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Deep learning (DL)-based methods are increasingly applied within medical fields. Since DL needs large 

amount of training data that is often difficult to be collected from a single medical facility, data from 

multi-facilities with different settings can be used. A specific class imbalance, called intra-source 

imbalance, within the data collected from each medical facility might affect the performance, but 

received negligible attention and thus the impact remains unclear. This dissertation aims to clarify the 

impact by selecting the COVID-19 diagnosis using chest X-ray (CXR) images as a case study. To this 

end, we utilized two different datasets, both of which contain COVID-19 and non-COVID-19 images, to 

train a commonly used DL model, VGG-16. One dataset is intra-source imbalanced: each medical facility 

only provided COVID-19 data or non-COVID-19 data. The other dataset is intra-source balanced: it 

collected all data from a same medical facility. We removed lung regions from the CXRs and used the 

lungs-removed images to train and test VGG-16. Then, we made a cross-dataset test, that trains the model 

using one dataset and tests it on another dataset, to evaluate the performance of the models. As the results, 

for the imbalanced dataset, the model achieved the area under the receiver operating characteristic curve 

(AUC) of 0.99 on lungs-removed data which is unexpected for a lung-based illness. For the balanced 

dataset, the AUC value was 0.53 on lungs-removed data. In the cross-dataset test, the imbalanced 

dataset-trained model achieved 0.5 AUC on balanced dataset, which means nearly no classification 

capacity. In contrast, the balanced dataset-trained model achieved 0.84 AUC on the imbalanced dataset. 

The visualization results showed that areas outside lung regions strongly impacted the decisions of the 

imbalanced dataset-trained model, while the balanced dataset-trained model relied on area inside lung 

regions. This study reveals clear evidence that the intra-source balance of training data is vital for DL and 

suggests how to prepare a training dataset for DL-based methods. 
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和文アブストラクト 

論文題目： 深層学習における訓練データの性質が COVID-19 画像診断性能に与える影響に関

する研究 

提出者氏名： 張 彰 チョウ ショウ 

指導教員： 本間 経康 

医療分野でも深層学習の応用が進み、多くの優れた成果が報告されている。深層学習は大量の

学習データを必要とするが、希少疾患や新規疾患の場合、単一施設で大量の医療データを用意

することは困難を伴うため、多施設からの寄せ集め的収集を余儀なくされることも多い。しか

し、寄せ集めに起因するデータの不均衡は医療統計学的問題を生じやすいことが知られている。

実際 COVID-19感染爆発のように、未知の疾患でかつ迅速性が要求される場合、各医療施設から

収集するデータの性質は十分検討できない場合もある。とくに、同一施設から収集される疾患

群と対照群の不均衡（施設不均衡と呼ぶ) は、これまで注目されておらず、深層学習の性能に

どの程度の悪影響を及ぼすか不明であった。本論文では、胸部 X線画像における COVID-19の深

層学習を用いた診断を例に、この施設不均衡の影響を明らかにすることを目的とする。 

代表的な深層学習モデルである VGG-16 と、COVID-19 疾患群と対照群を含む、2 つの異なる胸

部 X 線データセットを使用した。1 つ目は、疾患群と対照群をそれぞれ異なる施設から寄せ集

め的に収集した施設不均衡なデータセットである。2つ目は、疾患群、対照群とも同一施設で収

集した施設均衡なデータセットである。ただし、両データセットとも疾患群、対照群の症例数

は同一（均衡）である。また、胸部 X線画像の肺領域を特定し、原画像から肺を除去（黒埋め）

した肺除去画像も作成した。COVID-19 の診断（鑑別）性能は受信者動作特性曲線下面積(Area 

under the curve, AUC)を用いて評価した。AUC は 0 から 1 の連続値で、1 に近いほど高性能を

意味する。不均衡なデータセットを用いた場合の VGG-16の鑑別性能は、原画像ならびに肺除去

画像で訓練した結果が、いずれも AUCが 0.99以上のほぼ完璧な鑑別性能を達成した。しかし、

COVID-19 の多くは肺疾患を発症するため、肺除去画像での高性能鑑別は予想外であり、医学的

に妥当であるとは言い難い。一方、均衡データセットの場合、原画像と肺除去画像を用いた訓

練による AUC 値は、それぞれ 0.74 と 0.53 となり、予想通り肺除去による影響で鑑別性能が大

きく低下したことが示唆された。さらに、VGG-16の鑑別根拠を注目領域として可視化した結果、

不均衡データセットで訓練した場合は、肺野以外の部分が鑑別に強く影響することが示された

のに対し、均衡データセットで訓練した場合は、主に肺野に注目していた。これらの結果は、

深層学習ベースの医用画像診断において、データの施設均衡が重要であることをはじめて実証

したものであり、高性能を実現するために訓練データセットが備えるべき新たな統計的性質を

示唆するものである。 
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Deep learning-based methods are increasingly developed, especially for use in med-

ical fields. Since deep learning needs large amount of training data, medical data are

often acquired in different settings among medical facilities as much as possible. A

specific class imbalance, called intra-source imbalance, within the data collected from

each medical facility might affect the performance of deep learning-based methods,

but received negligible attention and thus the impact of the intra-source imbalance

remains unclear. In this dissertation, we aim to clarify the impact by selecting the

COVID-19 diagnosis using chest X-ray (CXR) images as a case study. To this end,

we utilized two different CXR datasets, both of which contains COVID-19 data and

non-COVID-19 data, to train and test VGG-16, a commonly used deep learning

model. One dataset is an intra-source imbalanced dataset, because each medical

facility only provided COVID-19 data or non-COVID-19 data. The other dataset is

an intra-source balanced dataset, because all the data were collected from the same

medical facility. We segmented lung regions from the CXRs, and then used the orig-

inal data and lungs-removed data to train and test VGG-16, separately. Then, we

made a cross-dataset test, that trains a model using one dataset and tested it on an-

other dataset, to evaluate the performance of the VGG-16 models by using the area

under receiver operating characteristic curve (AUC) value. Finally, we used Local

Interpretable Model-agnostic Explanations (LIME) to visualize the explanations for

the decisions made by the models in the cross-dataset test. As the results, for the im-

balanced dataset, VGG-16 models trained by original data or lungs-removed data all

achieved an AUC value over 0.99. Since COVID-19 is a lung-based illness, the result

is unexpected and reveals an unreliability in terms of medical findings. For the bal-

anced dataset, the AUC value was 0.74 on original data, and it was decreased to 0.53

when using lungs-removed data. In the cross-dataset test, when trained the model

by the imbalanced dataset and tested on the balanced dataset, the AUC was 0.5 ap-

proximately, which means nearly no classification capacity. In contrast, the model
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trained by the balanced dataset achieved 0.84 AUC value when tested on the im-

balanced dataset. The visualization results showed that areas outside lung regions

strongly impacted the decisions of the model trained by the imbalanced dataset,

while the model trained by balanced dataset relied on area in the lung regions to

make decisions. This study reveals clear evidence that the intra-source balance is vi-

tal for training data to minimize the risk of poor performance of deep learning-based

methods and suggests how to prepare a training dataset for deep learning.
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Chapter 1

Introduction

Over the last decades, medical imaging, e.g. computed tomography (CT), magnetic

resonance image (MRI), positron emission tomography (PET), mammography, ultra-

sound, X-ray and so on, has shown the importance for the early detection, accurate

diagnosis, and effective treatment of diseases. However, the medical image interpre-

tation needs to be performed by human experts and sometimes it is difficult even for

experts. Therefore, computer-aided diagnosis (CAD) systems, which applied com-

puter vision and artificial intelligence (AI) including machine learning techniques

on medical image interpretation, were proposed to help doctors in detection and

differential diagnosis of many different types of abnormalities in medical images.

Prior to the proposal of CAD systems, computer systems have been used in

picture archiving and communication systems (PACS) for the management of the

medical images, but it seems unlikely to bring a significant clinical benefit to radiol-

ogists (Doi, 2007). To realize a major benefit in radiologists’ daily work, it led to the
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concept of automated computer diagnosis (Doi, 2007). Before 1980s, there were some

attempts for automated computer diagnosis but they were not successful. After that,

another approach, named computer-aided diagnosis, has spread widely and quickly.

It assumed the computer output should be used as a "second opinion" but not the

final decision. Now, machine learning has a potential to perform on par with med-

ical experts and plays a key role in the daily work of doctors. Doctors rely on CAD

systems for the detection, diagnosis, and treatment of diseases, and the research of

CAD systems has been increased rapidly.

