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SYSTEMS OF SINGULAR DIFFERENTIAL EQUATIONS AS
THE BASIS FOR NEURAL NETWORK MODELING OF

CHAOTIC PROCESSES
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Abstract. Currently, systems of neural ordinary differential equations (ODEs) have

become widespread for modeling various dynamic processes. However, in forecasting

tasks, priority remains with the classical neural network approach to building a model.

This is due to the fact that by choosing the neural network architecture, a more accurate

approximation of the trajectories of a dynamic system can be achieved. It is known that

the accuracy of the mentioned approximation significantly depends on the settings of the

neural network parameters and their initial values. In this regard, the main idea of the

article is that the initial values of the neural network parameters are taken to be equal

to the parameters of the neural ODE system obtained by modeling the same process,

which will then be simulated using a neural network. Subsequently, the singular ODE

system was used to adjust the parameters of the LSTM (Long Short Term Memory) neural

network. The results obtained were used to model the process of epilepsy.
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neural network.
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1. Introduction

Let
x0 = x(t0), x1 = x(t1), ..., xN = x(tN ) (1.1)

be a finite sequence (time series) of numerical values of some scalar dynamical
variable x(t) measured with the constant time step ∆t in the moments ti =
t0 + i∆t; xi = x(ti); i = 0, 1, ..., N (thus, ∆t = tN/N) [5, 6, 9, 11,12,16,21].

The choice of equations for a model that describes the dynamics of certain
processes is a difficult task. Experiments show that the most logical approach
to constructing models that describe the dynamics of the passage of electrical
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signals through certain objects is based on the use of well-known physical laws (for
example Ohm, Maxwell, Joule-Lenz, the law of conservation of energy), in which
the interaction between measured quantities is described with using quadratic
functions.

In addition, in rapidly oscillating processes there is a sharp change in the
sign of the derivative. It is this characteristic that most often determines chaotic
processes. Therefore, we believe that a sufficiently informative model of chaos can
be described by differential equations, on the right sides of which there are rational
functions with quadratic functions in the numerator and periodic functions that
take sufficiently small non-zero values in the denominator. Such ODE systems
are called singular [9].

In order to construct the mentioned system of differential equations using a
known time series (1.1), it is necessary to know its dimension. The last charac-
teristic (dimension n of the embedding space) and the optimal time delay τ (at
which time t must be shifted to obtain a new variable y(ti) = x(ti + τ)) can be
determined using recurrent qualitative analysis (RQA) methods [21]. (Note that
the number τ must be such that ti+τ ∈ {t0, t1, ..., tN}; i ∈ {0, ..., N−(n−1) ·τ}.)

Having parameters n and τ , we can assume that to model a process described
by time series (1.1), a certain system of differential equations has already built.
(In what follows, we will assume that a recurrent neural network (RNN), which
is a discrete analogue of the mentioned ODE system, was also constructed [4, 6,
11,16,21].)

Below we will focus on two areas of research, which can be formulated in the
following questions.

1. If a neural network models a certain dynamic process, then how to guaran-
tee the stability or boundedness of solutions of the system of differential equations
describing a continuous analog of the aforementioned neural network?

2. In the theory of bifurcations, the following result is well known: in any de-
terminate system, chaotic processes arise as a result of bifurcations of limit cycles
or homoclinic orbits [17, 18]. Therefore, how to design the architecture of neural
ODEs system so that the resulting architecture would generate a limit cycle? (It
is now known that most types of chaos in systems of differential equations begin
with bifurcations of limit cycles [3, 7, 8].)

The final sections of the article are devoted to the development of an algo-
rithm for determining the parameters of ODE systems for a known time series.
The essence of this algorithm is that it uses a special structure of neural ODEs
(antisymmetric neural ODEs), with which it is possible to generate a limit cy-
cle [6, 10, 13]. After this, by selecting weight coefficients, we obtain such bifurca-
tions of the indicated cycle that lead to the modeling of a real chaotic process.
Subsequently, the found weighting coefficients are used as initial data for adjusting
the parameters of the LSTM neural network [1].
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2. Mathematical preliminaries

By x = (x1, ..., xn)
T it denotes an arbitrary vector of real space Rn. Consider

the real system of ordinary autonomous differential equations
ẋ1(t) =

f1(x1(t), ..., xn(t))
1− ϑ · u1(x1(t), ..., xn(t))

,

. . . . . . . . . . . . . . . ,

ẋn(t) =
fn(x1(t), ..., xn(t))

1− ϑ · un(x1(t), ..., xn(t))

(2.1)

of order n with the vector of initial data xT (0) = (x10, ..., xn0). Here fi(x1, ..., xn),
ui(x1, ..., xn); i = 1, ..., n, are continuous functions of their arguments, and for
functions ui(x1, ..., xn) the condition

Ω = max
1≤i≤n

sup
∥x∥→∞

(|ui(x1, ..., xn)|) <∞

is satisfied. In addition, ϑ is a real parameter such that 0 ≤ |ϑ| < 1/Ω.

Definition 2.1. System (2.1) will be called singular.

