method. The
difference between the mean prediction and both median and stacking approaches are reported.
Negative values indicated an improvement over the mean combination method, with bold indicating
favorable values.

Combination Method Difference vs. Mean (RMSE)

F10.7 S10.7 M10.7 Y10.7

Training Set

Median -0.28 -0.80 -0.64 -0.40

Stacking -0.65 -1.33 -1.12 -0.57

Validation Set

Median -0.29 -0.79 -0.63 -0.37

Stacking -2.19 -1.86 -1.87 -1.24

Test Set

Median -0.36 -0.79 -0.70 -0.47

Stacking -1.40 -1.57 -1.23 -0.86

Due to the decrease in error, we consider the stacking approach to be the most useful method for
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combining our ensemble members. Since a validation or training set has already been ”seen” by the

models, we believe that the stacking approach can utilize such sets for another step in the machine

learning process. In stacking, a linear regression model is used to ”learn” the best combination

method for the neural network models, which is referred to as a meta learner. We show that with

stacking, we can effectively use a meta learner to enhance predictions. Based on the improvements

in performance error metrics, we select stacking as the preferred method for combining models.

5.2.2 Comparison with Operational Models

In our analysis, we evaluate the performance of neural network models, which have undergone

training using striped validation data. These models utilize both PCA and non-PCA input data,

employ MSE and MAE training loss functions, and are combined through stacking. Given the

statistical consistency between the split datasets, we consider the test set as the primary indicator

for evaluating model performance. The testing set remains entirely hidden during training and

stacking, making it an effective tool for measuring performance error metrics. Our goal is to identify

the most effective forecasting methods among various ensemble approaches. We compare relative

metrics for test set predictions made by various approaches, and the results are presented in Table

5.5.

Table 5.5: Relative metric comparison of the SET linear method and stacked ensemble approaches on the

test set. Metrics are scaled against persistence and averaged over forecast horizons. Lower error metrics and

higher correlation metrics are preferred, with a value of one exhibiting the same performance as persistence.

The best performing values in each metric are highlighted in bold.

Driver Relative Metric SET Transfer Learning UV-MLE MV-MLE MV-MLE (PCA)

RMSE 0.927 0.799 0.911 0.75 0.773

F10.7 MAPE 0.939 0.823 0.904 0.771 0.805

R 1.005 1.024 1.013 1.029 1.028

RMSE 0.854 0.735 0.738 0.731 0.703

S10.7 MAPE 0.835 0.758 0.755 0.803 0.736

R 1.005 1.008 1.008 1.01 1.009

RMSE 0.761 0.646 0.751 0.623 0.596

M10.7 MAPE 0.771 0.687 0.764 0.658 0.651

R 1.019 1.026 1.021 1.029 1.029

RMSE 0.971 0.836 0.999 0.834 0.832

Y10.7 MAPE 0.996 0.865 1.136 0.863 0.87

R 1.003 1.009 1.002 1.01 1.009

We clearly see in Table 5.5, that ensemble approaches, specifically MV-MLE, outperform linear

methods. The MV-MLE approach, with or without PCA inputs, provides significant improvement
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over the SET method. When using MV-MLE with non-PCA inputs, we see an improvement of

RMSE for F10.7, S10.7, M10.7, and Y10.7 of 17.7%, 12.3%, 13.8%, 13.7% respectively, over the SET

method. It is clear that the SET method outperforms persistence and ensemble methods further

improve on the SET method.

Transfer learning methods also perform well, an improvement is seen over the SET method in

all cases. This improvement indicates that architectures and models developed specifically for the

F10.7 driver can be applied to the other drivers (with adequate training and fine tuning of weights.)

Interestingly, we see a dramatic difference between the transfer learning and UV-MLE methods. We

believe that the performance difference between these methods can be attributed to the amount of

data available for training. The models developed originally for univariate forecasting of F10.7 had

substantially more data to train from before being applied to the new drivers, while the UV-MLE

models were limited to a much smaller historic dataset. It should be noted that comparison with

univariate methods also provide an indirect comparison to SWPC methods for F10.7.