Different types of machine learning approaches are adapted in CAD systems,

such as unsupervised learning and supervised learning. Unsupervised learning

refers to the use of machine learning algorithms to identify patterns in datasets

without labels. Clustering, which groups similar data into a cluster, is a typical un-

supervised learning algorithm. For example, micro-calcification clusters (MCCs),

important signs at an early stage of breast cancer, can be classified by using clus-

tering (Zhang et al., 2020). Regarding the radiologists’ workflow, the MCCs can be

classified into grouped, regional, diffuse, segmental, and linear categories refer to

the arrangement in the breast, and the spatial distribution categories are relative to

the risk of malignancy. To mimic the workflow, a Gaussian mixture model-based

method was proposed to extract the main features of MCCs, such as the area, the

eccentricity, and the direction. Based on the extracted features, the MCCs can be

clustered into five spatial distribution categories. The results showed the accuracy

was 68%. On the other hand, supervised learning is defined by its use of labeled

datasets to train algorithms for classification or prediction. For example, support

vector machines have shown accurate results for various disease diagnosis tasks.

Among the supervised learning algorithms, deep learning has attracted more

and more attention in recent years. One important advantage of deep learning is
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that it does not need to manually design features from the images. In early days,

feature engineering was an important step for developing a new CAD algorithm.

Researchers should understand workflow of doctors for the task and design rele-

vant features to mimic the workflow. The CAD algorithms often can extract the

features automatically and combine the features into a computer score. However, to

propose such a CAD system for complicated tasks, high-level expert knowledge is

necessary, and the hand-crafted features may only work for limited cases and may

be not robust. Therefore, image-based CAD algorithms without without the need

of manually designed features were proposed, and deep learning-based CAD algo-

rithms were the most representative image-based algorithms. Another advantage

of deep learning is its groundbreaking performance. Liu et al. (2019) compared the

performance of deep learning and health-care professionals in detecting diseases

from medical images, and they reported deep learning algorithms have equivalent

sensitivity and specificity to the professionals. Because of these advantages, deep

learning algorithms are expected to solve new tasks, i.e., coronavirus disease 2019

(COVID-19) diagnosis.

On the other hand, the lack of accepted theoretical explanation remains the fun-

damental problem of deep learning, i.e., the black-box nature. The cause is that deep

learning models lack transparency and explainability; it is difficult to know and un-

derstand how the model made a prediction, and the inner workings remain opaque

to the outside observer. Without a sufficient understanding of a mechanism behind

the machine-made prediction, it becomes very complicated to detect hidden risks in

deep learning-based methods, i.e., training bias caused by mislabeled training data,

especially for medical applications.

Because deep learning-based methods always apply huge data to train a stan-

dard architecture network as a black box, the performance of them strongly relies on
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the training data. Therefore, many researches discussed the influence of data char-

acteristics on the performance of deep learning-based methods. One important data

characteristic focused by researchers is class imbalance, which means a difference

in quantity among categories. When trained by a class imbalanced dataset, deep

learning might over-classify the majority group due to its increased prior probabil-

ity. Moreover, data from only one medical facility might have some limitations, such

as over-representation of vulnerable populations. Using the data from one medical

facility might lead to a hidden risk that the results could not depend on the de-

sired properties of the data but instead depend on potentially unobserved aspects.

Collecting high-variability images from different medical facilities are expected to

solve this problem (McDermott et al., 2021). Therefore, researchers always collected

as much data as possible from different medical facilities. Due to the class imbal-

ance within each medical facility and the different settings among medical facilities,

the issue of intra-source imbalance often occurs in medical datasets. This imbalance

could also impact the performance of deep learning-based methods but receives neg-

ligible attention.

In this dissertation, for investigating the impact of intra-source imbalance on

the performance of deep learning-based methods, we select the COVID-19 diagnosis

in chest X-ray (CXR) images as a case study. The contents of this dissertation are

organized as follows:

Chapter 1 is the introduction part, which introduce the background and pur-

pose of this study. The outline of this dissertation is also given in this chapter.

Chapter 2 is about the fundamental studies and related researches. We introduced

the architecture of deep learning models and several important data characteristics

when training deep learning models. In addition, previous studies on COVID-19
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diagnosis in CXR images using deep learning are reviewed in this chapter. In Chap-

ter 3, we talk about our comparison experiment and the cross-dataset test. In this

chapter, our experimental results reveal the risk of unreliability when using intra-

source imbalanced datasets in deep learning methods. Chapter 4 talks about the

visualization investigation of the cross-dataset test in Chapter 3. The explanations

for the decisions made by deep learning models are visualized by LIME (Local Inter-

pretable Model-agnostic Explanations) method (Ribeiro, Singh, and Guestrin, 2016).

The results intuitively show that the model trained by the intra-source imbalanced

dataset classifies images based on the features representing data sources but not the

features representing COVID-19. Chapter 5 is the discussion part. It has discussed

the proper inter-source balance level for training data. The results showed when us-

ing a dataset with intra-source balance below 50%, the intra-source imbalance could

influence the performance. Moreover, we demonstrated potentially unobserved as-

pects inside lung regions could also aspect deep learning performance. Chapter 6

draws conclusions of this dissertation and includes several possible extensions and

directions we could further explore.



6

Chapter 2

Fundamental Studies and Related

Research

COVID-19 has been widely spread worldwide and continues to have a devastating

effect on the health and life of the global population. The polymerase chain reaction

(PCR) test is the gold standard for detection nowadays, but it is time-consuming

and laborious, and it is also suffering from the high cost. As one of the essential

complements to PCR testing, chest X-ray (CXR) imaging has also demonstrated its

effectiveness in current diagnosis. The CXR imaging is often part of the standard

procedure for patients with respiratory complaints, and it is reported that some pa-

tients showed abnormalities in the CXR images before they eventually test positive

for COVID-19 with the PCR test. Moreover, all the rapid triaging, availability, acces-

sibility, and portability of CXR imaging indicated that it could be a preliminary tool
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for COVID-19 screening. Nonetheless, one of the biggest bottlenecks of CXR screen-

ing is the need for experts to diagnose from the CXR images because the radiological

signatures can be subtle.

The deep learning-based methods can actually enhance the diagnosis perfor-

mance by radiologists (Homma et al., 2020b) and aid image diagnosis in the lung

areas that is not easy even for the experts (Homma et al., 2020a). The success made

by deep learning-based methods encouraged researchers to develop deep learning-

based CAD systems which are expected to aid radiologists in detecting COVID-19 in

CXR testing more rapidly and accurately. The purpose of this chapter is to introduce

the fundamental studies of deep learning, including the structures, the commonly-

used models, and the limitations of deep learning, as well as related research on

deep learning-based methods for COVID-19 diagnosis in CXR images.

2.1 Fundamental studies of deep learning

Deep learning has attracted a high interest in the image classification and its archi-

tectures appear to solve problems that require complex highly-varying functions.

In order to deal with complex problems, deep learning techniques learn character-

istic hierarchies with features from higher levels of hierarchy formed by a compo-

sition of lower level features. Deep learning assimilates complex behaviors with

expansive information sets to select effective characteristics automatically by convo-

lutional neural network (CNN) structures (Affonso et al., 2017).

2.1.1 Convolutional neural networks (CNNs)

Neural network is comprised of neurons or units with some activation α and param-

eters θ = {ω, β}, where ω is a set of weights and β is a set of biases. The activation
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can be computed as follows:

α = σ(ωTx + β),

where x is the input and σ is a nonlinear function.

      

Pooling Pooling

  84   

120 kernels 
Convolution

Fully-connected layerInput 6 kernels 
Convolution

16 kernels 
Convolution

 10

FIGURE 2.1: Architecture of a CNN named LeNet-5 network.

As a popular type of neural network, CNNs can learn complex features from

available images and use these features to classify the images. A typical CNN struc-

ture would constitute a number of convolutional and pooling layer sets with fully-

connected layers attached at the end for the classification (Garg and Mago, 2021). As

shown in FIGURE 2.1, a convolutional layer contains several convolution kernels,

which extract different features and generate different feature maps for the same

input images. Every neurons of a feature map are connected to the neurons in the

previous feature maps. To reduce the dimentionality of the features, pooling layers

provide an approach to down sample feature maps by summarizing the presence

of features in patches of the feature map. At the end of a CNN, the fully connected

layers applies parameters to all neurons from the previous layer to generate an ap-

propriate score for the prediction.

Forward propagation

Forward propagation refers to the calculation and storage of intermediate variables

(including outputs) for a CNN in order from the input layer to the output layer. We
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now introduce the computation of several important layers in forward propagation.

1 1 1

1 2 1

0 1 2

0 1 1 0

1 1 0 0

0 0 1 1

0 0 1 1

1 0

0 1

Previous feature map A convolution kernel Convolution result
.

FIGURE 2.2: An example of convolution operation. At each location,
an element of a convolution kernel is used as the weight for the
element it overlaps in the previous feature map. The results are
summed up to obtain the element at the location in the convolution
result.

The convolutional layer is the central part of a CNN. To perform a convolution

operation, the convolution kernels are flipped by 180 degrees and then slid across

the previous feature maps in equal and finite strides to generate new feature maps.

