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EQUATION WITH VARIABLE ORDER OF NONLINEARITY
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Abstract. In this work, we study a sparse optimal control problem involving a quasi-
linear parabolic equation with variable order of nonlinearity as a state equation and with
a pointwise control constraints. We show that in the case if the cost functional contains
the terminal term of the tracking type, the proposed optimal control problem is ill-posed,
in general. In view of this, we provide a sufficiently mild relaxation of the proposed
problem and establish the existence of optimal solutions for the relaxed version. Using
the compensated compactness technique and the consept of variational convergence of
minimization problems, we study the attainability of optimal pairs to the relaxed problem
by optimal solutions of the special approximating problems. We also discuss the optimality
conditions for approximating problems and provide their substantiation.
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1. Introduction

1.1. Motivation

Over the past few decades, the role of optical satellite multi-band images in
remote sensing of the Earth surface has been increasingly contributing to many
agricultural monitoring services. In spite of the fact that optical images have a
high resolution and are easily captured by low-cost cameras, the real-life satellite
images frequently suffer from different types of noise, blur, and other atmosphere
artifacts , which greatly reduce the effective information is such images. Hence,
removing noise is a crucial step for image quality improvement in image pro-
cessing task. In the last decades, models based on partial differential equations
(PDEs) have been widely used in the image de-noising problems. Since 1990s,
originated from the pioneering work of Perona and Malikl [51], many different
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models have been proposed to separate noise from the noisy images. Without
being too exhaustive, we refer to [1,14,16-18,21,22,47,54] for a wide variety of
different variational models related to the image denoising problems.

However, since the noise, edges, and texture are high-frequency components,
it is difficult to distinguish them in the process of denoising, and, as a result, the
denoised images could inevitably lose some details. This problems becomes much
more difficult if the original image is contaminated by an impulse noise. In view
of this, we mainly focus on those approaches where the denoising problem can be
stated in the form of some optimal control problem with special class of controls
simulating the presence of both the white Gaussian additive noise n and the noise
v with a strong impulsive nature which the Gaussian model fails to describe (see,
for instance, [2,13,48]). In this case the observed image can be represented as
f = u+ v+ n, and the question is how to separate a true image u eliminating
both Gaussian noise n and impulse noise v from f.

1.2. Statement of the problem

Inspired in the work [2], the first goal of this paper is to analyze the consistency
and well-posedness of the following optimal control problem (OCP):

Minimize J(0,10) = 02507112y + /Q W) = fol2de (1)

subject to the following constraints

%: —div (|RnVu|p“(t’x)_2RnVu> =k(f—u—wv)in Qp:=(0,T) x Q,

1
w(0,) = fol) i Q,

(1.2
dyu=0 on (0,7) x 99, (1.3
(1.4
vo(x) < wv(t,x) <vp(z), ae. in Q. (1.5

)
)
)
)

Here, Q C R? is a bounded simple-connected open set with a sufficiently smooth
boundary 092, T > 0 is a positive value, k € R is a given positive parameter,
f € L2(Q), fo € L) and vg, vy € L2(), ve(x) < vp(w) a.e. in Q, are given

distributions,
T 2
HUH%Q(O,T;Ll(Q)) :‘/0 </Q |’U| dl‘) dz (1.6)

is the so-called directional sparsity term, R, : L'(Q;R?) — L}(Q;R?) is a linear
bounded operator, and the exponent p, : @7 — R is defined by the rule

t
pu<t,x>:=1+g(2 / |<vaa*a<n->><x>rd7), V(ta)€Qr  (L7)

—h

where ¢ : [0,00) — (0,1] is a continuous non-increasing function such that g(0) =
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1 and g(s) > 0 for all s > 0 with lim g(s) =0,

§—00

l9(s) —g(y)| < Cyls —y|, Vs,y € [0,00) with some constant Cy >0, (1.8)
1 |z

Gy(x) = ——5 exp <—> , o0>0, (1.9)
( 27‘(‘0’)2 20°

(Go xu(t,-)) (x) = - Go(z —y)u(t,y) dy, (1.10)
% denotes zero extension of u from Q7 to R x R?, and A > 0 and ¢ > 0 are given
small positive values.

In particular, the function g in (1.7) can be defined in the form of the Cauchy
law )
g(s) =0+ 13 Vs e [0, +00)
with an appropriate a > 0 and 0 < § < 1.

(1.11)

Moreover, it will be shown further that, for each function u with properties
u € LY(Qr) N L*(0,T; L?(52)), there exists a positive value § > 0 such that
pu(t,x) € [p~,pT] C (1,2] almost everywhere in Qr with p~ =1+ § and p™ = 2.

We can indicate here a few main characteristic features of the addressed OCP
(1.1)—(1.5). The first one is a special character of the linear operator R,. In fact,
this operators plays the role of the so-called Directional Total Variation along
a given vector field. In practice, having some vector field § € L>®(Q;R?), we
determine this operator as follows:

R,Vu=[I-n0®0] Vu, Yue W (Q),

where 1 € (0,1) is a given threshold. So, R,Vu can be reduced to (1 —7*)Vov
if the gradient Vu(t,z) at this point is co-linear to 6, and to Vu(t,z) provided
Vu(t,x) is orthogonal to . In other words, this operator impose some anisotropy
effect in the standard diffusivity of u.

The second characteristic point of OCP (1.1)—(1.5) is related to the variable
character of the exponent p = p(¢,z). As follows from representation (1.7) this
characteristic depends not only on (t,z) but also on u(t,z). So, in contrast
to the recent paper [19]|, where the authors study the solvability issues for the
nonlinear parabolic equation having nonstandard growth condition with respect
to the gradient and with well predefined variable exponent, the function p, (¢, x)
in (1.2) is unknown a priori and strictly depends on the current solution of the
initial-boundary value problem (IBVP) (1.2)—(1.4). It is worth also to emphasize
that we do not assume here that the dependency u +— p, is local whereas it is the
crucial assumption in the most of existing publications (see for instance [9,12]).
The next difficulty in the analysis of this IBVP relies that its weak formulation
cannot be written as equality in terms of duality in a fixed Banach space (for the
details we refer to [23]). In fact, we show that each weak solution to the IBVP
(1.2)—(1.4) lives in the corresponding 'personal’ functional space, and, in view of
our assumptions on the structure of exponent p,(t, z), the problem (1.2)—(1.4) can
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admit the weak solutions that may not possess the usual properties of solutions
to parabolic equations. In particular, it would be rather questionable assertion
that a weak solution to the above is unique, belong to the space C([0,T]; L?(f2)),
and satisfies the standard energy equality.

It is well-known that the variable character of exponent p causes a gap be-
tween the monotonicity and coercivity conditions. Because of this gap, the prob-
lem (1.1)—(1.4) can be termed an optimal control problem for the quasi-linear
parabolic equations with nonstandard growth conditions, and it can be viewed as
a generalization of the evolutional version of p(t, z)-Laplacian equation

O _ iy (yvmp(t’x)*?vu) (1.12)
ot

with an exponent that depends only on ¢ and . During the last decades equa-
tion (1.12) was intensively studied by many authors. There is extensive literature
devoted to equation (1.12). We limit ourselves by referring here to the follow-
ing ones [9, 10, 15,50, 52, 58] which provide an excellent insight to the theory of
evolutional p(t, z)-Laplacian equations.

Albeit PDEs with variable nonlinearity are rather interesting from the purely
mathematical point of view as was mentioned before, their study is often moti-
vated by various applications where the problem (1.2)—(1.4), or some special cases
of it, appear in the most natural way [2,3,14,21]. It was recently shown that the
model (1.2)—(1.4) naturally appears as the Euler-Lagrange equation in the prob-
lem of restoration of cloud contaminated satellite optical images [27]. Moreover,
the above mentioned problem can be considered as a model for the deblurring
and denoising of multi-spectral satellite images. In particular, this model has
been proposed in [28,43] in order to avoid the blurring of edges and other local-
ization problems presented by linear diffusion models in images processing. We
also refer to [40], where the authors study some optimal control problems asso-
ciated with a special case of the model (1.2)—(1.4) and show that, in contrast to
the case of the problem (1.2)—(1.4), the proposed in [40] class of optimal control
problems is well posed.

It is also worth to notice that the model (1.2)—(1.4) can be considered as a
natural generalization of the well-know Perona-Malik model [51]. In spite of the
fact that Perona-Malik model reduces the diffusivity of color in places having
higher likelihood of being edges, its major defect is that this model is ill-posed
and there are no results of existence and its consistency (see [40]). To overcome
this problem it has been proposed to modify this model by applying a Gaussian
filter on the gradient (we can refer to the pioneering works |7,20]).

The next characteristic feature of OCP (1.1)—(1.5) is that this control problem
is formulated with L(; L?(0,T)) control cost functional (together with some
additional pointwise control constraints). Because of this the resulting optimal
control may have directional sparsity, i.e., its support is a constant in time and
the control v is identically zero on some parts of the domain (2.

All of this leads us to the followings conclusion: OCP (1.1)—(1.5) is sufficiently
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challenging and its consistency is an open question. In fact, it will be shown in
the next sections that because of the variable character of exponent p and its de-
pendence on ¢ and z, we can lose the continuity of the mapping ¢ — [[u(t, -)|| L2 (q)-
Hence, the cost functional (1.1) is not well-defined and, as a result, we can assert
that the OCP (1.1)-(1.5) is ill-posed, in general. Because of this, the original
OCP requires some relaxation and approximations.

1.3. Organization of the paper

The paper is organized as follows. In Section 2 we give some preliminaries
and introduce the main assumptions on the structure of the operator R, and the
variable exponent p, (¢, z). We also give here the main auxiliary results concerning
the Orlicz spaces, Sobolev-Orlicz spaces with variable exponent, weighted energy
space, and convergence of fluxes to flux. In Section 3 we focus on the solvability
issues for IBVP (1.2)—(1.4). With that in mind we follows the indirect approach
using the technique of passing to the limit in some special approximation scheme.
In this section we show that the IBVP (1.2)—(1.4) admits at least one weak so-
lutions that can be attained by the solutions of more regular Caushy-Neumann
problem for quasi-linear parabolic equations. In Section 4 we propose rather mild
scheme of relaxation for the original OCP, and show that at each level of relax-
ation the corresponding OCP is well-posed and admits at least one solution. The
questions attainability of the solutions to the relaxed problems are the subject of
Section 5. In fact, in this section we introduce the family of OCPs for the special
class of parabolic equations

ou

E—sAu—divAZ(t,x,Vu)—i—/fu:/ﬁ(f—v) in Qr:=(0,T) xQ,

where the flux A5 (¢, z, Vu) we define as follows
AS(t,x,Vu) = (|R,Vu| + e)P**) 2 R Tu.

