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Abstract. We research the well-posedness of the problem without initial condition for
nonlinear parabolic variational inequalities with variable time-delay. To justify our results,
we impose some assumptions on the solution behavior and growth of the data-in as time
variable tends to −∞. Also, we obtain estimates for weak solutions of this problem.

Key words: evolution variational inequality, evolution subdifferential inclusion, time
delay, Fourier problem, unbounded domain.

2010 Mathematics Subject Classification: 26D10, 49J40, 47J20, 47J22.

1. Introduction

In this paper we consider the problem without initial condition or, in other
words, Fourier problem for evolution variational inequalities (inclusions) with a
time-depended delay. Let us introduce an example of the problem being studied
here.

Let p ≥ 2, Ω be a bounded domain in Rn (n ∈ N), ∂Ω be the boundary
of Ω. We put Q := Ω × (−∞, 0], Σ := ∂Ω × (−∞, 0], Ωt := Ω × {t} ∀ t ∈ R.
Let Lp(Ω) and Lp(Q) be the standard Lebesgue spaces. Denote by W 1,p(Ω) :=
{v ∈ Lp(Ω) | vxi ∈ Lp(Ω), i = 1, n} the standard Sobolev space with the norm

||v||W 1,p(Ω) :=
( ´

Ω[|∇v|
p + |v|p]

)1/p
, where ∇v := (vx1 , . . . , vxn).

Let K be a convex closed set in W 1,p(Ω) which contains 0. Let us consider
the problem of finding a function u ∈ Lp(Q) such that uxi ∈ Lp(Q), i = 1, n,
ut ∈ L2(Q), and, for a.e. t ∈ (−∞, 0], u(·, t) ∈ K and

ˆ
Ωt

[
ut(v − u) + |∇u|p−2∇u∇(v − u) + |u|p−2u(v − u) + b̂u(v − u)

+ĉ(v − u)

ˆ t

t−τ(t)
u(x, s) ds

]
dx ≥

ˆ
Ωt

f(v − u) dx ∀ v ∈ K, (1.1)
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where b̂, ĉ are positive constants, f ∈ L2(Q), τ ∈ C((−∞, 0]), τ(t) ≥ 0 ∀t ∈
(−∞, 0], τ+ := supt∈(−∞,0] τ(t) <∞.

As it will be shown below, this problem, which we will call Problem (1.1), has
a unique solution, when b̂− ĉτ+ > 0.

Note that Problem (1.1) can be written in more abstract way. Indeed, after an
appropriate identification of functions and functionals, we have continuous and
dense imbedding

W 1,p(Ω) ⊂ L2(Ω) ⊂ (W 1,p(Ω))′,

where (W 1,p(Ω))′ is dual to W 1,p(Ω) space. Clearly, for any h ∈ L2(Ω) and
v ∈W 1,p(Ω) we have ⟨h, v⟩ = (h, v), where ⟨·, ·⟩ is the notation for scalar product
on the dual pair

[
(W 1,p(Ω))′, W 1,p(Ω)

]
, and (·, ·) is the scalar product in L2(Ω).

Thus, we will use the notation (·, ·) instead of ⟨·, ·⟩.
Now, we denote S := (−∞, 0], V := W 1,p(Ω), H := L2(Ω) and define an

operator A : V → V ′ as follows

(A(v), w) =

ˆ
Ω

[
|∇v|p−2∇v∇w + |v|p−2vw + b̂vw

]
dx, v, w ∈ V.

Then, Problem (1.1) becomes equivalent to the next problem: to find a func-
tion u ∈ Lp(S;V ) such that u′ ∈ L2(S;H), and, for a.e. t ∈ S, u(t) ∈ K and

(u′(t) +A(u(t)) + ĉ

ˆ t

t−τ(t)
u(s) ds, v − u(t)) ≥ (f(t), v − u(t)) ∀ v ∈ K. (1.2)

Here f ∈ L2(S;H), τ is as above.
Note that variational inequality (1.2) can be written as a subdifferential in-

clusion. For this purpose, we put IK(v) := 0 if v ∈ K, and IK(v) := +∞ if
v ∈ V \K, and also

Φ(v) :=

ˆ
Ω

[
p−1|∇v|p + p−1|v|p + 2−1b̂|v|2

]
dx+ IK(v), v ∈ V.

It is easy to verify that the functional Φ : V → R∞ := (−∞; +∞] is proper,
convex and semi-lower-continuous. By the known results (see, e.g., [22, p. 83]), it
follows that the problem of finding a solution of variational inequality (1.2) can be
written as the following subdifferential inclusion: to find a function u ∈ Lp(S;V )
such that u′ ∈ L2(S;H) and, for a.e. t ∈ S, u(t) ∈ D(∂Φ) and

u′(t) + ∂Φ(u(t)) + ĉ

ˆ t

t−τ(t)
u(s) ds ∋ f(t) in H, (1.3)

where ∂Φ : V → 2V
′ is a subdifferential of Φ, D(∂Φ) is a domain of ∂Φ (∂Φ and

D(∂Φ) will be defined of later).
The aim of this paper is to investigate problems for inclusions of type (1.3).
Let us mention that initial-value problems for evolution inclusions with con-

stant delay were studied in [19], [25], [26] and others. Many results on such
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problems were obtained by using the semi-group theory. Refer to [25] for more
comments and citations. In [19], [26] the fixed point theorems were used.

Problem without initial conditions for evolution equations arise in modeling
different nonstationary processes in nature, that started long time ago and initial
conditions do not affect on them in the actual time moment. Thus, we can assume
that the initial time is −∞, while 0 is the final time, and initial conditions can
be replaced with the behaviour of the solution as time variable turns to −∞.
Such problems appear in modeling in many fields of science such as ecology,
economics, physics, cybernetics, etc. The research of the problem without initial
conditions for the evolution equations and variational inequalities (without delay)
were conducted in the monographs [15], [17], [22], and the papers [3], [4], [5], [7],
[10], [14], [16], [18], [23] and others. In particular, R.E. Showalter in the paper [21]
proved the existence of unique solution u ∈ e2ω·H1(S;H), where H is a Hilbert
space, of the problem without initial condition

u′(t) + µu(t) +A
(
u(t)

)
∋ f(t), t ∈ S,

for ω + µ > 0 and f ∈ e2ω·H1(S;H) in case when A : H → 2H is a maxi-
mal monotone operator such that 0 ∈ A(0). Moreover, if A = ∂φ, where φ :
H → (−∞,+∞] is proper, convex and lower-semi-continuous functional such
that φ(0) = 0 = inf {φ(v) | v ∈ H}, then this problem has a unique solution for
each µ > 0, f ∈ L2(S;H) and ω = 0.

Note that the uniqueness of the solutions of problem without initial conditions
for linear parabolic equations and variational inequalities is possible only under
some restrictions on the behavior of solutions when time variable tends to −∞.
For the first time it was strictly justified by A.N. Tikhonov [24] in the case of
heat equation. However, as it was shown by M.M. Bokalo [3], problem without
initial conditions for some nonlinear parabolic equations has a unique solution in
the class of functions without behavior restriction as time variable tends to −∞.
Similar results were also obtained for evolutionary variational inequalities in the
paper [4].