As shown in FIGURE 2.2, at each location, an element of a convolution kernel is used

as the weight for the element it overlaps in the previous feature map. The results are

summed up to obtain the element at the location in the convolution result. Different

convolution kernels in a convolutional layer can help to form as many feature maps

as desired. Specifically, new feature maps X l can be obtained by first convolving the

previous feature maps X l−1 with a set of kernels ω = {ω1, ω2, ..., ωK} and added

biases β = {β1, β2, ..., βK}, and then applying an element-wise nonlinear activation

function σ, typically sigmoid, tanh, and ReLU activation, on the convolved results

(Gu et al., 2018). The new feature maps can be computed as follows:

X l
k = σ(ωl−1

k ⊛ X l−1 + βl−1
k ).
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where ⊛ is a convolution operation.

Pooling layers are always added after convolutional layers to summarised the

features in a region of the feature maps. In forward propagation, N × N blocks in

previous feature maps are reduced to a single value, where N × N is the pooling

size. As shown in FIGURE 2.3, a commonly used pooling layer in CNNs, called max

pooling layer, calculates the largest value in each patch of previous feature maps.

The output of max pooling layers would be feature maps which contain the most

prominent features in the previous feature maps. Another commonly used pooling

layer is the average pooling layer, which calculates the average value in each patch

of previous feature maps. The pooling results can be computed as follows:

Max pooling:

X l
k(i, j) = max

N(i−1)<a<Ni+1
N(j−1)<b<Nj+1

X l−1
k (a, b)

Average pooling:

X l
k(i, j) =

1
N2

N(i−1)

∑
a=Ni+1

N(j−1)

∑
b=Nj+1

X l−1
k (a, b)

Fully connected layers are always the last layers of CNN architectures. As

shown in FIGURE 2.4, fully connected layers operate a linear combination on a flat-

tened input where each input element is connected to all neurons. Each element in

the output of the last fully connected layer indicates the probability for the input

image belonging to each class in the classification task. During the forward propa-

gation, the output of a fully connected layer is given by:
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1 0 2 1
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8 6

1 2

Max pooing

Stride (2,2)

.

FIGURE 2.3: An example of max pooling. It calculates the largest
value in each patch of each feature map.

Ŷ = σ(ωX + β),

where X is the flattened input, Ŷ is the output, σ is the activation function, ω is the

weight matrix, and β is the bias matrix of the fully connected layer. To evaluate how

well the CNN models the input data, loss functions are always used to measure the

compatibility between output predictions through forward propagation and given

ground truth labels. In classification tasks, cross-entropy loss is commonly used to

evaluate the CNN models. Cross-entropy can be calculate as follows:

L = −
M

∑
c=1

yc log(ŷc).

where M means the number of classes, yc means the ground truth label, and ŷc

means the output prediction of a CNN model.

Back propagation

To achieve a better fit of for the dataset, back propagation performs a backward pass

to update the CNN’s parameters, including weights and biases, based on the loss

obtained in the previous epoch.
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.

FIGURE 2.4: An example of fully connected layers. Fully connected
layers operate a linear combination on a flattened input where each
input element is connected to all neurons.
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The back propagation in neural network computes the gradient of the loss func-

tion L for a single weight or bias by the chain rule. Assume there are functions

Y = f (X) and Z = g(Y), we can compute the derivative of Z with respect of X by

using the chain rule:

∂Z
∂X

=
∂Z
∂Y

∂Y
∂X

.

Therefore, in the back propagation, we can use the local gradient ∂Xl

∂Xl−1 and the

loss gradient from the previous layer ∂L
∂Xl to calculate the loss gradient ∂L

∂Xl−1 .

When the activation function is ReLU, the gradients in a fully-connected layer

can be calculated as follows:

∂L
∂xi

=
M

∑
c=1

∂L
∂ŷc

∂ŷc

∂X
=

M

∑
c=1

∂L
∂ŷc

ωi,c;

when ŷc > 0:
∂L

∂ωi,c
=

∂L
∂ŷc

∂ŷc

∂ωi,c
=

∂L
∂ŷc

xi;

∂L
∂βc

=
∂L
∂ŷc

∂Y
∂βc

=
∂L
∂ŷc

;

when ŷc = 0:
∂L

∂ωi,c
=

∂L
∂ŷc

∂ŷc

∂ωi,c
= 0;

∂L
∂βc

=
∂L
∂ŷc

∂Y
∂βi,c

= 0.

where ωi,c and βc is the weight and bias.

In a max-pooling layer, the gradients can be calculated as follows:
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∂L
∂X l−1

k (a, b)
=


∂L

∂X l
k(i, j)

(a, b) = argmax
N(i−1)<a′<Ni+1
N(j−1)<b′<Nj+1

X l−1
k (a′, b′)

0 Others.

In an average-pooling layer, the gradients can be calculated as follows:

∂L
∂X l−1

k (a, b)
=

1
N2

∂L
∂X l

k(⌈ a
N ⌉, ⌈ b

N ⌉)
;

where ⌈⌉ is a ceiling function to round up to the nearest integer.

In a convolutional layer, the gradients can be calculated as follows:

∂L
∂X l−1 = (

∂L
∂X l ◦ σ

′
(ωl−1

k ⊛ X l−1 + βl−1))⊛ rot180◦(ω
l−1);

∂L
∂ωl = X l−1 ⊛ (

∂L
∂X l ◦ σ

′
(ωl−1

k ⊛ X l−1 + βl−1));

∂L
∂β

=
∂L
∂X l ◦ σ

′
(ωl−1

k ⊛ X l−1 + βl−1);

where ◦ means element-wise product.

In training steps, the parameters in a CNN can be updated according to the

gradients, and the update speed can be controlled by the learning rate hyper param-

eter. From the learning step, we can see that the performance of a well-trained CNN

model is critically dependent on the training data.
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2.1.2 Deep learning models for image classification

The recent advancement in computing technology allowed to train much deeper and

complex networks than in the past. CNNs have consistently been achieving state-

of-the-art performance in classification tasks for both nature images and medical

images. In this parts, I will introduce several important CNN models which are

always applied to tasks in medical images.

AlexNet

FIGURE 2.5: Architecture of AlexNet.

Krizhevsky, Sutskever, and Hinton (2017) designed a large deep CNN, called

AlexNet, to classify ImageNet data (Deng et al., 2009). As shown in FIGURE 2.5,

there are 5 convolutional layers and 3 fully-connected layers in the AlexNet. It also

introduced the use of ReLU as activation function, dropouts to avoid the overfit-

ting, and max-pooling layers instead of simple pooling. The AlexNet achieved top-1

and top-5 test set error rates of 37.5% and 17.0% on ImageNet LSVRC-2010, respec-

tively. Due to its high performance on nature image tasks, the ALexNet has also

been finetuned for medical image tasks, such as breast cancer histopathology image

classification (Titoriya and Sachdeva, 2019), drowning diagnosis using post-mortem

lung CT images (Homma et al., 2020a), and so on.
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FIGURE 2.6: Architecture of VGG-16.

Simonyan and Zisserman proposed a deeper CNN named VGGNet (Simonyan

and Zisserman, 2014). There are totally 6 different CNN configurations for VGGNet:

A, A-LRN, B, C, D (VGG-16), and E (VGG-19) with 11, 11, 13, 16, 16, and 19 layers,

respectively. As an example, FIGURE 2.6 shows the architecture of VGG-16. In

VGGNet, the sizes of the kernels are 3 × 3 for all convolutional layers.

2.1.3 The lack of explainability

Although deep learning-based methods could achieve high performance in many

medical tasks, they have been criticized for their lack of explainability of their pre-

diction results compared to other methods. That is, it is difficult to know and un-

derstand how the model made a prediction, and the inner workings remain opaque

to the outside observer (Castelvecchi, 2016). Without a sufficient understanding of

a mechanism behind the machine-made prediction, it becomes very complicated to

detect hidden risks in deep learning-based methods, i.e., training bias caused by

mislabeled training data, especially for medical applications.
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Prediction: Malignant 

Predicted score: 0.74

(A)

Prediction (2): Grouped 

Area percentage:  0.07   

Eccerntricity: 0.54

(B)

FIGURE 2.7: Examples of results in MCC detection and classification
using mammograms: (A) output of a deep learning-based method,
(B) output of a clustering-based method. The deep learning-based
method could obtain a high performance, but it was unable to
explain the decision-making. On the other hand, the
clustering-based method could provide not only the predicted class,
but also several human-designed features to explain the decision.
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For example, when facing a task of breast cancer detection in mammograms,

deep learning-based CAD systems (Ribli et al., 2018) could detect and classify masses

and micro-calcification clusters (MCCs) from mammograms, but it was difficult to

tell how the systems made the decisions. As shown in FIGURE 2.7 (A), deep learning-

based methods often output a predicted class and a risk score without detailed in-

formation such as features of detected lesions. In contrast, when other types of CAD

systems, which depended on human-designed features, were applied to the same

task, the CAD systems could provide more information along with the prediction

results. In one of our previous studies (Zhang et al., 2023c), we verified bilateral

mammographic density differences, which means the absolute difference between

left and right mammographic densities, as a risk factor to assess breast cancer risk.

