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Abstract

Shopping is an indispensable daily activity in our lives. The hollowing-out of urban

commercial centers has been a growing economic-geographical problem over the past

several decades. Local governments in Japan regard the hollowing-out as a severe urban

problem because it is hard for them to promote compact cities where the hollowing-out

is ongoing. In order to promote socially efficient compact cities with urban policies for

shopping, we need to elucidate which policies agglomerate firms into downtown areas

and increase social welfare.

Market mechanism for locations of retail stores has been explored for almost a

century since Hotelling (1929). The model developed by Hotelling (1929) is called the

spatial competition model. Various spatial competition models have been developed to

capture some unique economic mechanisms.

The prototype of the spatial competition model, however, does not consider that

consumers purchase several goods from stores in a marketplace. This behavior is called

multipurpose shopping. Multipurpose shopping is ubiquitous in the real world. Spatial

price competition models with multipurpose shopping have been developed. In these

models, there are marketplaces where retail stores operate, and several goods are sold in

the marketplaces, unlike the spatial competition model developed by Hotelling (1929).

These marketplaces are interpreted as department stores, shopping streets, or shopping

malls.
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Turning our attention to urban policies, we can regard most urban policies as spa-

tially dependent policies. Examples of spatially dependent policies are road improve-

ment policies and subsidizing retail stores operating in the downtown area of a city.

Both of the policies have been applied in the real world. It is essential to investigate

the welfare impacts of spatially dependent policies. Nevertheless, spatially dependent

policies have been beyond the scope of theoretical analysis with multipurpose shopping.

This motivates the theoretical study of the welfare impacts of spatially dependent

policies for retail agglomeration. The present thesis aims to elucidate how local govern-

ments should apply spatially dependent policies that drive the agglomeration of retail

stores in cities. Hence, the present thesis fills the gap regarding policy analysis between

theoretical and empirical research in terms of analyzing the welfare impacts of spatially

dependent policies for retail agglomeration.

Chapter 1 is the introduction that summarizes theoretical background and the con-

tributions of the present thesis.

Chapter 2 investigates where retail stores agglomerate in a road network with radial

roads and a ring road in a two-dimensional space. We conduct equilibrium analysis

with symmetry of the geographical space. Results show 1) how a difference in improve-

ment sequences in the radial and ring roads generates a difference in the agglomeration

patterns with different welfare levels and 2) how the two-dimensional geographical po-

sition of shopping agglomerations ensuring the highest welfare level differs from that in

market equilibrium.

Chapter 3 introduces an example of analysis with symmetry of a geographical space.

Conducting equilibrium analysis with a New Economic Geography model, we investi-

gate theoretically where such satellite regions emerge in a two-dimensional economic

space in which discrete locations are evenly distributed in a regular-hexagonal domain.

To elucidate this emergence, we introduce two viewpoints with symmetry: (1) the bi-

furcation mechanism of the full agglomeration at the geographical center in this domain
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(mono-center), which produces satellite regions around this center, and (2) the existence

of invariant patterns, which are equilibria for any value of the transport cost parameter.

Chapter 4 focuses on place-based policies to revitalize decayed shopping areas in

downtown. Results show that, whether or not place-based policies are efficient de-

pends on the recipients to whom the policies give benefits, even if the policies promote

retail agglomeration in downtown. Specifically, subsidizing consumers residing near

downtown is inevitably harmful from the viewpoint of welfare, whereas subsidizing re-

tail stores can be efficient. Moreover, we show these results hold for any geographical

space.

Chapter 5 relates to the theoretical analysis of Chapter 4. We build a quantitative

multipurpose shopping model in Chapter 5. Chapter 5 quantitatively evaluates the

welfare impacts of the place-based policies focused in Chapter 4. Results show the

welfare impacts are qualitatively the same as the theoretical results shown in Chapter

4.

Chapter 6 summarizes the main results of the present thesis and suggests a direction

of future research.

Keywords: Agglomeration; Bifurcation; Monopolistic competition; Multipurpose
shopping; Place-based policy; Spatially dependent policy.
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1. Introduction

1.1. Background

Shopping is an indispensable daily activity in our lives. The hollowing-out of urban

commercial centers has been a growing economic-geographical problem over the past

several decades. For example, in Toyama in Japan, the number of retail stores in

the downtown area decreased by more than 50% from 2007 to 2016.1 Kanemoto and

Fujiwara (2016) summarize causes of the hollowing-out. One is to promote operating

for retail stores in suburbs (e.g., deregulation of Act on the Measures by Large-Scale

Retail Stores for Preservation of Living Environment in Japan). The other is progress on

mortalization and decreases in travel costs generated by road improvements. However,

few studies investigate how policy makers should apply urban policies to revitalize the

downtown area and increase social welfare.

Local governments in Japan regard the hollowing-out as a severe urban problem

because it is hard for them to promote compact cities where the hollowing-out is ongo-

ing. Compact cities can reduce public investment and total CO2 emissions in cities. In

order to promote socially efficient compact cities with urban policies for shopping, we

need to elucidate which policies agglomerate firms into downtown areas and increase

social welfare.

Market mechanism for locations of retail stores has been explored for almost a

century since Hotelling (1929). The pioneering work by Hotelling investigates the lo-

cations of two stores. The model developed by Hotelling is called the spatial competi-

tion model. Various spatial competition models have been developed to capture some

unique economic mechanisms. For example, the framework of the Cournot competition

(e.g., Hamilton et al., 1994; Guo and Lai, 2015) and the Bertrand competition (e.g.,

1See https://www.city.toyama.toyama.jp/seisakushokai/shuyopuran.html (last accessed on 22

November 2022).
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d’Aspremont et al., 1979; de Palma et al., 1985) is introduced to the spatial competition

model.2

The prototype of the spatial competition model, however, does not consider that

consumers purchase several goods from stores in a marketplace. This behavior is

called multipurpose shopping. Multipurpose shopping is ubiquitous in the real world.

This shopping behavior is the market failure generated by the shopping externality

(O’Sullivan, 1993). Hence, urban policies that affect the market equilibrium relating to

multipurpose shopping may increase social welfare.

Spatial price competition models with multipurpose shopping have been devel-

oped. In these models, there are marketplaces where retail stores operate, and several

goods are sold in the marketplaces, unlike the spatial competition model developed by

Hotelling (1929). These marketplaces are interpreted as department stores, shopping

streets, or shopping malls. For example, the Bertrand competition among depart-

ment stores has been explored (e.g., Lal and Matutes, 1989; Smith and Hay, 2005;

Brandão et al., 2014). Competition among shopping streets (or malls) also has been

explored with a geographical space expressed by a line segment (e.g., Henkel et al.,

2000; Tabuchi, 2009; Ushchev et al., 2015). In these models, retail stores operating in

each marketplace are expressed with monopolistic competition.

In contrast to the above theoretical analyses, policy analyses with spatial competi-

tion models have been conducted (Lai and Tsai, 2004; Chen and Lai, 2008; Matsumura

and Matsushima, 2012). These analyses focus on zoning policy. For example, Chen

and Lai (2008) explore optimal zoning policy with the Cournot competition between

two retail stores. Zoning policies are spatially dependent since zoning is not uniformly

adopted in geographical space.

