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Abstract. Neural ordinary differential equations (NODE) are ordinary differential equa-

tions whose right-hand side is determined by a neural network. Hyper NODE (hNODE)

is a special type of neural network architecture, which is aimed at creating such NODE

system that regulates its own parameters based on known input data. The article uses

a new approach to the study of one-dimensional time series, the basis of which is the

hNODE system. This system takes into account the relationship between the input data

and its latent representation in the network and uses an explicit parametrization when

controlling the latent flow. The proposed model is tested on artificial time series of data.

The influence of some activation functions (besides sigmoid and hyperbolic tangent) on

the quality of the forecast is also considered.
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1. Introduction

Constructing and fitting models that can reliably predict time series data has
been a subject of thorough research for many decades. The problem of time series
forecasting is important in many fields, from economics and finance to meteorology
and biology. The future time series values predicted by a model can be used for
increasing the planning horizon or decreasing the incident response time, both of
which can be invaluable for business and research.

There are two broad approaches to constructing a model — stochastic and de-
terministic [2]. The stochastic approach aims to identify the underlying statistical
patterns in the time series data and use them to estimate its future values. The
main downside of this approach is that it requires the researchers to make a pri-
ori assumptions about the statistical distribution of the data. The deterministic
approach aims to create a model that doesn’t contain random variables in its defi-
nition. Deterministic models come in many forms, but the most popular one is an
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artificial neural network (ANN). ANNs are universal function approximators that
can be used to detect complex patterns in the data and perform either pattern
recognition [1], time series forecasting [14], sequence transformation [15], new data
generation [5], or other tasks. Even though the ANNs are data-driven and self-
adaptive, the researchers are still required to select the proper architecture and
size for the model to achieve optimal performance. Pattern recognition capabili-
ties of ANNs were substantially improved by introduction of Convolutional neu-
ral networks [12], accurate time series forecasting as well as sequence-to-sequence
conversion can be achieved by recurrent, long-short term memory, time-lagged,
or seasonal neural networks [9], etc.

In this article, the neural ODE (NODE) architecture is of particular interest.
NODE is a new family of residual neural network models that, instead of specifying
a discrete sequence of hidden layers, parametrizes the derivative of the hidden
state using a neural network [8]. The original paper proposes the NODE as an
alternative to the residual neural networks that perform a series of composable
transformations to their hidden state:

ht+1 = ht + f(ht,Θ), (1.1)

where t ∈ [0..T ] and h ∈ RD. By viewing the equation (1.1) as an Euler discretiza-
tion of a continuous transformation, the authors transition from the discrete to a
continuous representation of the original sequence:

dh(t)

dt
= f(h, t,Θ). (1.2)

Thus, a residual neural network of infinite depth is achieved, the forward pass of
which is calculated as follows:

F (x0, T ) = x0 +

ˆ T

0
f(x,Θ, t) dt, (1.3)

where x0 is the initial point and Θ is a set of parameters.
This approach, however, is not limited to residual networks. The efficient way

of backpropagating the errors via reverse-mode automatic differentiation devel-
oped by the authors of this model allows construction and training of any kind of
neural network that contains a NODE as its component.

One of the disadvantages of the base NODE model is that it is only able to
learn one continuous flow F . In other words, the set of parameters Θ is static
and cannot react to the new inputs or change with time. This is fairly limit-
ing, especially when building models for time series data that can change their
qualitative characteristics over time. Another disadvantage is that the behavior
of model (1.3) is largely determined by the dimensionality of the space of inputs
because the model structure limits F to only be a homeomorphism of the input
space onto itself which is very limiting in the context of univariate time series
analysis.
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To address these issues and expand the capabilities of NODE-based models,
different approaches were proposed. Neural ODE Process [11] model aims to
achieve the data-dependence of Θ by adopting a stochastic approach and main-
taining an adaptive data-dependent distribution over the underlying ODE. The
core idea of this approach is to transition to the latent representation of the
modeled data using an encoder network, obtain the set of parameters from the
provided context, evolve the initial point in the latent space, and finally decode
each point in the resulting trajectory back to the input space using a decoder.

