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Abstract

In this paper, we investigate approximate fixed point results for ratio-
nal contraction mappings in a metric space. This manuscript’s inten-
tion is to demonstrate approximate fixed point results and the diam-
eter of the approximate fixed point results on metric spaces. Particu-
larly, we use some rational contraction mappings, which were mainly
discussed in Dass and Gupta [1975] and Jaggi [1977]. A few ex-
amples are included to illustrate our results. Also, we discuss some
applications of approximate fixed point results in the field of mathe-
matics rigorously.
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1 Introduction

Researchers from several fields have contributed to the growth of science and
technology by employing fixed point theory. Large-scale problems requiring fixed
point theory are highly esteemed for their lightning-fast solutions. As a result, in
recent years, many scholars have focused on developing fixed point theory ap-
proaches and have provided various useful techniques for discovering fixed points
in complex issues. These are currently crucial in many mathematics related areas
and applications, including economics, astronomy, dynamical systems, decision
theory, and parameter estimation. The father of fixed point theory, mathemati-
cian Brouwer [1911], proposed fixed point theorems for continuous mappings
on finite dimensional spaces. In 1922, Banach [1922] established and confirmed
the renowned Banach cotraction principle. Then, using contractive mappings on
metric spaces, various experts extended the Banach principle and proved more
complicated fixed point results. Kannan (refer, Kannan [1968], Kannan [1969])
established a fixed point results for operators that are not required to be continu-
ous. Chatterjea [1972] has investigated and presented a similar type of fixed point
results. The author, Zamfirescu [1972], combined the above two contractions and
derived his fixed point results. Ciric [1971] invented generalized contractions and
found some fixed point theorems by using them. Further, Reich [1971], introduced
his contraction operator and proposed fixed point findings. Subsequently, authors
Hardy and Rogers [1973] introduced a new contraction known as the Hardy and
Rogers contraction, and they derived some fixed point results. Similarly, Bian-
chini [1972] proved fixed point theorem by using another contraction mapping.
The unique fixed point theorem for weakly B-contraction mapping was proved
by Marudai and Bright [2015]. Additionally, some fixed point theorems for con-
vex contraction mappings and mappings with convex diminishing diameters were
proposed by Istratescu [1982] and Istratescu [1983]. Recently, many authors ex-
paneded these results and proved some innovative theorems (see, Mitrović et al.
[2019], Shahrazad et al. [2011]). The first scholars to investigate a generalisa-
tion of the Banach fixed point theorem while simultaneously using a contractive
condition of the rational type were Dass and Gupta [1975]. In the similar manner,
Jaggi [1977] used a contractive condition of the rational type to prove a fixed point
theorem in complete metric space. Then, Harjani et al. [2010] expanded Jaggi’s
findings to partially ordered metric spaces. Later, some results that focused on
coupled random fixed point theorems for mappings satisfying a contraction con-
dition of rational type on partially ordered metric spaces were derived by Ciric
et al. [2012]. Rational contraction conditions have been heavily employed in both
the fixed point and common fixed point locations. Due to the complexity of find-
ing an exact fixed point, one can show the results of an approximate fixed point.
Because an exact fixed point has overly strict limitations. This is the main rea-
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son to find an approximate fixed point (ϵ-fixed point). Assume that a selfmap,
T : K → K, has an approximate fixed point (called, t0). In which case, the
point Kt0 is ”very near” to the point t0. Here, the distance is less than ϵ, that is.,
d(Kt0, t0) < ϵ. An approximate fixed point is a point that is nearly located at
its respective fixed point. Originally, Tis et al. [2003] established the existence
of approximate fixed points, which turn out to be still guaranteed under various
weakened versions of the well-known fixed point theorems of Brouwer, Kakutani,
and Banach. Moreover, they studied approximate fixed point results for contrac-
tion and nonexpansive mappings (refer to Theorems 2.1, 2.2, 3.1 and 4.1, respec-
tively). Following that, Berinde [2006] proposed approximate fixed point results
(Qualitative theorems) by using various operators on metric spaces (not neces-
sarily complete). Further, he derived the diameter of the approximate fixed point
results (Quantitative theorems) by using two main lemmas (refer, Berinde [2002]
and Berinde [2003]). Also, Dey and Saha [2012] extended these results, and they
explained that the diameter of approximate fixed points for the Reich operator
tends to zero when ϵ approaches zero. Further, the authors (refer, Mohsenialhos-
seini [2017], Mohsenalhosseini et al. [2011]) considered some new approximate
fixed point results for cyclical contraction mappings. Additionally, Mohsenalhos-
seini and Saheli [2021] extended these results for a family of contraction mappings
and showed the existence of a common fixed point for Mohseni-Saheli mapping.
Also, the authours Tijani and Olayemi [2021] proved approximate fixed point re-
sults by using some rational contraction mappings. In this manuscript, we derive
some results, which include approximate fixed point theorems and diameters of
approximate fixed point theorems on metric spaces (not necessarily complete), by
using some rational contraction mappings, which were discussed mainly in Dass
and Gupta [1975] and Jaggi [1977].