Previously, problems without initial conditions of evolution equations with
constant delay were studied in [6], [11], and with variable delay, as far as we know,
only in [13]. Let us note that problems without initial conditions for variational
inequalities or inclusions with delay have not been considered in the literature,
which serves as one of the motivations for the study of such problems.

The outline of this paper is as follows. In Section 2, we give notations, def-
initions of function spaces and auxiliary results. In Section 3, we formulate the
problem and main result. In Section 4, we prove the main result.

2. Preliminaries

We set, as above, S := (−∞, 0]. Let V be a reflexive and separable Banach
space with norm ∥·∥, and H be a separable Hilbert spaces with the scalar product
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(·, ·) and norm | · |. Suppose that V ⊂ H with dense, continuous and compact
injection.

Let V ′ and H ′ be the dual spaces to V and H, respectively. We suppose (after
appropriate identification of functionals), that the space H ′ is a subspace of V ′.
By the Riesz-Fréchet representation theorem, identifying the spaces H and H ′,
we obtain the dense and continuous embeddings

V ⊂ H ⊂ V ′ . (2.1)

Note that in this case ⟨g, v⟩V = (g, v) for every v ∈ V, g ∈ H, where ⟨·, ·⟩V is the
scalar product for the dual pair

[
V ′, V

]
. Thus, further we will be using notation

(·, ·) instead of ⟨·, ·⟩V .
We introduce some spaces of functions and distributions. Let X be an arbi-

trary Banach space with the norm ∥·∥X . By C(S;X) we mean the linear space of
continuous functions defined on S with values in X. We say that wm−→m→∞w
in C(S;X) if for each t1, t2 ∈ S, t1 < t2, the sequence of the restrictions of the
functions {wm}∞m=1 to segment [t1, t2] converges in C([t1, t2];X) to the restriction
of w to the same segment.

Let q ∈ [1,∞], q′ be dual to q, i.e., 1/q + 1/q′ = 1. Denote by Lq
loc(S;X) the

linear space of measurable functions defined on S with values in X, whose restric-
tions to any segment [t1, t2] ⊂ S belong to the space Lq(t1, t2;X). We say that a
sequence {wm} is bounded (respectively, strongly, weakly or ∗-weakly convergent
to w) in Lq

loc(S;X), if for each t1, t2 ∈ S, t1 < t2, the sequence of restrictions of
{wm} to the segment [t1, t2] is bounded (respectively, strongly, weakly or ∗-weakly
convergent to the restriction of w to segment [t1, t2]) in Lq(t1, t2;X).

By D′(−∞, 0;V ′) we mean the space of continuous linear functionals on
D(−∞, 0) with values in V ′

w. Hereafter D(−∞, 0) is a space of test functions,
that is, the space of infinitely differentiable on (−∞, 0) functions with compact
supports, equipped with the corresponding topology, and V ′

w is the linear space
V ′ equipped with weak topology. It is easy to see (using (2.1)), that spaces
Lq
loc(S;V ), L2

loc(S;H), Lq′

loc(S;V
′) can be identified with the corresponding sub-

spaces of D′(−∞, 0;V ′). In particular, this allows us to talk about derivatives
w′ of functions w from Lq

loc(S;V ) or L2
loc(S;H) in the sense of distributions

D′(−∞, 0;V ′) and belonging of such derivatives to Lq′

loc(S;V
′) or L2

loc(S;H).
Let us define the spaces

H1(S;H) := {w ∈ L2(S;H)
∣∣w′ ∈ L2(S;H)},

W 1
q,loc(S;V ) := {w ∈ Lq

loc(S;V )
∣∣w′ ∈ Lq′

loc(S;V
′)}, q > 1.

From known results (see., for example, [12, p. 177-179]) it follows thatH1(S;H) ⊂
C(S;H) and W 1

q,loc(S;V ) ⊂ C(S;H). Moreover, for every w from H1(S;H) or
W 1

q,loc(S;V ) the function t → |w(t)|2 is absolutely continuous on any segment of
the interval S and the following equality holds

d

dt
|w(t)|2 = 2(w′(t), w(t)) for a.e. t ∈ S. (2.2)
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Remark 2.1. For w ∈ L2(S;H), we have

lim
σ→−∞

ˆ σ

σ−1
|w(t)|2dt = 0.

If w ∈ L2(S;H) ∩ C(S;H) then there exists a sequence {tk}∞k=0 ⊂ S such that
tk → −∞ for k → +∞ and

lim
k→+∞

|w(tk)|2 = 0.

In this paper we use the following well-known facts.

Proposition 2.1 (Cauchy-Schwarz-Bunjakovsky inequality; see, for example, [12,
p. 158]). Let t1, t2 ∈ R, t1 < t2, and X is a Hilbert space with the scalar product
(·, ·)X . Then, if v ∈ L2(t1, t2;X) and w ∈ L2(t1, t2;X), we have (w(·), v(·))X ∈
L1
(
t1, t2

)
and

ˆ t2

t1

(w(t), v(t))X dt ⩽ ∥w∥L2(t1,t2;X)∥v∥L2(t1,t2;X).

Proposition 2.2 ( [27, p. 173,179]). Let Y be a Banach space with the norm
∥ · ∥Y , and {vk}∞k=1 be a sequence of elements of Y , which is weakly or ∗-weakly
convergent to v in Y . Then, limk→∞ ∥vk∥Y ⩾ ∥v∥Y .

Proposition 2.3 (Aubin theorem [1], [2, p. 393]). Let q > 1, r > 1, t1, t2 ∈
R, t1 < t2, and B0, B1, B2 are Banach spaces such that B0⊂cB1 ⊂ B2 (here ⊂c

means compact embedding and ⊂ means continuous embedding). Then

{w ∈ Lq(t1, t2;B0) | w′ ∈ Lr(t1, t2;B2)}
c
⊂
(
Lq(t1, t2;B1) ∩ C([t1, t2];B2)

)
. (2.3)

Note that we understand the embedding (2.3) as follows: if a sequence {wm} is
bounded in the space Lq(t1, t2;B0) and the sequence {w′

m}m∈N is bounded in the
space Lr(t1, t2;B2), then there exist a function w ∈ Lq(t1, t2;B1) ∩ C([t1, t2];B2)
and a subsequence {wmj} of the sequence {wm} such that wmj −→j→∞w in
C([t1, t2];B2) and strongly in Lq(t1, t2;B1).

Lemma 2.1. If a sequence {wm} is bounded in the space Lq
loc(S;V ), q > 1, and the

sequence {w′
m} is bounded in the space L2

loc(S;H), then there exist a function w ∈
Lq
loc(S;V ), w′ ∈ L2

loc(S;H), and a subsequence {wmj} of the sequence {wm} such
that wmj −→j→∞w in C(S;H) and weakly in Lq

loc(S;V ), and, w′
mj

−→j→∞w′

weakly in L2
loc(S;H).