We show that due to this approximation, some optimal solutions to the relaxed
OCP can be attained in an appropriate topology by the solutions of the proposed
family of OCPs.

The last Section 6 is devoted to the deriving of some optimality conditions for
approximating OCPs and their substantiation.

2. Main Assumptions and Preliminaries

Let © C R? be a bounded connected open set with a sufficiently smooth
boundary 92, and let T' > 0 be a given value. We suppose that the unit outward
normal v = v(z) is well-defined for a.e. x € 02, where a.e. means here with
respect to the 1-dimensional Hausdorff measure H!. We set Qr = (0,T) x .
For any measurable subset D C 2 we denote by |D| its 2-dimensional Lebesgue
measure £2(D). We denote its closure by D and its boundary by dD.
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For vectors ¢ € R? and n € R?, (£,1) = £'n denotes the standard vector
inner product in R?, where  stands for the transpose operator. The norm || is
the Euclidean norm given by [£| = /(£,£). We also make use of the following
notation diam 2 = sup, ,cq |z — yl.

2.1. Functional Spaces

Let X denote a real Banach space with norm || - | x, and let X’ be its dual.
Let (-, ) x/.x be the duality form on X’ x X. By — and X we denote the weak
and weak* convergence in normed spaces X and X', respectively.

For given 1 < p < +o0, the space LP(2;R?) is deﬁned by

LR = {f: Q=R : ||fllrame) < +o0},

where || f{|Lrir2) = (f9|f( )P d:r) YP for 1 < p < 4o00. The inner product of
two functions f and g in LP(£2;R?) with p € [1, 00) is given by

(19w = [ (Fa)ole m-/zm

We denote by C°(R?) the locally convex space of all infinitely differentiable
functions with compact support in R?. We recall here some functional spaces that
will be used throughout this paper. We define the Banach space W1 (Q) with
p~ > 1 as the closure of C2°(R?) with respect to the norm

B B 1/p~
ooy = ([ (" + 190 )

/
We denote by (Wl’p_ (Q)) the dual space of WP (Q). Let us remark that in

_ !/
this case the embedding L?(2) — (Wl’p (Q)) is continuous.

Given a real separable Banach space X, we will denote by C([0,T]; X) the
space of all continuous functions from [0,7] into X. We recall that a function
u : [0,T] — X is said to be Lebesgue measurable if there exists a sequence {uz };cx
of step functions (i.e., ux = ?21 a?XAk for a finite number nj of Borel subsets

J

A? C [0,7T] and with af € X) converging to u almost everywhere with respect to
the Lebesgue measure in [0, 7).

Then for 1 < p < oo, LP(0,T; X) is the space of all measurable functions
u: [0,7] — X such that

1
T b
lullzeo,rix) = (/0 u(®)|% dt) < o0,

while L>°(0,T; X) is the space of measurable functions such that

lull oo o, x) = sup [Ju(t)]|x < oo.
te[0,7)
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This choice makes LP(0,7T; X') a Banach space and guarantees that its dual can
be identified with L? (0, T; X’), where p’ = p/(p — 1) and X’ is the dual space
to X. In particular, for functions f € L?(0,T; L'(Q2)) the continuous Minkowski
inequality (see [55, p.499]) yields f € L'(0,T; L?*(Q2)) and moreover

T 2 1/2
112 0,721 (0)) = (/ </ |f|dx> dx)
0 Q
T 1/2
< /Q </0 N5 dt) dz =: || fllro,r;22(0))-

Hence, we have L2(0,T; L' (Q)) < L'(0,7; L?*()). The full presentation of this
topic can be found in [29].

2.2. Variable Exponent

Let u € LY(0,T; L' (R2)) N L*°(0,T; L?(£2)) be a given function. We associate
with u : Q7 — R the exponent p, : Q7 — R defined by the rule (1.7).

Since G, € C®(R?), it follows from (1.7) and from absolute continuity of
the Lebesgue integral that 1 < p,(t,2) < 2 in Q7 and p, € CL([0,T]; C*(R?))
even if u is just an absolutely integrable function in Q7. Moreover, for each t €
[0,T], pu(t,x) ~ 1 in those places of {2 where some discontinuities are present in
u(t,-), and p,(t, ) ~ 2 in places where u(t, z) is smooth or contains homogeneous
features. In view of this, p, (¢, x) can be interpreted as a characteristic of the sparse
texture of the function wu.

The following result plays a crucial role in the sequel (for comparison, we refer
to [41, Lemma 2.1]).

Lemma 2.1. Let {u},cy C LY(0,T; L)) N L>®(0,T; L*(Q)) be a sequence of
measurable functions such that each element of this sequence is extended by zero
outside of Qr and

sup [|ug || oo (0,122 () < +00,
keN (2.1)
up — u weakly in L*(0,T; LY(Q)) for some w € L1(0,T; L} (R)).

oo 3 s}

be the corresponding sequence of variable exponents. Then there exist constants
C > 0 and 6 € (0,1) depending on Q, G, g, supgen |lukllpo(0,r;r2(0)), and

Let



132 C. D’Apice, P. Kogut, R. Manzo

SUPkeN ||Uk||L1(0,T;L1(Q)) such that

p =140 < py(t,x)<pt =2, V(tz)€Qr, VkeEN, (2.2)
lq(t,z) —a(s,y)| < C(lz =yl + [t —s]),
{Pu ()} €6 =qqeC™(Qr) v (t,2),(s,y) € Qr,
1<p <q(-,-) <ptin Qr.
(2.3)
t
b= e =14 (3 [ 196, w0 () ar) -

uniformly in Qr as k — oo.

Proof. Since the sequence {uy},cy is uniformly bounded in L'(0,T; L' (Q)) and
the Gaussian filter kernel G, is smooth, it follows that

1 [t ~ 1 [t _
i || eoaeoy@|ar < [ ([ 1960 -l dr
h Je—n h Ji—n \Ja
1
< HGUHCI(m)EHukHLl(O,T;Ll(Q)),
t
2> py, (tz) = 1—|—g</ (VG x ug(T, ")) (z)] dT)
t—h
>21+g (HGoHcl(ﬂ)%SUPkeN HukHLl(O,T;Ll(Q))> ,
V(t, x) € Qr,
where

IGollormmy = max ||Go(2)| +[VGo(2)]]

zeQ,yeN
- [1 + —diam Q} . (2.5)
( 2770) g

Then L!-boundedness of {ur}pen guarantees the existence of a positive value
0 € (0,1) such that p,, (t,z) > 1+ 6. Hence, the estimate (2.2) holds true for all

k € N.
Moreover, as follows from (1.8) and the relations

‘puk (ta l‘) - puk (tv y)}

/t (VGy (7, )) ()] dr - / (VG % T(r, ) (y)] dr

—h t—h

<G,

T
<G, / (VG # T(r, ) (x) — (VG # Ti(r, ) (y)] dr

T
QCQ/ / |u(T, 2)| dz dT max |VGy(x — 2) — VG, (y — 2)|
0 9] zeQ

=Cym m€a§>2<|VG(,(a:—z) ~VG,(y—2)|, Yr,yeQ (2.6)
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with v1 = sup |lugl|z1(0,r;1 (), and from smoothness of the function VG, (-),
keN

there exists a positive constant Cg > 0 independent of k such that, for each
t € [0,T], we have the following estimate

’puk (t,.’L') — Puy, (t7y)‘ < '710900"%' - yL Va;, ye Q.

Arguing in a similar manner, we see that

‘puk (ta y) = Duy, (57 y)‘

s

t
& / h|(VGa*17k:(T> ) W) dT—/ h|(VGo*ﬁk(7'7')) ()| dr
t— s
t t—h
<G| [(VGo xug(r,-)) (y)] dT—/ . (VGo xug(T,-)) (y)| dr
< 271720,9”6;0'”01(@)’75 - 5‘7 vt? s € [OaT]? (27)

where o = supyen |[ukll Lo (0,7;02(0)-
As a result, utilizing the estimates (2.6)—(2.7), and setting

C:=Cym (1 + 2’72”(;0"01(@)) ’ (2.8)
we see that

[Pus (5 2) — Puy, (8, Y)| < |puy, (8, 2) — Puy, (8, 9) | + [Py, (8, Y) — Puy (5, 9)]
<Cllz—yl+t—sl],

Y (t,2), (s,y) € Qr :==[0,T] x Q. (2.9)

Thus, {py,} C &. Since max, ,ycqy [Pu, (¢, 7)| < pt and each element of the se-
quence {py, } <y has the same modulus of continuity, it follows that this sequence
is uniformly bounded and equi-continuous. Hence, by Arzela—Ascoli Theorem the
sequence {py, } o 1 relatively compact with respect to the strong topology of
C(Qr). Taking into account the estimate (2.9) and the fact that the set & is
closed with respect to the uniform convergence and

i ] G s @l dr = [ (96, i) @) dr

—h
as k — oo, V(t,x) € Qr

by definition of the weak convergence in L'(0,T;L'(Q2)), we deduce: py,, — pu
uniformly in Q7 as k — oo, where

pltr) =149 (7 [ 16 =it () dr)

—h

in Q7. The proof is complete. ]
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2.3. Anisotropic Diffusion Tensor

Let E; € WH1(Q) be a given function. Then for each A € R the upper level
set of E; can be defined as follows

Z)\(E[) = {E[ > )\} = {ac SV E[(CE) > )\} .

It was proven in [8] that for each function E; € W1(Q) its upper level sets Zy(Er)
are sets of finite perimeter. So, the boundaries of level sets can be described by
a countable family of Jordan curves with finite length, i.e., by continuous maps
from the circle into the plane R? without crossing points. As a result, at almost
all points of almost all level sets of E; € WH1(Q) we can define a unit normal
vector f(x). This vector field formally satisfies the following relations

(0,VEr) =|VE[| and [0 <1 ae. in Q.
In the sequel, we will refer to 6 as the vector field of unit normals to the topo-

graphic ma%a o)f a function Ey. In fact, this vector field can be defined by the rule
VU (t,x

0(x) = O] with ¢ > 0 small enough, where U (¢, x) is a solution the following
initial-boundary value problem
ou vU
— =di _ te (0 Q) 2.10
Y v <|VU|+5>’ € (0,400), x € Q, ( )
U0,z) = Ef(x), =z=€Q, (2.11)
E)Ugi’fc)—o, te (0,400), = € I (2.12)

with a relaxed version of the 1D-Laplace operator in the principle part of (2.10).
Here, 6 > 0 is a sufficiently small positive value and it can be chosen as in (1.8).

