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ABSTRACT 

Comparative Analysis of Artificial Intelligence and Numerical Reservoir 

Simulation in Marcellus Shale Wells 

Arya M. Sattari 

This dissertation addresses the limitations of conventional numerical reservoir simulation techniques in 
the context of unconventional shale plays and proposes the use of data-driven artificial intelligence (AI) 
models as a promising alternative. Traditional methods, while providing valuable insights, often rely on 
simplifying assumptions and are constrained by time, resources, and data quality. The research leverages 
AI models to handle the complexities of shale behavior more effectively, facilitating accurate predictions 
and optimizations with less resource expenditure. 

Two specific methodologies are investigated for this purpose: traditional numerical reservoir simulations 
using Computer Modelling Group's GEM reservoir simulation software, and an AI-based Shale Analytics 
approach using IMPROVE™ software from Intelligent Solutions, Inc. The investigation covers the impact 
of key parameters on production prediction, assumptions made, predictive accuracy, data requirements, 
workflow complexity, and time efficiency. 

By comparing these methods, the research aims to offer guidelines for incorporating AI models into 
reservoir simulation and identify areas for increased efficiency and accuracy. The study concludes by 
presenting recommendations to advance the field of reservoir simulation and encourage the adoption of 
innovative methodologies in the energy industry. The results are anticipated to considerably enhance 
reservoir simulation processes and optimize production strategies for unconventional shale plays. 
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Chapter 1: Introduction 

The shale gas revolution, beginning in the early 2000s, fundamentally transformed the global energy 

landscape by enabling profitable extraction of oil and natural gas from unconventional shale reservoirs. 

This success was made possible due to key technological advancements including hydraulic fracturing and 

horizontal drilling techniques, which together revolutionized extraction methods of previously 

inaccessible shale formations. Hydraulic fracturing, or fracking, involves the injection of high-pressure 

fluids to access shale formations, while horizontal drilling allows for access to a larger area of the 

formation compared to traditional vertical drilling. This increased contact with the shale formation results 

in high production rates, and greater overall hydrocarbon recovery (Hunt, 2012). Coupled with numerical 

reservoir simulation, a tool instrumental in understanding reservoir behavior and optimizing production 

techniques, these technologies have substantially influenced decisions regarding well placement, fracture 

design, and production forecasting, contributing to the unprecedented growth in natural gas production.  

However, as innovative and game-changing as this technology has been in bringing us to this point, as an 

industry we are still using old, conventional techniques to analyze, model, and optimize recovery from 

unconventional shale plays (Mohaghegh, 2017).  

“When it comes to production from shale using long horizontal wells that are hydraulically 

fractured in multiple stages, these conventional technologies are too simplistic and are not 

capable of realistically modelling the physics (as much of it as we understand) of the problem. 

Therefore, they make unreasonable simplifying assumptions to a degree that make their use all 

but irrelevant. However, in the absence of any other widely accepted technology as an alternative 

for modeling the storage and transport phenomena in shale, these technologies flourished in the 

past several years.” (Mohaghegh, 2017) 

Numerical reservoir simulation has long been a cornerstone of the petroleum industry, providing valuable 

insights and predictions for reservoir performance and optimization. However, with the rise of 

unconventional shale plays and the limitations of traditional simulation models, there is a pressing need 

to explore alternative approaches.  

This study aims to investigate the use of artificial intelligence and petroleum data analytics for reservoir 

management and production operation of shale. This approach, which is also referred to as “Shale 

Analytics” within this study, demonstrates how the existing data from the development of shale assets 

can help in developing a better understanding of the nuances associated with the operation of shale wells 



 

2 
 

and by utilizing modern tools such as artificial intelligence (AI) models for unconventional shale plays, one 

can overcome the shortcomings of conventional numerical models and enhance overall efficiency and 

accuracy (Mohaghegh, 2017). 

1.1 Problem Statement 

Although numerical reservoir simulation has been effective for analyzing complex reservoir problems, the 

introduction of unconventional shale plays has uncovered several disadvantages. The common concern 

of reservoir simulation and modeling is accuracy, nonetheless conventional models often rely on 

unrealistic simplifications and assumptions. This can lead to inaccurate results incapable of realistically 

modeling the physics of the problem, particularly for long, multi-stage horizontal wells common in shale 

production. Furthermore, these models are often time-consuming, require extensive data-collection, and 

are limited by the quality of the data they are based on (Mohaghegh, 2017). 

Artificial Intelligence (AI) data-driven models and Shale Analytics offer a promising alternative to 

traditional numerical simulations, particularly in the context of unconventional shale plays. AI models can 

significantly reduce the time and resources required for reservoir simulation while minimizing or 

eliminating the assumptions often present in conventional models. These methods and advanced 

algorithms can handle the complexities of shale behavior more effectively, leading to more accurate 

predictions and optimizations.  

This research aims to compare the effectiveness of AI techniques against conventional numerical reservoir 

simulation in the context of unconventional shale plays. The analysis will focus on the accuracy of the 

predictions, the resources required for model development and simulation, and the ability of each 

technique to capture the complexities of shale behavior. By evaluating the relative strengths and 

weaknesses of each approach, the research will provide insights into the potential advantages of Shale 

Analytics, data-driven AI models, and their workflows for reservoir simulation, predictive analysis, and 

optimization.  

1.2 Research Objective 

The primary research objective of this study is to gain an in-depth understanding of how Artificial 

Intelligence models and Shale Analytics can be applied to reservoir simulation and optimization within the 

context of unconventional shale plays. By comparing the performance of AI models to traditional 

numerical simulations, this research aims to pinpoint areas where increased efficiency and accuracy can 

be achieved. The anticipated outcomes are a collection of guidelines for incorporating AI models into 
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reservoir simulation for shale plays. The study also suggests further advancements in AI-based modeling 

methods within the energy industry. This research has the potential to considerably enhance reservoir 

simulation processes and aid in optimizing production strategies for unconventional shale plays.  

This will be achieved through the following objectives and methodologies: 

1. Investigate traditional workflows and procedures followed in building numerical reservoir 

simulations. For this, Computer Modelling Group’s (CMG) GEM reservoir simulation software was 

used. This analysis will: 

a. Demonstrate the impact of modifying key parameters, such as porosity, permeability, 

fracture half-length, conductivity, and the number of producing fracture perforations, on 

the production prediction for a single well (MSEEL MIP-3H). 

b. Discuss the attribute parameters, including their determination and the modified 

assumptions made, along with the justification for each assumption. 

c. Present a detailed review of steps taken and results found from tuning the assumptions 

and the impact reflected in the production history match of the scenario models. 

2. Investigate the application of a data-driven AI model approach for developing predictive models 

using a dataset of 400 unique wells within the Marcellus Shale. For this purpose, IMPROVE™ 

software provided by ISI (Intelligent Solutions, Inc.) was utilized. This analysis will: 

a. Develop a predictive Data-Driven AI model.  

b. Select input attributes for the AI model neural network (NN) based on domain expertise, 

patterns and trends observed in the data through analysis, and the level of influence on 

the desired output (Gas Production). 

c. Demonstrate the ability of the model to make predictions quickly and accurately on 

production without assumptions, and validate these predictions through blind validation. 

d. Explain the steps and results obtained and discuss potential improvements through 

parameter fine-tuning. 

e. Discuss the wells and the available attribute data, their likely influence based on domain 

expertise and how the analysis for developing the model depicts them. 
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3. Perform a systematic comparison of the NRS and AI NN approaches with respect to predictive 

accuracy, data requirements, workflow complexity, and time efficiency. This will enable the 

identification of the most suitable approach for production prediction in reservoir simulations and 

facilitate the development of improved strategies for reservoir management and optimization.  

4. Based on the comparative analysis, provide recommendations to enhance overall performance, 

reliability, and efficiency in production prediction in reservoir simulations. This will contribute to 

the advancement of the field and promote the adoption of innovative methodologies in the 

energy industry.   
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Chapter 2: Literature Review 

2.1 Overview  

Within the context of the global energy industry, accurate forecasting of oil and gas production is a critical 

endeavor to ensure efficient resource management, economic planning, and strategic decision making. 

Existing forecasting techniques range from empirical decline curve analysis to more complex numerical 

reservoir simulations, each offering unique insights into reservoir behavior and opportunities for 

production optimization. Despite these strategies, the rapid evolution of the industry necessitates 

ongoing innovation and research. The scope of this study is grounded in these ongoing advancements, 

primarily focusing on the emergence of data-driven Artificial Intelligence (AI) models as transformative 

tools for production forecasting. 

Unconventional resources, such as shale gas, differ considerably from their conventional counterparts. 

Conventional resources are typically characterized by permeable rock formations that naturally facilitate 

the flow of oil and gas. In contrast, shale gas is trapped in low-permeability formations, making its 

extraction more challenging and introducing new dimensions of complexity to the process The unique 

characteristics and low permeability of these unconventional reservoirs demand the use of advanced 

extraction techniques and complex analyses.  

 

Figure 1: Worldwide Shale Gas Resources (EIA, 2015) 
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The term "Shale Revolution" refers to the innovative utilization of hydraulic fracturing and horizontal 

drilling techniques, which have led to a substantial increase in oil and gas production in the United States. 

These technological breakthroughs have made once-inaccessible shale gas resources exploitable, 

fundamentally reshaping our understanding of natural gas reserves and the methods of their extraction. 

As depicted in Figure 1 (EIA, 2015), shale gas reservoirs are globally abundant.  

These unconventional shale reservoirs dramatically differ from conventional reservoirs in terms of 

extraction techniques, resource abundance, and their economic and environmental impacts. However, 

despite the technological advancements that have facilitated the extraction of these resources; fully 

understanding and optimizing shale gas production remains a considerable challenge due to the inherent 

complexities of these reservoirs.  

This literature review examines the historical development, current utilization, and challenges of these 

technologies within the context of unconventional shale reservoirs. It then introduces AI models and Shale 

Analytics as innovative solutions to address these complex problems, with the potential to transform the 

future of oil and gas production.  

2.2 Numerical Reservoir Simulation 

Numerical reservoir simulation has proven itself instrumental as a tool in reservoir management and 

engineering to forecast the flow of fluids such as oil, water, and gas through porous media. With nearly 

all major modern reservoir development decisions based in some way on simulation results (Watts, 1997), 

this technology has been used to predict the productivity of a well, optimize the placement of wells, and 

to identify areas of the reservoir that are most likely to be productive. 

The first reservoir simulation began in 1954, using electronic punch cards to perform numerical methods 

based on the radial gas flow equations of (Aronofsky & Jenkins, 1954). This work introduced one of the 

first practical methods for predicting and interpreting the flowing well pressure history in a developed 

natural gas reservoir. It was considered a breakthrough as it demonstrated that reservoir simulation could 

be used to optimize production strategies and to estimate ultimate recovery. In the years to come, the 

work done by notable researchers and major oil company laboratories led to the development of even 

more advanced reservoir simulators, eventually reaching a wider audience with D.R. McCord and 

Associates being the first to commercially market a reservoir simulator in 1966 (Watts, 1997).  

Advancements in high-speed computers and technology over the next several decades led to reservoir 

simulation becoming widely adopted in the industry for use in conventional reservoir management and 
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development. Today’s reservoir modeling and simulation practices reflect many of the foundational 

principles established during their early development.  

Fundamentally, reservoir simulation operates on the principle of simultaneously solving the flow 

equations between adjacent blocks of rock. This takes place beginning within a reservoir model, 

constructed as an array of discrete cells to represent the physical space of a subsurface oil, gas, or water 

reservoir. The array of cells is typically three-dimensional, although 1D and 2D models are sometimes 

used. 

To enhance the accuracy and reliability of the simulation, each cell in the model is characterized by 

associated reservoir properties such as porosity, permeability, and fluid saturation, using data collected 

from well logs, core samples, and production data. The model also integrates the reservoir’s physical 

attributes including its size, shape, and depth. In addition to these static parameters, dynamic aspects are 

also incorporated into the model. These can include changes in pressure, temperature gradients, and the 

resulting fluid behaviors due to these variations.  

From this point, a conceptual model of the reservoir system is developed and serves as a simplified 

representation of the real system. The conceptual model is then used to simulate how the system will 

behave under varying inputs and conditions. Additionally, it forms the groundwork for the development 

of a more detailed mathematical model. 

The mathematical model represents a series of equations depicting the physical processes that occur 

within the reservoir system. This set of equations is employed to simulate the operation of the reservoir 

system, examining various input data to predict the system's response (Coats, 1969). The results of the 

simulation can then be used to make decisions about how to operate the reservoir system.  

However, despite their effectiveness in supporting conventional reservoir management, it’s essential to 

understand that reservoir simulation models are not perfect. There are limitations and potential sources 

of error in the calculated outcomes that must be understood when used for decision-making purposes.  

One fundamental issue arises from the model’s inherent approximations, as it involves certain 

assumptions which may only be partially valid or accurate to the actual reservoir conditions. Additionally, 

replacement of the model differential equations by difference equations can lead to truncation error. This 

happens when there is a small disparity between the exact solution of the difference equation from the 

solution to the original differential equation.  
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Lastly, and arguably of most importance, uncertainty in the reservoir description data, including 

parameters such as permeability and porosity distributions, significantly adds to the overall error of the 

simulation model. This is due to these parameters being difficult to accurately measure, as reservoirs are 

inherently heterogenous, and the rock and fluid properties vary from point to point making it difficult to 

accurately represent in a numerical model (Coats, 1969). It is important to understand these limitations 

and how they can affect the accuracy of the model’s output. 

