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ABSTRACT 

THREE ESSAYS ON HEALTH AND ENVIRONMENTAL ECONOMICS: 

APPLICATIONS OF SPATIAL ECONOMETRICS AND SPATIAL ANALYSIS 

Mohammed Syedul Islam 

Spatial interaction and the locational structure between observations play key roles in the 

field of econometrics for both cross-sectional and panel data analysis. Compared to a non-spatial 

econometric model, a spatial model relaxes the assumption of independency in observations. This 

research applies spatial and non-spatial econometrics in three different fields of applied 

economics: (1) drinking water and air quality violations impacts on lung and bronchus cancer 

incidence in the contiguous United States (U.S.); (2) spillover effects of non-pharmaceutical 

interventions (NPIs) on COVID-19 cases across the contiguous U.S. counties; and (3) urbanization 

impacts on carbon dioxide (CO2) emissions in selected 119 countries. 

In Chapter 2, ordinary least squares (OLS) and Spatial Durbin Model (SDM) are applied 

to data from 48 states plus Washington D.C. in the contiguous U.S. for the period of 2006-2016 to 

examine the impacts of population-level exposures to environmental quality standards non-

compliance on the lung and bronchus cancer incidence. The SDM reveals statistically significant 

impacts of population-level exposures to violations of environmental pollution standards on lung 

and bronchus cancer incidence. While impacts are statistically significant (direct effect for water 

and total effect for air), they are small relative to smoking behavior. Example calculations show 

that a 10% reduction in population exposure rate to drinking water quality violations across the 

state of Oklahoma results in a decrease of five cancer cases annually with an estimated annual 

monetary benefit of $20.6 million.  A 10% reduction in population exposure to air quality 

violations in the state of Utah results in six fewer cancer cases annually with a $24.7 million annual 

monetary benefit in Utah and three-neighboring states. 

Chapter 3 examines the spatial spillover effects of NPIs policies on reductions of COVID-

19 cases in the contiguous U.S. Using annual cross-sectional data for the year 2020, I apply a 

spatial Durbin model (SDM) to find statistically significant spillover effects from stay-at-home 

mandatory orders and mask mandates on COVID-19 cases per 100,000 people. Nationally, on 

average, 4 cases per 100,000 people can be reduced within the mandate county while an additional 

9 cases per 100,000 people can be reduced in 6-nearest neighboring counties as the spillover effect 

from implementing a mask mandate policy for a month. On the other hand, the direct effect of 

mandatory stay-at-home orders is 15 cases per 100,000 people while the spillover (indirect) effect 

is 38 cases per 100,000 people when this NPI is implemented for one month. Thus, mandatory 

stay-at-home orders show a greater impact on reducing COVID-19 case rates than mask mandates. 

Further, the indirect effect in neighboring counties is larger than the direct effect for both NPI 

policies, showing the importance of accounting for spillover effects when determining NPI policy 

benefits. Based on the SDM model, an example of mask mandate and mandatory stay-at-home 

policies in Powder River County in Montana (as a mandate state) with three neighboring non-

mandate counties in the state of Wyoming is examined. A month-long implementation of mask



 mandate, stay-at-home order, and both these policies contributes $0.01 million, $0.04 million, and 

$0.05 million of direct benefits, respectively from reduced COVID-19 costs in Powder River 

County in the state of Montana. The spillover benefits of about $0.70 million, $2.95 million, and 

$3.65 million, respectively are estimated based on reduced COVID-19 costs in the three 

neighboring counties of Wyoming (Sheridan, Campbell, Crook) from one-month implementation 

of public mask mandate, mandatory stay-at-home orders and both these policies in Powder River 

County in the state of Montana. Most of this benefit is the result of reduced hospitalizations in the 

states of Montana and Wyoming. The results of this research will help to design cost-efficient 

interventions to tackle future pandemics. 

Finally, Chapter 4 relates urbanization to greenhouse gases (GHG) emissions based on data 

from 105 countries in 1990-2018. Using pooled mean group (PMG) estimation technique, 

significant nonlinear relationships are found between urbanization and both carbon dioxide (CO2) 

intensity and CO2 emissions. For CO2 intensity, urbanization impacts hit a turning point at 59.16 

percent such that urbanization prior to this percentage increases CO2 intensity while rates of 

urbanization rate above this percentage decrease CO2 intensity. No such turning point is observed 

for CO2 emissions.  Based on the PMG model, renewable energy consumption significantly 

reduces both CO2 intensity and emissions. However, at a given rate of renewable energy 

consumption, urbanization only reduces CO2 emissions.  Empirical results from this study 

highlight the importance of global scale action on urban buildings and transportation to reduce 

GHG emissions in both developing and under-developed countries with technical support from 

developed economies.
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1.1 Introduction 

For both cross-sectional and panel data studies, spatial interaction and the locational 

structure between observations have recently drawn increased attention in the field of 

econometrics. Spatial econometrics specifies, estimates, and tests how the magnitude of a variable 

of interest would be determined by the value of the same variable at other locations in the system, 

given a location to any observation in the system (Anselin, 2001). A spatial economic model 

relaxes the assumption of observational independence when compared to a non-spatial economic 

model. In this regard, zip codes, cities, municipalities, counties, states, and countries could be 

considered spatially correlated observations (Elhorst, 2014). In this dissertation, spatial spillovers 

are estimated for topics related to water, air, and health by applying different level of spatially 

correlated observations. The impact of urbanization on carbon dioxide (CO2) emissions is 

estimated by applying dynamic panel data models. 

1.2 Purpose of this study 

The overarching aim of this study is to empirically exhibit, at the state, county, and country 

levels, how spatial and dynamic panel data analysis may help in finding more accurate results 

when evaluating the effects of public policies, shocks, and exogenous variables on health and 

environmental outcomes. This study consists of three essays. 

Aim of Essay 1: Examine the impacts of water and air quality standards non-compliance on lung 

and bronchus cancer incidence in the contiguous United States by applying a spatial econometric 

model. 

The first essay describes the policy-related environmental factors that explain lung and 

bronchus cancer incidence in 48 contiguous states plus Washington D.C. 
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The objectives for this essay are listed below: 

1. The main objective of this research is to examine the impacts of non-compliance for drinking 

water and air quality standards (as policy-related environmental factors) on lung and bronchus 

cancer incidence in the contiguous United States. 

2. As part of state-level calculations, this research assesses the impacts of percentage reduction in 

population exposure to drinking water and air quality violations on cancer cases within the state 

boundary and neighboring states. 

3. Finally, example calculations are made for annual monetary benefits from increased compliance 

for drinking water and air quality. 

Aim of Essay 2: Examine spillover effects of NPIs on the reduction of COVID-19 cases in the 

contiguous U.S. counties. 

The second essay focuses on state and county-level variations in adopting NPIs and 

therefore the COVID-19 spread across the contiguous U.S. Among the NPIs, stay-at-home orders, 

mask mandate, restaurant and bar closure, and reopening were dominant interventions during the 

COVID-19 pandemic. While many states and counties adopted those policies to restrict the spread 

of COVID-19, other states and counties did not implement those policies. This essay investigates 

the spatial spillover effects of NPIs on the reduction of COVID-19 cases in contiguous U.S. 

counties. Since COVID-19 is an infectious disease, the prevalence of COVID-19 in one county 

may affect its neighboring counties because of the cross-border mobility of people (WHO, n.d.).  

Therefore, this essay applies a spatial econometric model with objectives of: 
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1. Estimate the spillover effects of implementing NPIs such as stay-at-home orders, mask 

mandates, restaurant, and bar closure, and reopening for one month on the reduction of COVID-

19 cases in the contiguous U.S. counties. 

2. Calculate monetary benefits from reducing COVID-19 spread in the county where policies are 

in place as well as neighboring counties. 

Aim of Essay 3: Examine the relationship between country-level urbanization and GHG emissions: 

Application of dynamic panel data approach. 

The third essay investigates the non-linear relationship between urbanization and GHG 

emissions in selected 105 countries. Over the period of 1990-2018, this essay applies pooled mean 

group (PMG) estimate technique and find a statistically significant long-run relationship between 

urbanization and CO2 intensity in sample countries. This study also finds an inverted U-shaped 

relationship between urbanization and CO2 emissions. While many researchers investigate the 

effects of short-term and long-term relationships and non-linear relationships, this study estimates 

the interaction term of urbanization and consumption of renewable energy. Therefore, using PMG 

model, the objectives are to: 

1. Estimate the short-term and long-term impacts of urbanization on GHG emissions across 

countries. 

2. Test the non-linear relationship between urbanization and GHG emissions in the sample 

countries 

3. Estimate the interaction effect of urbanization and renewable energy use on GHG emissions in 

the sample countries. 



5 
 

References 

Anselin, L. (2001). Spatial econometrics. A companion to theoretical econometrics, 310330. 

Elhorst, J. P. (2014). Spatial econometrics: from cross-sectional data to spatial panels (pp. 20-

25). Heidelberg: Springer. 

WHO (n.d.). Coronavirus disease (COVID-19). Retrieved from https://www.who.int/health-

topics/coronavirus#tab=tab_1 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

 

 

 

 

CHAPTER 2: 

ESSAY 1: THE IMPACT OF NON-COMPLIANCE FOR AIR AND 

WATER QUALITY STANDARDS ON LUNG AND BRONCHUS 

CANCER INCIDENCE: A SPATIAL PANEL DATA ANALYSIS 

 

 

  



7 
 

2.1 Introduction 

Cancer is the second-leading cause of death among Americans (Heron, 2019). In 2020, the 

projected number of deaths from cancer was over 600,000 in the United States (U.S.) (American 

Cancer Society, 2020). Based on 2020 estimated new cases of cancer, the second most common 

type of cancer (after breast cancer) is lung and bronchus cancer. Although each type of cancer has 

its own set of risk factors, certain age groups, usage of alcohol and tobacco, exposure to UV 

radiation and excessive sunlight, chronic inflammation, obesity, and a history of cancer among 

family members make carcinogenic compounds more likely to develop into cancer in some people 

(National Cancer Institute, 2015). Empirically, factors identified as risk factors for lung cancer 

have included genetic factors (age, gender, family and ethnic background), behavioral factors 

(smoking, alcohol, diet and food supplements, poverty), and environmental factors (passive 

smoking, air pollution, radon, asbestos, occupational exposure, urban/rural residence). (De Groot 

and Munden, 2012; Doll, 1978; Grant, 2009; Speizer, et al., 1999).  

Lung and bronchus cancer involve both direct and indirect costs to the individual suffering 

from this cancer as well as society (Yabroff, et al., 2011; Kaye, et al., 2018; Lokhandwala, et al., 

2017; Mausbach, et al., 2018). Park and Look (2019) found a $16,346 annual U.S. mean healthcare 

expenditure per person for cancer patients which is four times higher than non-cancer patients. 

They also found lung cancer to be the most expensive type of cancer out of the four most common 

cancers. Based on Surveillance, Epidemiology and End Results (SEER)-Medicare data for the 

period of 1991-2003, it was estimated that a 72-year-old lung cancer patient pays $2,687 to $9,360 

per month for the first 6 months of care depending on the stage of diagnosis and histologic type 

(Cipriano, et al., 2011). Conducting survey among patients aged 66-99 years, Kaye et al. (2018) 

estimated the annual Medicare payments for lung cancer at over $20,000 for patient. 
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In dealing with environmental factors related human health impacts like cancer, historically 

the U.S. federal government has adopted drinking water and air quality policies to improve the 

health status of Americans. For example, the Safe Drinking Water Act (SDWA) was enacted in 

1974 and later amended in 1996 to protect people from naturally occurring and/or man-made 

contaminants that may be found in drinking water. As one example, in 2001, the U.S. 

Environmental Protection Agency (U.S. EPA) strengthened the standards, lowering the allowable 

amount of arsenic in drinking water from 50 ppb (parts per billion) to 10 ppb (or 0.01 milligram 

per liter).  Under the SWDA, the U.S. EPA has set maximum contaminant level (MCL) for asbestos 

at 7 million fibers which is longer than 10 μm (Office of Federal Register, 2011), and for lead at 

15 μg/L in public water systems (CDC, 2019). 

Similarly, for air quality, under the Clean Air Act (CAA) of 1970, National Ambient Air 

Quality Standards (NAAQS) were established and set by the U.S. EPA. For outdoor air quality 

standards, the U.S. EPA determines both primary and secondary standards of fine particulate 

matter (PM2.5). The primary annual PM2.5 standard is designed to protect public health from short-

term and long-term exposures while the 24-hour PM2.5 standard is designed to work with annual 

PM2.5 standard to supplement health protection from short-term exposure. The primary annual 

PM2.5 standard is currently set at 12 μg⁄m3 and the 24-hour PM2.5 standard to 35 μg⁄m3.  

Both water and air quality non-compliance depend on several factors. Using data on 

drinking water quality non-compliance by public water system, Rahman et al. (2010) identified 

firm size, ownership type, and the location where the non-compliance occurred as major causes of 

non-compliance. Similarly, violating air quality standard has been shown to result in a higher 

number of deaths (Crosignani et al., 2021). Thus, controlling pollution non-compliance is 

important to improve human health outcomes.    
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Previous studies have focused on cancer rates and the link with air pollution and other non-

environmental risk factors (Molina et al., 2008).  There are fewer studies on the linkages between 

water contamination and cancer incidence (Evans et al., 2019; Morris, 1995; Stoiber et al., 2019). 

Some studies have highlighted the effect of arsenic contaminant in water on lung cancer or other 

types of cancer, however, they have not considered other water contaminants in their studies 

(Shiber, 2005; Heck et al., 2009).  There are, however, no studies which have examined the human 

health implications of non-compliance with air and water quality standards.  In addition, excess 

pollution moves from one location to another location when violation occurs over the NAAQS for 

air, and the MCL for water. Moreover, spatial distribution of population exposure to air and water 

quality non-compliance follows cluster patterns across the contiguous U.S. Based upon our review 

of the literature, prior studies have applied strictly non-spatial econometric techniques to estimate 

the impact of environmental factors on lung and bronchus cancer incidence.  

The aim of this research is the impacts of water and air quality standards non-compliance 

on lung and bronchus cancer incidence in the contiguous United States by applying a spatial 

econometric model. As the first objective, this research examines the impacts of non-compliance 

for drinking water and air quality standards (as policy-related environmental factors) on lung and 

bronchus cancer incidence in the contiguous United States. Secondly, as part of state-level 

calculations, this research assesses the impacts of percentage reduction in population exposure to 

drinking water and air quality violations on cancer cases within the state boundary and neighboring 

states. need to estimate spillover effects of water and air quality non-compliance in neighboring 

states. Finally, example calculations are made for annual monetary benefits from increased 

compliance for drinking water and air quality. Utilizing spatial economic techniques, this research 
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will fill this gap in the literature by estimating the local and regional effects of non-compliance 

with air and water quality standards on lung and bronchus cancer incidence in the U.S. 

While statistically significant impacts are found for both water and air quality standard 

non-compliance, their effects on lung and bronchus cancer incidence are small. Based on spatial 

Durbin model (SDM), this research finds that a 10% decrease in annual exposure rate to drinking 

water quality violations from arsenic, lead, or asbestos contamination reduces the annual number 

of cancers by only five cases within the entire state of Oklahoma.  A similar calculation is made 

for the state of Utah for a 10% reduction in annual exposure to PM2.5 contamination violations 

results in a regional (Utah and three neighboring states) number of cancers being reduced by only 

six cases. The estimated annual monetary benefits from this reduced population exposure are $20.6 

million and $24.7 million for water and air, respectively. In comparison, a similar magnitude of 

reduction in smoking in the population results in cancer incidence reductions of 16 to 46 times 

larger than non-compliance with environmental standards.  These results show the need for 

improvement in compliance with drinking water and air quality standards as well as policies to 

reduce smoking. 

In what follows, literature is reviewed in section 2, theory and econometric model are 

described section 3, data and methods are discussed in section 4, results are discussed in section 

5, concluding words and policy recommendations are provided in section 6. 

2.2 Literature Review 

Previous literature has identified both environmental and non-environmental factors that 

lead to the development of lung cancer (Molina et al., 2008; Doll, 1978; Grant, 2009). While 

smoking was found to be the dominant risk factor for lung cancer, this type of cancer is also 



11 
 

affected by other environmental as well as non-environmental factors.  Water and air pollutants as 

policy-related physical environmental factors are discussed in the following sub-sections. 

2.2.1 Water Pollution 

Source-specific (e.g. agricultural chemicals and hazardous waste) water contamination is 

a contributing factor to increased risk of cancer, particularly due to arsenic, disinfection 

byproducts, lead, and nitrate contamination (Ebenstein, 2012; Frederick et al., 2016; Steenland and 

Boffetta, 2000). Epidemiological studies suggest that arsenic shows the strongest evidence (over 

all water pollutants) of substantial risk of lung cancer (Wu, et al. 1989). Based on the spatial 

distribution of cancer rates and drinking water contamination, Morris (1995) also claimed arsenic 

as the strongest cause of lung, liver, bladder, and kidney cancers in the US. For example, Shiber 

(2005) found 1 in 333 individuals who were exposed to water arsenic contamination at the MCL 

of 10 ppb had an increase in their lifetime risk of bladder and lung cancer. Based on cumulative 

risk analysis of contamination over the period of 2010–2017, several studies show that over 

100,000-lifetime cancer cases are due to carcinogenic chemicals in tap water in the US (Evans et 

al., 2019; Stoiber, et al., 2019). Based on cohort studies, it is evident that lead cause an increased 

risk of lung cancer though the link is weak (Steenland and Boffetta, 2000; Lundstrom et al. 1997). 

Lead chromate is also responsible for bronchial cancer (Xie et al. 2005). Asbestos equally has a 

latency effect in causing human cancer, especially lung cancer (Torato et al. 2019). Although these 

studies utilized long-term average contaminant concentration in a community water system (CWS) 

and lifetime cancer risk from each contaminant concentration, what they lack is a consideration of 

spatial spillover effect in developing lung and bronchus cancer incidence as a result of less 

exposure to water contamination violations.   

 



12 
 

2.2.2 Air Pollution 

Smaller particulate matter such as PM2.5 has a strong association with lung cancer 

(Vinikoor-Imler et al., 2011; Raaschou-Nielsen et al., 2016). Using various type of models, it also 

has been documented that people get more exposed to PM2.5 than any other air pollutant (Kersey 

and Yin, 2020; Diao et al., 2019). Based on residential exposure to three major air pollutants O3, 

NO2, and PM2.5 from Canadian population-based case-control study, Hystad, et al (2013) found 

PM2.5 as the strongest risk factor of lung cancer incidence. Because PM2.5 particles are so small 

(compare to other pollutants) the human body cannot filter it out (Li et al., 2018; Huang et al., 

2017). Particles even smaller than PM2.5 in size enter the alveoli in the lung and negatively affects 

gas exchange within the lung (Hu and Jiang, 2014). Moreover, the interaction among those 

pollutants is complex and varies across seasons (Ito et al., 2007). 

Setting ambient air quality standards is crucial for both benefits and costs to the society 

(Currie and Walker, 2019). Studies show that air pollution causes direct and indirect costs to the 

society due to increased hospitalizations and pre-mature deaths (Alberini et al., 2004; Chen et al., 

2018; Zhu et al., 2019). Wind speed and direction further exacerbate pollution that accelerates the 

economic costs (Deryugina et al., 2019; Anderson, 2019; Yang and Chou, 2018). Pollutants such 

as ground-level ozone (O3), fine particulate matter (PM2.5 and PM10), nitrogen dioxide (NO2), and 

sulfur dioxide (SO2) have been found to increase the incidence of cancers (Kim et al., 2018; Grant, 

2009; Molina et al., 2008; Eckel et al., 2016; Fann et al., 2011). Study shows that about 129 to 354 

lives can be saved from lung cancer each year by improving air quality primarily PM2.5 

concentration (via reduced fracking activity) which is equivalent to $1.2 to $3.3 billion (Johnsen 

et al., 2019). Thus, the air quality plays a crucial role in determining lung cancer incidence in the 

U.S. 
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2.2.3 Non-compliance 

Theoretically, optimal pollution limits and non-compliance have been examined in prior 

literature (Arguedas, 2008; Arguedas et al., 2016; Arguedas et al., 2020). Optimal pollution level 

depends on a standard that minimizes the sum of abatement costs and external damages, the 

minimum probability required to induce compliance and a linear gravity sanction (Arguedas, 

2008). Any highly stringent pollution standard and progressive penalties lead to policy non-

compliance. When a fine is introduced for non-compliance, both pollution and non-compliance 

decrease as polluter’s capital stock increases (Arguedas, 2016). However, discounting this fine for 

polluter’s capital investment is socially desirable. Similarly, no effect is found on polluter’s 

behavior if a linear and progressive fine is imposed on stock pollution (Arguedas et al., 2020).  