The neurally-controlled ODE [6] (N-CODE) model adopts a deterministic ap-
proach by introducing a coupled system for determining the set of parameters at
each point in time during integration. It effectively merges the input data with the
inferred set of parameters into a single system and evolves it, greatly increasing
the dimensionality and expressiveness of the hidden representation of the data.

Both Neural ODE Process and N-CODE approaches are examples of hyper-
networks because they infer their set of parameters at runtime based on the input
data. However, the Neural ODE Process’ way of representing the parameters and
the input data is more flexible because they are not being coupled into a single
space. This provides the designers of the model with the freedom to both define
the dimensionality of the latent space to increase the range of possible behaviors
of the model and constrain the values of the parameters to reduce the possibility
of unwanted behaviors arising in the system.

The proposed hNODE model is effectively a simplified and deterministic Neu-
ral ODE Process with N-CODE-inspired approach to control.

2. hNODE definition

Consider a series of pairs of real values X = {(t0, x0), (t1, x1), . . . , (tn, xn)},
ti+1 − ti = ∆t, Xi = (ti, xi) that represent the univariate time series data aug-
mented with timestamps at which the data was recorded. The goal of time series
analysis is to extract meaningful information from X and enable forecasting of its
future values. To accomplish this, a model F that maps the set X onto itself is
to be constructed:

X∗ = F (X,Θ). (2.1)

The model F , governed by the set of parameters Θ, must interpret the se-
quence X and infer the future values X∗. But if the underlying process that
produces the data changes, the model F becomes useless because it is unable to
adapt its parameters to continue producing reliable outputs. Consider a simple
linear model:

F (x,A, b) = Ax+ b, (2.2)

which takes a number of observations from X and produces a prediction X∗. The
parameters of the model are static and are optimized to fit the training data.
Control functions A′(x) and b′(x) with parameters θA and θb, can be introduced
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to adjust the parameters depending on the input data:

F ∗(x,A, b, θA, θb) = (A+A′(x))x+ (b+ b′(x)) = A(x)x+ B(x). (2.3)

The expressions A and B are matrix and vector functions respectively that rep-
resent the rules for inferring parameter values for equation (2.2) based on the
input values and the set of hyperparameters that define behaviors of functions
A′(x) and b′(x). If we combine the hyperparameters into a set Θ = {θA, θb}, and
denote H(X,Θ) as a map from the Cartesian product of the set of hyperparame-
ters Θ and the input values X into the set Θ∗ = {A∗, b∗} of adjusted parameters
for (2.2), the equation (2.3) becomes

F ∗(x,A, b,Θ) = F (x,H(x,Θ)) (2.4)

If instead of the equation (2.2) one were to use the model (1.3), the dimensionality
of the inputs X might become a problem so to increase or decrease it, one may
use an extra pair of vector functions — an encoder-decoder couple:

Y = E(X, θE)
X = D(Y, θD).

(2.5)

Definition 2.1. A model E that disentangles the input data and maps the time
series data into the latent space is called an encoder. A model D that interprets
the points in the latent space and maps them back onto the time series data space
called a decoder. A pair of models E and D such that X ≡ D ◦ E(X) is called an
encoder-decoder couple.

So the model (2.4) becomes

F ∗(x,A, b,Θ) = D ◦ F (E(x,Θ),H(x,Θ)). (2.6)

Finally, the hNODE model is defined as (2.6) where function F is the NODE
model (1.3):

hNODE (X,Θ) = D ◦G(E(X,Θ),H(X,Θ)), (2.7)

where E : X × Θ → L is an encoder that maps the time series data X into the
latent space L, D : L → X is a decoder that interprets the points from L and
maps them into X, G : L×Θ∗ → L is a system of ordinary differential equations
that evolves the state in the latent space, H : X × Θ → Θ∗ is a function that
produces control rule for G. A visual representation of model (2.7) is provided on
Fig. 2.1

3. Activation functions in neural network modeling of time series

It is known that in neural network modeling three types of activation functions
are most often used: sigmoid, hyperbolic tangent and rectified linear unit (ReLU).
The increased attention to these functions is explained by a number of reasons,
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Fig. 2.1. Top-level representation of the model for predicting univariate time series data.

the main one being the stability that they provide to the neural network models.
In this regard, in modeling problems it seems interesting to use other activation
functions. Naturally, one of the requirements for such functions must be the
stability of the resulting neural network models. Further, from the point of view
of stability, we will consider power-law activation functions.