Let n € (0,1) be a given threshold. For the simplicity, we set n = 1 — 4.
Then, we associate with the vector field 6 : Q — R? the following linear operator
R, : R? - R?:

RyVv:=Vo—n*0,Vv)0 =[] -1’0 ®0] Vv, YveW"(Q). (2.13)
In fact, this operator can be interpreted as the Directional Total Variation of v

along the vector field 6 (see [16] for the details).

Remark 2.1. In practice, the function Ej is usually associated with the spectral
energy for a smoothed version I = [I, I, I3]' € L?(Q;R3) of the original color
image which is presumably has been corrupted by some noise. The standard rule
for that is the following one

Ei(z) = a1 1(x) + asla(x) + asls(z), Ve,

with a1 = 0.114, as = 0.587, and ag = 0.299.
As for the operator R, : R? — R?, in this case it accumulates the structural
prior information about the spectral energy E;. Indeed, let us assume that x € 2
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is a point in which Ej is not expected to change drastically in any direction, i.e.
x is not close to a discontinuity or rapid change in the known structure of E;. In
this case, R, can be represented as a unit matrix. So, at this point we obviously
have R,Vv ~ Vv.

On the other hand, if we consider a point that is close to a discontinuity of Ey,
then R, Vo reduces to (1—n?)Vo if the gradient Vo(t, x) at this point is co-linear
to 0, and to Vu(t, z) provided Vu(t, z) is orthogonal to 6. So, this operator does
not enforce gradients of v in the direction #. Moreover, the following two-side
estimate

(1 —nH)|Vol> < |(Vo, R,Vv)| < |Vol?,  ae. in Qr (2.14)
holds for each v € L>®(0,T; W(Q)). We also make use of the following obser-
vation: since |¢|? < (5, [I- n29®0]_1 f) < (1 —n?)71¢)? and

(1 - n?)|Vol? < (Ran, I anu) < (1—n?) YR, Vvl
(R, Vol < (R, Vo, [I =120 @ 0] " RyVo) < [Vof?
it follows that

(1 —n?)|Vv| < |R,Vo| < |Vv|, ae. in Qr. (2.15)

2.4. On Orlicz Spaces

Let w € LY(0,T; L' (Q))NL>(0, T; L*(2)) be a given function. Let p,, : Q7 —
R be the corresponding variable exponent which is defined by the rule (1.7). Then

1<p <pu(t,r) <p" <oo ae in Qr (2.16)

(see Lemma 2.1), where the constants p~ and p* are given by (2.2). Let pl,(¢,x) =

L (t’x)l be the corresponding conjugate exponent. It is clear that

pw(t,$)—
2= L <pl(t,z) < P__P_ a.e. in Qr (2.17)
pt—1 ~ 77 p~—1 4§ ’
—— ——
(o) (=)

where (p*)’ and (p~) stand for the conjugates of constant exponents. Denote by
pr(')(QT) the set of all measurable functions f : @7 — R such that the modular
is finite, i.e.

Doty (F) = / £ (8,2)[Pr®) dadt < oo, (2.18)

T

Equipped with the Luxembourg norm

1Nl Low o) (@p) = inf{)\ >0 : / XLt 2) [Pe () dedt < 1}. (2.19)
Qr
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LP»()(Qr) becomes a Banach space (see [24, 30| for the details). The space
pr(')(QT) is a sort of Musielak-Orlicz space that can be denoted by generalised
Lebesgue space, because many of its properties are inherited from the classi-
cal Lebesgue spaces. In particular, the two-sides inequality (2.16) implies that
LP()(Qr) is reflexive, separable, and the set Co (Qr) is dense in LPw( )(QT)
Moreover, under condition (2.16), LOO(QT)ﬂpr )(Qr) is also dense in LP»()(Qr).

Its dual can be identified with L()(Q7) and, therefore, any continuous func-
tional F = F(f) on LP»()(Qr) has the form (see [58, Lemma 13.2])

F(f)= [ fgdzdt, with ge L0 (Qr).
Qr

Since the relation between the modular (2.18) and the norm (2.19) that is not so
direct as in the classical Lebesgue spaces, it can be proved, from its definitions in
(2.18) and (2.19), that

min{||f||pr<> (@Qr)’ ||f||pr<> (@) } < Prutia) ()
< {120 gy 1w 0

1 1
win {57 (D05 (1)} < 150w

1 1

< max {P w(t, x)(f)a P;:(t,m)(f)} - (2:20)

When proving some estimates the following consequence of (2.20) is very useful,

||f”§,;w(-)(QT) —1< / |f(t @) ’pw(tjx) dzdt < HfHLW( )(QT)
T

(2.21)
v feLrO(Qr),
1k = fllprworgry = 0 = / |fe(t,z) = f(t,2) P ) dadt — 0

Qr (2.22)

as k — oo.

Moreover, if f € LP»()(Qr) then

1Fll - gy < (L+TIQNYP" ||f||pr<A>(QT), (2.23)
1 lpwor@n < A+ TNV 1] Lk o0 (2.24)

’ p+

') = =g Y e I (@)

(see, for instance, [24,30,57]).
In generalised Lebesgue spaces, there holds a version of Young’s inequality,
Pu(- P ()
0 | o) lo™0
Pl ) Ph(*)

|fgl <e
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valid for some positive constant C'(¢) and any £ > 0.
The following result can be viewed as an analogous of the Hélder inequality
in Lebesgue spaces with variable exponents (for the details we refer to [24,30]).

Proposition 2.1. If f € LP*O)(Qp;R?) and g € LPvO)(Qp;R2), then (f,g) €
LY(Qr) and

/Q (f,9) dedt < QHfHLPw(-)(QT;R?)||9HLp§u(~)(QT;R2)~ (2.25)
T

As a consequence of (2.25), we have, for a bounded domain Q7 = (0,7 x Q
and p,,(-) satisfying to (2.16), the following continuous imbedding

LPvO(Qr) < L™(Qr) whenever py(t,x) = r(t,z) for ae. (t,2) € Q.
A (2.26)
Let {pk}ren C C%%(Qr), with some S5 € (0,1], be a given sequence of expo-
nents. Hereinafter in this subsection we assume that

D, Pk € Co’g(@) for k=1,2,..., and

O 2.27
pk(-) = p(-) uniformly in Q7 as k — oo. (2.27)

We associate with this sequence the another one { fr € LPe() (Qr) } kEN The char-
acteristic feature of this set of functions is that each element f lives in the cor-
respondmg Orlicz space LPr( (QT) So, we have a sequence in the scale of spaces
{ka (Qr) }k n- We say that the sequence {fk e Lp() (Qr) }k y 1s bounded if

lim sup / | fu(t, ) [P dadt < 400. (2.28)
k—oco JQr
Definition 2.1. A bounded sequence { frx € LPe(0) (Qr) } ren 18 weakly convergent
in the variable Orlicz space LP*()(Qr) to a function f € LPO)(Qr), where p €
C%(Qr) is the limit of {pg}yey C C’O’g(@) in the uniform topology of C(Q7),
if
hm fredzdt = fodrdt, Y€ CP(R x R?). (2.29)
Qr Qr
For our further analysis, we make use of the following result concerning the
lower semicontinuity property of the variable LP*()-norm with respect to the weak
convergence in LP*()(Qr) (for the proof, we refer to [23, Lemma 3.1], see also [58,
Lemma 13.3] and [41, Lemma 2.1] for comparison).

Proposition 2.2. If the sequence of exponents {py}, satisfies condition (2.16),
pr — p as k — oo a.ein @Qp, and a bounded sequence {fk € ka( (Qr) }keN

converges weakly in LP (Qr) to f, then f € LPO(Qr), fr — f in variable
LP0)(Qr), and

lim inf / | fro(t, )P dadt > / |f(t, 2) [P dadt. (2.30)
Qr

— 00 Qr
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We recall also the inequality which is classical in the theory of p-Laplace
equations: if 1 < p < 2 then, for all £, € RY, the following estimate holds true

(p = D)le —n” < ([lEP~2€ — [nlP~2n] . & —n) (1€ + [n]”)

2-p
p o,

2.5. On Weighted Energy Space with Variable Exponent

Let R, : R? — R? be the linear operator defined by the rule (2.13) and
associated with some vector field 8 € L>=(;R?). Let w € C([0,T]; L*(Q)) be a
given function. We define the weighted energy space W,,(Qr) as the set of all
functions u(t, z) such that

u € L3(Qr), wul(t,-) € WhHH(Q) for a.e.t €[0,T],

(2.31)
/ |RnVu|pw(t’”) dzdt < +00.
Qr
We equip Wy, (Q7) with the norm
HUHWw(QT) = HU’HL2(QT) + ”RUVUHLPw(')(QT;RQ)a (2.32)

where the second term on the right-hand side is the norm of the vector-valued func-
tion R,Vu(t,x) in the Orlicz space LP*()(Q7;R?). Due to the estimate (2.14),
we see that W, (Qr), equipped with the norm (2.32), is a reflexive Banach space.
Moreover, due to the fact that the exponent p,, : @7 — R is Lipschitz continu-
ous, the smooth functions are dense in the weighted Sobolev-Orlicz space W, (Qr)
(see [4]). So, Wy (Qr) can be considered as the closure of the set {¢ € C®(Qr)}
with respect to the norm || - [l (@)

2.6. On the weak convergence of fluxes to flux

Let us consider the following collection of parabolic equations of monotone

type
Ou, ..
ﬁ — div Ak(tv Z, vuk) =/ (t7 x) € Qr, (233)

where f € L?(Q) and k = 1,2,.... Let uz be a solution of (2.33) for a given
k € N and this solution is understood in the sense of distributions. Assume that
Ag( &) — A(+,-,§) as k — oo pointwise a.e. with respect to the first two
arguments and for all £ € RV,

A typical situation arising in the study of most optimization problems and
which is of fundamental importance in many others areas of nonlinear analysis, can
be stated as follows: suppose it is known that a solution u € L?(0,T; WP~ (Q))
of (2.33) and the corresponding flow wy, = Ag(-, -, V) € L (Qr; RY) con-
verge weakly, namely,

wp —u in L20,T; W (Q), wp —w in L@ (Qp;RY),

+ (Y p*
1<p <pT, = .
p-<p", (p7) 1
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The main question is whether a flux converges to a flux, i.e., whether the equality
for the limit elements A(t,xz, Vu) = w holds. The situation is not trivial because
the function A(-, -, v) is nonlinear in v and the weak convergence vy — v is far from
sufficient to derive the limit relation Ag(-,-,vx) — A(,-,v). So, the important
problem is to show that w = A(-, -, Vu), although the validity of this equality is
by no means obvious at this stage. The conditions (first of all, on the exponents
p~ and p*) under which the answer to the above question is affirmative, have
been obtained by Zhikov and Pastukhova in their celebrated paper [60].