Empirically, environmental non-compliance has been identified as a cause of increased 

health hazards in neighboring communities. A study on gold mining pollution in Ghana, where 

lack of environmental regulation exists, found a positive association between population exposure 

to NO2 concentration from mining and healthcare expenditure (Akpalu and Normanyo, 2017). Mu, 

Y., Rubin, E. A., and Zou, E. (2021) constructed a framework to identify whether local 

governments avoid air pollution monitoring when they expect air quality to deteriorate. Based on 

all 1,359 monitors in Jersey City Firehouse in NJ, they found a 33% reduction of this monitor’s 

sampling rate on pollution-alert days. The majority of literature has focused on theoretical aspects 

of non-compliance so that no single study has highlighted the impacts of water and air quality non-

compliance on human health. 
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2.3 Theory and Econometric Model 

‘Health status’ depends upon four broad categories of factors, health behaviors, clinical 

care, social and economic factors, and physical environment (UWPHI, 2022). Early research by 

Grossman (1972) and Wagstaff (1986) proposed a health production function (i.e., individual 

health behavior) from a microeconomic viewpoint, where individual implicitly engages in 

tradeoffs between ‘health’ against all other aims. The tradeoff between objectives of 

‘consumption’ and ‘health’ can be described by the conventional utility maximization problem. 

By solving this problem, ‘health’ serves as an input to generate income, therefore helps a consumer 

to purchase more consumption goods. While the Grossman model states that age, education, and 

income determine the production of health through the demand for health capital, other economists 

estimate exposure-response functions linking different environmental compounds to health 

outcomes. 

A health production function, H, is defined following Phaneuf and Requate (2017): 

H= f(Q, X, A; S)…………………………………………………………………………………....…(2.1) 

where, H is a binary variable describing individual health status (e.g. good or bad), Q is physical 

environment (e.g. ambient environmental quality), X represents a vector of clinical care (e.g. 

medical service), A is individual’s health behavior (e.g. exercise), and the function is conditioned 

on individual’s socioeconomic characteristics S. Based on this health production function, 

individuals can maximize utility given his/her earned income. 

The aggregate health production can be derived by adding health production functions of 

all individuals in a society.  In fact, physical environment such as ambient environmental pollution 

is exposed to a group of population; rather than individual. It is also assumed that individuals 
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within the state are not equally exposed to water and air pollution which depends on many other 

factors. Therefore, moving from an individual health production function to a population 

perspective, an aggregate health production function can be represented by the following equation 

(Peter et al., 2009): 

AH= f(PQ, Q, X, A, S, R)……………………………………….………….………………………(2.2) 

where AH denotes aggregate health status (e.g. age-adjusted lung and bronchus cancer incidence), 

PQ represents variables related to compliance environmental policies dealing with water and air 

quality standards, Q stands for non-policy-related environmental impacts on the population health 

(e.g. precipitation and other climatic factors), X represents clinical care available to the population 

(e.g. access to healthcare, quality of healthcare), A is behavioral factors across the population (e.g. 

cigarette consumption, alcohol consumption), S represents socioeconomic status within 

populations (e.g. education, income), and R represents demographic (e.g. age, gender) along with 

genetic factors (e.g. family and ethnicity) of the population. 

This research utilizes an aggregate health production function approach to derive an 

econometric model to estimate the influence of environmental policy non-compliance as a 

determinant of health. Age-adjusted lung and bronchus cancer incidence (LUNCAN) is utilized to 

measure aggregated health among the population with the production function as follows: 

LUNCAN = f(WATER QUALITY, AIR QUALITY, PRECIPITATION, SMOKE, ALCOHOL, 

GENDER, ETHNICITY, INCOME, OBESITY, UNINSURED)…………………………..…(2.3) 

In equation (2.3), WATER QUALITY and AIR QUALITY represent policy-related measures 

which show the level of non-compliance with drinking water and air quality standards, 

precipitation (PRECIPITATION) represents non-policy-related environmental factors, OBESITY, 
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SMOKE and ALCOHOL represents behavioral factors, GENDER and ETHNICITY represents 

demographic and genetic factors, household median income (INCOME) represents socioeconomic 

factors, and UNINSURED measures the clinical care.  

While family genetic background has become a growing concern in regard to lung and 

bronchus cancer incidence, genetic backgrounds are not available so that these backgrounds will 

be assumed to remain randomly distributed throughout the states over time (Wakelee, H.A. et al. 

2007). Although data on per capita expenditures for all healthcare are available, per capita 

healthcare expenditures specifically for lung and bronchus cancer are not available. Per capita 

healthcare expenditures are not included due to potential correlation with household median 

income.  State and year fixed effects are included in the estimation process to account for 

unobservable and/or lacking data factors in the model. 

2.4 Methodology  

2.4.1 Data 

Data include the years from 2006 to 2016 for forty-eight contiguous states plus District of 

Columbia (D.C.) Non-compliance for drinking water quality is measured by population exposure 

to three dominant water contaminants such as arsenic, lead and asbestos that causes lung and 

bronchus cancer incidence.  These data are publicly available for free in U.S. EPA Freedom of 

Information Act (FOIA) website (tracking ID: EPA-HQ-2018-006943). Number of violations by 

community water systems (CWS) and population served count by CWS can be found from this 

dataset. Violations data were filtered out based up on individual contaminant such as arsenic 

(contamination code 1005), asbestos (contamination code 1094), and lead (contamination code 

1030) at the state level. Irrespective of health-based violations, the U.S. EPA FOIA published 
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drinking water quality data for quarter 3. Within the state, data for populations exposed to the 

above contaminants from each violation are summed by: 

Annual Exposure to Water Quality Violations (arsenic, lead, asbestos)i,s,t = ∑1
𝑛population served 

count………………………………………………………………………………………………………………………………… (2.4) 

In equation (2.4), i stands for episode 1, 2,…n, s stands for state, t stand for year. For two years, 

however, (2004 and 2005), these exposure data are not available.  Thus, in these two years, the 

number of violations per CWS are multiplied by the CWS populations exposed to those violations 

and then summed those population exposures for entire states to derive annual exposure to water 

quality violations at each state.  Table 2.1 exhibits the variables and their sources considered in 

this study. 
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Table 2.1: Definition of Variables, 2006-2016, by State, USA.a 

Variable Definition Source of data 

(a) Dependent variable:   

LUNCAN 

Age-adjusted incidence rate of lung and bronchus 

cancer per 100,000 population 

National Environmental Public 

Health Tracking Network 

(NEPHTN) 

(b) Environmental Policy Non-Compliance factors:  

AIR QUALITYb Population exposure rate per 100,000 people to 𝑃𝑀2.5 

over NAAQSc, as a measure of population exposure 

to 𝑃𝑀2.5 level 

National Environmental Public 

Health Tracking Network 

(NEPHTN) 

WATER QUALITYb Population exposure rate per 100,000 people to water 

qualityd violationse by CWS over MCLf, as a measure 

of drinking water contamination 

US EPA Freedom of Information 

Act (FOIA)g 

(c) Physical Environment factor:  

PRECIPITATION Average number of precipitation days above 0.01 

inches 

National Environmental Public 

Health Tracking Network 

(NEPHTN) 

(d) Behavioral factors:  

SMOKE % of current or former smokers BRFSS Prevalence & Trends 

data 

ALCOHOL 

 

% of adults who have had at least one drink of alcohol 

within the past 30 days 

BRFSS Prevalence & Trends 

data 

OBESITY % of adults aged 18 years and over who were obese 

(BMI=30.0 to 99.8) 

National Environmental Public 

Health Tracking Network 

(e) Demographic & Genetic factors:  
GENDER % of male BRFSS Prevalence & Trends 

data 

ETHNICITY % of Non-White BRFSS Prevalence & Trends 

data 

(f)Socioeconomic factor:  

INCOME Real median household income (2020 dollars) US Census Bureau 

(g) Accessibility to healthcare:  

UNINSURED % of adults aged 18-65 who does not have any kind of 

healthcare coverage  

BRFSS Prevalence & Trends 

data 

Note:  
aThis study is based on 48 contiguous U.S. states plus D. C.  
bWATER QUALITY and AIR QUALITY have been derived from 3-year moving average.  
cNAAQS stands for National Ambient Air Quality Standard.  
dWater quality contaminants represents Arsenic, lead, asbestos contamination.  
eFor some states in some years, no water quality violations were shown in the dataset, therefore, I considered zero ‘0’ 

observations for those years in the sense that population did not expose to water quality violations above the MCL in 
those years. This does not mean that the population exposure below the MCL have not been occurred in those states 

for those years.  
fMCL stands for Maximum Contamination Level.  
gFor water quality data, please check the following Tracking# EPA-HQ-2018-006943 

Over time, population size from one state to another varies. Instead of using crude 

incidence rate which is influenced by specific age group of the state population, this study has used 

the age-adjusted incidence rate because the variation in this rate over time or across geographical 

locations is not influenced by the changes in age-distribution of populations being compared. Thus, 
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the dependent variable LUNCAN stands for age-adjusted lung and bronchus cancer incidence per 

100,000 people. Moreover, prior studies also used ‘age-adjusted incidence/mortality rate’ instead 

of ‘number of cases’ as a dependent variable (Hendryx et al., 2008; Okunade and Karakus, 2003). 

Since the outcome variable is population-weighted, ‘population size’ has not been used as a 

regressor in this study. 

The main variables of interest showing environmental policy non-compliance are measures 

of drinking water and air quality violations. Although many contaminants (e.g. arsenic, 

disinfection byproducts, lead, nitrate etc.) are found in drinking water, three contaminants (arsenic, 

lead, and asbestos) have been identified as the leading causes among water contaminants in the 

development of lung and bronchus cancer in the U.S. (Morris 1995; Steenland and Boffetta, 2000; 

Lundstrom et al. 1997; Totaro et al. 2019). Therefore, three major water contaminants over the 

MCL are included to measure drinking water standards non-compliance.  The variable WATER 

QUALITY stands for population exposure rate to MCL violations per 100,000 people served by 

CWS.   

Similar to water pollution, multiple contaminants, such as fine particulate matter 

(𝑃𝑀2.5, 𝑃𝑀10), ground-level ozone, and nitrogen dioxide, are found in the air with 𝑃𝑀2.5 being the 

dominant indicator of lung and bronchus cancer incidence (Vinikoor-Imler et al., 2011; Raaschou-

Nielsen et al., 2016). In terms of population exposure to air pollution, data utilized are person-days 

exposed to 𝑃𝑀2.5 over national ambient air quality standard (NAAQS) based on monitored 𝑃𝑀2.5 

concentration. County level population exposure data were accumulated from the National 

Environmental Public Health Tracking Network (NEPHTN) database to derive a state level 

population exposure. Populations located outside the monitoring activities included in NEPHTN 
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were not included in this analysis.  The variable AIR QUALITY stands for population exposure 

rate per 100,000 people to 𝑃𝑀2.5 violations over the NAAQS.  

Since the distributions of population exposure to drinking water and air quality violations 

data are right-skewed, the following data generating process was applied. At the first step, 

population exposure rate to water and air quality violations were calculated. Since about thirty-

eight percent and thirty-three percent of total observations are found zero ‘0’ values in water and 

air quality variables, respectively in the data set, a three-year moving average is applied to both 

variables. Figures 2.1A and 2.2A in appendix shows how right-skewness can be reduced by taking 

three-year moving average for water and air quality variables. Since population exposure due to 

excess pollution from drinking water and air quality violations is a long-term issue, three-year 

moving averages can also capture some of this long-term exposure.   

Data are collected on control variables of smoking, alcohol consumption, gender, ethnicity, 

income, obesity, and uninsured population. For smoking, the Behavioral Risk Factor Surveillance 

System (BRFSS) provides a prevalence and trend database with four types of smokers: smokes 

every day, someday, former smoker, and never smoked etc. In this research, the smoking variable 

is derived by subtracting the percentage of never smoked from total respondents (out of 100 

percent) in each year for each state. For drinking alcohol, there are four types of drinking habits 

reported in the BRFSS prevalence & trend database: alcohol consumption (adults who have had at 

least one drink of alcohol within the past 30 days), binge drinkers (males having five or more 

drinks on one occasion, females having four or more drinks on one occasion), chronic drinkers 

(adult respondent having more than 60 alcoholic beverages in the past month), heavy drinkers 

(adult men having more than 14 drinks per week and adult women having more than 7 drinks per 

week). The alcohol variable is based on ‘respondents who have had at least one drink of alcohol 
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last month’ to test if moderate drinking brings any benefits to health. BRFSS prevalence & trend 

database provides percentage of both male and female population. The gender variable represents 

the percentage of male population (crude prevalence) in this research. Based on the question ‘what 

is your race/ethnicity?’, BRFSS prevalence & trends database classifies race into several 

categories: white, black, Hispanic, multiracial, other up to 2014, since then classifies as white 

(non-Hispanic), Black (non-Hispanic), Hispanic, American Indian or Alaskan native (non-

Hispanic), Asian (non-Hispanic), Native Hawaiian or Other Pacific Islander (non-Hispanic), Other 

race (non-Hispanic), multiracial (non-Hispanic) etc. The ethnicity variable is derived by 

subtracting the percentage of white or white (non-Hispanic) category from total respondents (out 

of 100 percent) in each year for each state which is called as percentage of non-White population 

in this study. For the income variable, real median household income measured in dollars is used.  

The obesity variable reflects the percentage of adults whose BMI ranges from 30 to 99.8. Finally, 

for health insurance coverage of the population, I used the percentage of people not covered by 

any plan to examine how uninsured non-elderly population are impacted by lung and bronchus 

cancer incidence.  

Table 2.2 shows the summary statistics of variables. Out of 539 observations, values of 

water quality, and air quality are highly fluctuating, while values of gender, obesity, smoking, 

uninsured vary only moderately. Since the minimum value of water quality and air quality are zero, 

a special data generating process has been applied to each observation of those variables as 

described before. For lung and bronchus cancer incidence equation, positive signs are expected for 

population exposure to water and air quality violations along with greater population exposure to 

water and air quality violations (Hystad, et al. 2013; Steenland and Boffetta, 2000; Shiber, 2005; 

Totaro et al. 2019). Similarly, positive signs are expected for variables representing: (a) the average 
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number of precipitation days as more precipitation leads to higher rate of lung and bronchus cancer, 

(b) the percentage of smokers as the more years that an individual smokes along with the more 

cigarettes smoked per day, the higher the risk of lung cancer, (c) the percentage of male population, 

and (d) percentage uninsured among the population as the use of lung cancer screening test is 

associated with insurance coverage (Shah, et al. 2019; Tabatabai, et al. 2016; Slatore, et al., 2010; 

Doria-Rose, et al., 2012). On the contrary, a negative sign is expected for median household 

income (Hajizadeh, et al., 2020). Since prior literature has found both positive and negative 

impacts on cancer incidence, definite expectations for the impacts from variables on alcohol 

consumption and ethnicity, and adult obesity are not made (Freudenheim, et al., 2005; Lee, 2013; 

DeSantis, et al., 2019; Mavridis and Michaelidou, 2019).  The following section describes the 

spatial distribution of the quality of air, water, and the lung & bronchus cancer incidence in the 

contiguous U.S. states. 
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Table 2.2: Summary Statistics, 2006-2016, 48 Contiguous States plus Washington D.C. 
Variable 

  Mean Std. Dev. Min. Max. 

Expected sign 

of coefficient 

Lung and bronchus cancer incidence age-

adjusted rate (per 100,000) 64.22 12.11 25.10 101.90  

Population exposure rate (per 100,000 people) to 

water quality violations by CWS over MCLa 1432.76 4281.12 0.00 36571.67 + 

Population exposure rate (per 100,000 people) to 

𝑃𝑀2.5 over NAAQSb 125913 229908.9 0.00 1533453 + 

Average number of precipitation days (above 

0.01 inches) 134.66 27.86 39.00 204.00 + 

Current or former smoker (%) 44.28 4.79 23.40 85.10 + 

Alcohol consumption within the past 30 days 
(%) 52.93 9.07 25.00 68.80 +/- 

Gender (% of male) 48.71 0.84 46.00 51.30 + 

Ethnicity (% of non-white) 24.95 14.35 3.70 64.70 +/- 

Median household income (in 2020 dollars) 60295.11 9306.02 38876 87590.00 - 

Adult Obesity (%) 27.87 3.56 18.20 37.70 +/- 

Uninsured (%) 17.16 5.63 5.00 35.80 + 

Notes: 

 aWater Quality contaminants represent Arsenic, lead, asbestos contamination. MCL stands for Maximum 

Contamination Level.  
bNAAQS stands for National Ambient Air Quality Standard. 

 

2.4.2 Spatial Dependency in Cancer Incidence across States 

The geographical distance is a key motivation for spatial spillover effects (LeSage, 2014). 

Before analyzing spatial dependency by statistical technique, let us identify clusters of lung and 

bronchus cancer incidence in the map, and link it with the clusters of water, and air quality in other 

maps. Figure 2.1 shows the population exposure rate (per 100,000 people) to PM2.5 in micrograms 

per cubic meter (𝜇𝑔/𝑚3) above the NAAQS for the period of 2006-2016 in the contiguous U.S. 

In this figure, population exposure is higher in Southeastern and Ohio River valley portions of the 

U.S. while lower in the central and southern part of the U.S. Figure 2.2 shows the population 

exposure rate per 100,000 people (14-years average from 2004-2017) to arsenic, lead, and asbestos 

concentration in drinking water above the MCL in the contiguous U.S. In this figure, population 

exposure is mostly prevalent in south central and southwest portions of the country. Figure 2.3 

exhibits lung and bronchus cancer incidence (5-year estimate from 2013-2017) per 100,000 people 
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in the contiguous U.S. This figure shows that lung and bronchus cancer incidence is higher in the 

states along the lower Mississippi River, and lower in the western part of the country.  

 

Figure 2.1: Population Exposure Rate by State to Airborne PM2.5 Concentrations in the 

Contiguous U.S. 
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Figure 2.2: Population Exposure Rate to Water Contaminants of Arsenic, Lead, and Asbestos 

in the Contiguous U.S. 
 

 

Figure 2.3: Lung and Bronchus Cancer Incidence in the Contiguous U.S. 
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Given the visual evidence of spatial relation between air quality and the incidence of lung 

and bronchus cancer in the U.S., the next step is to detect spatial autocorrelation.  In this case, the 

spatial autocorrelation measures the interrelationship of lung and bronchus cancer incidence across 

neighboring states. The Global Moran’s I index is a common measure that is used to detect spatial 

autocorrelation, which is based upon null hypothesis of spatial randomness, i.e. global Moran’s I 

statistic is (Moran, 1948; Cliff and Ord, 1973): 

𝐼 =
∑ ∑ 𝑤𝑖𝑗𝑧𝑖.𝑧𝑗/𝑆0𝑗𝑖

∑ 𝑧𝑖
2/𝑛𝑖

 ……………………………………………………………………(2.5) 

where, 𝑧𝑖 is the deviations from the mean of the variable for any observation at location 𝑖, 𝑤𝑖𝑗  is 

the elements of spatial weights matrix, representing the spatial relationship between locations 𝑖 

and 𝑗, 𝑆0=∑ ∑ 𝑤𝑖𝑗𝑗𝑖  is the sum of all the weights, and n is the number of observations. In this 

research, statistically significant and positive z-values for Moran’s I index indicates a consistent 

pattern of positive spatial autocorrelation for lung and bronchus cancer incidence in forty-eight 

contiguous states plus D.C. for each year during the period of 2006-2016 (Table 2.3).    

Table 2.3: Moran’s I index for State Level Lung and Bronchus Cancer Incidence Rates.   

 

 

 

 

Figure 2.4 provides further evidence of spatial autocorrelation based on Moran scatter plots 

of lung and bronchus cancer incidence in 2006 and 2016. This scatter plots shows observations in 

four quadrants, where high value observations are surrounded by high value observations (i.e., Q1: 

HH). Figure 2.4 also shows that most of the states with high lung and bronchus cancer incidence 

Year Moran’s I Pseudo p-value 

2006 0.470 0.001 

2007 0.511 0.001 

2008 0.512 0.001 

2009 0.574 0.001 

2010 0.574 0.001 

2011 0.533 0.001 

2012 0.565 0.001 

2013 0.543 0.001 

2014 0.551 0.001 
2015 0.569 0.001 

2016 0.559 0.001 
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rate are adjacent to states with high incidence rates. This also happens for states with low lung and 

bronchus cancer incidence rates. Given this spatial autocorrelation, a three-nearest neighbors 

weight matrix is utilized based upon prior spatial econometric modeling (Lacombe and Flores, 

2017). 

 

 

 

 

 

Figure 2.4: Moran’s scatter plot of state-level Lung & Bronchus Cancers Incidence rates 

in 2006 and 2016. 

As the Moran’s I indices show statistically significant, positive spatial autocorrelation 

exists among states, performing the OLS estimations (non-spatial models) may lead to biased 

estimates of our regression results. Therefore, it is appropriate to apply spatial models to estimate 

the effects of environmental policy non-compliance on the incidence of lung and bronchus cancer 

across states in the U.S.  
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2.4.3 Spatial Econometric Analysis 

There are five different spatial models (Elhorst, 2014). The first one is the spatial 

autocorrelation model (SAC) where the dependent variable as well as error term in neighbor j 

influences the dependent variable and the error term in neighbor i and vice versa. Second, the 

spatial lag model (SAR) assumes that only the dependent variable in neighbor j play a role in 

determining dependent variable in neighbor i. The spatial Durbin model (SDM) assumes that both 

dependent and control variables have spatial influence across neighbors, and error terms has no 

spatial influence at all, however, the spatial Durbin Error Model (SDEM) assumes that control 

variables along with error terms have spatial effect across neighbors. The spatial lag of X model 

(SLX) or spatial lag of control variables assumes that dependency is only exist in the control factors 

(WX). Finally, a spatial error model (SEM) assumes dependency in the error term only.  