The remaining parts of this manuscript are presented as follows: In Section
2, some definitions and lemmas are recalled from previous literature. In Section
3, we propose the main results of this work, where the existence and diameter of
approximate fixed points are rigorously discussed. In Section 4, we discuss and
prove some applications related to approximate fixed points in the field of applied
mathematics. Finally, in Section 5, we present some conclusions.

2 Preliminaries

In this section, we present some fundamental definitions and lemmas of ap-
proximate fixed point results, which are then employed throughout the remainder
of the main findings of this manuscript.
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Definition 2.1. Berinde [2006] Let (K, d) be a metric space and T : K → K,
ϵ > 0. Then t ∈ K is said to be an approximate fixed point (ϵ-fixed point) of K if

d(t,Kt) < ϵ.

Let Fϵ(K) = {t ∈ K : d(t,Kt) < ϵ} denotes the set of all ϵ-fixed points of K for
a given ϵ > 0.

Definition 2.2. Berinde [2006] Let T : K → K. Then K has the approximate
fixed point property (a.f.p.p) if for all ϵ > 0,

Fϵ(M) ̸= ∅.

Lemma 2.1. Berinde [2006] Let (K, d) be a metric space, T : K → K such that
K is asymptotic regular, that is., d(Kn(t), Kn+1(t)) −→ 0 as n −→ ∞, for all t ∈
K. Then, for all ϵ > 0,

Fϵ(K) ̸= 0.

Definition 2.3. Berinde [2006] Let (K, d) be a metric space, T : K → K a
operator and ϵ > 0. We define the diameter of the set Fϵ(K), that is.,

∆(Fϵ(K)) = sup{d(t, r) : t, r ∈ Fϵ(K)}.

Lemma 2.2. Berinde [2006] Let (K, d) be a metric space, T : K → K an
operator and ϵ > 0. We assume that:

(i) Fϵ(K) ̸= ∅;

(ii) for all θ > 0, there exists ϕ(θ) > 0 such that
d(t, r)− d(Kt,Kr) ≤ θ implies that d(t, r) ≤ ϕ(θ), for all t, r ∈ Fϵ(K).

Then;
∆(Fϵ(K)) ≤ ϕ(2ϵ).

Definition 2.4. Tijani and Olayemi [2021] Consider a selfmap φ : R+ → R+.
Then φ is said to be a comparison mapping if it satisfies the following conditions:

(i) φ is monotone increasing mapping, and

(ii) φn(t) converges to 0 as n −→ +∞, for all t ∈ R+.

Furthermore, we prove the following result, which is necessary to demonstrate
the main findings of this manuscript:

Theorem 2.1. Let (K, d) be a metric space and let T : K → K be a contraction.
Then K has an approximate fixed point (ϵ-fixed point).
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Proof. Fix k0 ∈ K and a sequence {kn} is defined by kn+1 = Kkn, for all
n ≥ 0. This implies {kn} is a Cauchy sequence. Thus, for all ϵ > 0 there exist
k0 ∈ N such that for every t, r ≥ k0 implies d(kt, kr) < ϵ. In particular, if
n ≥ k0, d(kn, kn+1) < ϵ. That is, d(kn, Kkn) < ϵ. Therefore, kn ∈ Fϵ(K) ̸= ∅,
for all ϵ > 0. Hence, K has an approximate fixed point (ϵ-fixed point).

Example 2.1. Let K = (0, 1) and a selfmap T : K → K is defined by Kk = k/2.
Then, K is a contraction. Since (0, 1) is not complete and hence K does not have
a fixed point. But {kn} is defined by kn+1 = Kkn with k0 = 1/2. Note that
kn+1 = 1/2n+2. Then, Fϵ(K) ̸= ∅, for all ϵ > 0. Hence, K has an ϵ-fixed point.

3 Main Results
In this section, we prove some approximate fixed point results for various

rational type contraction mappings on metric spaces.

Theorem 3.1. Let (K, d) be a metric space and T : K → K. Then there exists
ν, µ ∈ [0, 1) with ν+µ < 1 such that d(t,Kt)+d(r,Kr) ̸= 0 and for all t, r ∈ K
such that

d(Kt,Kr) ≤ ν[d(t,Kt)d(t,Kr) + d(r,Kr)d(r,Kt)]

d(t,Kr) + d(r,Kt)
+ µd(t, r).