Let A = (aij), B1, ..., Bn ∈ Rn×n be real matrices. In addition, let the matrices
B1 = (b

(1)
ij ), ..., Bn = (b

(n)
ij ) be symmetrical; i, j = 1, ..., n. Let us consider one

special case of system (2.1):

ẋ1(t) =

n∑
j=1

a1jxj(t) + xT (t)B1x(t)

1− ϑ · u1(x1(t), ..., xn(t))
,

. . . . . . . . . . . . . . . . ,

ẋn(t) =

n∑
j=1

anjxj(t) + xT (t)Bnx(t)

1− ϑ · un(x1, ..., xn(t))
.

(2.2)

Below we recall some of the results obtained in [7, 9].
Consider the system of ordinary autonomous quadratic differential equations

ẋ1(t) =
n∑

j=1

a1jxj(t) + xT (t)B1x(t),

. . . . . . . . . . . . . . . . ,

ẋn(t) =
n∑

j=1

anjxj(t) + xT (t)Bnx(t).

(2.3)

Assume that the region of attraction for the solutions of system (2.3) is a ball

B ≡ (x1 + γ1)
2 + ...+ (xn + γn)

2 −R2 ≤ 0
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of radius R with center at point (−γ1, ...,−γn)T .
Let also the elements of matrices B1, ..., Bn satisfy the following three groups

of restrictions:
C1
n one-term restrictions

b
(i)
ii x

3
i ≡ 0; i = 1, ..., n; (2.4)

2C2
n two-term restrictions

b
(i)
jj xix

2
j + b

(j)
ij xix

2
j ≡ 0; i ̸= j; i, j = 1, ..., n; (2.5)

C3
n three-term restrictions

b
(i)
jkxixjxk + b

(j)
ik xixjxk + b

(k)
ij xixjxk ≡ 0; i ̸= j ̸= k; i, j, k = 1, ..., n. (2.6)

As shown in [5], for small values of n system (2.3), taking into account restric-
tions (2.4), (2.5), and (2.6), has the following form:

n = 3
ẋ(t) = a11x+ · · ·+ a13z + b12xy + b13xz + b22y

2 + b23yz + b33z
2,

ẏ(t) = a21x+ · · ·+ a23z − b12x
2 − b22xy + c13xz + c23yz + c33z

2,
ż(t) = a31x+ · · ·+ a33z − b13x

2 − (b23 + c13)xy − b33xz − c23y
2 − c33yz;

(2.7)
n = 4

ẋ(t) = a11x+ · · ·+ a14u+ b12xy + b13xz + b14xu+ b22y
2

+b23yz + b24yu+ b33z
2 + b34zu+ b44u

2,
ẏ(t) = a21x+ · · ·+ a24u− b12x

2 − b22xy + c13xz + c14xu
+c23yz + c24yu+ c33z

2 + c34zu+ c44u
2,

ż(t) = a31x+ · · ·+ a34u− b13x
2 − (b23 + c13)xy − b33xz

+d14xu− c23y
2 − c33yz + d24yu+ d34zu+ d44u

2,
u̇(t) = a41x+ · · ·+ a44u− b14x

2 − (b24 + c14)xy − (b34 + d14)xz
−b44xu− c24y

2 − (c34 + d24)yz − c44yu− d34z
2 − d44zu.

(2.8)

Note that equations (2.7) – (2.8) are presented in this detailed form solely for
the convenience of users. In the case of arbitrary n, the system that satisfies the
conditions (2.4) – (2.6) looks like this:

ẋ(t) = (A+B(x)−BT (x)) · x. (2.9)

Here

B(x) =



0 b112x1 + b122x2 b113x1 + b123x2 + b133x3 ...
n∑

i=1
b1inxi

0 0 b213x1 + b223x2 + b233x3 ...
n∑

i=1
b2inxi

0 0 0 ...
n∑

i=1
b3inxi

...
...

...
. . .

...

0 0 0
. . .

n∑
i=1

bn−1
in xi

0 0 0 ... 0


,
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bkij ∈ R; i, j, k ∈ {1, ..., n}. (It is clear that xT · (B(x)−BT (x)) · x ≡ 0.)
The method for finding the radius R of sphere B and its center (−γ1, ..., −γn)T

is presented in [5].
Below we will use the following well-known result:

Theorem 2.1. (LaSalle’s Theorem [14]). Let H ⊂ Rn be a compact set that
is positively invariant with respect to (2.2). Let V : Rn → R be a continuously
differentiable function such that V̇ (x) ≤ 0 (or V̇ (x) ≥ 0) in H. Let E be the set
of all points in H where V̇ (x) = 0. Let M be the largest invariant set in E. Then
every solution starting in H approaches M as t→ +∞.

Let s1, ..., sn be unknown real constants. Let us construct from matrices A
and B1, ..., Bn of system (2.2) the following matrix:

F (s1, ..., sn) := (AT +A)/2 + s1B1 + ...+ snBn.

Introduce also the following function V : Rn → R:

V (x1, ..., xn) =
1

2

n∑
i=1

ˆ
(1− ϑ · ui(x1, ..., xn))(xi + si) dxi,

where ∀i (1−ϑ ·ui(x1, ..., xn)) > 0. (The indefinite integral symbol is used here.)
It is obvious that

V̇t =
1

2

n∑
i=1

(1− ϑ · ui(x1, ..., xn))(xi + si)ẋi

= xT (
1

2
(A+AT ) +

n∑
i=1

siBi)x+ L(x), (2.10)

(Here the derivative V̇t is defined by virtue of the equations (2.2); L(x) is a cubic
function of variables x1, ..., xn without quadratic terms.)