In prior literature, some researchers have applied spatial econometrics tools to capture the 

spillover effects of health outcomes across neighbors (Hoffer et. al. 2019; Chen et al., 2017; Weng 

et al., 2017). Thus, there are likely spillover effects from environmental policy non-compliance 

for both state and temporal variation on the incidence of lung and bronchus cancer. To evaluate 

the effects of drinking water and air quality violations on the incidence of lung and bronchus cancer 

in the U.S., SDM with spatial and time fixed effects is the spatial model applied here using a three-

nearest neighbors weight matrix following previous state level health economics research 

(Alzahrani, et al., 2020). Equation (2.6) shows the age-adjusted lung and bronchus cancer 

incidence model using SDM state and year fixed effects model (Elhorst, 2014): 
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𝐿𝑈𝑁𝐶𝐴𝑁𝑠,𝑡 = 𝜌𝑊 ∗ 𝐿𝑈𝑁𝐶𝐴𝑁𝑠,𝑡 + 𝛼𝑙𝑁 + 𝛽1𝑊𝐴𝑇𝐸𝑅𝑄𝑈𝐴𝐿𝐼𝑇𝑌𝑠,𝑡 + 𝛽2𝐴𝐼𝑅𝑄𝑈𝐴𝐿𝐼𝑇𝑌𝑠,𝑡 +

𝛽3𝑃𝑅𝐸𝐶𝐼𝑃𝐼𝑇𝐴𝑇𝐼𝑂𝑁𝑠,𝑡 + 𝛽4𝑆𝑀𝑂𝐾𝐸𝑠,𝑡 + 𝛽5𝐴𝐿𝐶𝑂𝐻𝑂𝐿𝑠,𝑡 + 𝛽6𝐺𝐸𝑁𝐷𝐸𝑅𝑠,𝑡 +

𝛽7𝐸𝑇𝐻𝑁𝐼𝐶𝐼𝑇𝑌𝑠,𝑡 + 𝛽8𝐼𝑁𝐶𝑂𝑀𝐸𝑠,𝑡 + 𝛽9𝑂𝐵𝐸𝑆𝐼𝑇𝑌𝑠,𝑡 + 𝛽10𝑈𝑁𝐼𝑁𝑆𝑈𝑅𝐸𝐷𝑠,𝑡 + 𝜃1𝑊 ∗

𝑊𝐴𝑇𝐸𝑅𝑄𝑈𝐴𝐿𝐼𝑇𝑌𝑠,𝑡 + 𝜃2𝑊 ∗ 𝐴𝐼𝑅𝑄𝑈𝐴𝐿𝐼𝑇𝑌𝑠,𝑡 + 𝜃3𝑊 ∗ 𝑃𝑅𝐸𝐶𝐼𝑃𝐼𝑇𝐴𝑇𝐼𝑂𝑁𝑠,𝑡 + 𝜃4𝑊 ∗

𝑆𝑀𝑂𝐾𝐸𝑠,𝑡 + 𝜃5𝑊 ∗ 𝐴𝐿𝐶𝑂𝐻𝑂𝐿𝑠,𝑡 + 𝜃6𝑊 ∗ 𝐺𝐸𝑁𝐷𝐸𝑅𝑠,𝑡 + 𝜃7𝑊 ∗ 𝐸𝑇𝐻𝑁𝐼𝐶𝐼𝑇𝑌𝑠,𝑡 + 𝜃8𝑊 ∗

𝐼𝑁𝐶𝑂𝑀𝐸𝑠,𝑡 + 𝜃9𝑊 ∗ 𝑂𝐵𝐸𝑆𝐼𝑇𝑌𝑠,𝑡 + 𝜃10𝑊 ∗ 𝑈𝑁𝐼𝑁𝑆𝑈𝑅𝐸𝐷𝑠,𝑡 + 𝜉 + 𝜓 + 𝜀𝑠,𝑡………..……(2.6) 

In equation (2.6), 𝜌, and 𝜃 shows the spatial interactions of dependent variable, and variables of 

interest, 𝜉, ψ, and 𝜀 represent state fixed effects, year fixed effects, and disturbance term, 

respectively. The subscripts 𝑠 and 𝑡 stands for state and year, respectively. MATLAB software is 

utilized to estimate the SDM routines (LeSage, 2021).  

2.5 Spatial Results 

As discussed in the previous section, it is important to estimate spillover effects of 

population exposures to drinking water and air quality violations on the incidence of lung and 

bronchus cancer. Table 2.4 reports spatial Durbin model (SDM) estimates while Table 2.1A in the 

appendix reports the coefficient estimates for the OLS model. While the OLS model shows 

statistically significant coefficients for the variables AIR QUALITY and six of the control 

variables, with statistically significant rho (ρ) value in the SDM with spatial and time fixed effects 

model, these OLS coefficient estimates are potentially biased. OLS model results are presented in 

Table 2.1A to provide a comparison with the magnitude of direct effects from the SDM model. 

For example, the OLS coefficient for WATER QUALITY is statistically insignificant and about 

eight times smaller than the SDM direct effect which has a statistically significant p-value at the 

10 percent level. On the other hand, the OLS estimate coefficient for AIR QUALITY is statistically 

significant and close to the magnitude of the SDM direct effect.  

In this analysis, the direct effect of drinking water quality non-compliance and the total 

effect of air quality non-compliance on the total number of lung and bronchus cancers are 
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computed and interpreted with examples. Based on 11 years (2006-2016) average population 

exposure to water quality violations, the highest population exposure to water quality violations 

was found in the state of Oklahoma. Assuming a 10% reduction in population exposure rate to 

arsenic, lead, or asbestos violations in this state, the number of lung and bronchus cancer cases 

decreases by five cases annually based upon the 2016 Oklahoma population. The percentage 

reduction in total age-adjusted lung and bronchus cancer incidence is 0.146% due to a 10% 

reduction in population exposure to arsenic, lead, or asbestos violations.  

For air quality, Utah has the second highest proportion of population exposed to PM2.5 

violations during the data period.  A 10% decrease in annual population exposure to PM2.5 

violations over the NAAQS in the state of Utah has spillover effects across the three-nearest 

neighbor states (Colorado, Idaho, Wyoming) reducing lung and bronchus cancer incidence by 

0.77%.  Based upon 2016 populations of these states, lung and bronchus cancer cases decline by 

six cases annually.   Thus, based upon the SDM model, it is observed that drinking water quality 

non-compliance has a local effect while air quality non-compliance has the global effect (LeSage, 

2014).     
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Table 2.4: Coefficients of Spatial Durbin Model (SDM) for 48 Contiguous U.S., 2006-2016.     

Variables Dep. Variable: Lung and Bronchus Cancer Incidence 

Direct Effect Indirect Effect Total Effect 

WATER QUALITY (pop. exposure rate) 0.000062* -0.000064 -0.000002 

 (0.054) (0.206) (0.961) 

AIR QUALITY (pop. exposure rate) 0.000002 0.000001 0.000002** 
 (0.128) (0.603) (0.034) 

PRECIPITATION (days) 0.018 -0.00003 0.018* 

 (0.238) (0.999) (0.083) 
SMOKE (% of smokers) 0.092* 0.016 0.108 

 (0.063) (0.807) (0.149) 

ALCOHOL (% of adults) 0.129** -0.161* -0.031 

 (0.036) (0.070) (0.716) 
GENDER (% of Male) 2.191*** 3.765*** 5.956*** 

 (0.002) (0.000) (0.000) 

ETHNICITY (% of non-white) 0.159*** -0.042 0.118 
 (0.008) (0.654) (0.238) 

INCOME ($) 0.00007* 0.00001 0.00008 

 (0.057) (0.857) (0.189) 
OBESITY (% of adults) -0.055 0.033 -0.023 

 (0.593) (0.830) (0.881) 

UNINSURED (% of adults) -0.043 0.022 -0.021 

 (0.468) (0.788) (0.802) 

Rho -0.236*** 

 (0.000) 

State FE Yes 

Year FE Yes 

R-squared  0.970 

Obs. 539 
Note: *** for 0.01, ** for 0.05, * for 0.1 Numbers in the parentheses represent p-values. Although state and year 

fixed effects were included in the SDM model, these coefficients are not reported.   

 

Smoking as a behavioral factor leading to cancer has a positive, statistically significant 

direct effect on cancer incidence with p-value 0.063 in the SDM model, although indirect and total 

effects are statistically insignificant (Table 2.4). To compare smoking behavior with the impacts 

from environmental policy non-compliance for drinking water and air quality, I use a consistent 

1% reduction in the magnitude of each of these explanatory variables.  Thus, a 1% reduction in 

the percentage of former and current smokers (which translates into a 0.44% reduction) will result 

in a 0.041 person reduction in lung and bronchus cancer incidence per 100,000 population. 

Compared 1% reduction impacts from drinking water (0.00089 per 100,000) and air (0.0025 per 
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100,000), reductions in smoking have 46 to 16 times larger impacts on lung and bronchus cancer 

incidence than do reductions in exposure to environmental pollutants created by non-compliance 

with drinking water and air quality standards.  

In terms of the other control variables, the INCOME variable does not fulfill our 

expectation of a negative impact based upon its direct effect in the spatial model. While most prior 

research finds a negative impact of household median income on cancer incidence, I find a 

statistically significant, positive direct effect from INCOME (though it is small in magnitude), 

which in part may be explained by life-style effects among high income groups. That is, less 

healthy eating habits (e.g. eating fast foods) among high income people leads to higher incidence 

of lung and bronchus cancer than among low-income people (Sugar, 2018; Scutti, 2018). The 

PRECIPITATION variable (total effects in the SDM model) fulfills our expectation that the lung 

and bronchus cancer incidence is positively impacted by the average number of precipitation days 

(above 0.01 inches). Although alcohol consumption has statistically significant, negative direct 

effects which is supported by Korte et al. (2002) and Freudenheim et al. (2005), the total effect is 

not statistically significant. Finally, OBESITY and UNINSURED have no statistically significant 

effects on cancer incidence. 

The estimation results for the GENDER and ETHNICITY variables are notable. These 

variables have statistically significant estimates across models which switch signs moving from 

the non-spatial model OLS to the spatial SDM. This result is indicative of the potential bias in 

OLS coefficient estimates with spatial autocorrelated data. From the SDM model estimates, both 

male and non-white populations are more likely to experience lung and bronchus cancers, although 

the impact is much larger in magnitude for gender compared to ethnicity.  These demographic 

category results conform with prior research by Tabatabai et al. (2016). 
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Prior literature on willingness to pay (WTP) estimate for cancer risk reduction is utilized 

to estimate the annual monetary benefits of reducing population exposures and preventing lung 

and bronchus cancer cases. First, an estimate of 2.6 million Euro per prevented case of cancer in 

Italy obtained from Tonin, et al., (2012) is adjusted to U.S. dollar values and then adjusted for 

inflation to 2016. A $4.1 million monetary value per cancer case prevented is then multiplied by 

the five and six annual reductions of cancer case.  Thus, based on WTP estimates for reduced 

cancer cases from Tonin, et al. (2012), the annual monetary benefit of reducing population 

exposure to drinking water quality violations (arsenic, lead, asbestos) by 10% is an estimated $20.6 

million within the state of Oklahoma. Also, for a 10% reduction in population exposure to air 

quality violations in the state of Utah, $24.7 million of annual benefits are estimated for this state 

plus the three-neighboring states.   

Finally, the examination of lung and bronchus cancer incidence variable resulted in positive 

Moran’s I indices, which explains spatial autocorrelation of this variable across neighboring states. 

However, a negative, statistically significant rho (ρ) value in the SDM model indicates that lung 

and bronchus cancer incidence in one state is negatively influenced by the incidence in neighboring 

states. Although positive, statistically significant rho values are well accepted in prior literature, a 

few studies have addressed the presence of a negative rho coefficient (Griffith, 2019; Kao, et al. 

2016). For instance, Pavlyuk (2011) found a negative rho in SLM model, and Basdas (2009) found 

a negative lambda in SEM model, while Garret and Marsh (2002) found negative rho and lambda 

in SLM and SEM models, respectively. It is noteworthy that factors likely to result in positive 

spillover effects (such as violations of air and water pollution standards) have much smaller 

impacts on cancer incidence than other factors. 
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2.6 Conclusions and Policy Implications 

While prior studies have focused on non-spatial econometric techniques and ignored  

spatial and non-compliance issues related to environmental policies’ impacts on human health,  

this research incorporates spatial and time influences in order to estimate the impact of drinking 

water and air quality violations on the incidence of lung and bronchus cancer in the U.S. Based on 

a Spatial Durbin Model (SDM) with time fixed effects, this research finds positive, statistically 

significant intra-state (direct effect) impacts on cancer incidence from drinking water quality non-

compliance as opposed to regional (total effects) impacts for air quality non-compliance. While 

statistically significant, the impacts from reductions in water and air quality non-compliance on 

cancer incidence are dwarfed in magnitude (16 to 46 times smaller) by a similar sized reduction in 

smoking behavior.   

Example calculations are utilized to show that a 10% reduction in population exposure rate 

to drinking water quality violations within the state of Oklahoma results in a decrease of five cancer 

cases annually with an estimated annual monetary benefit of $20.6 million.  A 10% reduction in 

population exposure to air quality violations in the state of Utah results in six fewer cancer cases 

annually with a $24.7 million annual monetary benefit in Utah and three-neighboring states.  These 

monetary benefits are rough estimates since no WTP literature is available which is related directly 

to cancer risk reductions from reduced population exposure to drinking water and air quality 

violations.   

The regulatory behavior of government can determine the aggregate health status of the 

population. Environmental justice issues arise from our results given that environmental quality 

non-compliance occurs more commonly in communities of color (Rahman et al. 2010; Switzer 

and Teodoro, 2017). In terms of PM2.5 exposure, while the CAA contributed to reduce racial 
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disparity between black and white communities over the past 20 years, this study confirms the 

continued existence of racial disparity in terms of lung and bronchus cancer incidence (Currie, et 

al. 2020). Besides ensuring water quality, environmental justice across race and class to CAA is 

thus equally important because loose enforcement of CAA (particularly to 𝑃𝑀2.5) may cause death 

(Konisky, 2009; Clay and Muller, 2019). 

Since environmental enforcement involves costs, it is imperative to consider the resources 

utilized for enforcing drinking water and air quality standards versus resources allocated to 

preventing smoking among children and adolescents (Currie and Walker, 2019; Krutilla, 1999). 

The much larger impact of smoking on lung and bronchus cancer incidence shows the importance 

of more stringent policies to encourage non-smokers from ever starting smoking in order to ensure 

lower rates of lung and bronchus cancers. A recent study shows that some cancers (including lung 

cancer) are preventable through changing behavior such as control smoking, drinking alcohol and 

body mass index (Global Burden of Disease, 2022). Preventable cancers include those that stem 

from non-compliance with air and water quality standards- thus this research adds to the 

preventable cancers list that includes behavioral changes. 

Anselin and Rey (1991) have argued that an appropriate choice of spatial weight matrix is 

important to estimate coefficients properly. As I mentioned that this research employs a three-

nearest neighbors weight matrix to estimate the effect of drinking water and air quality violations 

on the lung and bronchus cancer incidence in the U.S. Instead of using a general homogenous 

spatial weight matrix, future research may apply a heterogenous spatial weight matrix based upon 

the annual prevailing wind direction map (Erfanian and Collins, 2020; Cheng et al. 2014; Chen 

and Ye, 2018).  
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In the U.S., CWS supplies drinking water that comes from surface as well as ground 

sources. Debate arises when CWS collects water from surface sources such as lakes and rivers as 

an appropriate spatial neighborhood does not always depend on geographical distance. Rather, 

neighborhoods may depend on hydrological pattern which is called hydrological distance between 

states, where some states are in upstream, and other states are in downstream (Peterson and Ver 

Hoef, 2010). Since drinking water quality violations has been included as a variable of interest in 

this study, future research may also use hydrologic unit code (HUC) to measure the location of 

states whether state i should be considered as a neighbor of state j to construct a heterogenous 

spatial weight matrix to get better results.  

The causes and nature of cancer incidence is very complex in terms of population exposure, 

genetics, and other unobservable factors. In this regard, time lag considerations between 

population exposure to environmental pollution and the incidence of lung and bronchus cancer 

could not be included into the model. While prior study utilized longitudinal data to test the impact 

of air pollution (particularly PM2.5 and nitrogen dioxides) on other health outcomes, future 

researchers could use longitudinal data and investigate the relationship between long-term 

exposure to environmental pollution, family genetic background and the incidence of lung and 

bronchus cancer in the U.S. (Ekstrom, et al. 2022).   
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APPENDIX 

Figure 2.1A: Frequency Distribution for Water Quality. 

  
Before taking 3-year moving average. After taking 3-year moving average. 

 

 

Figure 2.2A: Frequency Distribution for Air Quality. 

  
Before taking 3-year moving average. After taking 3-year moving average. 
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Table 2.1A: Coefficients of Ordinary Least Squares (OLS) Model and Spatial Error Model 

(SEM) for 48 Contiguous States plus Washington D.C. 2006-2016.     

Variables Dep. Variable: Lung and Bronchus Cancer Incidence  

OLS SEM 

WATER QUALITY (pop. exposure rate) 0.000008 0.00003 
 (0.903) (0.267) 

AIR QUALITY (pop. exposure rate) 0.000003** 0.000002** 

 (0.030) (0.033) 

PRECIPITATION (days) 0.007 0.0121** 
 (0.593) (0.180) 

SMOKE (% of smokers) 1.218*** 0.1004*** 

 (0.000) (0.0432) 
ALCOHOL (% of adults) -0.140** 0.112** 

 (0.006) (0.056) 

GENDER (% of Male) -7.243*** 3.163*** 
 (0.000) (0.000) 

ETHNICITY (% of non-white) -0.230*** 0.143*** 

 (0.000) (0.012) 

INCOME (household median income in $) 0.00003 0.000081*** 
 (0.506) (0.031) 

OBESITY (% of adults) 0.513*** -0.028 

 (0.000) (0.785) 
UNINSURED (% of adults) 0.302*** 0.0192 

 (0.000) (0.737) 

Constant 353.275***  
 (0.000)  

Lambda  -0.03 

(0.598) 

State FE  Yes 

Year FE  Yes 

R-squared  0.71 0.97 

Obs. 539 539 
Note: *** for 0.01, ** for 0.05, * for 0.1 Numbers in the parentheses represent p-values. Although state and year 

fixed effects were included in the SDM model, these coefficients are not reported.   
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3.1 Introduction 

More than 100 million people have been reported as coronavirus disease (COVID-19) 

cases and over a million people have died from COVID-19 in the U.S. since 29 February 2020 

(CDC, May 5, 2023). The World Health Organization (WHO)1 identified COVID-19 as an 

infectious disease caused by the SARS-CoV-2 virus, and the Centers for Disease Control and 

Prevention (CDC) labeled this disease as a pandemic2. Within a pandemic landscape, it is 

imperative to investigate the spatial pattern of COVID-19 spread across counties, and state and 

local governments should adopt appropriate planning and policies based on evidence3. COVID-19 

transmission had become widespread in New York City (NYC) along with urban-areas of northeast 

and northwest by mid-March 2020, while rural areas of the country were not affected until later. 

CDC recommended various non-pharmaceutical interventions (NPIs) to slow down the spatial 

spread of COVID-19 pandemic. These measures include social distancing, business closure and 

reopening, school closing, public gathering and travel restrictions, stay-at-home and shelter-in-

place orders. While some states and counties implemented those NPIs very strictly, other states 

and counties did not adopt those policies. The variation in adopting NPIs across the country thus 

may have affected the transmission of COVID-19 across these different areas.  

COVID-19 involved a significant economic burden in the U.S. Nationally, $150 billion 

was allocated under the Coronavirus Aid, Relief, and Economic Security (CARES) Act to support 

public health emergency during COVID–19 pandemic (IRS, 2023). In 2020, each COVID-19 

                                                             
1 https://www.who.int/health-topics/coronavirus#tab=tab_1 
2 CDC identified this disease as outbreak, epidemic, and pandemic simultaneously, See,  

https://www.cdc.gov/coronavirus/2019-ncov/science/about-epidemiology/identifying-source-outbreak.html  
3 Center for Spatial Data Science, University of Chicago. See, https://theuscovidatlas.org/  

https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.cdc.gov/coronavirus/2019-ncov/science/about-epidemiology/identifying-source-outbreak.html
https://theuscovidatlas.org/
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patient paid, on average, $41,611 for hospitalization including out-of-pocket expenses of $1,280 

for those with significant employment coverage (Wager, et al. 2022). 

This essay aims to examine spillover effects of NPIs on the reduction of COVID-19 cases 

in the contiguous U.S. counties. In this research, the first objective is to estimate the spillover 

effects of implementing stay-at-home orders, mask mandates, restaurant, and bar closure, and 

reopening for one month on the reduction of COVID-19 cases in the contiguous U.S. counties. 