Definition 3.1. [4] A set of real functions F ⊂ C(X) is called separating points
of the set X ⊂ Rn if for any different x1,x2 ∈ X (x1 ̸= x2), there exists a function
f ∈ F such that f(x1) ̸= f(x2).

Let f(w) ∈ F be the function of one real variable w such that f(0) = 0 and

either conditions for f(w) :
{

if w < 0 then f(w) = −ψ(−w) < 0,
if w > 0 then f(w) = ϕ(w) > 0

(3.1)

or conditions for f(w) :
{

if w < 0 then f(w) = ψ(−w) > 0,
if w > 0 then f(w) = ϕ(w) > 0

(3.2)

are fulfilled. (Here ϕ(w), ψ(w) are differentiable functions of one variable w.)

Definition 3.2. [4] Representation (3.1), ((3.2)) is called an odd (even) activa-
tion function.

For example, the ReLU-like function can be represented in the form:

f(w) = ln
a · exp(b · w)

1 + (a− 1) · exp(c · w)
; a > 1, b ≥ c > 0.
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Consider the following system
ẋ1(t) = f1(a11x1 + . . .+ a1nxn + b1)
ẋ2(t) = f2(a21x1 + . . .+ a2nxn + b2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ẋn(t) = fn(an1x1 + . . .+ annxn + bn),

(3.3)

where aij , bi are known real constants; i, j = 1 . . . n.
Along with system (3.3), we will also consider the system

ẋ1(t) = a11f1(x1) + . . .+ a1nfn(xn)
ẋ2(t) = a21f1(x1) + . . .+ a2nfn(xn)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ẋn(t) = an1f1(x1) + . . .+ annfn(xn).

(3.4)

Note that if detA ̸= 0, then with the help of the change of variables x → Ax+b
it is always possible to pass from system (3.3) to system (3.4) and vice versa;
A ∈ Rn×n, b ∈ Rn. Therefore, in what follows, we restrict ourselves to the study
of system (3.4).

We introduce the notation

f(x) = (f1(x1), . . . , fn(xn))
T . (3.5)

Taking into account (3.5), we introduce the following function

V (x1, . . . , xn) =

ˆ
f1(s1) ds1 + . . .+

ˆ
fn(sn) dsn,

where the integral is understood in the sense of an indefinite integral.
The integral of the function f(x) is defined by formulas:

1. If fi(si) is even then

ˆ
fi(si) dsi =


ˆ xi

0
ϕi(si) dsi, if xi ≥ 0ˆ 0

xi

ψi(si) dsi, if xi < 0
.

2. If fi(si) is odd then

ˆ
fi(si) dsi =


ˆ xi

0
ϕi(si) dsi, if xi ≥ 0

−
ˆ 0

xi

ψi(si) dsi, if xi < 0
.

Theorem 3.1. [3] Assume that in system (3.3) the matrix A = {aij} is anti-
symmetric and invertible: AT + A = 0 and det(A) ̸= 0. Let all components of
the vector function f(x) be odd activation functions. Then any solution x(t,x0)
of system (3.3) is bounded and is either periodic or chaotic.
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Proof. It is known [4] that the integral of the odd activation function fi(xi), i =
1, . . . , n, is the even activation function. Therefore, we have V (x1, . . . , xn) ≥ 0.

Compute the total derivative with respect to t of the function V (x1, . . . , xn):

V̇t(x1, . . . , xn) = 0.5

[
ẋ1(t)

∂V (x1,...,xn)
∂x1

+ · · ·+ ẋn(t)
∂V (x1,...,xn)

∂xn

]

+0.5

[
∂V (x1,...,xn)

∂x1
ẋ1(t) + · · ·+ ∂V (x1,...,xn)

∂xn
ẋ1(t)

]
= 0.5fT (x)(AT +A)f(x) = 0.