Let R be a positive constant. We define the set BR ⊂ Rn as follows:

BR := {(x1, ..., xn) ∈ Rn|V (x1, ..., xn)−R2 ≤ 0}. (2.11)

Introduce the following sets:

D− := {(x1, ..., xn) ∈ Rn|V̇t(x1, ..., xn) ≤ 0}, (2.12)

D+ := {(x1, ..., xn) ∈ Rn|V̇t(x1, ..., xn) ≥ 0}, (2.13)

and
L := {(x1, ..., xn) ∈ Rn|V̇t(x1, ..., xn) = 0}. (2.14)
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Theorem 2.2. Let’s assume that for system (2.2) the following conditions:
1) the matrices Bi satisfy the restriction xT (B(x)−BT (x))x ≡ 0;
2) there are real constants s∗1, ..., s

∗
n such that the matrix F (s∗1, ..., s

∗
n) is nega-

tive definite, are satisfied.
Then there exists the compact region of attraction H = D+ ̸= ∅ for trajectories

of system (2.2).

Proof. Condition 1) guarantees that the function V̇t(x1, ..., xn) contains only linear
and quadratic terms and does not contain cubic terms.

It remains only to clarify condition 2). So, let there exist numbers s∗1, ..., s∗n
such that the matrix F (s∗1, ..., s∗n) is negative definite.

Proof of condition 2) split into two parts.
2a) The function V (x1, ..., xn) for si = 0 positive definite and in this case

lim
∥x∥→∞

V (x1, ..., xn) = ∞. Thus, by virtue of the construction of the function

V (x1, ..., xn), the sets BR and L are compact. Therefore, we can choose R such
that BR ∩ D− ̸= ∅ and L ⊂ BR. Then, in the region BR ∩ D−, we can assert
that V (x1(t), ..., xn(t)) is a decreasing function of t. Since V (x1(t), ..., xn(t)) is
continuous on the compact set BR, it is bounded from below on BR. Therefore,
V (x1(t), ..., xn(t)) has a finite limit as t→ ∞. Then, according to Theorem (2.1),
we can assume that H = BR ∩D− and H is a the compact region of attraction for
trajectories of system (2.2).

2b) Now we choose the radius R so large that the set BR ∩ D+ = D+ ̸= ∅.
(Note that, by virtue of 2), the set D+ is compact. Therefore, we have L ⊂ BR.)
Then, in the domain BR ∩ D+ the function V (x1(t), ..., xn(t)) is an increasing
function of t. Since the function V (x1(t), ..., xn(t)) is continuous on the compact
set D+, it is bounded from above on D+ and has a finite limit as t→ ∞.

Thus, from items 2a) and 2b) it follows that, regardless of the starting point
xT (0) ∈ Rn, the trajectory V (x1(t)), ..., xn(t)) will be attracted to the boundary
V̇t(x1, ..., xn) = 0 (this is L) of the compact set D+. This means that there exists
an attractor belonging to the region D+. (An equilibrium point can act as such
attractor.)

2.1. Model design

This article is a continuation of work [9]. Therefore, the motives leading to
certain results are based on the assumptions introduced in article [9].

The main object of study in this work will be the electroencephalograms
(EEGs) of the brain of patients suffering from epilepsy. Now, we will consider
EEGs obtained for healthy and sick patients (see Fig.2.1). (The main features of
the processes Fig.2.1 are described in [20].)

Naturally, when modeling the real process of epilepsy, it is impossible to take
into account all these features. However, we will try to at least establish the trend
accompanying such processes.
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The latest considerations allow us to use system (2.2) for modeling the pro-
cesses represented on encephalograms, in which cos(...) is used as functions ui(...);
i = 1, ..., n. The final appearance of this system is as follows:

ẋ1(t) =

n∑
j=1

a1jxj(t) + xT (t)B1x(t)

1− ϑ · cos(x1(t))
,

. . . . . . . . . . . . . . . . ,

ẋn(t) =

n∑
j=1

anjxj(t) + xT (t)Bnx(t)

1− ϑ · cos(xn(t))
,

(2.15)

where ϑ is a real parameter such that 0 ≤ |ϑ| < 1/Ω = 1/1 = 1. (Note that
the simplest case of system (2.15), in which B1 = ... = Bn = 0 was investigated
in [9].)

In what follows, instead of the system (2.15), we will sometimes consider the
system 

ẋ1(t) =

a10 +

n∑
j=1

a1jxj(t) + xT (t)B1x(t)

1− ϑ · cos(x1(t))
,

. . . . . . . . . . . . . . . . ,

ẋn(t) =

an0 +

n∑
j=1

anjxj(t) + xT (t)Bnx(t)

1− ϑ · cos(xn(t))
,

(2.16)

where a10, ..., an0 ∈ R.
We assume that x1 = ϕ1, ..., xn = ϕn is a real solution to the system of

(a1) (a2)

Fig. 2.1. The electroencephalogram taken from a certain point in the cerebral cortex: (a1) a
healthy patient, (a2) a patient with an epileptic disease (see [20]).
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algebraic equations

a10 +
n∑

j=1

a1jxj + xTB1x = 0, ..., an0 +
n∑

j=1

anjxj + xTBnx = 0.