Second and final objective of this research is to calculate monetary benefits from reducing COVID-

19 spread in the county where policies are in place as well as neighboring counties. By utilizing 

spatial econometric models, this paper finds a statistically significant negative effect of mandatory 

stay-at-home order, mask wearing mandate on COVID-19 spread. With a significant 𝜌 (rho) value 

in the SDM model, ordinary least squares (OLS) coefficients are likely biased estimates.   

From the SDM model based on annual county-level cross-sectional data for 2020, a one-

month implementation of mandatory stay-at-home order and mask mandate results in 19 fewer 

cases per 100,000 people in the mandate county and 47 fewer cases per 100,000 people in six-

nearest neighboring counties. By separating out the effect of mask mandate, the SDM model gives 

an estimate of 4 fewer cases as direct effect within the county and 9 fewer cases as indirect effect 

in six-nearest neighboring counties. Based upon the SDM model, spillover benefits of about $0.70 

million, $2.95 million, and $3.65 million are calculated from three nearest neighboring Counties 

(Sheridan, Campbell, Crook)4 of Powder River5 County by implementing mask mandate, 

mandatory stay-at-home order, and both these policies, respectively for one month. Thus, the 

indirect effect in neighboring counties is larger than the direct effect of a these NPIs implemented 

                                                             
4 Sheridan, Campbell, and Crook are three counties in the state of Wyoming, a non-mask mandate state. 
5 Powder River County is in the state of Montana, a mandate state. 
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in that particular county. Restaurant and bar limitations and closures did not have any statistically 

significant impacts in the model. The SEM model provides similar estimates but also provide 

evidence that some significant spillover effects of variables are not explicitly modeled in this study. 

So far, my knowledge goes, major contribution of this study is the estimates of spatial spillover 

effects of NPIs on the COVID-19 spread that nobody has estimated yet.  

Rest of this paper is organized in the following manner: section 2 reviews literature, section 

3 describes data and methods, section 4 discusses empirical results, and section 5 offers 

conclusions and policy implications. 

3.2 Literature Review 

3.2.1 Non-Pharmaceutical Interventions 

Among the NPIs, the mask-wearing mandate is the key initiative that has been 

implemented by many states in the U.S. Using county-level data for Kansas, Zambrana and Ginther 

(2020) applied difference-in-differences methods to investigate the effect of mask mandate on 

COVID-19 cases. Based on 7-day rolling average data for the COVID-19 cases per 100,000 

people, they find the mask mandate working for controlling COVID-19 spread in the state of 

Kansas. When the mask mandate was in effect, the COVID-19 case rates in counties with mask 

mandates were three times higher than those in counties without them (15 cases per 100 000 people 

compared to 5 cases per 100,000 people). These patterns changed by October 26, cases in counties 

without mask mandates were 2.1 times more (44 cases per 100 000 people compared to 21 cases 

per 100,000 people) than cases in mandate counties (Ginther and Zambrana, 2021). Through 

December 4, there were 20.33 fewer cases per day in counties with mask mandates than in counties 

without mask mandate.   
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From 412 U.S. counties between March 21 and October 20, 2020, Huang, et al. (2022) 

estimated an additional benefit of county-level public mask mandates. In masked counties as 

compared to unmasked counties, the daily case incidence per 100,000 individuals decreased on 

average by 25% at four weeks, 35% at six weeks, and 18% throughout the course of six weeks 

postintervention. Based on natural experiment in two school districts in greater Boston area, Tori 

et al. (2022) finds additional 44.9 COVID-19 cases per 1,000 students and staffs during 15 weeks 

after lifting the statewide masking policy. Cui, et al (2020) also used mask and shelter-in-place 

(SIP) mandates to examine the performance of those policies as a response to COVID-19 pandemic 

in the U.S. Based on Probit, Logit, and LPM models, they claimed that wearing mask is not 

necessarily reducing COVID-19 cases, rather it is a decision motivated by politics. Although 

Rader, et al. (2021) found highest chance of transmission control was achieved by wearing mask 

and maintaining physical distance, but no significant change was observed after adopting the state-

wide mask-wearing mandate. At the national level, Chernozhukov, et al. (2021a) found that 

nationally mask-wearing mandate for employees during early pandemic reduced the weekly 

growth rate of cases and deaths by more than 10 percentage points in late April that led to as much 

as 19 to 47 percent less deaths by the end of May. Similar results were found by Zhang, et al. 

(2020) and Eikenberry, et al. (2020). Although there is a discrepancy between mask-wearing 

behavior and compliance to the mask mandate, an appropriate intervention can increase mask 

wearing and reduce symptomatic COVID-19 infections (Kim, et al. 2022; Abaluck et al. 2022). 

State and local governments’ actions such as business and school closures contributed to 

reducing COVID-19 spread in the U.S. (Chernozhukov, et al. 2021b) For instance, Gupta et al. 

(2021) examines the determinants of social physical distancing during shutdown phase of the 

COVID-19 pandemic and found that about 55 percent of COVID-19 growth were responsible for 
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not following those policies, thus suggesting that the NPIs were effective in reducing human 

mobility. Chernozhukov, et al. (2021a) mentioned that COVID-19 cases would have been larger 

by 17 to 78 percent without business closures but no certain effect was found for school closures 

decision due to lack of cross-sectional variation. Based on daily county-level data, Isphording et 

al. (2021) found no positive effect of school re-openings on COVID-19 cases in Germany. On the 

other hand, using county-level data in Texas, Courtemanche, et al. (2021) found that community 

spread of COVID-19 accelerated substantially due to re-opening schools. More specifically, school 

reopening led to at least 43,000 additional COVID-19 cases and 800 additional deaths within first 

two months of school reopening. Under three alternative scenarios, a 22% higher rate of infections 

was found if 50% capacity with 100% face-mask adherence in schools than the rate if schools 

operating remotely in Indiana (Espana et al, 2021). Since the association between K-12 schools’ 

in-person reopening and case growth was found stronger in counties where the mask mandate has 

not been implemented (Chernozhukov et al. 2021b). Thus, schools reopening does not a have 

robust effect on COVID-19 spread in the U.S. 

3.2.2 Political Stringency and Trust 

Political stringency and trust in politicians are of great importance in the endeavor of 

controlling the COVID-19 pandemic (Bargain and Aminjonov, 2020). The debate arises among 

researchers on whether political affiliation at the state level impact wearing masks. Cui, et al. 

(2021) indicated ideology6 (i.e., conservatism and support for President Trump) to be the dominant 

predictor of low rates of mask-wearing. Kahane (2021) also finds a significant influence of 

                                                             
6 Cui, et al. (2021) measured ideology by support for President Trump, Evangelicals per 1000 people, Catholics per 

1000 people, religious diversity, belief in climate change, percentage of white population, percentage of latino 

population, percentage of male population. 
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political ideology in wearing masks. Even, public confidence in medical scientists has declined 

since COVID-19 in terms of the efficacy of NPIs on COVID-19 spread (CNN, March 9, 2023). 

3.2.3 Spatial Interaction 

Finally, spatial interaction plays a vital role in case of infectious disease transmission such 

as COVID-19. Based on Spearman rho correlation and Moran’s I test, Jackson, et al. (2021) find 

regional clustering patterns of COVID-19 cases and fatalities in the U.S. counties. These COVID-

19 cumulative experiences were initially evident in the Great plains, Southwestern and Southern 

regions. Using county-level data on COVID-19 community vulnerability index (CCVI) for U.S. 

counties, Ulimwengu and Kibnonge (2021) applied spatial Durbin model (SDM) and find an 

existence of spatial spillover effects where indirect effects (from neighboring counties) dominate 

the direct effects (from county-own vulnerability). As a variable of interest, this study utilized 

seven-types of vulnerability such as socioeconomic status, minority status & language, 

transportation, household composition & disability, epidemiological factors, healthcare system, 

high-risk environment, and population density whose are either socioeconomic or infrastructural 

factors and used cumulative data. While most literature has found that mask-wearing mandates 

reduce COVID-19 spread (Zambrana and Ginther 2020; Rader, et al. 2021; Zhang, et al. 2020; 

Eikenberry, et al. 2020; Chernozhukov, et al. 2021a; Courtemanche, et al. 2021; Gupta et al. 2021), 

variation in adopting NPIs across jurisdictions provides an opportunity to examine the spatial 

spillover effects from mandates (Olmo and Sanso-Navarro, 2021). Thus, this paper investigates 

the spatial spillover effects of NPIs policies on the reduction of COVID-19 cases within the 

contiguous U.S.  
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3.3 Data and Methods 

3.3.1 Data 

This study investigates the spatial spillover effects of NPIs in reducing COVID-19 cases 

in the contiguous U.S. As a pre-vaccination period, this study collects annual cross-sectional data 

from 3045 contiguous counties for the year 2020 to avoid the potential effect of vaccination on the 

spread of COVID-19 cases. Table 3.1 provides descriptions of the outcome variable, the variables 

of interest, and other control variables. In this study, COVID-19 cases per 100,000 people serve 

as the dependent variable, and the independent variables of interest are mandates for: stay-at-home 

order, mask-wearing, restaurant open with limitations/curbside delivery, bar open with 

limitations/curbside delivery, and bar fully closed. Data on the outcome variable have been 

collected from the USA Facts website7, and that on independent variables of interest have been 

collected from National Environmental Public Health Tracking Network (NEPHTN). Data on the 

mask-wearing mandate was available from April 2020, and that on stay-at-home order, restaurant 

and bar closure were available from March 2020. Before the initial implementation of NPIs in the 

U.S., no similar restrictions existed, thus I input values of zero for mask mandates for the months 

of January, February, and March. Similarly, I put the value zero for the month of January and 

February 2020 for restaurant and bar as variables of interest for those counties considered in this 

study. 

 

For a dependent variable, cumulative COVID-19 cases (confirmed) for the year 2020 are 

collected and divided by county population (which is also available in USAFacts website) and then 

multiplied by 100,000 to obtain COVID-19 cases per 100,000 people as shown in equation 3.1. 

                                                             
7 https://usafacts.org/visualizations/coronavirus-covid-19-spread-map 

https://usafacts.org/visualizations/coronavirus-covid-19-spread-map
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COVID-19 cases per 100,000 people = 
𝐶𝑂𝑉𝐼𝐷−19 𝐶𝑎𝑠𝑒𝑠 𝑖𝑛 𝐶𝑜𝑢𝑛𝑡𝑦 𝑖

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝐶𝑜𝑢𝑛𝑡𝑦 𝑖
× 100,000………………….…..(3.1) 

Dummy variables are created for the variables of interest on a daily basis. Data on mask 

mandate started from 10 April 2020 through end of the year. For the mask-wearing mandate, the 

value =1 if mask-wearing is required in public place, and value =0 if otherwise. Data on state 

orders on business (restaurant and bar) closing and reopening started from 15 March 2020 through 

end of the year. For restaurant closing and reopening, two separate binary variables are created: 

(1) no restrictions or authorized to fully reopen (1 if restriction was found or authorized to fully 

reopen, 0= otherwise); (2) open with limitations or curbside delivery only (=1 if open with 

limitation/curbside delivery only, 0=otherwise). Since no county mandated that all restaurants 

remain completely closed, no dummy variable is created for restaurant closing. For bar closing 

and reopening, three separate binary variables are created: no restrictions or authorized to fully 

reopen (=1 if restriction was found or authorized to fully reopen, =0 otherwise), open with 

limitations or curbside delivery only (=1 if open with limitation/curbside delivery only, =0 

otherwise), and closed (=1 if bars were mandated to remain closed, =0 if otherwise). Data included 

primarily counties in forty-eight contiguous states plus Washington D.C. and excluded counties in 

Alaska and Hawaii. Since four counties: Dukes, and Nantucket counties (Massachusetts), 

Richmond County (New York), and San Juan County (Washington) have no neighbors, they are 

excluded from the analysis.    

Although stay-at-home orders were executed between 15 March- 31 May 2020, data are 

publicly available for only 15 March- 5 May 2020 (Moreland, et al. 2020). Therefore, daily dummy 

variables are used for stay-at-home order between 15 March- 5 May 2020 for annual cross-

sectional data with a value =1 if the advisory order is placed and =0 if otherwise. Similarly, a value 

=1 is placed if mandatory order is placed and =0 if otherwise. In both scenarios, ‘no order found’ 
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is used as the base. Since the initial implementation of stay-at-home order started on 15 March 

2020 in the U.S., daily values of zero are for stay-at-home order policy from January to 14 March. 

Similarly, I input values of zero for the same policy after 5 May 2020.  

NPI variables utilized in the analyses are measured as the percentage of days where a NPI 

is in place on an annual basis.  Daily NPI dummy variables are aggregated across the entire year 

2020 and divided by 365 to obtain percentage variables for an annual data model.   

In this study, cross-sectional data were collected on other control factors such as non-

compliance factor, demographic factors, socioeconomic factors, specific medical factors, and 

lifestyle factors. Trump’s votes as a percentage of total votes represent the non-compliance factor 

that comes from the 2020 presidential election results. The reason behind Trump support as a non-

compliance factor is President Trump’s skepticism over the effectiveness of mask and he denied 

the adoption of such national mandate8. I used dummy for ‘urban’ as a proxy of rurality factor 

where value =1 if county is in metro area or adjacent to metro area, and value =0 if county is not 

adjacent to metro area. Data on socioeconomic factors such as income measured as ‘median 

household income’, poverty measured as ‘percentage of people of all ages in poverty in 2020’, and 

unemployment comes from the USDA ERS website while that on housing measured as ‘percentage 

of housing units with more people than rooms’ is collected from NEPHTN database. The COVID-

19 Risk Index collected from PolicyMap measures specific medical conditions that include chronic 

obstructive pulmonary disease (COPD), heart disease, high blood pressure, diabetes, and obesity. 

Finally, data on lifestyle factors such as smoking measured as ‘percentage of current smokers aged 

                                                             
8 Victor, et al. (2020). In His Own Words, Trump on the Coronavirus and Masks. NYTimes. Accessed: 

https://www.nytimes.com/2020/10/02/us/politics/donald-trump-masks.html 
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18 years and over’ and remote work measured as ‘percentage of people worked from home aged 

16 years and over’ comes from NEPHTN and ACS, respectively.  

Table 3.1 shows expected signs of coefficients based on prior literature. NPIs such as stay-

at-home orders, mask-mandate, restaurant, and bar closures and reopening are expected to lower 

COVID-19 infections (Castillo, et al. 2020; Chernozhukov, et al. 2021a). The expected sign of 

Trump votes is positive (Cui, et al. 2021; Kahane, 2021). Older adults, the male population, people 

of color, poor, unemployed, and low-income communities, people with specific medical 

conditions, adult current smokers, and the population living in dense areas and dense houses are 

expected to be at higher risk of COVID-19 symptoms (Abedi, et al. 2020). On the other hand, 

people with better education, and who work remotely are expected to be at less risk of COVID-19 

symptoms. Prior studies show mixed results for people who live in urban areas (Lee, et al. 2021). 

While COVID-19 infection rates were higher in urban counties in the early period of 2020, the 

rate becomes higher in rural counties in the later period of 2020 (Nelson and Cromartie, 2022). 
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Table 3.1: Description of Variables. 

Variable Definition Source of Data Expected 

Sign 

(a) Dependent variable:   

COVIDCASE COVID-19 Case per 100,000 people USA Facts  

(b) Variable of Interest:   

STAYHOMEADV Stay-At-Home Order Advisorya NEPHTNd Negative 

STAYHOMEMAN Stay-At-Home Order Mandatorya NEPHTNd Negative 

MASKMANDATE Mask wearing mandate NEPHTNd Negative 

RESTLIM Restaurant open with limitations/curbside 
deliveryb 

NEPHTNd Negative 

BARLIM Bar open with limitations/ curbside 

deliveryc 

NEPHTNd Negative 

BARCLOSED Bar closedc NEPHTNd Negative 

(c) Non-compliance Factor:   

TRUMPVOTES Trump Votes (%) githube Positive 

(d) Demographic Factors:   

ADULT Age (% of adult ≥ 65 years) ACSf Positive 

MALE Gender (% of Male) ACSf Positive 

EDUCATION Education (% people w/ bachelor's degree 

or higher) 

ACSf Negative 

URBAN Urban (metro or adjacent counties) USDA ERSg Positive 
/Negative 

NON-WHITE Non-White (% of Non-White) ACSf Positive 

POPDENSITY Population Density (Population per square 

mile) 

Census Bureau Positive 

(e) Socioeconomic Factors:   

INCOME Income (Median Household Income in 

dollars) 

USDA ERSh Positive 

POVERTY Poverty (% of people of all ages in 

poverty) 

USDA ERSh Positive 

UNEMPLOYMENT Unemployment (% of unemployed people) USDA ERSh Positive 

HOUSING Housing Condition (% of Housing Units 

w/ more people than Rooms) 

NEPHTNd Positive 

(f) Specific Medical Conditions:   
COVIDRISK COVID-19 Risk Index (% of population ≥ 

18 years) 

PolicyMapi Positive 

(g) Lifestyle Factors:   

SMOKING Smoking (% of current smokers ≥ 18 

years) 

NEPHTNd Positive 

REMOTEWORK Remote Work (% of people worked from 

home ≥ 16 years) 

ACSj Negative 

Note: 

(a) No Stay-at-Home order is the base. 

(b) Restaurant with no restrictions/ authorized to fully reopen” is the base. No county mandated that all restaurants remain completely 

closed. 

(c) “Bar with no restrictions/ authorized to fully reopen” is the base. 

(d) National Environmental Public Health Tracking Network. 

(e) https://github.com/tonmcg/US_County_Level_Election_Results_08-20/blob/master/2020_US_County_Level_Presidential_Results.csv 

(f) American Community Survey 

(g) USDA Economic Research Service: https://www.ers.usda.gov/data-products/rural-urban-continuum-codes.aspx 

(h) USDA Economic Research Service: https://www.ers.usda.gov/data-products/county-level-data-sets/county-level-data-sets-download-

data/ 

(i) PolicyMap: https://www.policymap.com/solutions/covid-19 

(j) American Community Survey: 

https://data.census.gov/cedsci/table?t=Employment&g=0100000US%240500000&y=2020&tid=ACSDP5Y2020.DP03&moe=false&t

p=false 

 

https://github.com/tonmcg/US_County_Level_Election_Results_08-20/blob/master/2020_US_County_Level_Presidential_Results.csv
https://www.ers.usda.gov/data-products/rural-urban-continuum-codes.aspx
https://www.ers.usda.gov/data-products/county-level-data-sets/county-level-data-sets-download-data/
https://www.ers.usda.gov/data-products/county-level-data-sets/county-level-data-sets-download-data/
https://www.policymap.com/solutions/covid-19
https://data.census.gov/cedsci/table?t=Employment&g=0100000US%240500000&y=2020&tid=ACSDP5Y2020.DP03&moe=false&tp=false
https://data.census.gov/cedsci/table?t=Employment&g=0100000US%240500000&y=2020&tid=ACSDP5Y2020.DP03&moe=false&tp=false
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Table 3.2 depicts summary statistics on annual cross-sectional data on dependent, 

independent, and control variables for 3045 contiguous counties. On average, counties mandated 

4.77 percent of days out of the entire period of 2020 with advisory stay-at-home orders and 12.49 

percent of days with mandatory stay-at-home orders.  For the same period, counties on average 

implemented 36.03 percent of days with mask mandate. To the highest, counties in New Jersey 

implemented mask mandate for 75 percent of the entire year (equivalent to 274 days) followed by 

counties in New York. Counties in New Jersey implemented mandatory stay-at-home for 22.06 

percent of the year (equivalent to 81 days) which is the second highest.  The average COVID-19 

risk index is 51.57 where the index ranges between 0 and 100. 
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Table 3.2: Summary Statistics, by County, Annual, 2020. 