2.2.1 Numerical Reservoir Simulation: Unconventional Shale Reservoirs 

Unconventional reservoirs are defined at present as those reservoirs whose porosity, permeability, fluid 

trapping mechanism, or other characteristics differ from conventional sandstone and carbonate 

reservoirs. Where conventional reservoirs, traditionally defined as a reservoir in which buoyant forces 

keep hydrocarbons in place below a sealing caprock, use the natural energy in the environment to flow 

oil and gas to the surface unaided, unconventional reservoirs require the introduction of energy to 

facilitate extraction and exploitation (SLB Energy Glossary, 2023b).  

 

Figure 2: "Sugar Cube Model" of Naturally Fractured Reservoir (Warren & Root, 1963) 

Naturally fractured reservoirs, such as shale reservoirs, are characterized by the presence of two distinct 

types of porous media: the porous matrix and the fracture network. Often termed as dual porosity 

systems, these reservoirs are unique in their coexistence of these two types of porous media (Barenblatt 

et al., 1960). In these systems, the porous matrix predominately acts as a fluid supplier to the fractures, 

which subsequently shape a well linked, continuous network. The dual porosity model, established by 

(Warren & Root, 1963), divides the reservoir into interconnected matrix and fracture subsystems, each 

exhibiting distinct characteristics of porosity, permeability, and either compressibility or connectivity. 



 

9 
 

They conceptualized this system as an orthogonal arrangement of intersecting fractures, supplemented 

by cubic matrix blocks, referred to as the Sugar Cube Model as shown in Figure 2. These models, based on 

Darcy’s law and the intercommunication between the matrix and fracture, have transformed the 

understanding and analysis of naturally fractured reservoir and fluid flow, providing utility across various 

flow regimes. 

Shale Gas reservoirs, as unconventional energy sources, are organic-rich formations which serve dually as 

the source rock and the reservoir. The gas is largely confined to the limited pore space available within 

the rock, while a substantial fraction of gas is adsorbed onto the organic material. These reservoirs exhibit 

extremely low permeability and thus require effective stimulation strategies to produce economically 

(Gholinezhad et al., 2018).  

 

Figure 3: Key elements needed for successful shale gas play (Kundert & Mullen, 2009) 

Figure 3 depicts the essential components for a commercially successful shale play, as identified by 

(Kundert & Mullen, 2009). These key components – maturity, free gas, total gas in place, thickness, natural 

fractures, and reservoir pressure – are found in varying proportions within a shale reservoir. Other 

favorable shale reservoir properties include organic richness, brittleness, and mineralogy.  

Permeability is a critical parameter in understanding unconventional shale reservoirs. However, unlike 

conventional reservoirs, permeability is not the primary factor that dictates production from 

Shale Gas Production

Natural Fractures

Permeability
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unconventional shale reservoirs. Instead, production from unconventional shale reservoirs is limited by 

the ability to create fractures in the rock that allow fluids to flow more easily. Therefore, hydraulic 

fracturing, or fracking, is used to produce unconventional shale reservoirs. Fracking involves injecting a 

high-pressure fluid into the rock to create fractures. These fractures allow fluids to flow more easily, which 

increases production. 

In comparison to conventional reservoirs, ultra-low permeability unconventional reservoir exploration is 

in its infancy, thus modeling conventional and unconventional reservoirs using numerical reservoir 

simulation models requires a fundamental understanding of techniques used to arrive at this point. In the 

case of conventional reservoirs, these models typically use a single-porosity approach, assuming the entire 

reservoir is made up of a single rock type. This approach has worked well as conventional reservoirs often 

boast high permeability, allowing the hydrocarbon to flow easily throughout the rock.  

Unconventional reservoirs are more difficult to model using numerical reservoir simulation due to their 

inherent added complexities. These models typically require a dual-porosity approach, assuming the 

reservoir is made up of two types of rocks: a matrix and a fracture network. The matrix is the solid rock, 

and the fracture network is the network of highly interconnected natural fractures and fissures in the rock 

where the hydrocarbons are stored within the matrix, and flow to the wellbore through the fracture 

network. Small pore sizes and property heterogeneities at different scales can also dramatically change 

flow processes and related physical phenomena.  

Several widely used commercial simulators for shale gas simulation include CMG/GEMTM developed by 

Computer Modelling Group (CMG), Eclipse 300TM created by SLB, and COMET3TM developed by Advanced 

Resources International Inc. (Andrade et al., 2011). Each simulation tool offers unique features, which can 

be applied more effectively based on the characteristics of the reservoir being modeled. 

(Islam et al., 2016) discussed that reservoir simulation has a "real" side and an "imaginary" side. The real 

side refers to tangible data and outcomes, such as physical reservoir properties, initial and boundary 

conditions, and production data. Conversely, the imaginary side is composed of parameters, 

mathematical models, and outcomes not directly observable such as grid cells, fluid viscosity, and 

simulation results. These two sides interconnect, with the real side informing the imaginary side, and the 

imaginary side producing results that help manage and understand the real reservoir. A visual depiction 

of this interconnected workflow can be seen in Figure 4. However, this interdependence introduces a 
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degree of uncertainty in the output results, as minor fluctuations in the physical properties can potentially 

lead to significant changes in the predicted reservoir behavior. 

 

Figure 4: "Real" and "Imaginary" sides in Simulation Modelling (Islam et al., 2016) 

The level of uncertainty in reservoir parameters, and the assumptions used, can directly influence the 

outcome of each model. In the creation of a reservoir model, the caliber of data used is vital, as it dictates 

the model’s accuracy and ability to realistically represent the reservoir. Nonetheless, many of these 

parameters are not easy to measure, often only offering a glimpse of a small portion of the full reservoir. 

As such, certain assumptions and compromises are required to proportionately scale these parameters 

into a comprehensive representation of the entire reservoir.  

For instance, direct porosity measurements are obtained by laboratory measurements of core samples 

brought to the surface during drilling operations. While these samples depict conditions near the 

wellbore, they are frequently integrated into models that suggest a nearly uniform reservoir area. 

However, this doesn’t accurately represent shale reservoirs, which exhibit varying and heterogeneous 

porosity throughout. This scenario provides a segway into discussing what we refer to as “Hard Data” and 

“Soft Data,” which will be demonstrated later in this study as data-driven techniques use “Hard Data” to 
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model production from shale, while many of the traditional technologies and numerical reservoir models 

rely on “Soft Data.”  

The term “Hard Data” is used to describe field measurements, which are often directly gathered during 

operations and do not contain assumptions when applied to a model. For example, in hydraulic fracturing 

operations, parameters such as fluid type and amount, proppant type and amount, injection, breakdown 

and closure pressures and rates fall under “Hard Data.” Most shale assets offer a detailed account of such 

data recorded in reasonable detail.  

Remaining within the scope of hydraulic fracturing, “Soft Data” refers to variables that require 

interpretation, estimation, or conjecture. For example, the hydraulic fracture half-length, height, width, 

and conductivity are unmeasurable directly. Software applications may be utilized to estimate these 

parameters, but the overly simplified assumptions made undermine the relevance of “Soft Data” in the 

design and optimization of frac jobs (Esmaili & Mohaghegh, 2016). 

“… although “Soft Data” may help engineers and modelers during the history matching process, it 

fails to provide a means for truly analyzing the impact of what is being done. (Mohaghegh, 2017)”  

Table 1 shows a variety of examples of both “Hard Data” collected from hydraulic fracturing and “Soft 

Data” commonly employed by reservoir engineers and modelers.  

Table 1: "Hard Data" and "Soft Data" in Hydraulic Fracturing (Mohaghegh, 2017) 

“Hard Data” “Soft Data” 

Fluid types Proppant amounts (lbs) Hydraulic fracture Half-Length 

Fluid amounts (bbls) Proppant concentration Hydraulic fracture Width 

Pad volume (bbls) Injection rates Hydraulic fracture Height 

Slurry volume (bbls) Injection pressures Hydraulic fracture Conductivity 

Proppant types  Stimulated Reservoir Volume 

 

Understanding the workings of numerical reservoir simulation, its original use case, and the data types 

used in developing reservoir models helps us appreciate the present state of shale reservoir modeling 

technology. Despite their acknowledged limitations, conventional techniques originally intended for 

traditional reservoirs are commonly used with the consensus that these methods are the best currently 

available for numerical simulation of fluid flow through shale.  
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However, the utility of new data-driven AI models is emerging in this space. These models have the 

potential to not only expedite the process and lessen processing power required, but also mitigate many 

assumptions. This opens a promising path forward in shale reservoir modeling, redefining our use of 

“hard” data (directly measured and unchangeable) and “soft” data (not fully understood, assumed, and 

easy-to-change). 

As we transition into an analysis of scholarly papers focused on numerical reservoir simulators for shale, 

it is crucial to keep these considerations in mind, particularly the distinction and significance of ‘hard’ and 

“soft” data. The exploration of these papers will further illuminate how these methodologies and 

technologies are applied and developed.  

2.2.2 Applications of Numerical reservoir Simulation in Unconventional Shale Reservoirs 

The research analysis on numerical reservoir simulation in shale has unsurprisingly uncovered numerous 

studies that successfully employ this tool to generate innovative discoveries, while also acknowledging 

the inherent assumptions and limitations. This review will showcase notable accomplishments in the field 

and explore the challenges faced by researchers, establishing the necessary groundwork for our own study 

in this intricate and evolving arena.  

(El Sgher, 2021) conducted an examination of how propped fracture conductivity, influenced by net stress, 

impacts horizontal wells with multiple fractures in the Marcellus shale. To develop the base reservoir 

model for the investigation, they utilized a commercial reservoir simulation tool using data from published 

laboratory studies to predict the production performance. The results were then compared to the 

production history for evaluation and verification, with the model then used to perform several 

parametric studies.  

Upon developing their base model, (El Sgher, 2021) performed history matching by altering the hydraulic 

fracture half-length, while keeping the remaining reservoir properties constant. These alterations, which 

aimed at achieving an optimal history match with the well’s known production, illustrated in Figure 5 

highlight the presumptive variations required by reservoir model simulators. This is an attempt to 

formulate a model that best replicates the reservoir’s behaviors, even though it is understood that the 

model does not completely mirror the reality of the reservoir. They make note of the difficulty in 

accurately modeling the complex nature of shale reservoirs, due to challenges in ascertaining good quality 

reservoir information and the low permeability of the shale matrix. The base model developed for their 

work was constructed using model parameters seen in Table 2. 
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Table 2: Basic Model Parameters for MIP-6H and MIP-4H 

Basic Reservoir Model Parameters for MIP-6H and MIP-4H 

Parameters Value Unit 

Model Dimensions (MIP-6H) 4000 (Length) x 1000 (Width) x 90 (Height ft. 

Model Dimensions (MIP-4H) 4500 (Length) x 1500 (Width) x 90 (Height ft. 

Initial Pressure 4700 psia. 

Fissure Porosity 0.0001 Fraction 

Matrix Porosity 0.02 Fraction 

Fissure Permeability i, j, k 0.0013, 0.0013, 0.00013 md 

Matrix Permeability i, j, k 0.000124, 0.000124, 0.0000124 md 

Gas Saturation 0.85 Fraction 

Water Saturation 0.15 Fraction 

Density 120 lb/ft3 

Langmuir Pressure 0.0023 psi−1 

Langmuir Volume 0.12 gmol/lb 

Fracture Spacing for (MIP-6H) 340 ft. 

Fracture Spacing for (MIP-4H) 380 ft. 

 

 

Figure 5: History Matching for MIP-6H with geo-mechanical impact for first two years (El Sgher, 2021) 
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(C. L. Cipolla et al., 2010) illustrated the impact of gas desorption on the production profile and ultimate 

gas recovery in shale reservoirs.  Moreover, they provided an exploration of how fluctuating closure stress 

distribution within the fracture network impacts the well productivity and gas extraction. The reservoir 

simulations were conducted using a comprehensive numerical grid, described as meticulously replicating 

the intricate fracture network, primary fracture, and tight shale matrix. Nonetheless, their conclusions 

propose that, although the numerical reservoir simulation history match may not be unique in the 

complexity of shale gas reservoirs, the modelling can be effectively constrained given that matrix 

permeability estimates are available from core analyses. Their research underscores the need for a more 

comprehensive and refined method of data analysis in unconventional reservoirs. 

(Liu, 2022) critically examined the growing importance, unique challenges, and inherent complexities of 

unconventional natural gas resources from ultra-low permeability reservoirs, including tight sandstone 

and shale. The study highlights the complex factors influencing gas production, such as nonlinear flow 

equations, multi-scale fracture networks, and heterogeneous, stress-sensitive rocks that drive gas 

production in these reservoirs. The author reviews mathematical numerical simulation methodologies as 

an approach to understand reservoir capacity and key influential parameters. Additionally, they delve into 

current challenges, including the absence of standard procedures for determining physical parameters 

and the need for more effective prediction models for future production profiles. While acknowledging 

advancements in simulation software, Liu cautions that the exploration of ultra-low permeability 

reservoirs is still in its infancy. He advocates for further research to enhance the reliability and accuracy 

of new models and methodologies, while also suggesting the need for new techniques for more reliable 

future production predictions in these unconventional reservoirs.  