The ensemble requiring PCA rotated inputs seems to outperform the standard MV-MLE ensem-

ble on both S10.7 and M10.7, while the standard MV-MLE performs better on F10.7. The methods

perform similarly on Y10.7, with a difference of only 0.2% RMSE and 0.7% MAPE. We show an

additional comparison between the best performing, MV-MLE stacked ensemble approaches, seen

in Table 5.6. Neither method stands out, when considering relative error metrics alone. We cannot

definitively say whether PCA or non-PCA ensemble is preferred for probabilistic forecasting. We

must instead look to uncertainty quantification to determine if one method is the better.

5.2.3 Quantified Uncertainties

The probabilistic forecasts made by MV-MLE and MV-MLE (PCA) are evaluated on the three

data sets, seen in Table 5.7. We see that the CES varies across drivers; the calibration error scores

associated with F10.7 and Y10.7 are smaller, while S10.7 and M10.7 have slightly larger CES values.

In general, the raw outputs from both non-PCA and PCA inputs produce reasonable CES values.

Regarding the effectiveness of σ-scaling, we notice that cases where CES is relatively large to begin

with are improved more by scaling approaches. This can be seen most prominently in the S10.7

driver, indicating that S10.7 may benefit more from σ-scaling than other drivers. When probabilistic

models are well calibrated to begin with, σ-scaling seems detrimental and leads to worse CES values.

We found that the EMOS method for probabilistic forecasting yielded unfavorable CES metrics

for the multivariate ensemble methods. Due to the already reasonable calibration of the MV-MLE
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Table 5.6: Relative metric comparison of the SET linear method and MV-MLE approaches on the training

and validation sets. Metrics are scaled against the persistence baseline, and averaged over forecast horizons.

Lower error metrics and higher correlation metrics are preferred, with a value of one exhibiting the same

performance as persistence. The best metric values are highlighted in bold.

Driver Relative Metric SET MV-MLE MV-MLE (PCA)

Training Set

RMSE 0.964 0.632 0.642

F10.7 MAPE 0.975 0.685 0.677

R 1.008 1.043 1.044

RMSE 0.79 0.621 0.585

S10.7 MAPE 0.806 0.705 0.633

R 1.007 1.012 1.011

RMSE 0.701 0.53 0.504

M10.7 MAPE 0.725 0.569 0.555

R 1.024 1.035 1.034

RMSE 0.983 0.723 0.73

Y10.7 MAPE 0.985 0.762 0.771

R 1.003 1.013 1.1013

Validation Set

RMSE 0.96 0.730 0.759

F10.7 MAPE 0.982 0.767 0.794

R 1.01 1.03 1.028

RMSE 0.811 0.745 0.715

S10.7 MAPE 0.783 0.814 0.779

R 1.006 1.009 1.008

RMSE 0.704 0.64 0.609

M10.7 MAPE 0.715 0.681 0.652

R 1.023 1.029 1.029

RMSE 0.964 0.835 0.851

Y10.7 MAPE 0.966 0.863 0.887

R 1.003 1.009 1.008

and MV-MLE (PCA) ensembles, the application of EMOS did not help. EMOS generally worsened

CES metrics, ranging from 6-18%. We believe that potentially, the number of coefficients necessary

for EMOS may have caused the poor performance. To apply EMOS, regression for every model and

output is needed (180 models and 24 outputs). This high number of terms may have caused typical

linear regression to fail, as EMOS has been typically used for a small number of models with single

outputs.

We choose to not apply σ-scaling or EMOS methods to the probabilistic MV-MLE forecasts. The

application of σ-scaling helped marginally for some drivers but significantly worsened CES values

for other drivers, and EMOS provided poor CES values overall. Direct use of the ensemble member

outputs is a more intuitive method, and provides reasonable calibration. Additionally, no uncertainty
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Table 5.7: Calibration error score (CES) for ensemble methods when evaluated on all datasets.
Lower values are better and bold terms indicate the best method for a given driver.