Variable Obs. Mean Std. dev. Min Max 

Dependent variable:      
COVID-19 Case per 100,000 people 3,049 555 231 35 2264 

Variables of Interest:      
Stay at Home- No Order (% of days) 3,049 7.74 5.80 0.49 25.00 

Stay at Home- Advisory Order (% of days) 3,049 4.77 6.57 0.00 24.51 

Stay at Home- Mandatory Order (% of days) 3,049 12.49 8.28 0.00 24.02 

Mask Mandate (% of days) 3,049 36.03 24.70 0.00 75.00 

Restaurant with No Restrictions/authorize to fully reopen (% 

of days) 3,049 9.57 18.36 0.00 63.93 
Restaurant Open with limitations/curbside delivery (% of 

days) 3,049 73.76 18.36 19.40 83.33 

Bar with No restrictions/authorize to fully reopen (% of 

days) 3,049 9.74 18.30 0.00 63.93 

Bar Open with limitations/curbside delivery (% of days) 3,049 66.51 21.25 0.00 83.33 

Bar Closed (% of days) 3,049 7.09 14.94 0.00 78.92 

Non-compliance Factor:      
Trump Votes (%) 3,049 65.04 16.04 8.73 96.18 

Demographic Factors:      
Age (% of adult aged 65 years and over) 3,049 19.30 4.78 3.00 57.80 

Gender (% of Male) 3,049 50.07 2.45 42.00 70.90 

Education (% of adults with a bachelor's degree or higher) 3,049 22.56 9.68 0.00 79.14 

Urban dummy 3,049 0.70 0.46 0.00 1.00 

Ethnicity (% of Non-White) 3,049 17.85 16.38 0.00 95.20 

Population Density (Population per square mile) 3,049 240.75 1225.16 0.10 36004.6 

Socioeconomic Factors:      
Income (Median Household Income in dollars) 3,049 57290 14469 22901 160305 

Poverty (% of people of all ages in poverty) 3,049 13.76 5.42 3.00 43.90 

Unemployment (% of unemployed people) 3,049 6.71 2.27 1.50 22.80 

Housing Condition (% of Housing Units with more people 

than Rooms) 3,049 2.28 1.92 0.00 39.00 

Specific Medical Conditions:      
COVID-19 Risk Index (% of population aged 18 years and 

over) 3,049 51.57 27.96 2.85 100.00 

Lifestyle Factors:      
Smoking (% of current smokers aged 18 years and over) 3,049 20.36 4.14 7.30 38.20 
Remote Work (% of people worked from home aged 16 

years and over) 3,049 6.01 3.45 0.00 36.70 

 

Based on 12-month average data, Figure 3.1 shows the COVID-19 case per 100,000 people 

in the contiguous U.S. counties. Out of 3104 counties, counties on both the east and west coasts  

have lower number of cases while counties in the north and south regions have higher number of 

COVID-19 cases per 100,000 people in the country. Figure 3.2 shows that northeastern region 

follows a more stringent mask-wearing mandate, while the middle and southeast regions apply 
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loose mask-wearing mandate. Figure 3.3 shows whether restaurants were open with limitations or 

delivered at curbside while Figure 3.4 shows whether any restaurants were fully reopened or even 

no restrictions were imposed across counties. Finally, Figures 3.5, 3.6, and 3.7 exhibit the 

execution of bar restrictions across counties of the U.S.  

 

Figure 3.1: COVID-19 Case (12-months average) in the Contiguous U.S.A, by County in 2020. 
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Figure 3.2: Mask Wearing Mandate (12-months average) in the Contiguous U.S.A, by County in 

2020. 

 

Figure 3.3: Restaurants Open with Limitations/Curbside Delivery (12-months average) in the 

Contiguous U.S.A, by County in 2020. 
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Figure 3.4: Restaurants with No Restrictions/Authorized to fully reopen (12-months average) in the 

Contiguous U.S.A, by County in 2020. 

Figure 3.5: Bars with no restrictions/authorized to fully reopen (12-months average) in the contiguous 

U.S.A, by County in 2020. 
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Figure 3.6: Bars open with limitations/curbside delivery (12-months average) in the contiguous 

U.S.A, by County in 2020. 

 

Figure 3.7: Bars fully closed (12-months average) in the contiguous U.S.A, by County in 2020. 
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3.3.2 Methods 

Possible control factors for COVID-19 cases that determine the severity of COVID-19 

outcomes include: non-compliance variable (trump votes), demographic variables (age, gender, 

race, ethnicity, population density), socioeconomic variables (income, education, unemployment, 

poverty, social deprivation, housing condition, mode of transportation), biological/specific 

medical conditions (cancer, chronic kidney disease, COPD, diabetes, fever, pneumonia, serious 

heart conditions), geographic factors (rurality, number of highway miles, number of airports), 

lifestyle factors (smoking, remote working), environmental factors (air quality, water quality, 

temperature, humidity, occupational exposure) (Crankson, et al. 2021; Benitez, et al. 2020; CDC 

2020a; CDC 2020b; Correa-Areneda, et al. 2021). As a dependent variable, logarithm of COVID-

19 cases per 100,000 people is used in this cross-sectional model (annual, county-level). In the 

following sections, I presented SDM model to estimate spillover effects of NPIs on reducing 

COVID-19 cases. 

3.3.2.1 Spatial Durbin Model 

Equation 3.2 represents the spatial Durbin model (SDM) based on annual cross-sectional 

data and shows the functional relationship between the outcome variable and independent 

variables (Elhorst, 2014). 

log(COVIDCASE)c=ρW*log(COVIDCASE)c+αIN+βNPIc+γNONCOMPLIANCEc+δDEMOGRA

PHICc+ζSOCIOECONOMICc+ηMEDICALc+μLIFESTYLEc+θW*NPIc+κW*NONCOMPLIANC

Ec+ςW*DEMOGRAPHICc+σW*SOCIOECONOMICc+τW*MEDICALc+φW*LIFESTYLEc+uc…

…………………………………………………………………………………………………………..(3.2) 
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where, log(COVIDCASE) represents the logarithmic form of COVID-19 cases per 100,000 

people, the vector NPI represents non-pharmaceutical interventions that include stay-at-home 

order, mask-wearing mandate, restaurants and bars closure and reopening, the vector 

NONCOMPLIANCE represents non-compliance categories of variables (e.g. Trump Votes), the 

vector DEMOGRAPHIC represents demographic categories of variables such as age, gender, 

education, ethnicity, rurality, and population density, the vector SOCIOECONOMIC represents 

socioeconomic categories of variables such as income, poverty, unemployment, housing condition, 

and the vector MEDICAL represents specific medical conditions to develop serious health 

complications from COVID-19, the vector LIFESTYLE represents lifestyle categories of variables 

such as smoking and remote working.  In equation (3.2), ρ, θ, and W shows the spatial interactions 

of dependent variable, variables of interest, and k-nearest neighbor spatial weight matrix, 

respectively. The term u stands for disturbance term. The subscript c represents county. Equation 

(3.2) is estimated using annual cross-sectional models for the entire period of 2020.  

Since COVID-19 is an infectious disease that might have interaction effects across 

counties, spatial econometric models can suitably model the spatial spillovers of this disease by 

using appropriate spatial weight matrices (Krisztin, et al., 2020; Guliyeb 2020). Prior literature 

also focuses the importance of spatial econometrics for quantifying the spatial spillovers (Emch et 

al. 2012; Wang et al. 2015; Chagas et al. 2016). Since spatial dependence varies across geographic 

locations in case of corona pandemic, Krisztin, et al. (2020) applied spatial weight matrices based 

on trade intensity, common borders, flight connection, and free movement of people and found 

different coefficient estimates under the spatial autoregressive (SAR) model and Poisson spatial 

error model (SEM).  A Global Moran’s I is computed to test spatial dependence across counties. 
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Statistically significant values for Moran’s I indicate the need to use spatial econometric 

regressions (LeSage, 2014).  

Equation 3.3 gives a full model with all types of interaction effects (Elhorst, 2014). 

COVIDCASE=𝜌𝑊 ∗ 𝐶𝑂𝑉𝐼𝐷𝐶𝐴𝑆𝐸+𝛼𝐼𝑁+(NPI)𝛽+(Z)𝛽+W*(NPI)𝜃+W*(Z)𝜃+u………..(3.3a) 

u=𝜆W*u+𝜀………………………………………………………………………………………….(3.3b) 

where W*COVIDCASE represents the endogenous interaction effects among the dependent 

variable (COVID-19 case per 100,000 people), W*NPI shows the exogenous interaction effects 

among the independent interest variables (non-pharmaceutical interventions such as stay-at-home 

order, mask mandate, restaurant, and bar closure and reopening), W*Z represents the exogenous 

interaction effects among the covariates. In equations 3.3a and 3.3b, 𝜌 and 𝜃 show the spatial 

interactions of dependent, and independent variables, respectively, while λ shows the spatial 

interactions of unobservable disturbance term. As covariates, non-compliance, demographic, 

socioeconomic, specific medical conditions, and lifestyle factors are included in the model. 

Finally, W*u shows the interaction effects among the disturbance term of the different units. 

Equations 3.3a and 3.3b thus refer to the general nesting spatial (GNS) model.  

As part of spatial econometric technique, Spatial Durbin Model (SDM) and Spatial Error 

Model (SEM) are estimated.  Using these models, both direct (i.e., effect within the county) and 

indirect (i.e., effect in neighboring counties which is called spillover effect) effects are estimated 

for NPIs’ impacts on the reduction of COVID-19 in the contiguous U.S. Prior literature also 

applied these methods in the field of health economics (Orea and Alvarez, 2021; Chen et al. 2017; 

Weng et al. 2017). R software is utilized for annual cross-sectional data (Bivand, et al. 2021). 
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3.4 Empirical Results 

Spatial spillover effects of NPIs are estimated for the spread of COVID-19 cases per 

100,0000 people in the contiguous U.S. Using county-level data, impacts of stay-at-home order, 

mask-wearing mandates, restaurant and bars closure and reopening as part of NPIs are estimated 

by applying spatial econometric models. 

3.4.1 Spatial Autocorrelation Test 

Using annual cross-sectional data, the Global Moran’s I from OLS residuals are based on 

the 6-nearest neighbors’ weight matrix9 (Arbia, 2014). In Table 3.3, Moran’s I statistic is 0.55 

which is highly statistically significant (p-value-0.000) implying that spatial relationships exist 

for COVID-19 cases per 100,000 people i.e., COVID-19 cases in one county (county i) depends 

on the COVID-19 cases in neighboring county (county j), thus need to apply spatial econometric 

models.  

Table 3.3: Moran’s I test under randomization for regression residuals for OLS model; 

alternative hypothesis: greater. 

 OLS 

Moran’s I statistic   0.551 

Expectation -0.000 

Variance 0.000 

Standard Deviate 54.392 

P-value 0.000 

 

3.4.2 Lagrange Multiplier (LM) Tests 

Using annual cross-sectional data, Lagrange Multiplier (LM) tests are used to compare 

across models based on residuals of the OLS model and follow a chi-squared distribution (Elhorst 

2014; Bivand et al. 2021). The first test is whether SDM is restricted to the OLS model and the 

                                                             
9 Here, 6 neighbors are the appropriate number of nearest neighbors. 
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second test is whether SDM is restricted to the spatial error Durbin model (SEDM).   The likelihood 

ratio (LR) test of the SDM model versus the OLS model takes the value of 1903.8 with 1 degrees 

of freedom (df), and 1% p-value (Table 3.6). Similarly, the LR-test of the SDM model versus the 

SEDM model takes the value of -245.04 with 20 df and 1% p-value (Table 3.4).  On the basis of 

these LM tests, the SDM is more appropriate. 

Table 3.4: Likelihood ratio for spatial linear models. 

 SDM vs OLS SDM vs SEDM 

Likelihood Ratio 1903.8 -245.04 

p-value 0.000 0.000 

df = 20 1 20 

 

3.4.3 Spatial Regression 

Using annual cross-sectional data for 3045 counties, Table 3.5 reports the results for the 

SDM model. From the SDM model, a statistically significant spatial coefficient of dependent 

variables is found (ρ= .75036 with 1% significance level) indicating that an increase/decrease in 

COVID-19 cases in the county 𝑖 increase/decrease in COVID-19 cases in county 𝑗. Thus, any non-

spatial model including OLS is likely to be biased.  For comparison, Table 3.1A in the appendix 

provides OLS and SEM coefficient estimates. The SEM has a positive, statistically significant 

lambda, thus some factors not included in this model have significant effects on COVID-19 cases. 

From the SDM model, statistically significant effects are found for mandatory stay-at-

home orders and mask mandates within and beyond the county on the COVID-19 case per 100,000 

people. In terms of mandatory stay-at-home orders, a one-month implementation in one county 

results in a 2.78 percent decrease in COVID-19 cases per 100,000 people within the same county, 

and a 6.80 percent decrease in COVID-19 cases per 100,000 people in 6-nearest neighboring 

counties. In terms of mask mandate, if a county implements a mask mandate for one month, then 
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COVID-19 case per 100,000 people, on an average, reduces by 0.64 percent in the mandate county 

and 1.58 percent in 6-nearest neighboring counties. Nationally, on average, four cases per 100,000 

people are reduced within the mandate county while nine cases per 100,000 people are reduced in 

6-nearest neighboring counties by implementing mask mandate for one-month. Thus, the spillover 

benefit is greater in neighboring counties than in mandate county when mask mandates are put in 

place. On the contrary, fifteen cases per 100,000 people (about four times larger effect than the 

effect from mask mandate) can be reduced in the county where mandatory stay-at-home order put 

in place, and thirty-eight cases per 100,000 people (over four times larger effect than the effect 

from mask mandate) can be reduced in six nearest neighboring counties, respectively. Other NPIs 

(restaurant and bar limitations and closures and stay-at-home advisories) did not have any 

statistically significant impacts in the SDM model. Thus, mandates for staying at home are much 

more effective at preventing COVID-19 cases than advisories.  Finally, the SEM model in Table 

3.1A provides similar estimates but also provide evidence that some significant spillover effects 

of variables are not explicitly modeled in this study. 
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Table 3.5: Fitted Coefficients for Spatial Durbin Model (SDM), by County, 2020. 

Variables Dep. Variable: log(COVID-19 Case per 100,000 people) 

Direct Indirect Total 

(a) Variable of Interest:    

STAYHOMEADV (% days) -.001473 

(.0013) 

-.003603 

(.0033) 

-.005086 

(.0046) 

STAYHOMEMAN (% days) -.003379*** 

(.0011) 

-.008269*** 

(.0028) 

-.011648*** 

(.0039) 

MASKMANDATE (% days) -.000783*** 

(.00028) 

-.001917*** 

(.00069) 

-.002700*** 

(.00097) 
RESTLIM (% days) -.002382 

(.0074) 

-.005828 

(.018) 

-.008211 

(.025) 

BARLIM (% days) .000148 

(.0074) 

.000363 

(.018) 

.000511 

(.026) 

BARCLOSED (% days) -.000666 

(.0073) 

-.001631 

(.018) 

-.002300 

(.025) 

(b) Non-compliance Factor:    

TRUMPVOTES (%) -.000051 

(.0006) 

-.000124 

(.0015) 

-.000174 

(.0022) 

(c) Demographic Factors    

ADULT (% aged≥ 65 years) -.02366*** 

(.0016) 

-.057891*** 

(.0052) 

-.08155*** 

(.0063) 

MALE (%) .016031*** 
(.0025) 

.039229*** 
(.0069) 

.055260*** 
(.0093) 

EDUCATION (% with bachelor’s degree or higher -.00260** 

(.0012) 

-.006369** 

(.0029) 

-.00897** 

(.0041) 

URBAN (Dummy) -.34679*** 

(.014) 

-.084859*** 

(.034) 

-.11954*** 

(.048) 

NON-WHITE (%) .00155*** 

(..00063) 

.003782*** 

(.0016) 

.005327*** 

(.0022) 

POPDENSITY (per square mile) .000001 

(.000005) 

.0000034 

(.000012) 

.000005 

(.000017) 

(d) Socioeconomic Factors:    

INCOME ($) -.000005*** 

(.000000) 

-.000013*** 

(.00000) 

-.000018*** 

(.00000) 
POVERTY (% of all ages) -.006554*** 

(.0023) 

-.016037*** 

(.006) 

-.022591*** 

(.008) 

UNEMPLOYMENT (%) .005915** 

(.003) 

.0144743** 

(.008) 

.020389** 

(.012) 

HOUSING (% Housing Units with more people 

than Rooms) 

.0017984 

(.003) 

.004401 

(.008) 

.0061994 

(.012) 

(e) Specific Medical Conditions:    

COVIDRISK (% ≥ 18 years) -.000075 

(.0003) 

-.000184 

(.0008) 

-.000259 

(.0012) 

(f) Lifestyle Factors:    

SMOKING (% current smokers ≥ 18 years) -.006600*** 

(.003) 

-.016150*** 

(.0068) 

-.022750*** 

(.009) 

REMOTEWORK (% aged≥ 16 years) -.009795*** 

(.002) 

-.023968*** 

(.005) 

-.033762*** 

(.007) 

Rho .75036*** 

Obs. 3045 
Note: *** for 0.01, ** for 0.05, * for 0.1. Numbers in the parentheses represent standard error estimates. 
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Using SDM model, Table 3.6 demonstrates the direct, indirect, and total effects on COVID-

19 spread from one-month implementations of a mask mandate and a combined mask mandate 

and stay-at-home order.  The direct effect of public mask mandate is 4 fewer cases per 100,000 

people in the mandate county while the indirect effect of the same policy is 9 fewer cases per 

100,000 people in the six nearest neighboring counties. Finally, the total effects of the mask 

mandate policy result in 13 fewer cases per 100,000 people. On the other hand, the direct, indirect, 

and total effects of mandatory stay-at-home order are 15, 38, and 53 fewer cases per 100,000 

people, respectively. Thus, the impact of mandatory stay-at-home order is larger than that of mask 

mandate. One limitation of the SDM model is that the temporal effects on COVID-19 cases could 

not be captured by this model.  

 Table 3.6: Effect of One-Month Implementation of NPIs on COVID-19 Case per 100,000 

people. 

 Mask Mandate (per 100,000 

people) 

Mandatory Stay-At-Home Order (per 

100,000 people) 

Direct Effect 4 fewer cases 15 fewer cases 

Indirect Effect 9 fewer cases 38 fewer cases 

Total Effect 13 fewer cases 53 fewer cases 

 

The monetary benefits from reduced COVID-19 cases are calculated based upon the value 

per nonfatal statistical case saved (Robinson et al. 2021). Table 3.7 shows monetary benefits from 

Powder River County in the state of Montana (a mandate state) and the three-nearest neighboring 

counties in the state of Wyoming (which is a non-mandate state) 10.  Benefit calculations use SDM 

                                                             
10 Here, benefits are calculated from Wyoming counties due to no mask or stay-at-home mandates being 

implemented in this state while the state of Montana implemented both these policies. One caveat to these benefit 

calculations is the relatively small size of population in Montana and Wyoming, which is why, monetary benefits are 

small in size.   
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model results and compute to direct monetary benefits of $0.01 million, $0.04 million, and $0.05 

million from Powder River County, Montana due to one-month implementation of mask mandate, 

mandatory stay-at-home order, and both these policies, respectively. As a non-mandate state,  

spillover benefits to Wyoming from this one county are $0.70 million, $2.95 million, and $3.65 

million from three-nearest neighboring counties (Sheridan, Campbell, Crook) by implementing 

mask mandate, mandatory stay-at-home order, and both these policies, respectively for one month 

in Powder River County, Montana.  The bulk of these reduced COVID-19 cases benefits come in 

the form of reduced hospitalizations given the high rate of hospitalizations (8% in the state of 

Montana, and 6% in the state of Wyoming) from COVID-19 cases in both states.  

Table 3.7: Monetary Benefits from One-Month Implementation of NPIs. 

Type of NPI Direct Benefits from 

Powder River County, 

Montana (Million $) 

Spillover Benefits from three-

nearest neighboring Counties in 

Wyoming (Million $) 

Mask Mandate  0.01 0.70 

Mandatory stay-at-home order 0.04 2.95 

Mask mandate and  

Mandatory stay-at-home order 

0.05 3.65 

Note: The spillover benefits calculations are based upon the three-nearest neighboring Counties (Sheridan, Campbell, 

and Crook in the state of Wyoming) of Powder River County in the state of Montana, where Powder River County is 

a mandate County.   

From the cross-sectional model in Table 3.5, interpretations of control variable results are 

presented below.  While few studies claimed that political stringency and trust in a county and 

state influence COVID-19 case incidence, no statistically significant impact from Trump vote 

percentage is found, which contradicts prior findings of Kahane (2021). Similarly, population 

density at the county level does not influence COVID-19 case per 100,000 people. The male 

population is disproportionately affected by COVID-19 cases compared to its counterpart because 

the male population tends to move outside more frequently than the female population. Similarly, 

communities of color are more vulnerable to COVID-19 infections than white counterpart within 

the county and its neighboring counties, thus supports racial disparity in COVID-19 infections. 
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People holding a higher rate of bachelor’s degrees and above in a county have less chance of 

COVID-19 cases compared to a county with less literacy rate which supports the findings of 

Yoshikawa and Asaba (2021). Remote work by the able-bodied labor force helps to reduce 

COVID-19 cases within the county and its nearest counties which strengthen the argument for 

shelter at home policy. Based on annual cross-sectional data, a statistically significant negative 

coefficient of the urban variable means that rural communities are affected more by COVID-19 

because of limited medical care (Dobis and McGranahan, 2021). Trump votes and healthcare 

inequities11 (e.g. insufficient testing facilities) might influence COVID-19 in the rural 

communities. Finally, a significant negative coefficient for poverty indicates that low income 

communities are less infected by COVID-19. Explanation behind this sign coefficient is two folds: 

one possible explanation is poor compliance of NPIs in low-income communities, other 

explanation is the less availability of testing resources in disadvantaged communities (Finch and 

Finch, 2020).    

3.5 Conclusions and Policy Implications 

This study aims to investigate the spatial spillover effects of NPIs on the spread of COVID-

19 cases in the contiguous U.S. counties using annual cross-sectional data.  From the SDM model, 

both mandatory stay-at-home orders and mask mandate show statistically significant direct, 

indirect, and total effects on COVID-19 cases per 100,000 people with control variables of other 

socioeconomic, demographic, non-compliance, specific medical conditions, and lifestyle factors.  

For other NPIs, no statistically significant impacts were found on COVID-19 spread.  