(Guo et al., 2023) examined the limitations of traditional numerical reservoir simulation models, and 

subsequently introduced a novel approach – the Reservoir Graph Network (RGNet). Their research 

effectively highlights the complications associated with reservoir models, primarily due to their inherent 

complexity and difficulties requiring regular updates. The advent of RGNet, described as a generalized 

data-driven approach that models a reservoir using a set of drainage volumes controlled by wells, 

promises a hybrid model that seamlessly merges reservoir physics and data-driven methods, thereby 

minimizing complexity and runtime. However, a more thorough discussion and validation of the RGNet’s 

practical applications and potential limitations could further enhance the study’s merits.  
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2.3 Data-Driven AI models and Shale Analytics 

In recent years, there has been an incredible surge in the popularity of Artificial Intelligence (AI) and 

Machine Learning (ML) algorithms. The rapid advancements in technology have placed these algorithms 

into the spotlight, capturing the attention and interest of numerous industries. The exponential growth in 

the adoption of AI and ML signifies their transformative impact, as organizations across different sectors 

recognize the immense value and potential these algorithms hold.  

These techniques have become of interest for petroleum engineers tackling problems involving big data 

analytics, offering a promising alternative to traditional numerical simulations. AI models can significantly 

reduce the time and resources required for reservoir simulation while minimizing or eliminating the 

assumptions often present in conventional models (Mohaghegh, 2017). These methods and advanced 

algorithms can handle the complexities of shale behavior more effectively, leading to more accurate 

predictions and optimizations.  

Data driven AI models are created by using historical data and computational techniques to reveal trends, 

identify patterns, and make predictions. The vast amounts of existing data routinely collected throughout 

the development of shale assets can help in developing a better understanding of the nuances associated 

with the operation of shale wells. Utilizing modern tools such as data-driven AI models for unconventional 

shale plays, one can overcome the shortcomings of conventional numerical models and enhance overall 

efficiency and accuracy. 

Data, rather than physics and geology, is the driving force behind this technology (Mohaghegh, 2017) and 

the energy industry’s collection of vast amounts of data further fuels this shift. For example, AI models 

have been used to predict well performance, optimize production strategies, and identify new drilling 

opportunities. As a result, AI and ML are becoming increasingly powerful and valuable tools for petroleum 

engineers, offering viable alternatives to conventional solutions traditionally used in the industry.  

(Mohaghegh, 2017) introduced the term Shale Analytics, defined as the application of Big Data Analytics 

in shale integrating data science, artificial intelligence, and machine learning, enabling a multi-pronged 

approach to reservoir management. Its primary tasks involve understanding patterns in collected data, 

identifying key parameters controlling production, ranking areas based on response to design 

implementations, and constructing predictive models. These models estimate well performance, 

employing variables such as reservoir characteristics, well spacing, and completion parameters. 
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Moreover, they are validated using blind wells, i.e., wells that were not part of the predictive model’s 

development.  

The success of Shale Analytics has been witnessed in various shale formations, including Marcellus, Utica, 

Eagle Ford, Bakken, Niobrara, with over 3000 wells having been evaluated. The predictive models provide 

a comprehensive toolset to quantify uncertainties related to well productivity, evaluate historical frac 

jobs, estimate reserves potentially missed due to sub-optimal practices, and gauge the effectiveness of 

previous completions and stimulation practices. Furthermore, these models can help identify optimized 

designs for new wells.  
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Chapter 3: Objectives and Methodology 

3.1 Objectives and Methodology Summary 

The objective of this research is to conduct a comparative analysis of Artificial Intelligence (AI) techniques 

and traditional numerical reservoir simulations (NRS) to improve the efficiency and effectiveness of 

natural gas production within the scope of unconventional Marcellus Shale plays. The focus will be: 

1. To compare the prediction accuracy of each methodology (AI and NRS) 

2. To compare the resources required for model creation and simulation 

3. To compare the ability of each technique to accurately depict the intricate behavior of shale 

formations 

4. To compare the accuracy of each technique in predicting and history matching production 

5. To identify the strengths and weaknesses of each approach 

Through a thorough evaluation of both the AI techniques and traditional numerical simulations, the study 

aspires to shed light on the benefits of employing data-driven AI models and their respective workflows 

for reservoir simulation, predictive analytics, and optimization procedures. This research intends to 

illustrate the potential advantages and explore how these AI models can revolutionize conventional 

practices by increasing efficiency and accuracy.  

To achieve the aim of this study, the methodology section will provide a detailed overview of the methods 

used to collect and analyze data for each of the two methodologies. 

3.2 Methodology: Numerical Reservoir Simulation (NRS) 

The methodology for the development and analysis of the Numerical Reservoir Simulation model used in 

this study will be structured as follows: 

Methodology for Numerical Reservoir Simulation (NRS) 

1. Data collection and analysis 

o Study area: collect data on the geology, petrophysics, and production history of the 

Marcellus Shale Well (MSEEL MIP-3H) 

o Analyze data to identify key parameters affecting well’s production 

2. Model development 

o Develop a NRS model using CMG software 

o Calibrate model to well’s production history 
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3. Parametric studies and Predictive Analysis 

o Conduct parametric studies to investigate the impact of uncertainty in the “soft” data on 

the production history match within NRS model 

A high-level overview of the Numerical Reservoir Simulation methodology workflow is seen in Figure 6.  

 

Figure 6: Process Workflow - Numerical Reservoir Simulation Methodology 

3.2.1 Data Collection: MSEEL Site and MIP-3H Well 

The Morgantown Industrial Park (MIP) site in West Virginia, U.S., hosts the Marcellus shale well that is the 

primary subject within this portion of the study. The MIP site falls under the purview of the Marcellus 

Shale Energy and Environment Laboratory (MSEEL), a multidisciplinary research project supported by the 

U.S. Department of Energy. The primary goal of MSEEL is to foster a comprehensive understanding of 

unconventional shale reservoirs through advanced reservoir characterization and monitoring techniques, 

with a focused effort to enhance recovery efficiency and mitigate environmental impacts of 

unconventional resource development.  

The MIP site accommodates four horizontal Marcellus Shale wells (MIP-3H, MIP-4H, MIP-5H and MIP-6H), 

as well as a vertical scientific observation well (MIP-SW), illustrated in Figure 7. The Marcellus shale well 

under consideration for this study is the MIP-3H, a 28-stage horizontal well with a lateral length of 6,058 

feet. Outfitted with several multi-scale and multi-sensor measurement tools, the available data includes 

parameters such as surface pressure, surface temperature, petrophysical logs, geo-mechanical logs, and 

production logs. The data, accessible to the public via the MSEEL website, was utilized for the purposes of 

this study (Carr et al., 2015).  
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Figure 7: Well layout in the Marcellus Shale Energy and Environment Laboratory (MSEEL) MIP site 

Having established the context of our study and introduced the MIP-3H well, we will next discuss the 

nuanced datasets and methodologies that are essential to our work. This data, which covers everything 

from geo-mechanical details to completion designs, will form the foundation of our ongoing analyses. We 

will then break down these findings and explain their significance in guiding our research. 

A comprehensive set of geo-mechanical and petrophysical logs were acquired using the Schlumberger 

Sonic Scanner tool, as shown in Figure 8. The logs included gamma ray, resistivity, density, neutron, and 

acoustic logs, providing insights into the reservoir rock's mechanical properties and stress responses, such 

as Young's modulus, Poisson's ratio, minimum horizontal stress, pore pressure, and overburden pressure.  

In conjunction with measurements derived from core samples collected during the drilling operations, 

from the observation well (MIP-SW), these logs provided complimentary data on the reservoir 

parameters, such as lithology, thickness, porosity, permeability, rock density, initial saturation, and initial 

pressure (Elsaig et al., 2016). The logs provided continuous data along the borehole, while the core 
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samples provided discrete data that could be analyzed in detail. Together, the data from the logs and core 

samples helped to establish the basic shale properties.  

The completion design for the well consists of 133 perforation clusters across its 28 stages, which are 

sectioned into five parts from the toe to the heel. Each section was uniquely designed to incorporate 

different fracture treatment methodologies, as seen in Table 3, to observe increased efficiency and impact 

on production. Each stage is roughly 200 feet long with 4 or 5 perforation clusters, each 3-5 feet in length 

and consisting of 5-6 shots per foot. Two proppant types were implemented in the treatment design, 100 

mesh sand and 40/70 mesh white sand, with proppant proportions varying across sections. 

A production logging operation was performed using the Schlumberger Flow Scanner to acquire data on 

fluid production and movement in the wellbore. The data included measurements of mini-spinners, water 

holdup, and gas holdup. Due to obstructions, a depth limit of 13,530 ft was noted for the Flow Scanner, 

causing seven perforation clusters to be incompletely logged. However, rates exceeding this depth were 

collectively noted for these clusters. Production history was collected with data available for a period of 

2036 days (2015-12-12 to 2021-07-08), seen plotted in Figure 9.  

The extensive data collected from the MSEEL study area forms a robust foundation for our research and 

the subsequent development of the MIP-3H base reservoir model. The diverse datasets, ranging from geo-

mechanical logs to completion design details, offer an in-depth understanding of the reservoir's physical 

and mechanical characteristics. This, coupled with the precise measurements from tools like the 

Schlumberger Sonic Scanner and Flow Scanner, ensures a comprehensive overview of the reservoir's 

behavior and properties. As we move forward, this information will be instrumental in calibrating and 

refining our models.  
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Table 3: Completion and stimulation parameters for MIP-3H (Carr et al., 2015) 
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Figure 8: Logs from the Vertical Section of the MIP-3H Well (El Sgher, 2021) 

 

Figure 9: Production History MIP-3H – Cumulative Gas (2015.12.12 - 2021.07.08) 
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3.2.2 Data Analysis 

The development of our NRS model for the MIP-3H well utilized a combination of the parameters and 

data collected and presented in the preceding section. The most important of these parameters, 

necessary for the construction of our base reservoir model within CMG software, are shown in Table 4.  

Interestingly, many of the parameters can be categorized as “soft” data. As previously mentioned, “soft” 

data refers to parameters that are not often directly measured and are rather easily assumed or 

modifiable based on various factors. Figure 10 offers a clear distinction between  

parameters, differentiating the “hard” data, obtained through direct measurements, from the “soft” data 

that are more flexible and susceptible to change.  

 

Figure 10: Reservoir Parameter Analysis 

The alterable and inferable nature of these parameters pose a particular challenge when it comes to 

accurately depicting them in heterogeneous reservoirs, like those seen in the Marcellus Shale. In reservoir 

simulations, some of these parameters, due to their inherent variability and the challenges in measuring 

them, can introduce uncertainties that can substantially affect the outcome.  
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The parameters listed below were selected from the available data for their significant impact on reservoir 

performance, as observed in both real-world scenarios and numerical simulation modelling: 

1. Porosity:  The percentage of pore volume or void space within reservoir rock, indicating the 

proportion of the rock’s volume that can contain fluids such as oil, gas, or water. Field 

measurements of porosity employ techniques such as core analysis, geophysical well logging, 

and seismic surveys. However, these methods can be inaccurate due to factors such as 

heterogeneity of the rock, borehole damage, and invasion of fluids  

2. Permeability: The ability of a rock to allow fluids to flow through it, typically measured in 

millidarcies (md). Permeability can be measured in the field using core sample analysis, 

logging, and mini-frac tests. Like porosity, challenges with methods arise from rock 

heterogeneity, borehole damage, and the presence of natural fractures. 

3. Fracture half-length: The distance from the wellbore to the midpoint of the fracture, 

measured in feet (ft). Fracture half-length can be estimated in the field using production 

logging, tracer tests, and pressure transient analysis. The precision of these methods can be 

affected by the complexity of the fracture geometry, the presence of proppant, and reservoir 

rock heterogeneity. 

4. Fracture conductivity: A measure of how well a propped-fracture can carry fluids from a well, 

measured as the product of fracture permeability and fracture width (md-ft). Fracture 

conductivity can be measured in the field using methods such as production logging, tracer 

tests, and pressure transient analysis.  

5. Number of producing fracture perforations: The number of perforations in the wellbore that 

are open and allow fluids to flow from the fracture. The number of producing fracture 

perforations can be estimated in the field using production logging. However, this method 

can be inaccurate due to factors such as the complexity of the fracture geometry and the 

presence of proppant (Yang et al., 2021) 

In summary, the parameters mentioned are challenging to measure accurately in the field. This is because 

the rocks and formations that contain oil and gas are often heterogeneous and complex, and the 

processes that create and modify these parameters are not fully understood. As a result, there is always 

some uncertainty associated with the measurements of these parameters, which can introduce variability 

into reservoir simulation models. 
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3.2.3 Model Development 

In this portion of the study, the objective was to develop a base model that could accurately predict the 

production of the MIP-3H well, matching it with known production data. The model parameters used to 

build this initial base model are summarized in Table 4. Notably, the base model for the MIP-3H aligns 

closely with similar models and studies carried out by other researchers using the same datasets and 

parameters collected through the MSEEL project.  