Such human-designed risk factors could give a reason for the predicted risk of breast

cancer. In another study, we proposed a clustering-based CAD system to detect and

classify MCCs in mammograms (Zhang et al., 2020). We mimicked the workflow

of radiologists to classify MCCs into several classes based on the distributions. As

shown in FIGURE 2.7 (B), clustering-based method can provide more features which

could useful for explaining the classification of the detected MCCs. Since the fea-

tures, such as the area percentage and the eccentricity, were human-designed, the

decision-making could be easy to understand for radiologists.

On the other hand, it is hard to assess training biases without additional data

because deep learning lacks explainability. Therefore, the training data could be very

important for the reliability of deep learning-based methods.
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2.1.4 Data characteristics’ impact on deep learning

Since data characteristics are important for constructing a dataset for training a deep

learning model, the question about how the data characteristics impact the perfor-

mance of deep learning-based methods attracts researchers’ attention.

A common problem in the development of deep learning-based methods is the

class imbalance, an important data characteristic within the training data. In a bi-

nary classification task, class imbalance occurs when one class, the minority class,

contains significantly fewer samples than the other class, the majority class (Johnson

and Khoshgoftaar, 2019). Class imbalance is naturally inherent in many real-world

tasks, especially in medical tasks, and in many problems (Yuan, Xie, and Abouele-

nien, 2018; Gao et al., 2020; Ibrahim, Torki, and El-Makky, 2018; Korkmaz, 2020), the

class of interest is the minority class. As shown in FIGURE 2.8, the class imbalanced

training data can lead classifiers to exhibit bias towards the majority class and ig-

nore the minority class. Accuracy is one of the most frequently used metrics when

evaluating classification results. When a dataset with 1% positive cases is used for

evaluation, a native classifier can achieve 99% accuracy score by simply classifying

all samples into the negative class. Such a model would provide no real value and

could be dangerous when used in medical fields. Anand et al. (1993) analyzed the

effect of class imbalance on the back propagation in shallow neural networks. They

showed that when using training data with a class imbalance, the gradient is dom-

inated by the majority class. So that the error of majority class could be decreased

quickly but the error of minority class might be increased.

Many previous studies were proposed to address class imbalance, such as data-

level methods, algorithm-level methods, and hybrid methods (Johnson and Khosh-

goftaar, 2019). Data-level methods are always proposed to re-sample class imbal-

anced data. Masko and Hensman (2015) used random over-sampling (ROS), which
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Trained by class
balanced data Trained by class

imbalanced data 

FIGURE 2.8: An example of class balanced training data and class
imbalanced training data. Red means positive class and green means
negative class. The class imbalanced training data can lead classifiers
to exhibit bias towards the majority class and ignore the minority
class.

means duplicating random images in minority classes until all classes had the same

amount of images as the largest class, for addressing class imbalance. Their results

showed that eliminating class imbalance with ROS can improve the classification

performance. To decrease the impact of class imbalance, Lee, Park, and Kim (2016)

pre-trained a CNN with class-normalized data, which is constructed by reducing the

images in the majority class with random under-sampling (RUS), and fine-tuned the

CNN with the original data. Their results showed that RUS can improve the per-

formance on minority class. Pouyanfar et al. (2018) proposed a dynamic sampling

method for classification tasks of class imbalanced data using CNNs. This method

utilized class-wise performance to adjust the sampling rates for each class automat-

ically.

Algorithm-level methods means modifying deep learning algorithms for the

purpose of addressing class imbalance, such as new loss functions, cost-sensitive

learning, and threshold moving. Wang et al. (2016) designed a mean false error
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(MFE) loss function and a mean squared false error (MSFE) loss function, which are

more sensitive to the errors from the minority class compared with commonly used

mean squared error (MSE) loss function. Lin et al. (2017) designed a focal loss to ad-

dress the extreme imbalance between foreground and background classes in training

deep learning-based models for object detection tasks. Khan et al. (2017) proposed

a cost-sensitive learning which can optimize the class-dependent costs and learn ro-

bust feature representations for both majority class and minority class automatically.

Although threshold moving does not impact weights tuning and does not improve

a model’s ability to classify between classes, Buda, Maki, and Mazurowski (2018)

showed it is an appropriate method to reduce classification bias that can be quickly

implemented to already trained models.

Hybrid method means the method combines data-level and algorithm-level

method. Huang et al. (2016) proposed quintuplet sampling and triple-head loss

in their Large Margin Local Embedding (LMLE) method for training CNN mod-

els and the proposed LMLE method worked well with class imbalanced training

data. Dong, Gong, and Zhu (2018) proposed class rectification loss (CRL) and hard

sample mining in their batch-wise incremental minority class rectification model to

address class imbalance in a large-scale image classification task. Their experimen-

tal results showed CRL and hard sample mining can also be implemented to other

CNN models and improve the performance.

Because class imbalanced data are widely found in medical field, data-level,

algorithm-level, and hybrid methods were applied to deep learning-based methods

for medical tasks. Reza and Ma (2018) applied over-sampling to pathological breast

cancer image classification with a CNN to counter the impact of class imbalance

training data. Focal loss is also widely applied to deep learning-based methods for

medical classification tasks, such as skin cancer classification (Le et al., 2020), lung
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nodule classification (Tran et al., 2019), and femur fractures classification (Lotfy et

al., 2019).

Another important data characteristic is data homogeneity. As shown in FIG-

URE 2.9, the classifier trained by data from one medical facility could fail to classify

data from the other medical facility. Lo et al. (2021) compared a deep learning model

trained by high-variability images with another model trained by images from a

single medical center. Their results showed the model trained by high-variability

images performed better in the cross-dataset test, which reveals that dataset homo-

geneity can have a significant impact on the generalization of CNN models. To ad-

dress this problem in medical tasks, researchers always analyzed the cross-cohort

generalizability (Bron et al., 2021) of their proposed deep learning-based methods.

Trained by data from
facility 1 

Tested on data from
facility 2 

FIGURE 2.9: An example of data homogeneity. Red means positive
class and green means negative class. The classifier trained by data
from one medical facility could fail to classify data from the other
medical facility.

2.2 COVID-19 Diagnosis Using Chest X-ray

The severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) caused the Coro-

navirus disease 2019 (COVID-19) that has been widely spread worldwide and still
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continues to have a devastating effect on the health and life of the global population

(Wang et al., 2020a). The polymerase chain reaction (PCR) test is the gold standard

for detecting SARS-CoV-2 nowadays (Wang et al., 2020b). Nevertheless, PCR testing

is time-consuming and laborious, and it is also suffering from high cost (Love et al.,

2021).

Radiological evaluation of patients with clinical–epidemiological suspect of COVID-

19 is mandatory, especially in the emergency department while waiting for RT-PCR

results, in order to have a rapid evaluation of thoracic involvement. As part of the

standard procedure for patients with respiratory complaints, CXR imaging is used

as a first-line triage tool because of the long waiting time for RT-PCR testing (Cozzi

et al., 2020). In addition, using portable X-ray units can reduce the movement of pa-

tients and so minimizing the risk of cross-infection. As shown in figure 2.10, medical

findings such as patchy or diffuse reticular-nodule opacity and consolidation can be

found in CXR images from COVID-19 cases (Ng et al., 2020). It is reported that some

patients showed abnormalities in the CXR images before they were eventually test

positive for COVID-19 with RT-PCR test (Wong et al., 2020). Moreover, all the rapid

triaging, availability, accessibility, and portability of CXR imaging indicated that it

could be a complement to RT-PCR test. However, one of the biggest bottlenecks of

CXR screening is the need for experts to diagnose from the CXR images because the

radiological signatures can be subtle.



Chapter 2. Fundamental Studies and Related Research 24

2.2.1 Deep Learning-Based Methods for COVID-19 Diagnosis Using Chest

X-ray

The deep learning-based methods can actually obtain high performance in many

medical tasks. The success made by deep learning-based methods encouraged re-

searchers to develop deep learning-based methods that can aid radiologists in de-

tecting COVID-19 in CXR images more rapidly and accurately.

Hemdan, Shouman, and Karar (2020) proposed an original COVIDX-Net frame-

work to assist radiologists to automatically diagnose COVID-19 in CXR images. The

COVIDX-Net includes seven different architectures of deep learning models: VGG-

19, DenseNet-121, Inception-V3, ResNet-V2, Inception-ResNet-V2, Xception, and

MobileNet-V2. They evaluated the framework on 25 CXR images from healthy pa-

tients and 25 CXR images from COVID-19 patients. The results showed that VGG-19

and DenseNet-121 achieved an accuracy of 90% for COVID-19 detection.