                                                             
11 https://www.idsociety.org/globalassets/idsa/public-health/covid-19/covid19-health-disparities-in-rural-

communities_leadership-review_final_ab_clean.pdf 
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The indirect effects in neighboring counties are larger than the direct effects from mask 

mandate and mandatory stay-at-home order implemented in a particular county 𝑖. Based upon 

SDM results, implementing mask mandates for one-month results in 4 fewer cases per 100,000 

people in mandate county and 9 fewer cases per 100,000 people in 6-nearest neighboring counties.  

Implementing mandatory stay-at-home order for same period results in 15 fewer cases per 100,000 

people in mandate county, and 38 fewer cases per 100,000 people in the 6-nearest neighboring 

counties. This indicates that the contribution of stay-at-home order is larger than of mask mandate 

in mandate and non-mandate counties. These results corroborate the findings of Ginther and 

Zambrana (2021) and Huang et al. (2022) that mask mandates reduced the number of COVID-19 

cases. These results further indicate that the indirect effects are larger than the direct effects of 

both these policies on COVID-19 spread. 

These research results demonstrate the important role of spatial spillovers for policymakers 

to consider especially in the context of economic burden saved. From the patient perspective, 

individuals can avoid economic burdens from hospitalization and productivity loss by 

implementing NPIs. Research results also indicate that policymakers should put more emphasis 

on mask mandates and mandatory stay-at-home orders relative to other NPIs (such as stay-at-home 

advisories) to control infectious diseases like COVID-19. 

Results on remote working, rurality, race, and poverty are factors indicative of less 

stringent NPIs policy compliance and/or less available testing resources. Compared to metro 

counties, policymakers should ensure equal access to testing facilities and enhance health 

insurance coverage in rural areas to protect rural communities from infectious diseases like 

COVID-19. Also, given the long-standing history of structural racism, residential segregation, and 

social risk in the U.S., policymakers should ensure justice in screening, and symptom presentation 
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of infectious diseases like COVID-19 across races and ethnic communities. Federal and state 

governments should enhance financial benefits under the Coronavirus Aid, Relief, and Economic 

Security (CARES) Act to disadvantaged low-income communities particularly less educated 

communities of color. Finally, from the societal perspective, federal and state governments can 

save resource by designing cost-efficient interventions to tackle future pandemics based on these 

results.  

Under-reporting is one of the major limitations of COVID-19 research. Since regressions 

are based on reported cases only, there is no accounting for unreported cases.  Unreported cases 

lead to an undercount of actual cases.  Secondly, in the early phase of 2020, a higher rate of 

COVID-19 infections in a period spreads the disease in the following period while lower infections 

in a period lessen the disease and grow immunity among the public in the following period in the 

second phase of 2020. Temporal dependence and the effects of NPIs on COVID-19 spread are 

time-dependent. This paper could neither consider differential impacts of policies across different 

waves12 nor incorporate time such as time fixed effect (FE) in the model. Future researchers may 

want to apply a spatiotemporal autoregressive distributed lag (STADL) model to avoid 

misspecification of temporal dependence (Cook, et al. 2023). One challenge of using a STADL 

model is that the average recovery period of COVID-19 is shorter than the one-month data 

frequency used here. For example, if a person is infected, it takes up to fourteen days to fully 

recover13 which means that the temporal overlap between months is not consistent.   

Finally, one controversial NPI (school closures) is not evaluated in this research 

(Chernozhukoy et al. 2021b).  However, no county-level school closure data could be obtained in 

                                                             
12 https://www.hopkinsmedicine.org/health/conditions-and-diseases/coronavirus/first-and-second-waves-of-

coronavirus 
13 https://driphydration.com/blog/covid-19-timeline/ 
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this research. Future research should include this variable as part of NPIs into a model if data 

become available in order to assess the efficacy of this controversial practice.  
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Appendix: 

Table 3.1A: Fitted spatial regression model coefficients for OLS and SEM models, by County, 2020. 

Variables Dep. Variable: log(COVID-19 Case per 100,000 people) 

OLS SEM 

(a) Variable of Interest:   
STAYHOMEADV (% days) -.0008*** 

(.002) 

.00119 

(.0023) 

STAYHOMEMAN (% days) -.0096*** 

(.0014) 

.00208 

(.00205) 

MASKMANDATE (% days) -.002*** 

(.0003) 

-.00118** 

(.00055) 

RESTLIM (% days) -.057*** 

(.009) 

-.0017 

(.015) 

BARLIM (% days) .051*** 

(.009) 

-.00054 

(.015) 

BARCLOSED (% days) .049*** 
(.009) 

-.00300 
(.0148) 

(b) Non-compliance Factor:   

TRUMPVOTES (%) .004*** 

(.0008) 

.0021*** 

(.00084) 

(c) Demographic Factors   

ADULT (% aged ≥ 65 years) -.029*** 

(.0019) 

-.024*** 

(.00147) 

MALE (%) .0012*** 

(.003) 

.01066*** 

(.0021) 

EDUCATION (% with bachelor’s degree or 

higher 

-.005*** 

(.0015) 

-.0029*** 

(.0012) 
URBAN (Dummy) -.054** 

(.017) 
-.0096 
(.015) 

NON-WHITE (%) .0052*** 
(.00078) 

.0038*** 
(.00081) 

POPDENSITY (per sq. mile) .00001 
(.000006) 

-.000013*** 
(.00000) 

(d) Socioeconomic Factors:   
INCOME ($) -.000006*** 

(.000001) 

-.000003*** 

(.00000) 
POVERTY (% of all ages) -.012*** 

(.003) 
.0059*** 
(.00233) 

UNEMPLOYMENT (%) -.0034 
(.0043) 

.010*** 
(.0037) 

HOUSING (% Housing Units with more 

people than Rooms) 

-.006 

(.0044) 

.0025 

(.0032) 

(e) Specific Medical Conditions:   

COVIDRISK (% ≥ 18 years) -.0003 
(.0004) 

.00085*** 
(.00032) 

(f) Lifestyle Factors:   
SMOKING (% current smokers ≥ 18 years) -.0056 

(.003) 
-.021*** 
(.0035) 

REMOTEWORK (% aged≥ 16 years) -.01*** 
(.0025) 

-.015*** 
(.0019) 

Constant 7.287*** 

(.2114) 

6.6914*** 

(.172) 

Lambda  .83019*** 

Obs. 3045 3045 
Note: *** for 0.01, ** for 0.05, * for 0.1. Numbers in the parentheses represent standard error estimates. 
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4.1 Introduction 

Urbanization is the process of population migration from rural to urban areas by which 

social and economic characteristics change over time.14 The economic globalization that started a 

century ago continuously creates the opportunity for the entire world, both developed and 

developing countries, to be involved in urban development. The United Nations Department of 

Economic and Social Affairs (UN DESA) data show that the global average urbanization rate rose 

from 29.6% in 1950 to 54% in 2014 (UN, 2015). It is projected that the urbanization rate in 

developed countries will increase to 86% by 2050, and up to 67% of the global population will 

live in urban areas. 

Urbanization is often associated with an increasing demand for energy and rising 

greenhouse gas (GHG) emissions, the main contributor to global warming. GHG emissions in 

urban areas, particularly Carbon Dioxide (CO2) emissions, are mostly generated from the 

combustion of fuels in the energy and transportation sectors which mainly rely on fossil fuels such 

as natural gas and crude oil (Crippa et al., 2021). Gurney et al. (2022) estimated that global urban 

areas were responsible for 61.8% of the total GHG emissions in 2015. O’Neill et al. (2010) report 

that GHG emissions from urban areas in developing countries will be responsible for more than 

25% increase in the total global GHG emissions by 2100.  

Reducing GHG emissions in urban areas is key to tackling global climate change. The 

United Nations’ sustainable development goals (SDGs) state that countries should make cities 

more resilient and sustainable in dealing with climate change. One of the initiatives is to 

significantly reduce air pollution by 2030 while ensuring access to affordable, reliable, sustainable, 

and modern energy for all citizens. Of particular importance is accelerating the transition to 

                                                             
14 See, https://www.sciencedirect.com/topics/social-sciences/urbanization  

https://www.sciencedirect.com/topics/social-sciences/urbanization
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modern renewable energy, especially in the transport and energy sectors which are the main 

contributors to GHG emissions (IEA, 2021). 

Significant regional- and country-level efforts have taken place to reduce GHG emissions 

from urban areas. Under the Urban Agenda Energy Transition Partnership (UAETP) action plan, 

the European Union (EU) aims to improve energy efficiency at the city level and increase the 

amount of local and renewable energy. The Association of Southeast Asian Nations (ASEAN15) 

has agreed to cooperate in developing the renewable energy sector as one of the potential solutions 

to reduce GHG emissions (Lidula et al., 2007). Following their efforts, the Asian Development 

Bank (ADB) and Japan’s Ministry of Economy, Trade and Industry (METI) recently signed a 

cooperation agreement to enhance their endeavors to increase renewable energy consumption and 

reduce CO2 emissions (ADB, 2021). In the U.S., the Biden administration announced the climate 

plan to reduce carbon emissions by 50% by 2035, in part by increasing energy efficiency and the 

share of renewable energy in the energy portfolio. China, one of the most significant contributors 

to GHG emissions, also made efforts to reduce carbon emissions. For example, in 2006, China 

proposed lowering the energy intensity by 20% and GHG emissions by 10% at the national level.16 

In June 2011, it revealed a comprehensive policy for energy-saving and emissions reduction in the 

country (Lin and Zhu, 2019a). 

Since cities are both “causes and cures” for GHG emissions, an interesting question arises: 

what is the relationship between urbanization and CO2 intensity? Further, given the dominance of 

energy consumption on carbon emissions, how does the development of the renewable fuel sector 

mitigate the impact of urbanization on CO2 intensity? Many studies have examined how 

                                                             
15 ASEAN is a regional group of countries comprises Brunei, Cambodia, Indonesia, Laos, Malaysia, Myanmar, the 

Philippines, Singapore, Thailand, and Vietnam, grouped for economic, political, and security cooperation. 
16 See https://www.iea.org/policies/6277-china-13th-renewable-energy-development-five-year-plan-2016-2020, 

accessed on 25 November 2022. 

https://www.iea.org/policies/6277-china-13th-renewable-energy-development-five-year-plan-2016-2020
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urbanization affects GHG emissions, CO2 intensity in particular. However, the results are 

somewhat mixed. For example, Meng et al. (2021) and Salahuddin et al. (2019) find that CO2 

emissions is positively linked to urbanization. Meanwhile, Kim et al. (2020) and Sadorsky (2014) 

find that urbanization did not significantly affect GHG emissions, while Ali et al. (2017) find a 

significant negative relationship between urbanization and carbon emissions. Zhu et al. (2012) and 

Shahbaz et al. (2016), on the other hand, find a nonlinear relationship between urbanization and 

CO2 emissions. While a vast majority of research efforts used CO2 emissions as a dependent 

variable into their studies, only Zhang, et al. (2014) used CO2 intensity and found long-term impact 

of urbanization on environmental degradation in China. 

Both per capita CO2 emissions and CO2 intensity provide measures of emissions that 

primarily comes from burning fossil fuels. While CO2 emissions per capita consider emissions 

with respect to population size, CO2 intensity accounts for emissions with respect to economic 

growth17. In fact, CO2 intensity aims to reduce emissions by maintaining normal economic growth 

(Zhang et al., 2014). Therefore, this study used both per capita CO2 emissions and CO2 intensity 

as dependent variables to examine how economic growth in compare to population growth 

influences environmental degradation. Based on global panel data, this study shows an inverted 

U-shaped relationship between urbanization and CO2 intensity while U-shaped relationship 

between urbanization and per capita CO2 emissions.     

This lack of consensus in the literature on the urbanization-environmental degradation 

relationship challenges the accuracy of carbon emission forecasting models, which are vital to 

policy initiatives aiming to mitigate global warming. Several factors may explain the mixed 

conclusions, in particular the use of environmental degradation indicators, different sample 

                                                             
17 https://fortune.com/2021/06/25/carbon-intensity-emissions-climate-change-paris-agreement/ 
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periods, estimation methods, and study areas in the empirical design. For instance, most of the 

existing studies consider only single-country (or city) or regional-level panel data (Shah et al., 

2020; Kim, 2020; Zhang et al., 2014; Yao et al., 2018; Shahbaz et al., 2016; Ali et al., 2019). Given 

the different stages of economic development and the vastly varying policies toward climate 

change and urbanization across countries and cities, conclusions regarding the urbanization-CO2 

intensity relationship are likely highly dependent on the study areas considered. A global approach 

accounting for countries/cities from both developed and developing economies with different 

environmental policies is warranted to reveal the average impact of urbanization on CO2 intensity. 

A similar concern applies to the sample period used for empirical analyses. All else equal, a longer 

sample period encompassing various stages of economic growth is likely to yield results that are 

more consistent with real-world observations. 

Another concern with the empirical literature is the failure to account for nonlinear effects. 

While some researchers find that the impact of urbanization on CO2 emissions is U-shaped, others 

show that the impact is inverse U-shaped (Zhu et al., 2012; Shahbaz et al., 2016). Even for studies 

that find the latter, the threshold at which the impact of urbanization on CO2 emissions becomes 

negative is rather different. For example, Du and Xia (2018) find that urbanization increases CO2 

emissions when the urbanization rate is below 48 percent, while Zhang et al. (2017) show that the 

turning point is 73 percent. A more comprehensive study that accounts for nonlinear relationships 

is needed to determine the threshold level for urbanization. 

While a few studies investigated the urbanization-CO2 linkage using global panel data and 

accounted for the possible presence of a nonlinear relationship (Zhang et al., 2017; Chikaraishi et 

al., 2015), they do not consider the impact of the energy transition. All else equal, an economy 

where a larger percentage of energy consumption is derived from renewable resources is linked 
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with lower per capita GHG emissions. For example, Cherni and Jouini (2017) find that government 

policies and regulations that stimulate renewable energy in their energy mix are mainly designed 

to reduce the reliance on fossil fuels which are the major contributor to GHG emissions. Lin and 

Zhu (2019b) show that renewable energy sources significantly contribute to reducing CO2 

emissions, further highlighting the importance of considering energy transition when investigating 

the relationship between urbanization and CO2 intensity.  

 The aim of this essay is to examine the relationship between country-level urbanization 

and GHG emissions by applying dynamic panel data approach. There are two measures that impact 

GHG in the atmosphere: CO2 intensity and CO2 emissions. In this research, the first objective is 

to estimate the short-term and long-term impacts of urbanization on GHG emissions across 

countries. Second objective is to test the non-linear relationship between urbanization and GHG 

emissions in the sample countries. Final objective is to estimate the interaction effect of 

urbanization and renewable energy use on GHG emissions in the sample countries.  

By using panel data for 105 countries from 1990 to 2018, pooled mean group (PMG) 

estimation technique is applied to examine the impact of urbanization on CO2 intensity. The 

analysis follows the urban pollution hypothesis, which argues that the relationship between 

environmental degradation and urbanization is inverse U-shaped.  Evidence consistent with the 

urban pollution hypothesis is found in the long run using CO2 intensity as the dependent; however, 

no significant relationship is identified in the short run. On the other hand, this urban pollution 

hypothesis does not exist when per capita CO2 emissions are used as the dependent variable. Both 

these models further evident that renewable energy consumption significantly reduce 

environmental degradation. By introducing an interaction term into these models, no significant 
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impact of renewable energy use is found on CO2 intensity but significant positive effect on per 

capita CO2 emissions beyond a certain level (threshold) of urbanization.  

This essay contributes to the literature in at least four ways. First, a large-scale, global panel 

data set spanning 29 years across 105 countries is used to investigate the impact of urbanization 

on CO2 intensity. Second, both linear and nonlinear effects are accounted for in the estimation, 

which allows for estimating the threshold at which the impact of urbanization changes the sign. 

Third, long- and short-run relationships are examined and compared between urbanization and 

both CO2 intensity and emissions.  Finally, the impact of energy transition is accounted for in 

modelling by examining how renewable energy consumption mediates the effect of urbanization 

on CO2 intensity.  

The rest of the paper proceeds as follows. Section two discusses the hypotheses and briefly 

reviews the literature. Sections three and four discuss the data and empirical strategy, respectively. 

Results are discussed in section five, and the last section provides conclusions and policy 

implications. 

4.2 Testing Hypotheses and A Brief Review of Related Literature 

Our theoretical underpinning draws heavily on the Environmental Kuznets Curve (EKC) 

literature, which argues that a nonlinear relationship exists between environmental quality and 

economic growth. In the early stage of development, economic development takes priority over 

environmental quality, resulting in an increasing marginal rate of environmental degradation as 

economic growth. As economic growth reaches a certain level, society becomes more aware of 

environmental quality, with significant efforts being paid to reduce environmental degradation. 

This leads to a decreasing marginal rate of environmental degradation as economic growth. Under 

the EKC hypothesis, the relationship between environmental degradation, such as pollution, and 
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income should follow an inverse U shape. A vast majority of the literature investigates the 

relationship between income and CO2 emissions and confirms the validity of the EKC hypothesis. 

For example, Apergis and Ozturk (2015) utilized data from 14 Asian countries, finding a 

statistically significant relationship that validates the EKC hypothesis.  

In our context, Poumanyvong and Kaneko (2010) note that three other theories may help 

explain the relationship between urbanization and carbon emissions, namely ecological 

modernization, urban environmental transition, and compact city theories. Of the three, the first 

two theories closely resemble the EKC hypothesis. The theory of ecological modernization views 

urbanization as a process of social transformation toward modernization, during which 

environmental problems first worsen as societies move from low to middle stages of development 

and later lessen as societies play a higher value on environmental quality in higher stages of 

development (Sadorsky, 2014).  

The urban transition theory places more weight on economic sector composition, arguing 

that the manufacturing base typically expands in the early stages of development, leading to 

increasing environmental problems. As cities become wealthier, residents demand higher 

environmental quality, putting pressure on regulations and technological innovation to reduce 

environmental problems. However, more affluent cities typically produce more pollution due to 

higher energy demand, complicating the impact of wealth on environmental quality. The compact 

city theory, meanwhile, argues that urbanization should lead to fewer environmental problems due 

to the economics of scale and more efficient use of public infrastructure.  

Following Brueckner (2011), I start with the urban pollution hypothesis by applying the 

EKC framework and the three theories discussed above to the urbanization- GHG emissions nexus. 

In Figure 4.1, I apply GHG emissions as a measure of environmental degradation which shows 
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three stages of the relationship between GHG emissions and urbanization: pre-urbanization, 

urbanization, and post-urbanization. In the initial stage, as urbanization increases, the amount of 

GHG emissions goes in the same direction at a mildly increasing rate. When cities grow into the 

middle stage (the urbanization stage), GHG emissions increase at a decreasing rate and reach the 

maximum level. Thus, the curve has a turning point when the GHG emissions are at the highest 

level (i.e., peak emission). During this stage, economic growth is prioritized over environmental 

quality. The manufacturing base expands rapidly, with little attention paid to GHG emissions. 

However, the growth rate in GHG emissions decreases as a higher population density generates 

economies of scale.  

Finally, GHG emissions falls when urbanization continues to increase, the so-called post-

urbanization period. As cities become wealthier, more attention is paid to environmental 

sustainability. Technology improvements, environmental regulations, and a shift of economic 

sector composition (i.e., from manufacture-based economy to service-based economy) allow 

carbon emissions to decrease even as urban areas continue to expand. In particular, the increasing 

adoption of carbon-neutral technology and consumption of renewable energy help reduce carbon 

intensity in advanced countries where urbanization passes the threshold.  
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Figure 4.1: Urban Pollution Hypothesis18.  

Based on the discussion above, I propose two hypotheses linking urbanization, renewable 

energy use, and GHG emissions: 

Hypothesis 1: The relationship between urbanization and GHG emissions is nonlinear. In 

particular, a threshold exists at which GHG emissions decreases even as urbanization 

continues to expand. 

Hypothesis 2: Renewable energy use mitigates the impact of urbanization on GHG 

emissions. Higher rates of renewable energy use during the post-urbanization stage results 

in reduced GHG emissions. 

A number of existing studies have tested the first hypothesis. As noted earlier, conclusions 

are mixed. One strand of literature found an inverted U-shaped relationship between CO2 

emissions and urbanization, particularly when using STIRPAT19 models (Martinez-Zarzoso and 

                                                             
18 This graph is generated based on Kaika and Zervas (2013). 

19 STIRPAT stands for Stochastic Impacts by Regression on Population, Affluence, and Technology. 
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Maruotti, 2011; Zhang et al., 2017; Chen et al., 2019). The inverted U-shaped relationship occurs 

due to the tradeoff between environmental sustainability and economic growth. On the other hand, 

a few studies rejected this hypothesis and found a U-shaped relationship between urbanization and 

CO2 emissions (Shah et al., 2020; Shahbaz et al., 2016). Shah et al. (2020) claimed that the lack 

of policies toward energy efficiency and clean energy initiatives in Pakistan is the leading cause 

of this U-shaped relationship at the higher rate of urbanization. Meanwhile, Shahbaz et al. (2016) 

argued that Malaysia adopted several policies to protect the environment from urbanization at its 

early stage. However, they did not provide any explanation for the increasing emissions at the later 

stage of urbanization.  