Most urban policies, including zoning policies, are spatially dependent. The present

2See Biscaia and Mota (2013) for a survey.
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thesis calls a policy that can be applied in a part of geographical space, “spatially de-

pendent policy”. Other examples of spatially dependent policies are road improvement

policies and subsidizing retail stores operating in the downtown area of a city. Both

of the policies have been applied in the real world. For example, Albuquerque in the

U.S.A. subsidizes retail stores operating in the downtown area. Toyama in Japan sub-

sidizes consumers who migrate from outside to an area around the downtown area on

cities.

It is essential to investigate the welfare impacts of spatially dependent policies.

Nevertheless, spatially dependent policies have been beyond the scope of theoretical

analysis with multipurpose shopping.

Spatially dependent policies have been investigated in empirical research. For ex-

ample, Shi et al. (2015) empirically show that a shopping mall (i.e., an agglomeration

of retail stores) was built around a railway station in Shanghai after the railway station

had been built. Moreover, impacts of place-based policies on retail stores have been

empirically investigated (e.g., Givord et al., 2013; Neumark and Simpson, 2015; Iwata

and Kondo, 2021). For example, Givord et al. (2013) empirically show that the agglom-

eration of retail stores in a targeted area has been promoted by a place based policy,

which indicates that place-based policies can revitalize the downtown areas. In these

empirical analyses, however, the welfare impacts are not focused on. The place-based

policy does not ensure that social welfare increases because it can produce deadweight

losses in the policy-implemented market, and can cause a decline in the number of retail

stores in other areas. Hence, we have to evaluate how the place-based policy affects

social welfare.

One of the reasons why welfare analyses have not been conducted would be the

lack of data sets. For example, the effects of dynamic transport improvements on the

spatial distribution of retail stores have not been clarified yet. In fact, since there is

no exact record of dynamic transport improvements and shopping agglomerations, it is

3



hard to empirically show a dynamic relationship between transport improvements and

shopping agglomerations. This indicates that it is hard for us to empirically analyze

the welfare impact of spatially dependent policies.

This motivates the theoretical study of the welfare impacts of spatially dependent

policies for retail agglomeration. The present thesis aims to elucidate how local gov-

ernments should apply spatially dependent policies in cities. This thesis focuses on

spatially dependent policies that drive the agglomeration of retail stores. Hence, the

present thesis fills the gap regarding policy analysis between theoretical and empirical

research in terms of analyzing the welfare impacts of spatially dependent policies for

retail agglomeration.

1.2. Purpose, Research Strategy, and Summary of Contributions

Purpose

The present thesis aims to elucidate what spatial dependent policies local govern-

ments should apply in order to increase social welfare and promote retail agglomeration

in the downtown area. The present thesis aims to address the following issues. Spatially

dependent policies focused on the issues are applied worldwide.

• How does an improvement sequence on a road network affect the agglomeration

patterns of retail stores and social welfare?

• Which place-based policies increase social welfare, and which decrease social wel-

fare?

Research Strategy

The present thesis focuses on the first nature (Cronon, 1991) of geographical spaces,

which is observed in cities: downtown areas and suburbs. There is a downtown area in

each city; the downtown has the advantage of being convenient for consumers to visit.

Such first nature is generated by road networks embedded in a two-dimensional space

4



and is ubiquitous in cities worldwide. In fact, it is observed that the center of the road

network is the downtown area, and the suburbs are in peripheral zones.

The importance of the first nature is recognized in Spatial Economics, in particular,

New Economic Geography (NEG) pioneered by Krugman (1991). In NEG, a setup of

two regions where workers can reside has often been employed to theoretically eluci-

date agglomeration mechanisms. The Two-region setup, however, cannot express the

diversity of population agglomeration observed in the real world, as Behrens and Thisse

(2007) point out. Examples of the multi-region setups are a star economy, where there

is a center with several regions connected to it, and a hexagonal lattice with a bound-

ary (e.g., Barbero and Zof́ıo, 2016; Ikeda et al., 2017b). These setups express the first

nature since the centers of the geographical spaces have a geographical advantage.3

Some theoretical properties of the location patterns on hexagonal domains have been

clarified (e.g., Ikeda et al., 2017b, 2018a, 2019a). The present thesis applies methodolo-

gies for two-dimensional geographical spaces with symmetry applied in NEG to analyze

market equilibrium in spatial price competition models with multipurpose shopping.

Summary of Contributions

The contributions of the present thesis are summarized as follows.

Chapter 2 investigates where retail stores agglomerate in a road network with radial

roads and a ring road in a two-dimensional space. We conduct equilibrium analysis

with symmetry of the geographical space in order to investigate retail agglomeration

with road improvements among numerous market equilibria as the analysis in Chapter

2. Per-distance travel cost on the radial roads can be different from that on the ring

road. The transition of the two-dimensional agglomeration patterns of retail stores

3There are theoretical researches that exclude first nature (e.g., Tabuchi et al., 2005; Gaspar et al.,

2018; Aizawa et al., 2020). In these researches, all the transport costs between regions are the same.

Such a methodology enables us to investigate how second nature affects results in terms of population

agglomeration.
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is investigated with decreases in the travel costs. We show that retail agglomeration

develops around improved roads in the road network. This result corresponds to the

empirical result by Shi et al. (2015), which is that a shopping mall was built around a

railway station after the station had been built. Main results show 1) how a difference

in improvement sequences in the radial and ring roads generates a difference in the

agglomeration patterns with different welfare levels and 2) how the two-dimensional

geographical position of shopping agglomerations ensuring the highest welfare level

differs from that in market equilibrium.

Chapter 3 introduces an example of analysis with symmetry of a geographical space.

We conduct the analysis in order to investigate population agglomeration in a two-

dimensional space with a change in transport cost among numerous market equilibria.

Conducting equilibrium analysis with NEG model, we investigate theoretically where

such satellite regions emerge in a two-dimensional economic space in which discrete loca-

tions are evenly distributed in a regular-hexagonal domain. To elucidate this emergence,

we introduce two viewpoints with symmetry: (1) the bifurcation mechanism of the full

agglomeration at the geographical center in this domain (mono-center), which produces

satellite regions around this center, and (2) the existence of invariant patterns, which

are equilibria for any value of the transport cost parameter. Theoretically-predicted ag-

glomeration patterns are sure to exist as stable equilibria for a spatial economic model

proposed by Forslid and Ottaviano (2003). We theoretically find one large central city

surrounded by hexagonal satellite regions. This transition is an intrinsic feature ob-

served in the two-dimensional spatial platform with the geographical center. Moreover,

the theoretical results of Chapter 3 indicate that the spatial setting of a geographical

space can determine equilibrium. Since the setting can affect the allocation at equilib-

rium, this setting also affects the results of policy analyses depending on the allocation.

Chapter 4 focuses on place-based policies to revitalize decayed shopping areas in

the downtown areas. Developing a multipurpose shopping model, we evaluate the
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welfare impacts of place-based policies for retail agglomeration in the downtown area.