Brunese et al. (2020) applied VGG-16 model for COVID-19 detection using CXR

images. They proposed an approach composed by three steps. The first one is to de-

tect a chest X-ray as related to a healthy patient or to a patient with pulmonary dis-

eases. The second step is aimed to discriminate between generic pulmonary disease

and COVID-19. The last step is aimed to detect the interesting area in the chest X-ray

to provide explainability. In the first and the second step, they used two differently

fine-tuned VGG-16 models. They used datasets belonging to multiple medical facil-

ities and there were totally 3520 CXR images from healthy patients, 250 CXR images

from COVID-19 patients, and 2753 CXR images from patients with other pulmonary

diseases. Their method achieved an average accuracy of 97% for COVID-19 detec-

tion on their test set.

Wang, Lin, and Wong (2020) proposed a new architecture of deep learning
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model named COVID-Net for COVID-19 detection. They used a large dataset, called

COVIDx dataset, to train and evaluate the COVID-Net. The COVIDx dataset con-

tains CXR images from five different data repositories. There were totally 266 COVID-

19 patient cases, 8,066 normal cases, and 5,538 cases from patients with other pul-

monary diseases. The COVID-Net achieved 93.3% test accuracy.

Although the deep learning models can achieve high performance on COVID-

19 detection, the lack of accepted theoretical explanation remains the fundamental

problem of deep learning, i.e., the black-box problem (Lei, Chen, and Zhao, 2018).

The cause is that deep learning models lack transparency and explainability; it is

difficult to know and understand how the model made a prediction, and the inner

workings remain opaque to the outside observer (Quinn et al., 2022). Without a

sufficient understanding of the machine-made prediction, it becomes very compli-

cated to detect errors in models’ performance, i.e., training bias caused by mislabeled

training data, especially for medical applications. Therefore, the reliability of deep

learning models remains a concern.

For assessing the reliability of deep learning models used for COVID-19 detec-

tion in CXR images, Sadre et al. (2021) proposed a region-of-interest (ROI) hide-and-

seek protocol. As shown in Figure 2.11, to observe the reliability of these deep learn-

ing models, they removed lung regions from CXR images in a public CXR dataset

and used them to train and test deep learning models. Then, a gradient-weighted

class activation mapping (Grad-CAM) method (Selvaraju et al., 2020) was utilized to

visualize which parts of the CXR images were focused on by the deep learning mod-

els. The experiment results showed that the deep learning models could achieve

high performance even when using the images without lung regions, and the fo-

cused locations were outside the lung regions when deep learning models made a

COVID-19 prediction. Results in this study (Sadre et al., 2021) indicated the deep
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learning models are unreliable in terms of medical findings because the image fea-

tures contributing to COVID-19 classification exist outside the lung regions, which

is unexpected for a lung-based illness. However, the cause of the unreliable perfor-

mance is still unknown.
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(A)

(B)

FIGURE 2.10: Examples of CXR images: (A) a CXR image from a
health case, (B) a CXR image from a COVID-19 case. Abnormalities
can be found in the image from the COVID-19 case.
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FIGURE 2.11: An overview of the previous study. CXR images with
lung regions removed are utilized to investigate the reliability of
deep learning models for COVID-19 classification. Deep learning
models can achieve high accuracy when images with lung regions
are removed, and the focused locations are outside the lung regions
when deep learning models make a COVID-19 prediction. The result
indicates the deep learning models are unreliable in terms of medical
findings, but the cause of the unreliable performance is still
unknown.
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Chapter 3

Comparison experiments and

cross-dataset test

The study (Sadre et al., 2021) mentioned that the unreliability of deep learning-

based methods for COVID-19 diagnosis might be explained via data characteris-

tics, because the previous studies collected as much data as possible from different

medical facilities to develop deep learning-based methods for the urgent pandemic.

The class imbalance, i.e., the difference in data quantity among categories, belongs

among such data characteristics, and its impact on deep learning-based methods

has attracted much attention from researchers. We noticed that when collecting the

COVIDx dataset, every single repository, except COVID-19 Image Data Collection,

only provided COVID-19 cases or non-COVID-19 cases. An intra-source imbalance,

which means the class imbalance within the data collected from each medical facil-

ity, exists in the dataset and there are few investigations to analyze its impact on
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deep learning models. Therefore, we organized two differently collected COVID-19

datasets and analyzed how the intra-source imbalance affects deep learning-based

methods’ performance(Zhang et al., 2023b). The both datasets consist of positive

and negative categories, and they are well-balanced between the two categories.

The data sources differ between the two datasets. One dataset (Qata-COV19) was

collected from different medical facilities, and every single facility only provided

positive or negative images. As one of the largest open-access COVID-19 dataset,

the Qata-COV19 dataset has been used to train and test deep learning models in

many previous studies. In another dataset (BIMCV), positive and negative CXR im-

ages were collected from a single medical facility. The ROI hide-and-seek protocol

was implemented on the two datasets to investigate the effect of the intra-source

imbalance on the deep learning models. Then, to evaluate the reliability of the deep

learning models trained by each dataset, we made a cross-dataset test, which refers

to training a deep learning model on one dataset and testing it on another dataset.

Finally, we analyzed the relationship between the unreliability and the intra-source

imbalance according to the experimental results.

3.1 Datasets

In this study, we used two CXR datasets collected from various public COVID-19

databases to investigate how the intra-source imbalance of training data impacts the

deep learning models for the COVID-19 diagnosis. The intra-source imbalanced

dataset is Qata-COV19 dataset, and the intra-source balanced dataset is BIMCV

dataset.

As shown in TABLE 3.1, the Qata-COV19 dataset contains positive CXR images

from five different public facilities and negative CXR images from seven other public
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Dataset Category Data Source Train Test

Qata-COV19

Positive

BIMCV+

3383 378
MHH
SIRM
COVID-chestxray dataset
COVID-19 radiography dataset

Negative

RSNA

3383 378

Padchest dataset
Guangzhou Women’s Medical Center
Indiana Network for Patient Care
MC dataset
Shenzhen Hospital
ChestX-ray14 dataset

BIMCV
Positive BIMCV+ 2222 239
Negative BIMCV- 2222 239

TABLE 3.1: Our study used two image datasets (Qata-COV19,
BIMCV); Qata-COV19 has images provided from various facilities
and only for a single category, while BIMCV collected images from
the same facility.

facilities. It has been proposed by Yamac et al. (2021b) to help develop deep learning-

based methods for COVID-19 diagnosis. The researchers gathered CXR images from

different publicly available image sources and renamed all the CXR images. In com-

parison, the BIMCV dataset contains positive and negative CXR images from a sin-

gle public facility, Valencian Region Medical ImageBank (Vayá et al., 2020; Vayá et

al., 2021). Because they both have more negative images than positive images, we

randomly under-sampled negative images to match the number of positive images

in two datasets for addressing the class imbalance. In the Qata-COV19 dataset, one

facility only provided CXR images in a single category. For example, BIMCV+ only

provided positive images, and RSNA dataset only provided negative images for the

Qata-COV19 dataset. Examples of positive and negative images in each dataset are

shown in FIGURE 3.1. The important relationship between the Qata-COV19 dataset

and the BIMCV dataset is that both shared the positive CXR images from BIMCV+
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but did not share any negative CXR images.

In our study, the two datasets were used to clarify the influence of the intra-

source imbalance on the reliability of deep learning models. All the images were

resized to 512 × 512 pixels. We divided the data into training and test subsets, with

a 90-10 split.

3.2 Experiments

3.2.1 Comparison experiments

As shown in FIGURE 3.2, we re-implemented the ROI hide-and-seek protocol on

the Qata-COV19 dataset and the BIMCV dataset to clarify the relationship between

intra-source imbalance and the reliability of deep learning models.

Firstly, we used a pre-trained U-Net model to segment lung regions from the

original CXR images (FIGURE 3.2 (A)). The U-Net model was trained by Sadre et al.