Theorem 2.1. Assume that the following conditions are satisfied:

(C1) Ai(t,z,&) and A(t,z,€) are RN -valued Carathéodory functions, that is,
these functions are continuous in & € RN for a.e. (t,x) € Qr and measur-
able with respect to (t,x) € Qr for each & € RY;

(C2) (Ak(t7x7£) - Ak(t,l’, C)7£ - <) = 0, Ak(t,!L‘,O) =0 V¢ (€ RY and Jor
a.e. (t,z)€ Qr;

(C3) |Ap(t,z,8)| < c(|€]) < 0o and limy,_yo0 Ag(t, 2, &) = A(t, 2, &) for all € € RN
and for a.e. (t,z) € Qr;

(C4) wp = win LP (0, T; WP (Q)), p~ > 1, and {u}ey are bounded in
L(0,T5 L2());

(C5) wy = Ag(t,z, Vug) = w in L(pﬂ/(QT;RN), pt > 1;

(C6) uy € LP" (0, T; WHP' (Q)) for all k € N, and supgen || (Wi, Vug) |21 <
00;

(CT) 1<p <pht<2p .

Then the flux Ag(t,x, Vuy) weakly converges in the Lebesque space L(Pﬂ'(QT; RY)
to the flux A(t,z,Vu).

For our further analysis, we make also use of the following well-known results.

Lemma 2.2 ( [57]). Let ¥ be a class of integrands F(t,z,£) that are convex with
respect to € € RN | measurable with respect to (t,x) € Qr, and satisfy the estimate

Cl|§|p7 < F(t7x7£) < CZ|£|p+7 1< D < p+ <00, €1,62 > 0.
Suppose that Fy, and F belong to the class ¥ and the following condition holds:

klim Fi(t,z, &) = F(t,z,€) for a.e. (t,x) € Qp and any & € RV,
—00

Then the following lower semicontinuity property is valid:
if vp — v in LY(Qr; RY) then

lim inf Fk(t,x,vk)dxdt2/ F(t,z,v)dxdt. (2.34)
koo JQr Qr
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Lemma 2.3 ( [59]). Let Ay(t,z,&) and A(t,x,&) be RN -valued Carathéodory
functions with properties (C1)-(C83). Assume that

vp = v and wp = Ap(t,z,vr) = w in LYQr;RY) as k — oo,

and (w,v) € LY(Qr). Then

liminf/ (Ak(t, z,v), vg) dadt 2/ (w,v) dxdt. (2.35)

k—o0 T T

Lemma 2.4 ( [4]). Let € be a small parameter which varies within a strictly
decreasing sequence of positive numbers converging to 0. Assume that the following
conditions

(i) pe,p € C(Qr), pe—p nC(Qr) ase — 0,
(1) v, € LNQr;RY), / [lvglpf + E]vg]p+ dxdt < K < oo for each e > 0,

Qr
(i51)  |ve|P 0. + 6\v5\p+_2v5 —z in L(pﬂ/(QT;RN),
") =p/(p" —1) ase =0

hold true with some p~ and p™ such that 1 < p~ < p(t,x) < p™ < oo for all
e>0 and (t,x) € Qr. Then z € LPO(Qp; RY).

3. Existence Result for a Class of Parabolic Equations with
Variable Nonlocal Exponent

The main object of our consideration in this section is the following initial-
boundary value problem (IBVP)

ou

i div Ay (t,z, Vu) + ku = k(f —v) in Qr, (3.1)
dyu=0 on (0,7) x 99, (3.2)
U(O, ) = f() in Q.
Here,
Ay(t,z,Vu) = \RnVu\pw(t"’”)*QRnVu, (3.4)

the exponent p,, : Q7 — (1,2] is given by the rule (1.7), the linear operator R, is
defined in (2.13), 9, stands for the outward normal derivative, f € L?(Qr) and
fo € L?() are given distributions, v € V,4 stands for the control, and the class
of admissible controls V,, is defined as

Vaa = {v € L*(0,T; LY (Q)) : va(z) < v(t,z) <wvp(2), ace. in Qr}.  (3.5)

As follows from (3.4), (2.14), and Lemma 2.1, for each fixed function w €
C([0,T); L?(2)), the mapping (t,z,£) — Au(t,z,€) is a Carathéodory vector
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function, that is, A, (¢, x, ) is continuous in ¢ € R? and is measurable with respect
to (t,x) for each £ € R?. Moreover, the following monotonicity, coerciveness and
boundedness conditions hold for a.e. (t,z) € Qr [58|:

(Auw(t,2,6) = Au(t 2,0, € = C) >0, VeCER?, (3.6)
(Aw(t,2,€),8) = [Ry&|P* 72 (R,€, Ry 'Ry €)
by (2.15) .
> (1 _ n?)pw(t ) |§|pw(t,m) > (1 _ 772)2 |£|pw(t,z)7 vg c RQ,
(3.7)
| A (t, 2, €)[Pe®®) L Jepe®®) | v € R2, (3.8)

However, in general, the principle operator —div A, (¢, x, Vu) + ku provides an
example of a strongly non-linear, non-monotone, and non-coercive operator in
divergence form.

It is worth mentioning here that if the exponent p = p(t, z) is a given function
(i.e., it does not depend on the unknown solution u) and p € C%%(Qr), with
some § € (0,1], then for every f € L?(Q7), fo € L*(Q), and v € V,q, problem
(3.1), (3.3) with R,, = I and with zero Dirichlet boundary conditions (instead of
the Neumann one (3.2)) admits a weak solution u € C([0,T]; L?(£2)) such that
fQT |Vu|PB®) dzdt < +oo (see, e.g. [10, Ch.4]). In this case the time derivative
of the weak solution is a distribution u; which may not belong to any Lebesgue
space L*(Qr) with s > 1. Moreover, the issue of uniqueness for the weak solutions
remains, apparently, an open question for nowadays |35, Chapter III].

As for the case of Dirichlet problem for the equation (3.1) with p, (¢, z) given
by (1.7), its regularity (see Lemma 2.1) is insufficient for the convergence of the
sequence of Galerkin’s approximations to a weak solution. To overcome this
difficulty, it was recently proposed in [11] to construct the strong solutions with
the extra regularity property u; € L?(Qr). However, the existence of a strong
solution and its uniqueness to the Dirichlet problem for the equation (3.1) has
been proven in [11] if only the following condition for the range of the exponent
pu(t, ) holds true

2N

m<p7§p+<2, where N = dim ).

Since the fulfillment of this condition is rather questionable in our case (see
Lemma 2.1), our prime interest in this section is to study the solvability issues for
Cauchy-Neumann initial-boundary value problem (3.1)—(3.3) with p, (¢, z) given
by (1.7). We recall that a challenging feature of the equation (3.1) is that it
cannot be interpreted as a duality relation in a fixed Banach space. Because of
this, we can not write down the weak formulation of (3.1)—(3.3) as some equality
in terms of duality. In particular, sequences of solutions u; to this problem that
correspond to different exponents p,, , belong to possible distinct Sobolev spaces.
Mainly because of this, we specify the notion of weak solution as follows:
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Definition 3.1. We say that, for given f € L?(Qr), fo € L*(Q), 6 € L>(Q; R?),
and v € V,q, a function u is a weak solution to the problem (3.1)—(3.3) if u €
Wu(Qr), ie.,

ue L3(Qr), u(t,:) € Wh(Q) for ae. t € 0,77,
/ |R, Vu[P+) dgdt < +oo,

Qr

(3.9)
and the integral identity

/ <—u?;to + (Ay(t,z,Vu), V) + /ng) dxdt
T

:H/T(f—v)wdxdt—i—/gfotp\tzodx (3.10)

holds true for any function ¢ € ®, where ® = {¢ € C®(Qr) : ¢|,_y =0}.

To clarify the sense in which the initial value u(0,-) = fy is assumed for the
weak solutions, we give the following assertion (for the proof, we refer to [41,
Proposition 2.2|).

Proposition 3.1. Let f € L?(Qr), fo € L*(Q), 6 € L®(Q;R?), and v € V,4 be
given distributions. Let u € W, (Qr) be a weak solution to the problem (3.1)—

(3.3) in the sense of Definition 3.1. Then, for any n € C*°(2), the scalar function
h(t) = / u(t, z)n(z) dr belongs to WH1(0,T) and h(0) = / fo(z)n(z) dx.
Q Q

Let us show that the problem (3.1)—(3.3) admits at least one weak solution.
With that in mind, we make use of the perturbation technique and a classical fixed
point theorem of Schauder [49] (we refer to 25,33, 39,42, 45] where the similar
technique has been used).

We begin with the following auxiliary results. Following result is crucial in
this section.

Theorem 3.1. For given functions w € L*>(0,T; L?(2)) and 6 € L>=(Q;R?), let
the exponent p,, : Qr — R and the linear operator R, be defined by the rules (1.7)
and (2.13), respectively. Then there exists a positive constant A such that, for a.a
(t,x) € Qr and for e > 0 small enough, the following inequality holds true

A|Vau|pe ), if |[Vul| > 1,

A(|Vu|p”(t’x) _4>7 i IVl <1, a.e. in Qr, (3.11)

(A (t,z,Vu),Vu) > {

where € is a small positive value and

A2 (t, @, Vu) == (|R,Vu| + )P ") "2 R, Vu.
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Proof. Taking into account that (see (2.15))

(L =n)I¢l < [Ry¢l < [¢l, V¢ eR? V(ta) € Qr,
we make use of the following chain of inequalities

(A (t, 2, Vu), Vu) = (|R,Vu| + e)P* =2 (R, Vu, Vu)

by (2.14) R.Vul?
2 g T
(|RyVu| 4 &) Pt
by (2.15) 2
S - [Vl ae in Qr. (3.12)

(V| + g)>Pelt)

To deduce the proof, it remains to distinguish two cases |Vu| > 1 and Vu| < 1
(see Lemma 1 in |56, Lemma 1]). As a result, we see that, for all € > 0,

(1- 772)3 (t,z)

g Pw(l,x

(AS,(t,z,Vu),Vu) > 7 pu(i0) |Vul

—n?)° -

——|VulP , if |Vu| > 1. (3.13)
At the same time, if |Vu| < 1, then we get

(A (t, x, Vu),

(A (t,z,Vu), I 7720®9]_1RnV)
= %) [Vul? (1 [V 72

> (1
= (1-7%) (|Vu| +1 = 1)? (1 + |V P02
> (1=n%) (| (Vul”w(” —2(1+ |vuy)pw<tvw>—1)
> (1) (Iuft — 1) aein Q. (314)
O

Theorem 3.2. Let f € L?(Qr), fo € L3(Q), and v € Vyq be given distributions,
and 0 € L>(;R?) is some vector field. Then, for each positive value € > 0, the
Cauchy-Neumann problem

(z;; —eAu—div A (t,z, Vu) + ku = k(f —v) n Qr:=(0,T)xQ, (3.15)
du=0 on (0,T)x 09, (3.16)
u(0,) = fo in £, (3.17)

has a weak solution u. € C([0,T]; L?(Q)) N L2(0,T; W12(Q)) wverifying (3.15)-
(3.17) in the sense of distributions.
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Proof. We introduce the space

dw L*(0,T; [WLQ(Q)]’)} .