In the model, retail stores are under monopolistic competition, and consumers are

free to choose where to reside. Results show that whether or not place-based policies

are efficient depends on the recipients to whom the policies give benefits, even if the

policies promote retail agglomeration in the downtown area. Specifically, subsidizing

consumers residing near the downtown area is inevitably harmful from the viewpoint of

welfare, whereas subsidizing retail stores can be efficient. As the results of Chapter 3

indicate, geographical space affects the allocation at equilibrium. Although the results

of our welfare analyses depend on the allocation in general, we show that the results of

Chapter 4 hold for any geographical space.

Chapter 5 relates to the theoretical analysis of Chapter 4. Chapter 5 quantitatively

evaluates the welfare impacts of the place-based policies focused on Chapter 4. In

order to conduct the analysis, we develop a quantitative multipurpose shopping model.

Results show that the welfare impacts are qualitatively the same as the results in

Chapter 4.

Chapter 6 summarizes the main results of the present thesis and suggests a direction

of future research.
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2. Two-dimensional Geographical Position as a Factor in Determining the Growth

and Decline of Retail Agglomeration

2.1. Introduction

Shopping is an indispensable daily activity in our lives. The hollowing-out of ur-

ban commercial centers has been an economic geographical progressing problem over

the past several decades. One of the factors driving the hollowing-out is a decrease

in travel costs caused by automobility and road improvements. Road improvements,

however, provide social benefits to consumers. If the hollowing-out harms social wel-

fare, it is an urban problem. Hence, it is essential to elucidate how road improvements

affect social welfare related to the agglomeration of retail stores in a downtown and

suburbs. We explore how road improvements in a two-dimensional road network affect

the agglomeration pattern and social welfare.

The location of retail stores has been studied for almost a century since Hotelling

(1929). One feature of Hotelling’s framework is a simplified urban space: a line seg-

ment where consumers are distributed uniformly. Although several studies extend this

feature to capture some unique economic mechanisms,4 urban spaces in the real world

are more complex than the spaces employed by those studies. One realistic factor in-

creasing complexity is a road network embedded in a two-dimensional space. The road

network generates geographical heterogeneity, such as a center and suburbs. In order

to explore recent urban problems (e.g., the hollowing-out of the center), it is essential

to differentiate the center from the suburbs.

Some studies focus on the differentiation of the center from the suburbs. For ex-

ample, Braid (1993) explores price competition among retail stores on the Manhattan

4For example, a circle (e.g., Mulligan, 1996), a line segment where consumers are distributed non-

uniformly (Tabuchi and Thisse, 1995), a homogeneous two-dimensional space (Tabuchi, 1994), and a

homogeneous n-dimensional space (Irmen and Thisse, 1998) are employed.
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roadway grid. Similarly, Braid (2013) investigates the optimal locations of retail stores

in a city with a central intersection and radial roadways extending from a center to

suburbs. Kishi, Kono and Nozoe (2015) analyze a spatial price model à la Capozza

and Van Order (1977) in a similar space. Guo and Lai (2015) analyze the Cournot

competition in a circle with a diameter as a main street. These studies differentiate the

center from the suburbs by embedding a two-dimensional road network. On the other

hand, Ushchev, Sloev and Thisse (2015) analyze competition between retail stores in a

downtown (i.e., a center) and a shopping mall in a suburb in a line segment.

In contrast to these previous studies, we focus on heterogeneity in road networks

observed in the real world. Actually, per-distance travel cost near a center is different

from those near suburbs in a real network. Moreover, roads in a city are not simul-

taneously improved by a local government.5 Transport improvements generate the

agglomeration of retail stores. For example, Shi et al. (2015) empirically show that a

shopping mall (i.e., an agglomeration of retail stores) was built around a railway station

in Shanghai after the railway station had been built. However, the effects of dynamic

transport improvements on the spatial distribution of retail stores has not been clar-

ified yet. In fact, since there is no exact record of dynamic transport improvements

and shopping agglomerations, it is hard to empirically show a dynamic relationship

between transport improvements and shopping agglomerations. Focusing on how an

improvement sequence on a road network affects the agglomeration patterns of retail

stores and social welfare, we theoretically investigate where retail stores are located in

such a heterogeneous road network.

We build on the spatial competition model proposed by Tabuchi (2009). This model

comprises a homogeneous space, monopolistic competition among retail stores,6 and a

5For example, Mun (1997) shows that the asymmetry of transport cost in a road network generates

a difference in city size distribution.
6Recently, locations where firms operate under monopolistic competition have been investigated
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dynamical system that describes changes in the sizes of marketplaces where the retail

stores are located. Tabuchi (2009) shows that the self-organization of the retail stores,

which can be interpreted as the emergence of subcenters, occurs as a result of their

competition in the homogeneous space.

Our chapter differs from Tabuchi (2009) in a space where retail stores can be located.

We employ a regular-hexagonal shape with one center and six suburbs (Figure 2.1),

which are potential marketplaces for retail stores. In the real world, road networks

in cities are constructed around the central business district. Most cities have radial

roads and ring roads in the network. Hence, the regular-hexagonal shape is a simplified

description of real road networks for our theoretical analysis.7

Actually, hexagonal domains have recently been employed as a two-dimensional spa-

tial platform for New Economic Geography models. Ikeda et al. (2014), for example,

explore where and how population agglomeration takes place in a hexagonal domain

by bifurcation analysis. Some theoretical properties of the location patterns on hexag-

onal domains have been clarified (e.g., Ikeda et al., 2017b, 2018a, 2019a). Conducting

bifurcation analysis introduced by Ikeda et al. (2014), we investigate market equilibria.

Moreover, we relax the uniform per-distance travel cost assumption employed in

many spatial competition models. In our model, the per-distance travel cost on the

radial roads can be different from that on the ring road. Such a relaxation captures one

of the features of road networks in the real world. Combining the spatial platform and

this relaxation, we investigate how improvement sequences in the road network affect

the agglomeration pattern of retail stores and social welfare. In particular, we explore

where retail stores should be located from the viewpoint of social welfare.

The contribution of this chapter is twofold. First, we show that a difference in

(e.g., Ago, 2008; Ushchev et al., 2015).
7Since our analysis focuses on the symmetry of the location of suburbs, a different number of

suburbs would not qualitatively affect our result unless the symmetry differed.
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(D, 1, x)
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(S, 1, y)
y

Figure 2.1: City shape. Black lines: the road network in the city; node 0: the center in the

city; nodes 1, . . . , 6: the suburbs.

improvement sequences in the road network generates a difference in agglomeration

patterns in equilibrium even for the same travel costs parameters. Conducting bifur-

cation analysis to explore market equilibria, we demonstrate that all the retail stores

agglomerate in the center if the radial roads are improved first. In contrast, the stores

are located in the center as well as in several suburbs if the ring road is improved first.