Prove that K has an approximate fixed point (ϵ-fixed point) and

∆(Fϵ(K)) <
ϵ2(ν2 + µ2 + 6ν − 6µ− 2νµ+ 9) + ϵ(ν + µ+ 1)

2(1− µ)
, for all ϵ > 0.

Proof. Let ϵ > 0, t0 ∈ K and a sequence {tn} is defined by tn+1 = Ktn, for all n ≥
0. Consider,

d(Knt,Kn+1t) = d(K(Kn−1t), K(Knt))

≤ ν

[
d(Kn−1t,Knt)d(Kn−1t,Kn+1t) + d(Knt,Kn+1t)d(Knt,Knt)

d(Kn−1t,Kn+1t) + d(Knt,Knt)

]
+ µd(Kn−1t,Knt)

≤ νd(Kn−1t,Knt) + µd(Kn−1t,Knt)

≤ λd(Kn−1t,Knt), where λ = (ν + µ)

≤ λ2d(Kn−2t,Kn−1t)

. . .

≤ λnd(t,Kt)
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Since d(Knt,Kn+1t) −→ 0 as n −→ +∞, for all t, r ∈ K. This implies that
{tn} is a Cauchy sequence. By Theorem 2.1, Fϵ(K) ̸= ∅, for all ϵ > 0. That is,
K has an ϵ-fixed point. Clearly condition (i) of Lemma 2.2 is proved. Now only
to prove, the condition (ii) of Lemma 2.2. For that, take θ > 0 and t, r ∈ Fϵ(K).
Assume also that d(t, r)− d(Kt,Kr) ≤ θ. Show that ϕ(θ) > 0 exists. Consider,

d(t, r) ≤ d(Kt,Kr) + θ

≤ ν

[
d(t,Kt)d(t,Kr) + d(r,Kr)d(r,Kt)

d(t,Kr) + d(r,Kt)

]
+ µd(t, r) + 2ϵ

= ν

[
d(t,Kt)[d(t, r) + d(r,Kr)] + d(r,Kr)[d(t, r) + d(t,Kt)]

d(t, r) + d(r,Kr) + d(t, r) + d(t,Kt)

]
+ µd(t, r) + 2ϵ

= ν

[
ϵ[d(t, r) + ϵ] + ϵ[d(t, r) + ϵ]

2d(t, r) + 2ϵ

]
+ µd(t, r) + 2ϵ

=
2νϵd(t, r) + 2νϵ2 + 2µϵd(t, r) + 2µ[d(t, r)]2 + 4ϵd(t, r) + 4ϵ2

2d(t, r) + 2ϵ

Which implies that

2[d(t, r)]2 + 2ϵd(t, r)

= 2νϵd(t, r) + 2νϵ2 + 2µϵd(t, r) + 2µ[d(t, r)]2 + 4ϵ2 + 4ϵd(t, r)

That is,

2[d(t, r)]2 − 2µ[d(t, r)]2 + 2ϵd(t, r)− 2νϵd(t, r)− 2µϵd(t, r)− 4ϵd(t, r)

= 2νϵ2 + 4ϵ2

(2− 2µ)[d(t, r)]2 − (2ϵ+ 2µϵ+ 2νϵ)d(t, r) = 2ϵ2(ν + 2)

Thus, we have a = (2 − 2µ), b = −(2ϵ + 2µϵ + 2νϵ) and c = −2ϵ2(ν + 2).
Therefore,

d(t, r) ≤
2ϵ+ 2µϵ+ 2νϵ±

√
(2ϵ+ 2µϵ+ 2νϵ)2 + 4(2− 2µ)(2νϵ2 + 4ϵ2)

4− 4µ

=

2ϵ+ 2µϵ+ 2νϵ+

√
4ϵ2 + 4µ2ϵ2 + 4ν2ϵ2 + 8µϵ2 + 8νµϵ2 + 8νϵ2

+ 16νϵ2 + 32ϵ2 − 16νµϵ2 − 32µϵ2

4(1− µ)

=
2ϵ+ 2µϵ+ 2νϵ+

√
36ϵ2 + 4µ2ϵ2 + 4ν2ϵ2 − 24µϵ2 − 8νµϵ2 + 24νϵ

4(1− µ)

=
2(ϵ+ µϵ+ νϵ) + 2

√
9ϵ2 + µ2ϵ2 + ν2ϵ2 − 6µϵ2 − 2νµϵ2 + 6νϵ2

4(1− µ)
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<
ϵ+ µϵ+ νϵ+ 9ϵ2 + µ2ϵ2 + ν2ϵ2 − 6µϵ2 − 2νµϵ2 + 6νϵ2

2(1− µ)

=
ϵ2(9 + µ2 + ν2 − 6µ− 2νµ+ 6ν) + ϵ(ν + µ+ 1)

2(1− µ)

Hence,

∆(Fϵ(K)) <
ϵ2(ν2 + µ2 + 6ν − 6µ− 2νµ+ 9) + ϵ(ν + µ+ 1)

2(1− µ)
, for all ϵ > 0.