After successfully developing a base model for the MIP-3H well that closely matched historical production 

data, our study will investigate the influence of “soft” data parameters on the model’s production 

outcomes. This base model will serve as our initial scenario, illustrating how inherent assumptions in 

“soft” data parameters can contribute to the development of an NRS model.  

To assess the impact of changes to “soft” parameters on model predictions, and their alignment with 

historical production data, this study modified select parameters in subsequent scenarios.  We aimed to 

show that reasonable assumptions can steer the models towards desired outcomes.  

 

Figure 11: Parametric Study Example – CMG™ CMOST™ Simulations 

For instance, in the initial phases of our research, we examined the effects of parameters values such as 

initial matrix permeability and initial matrix porosity. This was done using CMG’s CMOST tool (CMG Ltd., 
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n.d.) to automate sensitivity analysis and history matching, as shown in Figure 11. This allowed us to 

develop comprehensive models that simulated varying conditions and scenarios, providing a deeper 

understanding of reservoir dynamics.  

The automation of the sensitivity analysis process allowed us to identify, evaluate, and optimize the 

impact of specific reservoir parameters. This not only refined the accuracy of our scenario models, but 

also provided valuable insights into how subtle changes in parameters can have cascading effects on the 

overall production in the simulated reservoir systems.  

Building on the MIP-3H well's base model, we explored the effects of different reservoir parameters. Using 

this foundational model, we conducted a series of parametric studies. These were designed to understand 

how specific tweaks could influence overall production. The subsequent section provides a breakdown of 

these studies, highlighting the significance of each parameter in shaping our predictions. 

The model scenarios developed for parametric studies are summarized as follows:  

1. Base Model 

i. A well-validated model developed using parameters consistent with MSEEL data and other 

published models for the same dataset.  

ii. Model parameters are shown in Table 4. 

Table 4: NRS MIP-3H Base Model Parameters  

MIP-3H: Base Model Reservoir Parameters  

Reservoir Parameters (MIP-3H) Base Model Parameter Values Units 

Model Dimensions (MIP-3H) 7000 (Length)✕1500(Width) ✕90(Height) ft. 

Well Length (Horizontal) 6350 ft. 

Initial Reservoir Pressure 4800 psia. 

Initial Fissure Porosity 0.1 percent 

Initial Matrix Porosity 4 percent 

Initial Fissure Permeability i, j, k 7000, 7000, 700 nd 

Initial Matrix Permeability i, j, k 1750, 1750, 175 nd 

Number of Hydraulic Fractures 128 -  

Fracture Half-Length, Xf  300 ft. 

Initial Fracture Conductivity, kf wf 6 md-ft 

Water Saturation 0.15 Fraction 

 Rock Density 120 lb/ft3 

Langmuir Pressure Constant 0.00036 psi-1 

Langmuir Volume Constant 0.05 g-mol/lb 
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2. Parametric Study: Number of (Producing) Hydraulic Fracture Perforations & Fracture Half Length  

i. Base model with dynamic modifications made to the parameters for producing hydraulic 

fracture perforations and fracture half-length. 

ii. Model parameters and modifications are shown in Table 5. 

Table 5: NRS MIP-3H Parametric Study: Number of (Producing) Hydraulic Fracture Perforations & Fracture Half Length  

Reservoir Parameters (MIP-3H) 
Modified Scenario  
Parameter Values 

Units 

Model Dimensions (MIP-3H) 7000 (L)✕1500(W) ✕90(H) ft. 

Well Length (Horizontal) 6350 ft. 

Initial Reservoir Pressure 4800 psia. 

Initial Fissure Porosity 0.1 percent 

Initial Matrix Porosity 4 percent 

Initial Fissure Permeability i, j, k 7000, 7000, 700 nd 

Initial Matrix Permeability i, j, k 1750, 1750, 175 nd 

Number of Hydraulic Fractures Parametric study -  

Fracture Half-Length, Xf  Parametric study ft. 

Initial Frac Conductivity, kf wf 6 md-ft 

Water Saturation 0.15 Fraction 

a Rock Density 120 lb/ft3 

Langmuir Pressure Constant 0.00036 psi-1 

Langmuir Volume Constant 0.05 g-mol/lb 

 

For the parametric study on producing hydraulic fracture perforations, we grounded our modifications in 

both empirical observations and validated research. Conversations with industry professionals highlighted 

real-world challenges, including perforation blockages caused by debris, scale, and displaced proppant 

post-fracturing. 

Several studies confirm these insights. (C. Cipolla et al., 2011) and (Miller et al., 2011) observed production 

variability along the horizontal length of wells, noting that only about 60-64% of perforation clusters 

significantly contribute to production. Further research by (Chorn et al., 2014), (Spain et al., 2015), 

(Slocombe et al., 2013), and (Ugueto C. et al., 2016) shows that many of these clusters either produce 

minimally or aren’t adequately stimulated, underscoring the production variability in horizonal wells.  

In the case of the MIP-3H well, findings from (Aboaba, 2022) and (Carr et al., 2015) reveal that 

approximately 44% of perforation clusters did not produce any gas. This combination of industry feedback 

and supportive studies informs our research approach and inclusion of this parameter. 
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Hydraulic fracture half-length is similarly difficult to accurately measure in a horizontal well due to the 

complex geology and challenges of obtaining reliable data (Chen et al., 2022). In shale formations, several 

factors contribute to this uncertainty, including the geo-mechanical heterogeneity of the formation, 

variability in the hydraulic fracturing process, and the subsequent interactions between the created 

fractures (Cook et al., 2014). Various methods, ranging from flow pattern evaluations to sophisticated 

hydraulic fracturing diagnostics like micro-seismic monitoring (Fisher et al., 2004), are employed to assess 

fracture geometry. However, these methods often come with their own sets of uncertainties and 

challenges, necessitating multiple sensitivity tests and engineering data analysis to make informed 

decisions and optimize strategies. 

3. Parametric Study: Matrix Porosity and Fracture Conductivity 

i. Base model with modifications made to the parameters for matrix Porosity and fracture 

conductivity. 

ii. Model parameters and modifications are shown in Table 6. 

Table 6: NRS MIP-3H Parametric Study: Matrix Porosity and Fracture Conductivity 

Reservoir Parameters (MIP-3H) 
Modified Scenario  
Parameter Values 

Units 

Model Dimensions (MIP-3H) 7000 (L)✕1500(W) ✕90(H) ft. 

Well Length (Horizontal) 6350 ft. 

Initial Reservoir Pressure 4800 psia. 

Initial Fissure Porosity 0.1 percent 

Initial Matrix Porosity Parametric Study percent 

Initial Fissure Permeability i, j, k 7000, 7000, 700 nd 

Initial Matrix Permeability i, j, k 1750, 1750, 175 nd 

Number of Hydraulic Fractures 128 -  

Fracture Half-Length, Xf  300 ft. 

Initial Frac Conductivity, kf wf Parametric Study md-ft 

Water Saturation 0.15 Fraction 

Rock Density 120 lb/ft3 

Langmuir Pressure Constant 0.00036 psi-1 

Langmuir Volume Constant 0.05 g-mol/lb 

 

Within this parametric study scenario, we focused our investigation on the effects of matrix porosity and 

fracture conductivity, both of which play a pivotal role in modelling shale reservoirs and forecasting their 

productivity. 
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The accurate estimation of matrix porosity is important to determine the potential volume of oil, gas, or 

water that can be extracted from a reservoir. While various methods such as acoustic logging, laboratory 

analysis, direct determination, nuclear magnetic resonance (NMR), and empirical formulas exist for this 

purpose (Kazatchenko et al., 2003), challenges persist. Shale reservoirs are inherently heterogenous, 

making the representation of microscopic phenomena increasingly limited as observation scales increase. 

Laboratory measurements of core samples, for instance, may not be fully representative due to variations 

in porosity throughout the reservoir (Keelan, 1982). Factors such as the minute size of shale pores (often 

less than 1 micron), the presence of organic matter that could occupy these pores, and stress-induced 

pore closure further complicate accurate matrix porosity measurements (Qian et al., 2022). 

Similarly, assessing fracture conductivity, essential in model development for determining the production 

rate from hydraulically fractured wells, presents its own set of challenges. Influenced by multiple factors, 

including the type of proppant used during fracking operations, fracture width, and closure stress (Davies 

& Kuiper, 1988), it’s further complicated by the intricate fracture networks in shale reservoirs. Variations 

in conductivity over time, due to proppant settling and the migration of fines, add another layer of 

complexity (Zheng et al., 2020).  

Given these intricacies and the impact of minor parameter variations on model accuracy, it was vital to 

include these in our study. Interpreting these results in the context of broader geological and reservoir 

features is essential to refine our model assumptions, as we aim to understand how subtle changes in 

matrix porosity and fracture conductivity can significantly alter model predictions. 
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4. Parametric Study: Skin Effect 

i. Base model with Skin dynamically applied. 

ii. Model parameters and modifications are shown in Table 7. 

Table 7: NRS MIP-3H Parametric Study: Skin Effect 

Reservoir Parameters (MIP-3H) 
Modified Scenario  
Parameter Values 

Units 

Model Dimensions (MIP-3H) 7000 (L)✕1500(W) ✕90(H) ft. 

Well Length (Horizontal) 6350 ft. 

Initial Reservoir Pressure 4800 psia. 

Initial Fissure Porosity 0.1 percent 

Initial Matrix Porosity 4 percent 

Initial Fissure Permeability i, j, k 7000, 7000, 700 nd 

Initial Matrix Permeability i, j, k 1750, 1750, 175 nd 

Number of Hydraulic Fractures 128 -  

Fracture Half-Length, Xf  300 ft. 

Initial Fracture Conductivity, kf wf 6 md-ft 

Water Saturation 0.15 Fraction 

 Rock Density 120 lb/ft3 

Langmuir Pressure Constant 0.00036 psi-1 

Langmuir Volume Constant 0.05 g-mol/lb 

* Skin Parametric Study - 

 

Skin is a dimensionless parameter used to measure a well's production efficiency by comparing its actual 

conditions to theoretical or ideal ones. The term "Skin Effect" refers to the deviation in the pressure drop 

from what’s predicted with Darcy's law using the value of permeability thickness (kh), due to the skin’s 

influence (SLB Energy Glossary, 2023a). Simply put, a positive skin value suggests some damage or 

influences that are impairing productivity, while a negative value indicates enhanced performance. 

Our parametric study incorporated skin into numerical models to offer deeper insights. Over time, many 

phenomena near the wellbore can impact flow and productivity. These include the closure of fractures, 

the migration of particles through fractures, the buildup of scale or wax near the perforation zones, or the 

slow degradation of the formation's integrity around the wellbore (Raji et al., 2020). Given the 

complexities of these processes, they can be difficult to model analytically.  

To address this complexity, modeling software like CMG™ and IHS Harmony™ utilize skin or “Time-

Dependent Skin” to consolidate the effects of these phenomena into a single term at a discrete point, 
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independent of geometrical or fluid-flow complexities. IHS™ effectively summarizes this concept within 

their reference materials, stating that “skin should be considered a "tuning parameter" during the history-

matching phase of numerical modeling, intended to be a “catch-all” for any fluid or reservoir property 

changes over time that are not accounted for by the analytical model.” (IHS Harmony, 2020) 

Incorporating skin and skin effect into our parametric study highlighted how certain modeling parameters 

can serve as a 'catch-all' for representing complex phenomena in NRS models. This underscores the 

significant influence of model parameters that might not be grounded in concrete data.  

3.2.4 Model Performance and Validation 

To assess the performance of the numerical reservoir simulation model scenarios and measure the 

accuracy of the predicted outcomes, we utilized two key metrics: the Mean Absolute Percentage Error 

(MAPE) and the Mean Absolute Error (MAE). The MAE provided a direct measure of the average absolute 

differences between the predicted and actual values. The MAPE, on the other hand, provided a clear 

percentage-based understanding of prediction accuracy, measuring the average magnitude of error 

produced by a model. 

Equation 1: Mean Absolute Percentage Error (MAPE) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ (

|𝐴𝑡 − 𝐹𝑡|

𝐴𝑡
) × 100 

Equation 2: Mean Absolute Error (MAE) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝐴𝑡 − 𝐹𝑡| 

Where:  

• n is the number of data points 

• 𝐴𝑡 is the actual value, and  

• 𝐹𝑡 is the forecasted value 

In simpler terms, MAPE is easy to understand and interpret, but can be sensitive to outliers. MAE is not 

as sensitive to outliers but is also not as sensitive to changes in trend. 
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These metrics show us, on average, how much our predictions deviated from the actual production values, 

regardless of direction (over or under-predicting). Both metrics were crucial as they offered different 

perspectives on the model’s performance. Observations of a lower value in both MAPE and MAE indicated 

a closer match between our model’s predictions and the actual historic production data for the MIP 3H 

well, implying a more reliable model.  