Some studies noted a linear impact of urbanization on carbon emissions. Poumanyvong 

and Kaneko (2010), for instance, find that urbanization significantly increases CO2 emissions, with 

the most significant effect observed in the middle-income group of countries. By contrast, Fan et 

al. (2006) note that the relationship between urbanization and CO2 emissions was negatively 

significant, supporting the compact city theory. In addition, Sadorsky (2014) finds a non-

significant impact of urbanization on CO2 emissions. A similar conclusion was also reached by 

Liddle and Lung (2010) using panel data from 17 countries for the total CO2 emissions. Overall, 

the existing literature is inclusive regarding the relationship between CO2 emissions and 

urbanization. 

Regarding the second hypothesis, only a few studies have included renewable energy as an 

explanatory variable in examining the EKC. The reason may be the small share of renewable 

energy production from the total energy production in many countries. For example, in the U.S., 

the renewable energy production share from the total U.S. energy production in 2021 was only 

13% (EIA, 2022). Baek (2016) studied the effects of renewable and nuclear energy consumption 
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on CO2 emissions in the U.S., finding that nuclear energy consumption reduces CO2 emissions in 

the short and long run, while renewable energy consumption does only in the short run. This 

conclusion contradicts Apergis et al. (2010), who find that renewable energy does not significantly 

affect CO2 emissions in the short run. Kim (2020) finds that renewable energy significantly 

decreases CO2 emissions in Korea, a conclusion confirmed by Hanif (2018) for Sub-Saharan 

African low-income countries. Meanwhile, Chen et al. (2019) found that for Chinese cities, more 

urbanization resulted in higher use of nonrenewable energy than renewable energy. 

However, none of these studies examined how the impact of urbanization on CO2 

emissions varies with renewable energy use. To test Hypothesis 2, a renewable energy share 

variable is included in the urbanization-CO2 intensity relationship along with an interaction term 

of urbanization and renewable energy, which is discussed in the method section.  

4.3 Variables and Data 

Data used for the analysis consisted of 105 countries from 1990 to 2018. A list of countries 

considered in the analysis, along with their urbanization levels in 2018, is provided in appendix. 

Table 4.1 describes the variables used in the analysis. Data on independent variables are collected 

from the World Development Indicators (WDI)20 of the World Bank. Data on dependent variables 

on GHG impacts are collected from Our World in Data21. GHG impacts are measured by per capita 

CO2 emissions and CO2 intensity, which is measured by CO2 emissions per dollar of GDP in metric 

tons (MT). The CO2 intensity measure relates the growth in emissions to economic growth.  The 

key explanatory variable is urbanization, which can be defined based on various metrics such as 

place, area, and population. Here, the focus is on the population dimension and the percentage of 

the urban population is used rather than the overall population to measure the rate of urbanization. 

                                                             
20 https://data.worldbank.org/indicator  
21 https://ourworldindata.org/grapher/co2-intensity  

https://data.worldbank.org/indicator
https://ourworldindata.org/grapher/co2-intensity
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This measure has been used in various previous studies such as Zhang et al. (2017) and Zhu et al. 

(2012). Zhang et al. (2017) note that the population-based measure describes both CO2 intensity 

and urbanization level. 

Other covariates considered are renewable energy use22, computed as the percentage of the 

renewable energy consumption divided by the total final energy consumption. Renewable energy 

sources include, among others, solar, wind, hydro, biomass, geothermal, municipal waste, and 

tidal. This variable measure the degree of the energy transition for a given country. Per capita GDP 

at a constant price of $2010 is used to measure economic growth, which has been shown by various 

previous studies to significantly affect GHG emissions (e.g. Narayan et al., 2016).  

Previous studies find that foreign direct investment (FDI) directly contributes to carbon 

emissions (Tang and Tan, 2015; Shahbaz et al., 2019; Koçak and Şarkgüneşi, 2018). Other studies 

find that FDI reduces CO2 emissions through the adoption of clean energy technology in 

production (Zhang and Zhou, 2016; Xie et al., 2020), though Lee (2013) finds no evidence of clean 

energy use. FDI is measured by the net flows of all investment activities at a constant price of 

$2010 in the analysis. Trade openness is measured by the total exports and imports of goods and 

services as a percentage of the GDP. Zhang et al. (2017) find that trade openness negatively affects 

CO2 emissions. Lv and Xu (2019) find no short-run effect of trade openness but a long-run positive 

effect on CO2 emissions. Finally, the structure of the economy is measured by the percentage of 

GDP attributable to industrial activities. Previous studies note that industrial structural 

                                                             
22 One criticism of using “renewable energy use” variable is that development direction in very underdeveloped 

countries does not support hypothesis 2 as more urbanization does not necessarily lead to more biomass use but 

perhaps even less biomass use and more fossil fuel use. However, Barnes and Floor (1999) claimed that as urban areas 
expand in developing countries, the transition to renewable energy follows EKC hypothesis of CO2 emissions. The 

variable “Share of electricity that comes from low-carbon sources” can be used as a proxy for renewable energy. Since 

many observations are missing during 1990-1999, and adding this variable restricts the sample size to only 57 

countries for 1990-2018 period, I used renewable energy consumption as a percentage of total final energy 

consumption to cover the longest time period (1990-2018) for the largest (105) number of countries which might not 

be expected to have a consistent impact on CO2 intensity at given urbanization. 
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transformation reduces CO2 emissions through technical progress (Zhao et al., 2022; Zhou et al., 

2013). 

Table 4.1: Variable Definition and Summary Statistics (N= 3,045)  
Variable Definition and Units Mean S.D. Min Max 

𝐶𝑂2  intensity 
CO2 emissions (metric ton) per dollar of 

GDP 
0.29 0.25 0.00 2.79 

𝐶𝑂2 CO2 emissions (metric ton) per capita 3.95 4.48 0 30.36 

URBAN 
Urban population from the total 

population, %  
57.90 22.80 5.42 100.00 

RENERGY 
Renewable energy of total final energy 

consumption, % 
36.53 30.89 0.00 98.30 

GDP 
Per capita GDP, current U.S. dollars 
(‘000’$) 

11.17 17.61 .02 123.68 

FDI 
net inflows, Million Current U.S. dollars 

($) 
10766.30 40285.54 -344000.00 734000.00 

TRADE 
Imports & exports of goods & services 

as a % of GDP, % 
74.90 50.45 0.02 437.33 

INDUSTRY Industry activities as a % of GDP, %  27.12 10.45 4.50 86.67 
Notes: S.D. represents the standard deviation. 

Summary statistics of the variables are also shown in Table 4.1. Figure 4.2 plots the spatial 

distribution of CO2 emissions and urbanization rate in 2019. Urbanization averaged 57% across 

all countries during the sample period, but the variation across countries is high as evidenced by 

the large standard deviation (22.80). The lowest urbanization rate observed in Rwanda while the 

maximum of 100% occurring in Singapore. On average, CO2 emissions are 0.29 MT per dollar of 

GDP, with the lowest CO2 intensity in Namibia in 1990 and highest in Mongolia in 1991. The 

highest per capita CO2 emissions occurred in Luxembourg. Meanwhile, Mali had the lowest per 

capita CO2 emissions, and most people in these countries live in rural areas. For Europe, CO2 

emissions are generally low relative to the urban population.    
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Figure 4.2: Urbanization and CO2 Emissions in the Study Area, 2019. 

For renewable energy share, the minimum percentage (zero) was observed for Oman, 

Niger, and Malta, while the maximum was 98.30% for Chad in 1991, which is one of the lowest-

income countries. The high share of renewables in low-income countries mostly reflects the use 

of biomass energy for heating and cooking. On average, around 36% of global energy consumption 

can be attributed to renewable sources. Figure 4.3 plots the spatial distribution of renewable energy 

consumption and CO2 emission where the high percentages of renewable energy are located 

around the world- across both very developed (e.g. some European countries) and very 

undeveloped parts of the world (e.g. some African countries). This reflects two opposite 

development directions which both reduce CO2 emissions: (1) a higher level of development that 

involves replacement or non-use of fossil fuels to generate electricity via renewable energy (solar, 

wind, hydro, geothermal, tidal), and (2) a very low level of development that uses mainly biomass 

for energy, not even getting to a fossil fuel use stage of development. Consumption of renewable 
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energy as a percentage of total energy consumption was also found high in South and Southeast 

Asia, and South America. Meanwhile, CO2 emissions are lower in those areas. 

 

Figure 4.3: Renewable Energy Consumption and CO2 Emissions in the Study Area, 2019. 

4.4 Empirical Strategy 

Prior studies primarily rely on fixed effects (FE), random effects (RE), ARDL, and vector 

autoregressive models when analyzing the impact of urbanization on carb emissions (Ali et al., 

2017; Ali et al., 2019; Kim, 2020; Mahmood et al., 2020; Shah et al., 2020; Shi and Li, 2018). 

Those estimators usually impose homogeneity restrictions and allow only intercepts to vary across 

panels, which are useful when there is a large number of panels (N) but small time-series 

observations (T). If heterogeneity arises across panels over time and serial correlations among 

regressors exist, then these estimators would provide inconsistent results.  

Pesaran et al. (1999) developed the PMG estimator based on a relatively large number of 

T and equal order of magnitude of N within the dynamic heterogeneous panels. PMG estimator is 
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more efficient because it considers the long-run restrictions assuming coefficients are the same 

across panels. It also consistently and efficiently estimates long-run causality while allowing for 

both stationary and nonstationary variables (Pesaran and Shin, 1998). Given these advantages, the 

PMG estimator has become a popular approach when investigating long- and short-run 

relationships in panel data settings (Atasoy, 2017; Iwata et al., 2011; Martinez-Zarzoso and 

Bengochea-Morancho, 2004; Mert and Boluk, 2016).  

I start our estimation using the following equation: 

𝐺𝐻𝐺𝑖𝑡 = 𝛽0𝑡 + 𝛽1𝑡𝑈𝑅𝐵𝐴𝑁𝑖𝑡 + 𝛽2𝑡𝑈𝑅𝐵𝐴𝑁2𝑖𝑡 + 𝛽3𝑡𝑅𝐸𝑁𝐸𝑅𝐺𝑌𝑖𝑡 + 𝛽4𝑈𝑅𝐵𝐴𝑁 ∗ 𝑅𝐸𝑁𝐸𝑅𝐺𝑌𝑖𝑡

+ 𝛽5𝑡𝐺𝐷𝑃𝑖𝑡 + 𝛽6𝑡𝐺𝐷𝑃2𝑖𝑡 + 𝛽7𝑡𝐹𝐷𝐼𝑖𝑡 + 𝛽8𝑡𝑇𝑅𝐴𝐷𝐸𝑖𝑡 + 𝛽9𝑡𝐼𝑁𝐷𝑈𝑆𝑇𝑅𝑌𝑖𝑡 + 𝜇𝑖

+ 𝜀𝑖𝑡 … … … … … … … … … … … … … … … … … … … … … … … … … … … …  (4.1) 

where 𝐺𝐻𝐺𝑖𝑡 is the GHG emissions proxied by two variables: carbon dioxide emissions in metric 

tonnes per dollar of GDP, and per capita carbon dioxide emissions in metric tonnes in a 

country/territory i and year t, URBANit and URBAN2it represent the percentage of urban population 

and its squared value, respectively, RENERGYit is the percentage of renewable energy 

consumption in total energy consumption, and 𝑈𝑅𝐵𝐴𝑁 ∗ 𝑅𝐸𝑁𝐸𝑅𝐺𝑌𝑖𝑡 is the interaction term of 

urbanization and renewable energy consumption to examine how the impact of urbanization on CO2 

intensity varies with the energy transition. Furthermore, 𝐺𝐷𝑃𝑖𝑡 and 𝐺𝐷𝑃2𝑖𝑡  represents the per capita 

GDP at a constant 2010 US$, and its squared value, 𝐹𝐷𝐼𝑖𝑡 is the annual net inflows of foreign 

direct investment in million current U.S. dollars, 𝑇𝑅𝐴𝐷𝐸𝑖𝑡t is the trade openness, and 𝐼𝑁𝐷𝑈𝑆𝑇𝑅𝑌𝑖𝑡 

is the structure of the economy. Finally, 𝜇𝑖 is the group effect and 𝜀𝑖𝑡 is the error term. 

Our first hypothesis holds if the coefficient of urbanization variable (𝛽1) is positive, and  

the coefficient of squared urbanization (𝛽2) is negative, confirming the so-called inverted U-

shaped relationship. At first, GHG emissions increase with urbanization at a decreasing rate until 
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reaching a maximum point, after which GHG emissions decrease at an increasing rate. The point 

at which the curve attains its maximum is called the turning point, which is the point on the 

curve where GHG emissions are at a maximum. The point can be calculated by setting the first 

derivation of equation (4.1) with respect to URBAN equal to zero and solving for urbanization: 

𝛽1 + 2𝛽2𝑈𝑅𝐵𝐴𝑁 = 0 =>  𝑈𝑅𝐵𝐴𝑁 =  
− 𝛽1

2𝛽2
, … … … … … … … … … … … … … (4.2) 

Since an inverted-U shaped relationship exists between environmental degradation and 

income, I included per capita GDP and its squared value into the model to avoid multicollinearity 

between urbanization and income (Kuznets, 1955). Further, GHG emissions are a result of the 

long-time impact of various causal factors, I include lagged regressors in the estimation. However, 

many problems could arise from using too many lags, such as the loss of degrees of freedom, 

multicollinearity, error term serial correlation, and misspecification errors. Here, I consider one 

lag for the analysis which presents the least number of problems in empirical estimation. The 

resulting specification takes the form of an ARDL model: 

𝐺𝐻𝐺𝑖𝑡 = 𝛿𝑖𝐺𝐻𝐺𝑖,𝑡−1 + 𝜑10𝑖 𝑈𝑅𝐵𝐴𝑁𝑖𝑡 + 𝜑11𝑖𝑈𝑅𝐵𝐴𝑁𝑖,𝑡−1 + 𝜑20𝑖𝑈𝑅𝐵𝐴𝑁2𝑖𝑡 +

𝜑21𝑖 𝑈𝑅𝐵𝐴𝑁2𝑖,𝑡−1 + 𝜑30𝑖 𝑅𝐸𝑁𝐸𝑅𝐺𝑌𝑖𝑡 + 𝜑31𝑖 𝑅𝐸𝑁𝐸𝑅𝐺𝑌𝑖,𝑡−1 + 𝜑40𝑖 𝑈𝑅𝐵𝐴𝑁 ∗

𝑅𝐸𝑁𝐸𝑅𝐺𝑌𝑖𝑡 + 𝜑41𝑖𝑈𝑅𝐵𝐴𝑁 ∗ 𝑅𝐸𝑁𝐸𝑅𝐺𝑌𝑖,𝑡−1 + 𝜑50𝑖 𝐺𝐷𝑃𝑖𝑡 + 𝜑51𝑖𝐺𝐷𝑃𝑖,𝑡−1 +

𝜑60𝑖 𝐺𝐷𝑃2𝑖𝑡 + 𝜑61𝑖 𝐺𝐷𝑃2𝑖,𝑡−1 + 𝜑70𝑖𝐹𝐷𝐼𝑖𝑡 + 𝜑71𝑖 𝐹𝐷𝐼𝑖,𝑡−1 + 𝜑80𝑖 𝑇𝑅𝐴𝐷𝐸𝑖𝑡 +

𝜑81𝑖 𝑇𝑅𝐴𝐷𝐸𝑖,𝑡−1 + 𝜑90𝑖 𝐼𝑁𝐷𝑈𝑆𝑇𝑅𝑌𝑖𝑡 + 𝜑91𝑖 𝐼𝑁𝐷𝑈𝑆𝑇𝑅𝑌𝑖,𝑡−1 + 𝜇𝑖 + 𝜗𝑖𝑡 , 

……………………………………………………………..………..……….. (4.3) 

Equation (4.3) can be further rewritten into the error correction form to compute the long- 

and short-run relationship between carbon intensity and urbanization: 
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∆𝐺𝐻𝐺𝑖𝑡 = 𝛾𝑖(𝐺𝐻𝐺𝑖,𝑡−1 − 𝜃0𝑖 − 𝜃1𝑖 𝑈𝑅𝐵𝐴𝑁𝑖𝑡 − 𝜃2𝑖 𝑈𝑅𝐵𝐴𝑁2𝑖𝑡 − 𝜃3𝑖𝑅𝐸𝑁𝐸𝑅𝐺𝑌𝑖𝑡

− 𝜃4𝑖 𝑈𝑅𝐵𝐴𝑁 ∗ 𝑅𝐸𝑁𝐸𝑅𝐺𝑌𝑖𝑡 − 𝜃5𝑖𝐺𝐷𝑃𝑖𝑡 − 𝜃6𝑖𝐺𝐷𝑃2𝑖𝑡 − 𝜃7𝑖𝐹𝐷𝐼𝑖𝑡 − 𝜃8𝑖 𝑇𝑅𝐴𝐷𝐸𝑖𝑡

− 𝜃9𝑖 𝐼𝑁𝐷𝑈𝑆𝑇𝑅𝑌𝑖𝑡) + 𝜑11𝑖∆𝑈𝑅𝐵𝐴𝑁𝑖𝑡 + 𝜑21𝑖∆𝑈𝑅𝐵𝐴𝑁2𝑖𝑡 + 𝜑31∆𝑅𝐸𝑁𝐸𝑅𝐺𝑌𝑖𝑡

+ 𝜑41∆𝑈𝑅𝐵𝐴𝑁 ∗ 𝑅𝐸𝑁𝐸𝑅𝐺𝑌𝑖𝑡 + 𝜑51𝑖 ∆𝐺𝐷𝑃𝑖𝑡 + 𝜑61𝑖∆𝐺𝐷𝑃2𝑖𝑡 + 𝜑71𝑖∆𝐹𝐷𝐼𝑖𝑡

+ 𝜑81𝑖 ∆𝑇𝑅𝐴𝐷𝐸𝑖𝑡 + 𝜑91𝑖∆𝐼𝑁𝐷𝑈𝑆𝑇𝑅𝑌𝑖𝑡 + 𝜏𝑖𝑡 , … … … … … … … … … … . … … (4.4) 

where, 𝛾𝑖= - (1-𝛿𝑖), 𝜃0𝑖=
𝜇𝑖

1−𝛿𝑖
, 𝜃1𝑖 =

𝜑10𝑖+𝜑11𝑖

1−𝛿𝑖
, 𝜃2𝑖 =

𝜑20𝑖+𝜑21𝑖

1−𝛿𝑖
, 𝜃3𝑖 =

𝜑30𝑖+𝜑31𝑖

1−𝛿𝑖
, 𝜃4𝑖 =

𝜑40𝑖+𝜑41𝑖

1−𝛿𝑖
, 

𝜃5𝑖 =
𝜑50𝑖+𝜑51𝑖

1−𝛿𝑖
, 𝜃6𝑖 =

𝜑60𝑖+𝜑61𝑖

1−𝛿𝑖
, 𝜃7𝑖 =

𝜑70𝑖+𝜑71𝑖

1−𝛿𝑖
, 𝜃8𝑖 =

𝜑80𝑖+𝜑81𝑖

1−𝛿𝑖
, 𝜃9𝑖 =

𝜑90𝑖+𝜑91𝑖

1−𝛿𝑖
. Here, 𝜃 

represents the long-run coefficients, 𝜑 represents the short-run coefficients, and the error 

correction term 𝛾 represents the speed of adjustment of 𝐶𝑂2 intensity to the long-run equilibrium 

following a shock that deviates the relationship from the equilibrium. Thus, error correction term 

𝛾 depends on the coefficient of lagged dependent variable, long-run coefficients 𝜃 depends on 

corresponding short-run coefficients and the coefficient of lagged dependent variable. The PMG 

approach estimates first panel-specific slope coefficients for each country using the pooled 

ordinary least square (OLS) approach, which is subsequently averaged to obtain the mean group 

estimates.   

4.5 Estimation Results 

I first test for panel stationarity using the Levin-Lin-Chu and the Hadri LM tests, (Hadri, 

2000; Levin et al., 2002). The Levin-Lin-Chu test assumes that panels contain unit roots across 

cross-sections, while the Hadri LM test assumes that all panels are stationary against some panels 

containing unit roots. Table 4.2 shows that some series are stationary, and some contain a unit root. 