Example 3.1. Let (K, d) be a metric space. Let K = (0, 1/2] be endowed with
usual metric. Let T : K → K be defined by Kt = t/2, for all t ∈ K. For that,
choose ν = 0.25, µ = 0.2 and ϵ = 0.5. Also t = 0.5, r = 0.25 ∈ K. Then,
d(t,Kt) = 0.333 < 0.5, d(r,Kr) = 0.125 < 0.5. We have d(t, r) = 0.25 and

∆(Fϵ(K)) <
ϵ2(ν2 + µ2 + 6ν − 6µ− 2νµ+ 9) + ϵ(ν + µ+ 1)

2(1− µ)
= 1.907.

Hence, Theorem3.1 is satisfied.

Theorem 3.2. Let (K, d) be a metric space and T : K → K. Then there exists
ν, µ ∈ [0, 1) with ν + µ < 1 such that 1 + d(t, r) ̸= 0 and for all t, r ∈ K implies
that

d(Kt,Kr) ≤ νd(r,Kr)[1 + d(t,Kt)]

1 + d(t, r)
+ µd(t, r).

Prove that K has an approximate fixed point (ϵ-fixed point) and

∆(Fϵ(K)) <
2ϵ2(ν − νµ+ 1) + ϵ(2ν − 2µ− 2νµ+ 3)

1− µ
, for all ϵ > 0.

Proof. Let ϵ > 0, t0 ∈ K and a sequence {tn} is defined by tn+1 = Ktn, for all n ≥
0. Consider,

d(Knt,Kn+1t) = d(K(Kn−1t), K(Knt))

≤ ν

[
d(Knt,Kn+1t)[1 + d(Kn−1t,Knt)]

1 + d(Kn−1t,Knt)

]
+ µd(Kn−1t,Knt)

≤ νd(Knt,Kn+1t) + µd(Kn−1t,Knt)

≤ λd(Kn−1t,Knt), where λ =
µ

1− ν

≤ λ2d(Kn−2t,Kn−1t)

. . .

≤ λnd(t,Kt)
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Since d(Knt,Kn+1t) −→ 0 as n −→ +∞, for all t, r ∈ K. This implies that
{tn} is a Cauchy sequence. By Theorem 2.1, Fϵ(K) ̸= ∅, for all ϵ > 0. That is,
K has an ϵ-fixed point. Here, as in the previous Theorem 3.1, we have

d(t, r) ≤ d(Kt,Kr) + θ

=
νd(r,Kr)[1 + d(t,Kt)]

1 + d(t, r)
+ µd(t, r) + 2θ

=
νϵ[1 + ϵ]

1 + d(t, r)
+ µd(t, r) + 2ϵ

=
νϵ+ αϵ2 + µd(t, r) + µ[d(t, r)]2 + 2ϵd(t, r) + d(t, r)

1 + d(t, r)

Which implies that

d(t, r) + [d(t, r)]2 ≤ νϵ+ νϵ2 + µd(t, r) + µ[d(t, r)]2 + 2ϵd(t, r) + 2ϵ

d(t, r) + [d(t, r)]2 − µd(t, r)− µ[d(t, r)]2 − 2ϵd(t, r) ≤ νϵ2 + νϵ+ 2ϵ

(1− µ)[d(t, r)]2 + (1− µ− 2ϵ)d(t, r) ≤ νϵ2 + νϵ+ 2ϵ

Thus, we have a = (1−µ), b = (1−µ−2ϵ) and c = −(νϵ2+νϵ+2ϵ). Therefore,

d(t, r) ≤
−(1− µ− 2ϵ)±

√
(1− µ− 2ϵ)2 + 4(1− µ)(νϵ2 + νϵ+ 2ϵ)

2(1− µ)

≤
−1 + µ+ 2ϵ+

√
1− µ2 + 4ϵ2 − 2µ+ 4µϵ− 4ϵ+ 4νϵ2 + 4νϵ

+ 8ϵ− 4νµϵ2 − 4νµϵ− 8µϵ

2(1− µ)

≤
−1 + µ+ 2ϵ+

√
1− µ2 − 2µ+ 4ϵ2 + 4νϵ2 + 4ϵ

+ 4νϵ+ 4νµϵ2 − 4νµϵ− 4µϵ

2(1− µ)