Additional metrics used to compare the model performance included CPU specs, such as the number of 

processors used when running the simulation model, and the time for each model to run. Furthermore, 

an estimate of the resources required for model development was recorded, such as time to collect and 

process the MSEEL data, initial model preparation, and scenario investigations to identify “soft” 

parameter selection for scenario development were to compare the NRS process with the AI approach. 
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3.3 Methodology: Data-Driven Artificial Intelligence Model 

The methodology for the development and analysis of the Data-Driven AI model in this study will be 

structured as follows: 

Methodology for Artificial Intelligence (AI) techniques 

1. Data Collection and Preparation 

o Study area: dataset encompassing 400 Marcellus Shale Wells 

2. Data Exploration and Analysis 

o Basic Statistical Analysis 

o Well Quality Analysis (WQA) 

o Identify Key Performance Indicators 

3. Model Development 

o Feature selection 

o Data partitioning and database construction 

o Develop predictive AI model for 30-day rich gas production 

i. IMprove™ software – backpropagation neural network  

ii. Model Training 

4. Model Validation and Predictive Analysis 

o Perform blind validation of the predictive neural network 

o Input selection and hyperparameter tuning to improve model accuracy 

A high-level illustration of the workflow is seen Figure 12. 

 

Figure 12: Data Driven AI Model Workflow 
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3.3.1 Data Collection and Preparation: AI Model Study Area 

The AI model in our study utilized a comprehensive dataset derived from 400 Marcellus shale wells. This 

dataset comprises of field-measured parameters coupled with production records for 30-day, 12-month, 

and 24-month periods, encompassing both gas and water production outputs.  

The dataset consists of 46 parameters: 40 are input variables (also known as features or predictors), which 

represent the characteristics or attributes of the data used for predictions or actions. The remaining 6 are 

output variables, signifying the desired outcomes or predictions (also known as targets) that the model is 

trained to produce.  

It should be noted that while most attributes have a consistent record count of 400, there is variability in 

the output parameters. This variance is due to differences in data collection intervals and the individual 

production lifespans of the wells. Upon examining the output variables (production records), the 30-day 

production data offers a complete set of 400 records, whereas the 12-month and 24-month data contain 

257 and 153 records, respectively. 

 

Figure 13: Data Collection and Preparation 

 

To make the data analysis more intuitive, all attribute variables were categorized. The detailed 

classifications for the input variables are presented in Table 8, organized by category and number of 

available records. The output variables for this study are the production records previously discussed, 

shown in Table 9.   

Data 
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Table 8: Input Attribute Summary for AI Model Development 

Category Input Variable # Records 

Well X 400 

Well Y 400 

Well Measured Depth 400 

Well True Vertical Depth 400 

Well Deviation Type 400 

Well Inclination 400 

Well Azimuth 400 

Hydraulic Fracture Avg. Inj. Pressure (psi) 400 

Hydraulic Fracture Avg. Max. Pressure 400 

Hydraulic Fracture Avg. Inj. Rate (bbl/min) 400 

Hydraulic Fracture Avg. Max. Rate 400 

Hydraulic Fracture Slurry Volume (bbl) 400 

Hydraulic Fracture Clean Volume (bbl) 400 

Hydraulic Fracture Max. Prop. Concentration (lb/gal) 400 

Hydraulic Fracture Prop./Stage(lb) 400 

Hydraulic Fracture Total Prop. Inj. (lb) 400 

Hydraulic Fracture Avg. Breakdown Pressure 400 

Hydraulic Fracture Avg. Breakdown Rate 400 

Formation BTU Area 400 

Formation Avg. Frac. Gradient 400 

Formation Porosity(%) 400 

Formation Net Thickness(ft) 400 

Formation Swi (%) 400 

Formation TOC (%) 400 

Formation Bulk Modulus 400 

Formation Shear Modulus 400 

Formation Youngs Modulus 400 

Formation Poisson's Ratio 400 

Formation Min Horizontal Stress 400 

Formation Avg. ISIP 400 

Completion Design Completions Date 400 

Completion Design Stimulated Lateral Length(ft) 400 

Completion Design Shot Density (Shots/ft) 400 

Completion Design Total Clusters 400 

Completion Design Total No. Stages 400 

Completion Design Cluster Spacing 400 

Operational Start Production Date 400 

Operational Wellhead Pressure - 30 days-PSI 400 

Operational Wellhead Pressure - 12 Months-PSI 257 

Operational Wellhead Pressure - 24 Months-PSI 153 
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Table 9: Output Attribute Summary for AI Model Development 

Output Variable # Records 

Rich Gas-30 days-MCF 400 

Rich Gas-12 Months-MCF 257 

Rich Gas-24 Months-MCF 153 

Water 30 days-BBL 400 

Water 12 Months-BBL 257 

Water 24 Months-BBL 153 

 

To safeguard proprietary data, the exact names and locations of these wells have been anonymized, yet 

their inherent patterns and relationships remain intact. This allows for trend and pattern analysis without 

exposing sensitive information. Figure 14 shows the relative positions of the 400 wells within the dataset. 

All other dataset attributes are unchanged from their originally measured values.  

A more robust dataset is less susceptible to the influence of outliers, which can distort the results of 

machine learning algorithms. Moreover, a larger dataset allows the model to better discern complex 

relationships between data points, which is critical as many real-world challenges involve intricate 

interconnections. Given these considerations, we will opt for the output variable with the highest record 

count (30-day production) to provide the machine learning algorithm with the most robust dataset 

possible. 
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Figure 14: Normalized Marcellus Shale Well Locations 

 

3.3.2 Data Exploration and Analysis: Marcellus Shale Well Dataset 

Data exploration and analysis was performed using several techniques within IMPROVE™ software. Our 

objective in this step was to thoroughly explore the dataset and explore our understanding of the various 

attributes involved, given the objective of predicting production on a well-by-well basis using a data-

driven AI model. The following descriptive analytics will serve to evaluate the data’s quality while 

highlighting promising candidates and relevant information for subsequent analysis and model 

development.   
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3.3.2.1 Basic Statistical Analysis 

We began our data exploration process by performing basic statistical analysis to investigate the 

relationship between the dataset’s attributes. The primary goal of this analysis was to gain a deeper 

understanding of the data before transitioning into the development of our AI data-driven models.  

This approach allows us to:   

1. Develop Initial Insights: Visualization tools, such as the bubble plot depicted in Figure 15, enhance 

our understanding by making patterns and correlations more intuitive, highlighting behavior that 

might be missed when viewing the data in its raw format. In this plot, the size of each bubble 

represents the cumulative gas production value at their respective X and Y-coordinate for each 

well. This visual representation offers a clear view of how production behavior differs across 

various locations and their relative proximities, suggesting that the formation reservoir plays a 

significant role. 

2. Understand the distribution of the data: By observing parameters like the mean, median, range, 

and standard deviation, we gained insights into the characteristics of each variable, identifying if 

it is normally distributed, skewed, or exhibiting other tendencies.  

3. Identify relationship between variables: Through regression analysis, we can measure the 

relationship between one or more independent (predictor) variables and a dependent (outcome) 

variable. For our study, the main interest lies in understanding the connection between available 

input variables and the 30-day gas production, which we defined as our output variable. Different 

patterns and behaviors observed for select variable examples are seen in Figure 16 - Figure 19. 

4. Spot and Scrutinize Outliers: Outliers and anomalies in the data can compromise the accuracy 

and reliability of subsequent models. By identifying data points that significantly deviate from the 

rest, or are not consistent with the expected behavior, we can assess their legitimacy and decide 

whether to remove them or treat them as special cases.  

5. Address Potential Data Problems: Basic statistical analysis can highlight issues such as missing 

values or errors that might compromise the integrity of our data.  
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Figure 15: Basic Statistical Analysis - Bubble Plot (30-Day Rich Gas MCF Production) 
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Figure 16: Regression Analysis - Measured Depth vs 30-day Rich Gas Production 

 

Figure 17: Regression Analysis - Stimulated Lateral Length vs 30-day Rich Gas Production 
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Figure 18: Regression Analysis - Max Proppant Concentration vs 30-day Rich Gas Production 

 

Figure 19: Regression Analysis - Total Number of Stages vs 30-day Rich Gas Production 
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3.3.2.2 Well Quality Analysis (WQA) 

IMPROVE™ software was used to perform well quality analysis (WQA). This method of using fuzzy set 

analysis on the input data, based on the 30-day gas production output, allowed us to group the wells into 

categories by a soft criterion. The input data can then be classified by not just a hard category but also the 

value of membership to the category.  

The WQA breaks the output variable into distinct categories of “Poor”, “Average”, and “Good” production 

for 3 sets, providing a more nuanced view of the data. Figure 20 and Figure 21 below depict the WQA 

preparation for multiple example scenarios of 3 and 4 fuzzy sets. The example seen in Figure 22 and Figure 

23 for well PD-A1-H1 demonstrates that a 3 fuzzy set scenario categorizes the well “Average” production, 

but when the 4 fuzzy set categories are applied, we can observe the well to have membership to both 

“Average” (36%) and “Good” (64%) categories.  

 

Figure 20: WQA Preparation - 3 Fuzzy Sets 
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Figure 21: WQA Preparation - 4 Fuzzy Sets 

 

Figure 22: WQA - 3 Fuzzy Sets for PD-A1-H1 Well 
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Figure 23: WQA - 4 Fuzzy sets for PD-A1-H1 Well 

Plotting well attributes of X, Y coordinates classified by fuzzy sets visualizes the distribution of well quality 

across the dataset. As Figure 24 shows, gas production quality appears to trend from left (poor) to bottom 

right (good), suggesting that the formation reservoir plays a significant role. Despite this visible trend, 

inconsistencies in some production areas mean we can't depend entirely on these factors. Still, this 

analysis provides more context and a deeper understanding of the dataset's features, setting the stage 

for a more thorough investigation.  
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Figure 24: WQA - Fuzzy Categories for All Wells (X, Y Plane) 

3.3.2.3 Key Performance Indicators (KPI) 

Identification of key performance indicators (KPI) is an important task in understanding any system’s 

behavior. Using IMPROVE™ software’s propriety fuzzy pattern recognition technology (Intelligent 

Solutions, 2018), we identify the contribution of parameters to the process outcome.  

Fuzzy Pattern Recognition uses the interconnection of parameters in complex, non-linear and dynamic 

processes. Each parameter affects and is affected by others, altering the system's behavior. For effective 

analysis, it's vital to examine these interactions collectively and identify key drivers in an integrated or 

combined approach. 

A summary of this study’s attribute KPI values and their degree of influence on the process outcome are 

shown in Table 10.  
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Table 10: Key Performance Indicators (Attributes Ranking and Degree of Influence) 
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For a deeper understanding of the KPIs behavior, the IMPROVE™ software utilizes Fuzzy Pattern 

Recognition (FPR) to visualize and inspect input parameter’s individual impact on the output parameter. 

FPR is a technique used in pattern recognition and machine learning. It helps to identify key performance 

drivers in a process, and it provides more nuanced information by analyzing the effect of different ranges 

of each parameter on the output. 

To understand the effect of each parameter on the output we consider the following points: 

1. High FPR values:  

a. When the FPR of the output demonstrates high values within certain ranges, it indicates 

that the parameter has a significant positive effect on the output. Essentially, these 

ranges are where the parameter most positively influences the results. 

2. Low FPR values:   

a. Conversely, when the FPR demonstrates low values in certain ranges, it indicates the 

parameter negatively influences the output. These are ranges that should typically be 

avoided, as the parameter in these ranges has a negative correlation effect on the output.  

3. Slope in the FPR Plot: 

a. The slope of the graph – its steepness and direction – indicates the sensitivity of the 

output to changes in the parameter’s value within those ranges. For example, a steep 

slope means a small change in the parameter leads to a significant change in the output, 

suggesting high sensitivity.  

i. Positive Slope: when the graph’s slope is positive it suggests an increase in the 

parameter’s value will result in an increase in the output.  

ii. Negative Slope: a negative slope means that an increase in the parameter’s value 

results in a decrease in the output.  

This analysis helps in fine-tuning parameters to get the most desirable output and gain insights about the 

behavior of the process under various conditions. The following Figure 25 and Figure 26 present examples 

of two parameters: Measured Depth (MD) shows a positive slope and indicates that FPR values increase 

as the depth increases. This relationship can be explained by the fact that a longer MD provides a larger 

area for gas production. Conversely, Initial Water Saturation (Swi) exhibits a negative slope, implying that 

lower Swi values correspond to higher FPR values. This observation aligns with the negative correlation 

between initial water saturation and gas production in a reservoir. 
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Figure 25: Fuzzy Pattern Recognition (FPR) - Measured Depth (MD) 

 

Figure 26: Fuzzy Pattern Recognition (FPR) - Initial Water Saturation (Swi) 
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3.3.3 Predictive Analytics and AI Model Development 

The objective of this phase of the study is to create a predictive AI model using the insights gained during 

data exploration and analysis.  

We will use a machine learning algorithm, specifically an artificial neural network, to study the measured 

well data. This approach goes beyond traditional statistical methods by allowing the model to learn from 

patterns in the data, resulting in more accurate predictions. 

The Predictive Analytics workflow can be summarized as follows: 

1. Feature Selection:  

a. Feature selection plays a pivotal role in predictive analytics by determining the input 

parameters that a neural network learns from. Various strategies, including processing 

and weighting these parameters, can optimize the learning process. This is often 

supplemented with domain expertise, both in the subject matter and the development of 

diverse neural network approaches. Initial input features are selected with careful 

examination of the impact of adding or removing specific features on the overall output. 

2. Model Development:  

a. Model development includes tuning hyperparameters and partitioning datasets. Dataset 

partitioning follows a four-part breakdown: Training, calibration, verification, and blind 

validation. Different strategies in this step can greatly influence the neural network’s 

performance. This project will use IMPROVE™ software for model development, negating 

the need for extensive mathematical background. 