Proof. The Proposition 2.3 for r = 2, B0 = V , B1 = B2 = H and the reflex-
iveness of V and H yields, for every t1, t2 ∈ S, t1 < t2, from the sequence of
restrictions of the elements {wm} to the segment [t1, t2] one can choose a subse-
quence which is convergent in C([t1, t2];H) and weakly in Lq(t1, t2;V ), and the
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sequence of derivatives of the elements of this subsequence is weakly convergent
in L2(t1, t2;H). For each k ∈ N, we choose a subsequence {wmk,j

}∞j=1 of the
given sequence, which is convergent in C([−k, 0];H) and weakly in Lq(−k, 0;V )
to some function ŵk ∈ C([−k, 0];H)∩Lq(−k, 0;V ), and the sequence {w′

mk,j
}∞j=1

is weakly convergent to the derivative ŵ′
k in L2(−k, 0;H). Making this choice

we ensure that the sequence {wmk+1,j
}∞j=1 was a subsequence of the sequence

{wmk,j
}∞j=1. Now, according to the diagonal process, we select the desired subse-

quence as {wmj,j}∞j=1, and we define the function w as follows: for each k ∈ N we
take w(t) := ŵk(t) for t ∈ (−k,−k + 1].

In the sequel the Cauchy inequality of the following form will be used

ab ≤ εa2 + (4ε)−1b2 ∀a, b ∈ R, ∀ε > 0. (2.4)

3. Setting of the problem and main result

Let Φ : V → (−∞,+∞] be a proper functional, i.e., dom(Φ) := {v ∈ V :
Φ(v) < +∞} ≠ ∅, which satisfies such conditions:

(A1) Φ
(
αv + (1− α)w

)
⩽ αΦ(v) + (1− α)Φ(w) ∀ v, w ∈ V, ∀α ∈ [0, 1],

i.e., the functional Φ is convex,

(A2) vk −→k→∞ v in V =⇒ infk→∞Φ(vk) ≥ Φ(v),

i.e., the functional Φ is lower semicontinuous.

Recall that the subdifferential of functional Φ is a mapping ∂Φ : V → 2V
′ ,

defined as follows

∂Φ(v) := {v∗ ∈ V ′ | Φ(w) ⩾ Φ(v) + (v∗, w − v) ∀ w ∈ V },

for any v ∈ V, and the domain of the subdifferential ∂Φ is the set D(∂Φ) := {v ∈
V | ∂Φ(v) ̸= ∅}. We identify the subdifferential ∂Φ with its graph, assuming that
[v, v∗] ∈ ∂Φ if and only if v∗ ∈ ∂Φ(v), i.e., ∂Φ = {[v, v∗] | v ∈ D(∂Φ), v∗ ∈
∂Φ(v))}. R. Rockafellar (see [20, Theorem A]) proves that the subdifferential ∂Φ
is a maximal monotone operator, that is,

(v∗1 − v∗2, v1 − v2) ⩾ 0 ∀ [v1, v
∗
1], [v2, v

∗
2] ∈ ∂Φ,

and for every element [v1, v
∗
1] ∈ V × V ′ we have the implication

(v∗1 − v∗2, v1 − v2) ⩾ 0 ∀ [v2, v
∗
2] ∈ ∂Φ =⇒ [v1, v

∗
1] ∈ ∂Φ.

Additionally, assume that the following conditions hold:
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(A3) there exist constants p ≥ 2, K1 > 0 such that

Φ(v) ⩾ K1∥v∥p ∀ v ∈ dom(Φ);

moreover, Φ(0) = 0;

(A4) there exists a constant K2 > 0 such that

(v∗1 − v∗2, v1 − v2) ⩾ K2|v1 − v2|2 ∀ [v1, v
∗
1], [v2, v

∗
2] ∈ ∂Φ.

Remark 3.1. Condition Φ(0) = 0 (see (A3)) implies that Φ(v) ≥ Φ(0)+ (0, v− 0)
∀v ∈ V , hence, [0, 0] ∈ ∂Φ. From this and condition (A4) we have

(v∗, v) ≥ K2|v|2 ∀ [v, v∗] ∈ ∂Φ. (3.1)

Let τ : S → R be a function such that

(T ) τ ∈ C(S), τ(t) ≥ 0 for all t ∈ S, τ+ := supt∈S τ(t) <∞.

Let c : Πτ × H → H, where Πτ := {(t, s) | t ≤ 0, t − τ(t) ≤ s ≤ t} and τ
satisfies condition (T ), be a function which satisfies the condition:

(C) for any v ∈ H the mapping c(·, ·, v) : Πτ → H is measurable, and there
exists a constant L ≥ 0 such that following inequality holds

|c(t, s, v1)− c(t, s, v2)| ≤ L|v1 − v2|

for a.e. (t, s) ∈ Πτ and for all v1, v2 ∈ H; in addition, c(t, s, 0) = 0 for a.e.
(t, s) ∈ Πτ .

Remark 3.2. From the condition (C), it follows that, for a.e. (t, s) ∈ Πτ and for
every v ∈ H, the following estimate is valid:

|c(t, s, v)| ≤ L|v|. (3.2)

Remark 3.3. Conditions (T ), (C) and remark 3.2 yield, for any function w ∈
L2(S;H) the function t 7→

´ t
t−τ(t) c(t, s, w(s)) ds : S → H belongs to L2(S;H).

Indeed, by (3.2), assuming that w(t) = 0 for all t > 0, using Cauchy-Schwarz-
Bunjakovsky inequality and changing the order of integration, we have

ˆ 0

σ

∣∣∣ˆ t

t−τ(t)
c(t, s, w(s)) ds

∣∣∣2 dt ≤ L2τ+
ˆ 0

σ

ˆ t

t−τ+
|w(s)|2 dsdt

≤ L2τ+
ˆ 0

σ−τ+
|w(s)|2 ds

ˆ s+τ+

s
dt = (Lτ+)2

ˆ 0

σ−τ+
|w(s)|2 ds

≤ (Lτ+)2||w||2L2(S;H) (3.3)

for each σ ∈ S. Thus, the function t 7→
´ t
t−τ(t) c(t, s, w(s)) ds belongs to L2(S;H).
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Let us consider the evolutionary variational inequality

u′(t) + ∂Φ
(
u(t)

)
+

ˆ t

t−τ(t)
c(t, s, u(s)) ds ∋ f(t), t ∈ S, (3.4)

where f : S → V ′ is a given measurable function, and u : S → V is an unknown
function.

Definition 3.1. Let conditions (A1) – (A3), (T ), (C) hold, and f ∈ Lp′

loc(S;V
′).

The solution of variational inequality (3.4) is a function u : S → V that satisfies
the following conditions:

1) u ∈W 1
p,loc(S;V );

2) u(t) ∈ D(∂Φ) for a.e. t ∈ S;

3) there exists a function g ∈ Lp′

loc(S;V
′) such that, for a.e. t ∈ S,

g(t) ∈ ∂Φ
(
u(t)

)
and

u′(t) + g(t) +

ˆ t

t−τ(t)
c(t, s, u(s)) ds = f(t) in V ′.

We consider the problem of finding a solution u of variational inequality (3.4)
for given Φ, c, τ and f such that

ˆ
S
|u(t)|2 dt < +∞, that is u ∈ L2(S;H). (3.5)

This problem is called the problem P(Φ, τ, c, f), and the function u is called its
solution.