Train Set MV-MLE MV-MLE (PCA) MV-MLE MV-MLE (PCA)

Driver (Raw Output) (Raw Output) (σ-scaled) (σ-scaled)

F10.7 1.92 3.00 8.76 8.39

S10.7 9.94 11.26 9.22 8.15

M10.7 8.55 5.59 7.02 8.17

Y10.7 3.93 2.34 3.89 5.13

Validation Set MV-MLE MV-MLE (PCA) MV-MLE MV-MLE (PCA)

Driver (Raw Output) (Raw Output) (σ-scaled) (σ-scaled)

F10.7 1.9 1.87 8.58 8.61

S10.7 9.21 10.67 8.68 8.41

M10.7 7.53 5.50 6.73 7.78

Y10.7 3.70 2.07 3.64 4.78

Test Set MV-MLE MV-MLE (PCA) MV-MLE MV-MLE (PCA)

Driver (Raw Output) (Raw Output) (σ-scaled) (σ-scaled)

F10.7 3.08 2.62 8.48 8.57

S10.7 8.64 10.63 8.36 8.62

M10.7 7.74 5.63 6.66 8.33

Y10.7 3.18 6.27 4.04 6.54

scaling or regression is necessary after the prediction step. With no need for extra processing, using

the direct predictions (raw output) directly is less computationally expensive and quicker.

We choose the test set for evaluation since it has been unseen during training and is statistically

consistent with both the training and validation sets. The direct model outputs led to the cali-

bration curves seen in 5.10. The MV-MLE (green) and UV-MLE (orange) models follow the same

trends; methods are well calibrated for smaller confidence intervals, with a tendency to over predict

uncertainty when the confidence interval grows for S10.7, M10.7, and Y10.7. The F10.7 driver is very

well calibrated, with only a minor tendency to under predict uncertainty at very large confidence

intervals. Neither MV-MLE or MV-MLE (PCA) stand out when examining the calibration curves.

When averaged across all four drivers; the MV-MLE (PCA) ensemble yields an improvement in CES

of only 0.16%. Based on the marginal differences, both methods can be considered useful, with a

slight edge to MV-MLE (PCA) for uncertainty estimates.
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Figure 5.10: Evaluation of the multivariate ensemble methods on the test set. Curves above or
below the 45o line indicate over predicted uncertainty and under predicted uncertainty respectively.
Curves closer to the 45o line are desired.
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Chapter 6

Summary and Conclusions

Ambitious plans by the commercial space industry are introducing large satellite constellations

into LEO. These constellations are a considerable financial investment; the design, building, and

deployment cost of the SpaceX constellation was estimated to be at least $10 Billion in 2018. The

proliferation of LEO has led to a recent focus on space traffic management, which is necessary to

protect these costly investments. Short-term forecasting in the LEO region is crucial for preventing

collisions between critical assets and for averting collisions with space debris. Collisions in the space

environment can be catastrophic. Approximately 2,300 observable debris objects were created when

the Iridium and Cosmos satellites collided in 2009, 65% of which remained in LEO for seven years

[87]. Small space debris is difficult to track and poses serious danger due to its high relative velocity

and dangerous elliptical orbits, which may introduce debris into other orbital regimes.

We currently do not have the capability to predict thermosphere density perfectly for a set of

space weather conditions. Satellite drag modeling relies on predicted density, which itself relies on

predicted solar drivers. The presence of uncertainty from predicted drivers can result in uncertainty

in forecasted orbital states, which, in turn, undermines confidence in making decisions regarding

potential collisions. The space traffic management community needs to have access to robust and

reliable uncertainty estimates for a satellite orbital state, to determine if a costly maneuver is

necessary.