<

−1 + µ+ 2ϵ+ 1 + µ2 − 2µ+ 4ϵ2 + 4νϵ2 + 4ϵ

+ 4νϵ− 4νµϵ2 − 4νµϵ− 4µϵ

2(1− µ)

=
µ2 − µ+ 4ϵ2(1 + ν − νµ) + 2ϵ(3 + 2ν − 2νµ− 2µ)

2(1− µ)

<
4ϵ2(1 + ν − νµ) + 2ϵ(2ν − 2µ− 2νµ+ 3)

2(1− µ)
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Hence,

∆(Fϵ(K)) <
2ϵ2(ν − νµ+ 1) + ϵ(2ν − 2µ− 2νµ+ 3)

1− µ
, for all ϵ > 0.

Theorem 3.3. Let (K, d) be a metric space and T : K → K. Then there exists
ν ∈ [0, 1) such that d(t,Kt) + d(r,Kr) ̸= 0 and for all t, r ∈ K implies that

d(Kt,Kr) ≤ d(t,Kt)d(t,Kr) + d(r,Kr)d(r,Kt)

d(t,Kr) + d(r,Kt)
.

Prove that K has an approximate fixed point (ϵ-fixed point) and

∆(Fϵ(K)) <
ϵ2(ν2 + 6ν + 9) + ϵ(ν + 1)

2
, for all ϵ > 0.

Proof. Let ϵ > 0, t0 ∈ K and a sequence {tn} is defined by tn+1 = Ktn, for all n ≥
0. Consider,

d(Knt,Kn+1t) = d(K(Kn−1t), K(Knt))

≤ ν
d(Kn−1t,Knt)d(Kn−1t,Kn+1t) + d(Knt,Kn+1t)d(Knt,Knt)

d(Kn−1, Kn+1t) + d(Knt,Knt)

= ν
d(Kn−1t,Knt)d(Kn−1t,Kn+1t)

d(Kn−1t,Kn+1t)

= νd(Kn−1t,Knt)

≤ ν2d(Kn−2t,Kn−1t)

. . .

≤ νnd(t,Kt)

Since d(Knt,Kn+1t) −→ 0 as n −→ +∞, for all t, r ∈ K. Which implies that
{tn} is a Cauchy sequence. By Theorem 2.1, Fϵ(K) ̸= ∅, for all ϵ > 0. That is,
K has an ϵ-fixed point. Here, as same as in previous Theorem 3.1, we have

d(t, r) ≤ d(Kt,Kr) + θ

≤ ν[d(t,Kt)d(t,Kr) + d(r,Kr)d(r,Kt)]

d(t,Kr) + d(r,Kt)
+ θ

=
νϵ[ϵ+ d(t, r)] + νϵ[ϵ+ d(t, r)]

2ϵ+ 2d(t, r)
+ 2ϵ

=
νϵ2 + νϵd(t, r) + νϵ2 + νd(t, r) + 4ϵ2 + 4ϵd(t, r)

2ϵ+ 2d(t, r)
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Which implies that

2[d(t, r)]2 + 2ϵd(t, r)− 2νϵd(t, r)− 4ϵd(t, r) = 2νϵ2 + 4ϵ2

2[d(t, r)]2 − 2ϵ(ν + 1)d(t, r) = 2ϵ2(ν + 2)

Thus, we have a = 2, b = −2ϵ(ν + 1) and c = −2ϵ2(ν + 2). Therefore,

d(t, r) ≤
2ϵ(ν + 1)±

√
4ϵ2(ν + 1)2 + 16ϵ2(ν + 2)

4

=
2ϵ(ν + 1) +

√
4ϵ2(ν2 + 1 + 2ν) + 16ϵ2ν + 32ϵ2

4

=
2ϵ(ν + 1) +

√
4ϵ2ν2 + 4ϵ2 + 8ϵ2ν + 16ϵ2ν + 32ϵ2

4

=
2ϵ(ν + 1) +

√
4ϵ2ν2 + 36ϵ2 + 24ϵ2ν

4

=
2ϵ(ν + 1) + 2

√
ϵ2ν2 + 9ϵ2 + 6ϵ2ν

4

<
ϵν + ϵ+ ϵ2ν2 + 9ϵ2 + 6ϵ2ν

2

=
ϵ2(ν2 + 6ν + 9) + ϵ(ν + 1)

2

Hence,

∆(Fϵ(K)) <
ϵ2(ν2 + 6ν + 9) + ϵ(ν + 1)

2
, for all ϵ > 0.