Theorem 3.1. Let conditions (A1) – (A4), (T ), (C) hold, f ∈ L2(S;H), and

K2 − Lτ+ > 0. (3.6)

Then the problem P(Φ, τ, c, f) has a unique solution, it belongs to the space
L∞(S;V ) ∩ Lp(S;V ) ∩H1(S;H) and satisfies the estimate

ess sup
t∈S

∥u(t))∥p +
ˆ
S

(
∥u(t)∥p + |u(t)|2 + |u′(t)|2

)
dt

+

ˆ
S
Φ(u(t))dt ⩽ C1

ˆ
S
|f(t)|2 dt, (3.7)

where C1 is a positive constant depending on K1,K2, L, and τ+ only.
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Remark 3.4. The problem P(Φ, τ, c, f) can be replaced by the following one. Let
K be a convex and closed set in V , A : V → V ′ be a monotone, bounded and
semicontinuous operator such that (A(v), v) ≥ K̃1∥v∥p ∀v ∈ V , where p ≥
2, K̃1 = const > 0. The problem is to find a function u ∈W 1

p,loc(S;V )∩L2(S;H)
such that for a.e. t ∈ S, u(t) ∈ K and

(u′(t) +A(u(t)) +

ˆ t

t−τ(t)
c(t, s, u(s)) ds, v − u(t)) ≥ (f(t), v − u(t)) ∀ v ∈ K.

4. Proof of the main result

We divide the proof of Theorem 3.1 into seven steps.
Step 1 (uniqueness of solution). Assume the contrary. Let u1, u2 be two solutions
of the problem P(Φ, τ, c, f). Then for every i ∈ {1, 2} there exists function gi ∈
Lp′

loc(S;V
′) such that, for a.e. t ∈ S, we have gi(t) ∈ ∂Φ

(
ui(t)

)
and

u′i(t) + gi(t) +

ˆ t

t−τ(t)
c(t, s, ui(s)) ds = f(t) in V ′, i = 1, 2. (4.1)

We put w := u1 − u2. From equalities (4.1), for a.e. t ∈ S, we obtain

w′(t) + g1(t)− g2(t) +

ˆ t

t−τ(t)

(
c(t, s, u1(s))− c(t, s, u2(s))

)
ds = 0 in V ′. (4.2)

Let t1, t2 ∈ S be arbitrary numbers such that t1 < t2. Multiplying equality (4.2)
by w(t) and integrating from t1 to t2, we have
ˆ t2

t1

(w′(t), w(t)) dt+

ˆ t2

t1

(
g1(t)− g2(t), u1(t)− u2(t)

)
dt

+

ˆ t2

t1

(ˆ t

t−τ(t)
(c(t, s, u1(s))− c(t, s, u2(s))) ds, w(t)

)
dt = 0. (4.3)

Consider the third term from left-hand side of equality (4.3). By condition (T ),
(C), the Fubini Theorem and the Cauchy-Schwarz-Bunjakovsky inequality, we get∣∣∣ ˆ t2

t1

(ˆ t

t−τ(t)

(
c(t, s, u1(s))− c(t, s, u2(s))

)
ds, w(t)

)
dt
∣∣∣

≤
ˆ t2

t1

( ˆ t

t−τ(t)

∣∣c(t, s, u1(s))− c(t, s, u2(s))
∣∣ds)|w(t)| dt

≤ L

ˆ t2

t1

(ˆ t

t−τ+
|w(s)| ds

)
|w(t)| dt

≤ L
√
τ+
( ˆ t2

t1

|w(t)|2 dt
)1/2(ˆ t2

t1

(ˆ t

t−τ+
|w(s)|2 ds

)
dt

)1/2

.

(4.4)
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Changing the order of integration, we have

ˆ t2

t1

( ˆ t

t−τ+
|w(s)|2ds

)
dt ≤

ˆ t2

t1−τ+
|w(s)|2 ds

ˆ s+τ+

s
dt

= τ+
(ˆ t2

t1

|w(s)|2 ds+
ˆ t1

t1−τ+
|w(s)|2 ds

)
. (4.5)

Substituting in (4.4) the last term from relations chain (4.5) instead of the
first one, and using inequalities:

√
a+ b ≤

√
a +

√
b,

√
a
√
b ≤ εa + (4ε)−1b,

a ≥ 0, b ≥ 0, ε > 0, we obtain

∣∣∣ˆ t2

t1

(ˆ t

t−τ(t)

(
c(t, s, u1(s))− c(t, s, u2(s))

)
ds, w(t)

)
dt
∣∣∣

≤ Lτ+
(
(1 + ε)

ˆ t2

t1

|w(t)|2 dt+ (4ε)−1

ˆ t1

t1−τ+
|w(t)|2 dt

)
, (4.6)

where ε > 0 is an arbitrary.
By equality (2.2), inequality (4.6), condition (A4) and the fact that gi(t) ∈

∂Φ(ui(t)) for a.e. t ∈ S, i = 1, 2, from (4.3) for a.e. t ∈ S, we obtain

1

2

ˆ t2

t1

(
|w(t)|2

)′
dt

+
(
K2 − (1 + ε)Lτ+

) ˆ t2

t1

|w(t)|2 dt− (4ε)−1Lτ+
ˆ t1

t1−τ+
|w(t)|2dt ≤ 0. (4.7)

Using the integration-by-parts formula, we have

|w(t)|2
∣∣∣t2
t1
+ 2
(
K2 − (1 + ε)Lτ+

) ˆ t2

t1

|w(t)|2 dt

≤ (2ε)−1Lτ+
ˆ t1

t1−τ+
|w(t)|2 dt. (4.8)

By inequality (3.6) and taking ε > 0 such that K2 − (1 + ε)Lτ+ ≥ 0, from (4.8)
we obtain

|w(t2)|2 ≤ |w(t1)|2 + C3

ˆ t1

t1−τ+
|w(t)|2dt, (4.9)

where C3 > 0 is a constant independent of t1, t2.
Let us fix an arbitrary t2 ∈ S. Since w ∈ L2(S;H) ∩ C(S;H), according to

Remark 2.1 there exists a sequence {t1,k}∞k=1 ⊂ S such that t1,k < t2 for all k ∈ N,
t1,k −→k→+∞−∞, and

|w(t1,k)|2 + C3

ˆ t1,k

t1,k−τ+
|w(t)|2 dt →

k→+∞
0.
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Taking t1,k (k ∈ N) instead of t1 in (4.9) and passing to the limit as k → +∞ we
obtain |w(x, t2)|2 = 0. Since t2 ∈ S is an arbitrary number, we have w(t) = 0 for
a.e. t ∈ S, this contradicts our assumption. Therefore, a solution of the problem
P(Φ, τ, c, f) is unique.
Step 2 (auxiliary statements). We define the functional ΦH : H → (−∞,+∞]
by the rule: ΦH(v) := Φ(v), if v ∈ V , and ΦH(v) := +∞ otherwise. Note that
conditions (A1), (A2), Lemma IV.5.2 and Proposition IV.5.2 of the monograph
[22] imply that ΦH is a proper, convex, and lower-semi-continuous functional on
H, dom(ΦH) = dom(Φ) ⊂ V and ∂ΦH = ∂Φ ∩ (V ×H), where ∂ΦH : H → 2H

is the subdifferential of the functional ΦH . Moreover, condition (A3) yields 0 ∈
∂ΦH(0) (see Remark 3.1).

The following statements will be used in the sequel.

Proposition 4.1 ( [22, Lemma IV.4.3]). Let −∞ < a < b < +∞, w ∈ H1(a, b;H),
and g ∈ L2(a, b;H) such that w(t) ∈ D(∂ΦH) and g(t) ∈ ∂ΦH

(
w(t)

)
for a.e.

t ∈ (a, b). Then the function ΦH

(
w(·)

)
is absolutely continuous on the interval

[a, b] and for any function h : [a, b] → H such that h(t) ∈ ∂ΦH

(
w(t)

)
for a.e.

t ∈ [a, b] the following equality holds

d

dt
ΦH

(
w(t)

)
= (h(t), w′(t)) for a.e. t ∈ [a, b].