Mixed conclusions are reached for the two tests. One advantage of the PMG estimator is that it 

allows for both stationary and nonstationary variables. Therefore, I proceed to the analysis using 

the variables as specified in the data section. 
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Table 4.2. Panel Unit Root Tests 

Levin, Lin and Chu tests Hardri LM tests 

Series Adjusted t Series Adjusted t Series Z Series Z 

CO2intensity -3.91*** ΔCO2intensity -17.52*** CO2intensity 84.53*** ΔCO2intensity 5.13*** 

CO2 -8.33*** ΔCO2 -12.58*** CO2 80.96*** ΔCO2 5.69*** 

URBAN -4.88*** ΔURBAN -37.73*** URBAN 120.93*** ΔURBAN 71.94*** 

URBAN2 -3.82*** ΔURBAN2 -31.49*** URBAN2 118.89*** ΔURBAN2 77.79*** 

RENERGY -1.67* ΔRENERGY -14.90*** RENERGY 79.63*** ΔRENERGY 0.71 

GDP -1.02 ΔGDP -14.02*** GDP 51.33*** ΔGDP 7.90*** 

GDP2 1.10 ΔGDP2 -14.94*** GDP2 47.71*** ΔGDP2 5.31*** 

FDI -4.34*** ΔFDI -15.70*** FDI 19.13*** ΔFDI -3.74 

TRADE -3.05*** ΔTRADE -18.80*** TRADE 65.36*** ΔTRADE -2.48 

INDUSTRY -2.30*** ΔINDUSTRY -16.90*** INDUSTRY 87.32*** ΔINDUSTRY -1.42 

Note: For Levin, Lin and Chu tests, one lag is used in the ADF regression. The null hypothesis is that the panel 

under consideration contains a unit root, while the alternative hypothesis states the panel is stationary. Panels means 

and time trends are included. For the Hardri LM tests, the time trend is included. The null hypothesis is that the 

panel under consideration is stationary, while under the alternative hypothesis, the panel contains a unit root. One, 

two, and three asterisks represent statistical significance at 10%, 5%, and 1%, respectively. 

Panel cointegration is tested using the Kao test to determine whether a long-run relationship 

exists between dependent variable and its regressors (Kao, 1999). Table 4.3 provides Kao test 

statistic results using CO2 intensity as the dependent variable, and table 4.4 gives testing results of 

this statistic using per capita CO2 emissions as the dependent variable. In both tables, the null 

hypothesis of this test is that there exists no cointegration relationship, while under the alternative 

hypothesis, all panels are cointegrated. As can be seen in the table 4.3, the Dickey-Fuller t-statistic 

in the Kao test is -7.00, which is significant at 1%. Table 4.4 also provides Dickey-Fuller t-statistic 

at the same level of significance. Therefore, the Kao test suggests that the series are cointegrated. 

Further, the Augmented Dicky-Fuller (ADF) t-statistic is also highly significant, again suggesting 

a long-run relationship between the series. 
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Table 4.3. Panel Cointegration Test  

Kao Test 

Ho: No cointegration  
Ha: All panels are cointegrated 

  Statistic p-value 

Modified Dickey-Fuller t -0.88 0.1878 

Dickey-Fuller t -7.00 0.0000 

Augmented Dickey-Fuller t -7.43 0.0000 

Unadjusted modified Dickey-Fuller t -1.70 0.0450 

Unadjusted Dickey-Fuller t -7.48 0.0000 

Cointegrating vector: Same 
Panel means: Included 

Time trend: Not included 
A.R. parameter: Same 

Note: Here, CO2 intensity is the dependent variable.  

 

Table 4.4. Panel Cointegration Test 

Kao Test 

Ho: No cointegration  
Ha: All panels are cointegrated 

  Statistic p-value 

Modified Dickey-Fuller t -0.6572 0.2555 

Dickey-Fuller t -2.5873 0.0048 

Augmented Dickey-Fuller t   -2.6196    0.0044 

Unadjusted modified Dickey-Fuller t -3.0497 0.0011 

Unadjusted Dickey-Fuller t -5.1542 0.0000 

Cointegrating vector: Same 

Panel means: Included 

Time trend: Not included 

A.R. parameter: Same 

Note: Here, CO2 is the dependent variable.  

Given the presence of a long-run relationship, I now proceed to estimate the relationship 

using the PMG estimator. Estimation results are presented in Table 4.5. As can be seen in model 

1, all long-run coefficients are consistently statistically significant except for interaction term of 

urbanization and renewable energy, and foreign direct investment, suggesting that urbanization, 

renewable energy consumption, economic growth, and industry composition all impact CO2 
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intensity in the long term. Also, the positive sign of urbanization and the negative sign of squared 

urbanization supports the inverted U-shaped relationship noted in Hypothesis 1. In other words, 

CO2 intensity initially increase at a decreasing rate with urbanization until reaching the peak 

emission level, after which CO2 intensity decreases with urbanization. This result is consistent 

with previous studies such as Zhu et al. (2012) and Shahbaz et al. (2016). On the contrary, Model 

2 does not support hypothesis 1 which indicates that per capita CO2 emissions initially decreases 

as more people lives in urban areas, however, per capita CO2 emissions increases as urban areas 

grows further beyond the minimum emission level. One possible explanation behind the difference 

between models is that population grows disproportionately than the economic growth at the given 

level of CO2 emissions. 
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Table 4.5. Pooled Mean Group (PMG) Estimates (1990 - 2018) 

 Dependent Variable 

Independent Variables Model 1 (CO2 intensity) Model 2 (CO2) 

Long Run:   

URBAN 
.0228723*** 
(.0036887) 

-.024771*** 

(.007282) 

URBAN2 
-.0001933*** 

(.000027) 

.0001254*** 

(.0000492) 

RENERGY 
-.0009548* 

(.0005455) 

-.0186426*** 

(.0019854) 

URBAN*RENERGY 
.00000871 

(.00000947) 
.0002161*** 

(.000054) 

GDP 
-.0047433*** 

(.0007334) 

-.0392729*** 

(.0094004) 

GDP2 
.0000550*** 
(.0000104) 

.0040182*** 
(.0004853) 

FDI 
-.0000000499 
(.0000000460) 

.00000792*** 

(.00000114) 

TRADE 
-.0001827** 

(.0000868) 

-.000121 

(.0001097) 

INDUSTRY 
.0021054*** 

(.0003454) 

-.0014017*** 

(.0003511) 

Short Run:   

ECT 
.2710863*** 
(.0275671) 

.189295*** 
(.0241367) 

URBAN 
-.4197192  

(.8927195) 

-4.557598 

(8.306878) 

URBAN2 
-.0012388 

(.0075403) 

-.0059886 

(.0529963) 

RENERGY 
1.171687 

(1.292493) 

.7282914 

(3.085353) 

URBAN*RENERGY 
-.0148018  

(.0161191) 

-.0194772 

(.0410447) 

GDP 
-.0150162 
(.0129915) 

.1149479** 
(.0394451) 

GDP2 
.0024431 

(.0106957) 

-.0195317** 

(.0087133) 

FDI 
-.0000139 

(.0000122) 

.0000184 

(.0000156) 

TRADE 
  .0000586  

(.0001187) 

.0059587*** 

(.0012663) 

INDUSTRY 
-.0000207 

(.0004732) 

.0229923* 

(.0128885) 

Constant 
.0610591*** 

(.0165196) 

-.6672085*** 

(.1044824) 

Number of observations 2940 
2940 

Note: Standard errors in parentheses. One, two, and three asterisks represent statistical significance at 10%, 5%, 

and 1%, respectively. 
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Based on equation (4.2), the turning point of urbanization, in the long run, is estimated by 

using average coefficient values of URBAN and URBAN2 from model 1 (Table 4.5). The turning 

point is computed to 59.16 percent. Countries with urbanization levels below 59.16 percent will 

show increases in in CO2 intensity as more people migrate into cities. Meanwhile, countries with 

greater than 59.16 percent of urbanization are projected to lower CO2 intensity even as urban areas 

expand in population. This turning point is consistent with the results of previous studies. For 

instance, Du and Xia (2018) find that urbanization increases CO2 emissions when the urbanization 

rate is below 48 percent, while Zhang et al. (2017) show that the turning point is 73 percent. From 

Table 4.5, PMG estimates thus shows inverted U-shaped relationship between urbanization and 

CO2 intensity.   

Table 1A in the appendix shows the list of countries with level of urbanization in 2018, 

where 44 countries considered in the present study had urbanization below this threshold, and 61 

countries had more than 59.16 percent of urbanization. Most of the developed economies (e.g. 

Belgium, Iceland, Uruguay, Malta, and Singapore) fall within the latter category, i.e. their 

urbanization exceeds this threshold. On the other hand, countries below the threshold are mostly 

located in Africa or Asia, suggesting that further efforts be devoted in these regions to mitigate the 

positive impact of urbanization on CO2 intensity. The turning point identified in this research 

suggests modeling efforts that expect CO2 intensity to decrease simply with a higher urbanization 

rate without considering other factors may be mis specified. Model 1 further show that the share 

of renewable energy in the total energy portfolio significantly lowers CO2 intensity which supports 

the findings of Baek (2016), Apergis et al. (2010), and Kim (2020). 

From the estimation results in models 1 and 2, an interaction term between urbanization 

and renewable energy consumption is included to show how the impact of the former is mitigated 
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by the latter (Hypothesis 2). All else equal, the interaction coefficient evident that additional 

urbanization does not significantly reduce CO2 intensity but does significantly increase per capita 

CO2 emissions at the given level of renewable energy share. Thus, these results do not provide 

significant evidence for Hypothesis 2. 

Based on long-run coefficients of GDP and GDP2, models 1 and 2 show U-shaped relation 

between GDP and GHG emissions, i.e., past the turning point, countries with lower GDP emits 

less CO2 per dollar of GDP and less per capita CO2 emissions while countries with higher GDP 

emits more CO2 per dollar of GDP and more per capita CO2 emissions. From Table 4.5, I computed 

GDP turning point (43.12 thousand dollars) which is higher than the average GDP per capita. 

Based on this turning point, countries with annual per capita GDP below 43.12 thousand dollars 

will continue to increase CO2 intensity and per capita CO2 emissions as higher growth leads to 

lower CO2 intensity and per capita CO2 emissions in those countries. On other hand, countries with 

greater than 43.12 thousand dollars of per capita GDP are projected to increase CO2 intensity and 

per capita CO2 emissions as GDP increases.  Thus, this study does not support EKC hypothesis 

which is consistent with Begum et al. (2015), Al-Mulali et al. (2016), Dogan and Turkekul (2016), 

Jebli and Youssef (2015), Liu et al. (2017) and Pao et al. (2011). 

The short-run coefficients in model 1 are non-significant except for the adjustment 

coefficient. Models 1 and 2 also suggest that neither urbanization nor renewable energy use 

impacts CO2 emissions or intensity in the short run. Edenhofer et al. (2014) note that since 

urbanized areas are already set up with energy, transport, and other infrastructure, a change in CO2 

intensity due to increased urban population may be negligible in the short run. Further, even with 

an increasing share of renewable energy consumption, the impact may be too small to significantly 

affect CO2 intensity in the short run. The adjustment coefficients known as error correction term 
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(ECT) in both models suggest that when deviation from the long-run relationship occurs, between 

20 and 30% of this disequilibrium will be adjusted in the first year. Finally, both models estimate 

ECT based on coefficients of lagged dependent variables which is why 105 observations are lost 

in 1990.  

4.6 Conclusion and Policy Implications 

Global climate change continues to challenge the international community. This study aims 

to investigate whether the urbanization process influences GHG emissions as represented by CO2 

emissions per capita and carbon intensity. An accurate understanding of the urbanization-CO2 

relationships is essential for forecasting models aiming to project future CO2 emissions and policy 

initiatives to mitigate global warming. Using a panel of 105 countries from 1990 to 2018, the PMG 

estimation technique is applied to estimate the relationship between urbanization and CO2 

emissions per capita and intensity. Results show that impacts differ between long and short runs. 

In the long run, urbanization leads to more CO2 intensity in the early stages of urbanization, while 

in later stages, CO2 intensity reduce. Thus, the study supports the inverted U-shaped urban 

pollution hypothesis, consistent with the findings of Martinez-Zarzoso and Maruotti (2011), Zhang 

et al. (2017), and Chen et al. (2019). However, consistent with Kim (2020), I fail to identify a 

statistically significant relationship in the short run. Our results show that the urban pollution 

hypothesis is perhaps a long-term issue. 

The estimated turning point is at 59.16 percent of urbanization based on sample countries. 

In other words, when the urbanization rate exceeds 59.16 percent, additional urbanization in the 

country decreases the CO2 intensity. The turning point appears to be consistent with those 

identified in previous studies. Since renewable energy consumption significantly reduce CO2 

intensity in the long run, increasing renewables in a country’s energy portfolio, along with other 
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sustainable city initiatives, can reduce CO2 emissions. Those sustainable initiatives are more 

important for countries where cities are growing very fast. By introducing an interaction term into 

the model, I find that higher renewable energy use does not significantly influence the marginal 

impact of urbanization on CO2 intensity. Thus, more research efforts are needed to reinvestigate 

the interaction effect of urbanization and renewable energy consumption on CO2 intensity. 

Over sixty percent of carbon emissions within cities are released from buildings (JLL 

Research, May 2022). Each city should draw building codes, reporting and disclosure frameworks, 

and energy audits, minimum building standards, incentives, and accelerators to reduce GHG 

emissions (World Economic Forum, 2022). Based on this research findings, cities should enhance 

renewable energy portfolio in their building structures as part of best management practice. 

Secondly, urban transport significantly contributes to GHG emissions. Cities in low-and-middle 

income countries are facing challenges to low carbon and efficient urban transport to minimize 

GHG emissions (Bianchi Alves, et al. 2023). Findings in this study indicate that cities in 

developing countries should prioritize investment on low-carbon, efficient and inclusive transport 

services. In this regard, developed countries along with local governments should cooperate with 

those developing countries to take necessary policy actions, providing technical and financial 

assistance to attain global long-term net zero carbon (NZC) goal. The global facility to decarbonize 

transport (GFDT) is an example of a global initiative funded by developed countries to help 

developing countries achieving carbon-neutral transportation by 2050 (World Bank, n.d). 
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APPENDIX: 

Table 4.1A: List of Countries and Level of Urbanization (%) in 2018. 

 

Country URBAN Country URBAN Country URBAN Country URBAN Country URBAN 

Burundi 13.03 Mali 42.36 Georgia 58.63 Algeria 72.63 Saudi Arabia 83.84 

Niger 16.43 Egypt 42.70 China 59.15 Switzerland 73.80 Oman 84.54 

Rwanda 17.21 Guinea-Bissau 43.36 Albania 60.32 Iran 74.90 Finland 85.38 

Sri Lanka 18.48 Philippines 46.91 Gambia 61.27 Bulgaria 75.01 Australia 86.01 

Nepal 19.74 Senegal 47.19 Paraguay 61.59 Malaysia 76.04 New Zealand 86.54 

Chad 23.06 Benin 47.31 Morocco 62.45 Cuba 77.04 Brazil 86.57 

Uganda 23.77 Thailand 49.95 Armenia 63.15 Germany 77.31 Sweden 87.43 

Eswatini 23.80 Namibia 50.03 Ireland 63.17 Peru 77.91 Chile 87.56 

Kenya 27.03 Nigeria 50.34 Ecuador 63.82 Greece 79.06 Denmark 87.87 

Burkina Faso 29.36 Cote d'Ivoire 50.78 Portugal 65.21 Costa Rica 79.34 Lebanon 88.59 

Zimbabwe 32.21 Guatemala 51.05 South Africa 66.36 Libya 80.10 Gabon 89.37 

Tanzania 33.78 Mauritania 53.67 Cyprus 66.81 Mexico 80.16 Jordan 90.98 

India 34.03 Romania 54.00 Panama 67.71 Spain 80.32 Luxembourg 90.98 

Mozambique 35.99 Haiti 55.28 Mongolia 68.45 France 80.44 Netherlands 91.49 

Guinea 36.14 Indonesia 55.33 Tunisia 68.95 Colombia 80.78 Japan 91.62 

Bangladesh 36.63 Jamaica 55.67 Ukraine 69.35 Comoros 80.78 Argentina 91.87 

Pakistan 36.67 Azerbaijan 55.68 Bolivia 69.43 Dominican Republic 81.07 Iceland 93.81 

Madagascar 37.19 Ghana 56.06 Botswana 69.45 Canada 81.41 Malta 94.61 

Mauritius 40.79 Cameroon 56.37 Iraq 70.47 Norway 82.25 Uruguay 95.33 

Togo 41.70 Austria 58.30 Hungary 71.35 United States 82.26 Belgium 98.00 

Sierra Leone 42.06 Nicaragua 58.52 El Salvador 72.02 United Kingdom 83.40 Singapore 100.00 
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5.1 Study Summary 

Spatiotemporal models play an important role in economic research. Spatial econometrics 

captures the influence of geographic locations of observations (see Partridge et al. (2012) for a 

general discussion of the importance of spatial econometrics). In presence of spatial 

autocorrelation, I apply spatial econometric models in the first and second essays and demonstrate 

that the conventional non-spatial model (such as OLS) provides biased estimate. Since the sample 

countries in essay three is not contiguous, and pollution is a long-term problem, I apply dynamic 

panel data econometric models (such as DFE, PMG) to estimate short-run and long-run values of 

coefficients.  

In the first essay, I found that air quality standard non-compliance impacts lung and 

bronchus cancer incidence regionally while water quality standards non-compliance impacts the 

cancer incidence locally. Based on state-level calculations, a 10% reduction in population exposure 

to air and water quality violations saves six people in Utah plus three-nearest neighboring states, 

and five people in Oklahoma from cancer incidence annually, respectively. The corresponding 

annual monetary benefits from improved compliance are $20.6 and $24.7 million, respectively for 

water and air.   

Second essay investigates the spatial spillover effects of NPIs policies on the reduction of 

COVID-19 cases in the contiguous U.S. counties. Based upon annual cross-sectional data, I found 

statistically significant spillover effects of stay-at-home orders and mask mandates on reducing 

COVID-19 cases in the contiguous U.S. No significant spillover effects were found for restrictions 

on restaurants and bars. Using annual cross-sectional data, on an average, 4 cases and 9 cases per 

100,000 people can be reduced from COVID-19 infections in the mandate county and six-nearest 

neighboring counties, respectively by implementing one additional month of mask mandate 
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policies. By implementing mandatory stay-at-home order for one additional month, on an average, 

15 and 38 fewer cases per 100,000 people can be reduced in mandate county, and three-nearest 

neighboring counties, respectively. From the annual cross-sectional model, I found $0.70 million, 

$2.95 million, and $3.65 million of monetary benefits from reduced COVID-19 cases in three 

neighboring counties of Wyoming (non-mandate state) by implementing a mask mandate, 

mandatory stay-at-home order, and both these policies, respectively in Powder River County in the 

state of Montana (mandate state).  

In the third essay, I found a significant nonlinear relationship between urbanization and 

GHG emissions. That is, a higher urbanization rate increases CO2 intensity when the urbanization 

rate is below 59.16%, after which the marginal effect of urbanization turns negative. From the 

interaction term coefficient, this study finds that renewable energy use does not significantly 

mitigates the impact of urbanization on CO2 intensity. 

Based on the results, I will explain the policy implication for each essay in the following 

section. 

5.2 Implications 

The findings from the essays one and two have some policy implications for state and local 

governments while essay three has implications for regional and international communities. 

Environmental injustice issues arise from the essay one because non-white communities suffer 

disproportionately from than white counterpart given that water quality violations occur more 

often among the communities of color (Switzer and Teodoro, 2017). Racial disparity also exists in 

case of air quality violations, thus environmental justice across race and class to CAA is equally 

important for better compliance.  
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From the results in second essay, it is evident that the spillover effects of stay-at-home 

orders and mask mandates are larger than the effects within the mandate county. Also, the 

monetary benefit from this spillover effects is sufficiently high. Thus, individuals (from the patient 

perspective) as well as governments (from the societal perspectives) can save resources by 

reducing infections. Since stay-at-home orders and mask mandate show statistically significant 

impacts on the COVID-19 spread, and restrictions on restaurants and bars show no significant 

impacts, a cost-efficient intervention can be designed to tackle future pandemics based on these 

results. 

Based upon dynamic panel data models, third essay claims that the urban pollution as a 

long-term issue. Thus, countries in pre-urbanization period should increase the share of renewable 

energy consumption to lower the marginal effects of urbanization on GHG emissions. In this 

regard, developed countries should cooperate developing countries to decarbonize cities.  

5.3 Limitations 

I acknowledge several limitations in my research. In the essay one, I employ a three-nearest 

neighbors weight matrix to estimate the effect of drinking water and air quality violations on the 

lung and bronchus cancer incidence. By utilizing a consistent and heterogenous spatial weight 

matrix based upon annual prevailing wind direction and hydrological pattern, future researchers 

may predict the effects of air and water quality violations on the cancer incidence. Also, I could 

not capture the influence of family genetic background on the incidence of lung and bronchus 

cancers. 

In the second essay, I used only reported COVID-19 cases as a dependent variable. By 

incorporating unreported cases, future researchers could estimate spillover effects of NPIs on 
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COVID-19 spread. Future researchers can also include school closure data into the model and 

apply STADL model to address temporal lag of NPIs on the COVID-19 spread.  

In the third essay, future studies may wish to extend the analyses in several ways. First, I 

use the share of the population living in urban areas as a proxy for urbanization. Future research 

may use alternative indicators, such as population density in urban areas (people living per square 

mile), to examine whether the relationship between urbanization and GHG emissions is robust to 

the use of different measurements. Second, although I include various control variables in the 

analysis, such as FDI, trade openness, and sector composition, they are by no means inclusive of 

all possible variables that affect carbon intensity. Depending on the data availability, future studies 

should consider more right-hand-side variables. However, estimation issues may occur with the 

inclusion of more control variables, such as reverse causality and multicollinearity. Future studies 

may also wish to consider alternative estimation strategies that can account for these issues. 
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