This thesis focused on the novel development of short-term probabilistic solar driver models,

which can be used in the overall drag modeling framework to provide operators with better orbital

state uncertainty estimates. The development of UV-MLE and MV-MLE marks the first

time probabilistic solar driver models were developed for S10.7, M10.7, and Y10.7 with
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demonstrated uncertainty estimation capability and is a major contribution of this

work.

An investigation for probabilistic forecasting of the F10.7 driver using neural network ensembles

provided a model which outperformed the operational linear method and provided well calibrated

uncertainty estimates. When ensemble methods were first explored, it became evident that an en-

semble comprised of 180 models outperformed any single model, showing a substantial 48% reduction

in MAE. We named this approach univariate multi-lookback ensemble (UV-MLE), and considered

it a critical first step for probabilistic solar driver forecasting.

UV-MLE provided significant improvements over the currently used forecasting method for the

operational HASDM. We initially investigated UV-MLE constructed with a variety of model types

such as MLP and LSTM. Using similar training, validation, and testing sets as prior works for

F10.7, improvements were seen in the relative RMSE over the SET method of 9.6%, 3.9%, and 25%

respectively. UV-MLE also improved upon the F10.7 forecast distributed by SWPC and was less

biased than persistence or the SET method at high solar activity levels. The high skill on the test

set is thought to be attributed to the holdout scheme used to split the data; solar activity was lower

on the test set and led to better performance by UV-MLE.

UV-MLE is also able to provide probabilistic forecasts, which are unavailable with the currently

used SET method. The uncertainty estimates provided by UV-MLE were able to achieve similar

calibration as the other available probabilistic method, while improving on performance metrics.

We considered these initial results a success, but felt as though the uncertainty estimates could be

better calibrated if more sources of ensemble diversity were considered.

With the capability of the initial implementation of UV-MLE seen on F10.7, we aimed to provide

similar forecasts for the other solar drivers used by JB2008, S10.7, M10.7, and Y10.7. No probabilistic

forecasting method for these drivers existed, so it was critical to provide such a model for use in the

STM community. However, the same methods used for UV-MLE struggled with the small amount

of historical data, and there was the possibility that considering more than one driver at once would

be beneficial.

A novel probabilistic forecasting method was implemented for all four solar drivers simultane-

ously. This method is referred to as multivariate multi-lookback ensemble (MV-MLE), and is a

neural network ensemble created with stacked LSTM models. The MV-MLE considered several

sources of ensemble diversity, such as varied loss function, random weight initialization, varied look-

back, and tuned architectures. The MV-MLE approach provided improvements in relative RMSE

for F10.7, S10.7, M10.7, and Y10.7 by 17.7%, 12.3%, 13.8%, 13.7% respectively, when compared to the
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currently used method. Additionally, MV-MLE provides the first method for probabilistic forecast-

ing of the S10.7, M10.7, and Y10.7 solar drivers. It was seen that MV-MLE provided well calibrated

uncertainty estimates for all solar drivers, resulting in an average CES of approximately 5.8%.

It was also necessary to consider the best way to combine individual models. We discovered

that employing a linear regression technique, known as stacking, to derive model weights based on

the validation set resulted in combined model forecasts that were significantly superior to the con-

ventional mean approach. With the traditional mean, F10.7, M10.7, and Y10.7 ensemble predictions

outperformed SET and persistence, but S10.7 predictions did not. A combined forecast of S10.7 out-

performed both persistence and the SET method when a median or stacking combination approach

was used. Stacking outperformed all other combination methods and resulted in an approximate 1.3

SFU improvement in RMSE, when compared to the mean. Methods used for uncertainty estimates,

such as σ-scaling, showed good performance only for poorly calibrated models. Models which were

well calibrated initially did not benefit much, and raw output values were preferred.