Proposition 4.2 ( [8, Proposition 3.12], [22, Proposition IV.5.2]). Let T > 0,
f̃ ∈ L2(0, T ;H) and w0 ∈ dom(Φ). Then there exists a unique function w ∈
H1(0, T ;H) such that w(0) = w0 and, for a.e. t ∈ (0, T ], we have w(t) ∈ D(∂ΦH)
and

w′(t) + ∂ΦH

(
w(t)

)
∋ f̃(t) in H. (4.10)

i.e., there exists a function g̃ ∈ L2(0, T ;H) such that, for a.e. t ∈ (0, T ], we have
g̃(t) ∈ ∂ΦH(w(t)) and

w′(t) + g̃(t) = f̃(t) in H. (4.11)

Lemma 4.1. Let t0 < 0, f̃ ∈ L2(t0, 0;H), and w0 ∈ C([τ0, t0];H), w0(t) ∈
dom(Φ) for every t ∈ [τ0, t0], where τ0 := mint∈[t0,0](t − τ(t)) (if τ0 = t0 then
[τ0, t0] = {t0}). Then there exists a unique function w ∈ C([τ0, 0];H)∩H1(t0, 0;H)
such that w(t) = w0(t) for every t ∈ [τ0, t0], and, for a.e. t ∈ (t0, 0], we have
w(t) ∈ D(∂ΦH) and

w′(t) + ∂ΦH

(
w(t)

)
+

ˆ t

t−τ(t)
c(t, s, w(s)) ds ∋ f̃(t) in H, (4.12)

that is, there exists function g̃ ∈ L2(t0, 0;H) such that, for a.e. t ∈ (t0, 0] we have
g̃(t) ∈ ∂ΦH(w(t)) and

w′(t) + g̃(t) +

ˆ t

t−τ(t)
c(t, s, w(s)) ds = f̃(t) in H. (4.13)
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Proof of Lemma 4.1. Let M := {w ∈ C([τ0, 0];H) | w(t) = w0(t) ∀t ∈ [τ0, t0]} be
a set with the metric

ρ(w1, w2) = max
t∈[t0,0]

[
e−α(t−t0)|w1(t)− w2(t)|

]
, w1, w2 ∈M,

where α > 0 is an arbitrary fixed number. It is obvious that the metric space
(M,ρ) is complete. Now let us consider an operator A : M → M defined as
follows: for any given function w̃ ∈M , it defines a function ŵ ∈M ∩H1(t0, 0;H)
such that, for a.e. t ∈ [t0, 0], we have ŵ(t) ∈ D(∂ΦH) and

ŵ ′(t) + ∂ΦH(ŵ(t)) ∋ f̃(t)−
ˆ t

t−τ(t)
c(t, s, w̃(s)) ds in H. (4.14)

Clearly, variational inequality (4.14) coincides with variational inequality (4.10)
after replacing [0, T ] by [t0, 0], f̃(t) by f̃(t) −

´ t
t−τ(t) c(t, s, w̃(s)) ds and the con-

dition w(0) = w0 by the condition ŵ(0) = w0(t0). Thus, using Proposition 4.2,
we get that operator A is well-defined. Let us show that the operator A is a
contraction for some α > 0. Indeed, let w̃1, w̃2 be arbitrary functions from M
and ŵ1 := Aw̃1, ŵ2 = Aw̃2. According to (4.14) (see (4.11)) there exist functions
ĝ1, ĝ2 from L2(t0, 0;H) such that, for each k ∈ {1, 2} and a.e. t ∈ (t0, 0], we have
ĝk(t) ∈ ∂ΦH(ŵk(t)) and

ŵ′
k(t) + ĝk(t) = f̃(t)−

ˆ t

t−τ(t)
c(t, s, w̃k(s)) ds in H, (4.15)

while ŵk(t) = w0(t) for a.e. t ∈ [τ0, t0].
Subtracting identity (4.15) for k = 2 from identity (4.15) for k = 1, and, for

a.e. t ∈ (t0, 0], multiplying the obtained identity by ŵ1(t)− ŵ2(t), we get(
(ŵ1(t)− ŵ2(t))

′, ŵ1(t)− ŵ2(t)
)
+ (ĝ1(t)− ĝ2(t), ŵ1(t)− ŵ2(t))

= −
(ˆ t

t−τ(t)

(
c(t, s, w̃1(s))− c(t, s, w̃2(s))

)
ds, ŵ1(t)− ŵ2(t)

)
, (4.16)

ŵ1(t)− ŵ2(t) = 0 for a.e. t ∈ [τ0, t0]. (4.17)

We integrate equality (4.16) by t from t0 to σ ∈ [t0, 0], taking into account
that for a.e. t ∈ (t0, 0] we have(

(ŵ1(t)− ŵ2(t))
′, ŵ1(t)− ŵ2(t)

)
=

1

2

d

dt
|ŵ1(t)− ŵ2(t)|2.

As a result, we get the equality

1

2
|ŵ1(σ)− ŵ2(σ)|2 +

ˆ σ

t0

(ĝ1(t)− ĝ2(t), ŵ1(t)− ŵ2(t)) dt

= −
ˆ σ

t0

(ˆ t

t−τ(t)

(
c(t, s, w̃1(s))− c(t, s, w̃2(s))

)
ds, ŵ1(t)− ŵ2(t)

)
dt. (4.18)
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By condition (A4), for a.e. t ∈ (t0, 0], we have the inequality

(ĝ1(t)− ĝ2(t), ŵ1(t)− ŵ2(t)) ⩾ K2|ŵ1(t)− ŵ2(t))|2. (4.19)

Taking into account conditions (T ), (C) and the Cauchy inequality (2.4), for a.e.
t ∈ (t0, 0], we obtain

∣∣∣(ˆ t

t−τ(t)

(
c(t, s, w̃1(s))− c(t, s, w̃2(s))

)
ds, ŵ1(t)− ŵ2(t)

)∣∣∣
≤
(ˆ t

t−τ(t)

∣∣c(t, s, w̃1(s))− c(t, s, w̃2(s))
∣∣ ds) |ŵ1(t)− ŵ2(t)|

≤ L
( ˆ t

t−τ+
|w̃1(s)− w̃2(s)| ds

)
|ŵ1(t)− ŵ2(t)|

≤ ε|ŵ1(t)− ŵ2(t)|2 + (4ε)−1L2
(ˆ t

t−τ+
|w̃1(s)− w̃2(s)| ds

)2
≤ ε|ŵ1(t)− ŵ2(t)|2 + (4ε)−1L2τ+

ˆ t

t−τ+
|w̃1(s)− w̃2(s)|2 ds, (4.20)

where ε > 0 is an arbitrary number, w̃1(s)− w̃2(s) := 0 ∀s ≤ τ0.
From (4.18), according to (4.19) and (4.20), we have

|ŵ1(σ)− ŵ2(σ)|2 + 2(K2 − ε)

ˆ σ

t0

|ŵ1(t)− ŵ2(t)|2 dt

≤ (2ε)−1L2τ+
ˆ σ

t0

(ˆ t

t−τ+
|w̃1(s)− w̃2(s)|2 ds

)
dt. (4.21)