(3.6)

Further, by virtue of inequalities (3.1), (3.2) and the fact that V (x1, . . . , xn) ≥
0, we have

lim
xi→∞

ˆ xi

−xi

fi(si) dsi = lim
xi→∞

ˆ 0

−xi

fi(si)dsi + lim
xi→∞

ˆ xi

0
fi(si) dsi ≥ 0; i = 1, . . . , n.

This means that lim∥x∥→∞ V (x1, . . . , xn) ≥ 0. In addition, from (3.6) it follows
that for a sufficiently large value ∥x0∥, we have V (x1(t), . . . , xn(t)) = const =
V (x10, . . . , xn0) = V (x0) > 0. This implies that the set S = {V (x1(t), . . . ,
xn(t)) − V (x10, . . . , xn0) = 0} is compact. Therefore, any trajectory x(t,x0)
of system (3.3) (or (3.4)) is bounded and is either periodic (if n ≥ 2) or chaotic
(if n ≥ 3).

Theorem 3.2. [3] Assume that in system (3.3) the matrix A+AT is non-negative
definite. Let also all components of the vector function f(x) be odd activation
functions. Then any solution x(t,x0) of system (3.3) is stable.

Proof. It’s clear that V (0, . . . , 0) = 0. Then, under the conditions of Theorem 3.2,
equality (3.6) must be replaced by inequality V̇t(x1, . . . , xn) ≤ 0. Now it remains
to apply Lyapunov’s theorem [2] on the stability of solutions of a system of ordi-
nary differential equations to system (3.4).

3.1. Generalization of the concept of power activation function

Introduce the following power functions [4]:

g(u) =

{
−(−u)β if(u < 0 and β > 0); 0 if(u < 0 and β = 0)
uα if(u ≥ 0 and α > 0); 0 if(u ≥ 0 and α = 0)

(3.7)

or

g(u) =

{
(−u)β if(u < 0 and β > 0); 0 if(u < 0 and β = 0)
uα if(u ≥ 0 and α > 0); 0 if(u ≥ 0 and α = 0).

(3.8)

It is clear that representation (3.7) ((3.8)) is an odd (even) activation function.
Formulas (3.7) and (3.8), which introduce power activation functions, have

two drawbacks:
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1. If 0 < α ≤ 1 or 0 < β ≤ 1, then the functions (3.7) and (3.8) are non-
differentiable;

2. Functions (3.7) and (3.8) do not take into account the shift of the argument.

In this connection, we introduce the following function (see Fig.3.1):

w(u, α, β, b, c) = piecewise
[
u+

b

c
< −c

1
β−1 ,−β − 1

β
c

β
β−1 − 1

β

(
−
(
u+

b

c

))β
,

u+
b

c
≤ c

1
α−1 , c ·

(
u+

b

c

)
,
α− 1

α
c

α
α−1 +

1

α

(
u+

b

c

)α]
. (3.9)

Here α > 0, β > 0, α ̸= 1, and β ̸= 1 are degrees; c > 0 is the tangent of angle of
inclination of a straight line w = cu+ b; b a given bias of argument.

We put in formula (3.9) b = 0. Then we will have

w(u, α, β, c) = piecewise
[
u < −c

1
β−1 ,−β − 1

β
c

β
β−1 − (−u)β

β
,

u ≤ c
1

α−1 , cu,
α− 1

α
c

α
α−1 +

uα

α

]
. (3.10)

Formula (3.10) can be obtained from formula (3.9) by introducing a new variable
z := u+ b/c, which in (3.10)) is denoted again as u := z.