The second contribution is a novel striped sampling approach for machine learning

methods. Due to the limited historical data available for the S10.7, M10.7, and Y10.7 solar drivers,

we saw poor performance when applying holdout methods for splitting data into training, validation,

and testing sets. We determined that holdout becomes quite limiting for the new solar drivers, as

there are not enough solar cycles in their history to properly train models using holdout. The

statistics of the training, validation, and test sets were analyzed. We determined that applying

traditional holdout led to data sets which had drastically different solar activity levels. Training of

neural networks using data with inconsistent statistics created models with bias and led to poor test

set performance. A novel method to create data sets with consistent statistics was necessary.

Striped sampling was introduced in this work to create more statistically consistent data sets

than the traditional holdout method. The data was broken down into week long segments, which

were sequentially combined to create the training, validation, and test sets. The sequential nature

of this sampling method allows for LSTM models to be effective, as ordered data is necessary to

leverage the LSTM architecture. In addition, one week sampling allowed for the three data sets to

be spread out more evenly across the historical data, capturing similar solar activity levels and could

address bias.

The third and final contribution of this thesis is input data manipulation for machine

learning methods. It can be challenging to model physical systems using only historic values.

Initial auto regressive models which only used daily driver values were promising, but did not show

significant improvement over the operational method. We built on the work done in [12] by creating
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neural networks which used inputs with different lookback periods, leading to improved ensemble

performance and ensemble diversity. Models trained with only historic values were sensitive to short-

term variations and had difficulty capturing longer term trends. If a storm appeared in the lookback

period, models would be thrown off and would predict associated unrealistic values. To address this,

we investigated the use of a backwards average input term, and determined that including a fourteen

day backwards average input term improved the RMSE by approximately 7%, when compared to a

model with no backwards average input.

Prior models for S10.7, M10.7, and Y10.7 were auto-regressive, and did not consider the correlation

between drivers. Previous work in F10.7 forecasting considered other terms as model inputs, but no

such methods existed for the other solar drivers. This work considered the simultaneous forecasting

of all solar drivers, and found that multivariate methods outperformed univariate methods. It is

clear that by including multiple solar drivers as inputs, models are able to learn more effectively,

most likely identifying connections between drivers which may not be apparent.

Initial work for forecasting the highly correlated drivers led us to consider that high correlation

forecasting may be redundant. To investigate the connection between driver correlation and mod-

eling, we considered the use of PCA rotation of the MV-MLE input data. Although PCA rotation

effectively de-correlated the inputs, significant improvements were not seen, performance metrics

of MV-MLE and MV-MLE(PCA) were similar. The MV-MLE(PCA) showed minor improvement

when uncertainty estimates were investigated, providing a 0.16% improvement in CES when averaged

across all solar drivers. Calibration curves were created to compare MV-MLE and MV-MLE(PCA),

which showed that the PCA approach helped F10.7 and M10.7, but were not beneficial for S10.7, and

Y10.7.

6.1 Future Work and Recommendations

This work has shed light on the importance of probabilistic modeling of solar drivers and the chal-

lenges associated with density modeling and uncertainties in conjunction assessment. However,

considerable work is still necessary to address the challenges associated with the further use of the

space environment. The next steps and recommendations for the continuation of this work are as

follows:

Probabilistic Driver-Density Coupling: There has been successful coupling between probabilis-

tic density models such as HASDM-ML, and orbital state uncertainty estimates. Building off the

probabilistic driver models presented in this work, there should be a future focus into coupling driver
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uncertainty with probabilistic density models and orbit propagation. This would require develop-

ment of a framework which couples driver uncertainty and density model uncertainty with orbit

propagation. Typical Monte Carlo approaches for driver uncertainty in orbit prediction are ineffi-

cient, so methods need to be explored to more efficiently sample drivers from probabilistic forecasts.

If accomplished, density models would be robust and reliable, considering the two major sources of

uncertainty simultaneously, which would be critical for risk assessment in the STM community.