Let us consider the right-hand side of the inequality (4.21). Using the assumption
that w̃1(s)− w̃2(s) = 0 for s ≤ t0 and s ≥ 0, we obtain

ˆ σ

t0

(ˆ t

t−τ+
|w̃1(s)− w̃2(s)|2 ds

)
dt ≤ t0

ˆ σ

t0

|w̃1(t)− w̃2(t)|2 dt. (4.22)

From (4.21) and (4.22), choosing ε = K2, we get

|ŵ1(σ)− ŵ2(σ)|2 ⩽ C2

ˆ σ

t0

|w̃1(t)− w̃2(t)|2 dt, σ ∈ (t0, 0], (4.23)

where C2 > 0 is a constant depending on L,K2, τ
+, and t0 only.
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Multiplying (4.23) by e−2α(σ−t0), we obtain

e−2α(σ−t0)|ŵ1(σ)− ŵ2(σ)|2

⩽ C2e
−2α(σ−t0)

ˆ σ

t0

e2α(t−t0)e−2α(t−t0)|w̃1(t)− w̃2(t)|2 dt

⩽ C2e
−2α(σ−t0) max

t∈[t0,0]

[
e−α(t−t0)|w̃1(t)− w̃2(t)|

]2 ˆ σ

t0

e2α(t−t0) dt

=
C2

2α

(
1− e−2α(σ−t0)

)[
ρ(w̃1, w̃2)

]2
⩽
C2

2α

[
ρ(w̃1, w̃2)

]2
, σ ∈ [t0, 0]. (4.24)

From (4.24) it follows

ρ(ŵ1, ŵ2) ⩽
√
C2/(2α)ρ(w̃1, w̃2).

This, choosing α > 0 such that C2/(2α) < 1, yields, operator A is a contraction.
Hence, we may apply the Banach fixed-point theorem (in other words, the con-
traction mapping principle; see, for example, [9, Theorem 5.7]) and deduce that
there exists a unique function w ∈M such that Aw = w, i.e., we have proved our
proposition.

Step 3 (solution approximations). We construct a sequence of functions which,
in some sense, approximate the solution of the problem P(Φ, τ, c, f).

Let {κk}∞k=1 be a monotonically decreasing sequence of numbers from S such
that κ1 < 0 and limk→∞ κk = −∞. Denote f̂k(t) := f(t) for t ∈ [κk, 0], τk :=
mint∈[κk,0](t− τ(t)), k ∈ N.

For each k ∈ N consider the problem of finding a function ûk ∈ C([τk, 0];H)∩
H1(κk, 0;H) such that, for a.e. t ∈ (κk, 0], we have ûk(t) ∈ D(∂ΦH) and

û ′
k(t) + ∂ΦH

(
ûk(t)

)
+

ˆ t

t−τ(t)
c(t, s, ûk(s)) ds ∋ f̂k(t) in H, (4.25)

and
ûk(t) = 0, t ∈ [τk,κk]. (4.26)

Inclusion (4.25) means that there exists a function ĝk ∈ L2(κk, 0;H) such
that, for a.e. t ∈ (κk, 0], we have ĝk(t) ∈ ∂ΦH(ûk(t)) and

û ′
k(t) + ĝk(t) +

ˆ t

t−τ(t)
c(t, s, ûk(s)) ds = f̂k(t) in H. (4.27)

Lemma 4.1 implies the existence and uniqueness of solution of the problem
(4.25), (4.26). Since D(∂ΦH) ⊂ dom(ΦH) = dom(Φ) then ûk(t) ∈ V for a.e.
t ∈ [κk, 0]. According to the definition of the subdifferential of a functional and
the fact that ĝk(t) ∈ ∂ΦH(û(t)) for a.e. t ∈ (κk, 0], we have

ΦH(0) ≥ ΦH(ûk(t)) + (ĝk(t), 0− ûk(t)) for a.e. t ∈ (κk, 0].
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This and condition (A3) yield that for a.e. t ∈ (κk, 0] we have

(ĝk(t), ûk(t)) ≥ Φ(ûk(t)) ≥ K1∥ûk(t)∥p. (4.28)

Since the left side of this chain of inequalities belongs to L1(Sk) then ûk belongs
to Lp(κk, 0;V ).

For each k ∈ N we extend functions f̂k, ûk and ĝk by zero for the entire interval
S, and denote these extensions by fk, uk and gk, respectively. From the above it
follows that for each k ∈ N the function uk belongs to Lp(S;V ), its derivative u′k
belongs to L2(S;H) and for a.e. t ∈ S the inclusion gk(t) ∈ ∂ΦH

(
uk(t)

)
and the

following equality (see (4.27)) hold

u′k(t) + gk(t) +

ˆ t

t−τ(t)
c(t, s, uk(s)) ds = fk(t) in H. (4.29)

In order to show the convergence {uk}+∞
k=1 to the solution of the problem P(Φ, τ, c, f)

we need some estimates of the functions uk, k ∈ N.

Step 4 (first order estimates of solution approximations).
Let t1, t2 ∈ S be arbitrary numbers such that t1 < t2. Multiplying iden-

tity (4.29) for a.e. t ∈ S by uk(t) and integrating by t from t1 to t2, we obtain
ˆ t2

t1

(u′k(t), uk(t)) dt+

ˆ t2

t1

(gk(t), uk(t)) dt

+

ˆ t2

t1

(ˆ t

t−τ(t)
c(t, s, uk(s)) ds, uk(t)

)
dt =

ˆ t2

t1

(fk(t), uk(t)) dt. (4.30)

Equality (2.2) yieldˆ t2

t1

(u′k(t), uk(t))dt =

ˆ t2

t1

d

dt
|uk(t)|2dt =

1

2
(|uk(t2)|2 − |uk(t1)|2). (4.31)

From Remark 3.1, it follows

(gk(t), uk(t)) ≥ K2|uk(t)|2 for a.e. t ∈ S. (4.32)

By inequalities (4.28) and (4.32), for a.e. t ∈ S, we have

(gk(t), uk(t)) ≥ δ(gk(t), uk(t)) + (1− δ)(gk(t), uk(t))

≥ δK2|uk(t)|2 +
1

2
(1− δ)K1∥uk(t)∥p +

1

2
(1− δ)Φ(uk(t)), (4.33)

where δ ∈ (0, 1) is an arbitrary number.
Let us estimate the second term of the left-hand side of equality (4.30) by

using (4.33), in this way
ˆ t2

t1

(gk(t), uk(t)) dt

≥ 1

2

ˆ t2

t1

(
(1− δ)Φ

(
uk(t)

)
+ (1− δ)K1∥uk(t)∥p + 2δK2|uk(t)|2

)
dt. (4.34)
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We estimate the third term on the left-hand side of equality (4.30) by using
the Cauchy-Schwartz-Bunjakovsky inequality and (3.2). As the result, we obtain∣∣∣ ˆ t2

t1

(ˆ t

t−τ(t)
c(t, s, uk(s)) ds, uk(t)

)
dt
∣∣∣

≤
ˆ t2

t1

(ˆ t

t−τ(t)