W(0,T) = {w c L*(0,T; Wh2(Q)), pr

This space is a Hilbert space with respect to the graph norm. Let us fix an
arbitrary function w € W (0,T) N L>(0,T; L?(2)) such that

lwllz20,7:m12(0)) < C1,
|wll Lo 0,1;L2(02)) < V26Ch,

152 L2052y < Cs,
w(0,-) = fo in Q,

(3.18)

with

2
1= \/Hf - U”?}(QT) + ;Hf(]”?}(g) )
Cy = (A"1kC2 +5)7

where the constant A comes from inequality (3.11), and C3 is defined in (3.31).
We divide the proof onto several steps.

Step 1. Let us associate with w the following variational problem: Find u =

Us(w) € W(0,T) satistying

<a“< ),w> | (Fue), 90) + (458, V@), V) + ru(t)0] da

= H/Q(f(t) —wv(t)dr, V¢ e WhH(Q) ae. in[0,7], (3.19)
u(0) = fo. (3.20)

the condition w € W(0,T) implies w € C([0, T]; L*(Q)) (3.21)

(see [29, Chapter XVIII]), it follows from Lemma 2.1 that the corresponding

exponent
1 t
P ::1+g</ (VG % w(T, ) d7'>
h Ji-n

is such that p, € C%(Qr) and 1 < p~ < ¢(-,-) < pT in Q7, with p* = 2 and

=1+ 9, where (see the proof of Lemma 2.1)

1
d=g <”GU’Cl(Q—Q)hHw”Ll(O,T;Ll(Q))) :

Taking into account that the anisotropic diffusion tensor R, satisfies the two-
side inequality (2.14), it is easy to deduce that, for a given value ¢ > 0, the
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principle operator B : L?(0,T; W%2(Q2)) — L?(0, T; (Wl’z(Q))/), defined by the
rule

(Bu,q) = / (eVu+ A5 (t,x,Vu),Vq) dxdt + /@/ uq dxdt,
T T
is coercive, monotone, and hemicontinuous, where the hemicontinuity property
means the continuity of the scalar function

z(A) = (B(u+ Aq), @)
= / (e(Vu+ AVq) + A5, (t,z, Vu + AVq), Vo) dxdt
T
+ :‘i/ (u+ \q)pdxdt, Yu,q,¢ € L*0,T;WH(Q))
T

at the point A = 0. Since AS, is a Carathéodory functions, this property can be
easily derived with the Lebesgue theorem and the following estimate

| A%t @, Vu + AVq)| [V

/ 1
< ———| A (t, 2, Vu + AVg)[Pe(t) 4 Vv p|Pw ()
Plu(t, )’ ( ?) pw(t,a:)’ d
by (2.2)
<2 (|VU+>\Vq\+6)p’“(” ?|Vu+ AVq|? + _W@,pw(tﬁv)

1
<o (|Vu\pw<m> VPt 1) V) € LNQr). (322

Hence, by the classical results on parabolic equations [46] (see also results
of Alkhutov and Zhikov [4,5]), we deduce that the problem (3.19)-(3.20) has
a unique weak solution U.(w) € W(0,T) in the sense of distributions. Since
the integral identity (3.19) is valid for all test functions ¢ = (¢, x) which are
stepwise with respect to variable ¢, it follows that this identity remains true for
all 9 € L2(0,T; WH2(€2)), and hence for all ¢» € W12(Qr) such that (T, ) = 0.
So, after integration by parts, one can easily deduces from (3.19) that the solution
Ue(w) satisfies both the integral identity

/ (—U( )‘?;f + (VU (w )+Afu(t,:r,VUe(w)),ch)+/<cU5(w)go> ddt

:ﬁ:/T(f—v)godmdt—i—/Qfo«phodx Voed (3.23)

and the energy equality

1/U52(w)da:
2 Jo

! 2 5 2
+/ / (e|VU(w)]* + (A5, (s, 2, VU(w)), VUe(w)) + kUZ (w)) dads
= Ii/ / —v) dxds—i—/ fddr, Ytelo,T], (3.24)
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where, in view of (3.21), the first term in (3.24) is well defined for each ¢ € [0, T'.
Step 2. Using (3.24), we see that

1 t
/ Uf(w)dm—}—li/ /Ug(w)dxds
2 Jo 0 Ja

< SIF = oliagp) + 5 IVeCw)F2gp) + Il foll

=9 L2(Qr) T o ll¥e L*(Qr) 0llL2()

From this, (3.24), and (3.11), we derive the following estimates:
2

HUE(w)H%%QT) <|f- UH%Q(QT) + ;Hfo”?ﬂ(g) =: Cf, (3.25)

by (2.21) . 1/p
HVUa(w)”pr(-)(QT;R% < (/ ‘VUg(w)‘p“’( ) ddt + 1)
T

) " & 1/p~
< (A ! (HfoH%a(Q) +5lf = vl|Z20p + §HU€(“’)”%Q(QT)) + 5)

by (3.25) _
< (ATRCE 45T =0, (3.26)
K K
U)o 72 ¢ (1ol + 517 = v1Baqpy + 51U} oo,
< V2RCY, (3.27)
VU, K K U 2
IV ) riey < Moy + 21— vl + A1V

< \ﬁcl, (3.28)

/ |AS, (., VU (w)) Pe™) dadt

Qr
by (3.25)

W (62)
< (ﬂ)p( /(!VUE(w)Ha)PwW) dxdt
T
by (3.26)

<  +oo. (3.29)

We also notice that there exists a constant C3 > 0 such that

)]s

by (3 19)
VEIVU(0) | 2(@rr2) IV 2(Qpir2)

+ 2452, VU)ot iy | T 1wt @i
+ KUl 2@l 2@ + 5IF = vllzzen 18 ]2@n)
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2.24)
< VEIVU)z2(grme) + KT 2@r) + KILF = vl 2|

X [l 2 0,mw12(0))
) 1/2
+ <1+ / |AS (t, 2, VU (w))[Pe®) dxdt)
T
x (1+ TN ¢l 22(or)

by (3.25)~(3.29) ) s
< Csl[ ¥l 20 mwiz@)y, Yo € L7(0,T;WH2()).  (3.30)

by

—

Hence,

AU (w)
at

< Cs. (3.31)
L2(0,T5(W12(2)))

Taking into account these estimates, we introduce the following subset Wy of
the space W(0,T)

2l 20wz () < (L4 /%) C1,
WOZ ZGW(O T) HZHLWOTL2 Q) g\/iclv
NG 2o Wl 2 S O3,

0,-) = fo

In view of estimates (3.25)—(3.31) and condition (3.18), it is clear that w € W)y
and, hence, U can be interpreted as a mapping from Wy into W,. Moreover,
we see that Wy is a nonempty, convex, and weakly compact subset of W (0,T).
Moreover, in view of the fact that the embedding of W12(Q) in L?(£2) is compact,
a refinement of Aubin’s lemma (see, e.g. [53, Section 8, Corollary 4| ensures that
any bounded subset of W (0,T) is relatively compact in L?(Qr). So, in order
to apply the Schauder fixed-point theorem, it remains to show that the mapping
U. is weakly continuous from Wy into Wj. As a result, the Schauder fixed-point
theorem will provide the existence of element u. in Wy such that u. = Uc(ue).

Step 3. Let {wj}je]R be a sequence in Wy converging weakly in Wy to some
w € Wy. Setting u. ; = U-(w;) and utilizing the weak compactness of the set Wy
and the Aubin’s lemma, we see that {uc;}; p contains a subsequence such that

N

Oue;  Oue
w; — w  strongly in L?(0,T; L*(Q)).

weakly in L?(0,T; L*(Q)),

Ugj — Ue  Weakly in L2(0,T; WLQ(Q)) (3.32)

Us; — Ue  strongly in L2(O, T; L2(Q)), (3.33)

815? — % weakly in  L*(0,T; (W' 2(Q)) ), (3.34)

usj — ue strongly in L?(0,T;L*(Q)) and a.e. in Qr, (3.35)
(3.36)

(3.37)
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Then Lemma 2.1 implies that
Puw; (t, ) = pw(t,z) uniformly in Qr as j — 0o. (3.38)

Moreover, taking into account that

. by (223) . Y
1A%, (¢, Vug,])||L(p+) R2) < (4TI (A%, (&2, V)| 17O

by (2.21) o ()

X w 7‘%.7 ua j J €T

< atTi) <1+/ |Au, (t, 2, Vue )" 0 d dt)

Qr
by (3.26)
<C <1 +/ |Vue ;|[Pvi d:L'dt) < oo, (3.39)
Qr

we deduce from (3.28) and (2.17) that the sequence {6VU5 g+ AL, (L Vuw)} -

je
is bounded in L®")’ (QT, 2). Hence, we can suppose that there exists an element
z € L@ (Qp; R?) such that

eVue j + A, (t x,Vue ;) = z  weakly in L® (QT, ) as j —o0.  (3.40)

Utilizing this fact together with the properties

)

Ue j — ue in LP (0, T; WP~ (Q)) with p~ =1+ 6 (by (3.32))
{ue;j}jcy are bounded in L*(0, T} L*(Q)) (by (3.27))

uej € LP (0, T; W' (Q)) Vj € N by (3.28),

)

sup H (Aiuj (t,.%', vus,j)a vus,j) HLl(QT) < 00 (by (322) s
JEN

)

(3.41)

and taking into account that 1 < 1+d =p~ <pt =2 < 2p~, we deduce from
Theorem 2.1 that the flow A7 (¢, %, Vuc ;) weakly converges in L@ (Qr; R?) to
the flow A5 (¢,z, Vue), i.e., z = A5 (¢, z, Vu.).

Then we can pass to the limit in relations (3.19)-(3.20) with v = wu.; and
w = wj as j — oo. This yields

<8Ua( >’¢> /Q [e (Vue(t), Vib) + (A5, (¢, x, Vuc(t)), Vib) + ku(t)y] dx

= Ii/Q (f@) —v(t)pde, Y€ WH(Q) ae. in[0,T], (3.42)
ue(0) = fo, (3.43)

i.e., ue = U-(w). Moreover, since variational problem (3.42)-(3.43) has a unique
solution, it follows that the entire sequence {uc ;}; p converges weakly in W (0, T)
to us = Uz (w).
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Thus, the mapping U, : Wy — Wy is weakly continuous and, hence, by the
Schauder fixed point theorem, wu. is a weak solution of the perturbed problem
(3.15)—(3.17).