(2021) using the XLSor dataset for lung segmentation (Tang et al., 2019). According

to the segmented lung regions, we generated the bounding boxes around the lung re-

gions. For each CXR images, two lung regions and two bounding boxes were gener-

ated. Four types of modified images were generated by emphasizing and hiding the

lung regions and the bounding boxes. Lungs-isolated images (FIGURE 3.2 (B)) and

lungs-framed images (FIGURE 3.2 (C)) were generated by isolating the segmented

lung regions and regions inside the bounding boxes from the original CXR images,

respectively; lungs-removed images (FIGURE 3.2 (D)) and lungs-boxed-out images

(FIGURE 3.2 (E)) were generated by removing the segmented lung regions and the

regions inside the bounding boxes from the original CXR images, respectively. Be-

cause COVID-19 is a lung-based illness, the medical findings of it are expected to



Chapter 3. Comparison experiments and cross-dataset test 33

exist inside lung regions. Therefore, CNN models trained by the original CXR im-

ages, lungs-isolated images, and lungs-framed images are expected to be capable of

detecting COVID-19 in the test sets. On the other hand, CNN models trained by the

modified images without lung regions, such as lungs-removed images and lungs-

boxed-out images in this study, should not be able to classify COVID-19 images and

non-COVID-19 images.

We used a VGG-16 pre-trained with ImageNet in this study. Before tuning, we

replaced the first fully-connected layer with a global average pooling layer. The orig-

inal CXR images or four types of the modified images were used to train different

versions of the VGG-16 model separately, which aimed to classify the images into

positive or negative class. We tuned all the weights and biases in the VGG-16 model

during the training step.

In the first experiment, we trained VGG-16 models by using the original CXR

images and modified images from the Qata-COV19 dataset separately to investigate

the effect of lung regions on the performance of the VGG-16 models when using

intra-source imbalanced dataset. In contrast, for investigating the effect when us-

ing an intra-source balanced dataset, we trained VGG-16 models by using original

images and four types of modified images from the BIMCV dataset, separately.

Results of Comparison experiments

To evaluate the performance of the VGG-16 models, we utilized a receiver operat-

ing characteristics (ROC) curve (Fawcett, 2006). In statistics, the ROC curve is a

graphical plot that illustrates the diagnostic ability of a binary classifier system as its

discrimination threshold is varied. The ROC curve is created by plotting the true-

positive rate against the false-positive rate at various threshold settings. Each point
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on the ROC curve represents a sensitivity/specificity pair corresponding to a partic-

ular decision threshold. We calculate the area under the curve (AUC) to provide an

aggregate measure of performance across all possible classification thresholds.

FIGURE 3.3 (A) showed the VGG-16 model achieved AUC of 0.99 when trained

by the original CXR images in Qata-COV19 dataset. Other ROC curves in FIGURE

3.3 showed that lung regions had little effect on the performance: the VGG-16 model

achieved relatively high performance even when lung areas were removed or boxed

out, which showed the same results as in the previous study (Sadre et al., 2021).

These results confirm the high risk of obtaining an unreliable deep learning model.

In contrast, the ROC curves in FIGURE 3.4 showed that when using the lungs-

removed images or lungs-boxed-out images from BIMCV, the AUC values degraded

a lot. In particular, the ROC curve suggested nearly no capacity for classification

when lung regions were boxed out. The results showed that the classification of

CXR images in the BIMCV dataset relies on the features representing COVID-19

characteristics in lung regions. Although the VGG-16 model achieved a relatively

low performance on the BIMCV dataset, the performance could be more reliable in

terms of the medical findings.

In the comparison experiments, we re-implemented ROI hide-and-seek proto-

col on the Qata-COV19 and BIMCV datasets and the results showed the VGG-16

model trained by the BIMCV dataset was more reliable. However, we need more

analysis to demonstrate our hypothesis that intra-source imbalance lead to the un-

reliable performance of deep learning models.
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3.2.2 Cross-dataset test

We utilized a cross-dataset test to demonstrate the intra-source imbalance lead to

the unreliable performance of deep learning-based methods. Cross-dataset test is

always used to evaluate the generalizability of classification models. In this study,

cross-dataset test is used to evaluate the impact of the features representing data

source characteristics on the deep learning models trained by intra-source imbal-

anced datasets.

We trained a VGG-16 model using the original images from the Qata-COV19

dataset (the same model weights as in FIGURE 3.3 (A)), and then tested it on the

original images from the BIMCV dataset. Because the Qata-COV19 dataset contains

COVID-19 positive images from the BIMCV dataset but without negative images

from the BIMCV dataset, the cross-dataset test can evaluate how much the feature

representing characteristics of BIMCV dataset impact the VGG-16 model. Moreover,

we trained a VGG-16 model using the original images from the BIMCV dataset (the

same model weights as in FIGURE 3.4 (A)), and then tested it on the original images

from the Qata-COV19 dataset for comparison.

Results of cross-dataset test

As shown in FIGURE 3.5 (A), when testing the BIMCV-trained model on the original

CXR images from the Qata-COV19 dataset, the AUC was nearly 0.5, and the perfor-

mance was the same as a random classifier. The ROC curve shows that the model

failed to classify the positive and negative images from BIMCV. The specificity in

this test was 0, which showed that all the images from the BIMCV dataset were clas-

sified into the positive class even if they were negative. According to the specificity,

all images from BIMCV were classified into the COVID-19 positive class. It showed

that the model learned the features representing characteristics of BIMCV dataset
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from the positive images in the training step, so that the negative images from the

BIMCV dataset were also classified into positive class in the test step. It revealed

that when using intra-source imbalanced datasets, the prediction bases are the fea-

tures representing each data source characteristics, but not the features representing

COVID-19 characteristics. The result demonstrates lacking balance in data sources

leads to the unreliable performance. Especially, as shown in the cross-dataset test,

the model trained by intra-source imbalanced datasets can be totally unable to make

a diagnosis for other datasets.

In comparison, as shown in FIGURE 3.5 (B), when testing the Qata-COV19-

trained model on the original CXR images from the BIMCV dataset, the AUC was

0.84, and the model trained by BIMCV was able to classify positive and negative

CXR images in the Qata-COV19 dataset. The model trained by the BIMCV dataset

achieved a relatively high performance when testing on the Qata-COV19 dataset,

which indicated it was more reliable.

3.3 summary

We report that the intra-source imbalance of training data leads to the unreliability

of deep learning methods by re-implementing the ROI hide-and-seek protocol on

two differently collected CXR datasets. Using a cross-dataset test, we show that

the model trained by intra-source imbalanced datasets might classify images based

on the features characterizing data sources; hence, it lacks the capability to diagnose

other datasets. For the urgent COVID-19 pandemic, many previous studies collected

as much data as possible from different medical facilities to train deep networks,

but without enough validation. For example, many previous studies (Yamac et al.,

2021a; Zaki, Amin, and Hamad, 2021) used the Qata-COV19 dataset to train and test

deep learning models and obtained high performance on the test subset, but few of
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them discussed about the reliability and generalizability. They might lack clinical

applicability because of the intra-source imbalance of the training data.

Our study reveals the risk of unreliability when using intra-source imbalanced

datasets in deep learning methods, not only for COVID-19 classification but also for

other medical applications. Therefore, when developing deep learning methods, we

should ensure the intra-source balance of the datasets before they are applied to train

deep learning models.
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(A) (B)

(C) (D)

FIGURE 3.1: Examples of positive and negative CXR images in the
two datasets: (A) a positive CXR image in the Qata-COV19 dataset,
(B) a negative CXR image in the Qata-COV19 dataset, (C) a positive
CXR image in the BIMCV dataset, (D) a negative CXR image in the
BIMCV dataset.
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FIGURE 3.2: Overview of the comparative experiment. ROI
hide-and-seek protocol operated (A) original images from the
Qata-COV19 dataset or the BIMCV dataset to emphasize and hide
the lung regions, respectively. (B) lungs-isolated images and (C)
lungs-framed images were generated by emphasizing the lung
regions, while (D) lungs-removed images and (E) lungs-boxed-out
images were generated by hiding the lung regions. The original
datasets and the modified datasets were utilized to train and test a
VGG-16 model separately.
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(A)

(B) (C)

(D) (E)

FIGURE 3.3: ROC curves for the VGG-16 models trained and tested
on the original or the modified datasets from Qata-COV19: (A)
original CXR images, (B) lungs-isolated images, (C) lungs-framed
images, (D) lungs-removed images, and (E) lungs-boxed-out images.
The deep learning models achieved high performance, even with
hidden lung regions.
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(A)

(B) (C)

(D) (E)

FIGURE 3.4: ROC curves for the models trained and tested on the
original or the modified datasets from BIMCV: (A) original CXR
images, (B) lungs-isolated images, (C) lungs-framed images, (D)
lungs-removed images, and (E) lungs-boxed-out images. The
performance degraded a lot when lung regions were hidden.
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FIGURE 3.5: ROC curves for the cross-dataset test: (A) testing the
Qata-COV19-trained model (the same model weights as in FIGURE
3.3 (A)) on the BIMCV dataset, (B) testing the BIMCV-trained model
(the same model weights as in FIGURE 3.4 (A)) on the Qata-COV19
dataset. The model trained on original images from BIMCV dataset
was able to classify original images from the Qata-COV19 dataset,
while the model trained on original images from the Qata-COV19
dataset failed to classify original images from the BIMCV dataset.
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Chapter 4

Visualization investigation in the

cross-dataset test

In previous deep learning-based methods, visualization methods were always used

to show the prediction basis of the deep learning models. For example, Brunese

et al. (2020) utilized Gram-CAM to visualize which parts of the CXR images were

focused on by the VGG-16 model. Wang, Lin, and Wong (2020) used GSInquire (Lin

et al., 2019) tool to show the areas in lung regions are the main critical factors in the

models’ prediction.