3. Model Comparison:  

a. This study will compare models based on the R2 score and Mean Absolute Error (MAE). 

This goal is to have a relatively even error score across all data partitions. This approach 

should ensure the model’s robustness and ability to handle unseen data.  

4. Model Selection:  

a. The final model will be selected based on the information gathered in the previous step. 

We will evaluate the performance of each model on a validation set of unseen “Blind” 

data. The model with the best performance will be selected. 
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3.3.3.1 Feature Selection 

Feature selection is an important step in predictive analytics and model development. The input features 

represent the data that the network will learn from, so it is important to select the most relevant features.  

In this research, we used a combination of methods to select the input features. As previously discussed, 

we first explored the data and performed descriptive analytics to identify the most important features. 

We then used our domain expertise to further refine the selection. Finally, we evaluated the impact of 

different feature combinations using a neural network approach. 

An example of input selection within the IMPROVE™ software can be seen in Figure 27. The initial input 

features selected for our model, with associated KPI rank and degree of influence as determined during 

descriptive analytics, can be seen in Figure 28. 

 

Figure 27: Neural Network Input Selection – IMPROVE™ Software 
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Figure 28: Input Selection for AI Model Development 

3.3.3.2 Data Partitioning and Database Construction 

After selecting our initial input features and defining 30-day gas production as our desired output, the 

next step in model development was to partition the data. The data was split into three partitions within 

the IMPROVE™ software: Training, Calibration, and Verification. This is a critical step, as the way the data 

is partitioned will often have a large impact on the success of the model.  

The dataset partitions are summarized as follows: 

• Training dataset: This is the most important part of the development process. The training set is 

part of the data shown to the ANNs during the training process, used to teach the machine 

learning algorithms patterns in the dataset by establishing correlations between the input and 

output features. This is where the model learns to make predictions.  



 

53 
 

• Calibration dataset: This data is not used directly during the training process or to adjust the 

outputs. The calibration data is used to monitor the performance of the neural network as it learns 

and to determine when to stop the training process. 

• Verification/Validation dataset: This data is used to validate the performance of the trained 

model at the end of the training process. It is used to see if the trained neural network can perform 

reasonably well on out-of-sample data. This data has no bearing on the machine learning models 

training or calibration.  

In addition to the training, calibration, and verification partitions, a distinct subset of wells was 

deliberately set aside from the primary model dataset. These wells are referred to as blind samples. They 

are used to further validate the model in a process called blind validation. In blind validation, the blind 

subset of data is not used or seen during the training process. This ensures that the model is not overfitting 

to the training data and that it can generalize to new data. The blind samples will be used to supplement 

the validation process and demonstrate the effectiveness of the model on data that it has not had access 

to during its development. 

Figure 29 illustrates the partitioning of the dataset. 

 

Figure 29: Dataset Partitioning 

IMPROVE™ software offers various methods for partitioning the dataset, as shown in Figure 30. In this 

study, we used the Intelligent Partitioning technique, a proprietary method within the software that 

ensures all partitions are statistically representative of the dataset. We also investigated a manual 

partitioning approach to further direct the training process. These techniques will be discussed in more 

detail within the results chapter of this work.  
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Figure 30: Data Partitioning – IMPROVE™ Software 

3.3.3.3 Model Development: Predictive AI Model for 30 Day Rich Gas production 

Once the partitions have been defined and the input-output features have been selected, the database is 

primed to train our initial models. The IMPROVE™ software offers various neural network training 

methods. In this research, we employed the backpropagation algorithm.   

Backpropagation is a learning algorithm for training feedforward neural networks. Particularly effective 

for networks with a high number of parameters, it works by iteratively adjusting the weights of the 

network’s connections, aiming to minimize the discrepancy between the predicted output and the target 

output (Fausett, 1993).  

The backpropagation algorithm works in two phases: 

1. Forward Propagation: The input data is fed into the network and the network calculates its 

output. 
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2. Backward propagation: The error between the network’s predicted output and the target is 

calculated. This error is then propagated back through the network to update the weights of the 

connections. 

The key to backpropagation’s efficiency is the proper tuning of weights. The weights of a neural network 

are the parameters that control how the network learns. By adjusting the weights, we can fine-tune the 

network’s performance and make it more accurate and reliable.  

When the weights are properly tuned, the network can learn the patterns in the data more effectively. 

This leads to a reduction in the error rate, which means the network is more likely to make accurate 

predictions. Additionally, a well-tuned network is more likely to generalize well to new data, meaning that 

it can be used to make predictions on data that is not seen before.  

The weights of the connections are updated using a gradient descent algorithm. Gradient descent is an 

iterative optimization algorithm that works by moving in the direction of the steepest descent of a 

function. In the case of backpropagation, the function is the error between the network’s predicted output 

and the target output (Kriesel, 2007). 

The following steps illustrate how the backpropagation algorithm works for a simple feedforward neural 

network with one hidden layer, two input neurons, one hidden neuron, and one output neuron. The 

weights of the connections are initialized randomly.  

1. The input data is fed into the network. 

2. The network calculates its output. 

3. The error between the network's output and the desired output is calculated. 

4. The error is propagated back through the network, layer by layer. 

5. The weights of the connections are updated using gradient descent. 

6. Steps 2-5 are repeated until the error is minimized. 

An example backpropagation neural network as designed in this research can be seen in Figure 31. Within 

the IMPROVE™ software, many of the default hyperparameters were suggested to be kept at their default 

values, as these values represented several years of cumulative experience working with different neural 

network models. With these hyperparameters constant, the first iterations of model tuning allow us to 

observe the impact of input selection and data partitioning in our initial models before further 

hyperparameter tuning is performed.  
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Figure 31: Neural Network Design – IMPROVE™ Software 

A summary of the hyperparameter controls and their impact on the model are as follows (Intelligent 

Solutions, 2018): 

• Layers Information – there are two sets of synaptic connections in the network. First are the 

synaptic connections between the input layer and the hidden layer, and the second set of 

connections are those between the hidden layer and the output layer. The “Layers Information” 

frame allows you to assign three parameters to each of these connection sets. These 

hyperparameters are summarized as follows: 

o Momentum – hyperparameter that helps the neural network to converge more quickly 

and smoothly. 

o Learning Rate – hyperparameter controlling how quickly the neural network learns.  

o Weight Decay – hyperparameter that penalizes large weights in a neural network, helping 

to prevent overfitting. 

• Activation Function – for this study we used the Logistic Function, a hyperparameter that 

transforms the output of a neural network to a value between 0 and 1, which can be interpreted 

as a probability.  
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• Save Option – option for how and when to save the trained network. 

• Stopping Condition – option for when to stop the training process, based on condition set.  

• Epoch – one cycle of training the neural network with all training data.  

• Hidden Layer Neuron – hyperparameter controlling the complexity of a neural network. A higher 

number will make the NN more complex but may also make it more difficult to train.  

• Random Seed Number – hyperparameter controlling the randomness of the initial weights in the 

neural network.  

 

Figure 32: Backpropagation Neural Network Training Module – IMPROVE™ Software 

Following the initial model design and preparation, we can begin training our neural network. Within the 

IMPROVE™ software we can observe this training in real-time, with the ability to monitor both the Training 

and Calibration sets, using an available double-graph option within the training module. Based on our 

model settings, and stopping conditions, the training process will continue for an unlimited number of 

epochs, saving the best model as it goes. An example of the training module is shown in Figure 32.  
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3.3.3.4 Model Validation and Predictive Analysis 

After developing and training the data-driven model with promising accuracy seen on the verification 

data, the next step is to validate it using a blind dataset. Since the model has never encountered this 

dataset during training, it represents “new” data, allowing us to assess the model’s ability to generalize to 

new data.   

 

Figure 33: Model Validation Workflow 

When importing the blind dataset, we must indicate the input attributes that are present both in the blind 

dataset and the trained model. Following this step, we can deploy our trained model on the blind data 

and examine predicted output values, sensitivity analysis, and model performance. 

Based on the results throughout training, calibration, verification, and finally blind validation, we will track 

the model’s performance and error between actual and predicted output values. The key drivers in this 

analysis will be R-Squared (𝑅2) value, measuring the proportion of variation in two datapoints when 

applied to actual and predicted values, and the Correlation Coefficient, which measures the strength of 

the linear relationship between two variables.  

Equation 3: R-Squared (𝑅2)  

𝑅2 = 1 − (
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
) 

Where: 

• 𝑆𝑆𝑟𝑒𝑠 is the sum of squared residuals (i.e., the difference between the actual values of the 

dependent variable and the predicted values from the model) 

• 𝑆𝑆𝑡𝑜𝑡 is the total sum of square (i.e., the total variation in the dependent variable) 
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Equation 4: Correlation Coefficient 

𝑟 =  
∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)

√∑((𝑥𝑖 − �̅�)2∑(𝑦𝑖 − �̅�)2
 

Where: 

• r = correlation coefficient 

• 𝑥𝑖 = values of the x-variable in a sample 

• �̅� = mean of the values of the x-variable 

• 𝑦𝑖  = values of the x-variable in a sample 

• �̅� = mean of the values of the y-variable 

Additionally, the model performance will also be analyzed on the Mean Absolute Error (MAE) presented 

earlier, which can be interpreted as the average error the model’s predictions have in comparison with 

their actual targets. 

This analysis will evaluate the validity of our model, with the objective of selecting a model that 

generalizes well to new data. We aim to enhance our predictive accuracy through an iterative process of 

input and hyperparameter tuning, as depicted in Figure 33. Once the model demonstrates consistent 

performance, especially on the blind validation dataset, it can be considered ready to use.   

However, it is important to note that data validation is an ongoing process. It should be performed 

routinely, especially when new data is added to a project. In our case, taking our model into the future 

would entail regular updates and validation as new wells are developed and as their related data becomes 

available.  
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Chapter 4: Results and Discussion 

This chapter presents the findings from our comprehensive comparison between Artificial Intelligence (AI) 

techniques and traditional numerical reservoir simulations (NRS) within the context of natural gas 

extraction in unconventional Marcellus Shale plays.  

Key highlights include: 

1. Assessment of prediction accuracy of AI and NRS. 

2. Analysis of resource allocation for model development and simulation. 

3. Evaluation of the capability of both techniques to capture intricacies found in shale formations. 

4. Comparison of both methodologies in forecasting and production history matching. 

5. Advantages and limitations for each approach. 

By comparing AI with traditional NRS, this chapter aims to provide insights into the potential advantages 

and challenges of both techniques in reservoir simulation, predictive analytics, and optimization. 

The following sections will detail the findings, supported by empirical data, and examine their significance 

within the domain. 

4.1 Numerical Reservoir Simulation Model Results 

In this section, we present the results of the NRS model scenarios, developed to understand the impact 

of key parameters on the model’s predictive performance. The values for these scenarios were 

determined after experimenting with a wide range of parameters. They were ultimately selected based 

on their ability to best history match the observed production data, while demonstrating their impact 

within the context of this research. 

The results highlight the influence of assumptions and biases in parameter values on the NRS model’s 

accuracy and reliability. The following sections will: 

• Summarize the model scenarios applying the methodology described earlier. 

• List the final reservoir parameters used in model development. 

• Visualize the predicted production behavior alongside historical data.  

• Quantify the model’s accuracy by comparing its results with the known production history for 

2036 days (December 12, 2015 – July 8, 2021). 
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4.1.1 Scenario 1: Base Model 

The first scenario developed, referred to as our Base Model, was prepared using parameters that best 

matched the available data from the MSEEL project for the MIP-3H well. These parameter values were 

either directly measured or considered the best match based on their inclusion in other researcher’s work 

using the same dataset.  

The results of Scenario 1 are shared as follows, where: 

• Table 11 displays the MIP-3H Base Model Parameters. 

• Figure 34 illustrates the NRS MIP-3H Base Model’s production behavior matched with the known 

MIP-3H production history.  

• Table 12 presents the Base Model predictive results. 

Table 11: NRS MIP-3H Base Model Parameters 

MIP-3H: Base Model Reservoir Parameters  

Reservoir Parameters (MIP-3H) Base Model Parameter Values Units 

Model Dimensions (MIP-3H) 7000 (Length)✕1500(Width) ✕90(Height) ft. 

Well Length (Horizontal) 6350 ft. 

Initial Reservoir Pressure 4800 psia. 

Initial Fissure Porosity 0.1 percent 

Initial Matrix Porosity 4 percent 

Initial Fissure Permeability i, j, k 7000, 7000, 700 nd 

Initial Matrix Permeability i, j, k 1750, 1750, 175 nd 

Number of Hydraulic Fractures 128 -  

Fracture Half-Length, Xf  300 ft. 

Initial Fracture Conductivity, kf wf 6 md-ft 

Water Saturation 0.15 Fraction 

 Rock Density 120 lb/ft3 

Langmuir Pressure Constant 0.00036 psi-1 

Langmuir Volume Constant 0.05 g-mol/lb 
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Figure 34: NRS MIP-3H Base Model Predicted Production Behavior and History Match 

 

Table 12: NRS MIP-3H Base Model Results 

MIP 3H Scenario – Base Model Results 

Mean Absolute Error (MAE) 215956762.9 

Mean Absolute Percentage Error (MAPE) 11.44% 

Time to Run Model 51:47 min. 