In the optimization problem using gradient methods, it is necessary to use the
derivative of the function w(u, α, β, c). In the case of α > 0, β > 0, α ̸= 1, β ̸= 1,
and c ≥ 0 this formula is as follows:

ẇu(u, α, β, c) = piecewise
[
u < −c

1
β−1 , (−u)β−1, u ≤ c

1
α−1 , c, uα−1

]
(3.11)

If limβ → 1, then

w(u, α, β, c) → piecewise
[
u ≤ c

1
α−1 , cu,

α− 1

α
c

α
α−1 +

uα

α

]
,

ẇu(u, α, β, c) → piecewise
[
u ≤ c

1
α−1 , c, uα−1

]
;

If limα→ 1, then

w(u, α, β, c) → piecewise
[
u < −c

1
β−1 ,−β − 1

β
c

β
β−1 − (−u)β

β
, cu
]
,

ẇu(u, α, β, c) → piecewise
[
u < −c

1
β−1 , (−u)β−1, c

]
;

If limα→ 1 and limβ → 1, then w(u, α, β, c) → cu and ẇu(u, α, β, c) → c.
Note that formula (3.10) is transformed into formula (3.9) if we put in (3.10)

u := u+ b/c. Thus, we have w(u+ b/c, α, β, c) ≡ w(u, α, β, b, c).
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(a) (b)

(c) (d)

Fig. 3.1. The activation differentiable power function (3.10) for different values of the parameters
α, β, and c: (a) c = 5, α = 2, β = 3; (b) c = 2, α = 0.01, β = 2; (c) c = 7, α = 0.3, β = 0.1; (d)
c = 0.2, α = 0.1, β = 0.01.

Finally, if we put c = 0 in formula (3.10), then we obtain (with insignificant
additions) function (3.7):

w(u, α, β) = piecewise
[
u < 0,−(−u)β

β
,
uα

α

]
, (3.12)

ẇu(u, α, β) = piecewise
[
u < 0, (−u)β−1, uα−1

]
;α > 1, β > 1.

Note that the functions (3.9) and (3.10) are differentiable on the whole interval
(−∞,∞) for any α > 0, α ̸= 1 and β > 0, β ̸= 1. At the same time, function (3.12)
is non-differentiable for 0 < α ≤ 1 or 0 < β ≤ 1, at point u = 0. (If α = β = 1,
then we get the linear function w(u) = u, which is useless for modeling with the
help of neural networks.)

Thus, functions (3.9) and (3.10) are by a generalization of the power odd
activation function (3.7) (or(3.12)). This generalization is that function (3.10)
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(unlike function (3.7)) is differentiable. Therefore, it becomes possible to use
these functions in the gradient methods of search algorithms.

3.2. Example

Consider the example of a generalized cubic root function that is differentiable
on the entire real line. To do this we will use formulas (3.10) and (3.11) at
α = β = 1/3; c = 1. Then we have

w(u) = piecewise
[
u < −1, 2− 3(−u)1/3, u ≤ 1, u,−2 + 3u1/3

]
and

ẇu(u) = piecewise
[
u < −1, (−u)−2/3, u ≤ 1, 1, u−2/3

]
.

Thus, the function w(u) is differentiable over the entire interval (−∞,∞). The
derivative of this function ẇu is continuous (but not differentiable!) and bounded
also over the entire interval (−∞,∞): ẇu(u) ∈ (0, 1] (see Fig. 3.2).

Fig. 3.2. Differentiable power activation function and its derivative: w(u) (red), ẇu(u)(green)

4. Time series prediction

4.1. Direct prediction without explicit parametrization

As mentioned earlier, the main flaw of the basic NODE block is that it restricts
the dimensionality of the model by requiring the produced trajectories to be in
the same space as the modelled series. Since the NODE block is an autonomous
system, in case of modeling the univariate time series data the model must be one-
dimensional. This restricts the model’s behavior to only 3 basic types depending
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on its Lyapunov exponent and makes it impossible to model any periodic or
quasi-periodic processes. One way to avoid this issue is to turn the univariate time
series into multivariate data by embedding it with estimated minimum embedding
dimension d and the lag times {τ1, τ2, . . . , τd−1} by using any of the available delay
embedding procedures [10, 13]. This operation will provide the basic context for
the model to work with by producing unique combinations of points X∗ ∈ Rd,
X∗ =

{
xn, xn−τ1 , . . . , xn−τd−1

}
that can be used to create autoregressive models

of type xn+1 = f(X∗,Θ). However, if a regular NODE is used in such a model,
the prediction will have dimension d. This can be partially solved by simply
discarding all the dimensions except one. The model of this type will impose
unnecessary restrictions on the underlying ODE which will essentially be required
to fit every coordinate of its trajectories to the same set of data which simply was
time-lagged. This is not how most high-dimensional ODEs normally behave. To
resolve this issue, the ODE can be allowed to function in its own latent space L
that does not impose any such restrictions. The initial values in this latent space
can be produced by a more complicated encoder E that delay-embeds the time
series data and applies extra transformations in an attempt to decorrelate the
dimensions of X∗.