In this chapter, to more intuitively show that deep learning models trained by

intra-source imbalanced datasets might classify images based on the features char-

acterizing data sources, we utilize Local Interpretable Model-agnostic Explanations

(LIME) method, proposed by Ribeiro, Singh, and Guestrin (2016), to visualize the
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prediction basis of the deep learning models(Zhang et al., 2023a).

4.1 LIME method

LIME method attempts to understand the model by perturbing the input of data

samples and understanding how the predictions change. When used in image clas-

sification models, LIME randomly hides segmented superpixels, which means a

group of pixels which have similar characteristics, in an input image and then it

can determine which superpixel changes will have most impact on the prediction. It

can reflect the contribution of each superpixel to the prediction result.

There are four steps to use LIME method to interpret a prediction by a CNN

model. Firstly, generate superpixels from the input image. Superpixel algorithms

can segment images into superpixels that adhere well to image boundaries. Then,

we generate a dataset of perturbed samples by hiding some of the superpixels and

derive the classification results in this dataset. Next, we learn a locally-weighted

model from the classification results of the perturbed samples. Finally, we return

the superpixels with the highest weights as the explanation. In this study, we use

simple linear iterative clustering (SLIC), proposed by Achanta et al. (2012), to gen-

erate superpixels. As shown in FIGURE 4.1, an input CXR image can be segmented

into superpixels and the segmentation is based on the color similarity and proxim-

ity. FIGURE 4.1 (c) shows the weights of each superpixel and FIGURE 4.1 (d) shows

the top-5 superpixels of this example image. We can see the lung border is clear in

the segmentation result and we can easily find a superpixel is inside lung regions or

outside lung regions.
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4.2 Visualization results

We use LIME method to visualize the explanations of the decisions made by the

VGG-16 models in cross-dataset test. Intersection of Union (IoU), Ground Truth

Coverage (GTC), and Saliency Coverage (SC) are used as evaluation metrics in this

parts. We will also provide several examples to analyze the visualization results.

Because COVID-19 is a lung-based illness, we used the segmented lung regions

as the ground truth G. For the explanations, we selected top-5 superpixels as the

saliency map S. The Iou, GTC, and SC can be calculated as follows:

IoU =
|G ∩ S|
|G ∪ S|

GTC =
|G ∩ S|
|G|

SC =
|G ∩ S|
|S|

where |G ∩ S| means the overlap area between the saliency map and lung regions,

and |G ∪ S| means the area of union between the saliency map and lung regions.

FIGURE 4.2 shows the results of IoU, GTC, and SC. The model trained by the

BIMCV dataset achieved higher IoU, GTC, and SC than the model trained by Qata-

COV19 dataset even when tested on the Qata-COV19 test subset.

Then, we will show several examples to compare the explanation of the models

trained by different datasets. FIGURE 4.3 shows the LIME explanations for classify-

ing a positive case. Both of the models made a true decision, but the model trained
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by BIMCV focused more inside the lung regions while the model trained by Qata-

COV19 focused on the label and background. FIGURE 4.4 shows the LIME expla-

nations of another positive case which was classified correctly by the Qata-COV19-

trained model but mis-classified by the BIMCV-trained model. The model trained

by BIMCV focused more on the lung regions even it made a wrong decision, while

the model trained by Qata-COV19 focused on the label and background. FIGURE

4.5 shows the visualization results of negative case which was classified correctly by

BIMCV-trained model but mis-classified by Qata-COV19-trained model. The model

trained by Qata-COV19 focused on the label information in the image and classified

this negative image into positive class.

From the examples we can find that the model trained by the Qata-COV19

dataset made decisions based on the markers more than on the lung regions. It

shows the intra-source imbalanced dataset could lead the deep learning model fo-

cus on the features representing data source characteristics rather than the features

representing COVID-19.

4.3 Summary

In this chapter, we utilized LIME method to visualize the explanations for the deci-

sions made by the deep learning models used in cross-dataset test. The visualization

results showed that the model trained by intra-source balanced dataset focused more

on the lung regions, while the markers and background can strongly impact the de-

cisions of the model trained by intra-source imbalanced dataset. The visualization

results emphasized the conclusion that the intra-source imbalance of training data

leads to the unreliability of deep learning-based methods.
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(A) (B)

(C) (D)

FIGURE 4.1: An example of LIME method: (a) an input CXR image,
(b) segmented superpixels based on the color similarity and
proximity, (c) the weights of each superpixel, and (d) top-5
superpixels of the input CXR image.
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FIGURE 4.2: The results when selecting top-5 superpixels as the
saliency map. (A) Tested on BIMCV test subset, (B) tested on
Qata-COV19 test subset. The model trained by the BIMCV dataset
performed better than the model trained by the Qata-COV19 dataset.
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(A)

(B)

FIGURE 4.3: The LIME explanations for classifying a positive case by
(A) VGG-16 model trained by Qata-COV19 dataset (prediction:
positive), and (B) VGG-16 model trained by BIMCV dataset
(prediction: positive). Blue areas contribute to positive prediction
and green areas contribute to negative prediction. Both of the
models made a true decision, but the model trained by BIMCV
focused more inside the lung regions while the model trained by
Qata-COV19 focused on the label and background.
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(A)

(B)

FIGURE 4.4: The LIME explanations for classifying another positive
case by (A) VGG-16 model trained by Qata-COV19 dataset
(prediction: positive), and (B) VGG-16 model trained by BIMCV
dataset (prediction: negative). Blue areas contribute to positive
prediction and green areas contribute to negative prediction. The
model trained by Qata-COV19 correctly classified the image but
focused on the label and background. The model trained by BIMCV
focused more on the lung regions even it made a wrong decision.



Chapter 4. Visualization investigation in the cross-dataset test 51

(A)

(B)

FIGURE 4.5: The LIME explanations for classifying a negative case
by (A) VGG-16 model trained by Qata-COV19 dataset (prediction:
positive), and (B) VGG-16 model trained by BIMCV dataset
(prediction: negative). Blue areas contribute to positive prediction
and green areas contribute to negative prediction. The model trained
by Qata-COV19 focused on the label and background information in
the image and classified this negative image into positive class.
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Chapter 5

Discussion

5.1 Investigation for proper balance level

In this study, we demonstrated the intra-source balance is vital for deep learning.

However, intra-source imbalance often occurs in data collection, especially in medi-

cal fields. In this part, we will change the imbalance level and find out the impact of

different intra-source balance level on deep learning models.

To find a proper balance level, we combined the two datasets and obtained

several datasets with different balance level. Among the datasets, all the positive

images are from BIMCV dataset. Negative images contains the images from BIMCV

dataset and Qata-COV19 dataset. We set the balance level of each dataset to 30%,

50%, 70%, and 90%. Since the performance decreased a lot from 50% balance level

to 30% balance level, we made an experiment to clarify the performance when using

data with 40% balance level. For example, in the data with 30% balance level, 30% of
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the negative images were randomly selected from BIMCV dataset, 70% of the nega-

tive images were randomly selected from Qata-COV19 dataset, and all the positive

images were from BIMCV dataset. The data with different intra-source balance level

were used to train VGG-16 model separately and we used the test subset in BIMCV

to evaluate the performance.

FIGURE 5.1 showed the ROC curves in this experiment. As a result, the model

trained on data with intra-source balance level over 50% could achieve over 0.71

AUC value, nearly the same performance on the test data with the model trained

on the original BIMCV dataset. As shown in FIGURE 5.1 (E) and FIGURE 5.1 (F),

when using dataset with 30% and 40% intra-source balance level, the AUC value

was decreased to 0.66 and 0.58 respectively. In general, AUC over 0.7 indicates a

good performance (Bekkar, Djemaa, and Alitouche, 2013). The result showed when

trained on data with intra-source balance beyond 50%, the model could achieve a

good performance. In contrast, when using data with balance level below 50%, the

model might learn the features representing data sources and the intra-source im-

balance could impact the deep learning performance.

5.2 Investigation for the impact of unobserved features

The markers inside CXR images are important features representing different data

sources which can be observed in CXRs. The markers ’D’ and ’DCH’ represent data

source in BIMCV, so they can be found in a part of positive CXRs and negative CXRs

in BIMCV datasets. In Qata-COV19 dataset, the markers ’D’ and ’DCH’ can be found

in positive CXRs, but not exist in negative CXRs. In the visualization results in Chap-

ter 4, the markers are always the explanations for positive predictions, especially for

false positive predictions as shown in FIGURE 5.2. The results indicate the markers
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are important features representing data source and are learnt by the deep learning

model.