Let us introduce new variables y1, ..., yn into system (2.16) using the formulas:
x1 = y1 + ϕ1, ..., xn = yn + ϕn. Then we have

ẏ1(t) =

n∑
j=1

c1jyj(t) + yT (t)B1y(t)

1− ϑ · cos(y1(t) + ϕ1)
,

. . . . . . . . . . . . . . . . ,

ẏn(t) =

n∑
j=1

cnjyj(t) + yT (t)Bny(t)

1− ϑ · cos(yn(t) + ϕn)
,

(2.17)

where cij ∈ R; i, j = 1, ..., n. Then the statements of Theorems 2.1 and 2.2 can be
applied to system (2.17) (and therefore (2.16)).

3. Two-stage neural network modeling procedure

It is known that one of the most common methods for adjusting the weighting
coefficients of a neural network is the steepest descent method. This method is a
type of gradient descent, which means it descends the error surface, continuously
adjusting the weights towards the minimum. The error surface of a complex
network is highly rugged and consists of hills, valleys, folds and ravines in high-
dimensional space. A network may fall into a local minimum (shallow valley)
when there is a much deeper minimum nearby. At the local minimum point, all
directions lead upward, and the network is unable to escape from it. The main
difficulty in training neural networks is precisely the methods for exiting local
minima: each time you exit a local minimum, the next local minimum is again
searched until it is no longer possible to find a way out of it.

In this regard, the following two-stage modeling method suggests finding an
initial point in the space of weighting coefficients (parameters) at which the error
function would be as close as possible to the local minimum point. Subsequently,
the found point is used as a starting point for adjusting the parameters of some
recurrent neural network (the LSTM neural network) using the back propagation
method.

3.1. First stage

At this stage, we will try to solve the problem of parametric identification of
system (2.16).



32 V.Ye. Belozyorov, O.A. Inkin

Let us write the equations of system (2.16) in the following form

ẋi(t) =
ai0 + ai1xi + · · ·+ ainxn + xTBix

1− ϑ · cos(xi)
= ϕi(x1, ..., xn); i = 1, ..., n. (3.1)

Now we rewrite the equations of system (3.1) as follows

ẋi(t) = ai0+ai1xi+ · · ·+ainxn+xTBix+ ẋiϑ ·cos(xi) = ψi(x1, ..., xn); i = 1, ..., n.
(3.2)

From the point of view of the theory of differential equations, systems (3.1)
and (3.2) describe the same dynamics. However, from the point of view of ap-
proximation theory (determining the coefficients ai0, ..., ain, Bi, ϑ from the known
values of the functions xi(t), i = 1, ..., n), these are different problems for systems
(3.1) and (3.2).

Indeed, in case of system ((3.1)) it is necessary to minimize by a10, ..., Bn, ϑ
the loss function

∑n
i=1|ẋi − ϕi(x1, ..., xn, a10, ..., Bn, ϑ)|, and in case of system

(3.2) it is necessary to minimize by a10, ..., Bn, ϑ the loss function
∑n

i=1|ẋi −
ψi(x1, ..., xn, a10, ..., Bn, ϑ)|, where the equations (3.1) are rational and the equa-
tions (3.2) are linear.

It is clear that in the case of system (3.2), the approximation problem will be
simpler than in the case of system (3.1). That is why we chose system (3.2) for
solving the approximation problem. (It should be remembered that the approxi-
mation results for system (3.2) may be worse than for system (3.1).)

In the study of dynamic processes, as a rule, only a few variables describing
the process are available for direct measurement. The remaining variables (the so-
called hidden variables) are inaccessible to observation. This raises the problem of
reconstructing these unobserved variables from known observable variables. The
first step towards solving this problem is to establish the minimum number of all
variables (measured and hidden) on which the dynamic process depends.

In article [9] it was shown that for time series obtained using EEG, the di-
mension of the embedding space is n = 5. This means that in addition to the
measured variable, it is also necessary to recover 4 hidden variables. Therefore, in
the following we will demonstrate the modeling procedure only for a 5D system.

In addition, we will assume that the non-diagonal elements of matrix A =
{aij}; i, j = 1, ..., n; i ̸= j, form an antisymmetric matrix, and the elements of
matrices B1, ..., Bn satisfy the condition xT (B(x) − BT (x))x ≡ 0 (see Theorem
2.2). (Transferring the algorithm to an arbitrary n is not difficult.)

3.2. Algorithm for quadratic model

In order for system (3.1) to be stable, we introduce into it the diffusion pa-
rameter µ > 0 [10, 13]. Then, we have

ẋ(t) = T · (a0 + (A− µI) · x+K(x) · x), (3.3)
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where x = (x1, ..., xn)
T ,

K(x) =


k11(x) b12x2 b13x3 · · · b1nxn
b21x1 k22(x) b23x3 · · · b2nxn

...
...

...
. . .

...
bn1x1 bn2x2 bn3x3 · · · knn(x)

 ,

kii(x) = −
n∑

j=1,j ̸=i

(bijxj); i = 1, ..., n.

This system is a complicated version of system

ẋ(t) = σ[T · ((W − µI)x(t) +Vu(t) + b)], (3.4)

where x is the hidden state, u is the input, and σ is the activation function.
(Thus, we can assume that system (3.3) is system (3.4) closed by nonlinear state
feedback u = K(x)x, where V is the identity matrix.)