To the end of this proof, let us make use of the following observation: if wu.
is a weak solution to (3.15)(3.17), then arguing as at the Step 1 and using the
integration by parts formula, it is easily to deduce from (3.19) that u. satisfies
the integral identity

0
/ <—u€af + € (Vue, Vo) + (A5 (¢, 2, Vue), Vo) + Ku5g0> dxdt
T

= K“/ (f—’l))tpdxdt—i—/ fovli=odr Yy e d. (3.44)
T Q
O

Let us specify some extra properties of the weak solutions u., given by Theo-
rem 3.2.

Corollary 3.1. Let f € L2(Qr), fo € L*(Q), v € Vag, 0 € L®(4;R?) | and e > 0
be given. Let u. € W(0,T) be a weak solution of (3.15)~(3.17) in the sense of
distributions given by Theorem 3.2. Then u. € W,,_(Qr) and the following energy
equality holds

1 t
2/ u? dm—{—/ / (e|Vue|* + (A5 (t, 2, Vue), Vue) + ku?) dads
Q 0 Ja

t
:m/o /Q(f—v)usdzxds+/ﬂfgd:x YVt e [0,T]. (3.45)

Proof. Taking into account the definition of the space W,,_(Qr) (see (3.9)), let us
show that
/ |R, Ve [P dadt < +oo for ace. t € [0,T).
Qr

Since u, is a solution of (3.15)—(3.17) given by Theorem 3.2, it follows that
there exists a sequence {uc;},;.p € Wo with properties (3.32)~(3.36) and such
that u.; = Us(ucj—1), for j = 2,3,.... Moreover, this sequence possesses the
properties (3.40)—(3.41). Hence, Vu.; € L*(Qr;R?) by (3.32), and

1
/ (Vue ;|4 dedt = A/ AV j|[PUei dedt > oo
T Qr

< fl\igg/T (‘ (Aigyjil(t,x,Vugyj),VuE,j)) +4) dudt

by (3.41
W . (3.46)
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Therefore,
/ IR, Vu. ;=i %) dzdt < / Ve ;|Prei W) dadt < +oc. (3.47)
T Qr
Then, by Proposition 2.2 and property (3.41);, we have:

/ |R, Ve [Pt dodt < lim inf / | Ry Ve ;7= %) dpdt < co.
T

—00
J T

Thus, u. € Wy_(Qr).

It remains to prove the energy equality (3.45). Since u,. is in W(0,7T) and the
set of test functions C*°([0,T]; C°(RY)) is dense in L2(0,T; W12(Q)), it follows
that there exists a sequence {¢;}, .y C C*([0,T; C>®(RM)) such that

@ —ue in L*(0,T;WH(Q)) as j — oo. (3.48)

Taking into account that, for each j € N, the integral identity

e (Fel0), iy 0 + (45, (0 Fus(0) Wiy (1) + w0y 1) v

—1—/0 <au5t(t),g0j(t)> dt = H/O /Q(f(t) —v(t) @;(t)dedt, VYjeN,Vte [O(,BTiQ)

holds true, we can pass to the limit in (3.49) as j — co. To do so, we notice that
/Ot/Q (A5 (t,x, Vue(t), V;(t)) dedt
_ /O t /Q (A2 (1, 2, Vuue(t)), Ve (t)) dudt
v f (4 V00), s 0) = V)
where Viyp; — Vu, — 0 a.e. in Qr by (3.48), and

1
‘(Ais(t,x, Vue), Vj — Vu5)| < ¢1|Vue|Pee + p—JVgoj — Vu|Pue + ¢ € LI(QT)

by (3.22). Hence, by the Lebesgue dominated theorem, the limit passage in (3.49)
leads to the equality

/0 /Q & (Vue(t), Ve () + (A5 (t 2, Ve (1)), Vaie (8)) + r(t)] dedt

+/0t <au5t(t)v“e(t)> dt = f”v/ot/g(f(t) — o(t)) u(t) dedt, Vte[0,T].
(3.50)

Thus, to obtain the energy equality (3.45), it remains to apply the integration by
parts formula. ]
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For our further analysis, we make use of the following result.

Lemma 3.1. Let {uc}. o C W(0,T) be a sequence such that

sup <6/ ]VUEQdfndt) < +o00. (3.51)
T

e—0
Then eVue — 0 in L2(Qr; RY).

Proof. Let ¢ € C3°(Q7) be an arbitrary vector-function. Then

1/2 1/2
‘/ (eVue, p) dacdt’ <We </ EIVuEIdedt> (/ ]g0|2dacdt> .
T T Qr

Hence, the sequence {eVu.}__,, is bounded in L?(Q7;RY). As a result, we have

by (3.51)

/2
’/ (eVue, ) dzdt| < Cy/e (/ £|Vu|? d:z:dt) < Cye — 0.
T T

The proof is complete. O

We are now in a position to prove the main result of this section.

Theorem 3.3. Let f € L*(Qr), fo € L3(Q), and 0 € L®(Q;R?) be given distri-
butions. Then, for each v € V,q, the initial-boundary value problem (3.1)—(3.3)
admits at least one weak solution v € Wy, (Qr).

Proof. Let € be a small parameter which varies within a strictly decreasing se-
quence of positive numbers converging to 0. Let {u. € W(0,7)}._,, be a se-
quence of weak solutions to the approximating problem (3.15)—(3.17) given by
Theorem 3.2. Then, for each £ > 0, u. satisfies the energy equality (3.45). Hence,
we can deduce from (3.45) the following estimates

2
S‘ig HuSH%Q(QT) < C% =|f- UH%?(QT) + ;HfOH%Q(Q)a (3.52)
€
by (2. 1/p~
$up [Vtell ooy S sup ([ Vel ded 41
>0 ellLpue(Qr;R?) b e>0 Qr )
by (3.45) _ P 5 1/p~
< sup (A7 (IfolBagy + S1F = vy + 5 NuelZagny) +5)
e>0
by (3.52)

< Cy=(AtkC245) (3.53)
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by (279) TIQ)YP
igg\IVueHLp—(QT;Rz) < igg(lJr )77 Vel prue 0 (Qprm

—~

by (3.53) B
< (1+TIQDYP 0, (3.54)

2 I LR 2 )
igg HU€HL°°(O,T;L2(Q)) < iglg \/2 (HfOHL2(Q) + B If - UHL2 QT) B HusHLz(QT)
< V2k(h, (3.55)

K
IVl ety < Lol + 17 = ol + Sluclogay)

< \/Ecl. (3.56)

Taking this into account, we see that the sequence {u.} ., is bounded in the
spaces L>°(0,T; L?(Q2)) and LP™ (0, T; WP ()). Therefore, there exists an ele-
ment

u € LP (0, T; WHP (Q)) N L>(0,T; L*(2)) (3.57)

such that, up to a subsequence, u. — w in LP (0, T; WP (Q)) as ¢ — 0. More-
over, the uniform boundedness of the fluxes { A _(t, z, Vue)} oin LEY(Qr;R?)
with respect to € > 0 implies that this sequence is sequentlally weakly compact
in L&) (Qr; R?) (for arguments see (3.39)). Hence, we may admit the existence
of a vector-function w such that w. = Af_(t,7,Vu:,) — w in L@ (Qr; R?)
as € — 0. Arguing as in the proof of Theorem 3.2, it can be shown that
sup._ || (we, Ve ) [|L1(@p) < 00. As a result, Theorem 2.1 implies that the flow
A5 _(t,x, Vue) weakly converges in L(p+)/(QT;R2) to the flow w = A, (t, z, Vu).
Then, utilizing Lemma 3.1, we see that the passage to the limit in the inte-
gral identity (3.44) leads to a similar identity for equation (3.1). It remains to
take into account Lemma 2.4 and relations (3.46)—(3.47) in order to deduce that

/ \RnVu]p“(t’w) dzxdt < 400. Thus, u is an element of the space W, (Qr) and,
Qr
as a consequence, u is a weak solution to the problem (3.1)—(3.3). O

Before proceeding further, it is worth to notice that the uniqueness of weak
solutions to the perturbed problem (3.15)-(3.17) and, hence, for the original one
(3.1)—(3.3), seems to be an open question. In view of this, we adopt the following
concept:

Definition 3.2. We say that a weak solution v € W,,(Qr) to the problem (3.1)—-
(3.3), for given distributions f € L?(Qr), fo € L*(), § € L>®(;R?), and
v € V,q, is Wy-attainable if there exists a sequence {&,}, .y converging to zero as
n — oo and such that

Uy —u in LP (0, T;WhHP (Q)),

e as n — 0o, (3.58)
Asr (t,x, Vu,) = Ay(t,z, Vu) in L) (QT;Rz)
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where, for each n € N, u,, is the weak solution to the following perturbed problem

% —epAu—div A (t,z,Vu) + ku = k(f —v) in Qr, (3.59)
dyu=0 on (0,T) x 09, (3.60)
u(0,) = fo in . (3.61)

We can supplement the result on Theorem 3.3 with the following assertions.

Corollary 3.2. Let u € W, (Qr) be a weak solution to the problem (3.1)—(3.3)
that has been obtained as a cluster point of the weak solutions {u. € W(0,T)} to
the approximating problems (3.15)—(3.17). Then the following energy inequality

t
1/u2dx—|—/ / ((Au(t,z, Vu), Vu) + ku?) dadt
2 Ja 0 Ja

t
ém/ /(f—v)ud:zdt—i—/ fédr (3.62)
0 JQ Q
holds true for almost all t € [0,T].