There remains a question that if other unobserved features could represent dif-

ferent data sources and lead to the unreliability. As shown in FIGURE 5.3, to an-

swer this question, we selected CXRs without markers from Qata-COV19 dataset

and used the CXRs to train a VGG-16 model. We selected 1901 positive CXRs with-

out markers from Qata-COV19 dataset and randomly selected 1901 negative CXRs

from Qata-COV19 to keep the class balance in training data. We used the CXRs in

BIMCV dataset to test the trained VGG-16 model.

As shown in FIGURE 5.4, the model achieved 0.57 AUC value on test data

from BIMCV dataset. Although there was little improvement on AUC value, the

result showed the VGG-16 model trained by the CXRs without markers still failed

to classify CXRs from BIMCV dataset. It indicated unobserved features inside CXRs

could also lead to an unreliable performance of deep learning.

To visualize the explanations for the decisions, we also used LIME method in

this experiment. FIGURE 5.5 shows the SC values when testing different models

on BIMCV dataset. The model trained by selected data focused more on the lung

regions. Then, we will show several examples. FIGURE 5.6 shows a true negative

example. The model trained by selected data focused more on lung regions and

made true prediction. FIGURE 5.7 shows a false negative example. The test data

contains a marker ’D’. The model trained by original Qata-COV19 dataset focused

on the marker and made a true prediction. The model trained by selected data did

not focus on the marker and made a false prediction. When trained on the selected

data, the model focused more on lung regions when made a positive prediction.

As shown in FIGURE 5.8, the LIME visualization results showed areas inside lung

regions were the explanations for not only true positive cases but also false positive
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cases. The model can be unreliable even when it learned features inside lung regions

and used them for classification.

This result demonstrated potentially unobserved aspects inside lung regions

could also affect the deep learning performance. In addition, it reveals a hidden

risk when validating deep learning reliability. In many previous studies for deep

learning-based diagnosis of COVID-19, visualization results were used to explain

the machine-made decisions and demonstrate the reliability of the deep learning

model. For example, Wang, Lin, and Wong (2020) used GSInquire to visualize the

explanations for COVID-19 predictions. They aimed to validate the diagnosis was

not relying on improper information by qualitatively evaluating the visualization

results with the lung regions. However, our result reveals that even a model fo-

cused on areas inside lung regions, it could be unreliable. Most visualization meth-

ods, such as Grad-cam and LIME, were proposed to visualize explanations for deep

learning-based natural image classification. They aimed to find the locations of the

features but not to find out what the features represent. Qualitatively evaluating the

locations might be proper in natural image classification, but not enough in medical

tasks according to our experimental results.
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FIGURE 5.1: ROC curves for the VGG-16 models trained on data
with different intra-source balance level: (A) original BIMCV dataset
(100%), (B) data with 90% intra-source balance level, (C) data with
70% intra-source balance level, (D) data with 50% intra-source
balance level, (E) data with 40% intra-source balance level, and (F)
data with 30% intra-source balance level. When using a dataset with
intra-source balance below 50%, the intra-source imbalance could
influence the performance.
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(A) (B)

(C) (D)

FIGURE 5.2: LIME explanations for the VGG-16 model trained by
Qata-COV19 dataset. Blue areas contribute to positive prediction
and green areas contribute to negative prediction. The markers ’D’
and ’DCH’ are always always the LIME explanations for positive
predictions. (A) and (B) are positive CXRs from BIMCV dataset. (C)
and (D) are negative CXRs from BIMCV dataset.
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FIGURE 5.3: We selected CXRs without markers from Qata-COV19
dataset and used the CXRs to train a VGG-16 model. The model was
tested on CXRs from BIMCV dataset.
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FIGURE 5.4: The ROC curve for testing the VGG-16 model trained
by selected data. The model trained by selected data achieved 0.57
AUC value on BIMCV dataset, which showed the model still failed
to classify the CXRs in BIMCV dataset.
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FIGURE 5.5: The SC values when testing different models on BIMCV
dataset. The model trained by selected data focused more on the
lung regions.
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(A)

(B)

FIGURE 5.6: The LIME explanations for classifying a negative case
from BIMCV dataset by (A) VGG-16 model trained by selected data
(prediction: negative), and (B) VGG-16 model trained by original
Qata-COV19 dataset (prediction: positive). Blue areas contribute to
positive prediction and green areas contribute to negative
prediction. The model trained by selected data focused more on lung
regions and made true prediction.



Chapter 5. Discussion 61

(A)

(B)

FIGURE 5.7: The LIME explanations for classifying a positive case
from BIMCV dataset by (A) VGG-16 model trained by selected data
(prediction: negative), and (B) VGG-16 model trained by original
Qata-COV19 dataset (prediction: positive). Blue areas contribute to
positive prediction and green areas contribute to negative
prediction. The model trained by selected data did not focus on the
marker and made a false prediction.
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(A) (B)

(C) (D)

FIGURE 5.8: The LIME explanations for false positive predictions
made by VGG-16 model trained by selected data (prediction:
positive). Blue areas contribute to positive prediction. The negative
CXRs from BIMCV dataset were classified in positive class and the
model focus on the lung regions.
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Chapter 6

Conclusion

6.1 summary

Deep learning-based methods are strongly relied on the training data. Therefore, the

impact of training data characteristics on deep learning is very important for the ap-

plication of deep learning-based methods, especially in medical fields. In this study,

we used COVID-19 diagnosis in chest X-ray images as a case study to investigate

the impact of intra-source imbalance, an important data characteristic, on the deep

learning-based methods. Although McDermott et al. (2021) mentioned that poten-

tially unobserved aspect could influence the deep learning performance, this study

demonstrated the intra-source imbalance could lead to the same hidden risk. Each

chapter of this dissertation are summarized as follows.
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Chapter 1 has introduced the background of deep learning and the data char-

acteristics. The purpose of this study, to investigate the impact of intra-source im-

balance on the deep learning-based methods, has also been given in this chapter.

Chapter 2 has introduced the fundamental studies of deep learning and previ-

ous studies about COVID-19 diagnosis in chest X-ray images using deep learning.

In the first part, we have introduced CNN architecture, training steps of CNNs, and

several important data characteristics. In the second part, we have discussed the

previous studies on COVID-19 diagnosis in chest X-ray images using deep learning.

The ROI hide-and-seek protocol, used in Chapter 3, has been also introduced in this

part.

Chapter 3 has introduced our experiments to investigate the impact of intra-

source imbalance. We have introduced two different collected datasets, one is an

intra-source balanced dataset and the other one is an intra-source imbalanced dataset.

We have introduced the comparison experiments on the datasets by re-implementing

ROI hide-and-seek protocol and the cross-dataset test. The results reveals the risk of

unreliability when using intra-source imbalanced datasets in deep learning meth-

ods.

Chapter 4 has introduced our visualization investigation. We have utilized

LIME method to generate explanations for the decisions made by deep learning

models. The visualization results have intuitively shown that deep learning models

trained by intra-source imbalanced datasets classified CXR images based on the fea-

tures characterizing data sources rather than the features characterizing COVID-19.

Chapter 5 has discussed the proper inter-source balance level when construct-

ing a dataset for deep learning. Moreover, it has discussed the impact of potentially

unobserved aspects. The results have demonstrated potentially unobserved aspects
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inside lung regions could also aspect deep learning performance.

6.2 Future Directions

In addition to the topics we covered in this dissertation, there are several possible

extensions and directions we could further explore.

1. In previous study, many methods have been proposed to improve the perfor-

mance of deep learning-based methods on COVID-19 diagnosis in CXR im-

ages, but most of them were trained and tested on intra-source imbalanced

dataset. This research reveals the intra-source imbalance impact on the deep

learning-based methods. However, the model trained by the intra-source bal-

anced dataset achieved reliable but not high performance. Thus, it is necessary

to evaluate the previous methods on intra-source balanced dataset or propose

new methods to achieve a reliable and high performance on COVID-19 diag-

nosis in CXR images.

2. Although intra-source imbalance might lead to an unreliable performance,

sometimes it is inevitable, especially when collecting medical data. Therefore,

when collecting data from imbalanced facility, we need to pre-process the data

to minimize the risk of unreliable performance. It is desired to further research

on the impact of different settings on the data and the appropriate normaliza-

tion methods for intra-source imbalanced data.

3. The hidden risk might led by the different deployment environment in each

medical facility. Therefore, developing data standards could be another av-

enue to solve the problem. Increased use of data standards would make it
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easier to collect proper data for deep learning-based methods. Moreover, bet-

ter descriptions of contents, potential confounding and biases, and how the

data were created should be provided to help to ensure the data is proper.
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