In the case n = 5, system (3.3) takes the following form:



ẋ(t) =
a10 + (a11 − µ)x+ a12y + a13z + a14u+ a15v

1− ϑ · cos(x)

+
b22y

2 + b33z
2 + b44u

2 + b55v
2 − c11yx− d11zx− e11ux− f11vx

1− ϑ · cos(x)
,

ẏ(t) =
a20 − a12x+ (a22 − µ)y + a23z + a24u+ a25v

1− ϑ · cos(y)

+
c11x

2 + c33z
2 + c44u

2 + c55v
2 − b22xy − d22zy − e22uy − f22vy

1− ϑ · cos(y)
,

ż(t) =
a30 − a13x− a23y + (a33 − µ)z + a34u+ a35v

1− ϑ · cos(z)

+
d11x

2 + d22y
2 + d44u

2 + d55v
2 − b33xz − c33yz − e33uz − f33vz

1− ϑ · cos(z)
,

u̇(t) =
a40 − a14x− a24y − a34z + (a44 − µ)u+ a45v

1− ϑ · cos(u)

+
e11x

2 + e22y
2 + e33z

2 + e55v
2 − b44xu− c44yu− d44zu− f44vu

1− ϑ · cos(u)
,

v̇(t) =
a50 − a15x− a25y − a35z − a45u+ (a55 − µ)v

1− ϑ · cos(v)

+
f11x

2 + f22y
2 + f33z

2 + f44u
2 − b55xv − c55yv − d55zv − e55uv

1− ϑ · cos(v)
,

(3.5)
where the parameter ϑ(0 ≤ |ϑ| < 1) is assigned. (In total in system (3.5) we have
5 + 15 + 20 = 40 unknown parameters.)

To find the coefficients of system (3.5), the following algorithm is proposed.

1. Fix parameters ϑ and µ that exclude the appearance of singularities in the
iterative process. Let, for example, be ϑ = 0.95, ν = 0.1. Additionally, we
choose the diffusion parameter µ = 0.00.
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2. Based on the known time series x(t) = {x0, x1, ..., xN}, determine the di-
mension of the embedding space n and the delay time τ .

3. Based on the known n (here n = 5) and τ (here τ = 1) , construct five time
series

x(t) = (x0, x1, x2, ..., xL)
T ,y(t) = x(t+ τ) = (y0, y1, y2, ..., yL)

T

z(t) = x(t+2τ) = (z0, z1, z2, ..., zL)
T ,u(t) = x(t+3τ) = (u0, u1, u2, ..., uL)

T

v(t) = x(t+ 4τ) = (v0, v1, v2, ..., vL)
T

that are given on the same time interval TL ≤ t0 + (n− 1)τ ≤ T in equally
spaced L ≤ N nodes: 0,∆t, ..., k∆t, ...., L∆t = TL ≤ T . Thus, ∆t = TL/L.

4. Fix a learning selections

x0, x1, ..., xL; y0, y1, ..., yL; z0, z1, ..., zL;u0, u1, ..., uL; v0, v1, ..., vL,

where L ≥ 40.

5. Construct the columns of numerical derivatives Dx, Dy, Dz, Du, Dv, where

Dx =

 Dx1
...

DxL

 =
1

∆t

 x1 − x0
...

xL − xL−1

 ∈ RL,

..., Dv =

 Dv1
...

DvL

 =
1

∆t

 v1 − v0
...

vL − vL−1

 ∈ RL,

D =

 Dx
...
Dv

 ∈ R5L.

6. Calculate the disturbances introduced by the diffusion parameter

Rx =


x0

1− ϑ · cos(x0)
...

xL−1

1− ϑ · cos(xL−1)

 ∈ RL, ..., Rv =


v0

1− ϑ · cos(v0)
...

vL−1

1− ϑ · cos(vL−1)

 ∈ RL,

R =

 Rx
...
Rv

 ∈ R5L.



Neural network modeling of chaotic processes 35

7. Introduce the designations:

0 = (0, ..., 0)T ,1 = (1, ..., 1)T ∈ RL, EL ∈ RL×L is the identity matrix,

x = (x0, ..., xL−1)
T ∈ RL, ...,v = (v0, ..., vL−1)

T ∈ RL;

x⊙ x = (x20, ..., x
2
L−1)

T ,y ⊙ y = (y20, ..., y
2
L−1)

T , ...,

u⊙ u = (u20, ..., u
2
L−1)

T ,v ⊙ v = (v20, ..., v
2
L−1)

T ,

x⊙ y = (x0y0, ..., xL−1yL−1)
T , ...,x⊙ v = (x0v0, ..., xL−1vL−1)

T , ...

v ⊙ x = (v0x0, ..., vL−1xL−1)
T , ...,v ⊙ u = (v0u0, ..., vL−1uL−1)

T ;

cos(x) = diag(cos(x0), ..., cos(xL−1)),

..., cos(v) = diag(cos(v0), ..., cos(vL−1)),

T1 = diag(EL − ϑ · cos(x))−1, ..., T5 = diag(EL − ϑ · cos(v))−1 ∈ RL×L,

T =

 T1 . . . 0
...

. . .
...

0 . . . T5

 ∈ R5L×5L.