Second, we show that the scale of agglomeration of retail stores in each marketplace

as well as the two-dimensional location pattern of marketplaces in which stores operate

at a market equilibrium differ from those at the first-best situation particularly when

the travel costs are low. This implies that policymakers should guide stores to form an

appropriate location pattern with policies such as land-use regulation.8

The rest of this chapter is organized as follows. A spatial competition model is

introduced in Section 2. Agglomeration patterns of retail stores are explored in Section

3. Our theoretical results are verified with numerical comparative statics analysis of

the distribution of retail stores in Section 4. Section 5 concludes this chapter.

8Land-use regulation can be practical alternatives to superior policies that are often politically

infeasible. The effect of the land-use regulation on social welfare has been theoretically investigated

by many chapters (e.g., Brueckner, 2009; Kono and Joshi, 2018, 2019).
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2.2. Model

2.2.1. City and goods

We consider a city composed of seven potential marketplaces labeled 0, 1, . . . , 6.

Marketplace 0 and marketplaces 1, . . . , 6 are in the center and suburbs, respectively.

The center is connected to the suburbs by radial roads, whereas the suburbs are located

on a ring road. We consider that the radial roads and the ring road form a regular-

hexagonal road network as shown in Figure 2.1. For simplicity, the length of all the

line segments between the marketplaces is assumed to be one.

We consider two types of goods: horizontally differentiated goods and an outside

good. The differentiated goods are supplied by a large number of profit-maximizing

retail stores in the marketplaces. The outside good is supplied by perfectly competitive

firms and chosen as a numéraire good.

2.2.2. Consumers

Consumers in the city are uniformly distributed over the road network with the

density normalized to 1. Let L denote all the positions on the road network. The

utility of consumers residing at ℓ ∈ L and visiting marketplace j is given by U(ℓ, j) =

lnMj(ℓ) + A(ℓ), where Mj(ℓ) =
(∫ nj

0
q(ℓ, k)

σ−1
σ dk

) σ
σ−1

. q(ℓ, k) is the consumption of

the kth variety, nj is the mass of varieties supplied in marketplace j, σ (> 1) is the

elasticity of substitution between any two varieties, and A(ℓ) is the consumption of the

outside good.

If consumers choose to visit marketplace j, then the budget constraint is given by
∫ nj

0
pj(k)q(ℓ, k) dk + t(ℓ, j) + A(ℓ) = W, where pj(k) is the price of the kth variety in

marketplace j, W is the income, and t(ℓ, j) is the travel cost paid by the consumers.9

9We ignore commuting in order to focus on how decreases in the travel cost (i.e., road improvements)

affect the equilibrium of shopping stores.
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Solving the utility maximization problem, we obtain demand functions:

q(ℓ, k) = pj(k)
−σR−1

j , (2.1)

A(ℓ) = W − t(ℓ, j)− 1, (2.2)

where Rj =
∫ nj

0
pj(k)

1−σ dk. We assume that income W is high so that A(ℓ) is positive

in equilibria.

2.2.3. Retail stores

Retail stores are located in marketplaces. These stores share the same marginal

production cost c and the same fixed cost f . We assume that retail stores in the same

marketplace are under monopolistic competition. The total number of retail stores at

each marketplace is determined by free entry.

Let πi(k) be the profit of the retail store producing the kth variety at marketplace

i. πi(k) is given by

πi(k) = (pi(k)− c)Qi(k)− f, (2.3)

where Qi(k) is the total demand for the kth variety at marketplace i. Each retail store

has a negligible impact on the prices of other goods in the marketplace because its

supply is very small compared to the total supply of all the stores. That is, Ri does not

change, as in Dixit and Stiglitz (1977). Using (2.1), we obtain the profit-maximizing

prices, which are the same across all the varieties and marketplaces: pi(k) = p∗ (∀i, k),

where p∗ = cσ/(σ−1). We regard πi(k) as πi because each firm at the same marketplace

can be treated symmetrically.

2.2.4. Market area

Consumers are assumed to visit one marketplace where they can obtain the high-

est utility. Hence, total demand for a retail store Qi(k) is determined by consumers’
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behavior. To obtain Qi(k), we introduce ‘market area’, which is all the residential loca-

tions of the consumers visiting the same marketplace. We classify the two-dimensional

agglomeration patterns of retail stores with the market area in Section 2.3.

Substituting p∗ into (2.1), we obtain demand for the kth variety (i.e., q(ℓ, k)) for con-

sumers at ℓ (∈ L) visiting marketplace j: q(ℓ, k) = 1/(p∗nj). Substituting this function

and (2.2) into the utility function, we obtain the indirect utility of the consumers:

V (ℓ, j) = σ−1lnnj − t(ℓ, j) + VD, (2.4)

where σ−1 = (σ− 1)−1, VD = −ln p∗ +W − 1. We define the set of the indirect utilities

that the consumers can obtain by visiting a marketplace:

V(ℓ) = {V (ℓ, 0), V (ℓ, 1), . . . , V (ℓ, 6)}, ℓ ∈ L.

Using V(ℓ), we mathematically define the market area.

Definition 2.1. The market area of marketplace i (i = 0, 1, . . . , 6) is the following

set:

Mi = {ℓ ∈ L | max V(ℓ) = V (ℓ, i)}. (2.5)

We can obtain Qi(k) using the defined market area. Let µ(Mi) denote the total

length of market area Mi. Using demand function q(ℓ, k) and µ(Mi), we obtain the

total demand:

Qi(k) =





µ(Mi)/(p
∗ni) (ni > 0),

0 (ni = 0).
(2.6)

2.2.5. Market equilibrium

We introduce the market equilibrium condition of the size of marketplaces. Let

n = (n0, . . . , n6)
⊤ denote the distribution of the retail stores across the marketplaces

in the city. The market equilibrium condition for n is the following condition:




πi = 0 if ni > 0,

πi ≤ 0 if ni = 0,
i = 0, 1, . . . , 6. (2.7)
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Condition (2.7) implies that retail stores have no incentive to locate at marketplace i if

the profit they obtain at marketplace i is not positive. Note that profit πi is a function

of n because Qi(k) in (2.6) depends on n.

We employ a dynamical system to investigate the stability of equilibria. We assume

that n gradually evolves in proportion to both profit π and state n itself as follows:10

dn

dt
= F (n), (2.8)

where F (n) = (F0(n), F1(n), . . . , F6(n))
⊤ and Fi(n) = niπi (i = 0, 1, . . . , 6). Since

dynamics (2.8) implies that the growth rate of ni per unit time is equal to profit πi,

retail stores are attracted to marketplaces where they can obtain profits. This dynamics

has an advantage shown by the following lemma.11

Lemma 2.1. n is the market equilibrium iff n is a stationary point of dynamics

(2.8).

Proof. See Appendix A.1.

We investigate the market equilibria by finding stationary points of dynamics (2.8).

A stationary point is linearly-stable if every eigenvalue of Jacobian matrix ∂F /∂n has

a negative real part. We call linearly-stable stationary points stable equilibria. We also

investigate transitions from unstable equilibria under dynamics (2.8) in Section 2.4.