 

The Base Model scenario results seen in Table 12, demonstrated the predictive capability of the NRS 

model when using the best available data. However, it’s important to acknowledge that these values may 

not necessarily reflect the reality of the entire reservoir.  

The NRS model is still limited by its inability to account for all factors that affect reservoir performance. 

This can be seen in the history match plot (Figure 34), which shows discrepancies between the simulated 

and observed data. These discrepancies suggest that there is still uncertainty in the parameter values, and 

that the model may not be able to accurately predict the reservoir performance under all conditions.  
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4.1.2 Scenario 2: Number of (Producing) Hydraulic Fracture Perforations & Fracture Half-Length  

In our second scenario on the MIP-3H well, we studied the impact of producing hydraulic fractures and 

fracture half-length parameters, keeping all other parameter values consistent with the Base Model 

scenario above.  

• Table 13 displays the MIP-3H Scenario 2 model parameters. 

• Figure 35 illustrates the MIP-3H Scenario 2 model’s production behavior matched with the known 

MIP-3H production history.  

• Table 14 presents the predictive model results for Scenario 2. 

Table 13: NRS MIP-3H Parametric Study Scenario: Number of (Producing) Hydraulic Fracture Perforations & Fracture Half Length 

Scenario: Number of (Producing) Hydraulic Fracture Perforations & Fracture Half Length 

Reservoir Parameters (MIP-3H) 
Base Model  

Parameter Values 
Modified Scenario  
Parameter Values 

Units 

Model Dimensions (MIP-3H) 7000 (L)✕1500(W) ✕90(H) 7000 (L)✕1500(W) ✕90(H) ft. 

Well Length (Horizontal) 6350 6350 ft. 

Initial Reservoir Pressure 4800 4800 psia. 

Initial Fissure Porosity 0.1 0.1 percent 

Initial Matrix Porosity 4 4 percent 

Initial Fissure Permeability I, j, k 7000, 7000, 700 7000, 7000, 700 nd 

Initial Matrix Permeability I, j, k 1750, 1750, 175 1750, 1750, 175 nd 

Number of Hydraulic Fractures 128 98 -  

Fracture Half-Length, Xf  300 450 ft. 

Initial Frac Conductivity, kf wf 6 6 md-ft 

Water Saturation 0.15 0.15 Fraction 

a Rock Density 120 120 lb/ft3 

Langmuir Pressure Constant 0.00036 0.00036 psi-1 

Langmuir Volume Constant 0.05 0.05 g-mol/lb 

Comments: Perforations dynamically produce (2 years) 
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Figure 35: NRS MIP-3H Parametric Study Scenario: Number of (Producing) Hydraulic Fracture Perforations & Fracture Half 
Length – Predicted Production Behavior and History Match 

 

Table 14: NRS MIP-3H Parametric Study Scenario Results: Number of (Producing) Hydraulic Fracture Perforations & Fracture Half 
Length  

MIP 3H Scenario – Number of Hydraulic Fractures & Fracture Half Length Model Results 

Mean Absolute Error (MAE) 54075714.41 

Mean Absolute Percentage Error (MAPE) 5.32% 

Time to Run Model 98:55 min. 

 

The results of Scenario 2 parametric study showed that the number of producing perforations and the 

fracture half-length parameters significantly influence the NRS model’s history matching output.  

Table 14 and Figure 35 show that the MIP-3H model has a very good match to the known production. 

When comparing our results to the Base Model scenario, our MAPE saw an improvement from 11.44% 

down to 5.32%.  

For the fracture half-length parameter, an initial estimated length of 300 feet was increased to 450 feet. 

This increase in half-length improved the model’s ability to match the well’s production history due to the 

model’s assumption of uniform, planar fractures, and their direct correlation with stimulated reservoir 

volume (SRV). These assumptions are common in NRS models to address complexity and improve 

modelling time.  
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Adjustments to the parameter for producing fracture perforations were more complex as they were 

applied dynamically following iterative changes done prior to selecting the model presented. Initially set 

at 128, the number of producing perforations dropped to 98 for a period of two years (from November 1, 

2016 to November 1, 2018) before returning to 128. This change reflected perforations that were no 

longer contributing to production, directly influencing the model’s predicted production.  

Although the modifications in this scenario were exaggerated to best demonstrate the impact of these 

parameters, the theory behind these phenomena can be justified in real-world applications. This is 

supported by the detailed discussion provided earlier in this work. 

4.1.3 Scenario 3: Matrix Porosity and Fracture Conductivity  

In our third scenario on the MIP-3H well, we studied the impact of matrix porosity and fracture 

conductivity parameters, keeping all other parameter values consistent with the Base Model scenario 

above.  

• Table 15 displays the MIP-3H Scenario 2 model parameters. 

• Figure 36 illustrates the MIP-3H Scenario 2 model’s production behavior matched with the known 

MIP-3H production history.  

• Table 16 presents the predictive model results for Scenario 2. 

Table 15: NRS MIP-3H Parametric Study Scenario: Matrix Porosity and Fracture Conductivity 

Scenario: Matrix Porosity and Fracture Conductivity 

Reservoir Parameters (MIP-3H) 
Base Model  

Parameter Values 
Modified Scenario  
Parameter Values 

Units 

Model Dimensions (MIP-3H) 7000 (L)✕1500(W) ✕90(H) 7000 (L)✕1500(W) ✕90(H) ft. 

Well Length (Horizontal) 6350 6350 ft. 

Initial Reservoir Pressure 4800 4800 psia. 

Initial Fissure Porosity 0.1 0.1 percent 

Initial Matrix Porosity 4 4.5 percent 

Initial Fissure Permeability I, j, k 7000, 7000, 700 7000, 7000, 700 nd 

Initial Matrix Permeability I, j, k 1750, 1750, 175 1750, 1750, 175 nd 

Number of Hydraulic Fractures 128 128 -  

Fracture Half-Length, Xf  300 300 ft. 

Initial Frac Conductivity, kf wf 6 4.5 md-ft 

Water Saturation 0.15 0.15 Fraction 

 Rock Density 120 120 lb/ft3 

Langmuir Pressure Constant 0.00036 0.00036 psi-1 

Langmuir Volume Constant 0.05 0.05 g-mol/lb 
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Figure 36: NRS MIP-3H Parametric Study Scenario: Matrix Porosity and Fracture Conductivity – Predicted Production Behavior 
and History Match 

 

Table 16: NRS MIP-3H Parametric Study Scenario Results: Matrix Porosity and Fracture Conductivity 

MIP 3H Scenario – Matrix Porosity and Intrinsic Fracture Permeability Model Results 

Mean Absolute Error (MAE) 122604974.9 

Mean Absolute Percentage Error (MAPE) 9.27% 

Time to Run Model 63:07 min. 

 

The results of Scenario 3 parametric study illustrated the influence of the matrix porosity and fracture 

conductivity parameters on the NRS model’s history matching output. We specifically focus on small 

changes in the values of the parameters, as these can be explained by the difficulty of making accurate 

measurements and the different properties of heterogenous shale reservoirs. Greater detail and 

discussion of these parameters has been presented earlier in this research. 

Table 16 and Figure 36 show that the MIP-3H model for Scenario 3 has a very good match to the known 

production. When comparing our results to the Base Model scenario, our MAPE saw an improvement 

from 11.44% down to 9.27%.  
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4.1.4 Scenario 4: Skin and Skin Effect 

In our fourth scenario on the MIP-3H well, we studied the impact of the skin parameter, keeping all other 

parameter values consistent with the Base Model scenario above.  

• Table 17 displays the MIP-3H Scenario 2 model parameters. 

• Figure 37 illustrates the MIP-3H Scenario 2 model’s production behavior matched with the known 

MIP-3H production history.  

• Table 18 presents the predictive model results for Scenario 2. 

Table 17: NRS MIP-3H Parametric Study Scenario: Skin Effect 

Scenario: Skin Effect 

Reservoir Parameters (MIP-3H) 
Base Model  

Parameter Values 
Modified Scenario  
Parameter Values 

Units 

Model Dimensions (MIP-3H) 7000 (L)✕1500(W) ✕90(H) 7000 (L)✕1500(W) ✕90(H) ft. 

Well Length (Horizontal) 6350 6350 ft. 

Initial Reservoir Pressure 4800 4800 psia. 

Initial Fissure Porosity 0.1 0.1 percent 

Initial Matrix Porosity 4 4 percent 

Initial Fissure Permeability I, j, k 7000, 7000, 700 7000, 7000, 700 nd 

Initial Matrix Permeability I, j, k 1750, 1750, 175 1750, 1750, 175 nd 

Number of Hydraulic Fractures 128 128 -  

Fracture Half-Length, Xf  300 300 ft. 

Initial Fracture Conductivity, kf wf 6 6 md-ft 

Water Saturation 0.15 0.15 Fraction 

 Rock Density 120 120 lb/ft3 

Langmuir Pressure Constant 0.00036 0.00036 psi-1 

Langmuir Volume Constant 0.05 0.05 g-mol/lb 

* Skin 0 10 - 

Comments:  Skin dynamically modified (2 years) *Skin Factor included for parametric study. 
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Figure 37: NRS MIP-3H Parametric Study: Skin Effect – Predicted Production Behavior and History Match 

 

Table 18: NRS MIP-3H Parametric Study Scenario Results: Skin Effect 

MIP 3H Scenario – Skin Factor Model 

Mean Absolute Error (MAE) 57372834.54 

Mean Absolute Percentage Error (MAPE) 4.77% 

Time to Run Model 69:52 min. 

 

The results of Scenario 4 parametric study illustrate the impact of skin and skin effect on the NRS model. 

This model was unique in that used the same parameters as the MIP-3H Base Model from Scenario 1, with 

the only modification being the application of skin. 

Table 18 and Figure 37 show that the MIP-3H model has a very good match to the known production. 

When comparing our results to the Base Model scenario, our MAPE saw an improvement from 11.44% 

down to 4.77%, which was the best history match of our 4 scenarios.  

Like Scenario 2, skin was applied dynamically to the NRS model. The skin value was initially zero and was 

increased to 10 for a period of two years (from January 1, 2017 to January 1, 2019). After that, the skin 

was returned to zero. The skin value was estimated using limited data, so it is possible that the true skin 
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value was different from the value used in the study. However, this scenario reasonably demonstrates the 

theory presented, with additional details to justify the parameter modification presented earlier in this 

work.  

Despite these limitations, the study provides valuable insights into the impact of skin on NRS models. The 

results of the study suggest that skin is an important parameter to consider when developing and 

calibrating NRS models, and its use-case in history matching a well can be easily applied to capture 

complexities that would otherwise be missed. This “catch-all” parameter aptly demonstrates the biases 

that can be brought into NRS models, and how the influence can be monumental given the problem one 

is trying to solve.  

4.1.5 Summary of NRS Scenario Results 

A summary of the presented results can be seen in Table 19 below.  

Table 19: Results Summary for NRS Scenarios 

Model 
CPUs 
used 

Time to run 
Model  

(elapsed 
seconds) 

Convert to 
mins 

MAE MAPE 

Scenario 1: 
Base Model 6 3107 51:47 215,956,762 11.44% 

Scenario 2: 
Number of (Producing) Perforations 
& Fracture Half-Length 

6 5935 98:55 54,075,714 5.32% 

Scenario 3: 
Matrix porosity and fracture 
conductivity 6 3787 63:07 122,604,974 9.27% 

Scenario 4: 
Skin and Skin Effect 6 4192 69:52 57,372,834 4.77% 

 

Notably, the PC used for the modelling in this study had a 9th generation Intel Core i5-9500 processor with 

6 cores and 6 threads. It had a base clock speed of 3 GHz and a max turbo frequency of 4.4 GHz. The PC 

also had 32GB of RAM running at 2666 MHz. 
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4.2 AI Data Driven Model results 

In this section, we present the results of our investigation into the use of AI data-driven models to predict 

the production of wells within the Marcellus Shale region. As discussed within the methodology, a dataset 

containing 400 Marcellus Shale wells was used to develop and train the AI model using a back propagation 

neural network (NN) to predict the 30-Day Rich Gas production.  

The development of a predictive NN model is an iterative process of continuous improvement. To 

illustrate our study's findings, we'll showcase our initial model's outcomes and discuss the fine-tuning 

processes that enhanced its predictive accuracy during both training and blind validation. This enhanced 

version is termed our 'tuned model' 

The results demonstrate the ability of the NN model to learn from the provided dataset to predict quickly, 

accurately, and without assumptions. The predictions made for 30-day gas production are further 

validated based on the model’s ability to generalize to the blind validation set of wells withheld 

throughout the training process. 

Our presented model was developed with the following parameters shown in Table 20 and Table 21: 

Table 20: Data Driven AI Model Preparation 

AI Model Data Preparation  

Total number of Cases 400 

Total cases used for Model Development 380 

Number of Input Attributes used 25 

Training % of Development cases 80% 

Training Count 304 

Calibration % of Development cases 10% 

Calibration Count 38 

Verification % of Development cases 10% 

Verification Count 38 

Total cases withheld for Blind Validation 20 

 

Table 21: Backpropagation NN Preparation 

Backpropagation NN Preparation 

Momentum 0.1 

Learning Rate 0.01 

Weight Decay 0.2 

Activation Function Logistic 

Hidden Layer Neurons 100 
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Our iterative process is further illustrated in Figure 38. Through each iteration of model development, we 

compare the results of the developed models. Our aim is to continually move towards improved 

performance, ultimately selecting the model that both most accurately predicts and best generalizes to 

new data.  