J1 =


1 x y z u v
0 0 −x 0 0 0
0 0 0 −x 0 0
0 0 0 0 −x 0
0 0 0 0 0 −x

 ∈ R5L×6,

J2 =


0 0 0 0 0
1 y z u v
0 0 −y 0 0
0 0 0 −y 0
0 0 0 0 −y

 ∈ R5L×5,

J3 =


0 0 0 0
0 0 0 0
1 z u v
0 0 −z 0
0 0 0 −z

 ∈ R5L×4,

J4 =


0 0 0
0 0 0
0 0 0
1 u v
0 0 −u

 ∈ R5L×3, J5 =


0 0
0 0
0 0
0 0
1 v

 ∈ R5L×2,
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J6 =


y ⊙ y z⊙ z u⊙ u v ⊙ v
−x⊙ y 0 0 0

0 −x⊙ z 0 0
0 0 −x⊙ u 0
0 0 0 −x⊙ v

 ∈ R5L×4.

J7 =


−y ⊙ x 0 0 0
x⊙ x z⊙ z u⊙ u v ⊙ v
0 −y ⊙ z 0 0
0 0 −y ⊙ u 0
0 0 0 −y ⊙ v

 ∈ R5L×4.

J8 =


−z⊙ x 0 0 0

0 −z⊙ y 0 0
x⊙ x y ⊙ y u⊙ u v ⊙ v
0 0 −z⊙ u 0
0 0 0 −z⊙ v

 ∈ R5L×4.

J9 =


−u⊙ x 0 0 0

0 −u⊙ y 0 0
0 0 −u⊙ z 0

x⊙ x y ⊙ y z⊙ z v ⊙ v
0 0 0 −u⊙ v

 ∈ R5L×4.

J10 =


−v ⊙ x 0 0 0

0 −v ⊙ y 0 0
0 0 −v ⊙ z 0
0 0 0 −v ⊙ u

x⊙ x y ⊙ y z⊙ z u⊙ u

 ∈ R5L×4.

8. Construct Jacobi matrix:

H = T · (J1, J6, J2, J7, J3, J8, J4, J9, J5, J10) ∈ R5L×40.

9. Using the least squares method (see [12]), compute the vector: :

P := (HT ·H+ νI)−1 ·HT · (D+ µR) =

(a10, a11, a12, a13, a14, a15, b22, b33, b44, b55, a20, a22, a23, a24, a25,

c11, c33, c44, c55, a30, a33, a34, a35, d11, d22, d44, d55,

a40, a44, a45, e11, e22, e33, e55, a50, a55, f11, f22, f33, f44)
T ∈ R40.

(Here I ∈ R40×40 is the identity matrix.)
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10. Solve system (3.5) the weight coefficients of which are the coordinates of
vector P. If the solution of system (3.5) is unstable, then increase the
parameter µ (for example, µ = 0.01) and go to step 9, and repeat the
algorithm. (After a few iterations, the solution to system (3.5) will become
bounded.)

If the use of diffusion parameter µ is undesirable (µ = 0), then in system
(3.5) should be assigned a10 = ... = a50 = a11 = ... = a55 = 0. In this case,
the vector P ∈ R30 and for any of its coordinates the system (3.5) has a
bounded solution. (In step 9 of the algorithm, we have P ∈ R30 and µ = 0.)

3.3. Algorithm for linear model

In this case, items 1 – 6 are the same as in the quadratic model.
In item 7 matrices J6, J7, J8, J9, J10 are not calculated.
Items 8, 9, and 10 are rewritten as follows:
8. Construct Jacobi matrix:

H = T · (J1, J2, J3, J4, J5) ∈ R5L×20.

9. Compute the vector:

P := (HT ·H+ νI)−1 ·HT · (D+ µR) =

(a10, a11, a12, a13, a14, a15, a20, a22, a23, a24, a25, a30, a33, a34, a35,

a40, a44, a45, a50, a55)
T ∈ R20.

(Here I ∈ R20×20 is the identity matrix.)
10. Solve system (3.5) the weight coefficients of which are the coordinates

of vector P and all twenty coefficients b22, ..., e55 at nonlinear terms are equal to
zero. In the future, the actions of item 10 of the quadratic model algorithm are
repeated. (If µ = 0, then in the linear model we should put a10 = ... = a50 =
a11 = ... = a55 = 0 and P ∈ R10. In addition, in the Jacobian matrix H block
J5 is absent and each of blocks J1 − J4 has 2 columns less. In this case, we have
H ∈ R5L×10.)

The final step is to estimate the parameters of vector P, which will be used for
further calculations or predictions based on the input time series. This algorithm
allows you to adjust model parameters based on input data and improve their
suitability for analysis or prediction.

3.4. Second stage: using the LSTM method

The function σ(x) (hyperbolic tangent) satisfies the inequality ∀x ∈ R 0 ≤
|σ(x)| < 1. Therefore, from the boundedness of solutions of system (3.3) with
initial conditions x0 it follows the boundedness of solutions of system (3.4) with
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initial conditions σ(x0) [14]. Consequently, the weight matrices of system (3.3)
can be taken as the initial weight matrices W and V for system (3.4).

In order to use the LSTM method it is necessary to insert under the sign σ
in the system (3.4) equations (3.5) with known coefficients a10, ..., f44 (for the
quadratic model) or a10, ..., a55 (for the linear model) as initial data.