10Such a modeling methodology is called the Boltzmann, Lotka and Volterra method, which has

been applied to statistical physics as well as regional science (e.g., Harris and Wilson (1978); Wilson

(2008); Osawa et al. (2017)).
11The dynamics assumed by Tabuchi (2009) implies that changes in the number of retail stores per

unit time depend on profits only. The dynamics assumed by Tabuchi (2009) and us are qualitatively

the same. Furthermore, the dynamics in this chapter can capture corner equilibria as stationary points

of the dynamics.

15



2.2.6. Travel cost

Consumers have several route choices to the marketplaces. The consumers choose

the route with the lowest travel cost. We mathematically define L to express travel

costs, which are determined by the distance between consumers and a marketplace. Let

D and S denote the radial roads and the ring road in the city, respectively. Since we

assume that the length of each road between the marketplaces is 1, we can represent L

by L = A× P ×X, where A = {D,S}, P = {1, 2, . . . , 6}, and X = (0, 1). (D, i, x) ∈

{D}×P×X is equal to position x distant from the center on the radial road between the

center and suburb i (e.g., see (D, 1, x) in Figure 2.1). Similarly, (S, i, y) ∈ {S}×P ×X

is equal to position y distant from suburb i on the ring road between suburb i and

j (≡ i+ 1 mod 6) (e.g., see (S, 1, y) in Figure 2.1). Therefore, {D} × P ×X is all the

positions on the radial roads, whereas {S} × P ×X is that on the ring road.

For consumers residing at ℓ = (D, i, x) ∈ {D} × P × X (i.e., consumers residing

along the radial roads), the travel cost is given by

t(ℓ, j) =





ϕx (j = 0),

min {ϕ(1 + x), ϕ(1− x) + τLij} (j ∈ P),
(2.9)

where ϕ is the per-distance travel cost on the radial roads, τ is the per-distance travel

cost on the ring road, and Lij = min {|i − j|, 6 − |i − j|}. ϕx is the travel cost when

the consumers visit the center; ϕ(1+x) is when the consumers visit suburb j (∈ P) via

the center; ϕ(1− x) + τLij is when via the suburbs. On the other hand, for consumers

residing at ℓ = (S, i, x) ∈ {S} × P ×X (i.e., consumers residing along the ring road),

the travel cost is given by

t(ℓ, j) =





ϕ+ τ(1/2− |x− 1/2|) (j = 0),

τ ×min {|i+ x− j|, 6− |i+ x− j|} (j ∈ P).
(2.10)

ϕ+ τ(· · · ) is the travel cost when the consumers visit the center via the nearest suburb;

τ ×min {· · · } is the travel cost when the consumers visit marketplace j via the shortest
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Figure 2.2: The dispersion. Black area: M0; green: M1; red: M2; sky blue: M3; pink: M4;

yellowgreen: M5; brown: M6; the size of ⃝: the number of retail stores.

route along the ring road.

2.2.7. Welfare

We measure the efficiency of the distribution of retail stores. Since the retail stores’

profits are zero in the equilibria by condition (2.7), social welfare SW is total consumer

utility (in monetary terms).

2.3. Agglomeration patterns of retail stores

We focus on some agglomeration patterns of retail stores. These patterns are pos-

sible market equilibria, which are investigated in Section 2.4.

2.3.1. A simple agglomeration pattern

We focus on the agglomeration pattern of retail stores in which every marketplace

has a market area (i.e., Mi ̸= ∅ (i = 0, 1, . . . , 6)). We define this market area pattern as

market pattern (D), and the equilibria that forms market pattern (D) as the dispersion

(Figure 2.2). See Appendix A.2.2 for the details of these definitions.

A symmetric assumption for an equilibrium is often employed when the change of

an agglomeration pattern with the change in an exogenous parameter is investigated

(e.g., Ikeda et al., 2014). Assuming n1 = n2 = · · · = n6, we investigate how decreases

in per-distance travel cost ϕ and τ affect the dispersion. For n = (n0, n1, . . . , n1), we

can obtain dynamics (2.8) as follows.
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Lemma 2.2. For n = (n0, n1, . . . , n1), dynamics (2.8) under market pattern (D)

is

F0(n) =
3

σ

(
ln (n0/n1)

ϕ(σ − 1)
+ 1

)
− fn0, (2.11)

Fi(n) =
1

2σ

(
− ln (n0/n1)

ϕ(σ − 1)
+ 3

)
− fn1, i = 1, 2, . . . , 6. (2.12)

Proof. See Appendix A.2.3.

Let nd ≡ (n0, n1, . . . , n1) be a symmetric equilibrium of the dispersion (i.e., Fi(nd) =

0 (i = 0, 1, . . . , 6)). First, we investigate the change in nd and the emergence of another

agglomeration pattern with a decrease in ϕ. This change is summarized as follows.

Lemma 2.3. If n0 > n1 holds in linearly-stable nd, then n0 and n1 in the equilibria

monotonously change with an increase in ϕ:

dn0

dϕ
< 0,

dn1

dϕ
> 0. (2.13)

If n0 < n1 holds in linearly-stable nd, then

dn0

dϕ
> 0,

dn1

dϕ
< 0. (2.14)

Proof. See Appendix A.2.3.

Monotonicity (2.13) in Lemma 2.3 indicates that the full agglomeration of retail

stores in the center is a possible market equilibrium.

Next, we investigate the change in nd with a decrease in τ and the emergence of

another agglomeration pattern. Since τ is not included in (2.11) or (2.12), τ does not

affect the change in n0 and n1 of nd. A decrease in τ can affect the linear stability.

We briefly investigate the change in linearly-unstable nd at a certain level of τ .

Solutions starting near unstable nd under dynamics (2.8) are classified into 1) the

solution diverging from nd and 2) the solution converging to nd. In particular, near nd,

the motion of any solution diverging from nd is almost equal to a linear combination of
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Unstable

Figure 2.3: The change from nd at a certain level of τ by a decrease in τ . The size of ⃝: the

number of retail stores.

the eigenvectors for the eigenvalues of ∂F /∂n that has a positive real part.12 Hence,

the linear combination is the most likely change from nd after it is not linearly-stable.

Lemma 2.4. Just after stationary point nd is unstable at a certain level of τ by

a decrease in τ , the eigenvector for the eigenvalues of ∂F /∂n that has a positive real

part is w(0, 1,−1, 1,−1, 1,−1)⊤ (w ∈ R).

Proof. See Appendix A.2.3.

Lemma 2.4 indicates that the dispersion changes into an agglomeration pattern where

large agglomerations and small agglomerations alternately emerge on the ring road (See

Figure 2.3).13

2.3.2. Corner equilibria

We next focus on the equilibria in which some marketplaces have no market area.

We call these equilibria corner equilibria. Various symmetric corner equilibria can hold

because the geometrical symmetry of the road network generates symmetric market

area patterns. Among the corner equilibria, we investigate four corner equilibria (Figure

12Such a classification can be applied to stationary points of general dynamical systems. See, e.g.,

Kuznetsov (Chapter 2.2, 2004) for the theoretical details.
13This change is qualitatively the same result as the spatial triangle bifurcation, which is often

observed in the New Economic Geography (e.g., Ikeda et al. (2012)).
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(a) (b) (c) (d)

Figure 2.4: Corner equilibria under investigation. (a): the full agglomeration; (b) the triangle

pattern; (c) the asymmetric pattern; (d) the linear pattern. ⃝: the number of retail stores.