Corolary 3.1. Let (K, d) be a metric space and T : K → K. Then there exists
ν ∈ [0, 1) such that d(t,Kt) + d(r,Kr) ̸= 0 and for all t, r ∈ K implies that

d(Kt,Kr) ≤ ν.max

{
d(t,Kt)d(t,Kr) + d(r,Kr)d(r,Kt)

d(t,Kr) + d(r,Kt)
, d(t, r)

}
.

Prove that K has an approximate fixed point (ϵ-fixed point) and

∆(Fϵ(K)) < max

{
ϵ2(ν2 + 6ν + 9) + ϵ(ν + 1)

2
,

2ϵ

1− ν

}
, for all ϵ > 0.

Proof. The same proof of above Theorem 3.3 completes this corollary.
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Example 3.2. Let (K, d) be a metric space. Let K = (0, 1/2] be endowed with
usual metric. Let T : K → K be defined by Kt = t/22, for all t ∈ K. To show
that the corollary 3.1 is satisfied. For that choose ν = 0.25 and ϵ = 0.5. Also
t = 0.5, r = 0.25 ∈ M . Then, d(t,Kt) = 0.333 < 0.5; d(r,Kr) = 0.125 < 0.5.
We have d(t, r) = 0.25 and

∆(Fϵ(K)) = 0.25 <
ϵ2(ν2 + 6ν + 9) + ϵ(ν + 1)

2
= 1.633.

Hence, Theorem 3.3 and Corollary 3.1 are satisfied.

Theorem 3.4. Let (K, d) be a metric space and T : K → K. Then there exists
ν, µ ∈ [0, 1) and for all t, r ∈ K such that

d(Kt,Kr) ≤ νd(t, r) + µ
d(t,Kt)d(r,Kr)

d(t, r)
.

Prove that K has an approximate fixed point (ϵ-fixed point) and

∆(Fϵ(K)) <
ϵ2(µ− νµ+ 1) + ϵ

1− ν
, for all ϵ > 0.

Proof. Let ϵ > 0, t0 ∈ K and a sequence {tn} is defined by tn+1 = Ktn, for all n ≥
0. Consider,

d(Knt,Kn+1t) = d(K(Kn−1t), K(Knt))

≤ νd(Kn−1t,Knt) +
µd(kn−1, Knt)(Knt,Kn+1t)

d(Kn−1t,Knt)

= νd(Kn−1t,Knt) + µd(Knt,Kn+1t)

= λd(Kn−1t,Knt), where λ =
ν

1− µ

≤ λ2d(Kn−2t,Kn−1t)

. . .

≤ λnd(t,Kt)

Since d(Knt,Kn+1t) −→ 0 as n −→ +∞, for all t, r ∈ K. Which implies that
{tn} is a Cauchy sequence. By Theorem 2.1, Fϵ(K) ̸= ∅, for all ϵ > 0. That is,
K has an ϵ-fixed point. Here, as in the previous Theorem 3.1, we have

d(t, r) ≤ d(Kt,Kr) + θ

= νd(t, r) + µ
d(t,Kt)d(r,Kr)

d(t, r)
+ θ

= νd(t, r) +
µϵ2

d(t, r)
+ 2ϵ

=
ν[d(t, r)]2 + µϵ2 + 2ϵd(t, r)

d(t, r)
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On simplifying,

[d(t, r)]2 = ν[d(t, r)]2 + µϵ2 + 2ϵd(t, r)

[d(t, r)]2 − ν[d(t, r)]2 − 2ϵd(t, r) = µϵ2

(1− ν)[d(t, r)]2 − 2ϵd(t, r) = µϵ2

Which implies that a = (1− ν), b = −2ϵ and c = −µϵ2. Therefore,

d(t, r) =
2ϵ±

√
4ϵ2 + 4(1− ν)µϵ2

2(1− ν)

=
2ϵ+

√
4ϵ2 + 4µϵ2 − 4νµϵ2

2(1− ν)

=
2ϵ+ 2

√
ϵ2 + µϵ2 − νµϵ2

2(1− ν)

<
ϵ+ ϵ2 + µϵ2 − νµϵ2

(1− ν)

Hence,

∆(Fϵ(K)) <
ϵ2(µ− νµ+ 1) + ϵ

1− ν
, for all ϵ > 0.

Corolary 3.2. Let (K, d) be a metric space and T : K → K. Then there exists
ν ∈ [0, 1) and for all t, r ∈ K such that

d(Kt,Kr) ≤ µd(t,Kt)d(r,Kr)

d(t, r)
.

Prove that K has an approximate fixed point (ϵ-fixed point) and

∆(Fϵ(K)) < ϵ2(1 + µ) + ϵ, for all ϵ > 0.

Proof. The same proof of Theorem 3.4 completes this corollary when ν = 0.