The encoding step removes the hard coupling of the ODE and the time series
data. However, the trajectories produced by the ODE in its latent space L will
have to be mapped back to the original one-dimensional time series space. This
is handled by the decoder D.

The encoder and decoder make the ODE completely decoupled from the orig-
inal time series which allows the researchers to freely select its structure and
dimensionality. For the purposes of modeling univariate time series data which
often exhibits quasi-periodic behavior, it is reasonable to select the model that can
capture such behaviors. One such model is based on the AntisymmetricRNN [7]
which is given by the equation:

hn = hn−1 + ϵσ((Wh −Wh
T − γI)hn−1 +Vhxn + bh), (4.1)

where h is the hidden state, x is the input, and σ is the activation function.
The idea of AntisymmetricRNN is to structurally enforce the periodicity of

the model’s trajectories by making sure that the eigenvalues of its Jacobian have
either zero or slightly negative real parts. The model (4.1) is designed to prevent
the hidden state h from growing or diminishing rapidly as it is carried from one
data point to another. The hNODE model doesn’t have hidden state, and it aims
to model processes that may exhibit drifting behavior which may require the
model’s Jacobian eigenvalues to have positive values. With these considerations,
the latent ODE G in (2.7) then becomes:

G(l,W,D,b) = l0 +

ˆ T

0
σ((W −WT +D)l + b) dt, (4.2)

where the parameters W, D, and b are produced by the hypermodel H(X,Θ).
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W is matrix with unrestricted values that is converted into its antisymmetric
form by subtracting a transposed version of it from itself, D is a diagonal matrix,
and b is the bias vector. Рўhe vector l ∈ L is a point in the latent space L.

Considering the possibility of drift or other qualitative changes that may occur
in the time series, the model (4.2) has to be equipped to react to such changes.
And this is where the function H for generating control weights comes in. It
produces a new set of parameters for (4.2) each time it is evaluated, allowing it
change behavior based on where the current point is in the latent space. The
activation function σ used in the examples below was selected as (3.10) with
parameters α = 0.5, β = 0.3, and c = 5; the plot of the activation function and
its derivative is provided on Fig. 4.1.

Fig. 4.1. Continuously differentiable activation function and its non-differentiable first derivative.

The final architecture of the hNODE with all the pieces assembled together is
given on the Fig. 2.1.

A model with the architecture described above was used to learn and predict
the values of the first coordinate of the Lorenz system’s (ẋ = σ(y − x); ẏ =
x(ρ − z) − y; ż = xy − βz) chaotic attractor. The attractor was generated with
the parameters σ = 10.0, ρ = 28, β = 8/3 after which the y and z coordinates
were discarded. The remaining x coordinate was delay-embedded with dimension
d = 3 and delay τ = 1. The resulting dataset split into chunks of size d · τ +M
(M ≥ 1) and shaped as follows: {Xm, Ym}, m ∈ [(d− 1) · τ, n−M ], Xm ={
xm, xm−τ , . . . , xm−(d−1)·τ

}
, Ym = {xm+1, xm+2, . . . , xm+M}. In other words,

the first dτ points from a trajectory are picked as input context and the following
M points are the expected output of the model.

The output of the model was produced recursively — the input data was used
to predict the new point in the series after which the point was added to the
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(a) (b)

Fig. 4.2. hNODE generates Lorenz-like output (a) from the latent trajectories of the underlying
NODE (b).

input data and the first point in the input was removed. This process was applied
iteratively until the desired time series prediction was obtained.

4.2. Prediction with explicit parametrization with parameter injection

Since the time series data is completely divorced from the latent space of the
nested NODE, it is possible to augment the time series context with extra data
to guide the model to specific behaviors. For example, the hNODE model can be
trained to generate a sine wave with a specific frequency that is passed to the H
function along with the current context.