Proof. To deduce this inequality, we make use of the estimate (3.31) and the
celebrated Aubin’s lemma. As a result, we can supplement the properties (3.58)
by the following one: u. — w in L?(0,T;L?*(Q)) as ¢ — 0. So, without loss
of generality, we can suppose that u.(t,z) — u(t,z) almost everywhere in Q7.
Hence,

et ) oy = It 3oy for aa t.€ [0.7]. (3.63)

Taking this fact into account and passing to the limit in relation (3.45) as e — 0
using the weak convergence u. — u in LP (0, T; WP~ (Q)), Lemma 2.3, and the
weak convergence of fluxes to flux (Theorem 2.1), we arrive at the announced
inequality (3.62). O

Remark 3.1. It is worth to emphasize that Theorem 3.3 can be now specified
as follows: For given f € L?(Q7), fo € L*(Q), 6§ € L>®(;R?), and v € Vg,
the initial-boundary value problem (3.1)—(3.3) admits at least one Wy-attainable
weak solution u € W, (Qr) for which the energy inequality (3.62) holds true for
all t € [0,7]. Moreover, as follows from estimates (3.52)—(3.55), this solution
in bounded in LP (0, T; WP (Q)) N L>=(0,T; L*(2)). However, the mapping
t = [Ju(t,-)|lL2(q) is not necessary continuous. Because of that the second term
3 Jolu(T) = fol? dz in the cost functional is not well defined (see Proposition 3.1
for the details). This means that the original OCP (1.1)—(1.5) is generally ill
posed, and some its relaxation is required.
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4. Setting of the Relaxed Optimal Control Problem and
Existence Result

As was pointed out in the previous section, the operator — div A, (¢, z, Vu) +
rku provides an example of a non-linear operator in divergence form which is
neither monotone nor coercive. In this case (see Theorem 3.3) the initial-boundary
value problem (3.1)—(3.3) admits a Wy-attainable weak solution that satisfies the
energy inequality (3.62). However, it is unknown whether under some admissible
control v € V,4 this solution is unique and belongs to the space C([0, T]; L%(Q)).
Moreover, it is an open question whether all weak solutions to (3.1)—(3.3) satisfy
energy inequality (3.62) that plays a crucial role for derivation of a priori estimates
like (3.52)—(3.55).

Our prime interest in this section is to study the existence issues for the
following relaxed version of the original optimal control problem

T
. w
Minimize J('U,’U,) = HUH%Q(QT,Ll(Q)) + 2w/T HU(t, ) - fo()H%Q(Q) dt (4 1)

subject to the constraints (1.2)—(1.4), (3.5),

where w is a small positive value such that T —w > 0, f € L?(Q), fo € L*(),
v € Vg, and 0 € L>®(Q;R?) are given distributions.

In image processing, the distributions f € L?(Q2) and fy € L?(2) are usually
related to some noise-corrupted image. For instance, f € L?(f) is the original
gray-scale image with noise, whereas fy € L?(Q2) is the pre-denoised image by
applying a median filter to f. In this case # € L*°(;R?) can be stood for the
vector field of unit normals to the topographic map of a smoothed version of
function fp. So, instead of Ey in (2.11), we can take

(G # fo) () = /Q Golz — ) foly) dy, Ve,

We say that (v.u) is a feasible pair to OCP (4.1) if:

V€ Vaa, u€W,(Qr), J(v,u) <400,
(v, u) are related by integral identity (3.10) and energy inequality (3.62),

and u is a Wy-attainable weak solution to (3.1)-(3.3) for the given v.
(4.2)
Let 2 C L?(Qr) x Wy (Qr) be the set of all feasible solutions to the problem
(4.1). Then Theorem 3.3 implies that = # (. Since the structure of the set =
and its main topological properties are unknown, we begin with the following
observation.

Theorem 4.1. For given distributions f € L*(Qr), fo € L*(Q), and 0 €
L>®(Q;R?), the set = is sequentially closed with respect to the weak topology of
L3(Q7) x LP (0, T; WhP™ ().
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Proof. Let {(vg,ur)} ey C E be a sequence such that
v = v in L*(Qr), wur —u in LP (0, T; WP (Q)). (4.3)

Since the set V,4 is convex and closed, it follows by Mazur’s theorem that V.4
is sequentially closed with respect to the weak topology of L?(Q7). Therefore,
v € Vy4q. Our aim is to show that (v,u) € Z. We will do it in several steps.

Step 1. By the initial assumptions, for each k € N, the pair (v, ux) satisfy the
energy inequality (3.62), and uy is a Wy-attainable weak solution of (3.1)—(3.3).
Hence, we may suppose that there exists a sequence {uk»"}nEN C W(0,T) such
that {ugn}, oy are the weak solutions (in the sense of distributions) of (3.59)-
(3.61) with &, = 1/n and v = vg. and

U — up in L (0, T; WP (Q)), asn — oo, (4.4)

A}L{:nil(t, z, Vugn) = Ay, (t, 2, Vug) in L(p+)/(QT;R2) asn — oo, (4.5)

Moreover, the fact that the energy equality

1 ¢ 1
/ ui,ndac—i—/ / —]Vuk’nﬂ_,_ (Aiénnil(t,x,Vuk,n),Vukm) —i—m@,n dxdt
2 Ja 0o Ja\n :
= K,/ (f — vp)up,p, dadt —I—/ fédz, Vtel0,T] (4.6)
T Q

holds true for all n,k € N, implies the boundedness of the sequence {uy } kEN
in the space LP (0, T; W'P™ (Q)) N L>(0,T; L?(2)). Hence, combining this fact
with (4.4) and (4.3), we deduce
upr —uw in LP (0, T;WHP(Q)), as k — oo, (4.7)
up —u in L*(0,T;L*(Q)), ask — oo.

)
Step 2. Utilizing the energy equality (4.6) and arguing as in (3.25)—(3.27),
we can derive the following a priori estimates

ek el < 21512200 + “hp loellZ2ior + %”f‘)”%%m =S5 (49)
Vg, x \’;pu,g,k,l«wQT;Rg)
<A (Iol3egey + 515 = velaom + 5 ksl Eon ) +5
<A™ (21 ol3eq) + 2617132 @m + 26010k E2 ) ) +5
= Hlsf +5=:55", (4.10)
IVurkll o (gpme) < (1 +TIQ)YP™ S, (4.11)
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K K
sk il o= 072200 < ¢2 (11220 + S = vilZa(g + 5 lnilZairy)

2
< \/; s (4.12)

IVarill2@rm < Vi IfolBa + &1F = vkl 2@ luellzon)

by (4.9)
< \/Esl. (4.13)

for all k£ € N, where

iug HUkHL2(QT) < \/THU[)HLQ(Q) < +o0. (4.14)
€

Let us show that the following asymptotic property

1 : 2 2

%Vum —0 in L (QT;R ) (4.15)

holds true.
Indeed, for any vector-valued test function ¢ € C§°(Qr), we have

1 1 1 , 1/2 ) 1/2
—Vug cp> dmdt‘ < —= </ —|Vug k| dxdt) </ || dxdt) .
’/T <k \/E T k T

Hence, the sequence {%Vukk}keN is bounded in L?(Qr;R?). As a result, we

obtain
1 dwdt] " 5, L 2 oat) k
—Vug i, xdt < — xdt —0 as k— oo.
\/(k ) 1E(/T|¢| )

Step 3. At this step we prove that the flux %Vu;@k + Aiéﬁcfl(t,x, Vug i)
weakly converges in L¥") (Qp; R?) to the flux Ay, (¢, 2, Vu) as k — oo. With that
in mind, we show that all preconditions (C1)—(C7) of Theorem 2.1 are fulfilled.

To begin with, we notice that the conclusion, similar to (4.7), can be also
made with respect to the sequence {uy 1}, ey Then Lemma 2.1 implies that

Pug o1 (£, 2) = pu(t, z) uniformly in Q7 as k — co. (4.16)

Moreover, we deduce from (3.8) and (4.10) that the sequence

1
{kvuk,k + Ai{ﬂ_l (t, , Vuk,k)}
keR

is bounded in L®")’ (Qr;R?). Hence, we can suppose that there exists an element
z e LW (Qr;R?) such that

1 ,
=V + AR (42, Vg ) — 2z weakly in LT (Qp;R?) as k — oo, (4.17)

Uk, k—1
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We also make use of the following observation: the sequence

1
{k|Vuk,k|2 + (Ai{jgfl(t, z, Vug k), Vuhk)} (4.18)
keN

is uniformly bounded in L'(Qr). Indeed, this inference is a direct consequence of
estimates (4.13), (4.10), and (3.22). Utilizing this fact together with the properties
(4.16), (4.17), (3.6), (4.7) and

wer € LT (0, T;WHPT(Q) VEk €N by (4.9),(4.13),

and taking into account that 1 < 1+ 8§ = p~ < p™ = 2 < 2p~, we see that all
preconditions of Theorem 2.1 hold true. Hence, in view of the property (4.15),
the assertion (4.17) can be rewritten as follows

1

kvuk,k +AYE (t,a, Vaugg) = Ay(t, z, Vu)

Uk, k—1

weakly in L(pﬂ,(QT;Rz) as k — oco. (4.19)

Step 4. The standard formulation of the Aubin-Lions lemma states that if
U is a bounded set in LP(0,7;X) and 0U/0t = {Ou/0t : w € U} is bounded
in L"(0,7;Y), r > 1, then U is relatively compact in LP(0,7T; B), under the
conditions that

X — B compactly, B <Y continuously.

Setting U = {ug k},cn, we deduce from (4.9)—(4.12) that
{uri}pey is bounded in LP (0, T; WP (Q) N L3(Q)). (4.20)

Since, by the Sobolev embedding Theorem, WP (Q) < LP™ (Q) compactly, it
follows from the Lebesgue dominated Theorem that the following embeddings are
compact as well

WP ( Q) NLA(Q) — L*(Q), L*(Q) — (Wl’Z(Q))/ (by the duality arguments).

(4.21)
Further, having in mind the fact that for each k£ € N, the functions uy  are the
solutions in W(0,T") of the variational problem

8uk,k(t) 1
< ¥ (WL?(Q))’;WM(Q)*‘/Q %(Vuk,k(t)aVSO) dx
+ /Q (AL (2, (), Vo) + wu(t)p] da

i /Q (F(t) — ox()pde, Yo W'2(Q) ae. in [0,T], (4.22)

weo(0) = fo. (4.23)
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we derive from this the following estimate

Ouy k 1
’< ot ’S0>‘ < G IVukkllzz@r ) IVl 2 @rm2)

+2 A% (b, Vugy)

H pukk 1 (Q RQ)HVQD”LPUICJ“*1()(QT,R2)
+ sllu kL2 llellL2 ) + &1F = vell2omllellL2n)
< (by (4.9)-(4.13))

1
< [ Ze81 81+ wlflzaar) + b loklan | el a2

, 1/2
+ (1 + /Q AR (8@, Vag ) [P ) dxdt) (1+TI2)Y el 2(0m)
T

by (4.10),(3.8) ) Lo
< const|| ol 20, w12y, Ve € L7(0,T; WH5(Q)).
Oug

l Ot 20z wr2@))

Utilizing this fact together with (4.20) and (4.21), we deduce from the Aubin-
Lions lemma that the set U = {uy 1}, is relatively compact in LP" (0, T; L*()).
Hence, we can suppose that ug, — u strongly in LP (0, T} L?(Q)) as k — oo.
Since, U is bounded in L>(0, T; L?(Q)), it leads to the conclusion

Hence,

< +o0. (4.24)

upx — u strongly in L?(0,T; L*(Q)), as k — oo. (4.25)

Step 5. At this stage we show that the limit pair (v,u) is related by the
integral identity (3.10). First we notice that ug j is a weak solution (in the sense
of distributions) of (3.59)—(3.61) with n = k, e, = 1/k and v = v. Hence, uy
satisfies the integral identity

0 1
/ ( kka—f + — (Vupi, Vo) + (Aiikk 1(t,x,Vuk,k),ch) +I€Uk7k(p) dxdt
T

:/{/ (f—vk)sodwdt+/ fopli—odr Yo € ®. (4.26)
Qr Q

Then, utilizing the properties (4.19), (4.7), and (4.3), and passing to the limit in
(4.26) as k — oo, we immediately arrive at the announced identity (3.10).