∣∣c(t, s, uk(s))∣∣ ds)|uk(t)| dt
≤ L

ˆ t2

t1

( ˆ t

t−τ+
|uk(s)| ds

)
|uk(t)| dt

≤ L
√
τ+
(ˆ t2

t1

|uk(t)|2 dt
)1/2(ˆ t2

t1

(ˆ t

t−τ+
|uk(s)|2 ds

)
dt
)1/2

. (4.35)

Now, let us estimate the last item on the inequality chain above. Changing the
order of integration, we have
ˆ t2

t1

( ˆ t

t−τ+
|uk(s)|2ds

)
dt

≤
ˆ t2

t1−τ+
|uk(s)|2 ds

ˆ s+τ+

s
dt = τ+

ˆ t2

t1−τ+
|uk(t)|2 dt. (4.36)

From (4.35), (4.36) with t1 < κk, and definition of uk, it follows∣∣∣ˆ t2

t1

( ˆ t

t−τ(t)
c(t, s, uk(s)) ds, uk(t)

)
dt
∣∣∣ ≤ Lτ+

ˆ t2

t1

|uk(t)|2dt. (4.37)

Now we estimate the first term of the right-hand side of equality (4.30) by
using the Cauchy-Schwartz-Bunjakovsky and Cauchy inequalities (2.4). As the
result, we obtain

ˆ t2

t1

(fk(t), uk(t)) dt ⩽ ε

ˆ t2

t1

|uk(t)|2 dt+ (4ε)−1

ˆ t2

t1

|fk(t)|2 dt, (4.38)

where ε > 0 is an arbitrary number.
From (4.30), taking into account (4.31), (4.34), (4.37) and (4.38), for any

t1, t2 ∈ S such that t1 < min{κk, t2}, we obtain

|uk(t2)|2 + (1− δ)

ˆ t2

t1

Φ
(
uk(t)

)
dt+ (1− δ)K1

ˆ t2

t1

∥uk(t)∥p dt

+ 2[δK2 − Lτ+ − ε]

ˆ t2

t1

|uk(t)|2 dt ≤ (2ε)−1

ˆ t2

t1

|fk(t)|2 dt.

First we choose δ ∈ (0, 1) such that δK2 − Lτ+ > 0 (see (3.6)). Then take
ε = (δK2 − Lτ+)/2 > 0. As a result, we obtain

|uk(t2)|2 +
ˆ t2

t1

Φ
(
uk(t)

)
dt+

ˆ t2

t1

[
∥uk(t)∥p + |uk(t)|2

]
dt ≤ C4

ˆ t2

t1

|fk(t)|2 dt,
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where C4 is a positive constant depended on K1,K2, L, and τ+ only.
Since t2 ∈ S is an arbitrary, by the definition of fk, we have

sup
t∈S

|uk(t)|2+
ˆ
S
Φ
(
uk(t)

)
dt+

ˆ
S

[
∥uk(t)∥p+|uk(t)|2

]
dt ⩽ C5

ˆ
S
|f(t)|2 dt, (4.39)

where C5 > 0 is a positive constant depended on K1,K2, L, and τ+ only.
From (4.39) it follows

{uk}+∞
k=1 is bounded in L∞(S;H) ∩ Lp(S;V ) ∩ L2(S;H). (4.40)

Step 5 (second order estimates of solution approximations). Now we shell estimate
the functions u′k, k ∈ N. Let t1, t2 be arbitrary numbers such that t1, t2 ∈ S,
t1 < t2. For almost every t ∈ [t1, t2] we multiply equality (4.29) by the function
u′k(t) (recall that u′k ∈ L2(S;H)) and integrate the resulting equality from t1 to
t2. Then we obtain

ˆ t2

t1

|u′k(t)|2 dt+
ˆ t2

t1

(gk(t), u
′
k(t)) dt

=

ˆ t2

t1

(fk(t), u
′
k(t)) dt−

ˆ t2

t1

( ˆ t

t−τ(t)
c(t, s, uk(s)) ds, u

′
k(t)

)
dt. (4.41)

Since gk ∈ L2(S;H) and gk(t) ∈ ∂Φ(uk(t)) for a.e. t ∈ S, Proposition 4.1
implies that the function ΦH

(
uk(·)

)
is absolutely continuous on [t1, t2] and

d

dt
ΦH

(
uk(t)

)
= (gk(t), u

′
k(t)) for a.e. t ∈ (t1, t2). (4.42)

By (4.42) we can rewrite the second term on the left-hand side of the equality
(4.41) as follows

ˆ t2

t1

(gk(t), u
′
k(t)) dt =

ˆ t2

t1

d

dt
ΦH

(
uk(t)

)
dt

= ΦH

(
uk(t)

)∣∣∣t2
t1
= Φ

(
uk(t)

)∣∣∣t2
t1
. (4.43)

By the Cauchy inequality (2.4), changing the order of integration (see 4.36)
and (3.2), we have

∣∣ ˆ t2

t1

(fk(t), u
′
k(t)) dt

∣∣ ≤ ˆ t2

t1

|fk(t)||u′k(t)| dt

≤
ˆ t2

t1

|fk(t)|2 dt+
1

4

ˆ t2

t1

|u′k(t)|2 dt. (4.44)
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∣∣∣ ˆ t2

t1

(ˆ t

t−τ(t)
c(t, s, uk(s)) ds, u

′
k(t)

)
dt
∣∣∣

≤
ˆ t2

t1

(ˆ t

t−τ(t)

∣∣c(t, s, uk(s))∣∣ ds)|u′k(t)| dt
≤ L

ˆ t2

t1

( ˆ t

t−τ(t)
|uk(s)| ds

)
|u′k(t)| dt

≤ L2τ+
ˆ t2

t1

(ˆ t

t−τ+
|uk(s)|2 ds

)
dt+

1

4

ˆ t2

t1

|u′k(t)|2 dt

≤ (Lτ+)2
ˆ t2

t1−τ+
|uk(t)|2dt+

1

4

ˆ t2

t1

|u′k(t)|2 dt, (4.45)

By (4.43), (4.45), (4.44), from (4.41) we get

1

2

ˆ t2

t1

|u′k(t)|2 dt+ΦH

(
uk(t)

)∣∣∣t2
t1

≤ (Lτ+)2
ˆ t2

t1−τ+
|uk(t)|2dt+

ˆ t2

t1

|fk(t)|2 dt. (4.46)

By the definitions of uk and fk we pass to the limit in (4.46) when t1 → −∞.
Taking into account condition Φ(0) = 0 (see (A3)) and estimate (4.39), from
(4.46), taking t2 = σ ∈ S, we have

Φ
(
uk(σ)

)
+

ˆ σ

−∞
|u′k(t)|2 dt ⩽ C6

ˆ σ

−∞
|f(t)|2 dt, (4.47)

where C6 > 0 is a positive constant depended on K1,K2, L, and τ+ only.
According to the definition of the functional ΦH , condition (A3) (recall that

uk(t) ∈ V for a.e. t ∈ S) from (4.47), we have

sup
σ∈S

||uk(σ)||p +
ˆ
S
|u′k(t)|2 dt ⩽ C7

ˆ
S
|f(t)|2 dt, (4.48)

where C7 is a positive constant depended on K1,K2, L, and τ+ only.
Estimate (4.48) implies, that

the sequence
{
uk
}+∞
k=1

is bounded in L∞(S;V ), (4.49)

the sequence
{
u′k
}+∞
k=1

is bounded in L2(S;H). (4.50)