Black area: M0; green: M1; sky blue: M3; pink: M4; yellowgreen: M5.

2.4): the full agglomeration (M0 ̸= ∅), the triangle pattern (M0,M1,M3,M5 ̸= ∅),

the asymmetric pattern (M0,M1,M3 ̸= ∅), and the linear pattern (M0,M1,M4 ̸= ∅).

These equilibria are possible agglomeration patterns into which the dispersion changes

with decreases in ϕ and τ .

Note that these corner equilibria hold under some inequality conditions. We in-

vestigate these conditions with the definitions of market area patterns. We define a

market area pattern for the full agglomeration as market pattern (F), a market area

pattern for the triangle pattern as market pattern (P), a market area pattern for the

asymmetric pattern as market pattern (A), and a market area pattern for the linear

pattern as market pattern (L). See Appendix A.3 for these detailed explanations.

It is most likely that the full agglomeration and the triangle pattern14 are corner

equilibria into which the dispersion changes (Lemmas 2.3 and 2.4). Moreover, we can

14Note that market areas M1, M3, and M5 are asymmetric in market pattern (P) (i.e., µ(M1) >

µ(M3) > µ(M5)). When µ(M1) = µ(M3) = µ(M5) holds at τ less than ϕ, some consumers residing

along the radial roads are indifferent to choosing one of suburbs 1, 3, and 5. If a retail store enters

one of the suburbs in such an agglomeration pattern, the suburb attracts the consumers. Hence, the

symmetry of the market areas in the suburbs breaks. We thus focus on market pattern (P) rather

than symmetric patterns where suburbs 1, 3, and 5 each have a market area.
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infer from Lemma 2.3 that the number of retail stores in marketplace 5 under the

triangle pattern decreases with a decrease in τ . Hence, the asymmetric pattern is a

possible equilibrium into which the triangle pattern changes.

On the other hand, the linear pattern seems to be the most efficient equilibrium in

the equilibria in which retail stores are located in three marketplaces. However, the

linear pattern is not a corner equilibrium pattern into which the triangle pattern or the

asymmetric pattern changes under dynamics (2.8).

Proposition 2.1. Neither any distribution n in market pattern (P) nor that in

(A) changes into any distribution in market pattern (L) under dynamics (2.8).

Proof. See Appendix A.4.

Proposition 2.1 shows that neither the triangle pattern nor the asymmetric pattern

changes into the linear pattern with decreases in ϕ and τ . In other words, improvements

in the road network do not change the triangle pattern (the asymmetric pattern) into

the linear pattern.

Moreover, while one may intuitively consider that the dispersion tends to change

into the linear pattern, Lemma 2.4 indicates that such a result does not occur. This is

verified in Section 2.4.

2.4. Two-dimensional geographical positions of retail stores

We explore how road improvements affect equilibria and social welfare. In this

chapter, we regard road improvements as decreases in travel costs (ϕ and τ). Conduct-

ing bifurcation analysis to explore market equilibria, we show how road improvement

sequences affect the equilibrium. We set exogenous variables σ and f at 6.0 and 20,

respectively
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2.4.1. Dependency of stable agglomeration patterns on travel costs

Since there are numerous road improvement sequence patterns in our model as well

as in the real world, we focus on which road improvement sequence can generate a

difference in equilibria and social welfare. Such a difference can occur with travel costs

parameters for which multiple stable equilibria exist. Hence, we examine whether or

not multiple stable equilibria exist with travel costs parameters.

The stability of equilibria introduced in Section 2.3 in the space of (ϕ, τ) ∈ (0, 1)×

(0, 1) was investigated and the zones in which they were stable are enclosed by solid

lines in Figure 2.5(a). According to the result, the dispersion tends to be stable with

relatively high ϕ and τ . On the other hand, the triangle, the asymmetric, and the linear

pattern tend to be stable with relatively higher ϕ than τ . The full agglomeration is

always stable in the space.15

As Figure 2.5(a) shows, multiple stable equilibria exist in the space. Hence, an

equilibrium forming an agglomeration pattern on specific travel costs is likely to change

into an equilibrium forming another agglomeration pattern with decreases in travel

costs. For example, the dispersion at stage α marked by ⋄ in Figure 2.5(a) is likely

to change into the full agglomeration or the asymmetric pattern on stage γ. This

example indicates that the road improvement sequence affects which agglomeration

pattern emerges on stage γ.

We investigate which agglomeration pattern is most efficient in terms of the social

welfare in the space. In Figure 2.5(b), the color of each zone (black, blue, orange, and

red) represents the most efficient agglomeration pattern in that zone.16 For example,

the full agglomeration is the most efficient agglomeration pattern at stage γ.

The linear pattern is the most efficient agglomeration pattern in a part of the zone

15The full agglomeration is always linearly stable. See Appendix A.3.1 for details.
16Note that the asymmetric pattern is not the most efficient in (0, 1)× (0, 1).

22



(a)

(b)

Figure 2.5: (a) Zones of stable equilibria in (ϕ, τ) ∈ (0, 1) × (0, 1). The zone bounded by

black lines: the dispersion; blue: the triangle pattern; green: the asymmetric pattern; orange:

the linear pattern; red: the full agglomeration. (b) The most efficient agglomeration pattern

in terms of the social welfare. Black zone: the dispersion; blue zone: the triangle pattern;

orange zone: the linear pattern; red zone: the full agglomeration.
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where multiple equilibria exist. This pattern, however, is predicted not to emerge

from the dispersion, the triangle pattern, or the asymmetric pattern with decreases in

travel costs (Lemma 2.4 and Proposition 2.1). Hence, the result indicates that roads

improvements do not generate an efficient agglomeration pattern even in terms of the

locations of marketplaces where retail stores are located.

2.4.2. Dependency of agglomeration patterns on improvement sequences

in the road network

Conducting the numerical comparative statics analysis of equilibria, we verify that

road improvement sequences generate differences in the agglomeration patterns and

the social welfare in equilibrium. We show two main findings through the numerical

comparative statics analysis of the equilibrium for the travel costs:

• main finding 1: a difference in improvement sequences in the road network finally

generates a difference in the equilibria.

• main finding 2: the welfare of the linear pattern is higher than that of the asym-

metric pattern while the market system does not produce the linear pattern.

We investigate the transition of the stable dispersion from stage α to stage γ shown

in Figure 2.5. Among various road improvement sequence patterns to stage γ, we focus

on two simple improvement sequence patterns: (1) the radial roads are improved first

and (2) the ring road is improved first.17

We investigate the following two cases of changes in the travel costs:

17One may think that radial roads are improved first in the real world. Figure 2.5 (a) indicates that

even if the road improvement sequence is initial radial roads, ring road, and additional radial roads,

the equilibrium generated by the sequence is the same as that by the ring-road first case.
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• The radial-roads first case:

(ϕ, τ) = (1.0, 1.0)︸ ︷︷ ︸
Stage α

Transition 1−−−−−−−→ (0.35, 1.0)︸ ︷︷ ︸
Stage β1

Transition 2−−−−−−−→ (0.35, 0.17)︸ ︷︷ ︸
Stage γ

.