On the basis of the parameter vector P, the antisymmetric matrix W and
the rectangular matrix V are formed. They represent the connections between
the input and hidden layers of neurons and are key components of the LSTM
structure.

The obtained matrices W and V are transformed into weight matrices of the
LSTM model (input weight) taking into account the architectural features of the
LSTM and their dimensions. On the basis of the weight matrices, the architecture
of the LSTM neural network is created in Matlab, including the definition of the
number of layers, the number of neurons in each layer, activation functions and
other parameters that determine the behavior of the network.

We have

W =


a11 a12 a13 a14 a15
−a12 a22 a23 a24 a25
−a13 −a23 a33 a34 a35
−a14 −a24 −a34 a44 a45
−a15 −a25 −a35 −a45 a55

 ∈ R5×5,b =


a10
a20
a30
a40
a50

 ∈ R5

u = (x2, y2, z2, u2, v2, xy, xz, xu, xv, yz, yu, yv, zu, zv, uv)T ∈ R15

V =


0 b22 b33 b44 b55
c11 0 c33 c44 c55
d11 d22 0 d44 d55
e11 e22 e33 0 e55
f11 f22 f33 f44 0

∣∣∣∣∣∣∣∣∣∣
→

∣∣∣∣∣∣∣∣∣∣
−c11 −d11 −e11 −f11 0 0 0 0 0 0
−b22 0 0 0 −d22 −e22 −f22 0 0 0
0 −b33 0 0 −c33 0 0 −e33 −f33 0
0 0 −b44 0 0 −c44 0 −d44 0 −f44
0 0 0 −b55 0 0 −c55 0 −d55 −e55

∈R5×15.

(For linear model V = 0!)
After initializing the weight matrices and building the LSTM network, you

can start training the network on the input data or use it for various tasks such
as time series prediction or data analysis.

Further, in this study, an algorithm for determining and forming weighting
coefficients, as well as a neural network for achieving forecasting goals, was de-
veloped and implemented. The development was carried out in the MATLAB
2020a environment. Below is a block diagram (see Fig.3.1), which shows the
main process of the developed algorithm and neural network.
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Fig. 3.1. Block diagram of the general EEG data processing algorithm (see ( [15])

In particular, attention was focused on the development of a neural network
using the Long Short Time Memory (LSTM) layer. LSTM is a powerful tool for
processing serial data, and it shows the most accurate forecasting results after
proper training of input parameters because it has the ability to consider and
analyze long-term dependencies in serial data. The LSTM layer is able to store
and use information from previous time steps, allowing the neural network to
effectively model and predict complex sequences.

LSTMs are a type of recurrent neural networks (RNNs) designed to model
sequential data. This architecture was specifically designed to solve the gradient
vanishing problem that often occurs in conventional RNNs. The main character-
istics of LSTMs are the ability to store and use information from previous time
steps, supervised forgetting, and the assignment of weights to control the flow of
information.

LSTM consists of the following main components:

1. Cell state (Cell State) is the main memory of LSTM. It allows a neural net-
work to store and transfer information over many time steps. This memory
is controlled by interface weights that determine which information should
be forgotten or retained.

2. Input layer (Input Gate) - this input decides what information should be
updated in the cellular state. It is activated by a weighted multiplication of
the input data and the previous state.

3. Output layer (Output Gate) - determines what information should be out-
put from the cellular state. It is also governed by weighting factors and the
internal state of the model.

4. Forgetting layer (Forget Gate) - allows LSTM to decide what information
should be forgotten from the cell state based on the current input data and
the previous state.

5. Internal weights (Internal Weights) - internal weight coefficients that allow
the model to interact and calculate the new state of the cell based on the
input data and the previous state.



40 V.Ye. Belozyorov, O.A. Inkin

Fig. 3.2. Block diagram of the LSTM layer (see [1, 2])

The main idea behind LSTM is that it can effectively handle and model long-
term dependencies in sequential data due to its ability to control the flow of
internal cell information. This architecture has found wide application in areas
where it is important to model complex sequences, such as language analysis,
machine learning, and many other areas (see Fig.3.2).

4. Real applications and numerical analysis of the obtained
results

The above algorithm generally describes the steps involved in processing an
input time series and is designed to help researchers and practitioners analyze
and model complex systems using time series data. In particular, the algorithm
provides step-by-step instructions for finding coefficients in a special system, and
the system itself is a set of differential equations that can be used to model a wide
range of physical, biological, and social phenomena.

Solving the corresponding systems allows you to find the values of unknown
parameters that accurately describe the dynamics of the modeled system. Once
the coefficients are found, they can be used to predict the behavior of the system
over time. For example, the coefficients found in our study can be set by the
input weights of the neural network for predicting EEG behavior. Similarly, if
the system is a model of a biological process such as the spread of a disease,
unraveling the system can help predict the future number of infected individuals
given the current state of the population. In general, solving a system allows
you to gain insight into the underlying dynamics of complex systems and make
predictions about their behavior, which can be useful in many industries.

The initial stages of the described algorithm determine significantly influential
parameters of the system state, such as singularities, errors, nesting dimensions,
and delays. Based on the known time series x0, x1, ..., xN , the dimension of the
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embedding space and the delay time are determined. This can be done using
the delay method, which involves constructing a set of time-delayed copies of the
original time series and using them to reconstruct the underlying attractor that
defines any chaotic system [17,18].