Let us show that

the sequence {gk}+∞
k=1 is bounded in L2(S;H). (4.51)
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Indeed, from (3.3) for w = uk, using (4.39), we have
ˆ
S

∣∣∣ˆ t

t−τ(t)
c(t, s, uk(s)) ds

∣∣∣2 dt ≤ (Lτ+)2
ˆ
S
|uk(t)|2 dt ≤ C8

ˆ
S
|f(t)|2 dt, (4.52)

where C8 is a positive constant dependent on K1,K2, L, and τ+ only.
From (4.29), (4.48), (4.52), and the definitions of uk, fk we obtain (4.51)

Step 6 (passing to the limit). From (4.40), (4.49)–(4.51) and Lemma 2.1 we have
that there exist functions u ∈ L∞(S;V ) ∩ Lp(S;V ) ∩ H1(S;H), g ∈ L2(S;H)
and a subsequence of the sequence {uk, gk}+∞

k=1 (still denoted by {uk, gk}+∞
k=1) such

that
uk −→k→∞ u ∗-weakly in L∞(S;V ),

weakly in Lp(S;V ), weakly in H1(S;H),
(4.53)

uk −→
k→∞

u in C(S;H), (4.54)

gk −→
k→∞

g weakly in L2(S;H). (4.55)

Using condition (T ), (C), (4.54), the Cauchy-Schwarz-Bunjakovsky inequality
and changing the order of integration (see (4.36)), for any t1, t2 ∈ S, t1 < t2, we
obtain
ˆ t2

t1

∣∣∣ ˆ t

t−τ(t)
c(t, s, uk(s)) ds−

ˆ t

t−τ(t)
c(t, s, u(s)) ds

∣∣∣2dt
≤ L2τ+

ˆ t2

t1

(ˆ t

t−τ+
|uk(s)− u(s)|2ds

)
dt

≤ (Lτ+)2
ˆ t2

t1−τ+
|uk(t)− u(t)|2 dt −→

k→∞
0. (4.56)

Thus, we have
ˆ t

t−τ(t)
c(t, s, uk(s)) ds −→

k→∞

ˆ t

t−τ(t)
c(t, s, u(s)) ds strongly in L2

loc(S;H). (4.57)

Let v ∈ H,φ ∈ D(−∞, 0) be an arbitrary. For a.e. t ∈ S we multiply equality
(4.29) by v, and then we multiply the obtained equality by φ and integrate in t
on S. As a result, we obtain the equality
ˆ
S
(u′k(t), vφ(t)) dt+

ˆ
S
(gk(t), vφ(t)) dt+

ˆ
S

( ˆ t

t−τ(t)
c(t, s, uk(s)) ds, vφ(t)

)
dt

=

ˆ
S
(fk(t), vφ(t)) dt, k ∈ N. (4.58)

We pass to the limit in (4.58) as k → ∞, taking into account (4.53), (4.55),
(4.57) and convergence of {fk}∞k=1 to f in L2

loc(S;H). As a result, since v ∈
H,φ ∈ D(−∞, 0) are arbitrary, for a.e. t ∈ S we obtain the equality

u′(t) + g(t) +

ˆ t

t−τ(t)
c(t, s, u(s)) ds = f(t) in H.
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Step 7 (completion of the proof ). In order to complete the proof of the theorem
it remains only to show that u(t) ∈ D(∂Φ) and g(t) ∈ ∂Φ

(
u(t)

)
for a.e. t ∈ S.

Let k ∈ N be an arbitrary number. Since uk(t) ∈ D(∂Φ) and gk(t) ∈
∂ΦH

(
uk(t)

)
for every t ∈ S \ S̃k, where S̃k ⊂ S is a set of measure zero, applying

the monotonicity of the subdifferential ∂ΦH , we obtain that for every t ∈ S \ S̃k
the following equality holds

(gk(t)− v∗, uk(t)− v) ⩾ 0 ∀ [v, v∗] ∈ ∂ΦH . (4.59)

Let σ ∈ S, h > 0 be arbitrary numbers. We integrate (4.59) on [σ − h, σ]:
ˆ σ

σ−h
(gk(t)− v∗, uk(t)− v) dt ⩾ 0 ∀ [v, v∗] ∈ ∂ΦH . (4.60)

Now according to (4.54) and (4.55) we pass to the limit in (4.60) as k → ∞. As
a result we obtainˆ σ

σ−h
(g(t)− v∗, u(t)− v) dt ≥ 0 ∀ [v, v∗] ∈ ∂ΦH . (4.61)

The monograph [27, Theorem 2, p. 192] and (4.61) imply that for every
[v, v∗] ∈ ∂ΦH there exists a set R[v,v∗] ⊂ S of measure zero such that

0 ≤ lim
h→+0

1

h

ˆ σ

σ−h

(
g(t)− v∗, u(t)− v

)
dt =

(
g(σ)− v∗, u(σ)− v

)
∀σ ∈ S \R[v,v∗].

(4.62)

Let us show that there exists a set R ⊂ S of measure zero such that for all
σ ∈ S \R the following inequality holds(

g(σ)− v∗, u(σ)− v
)
≥ 0 ∀ [v, v∗] ∈ ∂ΦH . (4.63)

Since V and H are separable spaces, there exists a countable set F ⊂ ∂ΦH ⊂
V × H which is dense in ∂ΦH . Let us denote R := ∪[v,v∗]∈F R[v,v∗]. Since the
set F is countable, and any countable union of sets of measure zero is a set of
measure zero, R is a set of measure zero. Therefore, by (4.62) for any σ ∈ S \ R
inequality

(
g(σ) − v∗, u(σ) − v

)
≥ 0 holds for every [v, v∗] ∈ F . Let [v̂, v̂ ∗] be

an arbitrary element from ∂ΦH . Then from the density F in ∂ΦH we have the
existence of a sequence {[vl, v∗l ]}∞l=1 such that vl → v̂ in V , v∗l → v̂ ∗ in H and for
all σ ∈ S \R

(g(σ)− v∗l , u(σ)− vl) ⩾ 0 ∀l ∈ N. (4.64)

Thus, passing to the limit in this equality as l → ∞, we get (4.63). Therefore, for
a.e. t ∈ S we have

(g(t)− v∗, u(t)− v) ⩾ 0 ∀ [v, v∗] ∈ ∂ΦH .

From this, according to maximal monotonicity of ∂ΦH , we obtain that [u(t), g(t)] ∈
∂ΦH for a.e. t ∈ S.
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Estimate (3.1) of the solution of the problem P(Φ, τ, c, f) follows directly from
(4.39) and (4.48), (4.53), (4.54), and Proposition 2.2, Fatou’s Lemma and the fact
that ΦH is lower semicontinuous in H.
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24. A. Tychonoff, Théorèmes d’unicité pour l’équation de la chaleur, Mat. Sb., 42 (2)
(1953), 199–216.

25. I. Vrabie, Global solutions for nonlinear delay evolution inclusions with nonlocal
initial conditions, Set-Valued and Variational Analysis, 20 (3) (2012), 477–497.

26. R. Wang, Q. Xiang, P. Zhu, Existence and approximate controllability for sys-
tems governed by fractional delay evolution inclusions, Optimization, 63 (8) (2014),
1191–1204.

27. K. Yoshida, Functional Analysis, Springer-Verlag, Berlin, Heidelberg, 1995.

Received 12.06.2023