The following sections will present the results of our initial model and the improvements seen in our tuned 

model based on their predictive performance throughout development and blind validation.  

 

 

Figure 38: Model Selection Workflow 
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4.2.1 Data Driven AI Model: Initial Model Validation  
Table 22: Data Driven AI Model: Initial Model Results 

Initial Model Results Train Calibration Verification 

R^2 83.19% 86.13% 71.62% 

MAE 17012.48 17639.86 21297.99 

MSE 391077166.55 49747835.93 90882109.16 

Correlation Coefficient 0.9253 0.9366 0.8583 

 

 

Figure 39: Data Driven AI Model: Initial Model Predicted Blind Validation Results 

 

Table 23: Data Driven AI Model: Initial Model Blind Validation Results 

Initial Model Results  
Blind Validation 

 

R^2 74.98% 

MAE 30794.799 

MSE 1908473257.84 

Correlation Coefficient 0.8659 
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4.2.2 Data Driven AI Model: Tuned Model Validation & Discussion 

Table 24: Data Driven AI Model: Tuned Model Results 

 

 

Figure 40: Data Driven AI Model: Tuned Model Predicted Blind Validation Results 

 

Table 25: Data Driven AI Model: Tuned Model Blind Validation Results 

Tuned Model Results  
Blind Validation 

 

R^2 84.38% 

MAE 17624.582 

MSE 799524014.24 

Correlation Coefficient 0.9186 
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4.2.3 AI Model: Blind Validation and Model Tuning Discussion 

As discussed prior to training our initial model, we set aside blind validation samples from our dataset 

with the remaining samples used for model development and training. Post-training, our model achieved 

an overall R2 score of 74.98%. However, its performance varied, particularly struggling with certain 

validation inputs.  

Figure 41 illustrates the dataset partitions for the Initial model based on well locations to visualize the 

location of each well and their respective partition.  

 

Figure 41: Data Driven AI Model: Initial Model Partition Visualization 
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To address this, we tuned our model and applied data augmentation, swapping challenging validation 

inputs with similar training datapoints. This aimed to provide the model with more representative data to 

enhance its learning capability. Figure 42 depicts the tuned model dataset following data augmentation.  

After this adjustment, we retrained the neural network and the model’s overall R2 score improved to 

84.38%. While data augmentation was effective for us, it might not be a one-size-fits-all solution. 

However, our results highlight the potential benefits of iterative training and the incorporation of 

augmentation techniques to improve predictive accuracy and continuous improvement when using NN 

models.  

 

Figure 42: Data Driven AI Model: Tuned Model Partition Visualization 
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4.2.4 AI Reservoir modelling – Top-Down Model (TDM) Results 

In addition to our backpropagation NN approach, we also explored AI Reservoir Modelling, a Top-Down 

Model (TDM) methodology using the same Marcellus Shale dataset. The TDM approach, unlike the 

gradient descent nature of backpropagation, starts with a high-level understanding, progressively refining 

its insights based on specific data patterns.  

Essentially, while the backpropagation NN began with random weight initialization and adjusted based on 

error minimization, TDM began with overarching patterns in the Marcellus Shale dataset, diving deeper 

into details iteratively. This exploration was driven by the notion that TDM might offer a more intuitive, 

human-like breakdown of complex problems, providing an alternative perspective to the results gleaned 

from our backpropagation NN.  

Interestingly, the TDM and Backpropagation NN models showcased complementary strengths in certain 

prediction scenarios, enhancing our comprehensive understanding of the Marcellus Shale region's well 

production. The model validation results for our TDM approach can be seen in the following Figure 43 for 

both the entire field of Marcellus shale wells as well as examples of individual wells within the dataset.  

 

Figure 43: TDM Model: Entire Field Gas Production Results 
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Comparing our TDM Well results with the NRS model outcomes, we found consistent forecasts in the NRS 

model across all scenarios. This suggests that these NRS forecasts may not accurately reflect reality and 

need refinement. Conversely, TDM wells displayed unique and closely matched forecasting patterns, 

which were further supported through blind validation.  

Though not as exhaustively analyzed as done throughout the history matching parametric study, the NRS 

scenarios consistently showed similar forecasting patterns, regardless of model development and 

parametric biases. These patterns, while requiring more validation, contrast with TDM outcomes which 

align more closely with known production data. This difference emphasizes TDM's success in data-driven 

predictions over assumptive parametric modeling. 

The subsequent Figure 44 displays the forecasted production based on the NRS model scenarios discussed 

earlier in this study. In contrast, Figure 45 and Figure 46 showcase the TDM model's predictions and 

forecasts for select sample of wells from our 400-well Marcellus dataset, demonstrating the performance 

of TDM on a per well basis.  

 

 

Figure 44: NRS Model Scenarios: Forecasted Production 
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 Figure 45: TDM Model: Forecasted Production (Example Well 1)  

 

 

Figure 46: TDM Model: Forecasted Production (Example Well 2) 
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Chapter 6: Conclusion and Recommendations 

6.1 Conclusion 

Predictive analytics is essential for optimizing production and maximizing value in unconventional shale 

reservoirs. However, the complex nature of these reservoirs makes it challenging to develop accurate 

predictive models. This study has compared the modeling approaches and outcomes of two predictive 

analytics methods, numerical reservoir simulation (NRS) and data-driven artificial intelligence (AI) and 

machine learning (ML) techniques, in unconventional Marcellus Shale reservoirs. 

NRS is a powerful tool for modeling complex reservoir dynamics, but its accuracy is extremely sensitive to 

parameter assumptions and data quality. These findings emphasize that even minor assumptions 

throughout NRS model development can significantly impact results, shedding light on the crucial role of 

parameter accuracy. The implications of these findings are that the NRS model’s production prediction 

can be unreliable. The actual production rate could be higher or lower than the predicted rate, depending 

on the real-world values of the key parameters. Thus, stakeholders should carefully consider the 

uncertainty in NRS predictions when making decisions about future asset development and management.   

AI models, on the other hand, demonstrate a strong ability to capture the intricacies of shale behavior, as 

the models can learn from large datasets of historical data. Our results suggest that AI models have the 

potential to be a valuable tool for predictive analytics in unconventional shale reservoirs, delivering 

predictions and optimizations that are not only more precise but also significantly more resource efficient. 

However, acknowledging the limitations for both techniques is also important. The NRS model reveals 

discrepancies between simulated and actual data, illustrating the effects of parameter uncertainties. It 

does not capture all reservoir performance influencers, and assumptions, such as uniform, planar 

fractures, do not accurately represent actual reservoir conditions. The AI model, meanwhile, requires 

more data initially to begin training and may struggle to generalize if new data is significantly different 

from the data used to train and validate the initial model.  

Looking forward, we can improve the reliability and confidence of our NRS model by limiting the use of 

assumptions and soft data. Furthermore, for the AI model, it is important to use a diverse and 

representative dataset during development, and to implement robust validation and testing protocols. 

This will help to ensure that the model is able to generalize well to new data and be more useful in real-

world applications. Continuous iterative improvement, expanding the training dataset, and exploring 

different neural network architectures can further enhance predictive accuracy. 
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In summary, this research bridged traditional reservoir simulations with emerging AI methodologies, 

aiming to enhance the prediction accuracy of reservoir outputs. The significance of parameter selection 

in NRS models and the potential of iterative training in AI were notably emphasized. Despite identified 

limitations, this work paves the way for future studies, ensuring that the predictive capabilities in the 

reservoir domain continue to advance.  

6.2 Recommendations 

The findings of this study demonstrate the potential of artificial intelligence (AI) and machine learning 

(ML) for predictive analytics in unconventional shale reservoirs. However, further research and 

development are necessary to enhance the robustness, generalizability, and interpretability of AI models. 

The following recommendations are made to address these challenges and accelerate the adoption of AI-

based predictive analytics solutions in the oil and gas industry: 

• Develop more robust and generalizable AI models. This could be achieved by using more diverse 

and representative training datasets, developing more sophisticated neural network 

architectures, and using ensemble learning techniques. 

• Investigate the use of AI models to predict reservoir performance under different operating 

conditions. This would allow operators to optimize their wells for different production targets 

and reservoir conditions. 

• Integrate Explainable AI (XAI) techniques to improve transparency and interpretability of 

employed AI and ML models. By providing insights into the model’s decision-making process, XAI 

can help stakeholders better understand and trust the predictions, improving the adoption of 

data-driven approaches. 

• Develop AI-powered decision support tools for operators. These tools could help operators to 

make better decisions about well placement, completion design, and production management. 

• Collaborate with industry stakeholders to develop and implement AI-based predictive analytics 

solutions. This would help to ensure that AI models are developed and used in a way that is 

beneficial to all stakeholders, with domain knowledge shared and implemented throughout the 

entire development and execution cycle of the asset. 

In addition to these specific recommendations, it is also important to continue to invest in research on 

the fundamental principles of AI and machine learning. This research will help us to develop more 

powerful and efficient AI models that can be used to solve a wider range of problems in both the Marcellus 

Shale and the larger energy industry.  
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Appendix 
AI Dataset: Input Attribute Behavior (Fuzzy Pattern Recognition)  

 

Figure 47: Parameter Influence (Fuzzy Pattern Recognition) - Cluster Spacing 
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Figure 48: Parameter Influence (Fuzzy Pattern Recognition) - Completions Date 
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Figure 49: Parameter Influence (Fuzzy Pattern Recognition) - Shot Density 
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Figure 50: Parameter Influence (Fuzzy Pattern Recognition) - Stimulated Lateral Length 
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Figure 51: Parameter Influence (Fuzzy Pattern Recognition) - Total Clusters 
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Figure 52: Parameter Influence (Fuzzy Pattern Recognition) - Total No. Stages 
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Figure 53: Parameter Influence (Fuzzy Pattern Recognition) - Average ISIP 
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Figure 54: Parameter Influence (Fuzzy Pattern Recognition) - Average Fracture Gradient 
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Figure 55: Parameter Influence (Fuzzy Pattern Recognition) - BTU Area 
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Figure 56: Parameter Influence (Fuzzy Pattern Recognition) - Bulk Modulus 
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Figure 57: Parameter Influence (Fuzzy Pattern Recognition) - Minimum Horizontal Stress 
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Figure 58: Parameter Influence (Fuzzy Pattern Recognition) - Net Thickness 
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Figure 59: Parameter Influence (Fuzzy Pattern Recognition) - Poisson's Ratio 
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Figure 60: Parameter Influence (Fuzzy Pattern Recognition) - Porosity 
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Figure 61: Parameter Influence (Fuzzy Pattern Recognition) - Shear Modulus 
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Figure 62: Parameter Influence (Fuzzy Pattern Recognition) - Initial Water Saturation (Swi %) 
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Figure 63: Parameter Influence (Fuzzy Pattern Recognition) - Total Organic Content (TOC %) 
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Figure 64: Parameter Influence (Fuzzy Pattern Recognition) - Young's Modulus 
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Figure 65: Parameter Influence (Fuzzy Pattern Recognition) - Average Breakdown Pressure 
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Figure 66: Parameter Influence (Fuzzy Pattern Recognition) - Average Breakdown Rate 
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Figure 67: Parameter Influence (Fuzzy Pattern Recognition) - Average Injection Pressure 
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Figure 68: Parameter Influence (Fuzzy Pattern Recognition) - Average Injection Rate 
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Figure 69: Parameter Influence (Fuzzy Pattern Recognition) - Average Max. Pressure 
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Figure 70: Parameter Influence (Fuzzy Pattern Recognition) - Average Max. Rate 
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Figure 71: Parameter Influence (Fuzzy Pattern Recognition) - Clean Volume 
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Figure 72: Parameter Influence (Fuzzy Pattern Recognition) - Max. Proppant Concentration 
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Figure 73: Parameter Influence (Fuzzy Pattern Recognition) - Proppant per Stage 
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Figure 74: Parameter Influence (Fuzzy Pattern Recognition) - Slurry Volume 
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Figure 75: Parameter Influence (Fuzzy Pattern Recognition) - Total Proppant Injected 
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Figure 76: Parameter Influence (Fuzzy Pattern Recognition) - Start Production Date 
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Figure 77: Parameter Influence (Fuzzy Pattern Recognition) - Wellhead Pressure WPH (30 Days) 
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Figure 78: Parameter Influence (Fuzzy Pattern Recognition) - Azimuth 
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Figure 79: Parameter Influence (Fuzzy Pattern Recognition) - Deviation Type 
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Figure 80: Parameter Influence (Fuzzy Pattern Recognition) - Inclination 



 

118 
 

 

Figure 81: Parameter Influence (Fuzzy Pattern Recognition) - Measured Depth 
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Figure 82: Parameter Influence (Fuzzy Pattern Recognition) - True Vertical Depth TVD 
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Figure 83: Parameter Influence (Fuzzy Pattern Recognition) - Well X Location Coordinates 
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Figure 84: Parameter Influence (Fuzzy Pattern Recognition) - Well Y Location Coordinates 
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