In general, in the work,a user interface was implemented usingMATLAB2020a
tools, which provides a functional opportunity to process the input time step
with three algorithms of a similar nature (as described above), but with different
system parameters and, accordingly, their essential structured difference. Below is
a comparative result of the work of each algorithm, which ended with the original
parameter matrix and the solution of the simulated system.

4.1. Modeling epilepsy based on EEG data

Consider the implementation of the above algorithm on real data, taking into
account the primary processing of the signal from the encephalograph cap by the
primary noise filter [19]. For this, software tools were used for automatic data
initialization in the system of multiple space, which means a time series is formed
from each electrode of the EEG cap. The input series is divided into a series
of trajectories with a predetermined displacement (τ = 10), which was indicated
above (Fig.4.1,4.2).

Fig. 4.1. EEG time series of a sick patient with shift τ = 10

We will present the reconstruction (Fig.4.3,4.4) of both sequences and run the
algorithm for their processing to obtain the parameters of the system that models
the specified sequences with the defined control of the process of propagation of
trajectories.

The methodology, which is developed on the basis of MATLAB2020a tools,
was tested on two patients with pre-processing of the data to determine the
weights of the neural network through the EEG behavior modeling algorithm
and the singularities that were added to this process. Note that the developed
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Fig. 4.2. EEG time series of a healthy patient with shift τ = 10

Fig. 4.3. Phase space of a sick patient
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Fig. 4.4. Phase space of a healthy patient

algorithms have a characteristic difference in the presence of quadratic elements
and the diffusion parameter. Therefore, three different cases were analyzed: a
quadratic algorithm, a quadratic algorithm with a diffusion parameter, and a
linear algorithm.

A neural network with defined weights is evaluated using the mean square
error (MSE) method. The results of forecasting in relation to real data and
the forecast of unknown values for the future 30 steps are displayed graphically
(Fig.4.5 -4.7). This allows us to evaluate the effectiveness and accuracy of the
model in forecasting based on the training data provided for training the LSTM
neural network.

Fig. 4.5. The weight matrix of the quadratic algorithm with the diffusion parameter (µ = 0, µ =

0.035) of a sick patient with the result of data modeling; MSE = 0.0041193
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Fig. 4.6. The weight matrix of the quadratic algorithm of the sick patient with the result of
data modeling; MSE = 0.00511702

Fig. 4.7. The weight matrix of the patient-to-patient linear algorithm with the result of data
modeling; MSE = 0.0030853



Neural network modeling of chaotic processes 45

We note the appearance of nonlinear effects in modeling by the quadratic
algorithm with diffusion, which provides the possibility of further adjustment of
the system to obtain a more similar solution. At the same time, we note the
effective operation of the linear algorithm, which repeats the input trajectory,
but with falling into a periodic process, which distinguishes the simulation result
from the real scenario. According to the values of neural network training errors,
we observe the smallest deviations precisely in the linear algorithm, and the worst
is the quadratic algorithm without the diffusion parameter.

Let’s try to repeat these actions based on the data of a healthy patient (Fig.4.8
- 4.10).

Fig. 4.8. The weight matrix of the quadratic algorithm with the diffusion parameter (µ = 0, µ =

0.035) for a healthy patient with the result of data modeling; MSE = 0.017608

Fig. 4.9. The weight matrix of the quadratic algorithm for a healthy patient with the result of
data modeling; MSE = 0.017553

These results demonstrate a significant difference in simulation results com-
pared to sick patients, with an order of magnitude higher error. Such results
demonstrate differences in input amplitudes and embedding dimensions that di-
rectly affect the training outcome and allow classification of healthy patients with
more chaotic behavior of brain signals.

The next step is to present the results of the neural network and compare the
prediction results.

In all the following figures, the blue line is the line obtained from the results of
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Fig. 4.10. The weight matrix of the linear algorithm for a healthy patient with the result of
data modeling; MSE = 0.018206

EEG measurements, the red line is obtained as a result of adjusting the weighting
coefficients of the neural network model, and the yellow line is the prediction line.

Fig. 4.11. The result of LSTM prediction of a patient’s neural network with weighting coefficients
of the quadratic algorithm and a diffusion parameter

Fig. 4.12. The result of LSTM prediction of a patient’s neural network with weighting coefficients
of the quadratic algorithm

These results allow us to draw conclusions about the sufficiently effective result
of neural network training using pre-processing algorithms and to determine a
more optimal approach to the classification of EEG data. However, further use of
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Fig. 4.13. The result of LSTM prediction of the patient’s neural network with the weighting
coefficients of the linear algorithm

Fig. 4.14. Prediction result of LSTM neural network of a healthy patient with quadratic algo-
rithm weights and diffusion parameter

Fig. 4.15. LSTM neural network prediction result for a healthy patient with quadratic algorithm
weights

the neural network to predict future values is possible for very short time intervals
(about 10 steps), after which either a steady-state mode of the system is observed
(in other words, there is no signal), or a mode of constant monotonicity, which
excludes the occurrence of further chaos (see Fig.4.11 - 4.16).
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Fig. 4.16. LSTM neural network prediction result for a healthy patient with linear algorithm
weights
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