Theorem 3.5. Let (K, d) be a metric space and T : K → K. Then there exists
ν, µ ∈ [0, 1) with d(r,Kr) + d(t, r) ̸= 0 and for all t, r ∈ K such that

d(Kt,Kr) ≤ ν
d(t,Kt)d(t,Kr)d(r,Kr)

d(r,Kr) + d(t, r)
+ µd(t, r).

Prove that K has an approximate fixed point (ϵ-fixed point) and

∆(Fϵ(K)) <
ϵ4ν2 + ϵ3(6ν − 6µ− 2νµ+ 8) + ϵ2(µ2 + ν + 1) + ϵ(µ+ 1)

2(1− µ)
,∀ϵ > 0.
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Proof. Let ϵ > 0, t0 ∈ K and a sequence {tn} is defined by tn+1 = Ktn, for all n ≥
0. Consider,

d(Kn+1t,Knt) = d(K(Knt), K(Kn−1t))

≤ ν
d(Knt,Kn+1t)d(Knt,Knt)d(Kn−1t,Knt)

d(Kn−1, Kn+1t)
+ µd(Knt,Kn−1t)

= µd(Knt,Kn−1t)

≤ µ2d(Kn−1t,Kn−2t)

. . .

≤ µnd(Kt, t)

Since d(Knt,Kn+1t) −→ 0 as n −→ +∞, for all t, r ∈ K. Which implies that
{tn} is a Cauchy sequence. By Theorem 2.1, Fϵ(K) ̸= ∅, for all ϵ > 0. That is,
K has an ϵ-fixed point. Here, as in the previus Theorem 3.1, we have

d(t, r) ≤ d(Kt,Kr) + θ

≤ d(t,Kt)d(t,Kr)d(r,Kr)

d(r,Kr) + d(t, r)
+ µd(t, r) + θ

=
νϵd(t, r) + νϵ3

ϵ+ d(t, r)
+ µd(t, r) + 2ϵ

=
νϵ2d(t, r) + νϵ3 + µd(t, r) + µ[d(t, r)]2 + 2ϵ3 + 2ϵd(t, r)

ϵ+ d(t, r)

That is,
(1− µ)[d(t, r)]2 = (νϵ2 + µϵ+ ϵ)d(t, r) + νϵ3 + 2ϵ3

Which implies that a = (1 − µ), b = −(νϵ2 + µϵ + ϵ) and c = −(µϵ3 + 2ϵ3).
Therefore,

d(t, r) =
νϵ2 + µϵ+ ϵ±

√
(νϵ2 + µϵ+ ϵ)2 + 4(1− µ)(νϵ3 + 2ϵ3)

2(1− µ)

=

νϵ2 + µϵ+ ϵ+

√
ν2ϵ4 + µ2ϵ2 + ϵ2 + 2νµϵ3 + 2µϵ2

+ 2νϵ3 + 4νϵ3 + 8ϵ3 − 4νµϵ3 − 8µϵ3

2(1− µ)

=
νϵ2 + µϵ+ ϵ+

√
ν2ϵ4 + µ2ϵ2 + ϵ2 − 2νµϵ3 − 6µϵ3 + 6νϵ3 + 8ϵ3

2(1− µ)

<
νϵ2 + µϵ+ ϵ+ ν2ϵ4 + µ2ϵ2 + ϵ2 − 2νµϵ3 − 6µϵ3 + 6νϵ3 + 8ϵ3

2(1− µ)
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Hence,

∆(Fϵ(K)) <
ϵ4ν2 + ϵ3(6ν − 6µ− 2νµ+ 8) + ϵ2(µ2 + ν + 1) + ϵ(µ+ 1)

2(1− µ)
,∀ϵ > 0.

Corolary 3.3. Let (K, d) be a metric space and T : K → K. Then there exist
ν ∈ [0, 1) and φ, a comparison mapping satisfying φ(t) < t, for all t > 0. Also,
d(r,Kr) + d(t, r) ̸= 0 and for all t, r ∈ K such that

d(Kt,Kr) ≤ ν
d(t,Kt)d(t,Kr)d(r,Kr)

d(r,Kr) + d(t, r)
+ φ(µd(t, r)).

Prove that K has an approximate fixed point (ϵ-fixed point) and

∆(Fϵ(K)) <
ϵ4ν2 + ϵ3(6ν − 6µ− 2νµ+ 8) + ϵ2(µ2 + ν + 1) + ϵ(µ+ 1)

2(1− µ)
,∀ϵ > 0.

Proof. The same proof of Theorem 3.5 completes this corollary because compar-
ison mapping φ(t) < t, for all t > 0.