Neural Networks and Ensemble Approaches: To improve forecasting of drivers using only his-

torical values and neural network ensembles, investigations into more advanced ensemble approaches

and NNs could be beneficial. Further investigation into state-of-the-art transformer models may

prove beneficial, as new methods are consistently being introduced and could allow for better per-

forming probabilistic forecasting. Creating NN ensembles with a method such as boosting [88] could

also help, developing ensemble members that are skilled in different areas. Boosting is an ensem-

ble generation scheme which sequentially creates simple NN model. In addition, the work by [20]

discussed training of ensemble members simultaneously (evolutionary ensembles). These methods

may allow for more diverse ensembles since these schemes enforce negative error correlation during

training, considered a divide and conquer approach. If accomplished, probabilistic forecasting using

ensembles will be more efficient, needing less overall models to provide the same or better perfor-

mance. Greater ensemble diversity may also help, as models will be skilled in different areas and

could provide better calibrated uncertainty estimates. In addition Bayesian Neural Networks (BNNs)

can be used to provide direct prediction of statistics without the need for an ensemble approach but

may prove challenging to scale due to their complex nature and computational expense

Data Splitting: To further enhance the forecasting of all four drivers, it may be necessary to

consider adjustments in sampling schemes that promote greater consistency in statistics across the

different sets. It may be necessary to reduce the striped sampling segments to a resolution of 1-day;

using a sequence of 6 days, 2 days, and 2 days, in the training, validation, and test sets respectively.

A finer time resolution could allow the sets to have even better statistical consistency. It is important

to determine at what point the striped sampling resolution impacts LSTM results, however it should

be noted that a key component of a LSTM model, is sequential inputs, leveraging the model’s ability

to ”remember.” By changing the striped sampling resolution to one day, the LSTM’s internal states

must be reset every 6 days for training, and every 2 days for validation and testing. Resetting these

internal states ”clears” the LSTM memory and may lead to worse performance. If better sampling

methods are created, training of probabilistic solar driver models may be easier and lead to improved

machine learned models.
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Additional Solar Driver Data and New Inputs: The available data for S10.7, M10.7, and

Y10.7 is quite limited. Daily observations have only been archived since January 1, 1997, leading

to a relatively small overall data set for ML applications. If we continue using daily values, it

will take a considerable amount of time to build up enough data to apply more traditional ML

validation schemes. Machine learning approaches rely on large amounts of data to make effective

generalizations. It is important to build a data set that can easily be used by new and existing

ML methods. We believe the STM community should seek to provide solar driver observations at a

cadence the same as the geomagnetic indices used by JB2008, which are provided every three hours.

By providing solar driver data at the same cadence as the geomagnetic indices, we will generate data

eight times quicker than before. The data presented in this work for all drivers has observations from

1997-2023, resulting in approximately 9,500 daily values. If solar driver observations were done with

a 3-hour cadence, the same size data set could be archived in a little over three years. Additionally,

finer time-resolution data may help provide meaningful solar driver patterns which are not apparent

when using daily values.

There is only so much information that can be gathered from previous values alone, even using

neural networks. The addition of solar disk images, suggested by [34] may be critical in improving

forecasts, as long as the time lag between visual solar activity and thermosphere response is consid-

ered. In future works, it may be critical to evaluate also the ”time-lag” of predicted values. If a solar

storm were to occur and a prediction of the driver is made only after the event, then the prediction

is meaningless for risk assessment in the STM community. We recommend that future forecasting

evaluations consider in addition to metrics, quantifying the delayed response of a model. Similarity

between signals at different times can be accomplished with an algorithm such as Dynamic Time

Warping (DTW) and may be useful in quantifying temporal delay. It is also noted, when using

AR models, time lag response is typical and may not be completely avoided. To address time-lag

issues, it may be critical to consider models which incorporate physical processes and consider solar

regions that are not yet Earth facing. A comparison of time-lag between physics based models such

as the proxy work done by [35] and auto-regressive methods should be performed. It is important

to continue planning space weather missions which are capable of providing important solar images

and scientific observations, capturing crucial data for new model development.
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