• The ring-road first case:

(ϕ, τ) = (1.0, 1.0)︸ ︷︷ ︸
Stage α

Transition 1−−−−−−−→ (1.0, 0.17)︸ ︷︷ ︸
Stage β2

Transition 2−−−−−−−→ (0.35, 0.17)︸ ︷︷ ︸
Stage γ

.

The radial-roads first case is that the radial roads are improved first, and the ring road

is improved next.18 The ring-road first case is that the ring road is improved first.

First, we focus on the result of the radial-roads first case shown in Figure 2.6. Figure

2.6(a-1) is the comparative statics analysis with a decrease in ϕ, which is equal to Stage

1. Solid lines A1B1 and A2B2 are the stable dispersion and the stable full agglomeration,

respectively. Both dispersion and the full agglomeration exist for large ϕ (> 0.37). In

the dispersion, number of retail stores in the center n0 increases and market area of

the center M0 expands with a decrease in ϕ (Lemma 2.3). For small ϕ (= 0.37), M0

entirely covers the radial roads.

We investigate how a point in a neighborhood of B1 changes under dynamics (2.8).

Let B̂1 denote the point.
19 The solution starting at B̂1 under dynamics (2.8) is shown in

Figure 2.6(c-1).20 This solution converges at the square marker (□). The point marked

18With lower travel costs, other agglomeration patterns not shown in the previous section can emerge

(e.g., one downtown and a marketplace in the suburbs). To accomplish our aim, we have only to focus

on the agglomeration patterns shown in the previous section.
19In this case, at B1, (ϕ, n0, n1) = (0.366, 4.88 × 10−2, 0.853 × 10−2). At B̂1, (ϕ, n0, n1) =

(0.365, 4.89 × 10−2, 0.852 × 10−2). We obtained the solution from B̂1 with dynamics (2.8) in mar-

ket pattern (D) because the market area at B̂1 have this pattern (Lemma A.3 in Appendix A.3.1).
20We obtained the solution with the Runge-Kutta 4th order method.
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Figure 2.6: The radial-roads first case. (a) The market equilibria with decreases in the travel

costs. Solid line: stable equilibria. (b) Social welfare of stable equilibria in (a). (c-1) The

solution starting at a point in the neighborhood of point B1. Dashed-dotted line: the solution

under market pattern (F).
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by the square marker shows the full agglomeration. In summary, the dispersion changes

into the full agglomeration when the radial roads are improved.21

The full agglomeration is always stable (Figure 2.6(a-1)). The red point in Fig-

ure 2.6(a-1) is equal to the agglomeration pattern at stage β1 (i.e., the full agglomera-

tion).

We focus on stage γ of the radial-roads first case. Figure 2.6(a-2) is the comparative

statics analysis with a decrease in τ , which is equal to Transition 2. The green point

in Figure 2.6(a-2) shows the agglomeration pattern of the final stage (i.e., the full

agglomeration). Hence, the radial-roads first case results in the full agglomeration

emerging from the dispersion.

Next, we focus on the result of the ring-road first case shown in Figure 2.7. Fig-

ure 2.7(a-1) is the comparative statics analysis with a decrease in τ , which is equal to

Stage 1. Solid line A1B1 is the stable dispersion; A3B3 is the triangle pattern; A4B4 is

the linear pattern; A5B5 is the asymmetric pattern. The dispersion becomes unstable

at point B1, which is a bifurcation point. Three unstable equilibria emerge at this

point. When the dispersion is unstable, a small perturbation to this state generates an

agglomeration pattern where large agglomerations and small agglomerations alternately

emerge on the ring road, as shown in Figure 2.3 (Lemma 2.4).

To investigate the change from the unstable equilibrium, we investigate how a point

in a neighborhood of bifurcation point B1 changes under dynamics (2.8). The solution

starting at this point under dynamics (2.8) is shown in Figure 2.7(c-1).22 The solutions

shown with the blue line and the pink line in Figure 2.7(c-1) are obtained under market

areas (D) and (P), respectively.23 The solution converges at the point marked by the

21This change is called boundary equilibrium bifurcation in the dynamical systems theory (see e.g.,

Bernardo et al., 2008).
22In this case, at B1, (τ, n1) = (0.306, 1.17× 10−2). At B̂1, (τ, n1) = (0.305, 1.18× 10−2).
23In this numerical analysis, the path-following of the solution stopped at the point at which the
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square marker (□). This result shows that the dispersion changes into the triangle

pattern. Moreover, in the triangle pattern, n1 increases with a decrease in τ . This

pattern disappears at point B3 (Figure 2.7(a-1)).

To elucidate the change from point B3, we investigate how a point in the neighbor-

hood of point B3 changes under dynamics (2.8). The solution starting at this point

is shown in Figure 2.7(d-1).24 Near B̂3, we obtained this solution with dynamics (2.8)

in market pattern (P). For small n5, the solution was obtained under that in market

pattern (A).25 This result shows that the triangle pattern changes into the asymmetric

pattern. Hence, the asymmetric pattern emergin at stage β2 is the red point in Figure

2.7(a-1).

We focus on stage γ. Figure 2.7(a-2) is the comparative statics analysis with a

decrease in ϕ, which is equal to Stage 2. In both asymmetric pattern and the linear

pattern, n1 decreases with a decrease in ϕ. The green point in Figure 2.7(a-2) is equal

to the agglomeration pattern of stage γ (i.e., the asymmetric pattern). This pattern is

not the agglomeration pattern that emerges in the radial-roads first case. In summary,

the improvement sequences in the road network finally generate the difference in the

agglomeration pattern. This observation is main finding 1.

color of the line changes. This point is at the boundary between market area conditions (D) and

(P) (See Lemmas A.1 in Appendix A.2 and A.5 in Appendix A.3). We obtained the solution to the

square marker by following the solution starting at a point satisfying market area condition (P) in the

neighborhood of this boundary.
24B3 is (τ, n1) = (0.188, 3.36× 10−2) and B̂3 is (τ, n1) = (0.187, 3.36× 10−2).
25We obtained this result by the same procedure as we did for Figure 2.7(c-1).
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Figure 2.7: The ring-road first case. (a) The market equilibria with decreases in the travel

costs. Solid line: stable equilibria; dashed line: unstable equilibria (b) Social welfare of stable

equilibria in (a). (c-1) The solution of the dynamics starting at a point in a neighborhood of

B1. Blue dashed-dotted line: the solution under market pattern (D); pink: market pattern

(P). (d-1) The solution starting at a point in a neighborhood of B3. Pink: market pattern

(P); brown: market pattern (A).
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2.4.3. Welfare analysis

We discuss the welfare analysis results shown in Figures 2.6 and 2.7. First, we

compare the welfare of stage γ of the radial-roads first case and that of the ring-road

first case. The welfare is 11.7 in the radial-roads first case (Figure 2.6(b-2)), whereas

the welfare is 10.8 in the ring-road first case (Figure 2.7(b-2)). These demonstrations

show that the radial-roads first case is more effective than the ring-road first case.