4 Applications
Approximate fixed point theory covers a wide range of applications in mathe-

matics, particularly differential geometry, numerical analysis, and so on. By read-
ing Debnath et al. [2021], Khuri and Louhichi [2018] and references therein, one
can find a variety of applications involving approximate fixed point results in the
field of mathematics. The examples below demonstrate how to apply approximate
fixed point findings in differential equations.

Example 4.1. Consider l′′(k) = 6l2(k), 0 ≤ k ≤ 1 subect to l(0) = 1/4, l(1) =
1/9. Exact solution is l0(k) = −5k/36 + 1/4; Consider a mapping K : [0, 1] →
[0, 1] is defined by

K(l) = l +

∫ 1

0

G(k, s)[l′′(s)− ϕ(s, l(s), l′(s))]ds

=
−5k

36
+

1

4
−

∫ 1

0

G(k, s)ϕ(s, l(s), l′(s))ds

==
−5k

36
+

1

4
−
∫ 1

0

G(k, s)6l′′(s)ds
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Consider,

|K(l1)−K(l2)| = 6

∣∣∣∣−∫ 1

0

G(k, s)l21(s)ds+

∫ 1

0

G(k, s)l22(s)ds

∣∣∣∣
= 6

(∫ 1

0

|G(k, s)|2ds
) 1

2
(∫ 1

0

|l22(s)− l21(s)|2ds
) 1

2

≤ 1

4
√
3

(∫ 1

0

|l22(s)− l21(s)|2ds
) 1

2

< sup
[0,1]

|l1(s)− l2(s)|

Hence, K is a contraction operator. So, by Theorem 2.1, K has an ϵ-fixed point.

Example 4.2. Consider l′′(s) =
3l2(s)

2
, 0 ≤ k ≤ 1 subect to l(0) = 4, l(1) = 1.

Exact solution is l(s) =
4

(1 + s)2
; Consider a mapping K : [0, 1] → [0, 1] by

K(l) = l +

∫ 1

0

G(k, s)[l′′(s)− ϕ(s, l(s))]ds (1)

Consider, l′′(k) = 0 which implies

l(k) = c1k + c2 (2)

By initial condition we have c2 = 4 and c1 = −3. Then (2) becomes l(k) =
−3k + 4. Therefore, from (1), we get

K(l) = −3k + 4 +

∫ 1

0

G(k, s)[l′′(s)− ϕ(s, l(s))]ds

= −3k + 4 +

∫ 1

0

G(k, s)l′′(s)ds−
∫ 1

0

G(k, s)ϕ(s, l(s))ds

= −3k + 4 +

∫ 1

0

G(k, s)
3

2
l2(s)ds
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Consider,

|K(l1)−K(l2)| =
∣∣∣∣−∫ 1

0

G(k, s)
3

2
l21(s)ds+

∫ 1

0

G(k, s)
3

2
l22(s)ds

∣∣∣∣
=

3

2

∣∣∣∣∫ 1

0

G(k, s)[l22(s)− l21(s)]ds

∣∣∣∣
≤ 3

2

(∫ 1

0

|G(k, s)|2ds
) 1

2
[∫ 1

0

|l22(s)− l21(s)|2ds
] 1

2

≤ 3

2

(∫ k

0

s2(1− k)2ds+

∫ 1

k

k2(1− s)2ds

) 1
2
[∫ 1

0

|l22(s)− l21(s)|2ds
] 1

2

≤ 3

2

{
(1− k)2k3

3
+

k2(1− k)3

3

} 1
2
[∫ 1

0

|l22(s)− l21(s)|2ds
] 1

2

≤ 3

2

{
(1− k)2

3
[k3 + k2(1− k)]

} 1
2
[∫ 1

0

|l22(s)− l21(s)|2ds
] 1

2

≤ 3

2

{
(1− k)2k2

3

} 1
2
[∫ 1

0

|l22(s)− l21(s)|2ds
] 1

2

≤ 3

8
√
3

[∫ 1

0

|l22(s)− l21(s)|2ds
] 1

2

≤
√
3

8

[∫ 1

0

|l22(s)− l21(s)|2ds
] 1

2

≤
√
3

8
sup
[0,1]

|l2(s)− l1(s)|

≤ sup
[0,1]

|l2(s)− l1(s)|

Hence, K is a contraction operator. So, by Theorem 2.1, K has an ϵ-fixed point.

5 Conclusion
In this paper, some approximate fixed point theorems are established in metric

space by using various types rational contractions mappings. It is worth observing
that in the limiting case ϵ −→ 0, all the results established in the present paper
produces more restricted approximate fixed points. Since different findings deliv-
ered in the future might be shown in a smaller setting to ensure the existence of the
approximate fixed points. The same time the idea of an approximate fixed points
(ϵ-fixed points) are therefore no less important than that of exact fixed points.
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