As in the previous section, the model (4.2) was used for representing the
nested NODE. The time series generated as a sine wave of different frequencies
sampled at 8 kHz was delay-embedded with dimension d = 2 and delay τ = 1 and
the resulting dataset was processed similarly to the Lorenz attractor one. Each
input data point Xm was augmented with the frequency F0 of the waveform it
was selected from: Xm = {xm, xm−τ , F0}. But unlike the previous example, the
model’s output was produced by obtaining the full trajectory in the latent space
and decoding each point all at once which demonstrates that the two approaches
are both valid and yield satisfactory results. The model’s output for different
injected frequencies are provided on the Fig. 4.3.

5. Activation functions performance comparison

As discussed in previous sections, the selection of an activation function is
an important consideration when building a model. An incorrectly chosen acti-
vation function can slow down the learning rate or even make the model unfit
for the problem. To demonstrate this, we selected a basic example similar to
the one in the previous section — a sine wave that the model has to approxi-
mate without any extra parameters being injected into it. We compare the most
widespread activation functions, ReLU and hyperbolic tangent, against the cubic
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(a) (b)

(c) (d)

Fig. 4.3. hNODE generates sine waves for injected frequency parameter, the model’s output is
shown on (a, c) and the latent trajectories of the underlying NODE are shown on (b, d).

root (cbrt(x) = 3
√
x) and the function (3.10) with parameters α = 0.5, β = 0.3,

and c = 5 to see how they perform when used inside the NODE nested in hNODE.
Exploiting the fact that the hNODE model consists of several standalone

models, we train the encoder and decoder parts of it separately before proceeding
to train the nested NODE in the latent space. Each NODE in the comparison
was trained on two batches of data where the data points differ in length. The
first batch contains pieces of latent trajectory of the length 5 and the second one
50. The rate of learning ε on the first batch is 0.01 and the second one is 0.001.
Each model is trained on both batches back-to-back for 10 epochs. The results of
the training are provided on Fig. 5.1.

As can be seen on the provided figures, the function (3.10) achieved the best
accuracy and converged faster than any other activation function. The second-
closest was the hyperbolic tangent which accelerated convergence towards the end
of the training. The cubic root training plateaued at around the same point as the
piecewise power function but with much worse loss values. The ReLU turned out
to be the worst and turned out to be unfit for this particular modeling problem.

6. Conclusion

While the hNODE is versatile and can be adapted to a variety of applications,
there are still some caveats that are mostly related to the nature of the underlying
NODE model.
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(a) (b)

Fig. 5.1. Loss over epochs for different activation functions (a) and trajectories predicted when
using those functions (b).

The first caveat is that the latent space trajectories produced by the encoder
from the input data cannot intersect as this would violate the theorem about
existence and uniqueness of the ODE solution that the model is trying to approx-
imate. An example of malformed latent space trajectories are given on Fig. 6.1.

(a) (b)

Fig. 6.1. Intersecting trajectories in the latent space generated for the sine data from the previous
section.

The second caveat is the integration step used for obtaining numerical so-
lutions for the nested NODE. It may seem reasonable to use the time intervals
between the point in the input data as integration step. For example, one might
use the inverse of the sampling frequency of the data but such inverse might be
too small for the model to handle properly — even simple examples like the sine
wave sampled at 8 kHz give unreasonably small integration step of 0.000125. This
pitfall is more subtle than the previous one, but it can slow down the learning
rate considerably. The example of using different integration steps to learn the
example from the previous section with the piecewise power function is given on
the Fig. 6.2.
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Fig. 6.2. Integration step ∆t influencing the rate of learning.

In conclusion, we demonstrated the viability of the new approach to using
NODE model by utilizing the latent space mappings using dedicated decoder and
encoder models, and learning the dynamics of the modeled process in the latent
space instead of the space of the process itself. It was also demonstrated that for
the purposes of modeling time series in the latent space it can be beneficial to use
continuously differentiable activation functions that do not approach constants
when their argument approaches infinity.
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