Step 6. In order to show that the limit pair (v,u) satisfies the energy in-
equality (3.62), we have to realize the limit passage as k — oo in the relation
(see [41])

/ukkd:v+/ / <\Vukk‘2 (A%k’k l(t,x,Vukyk),Vuk,Q +Hu%’k> dxdt
= / (f—vk)ukkdxdt+/ fodz Ytelo,T). (4.27)

T
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that can be viewed as the energy equality for the weak solutions of the problem
(3.59)—(3.61) with n = k, e, = 1/k and v = v. To this end, we notice that the
strong convergence in (4.25) implies the pointwise convergence

up p(t,) > w?(t,) ae. in Qr.

Then, in view of estimate (4.12), we have (by the Lebesgue dominated Theorem)
the strong convergence u? . (t,-) — u*(t,-) in L'(Q) for a.a. ¢ € (0,7), and,
therefore,

1
~lim [ ud (t,z)de = / u’(t,z)dx  for a.a. t € (0,T). (4.28)
2 k—oo Q 2 Q

Moreover, taking into account that the L?(Qr)-norm is continuous with respect
to the strong convergence (4.25), we see that

lim / /ukkd:vdt //u dxdt. (4.29)
k—oo

We also notice that due to the properties (4.15), (4.19), and (4.7), we have

Vuyr — Vu and AVE (¢, Vaug ) — Ay(t, 2, Vu) in LN (Qr;R?) as k — oo.

Uk, k—1

Since (Ay(t,z,Vu), Vu) € LY Q1) (see (3.22)), it follows from Lemma 2.3 (see
also Proposition 2.2) that

t
: 1 2, (ALK
lim / /S; [%\Vu;%k\ (Aué e 1(t, xZ, Vuk,k), Vuk,k> ] dxdt

k—o0 0
1
> lim / / [Wuk,kﬁ] dadt
k—o0

+ lim inf / / A}& A, x,vuk,k),vuk,k) dadt
by (4 13)
/ / u(t,x, Vu), Vu) dxdt. (4.30)

So, in order to pass to the limit in (4.27), it remains to notice that the term

/ (f — vk )up,k, dodt

T

is the product of weakly and strongly convergent sequences in L2(0,T; L%(Q)).
As a result, we have

lim (f — vg)ug k dedt = / (f —v)udzdt. (4.31)
k—o0 Qr T

Thus, utilizing the obtained collection of properties (see (4.28), (4.29), (4.30), and

(4.31)), we can pass to the limit in (4.27) as k — oo. As a result, we arrive at the

energy inequality (3.62).
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Step 7. To conclude the proof, it remains to notice that, due to the properties
(3.9), that were established at the previous steps, we have: J(v,u) < +oo and u €
W (Qr). Moreover, in this case the sequence {uy 1}, oy satisfies all requirements
that were mentioned in Definition 3.2. Hence, u € W, (Qr) is a Wy-attainable
weak solution to the problem (3.1)—(3.3). The proof is complete. O

Taking this result into account, it is easy to show that the original optimal
control problem (4.1) has a solution. Indeed, this issue immediately follows from
Theorem 4.1 and the facts that the set of feasible solutions = is bounded in
L2(Qr) x LP~ (0, T; WHP™(Q)) (see estimates (4.9)—(4.13), (4.14)), and the objec-
tive functional J(v, ) is lower semicontinuous with respect to the weak topology of
L?(Qr) x (Lf (0, T; WP~ (Q)) N L>(0,T; LQ(Q))) So, as a direct consequence,
we can finalize this inference as follows:

Theorem 4.2. Let f € L*(Qr), fo € L?(2), 8 € L>®(Q;R?), and v,, vy, € L(R),
va(z) < vp(x) a.e. in Q, be given distributions, and let Kk > 0 and p > 0 be some

constants. Then, for each 0 < w < T the optimal control problem (4.1) admits at
least one solution (v°,u") € Z.

5. Approximation of the Relaxed OCP

Let €, as usual, be a small parameter which varies within a strictly decreasing
sequence of positive numbers converging to 0. In order to find out whether some
optimal pairs to the original OCP (4.1) can be attained in an appropriate topology,
we make use the basic ideas coming from the perturbation theory and variational
convergence of minimization problems [26,39,42]|. With that in mind, we introduce
the following family of perturbed OCPs

Minimize J:(v,u) provided (v,u) € Eg, (5.1)
where
2 po (" 2
L) = ey + s [ [luto) - fo@)Pdsdt (52
W Jr—w /O
and Z. C L2(0,T; L' (2)) x L2(0,T; WP~ (Q)) stands for the set of feasible solu-
tions which we define as follows: (ve,u.) € E¢ if

Ve € Vad, Ue € WUE(QT)v Je(ve, ue) < 400,
u. € C([0,T); L2(Q)) N L2(0, T; W12(Q)) is a Wo-attainable (5.3)
weak solution of the problem (3.15)—(3.17) for the given wv..

Taking into account Theorem 3.2 and arguing as in Theorem 4.2, it can be
proven the following result.
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Theorem 5.1. Let f € L?(Qr), fo € L?(R2), § € L=®(Q;R?), and vy, v, € L3(9),
v () < vp(x) a.e. in Q, be given distributions, and let k > 0 and p > 0 be some
constants. Then, for each e >0 and 0 < w < T, there exists at least one solution
(v2,u?) of optimal control problem (5.1).

The primary goal of this section is to show that the relaxed OCP (4.1) can
be successfully approximated by the OCPs (5.1). In means that there is a pair
(v9,u®) € Z such that

J%,u%) = inf J(v,u),

(v,u)eE
lim J (02, 1) = lim inf  J.(v,u) = J(0°,u°),
e—0 e—0 (v,u)EE,
(02, u?) — (v°,u°) as € — 0 in some appropriate topology.

We begin with a couple of auxiliaries lemmas.

Lemma 5.1. Let f € L*(Q7), fo € L*(Q), 6 € L*(;R?) be given distributions.
Let {(ve,u:) € Ec}._, be a sequence of feasible pairs such that {ve}._,, is bounded
in L*(Qr). Then there exists a constant C' > 0 such that

Si% HU€HL°°(O,T;L2(Q)) + HVUEHLV (Qr:R?) <C. (5.4)
&

Proof. The fact that {(v.,u.) € Ec}._,, is a collection of feasible pairs to the
corresponding problems (5.1), implies (see Theorem 3.2 and Corollary 3.1) that,
for each € > 0, they are related by the integral identity

0
/ (ueaf + & (Vue, Vo) + (A5 (¢, 2, Vue), Vo) + KJUEQO> dxdt
T

= /{/T(f—Us)god:cdt—l—/gfogohzodm Voed. (5.5)

and satisfy the energy equality

1 t
2/ ugder/ / (S\Vu5\2+ (A;_(t,x,Vue), Vue) + ku ) dxds
Q
—I{// usdxder/dex for a.a ¢ € [0,7). (5.6)

Then arguing as in the proof of Theorem 3.3, we deduce from (5.6)
SUPes [|Uell Lo (0,7;12(02)) < V26Cy,
__— Lo
SUP.g |Vt - (g puzey < (1+ TN (A1RCE +5) 7 (5.7)
SUP.~0 || Vel L2(@rr2) < \/%Cl

with C1 = || fll 220y + 2 =l follz2(@) + suPeso |vell 2@y As a result, we arrive at
the estimate (5.4). O
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Taking this result into account and arguing as in Theorem 4.1, it can be shown
the weak L?(Qr)-compactness of admissible controls for the perturbed OCPs (5.1)
implies some compactness properties for the corresponding sequence of feasible
solutions.

Lemma 5.2. Let {(vs,uc) € .}, be a sequence of feasible pairs to the OCPs
(5.1). Assume that v. — v in L*(Qr). Then, for given f € L*(Qr), fo € L*(Q),
and 6 € L>=(Q; R?), we have

ue — u strongly in L*(0,T; L*(Q)), (5.8)

u. — u weakly in LP (0, T; WP (Q)), (5.9)

eVue — 0 weakly in L*(Qr;R?), (5.10)

Pu. (t, ) = pu(t, ) uniformly in Qr, (5.11)

eVue + A5 _(t, 2, Vu:) — Ay(t,z, Vu) weakly in LY (Qr; R?), (5.12)

where (v,u) € =.

Proof. Since for each € > 0 the function u. is a Wjy-attainable weak solution
to the problems (3.15)-(3.17) with v = v, it follows that we can utilize the a
priori estimates (3.52)—(3.56). Hence, the existence of element u with properties
(5.9)-(5.12) follows from Theorem 3.3. To establish the fact that the pair (v,u)
is feasible to the relaxed OCP 4.1, we can apply the arguments of the proof of
Theorem 4.1. It remains to notice that in order to deduce the strong convergence
property (5.8), it is enough to take into account the boundedness of the sequence
{uc}. o in LP (0, T; WP~ (Q)) (see (5.9)), the estimate

ou
(e )| < Vuslisarian I9elry
+ 2||AZE (t, x, VUE) HLPQS(')(QT;R% HVSOHLP“E(')(QT;R2)

+ &lluell 2@ 1ol 2@y + EIf = vellL2om el L2 @r)
< (by (5.7))

< [eonst + w2y + 5 5up el 2o | Iellzzoizavszy
€

1/2
«+Q+/ mawawwwﬂwmm> 1+ T2 ¢l 2 om)
Qr

< constlll| 20,2y, Ve € L2(0,T; WH(€).
and then (5.8) immediately follows from the Aubin-Lions lemma. O

The main question we are going to discuss the convergence of minima of (5.1)
to minima of (4.1) as e tends to zero. In other words, our aim is to show that
some optimal solutions to (4.1) can be approximated by the solutions of (5.1).
To this end, we make use of the basic results of the variational convergence of
minimization problems [36-38,42,44]. We begin with some preliminaries.
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Lemma 5.3. Let {(ve,ue) € Zc}._,o be a sequen