Next, we focus on the welfare of the linear pattern shown in the ring-road first case.

In the ranges of travel costs (0.01 < τ < 0.34 in Figure 2.7(b-1) and 0.35 < ϕ ≤ 1.00

in Figure 2.7(b-2)), the welfare in the linear pattern is higher than that in the other

patterns in the ring-road first case. In particular, the social welfare of the linear pattern

is higher than that of the asymmetric pattern at the same travel costs. However, not the

linear pattern but the asymmetric pattern emerges from the dispersion in the market

system. That is, the two-dimensional shape of the location in the market system is not

that of the first-best location. This result is main finding 2, which indicates that policies

that change the locations of marketplaces are needed (e.g., land-use regulations).

2.5. Conclusion

We have investigated how improvement sequences on a two-dimensional road net-

work affect the agglomeration patterns of retail stores and social welfare. We have two

main findings: (1) the improvement sequence in the road network finally generates the

difference in agglomeration patterns and (2) the two-dimensional shape of the locations

in the market system differs from that in the first-best location. Main finding (2) indi-

cates that policies that change the locations of marketplaces are needed (e.g., land-use

regulations). In particular, the asymmetric pattern emerges if the ring road is improved

first. This result contrasts with the main result of Tabuchi (2009), which is the emer-

gence of the Christaller-Lösch system of hexagonal market area in a two-dimensional

homogeneous space. The improvement sequence in the road network generates this
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contrast.

Our model is specific, but more realistic assumptions can be considered with this

model. We would like to review our three assumptions one by one in the following.

First, we assume so-called one-stop shopping, in contrast to two-stop shopping mod-

els which have been developed in recent years (Kim and Serfes, 2006; Brandão et al.,

2014; Ushchev et al., 2015; Anderson et al., 2017). The assumption of two-stop shop-

ping, however, makes the analysis more complex. Moreover, the results of the agglom-

eration of retail stores are similar to that of one-stopping shopping. One-stop shopping

thus has a benefit to simply investigate the agglomeration patterns of retail stores,

which is suitable for accomplishing our objective.

Second, we assume a uniform consumers-distribution in our model. This distribu-

tion is observed in local cities in the real world. Our model mainly targets the store-

agglomeration mechanism in these cities. On the other hand, non-uniform distribution

or endogenous consumer distribution has been considered in spatial competition models

(e.g., Tabuchi and Thisse, 1995; Fujita and Thisse, 1986). Our analysis focuses on the

symmetry of the road network. The assumption of the non-uniform distribution would

not qualitatively affect our result unless the symmetry of the distribution differed. The

assumption of exogenous consumers-distribution thus has a benefit to simply investi-

gate the agglomeration mechanism of retail stores in a city. However, if we particularly

investigate the interaction between consumers distribution and the location of shopping

centers, it is necessary to consider endogenous consumer distribution.

Third, in our model, we assume that there are six suburbs in a ring road. In order to

elaborately investigate how the spatial structure of a road network affects our results,

we need to relax the assumption of the number of suburbs. One research direction is to

investigate how n suburbs affect our results. Moreover, with more general preferences

than the CES, we can investigate how pro-competitive effects and road improvement

affect equilibrium and social welfare.
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Mono-center Twin cities Three cities Racetrack cities

Figure 3.1: Spatial agglomeration patterns that are found to be superior in stability in this

chapter. •: the location where population distribute.

3. Satellite Region Formation for Spatial Economic Models: Bifurcation Mechanism

in a Hexagonal Domain

3.1. Introduction

Agglomeration patterns of one large city surrounded by satellite regions are observed

worldwide. An emergence of a core-place surrounded by a satellite (periphery) place

is shown for a two-place economy (Krugman, 1991). This chapter aims to elucidate

the mechanism of the formation of such satellite regions in a two-dimensional space for

spatial economic models. As a major theoretical finding of this chapter, we demonstrate

how a core-satellite pattern (the downtown area surrounded by hexagonal satellite re-

gions) emerges from mono-center and racetrack regions in the two-dimensional space

(see Fig. 3.1) as a transport cost changes.

There are several studies of the emergence of cities in spatial economics. The emer-

gence of satellite regions around a single large city is explored in a linear space (Mori,

1997; Fujita and Mori, 1997; Fujita et al., 1999a). The transition from a central mono-

center in three regions in a linear space is investigated to show a hub city formation

(Ago et al., 2006). Various agglomeration patterns are numerically observed by chang-

ing an agglomeration force and a transport cost in discrete places in a line segment

with more cities (Ikeda et al., 2017a). The economic spaces in these studies, however,
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are restricted to be one-dimensional.26

That said, we aim to theoretically elucidate how and where satellite regions emerge

in a two-dimensional space. We employ a regular-hexagonal domain where discrete

locations are evenly distributed.27 We introduce two viewpoints: (1) the bifurcation

mechanism of the full agglomeration at the center in this domain (mono-center), which

produces satellite regions around this center, and (2) the existence of invariant patterns

(Ikeda et al., 2018b), which are equilibria for any value of transport cost parameter.

We focus on various patterns of satellite region formations that one-dimensional spatial

platforms cannot express completely.

The first viewpoint is associated with the bifurcation from a sustain point, which

was first studied in a two-region economy under replicator dynamics (Krugman, 1991;

Fujita et al., 1999b; Baldwin et al., 2003). The analysis of sustain points is explored in

an equidistant economy (Aizawa et al., 2020; Gaspar et al., 2021). The emergence of

satellite regions from a large central city is studied in a line segment economy (Ikeda

et al., 2020). It is customary to start from the uniform state in a two-dimensional econ-

omy. Nowadays, however, it would be far more important to investigate where satellite

regions emerge than to investigate the self-organization of cities in a flat land envisaged

in central place theory. We investigate the bifurcation mechanism of the emergence

of satellite regions from the state of mono-center as the transport cost changes. The

development of this bifurcation mechanism is a major theoretical contribution of this

chapter.

26For example, with a ring and heterogeneous star network topologies, Barbero and Zof́ıo (2016)

analyze the agglomeration and dispersion forces of the core-periphery model.
27Several studies of spatial agglomeration have been conducted on a square lattice (Clarke and

Wilson, 1983; Weidlich and Haag, 1987; Weidlich and Munz, 1990). Moreover, Stelder (2005) carries

out a simulation of agglomeration for cities in Europe using a grid of points. However, a hexagonal

lattice is employed in this chapter since it has a finer spatial resolution than a square lattice.
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The second viewpoint is to set forth invariant patterns as the candidates of stable

agglomeration patterns. Invariant patterns have come to be employed in the descrip-

tion of the agglomeration mechanism of several kinds of spatial platforms such as an

equidistant economy (Gaspar et al., 2018), a racetrack economy (Takayama et al., 2020),

and a square lattice economy (Ikeda et al., 2018b). Characteristic agglomeration pat-

terns of economic interest have successfully been captured. In this chapter, we adapt

the methodology in Ikeda et al. (2019a) for a hexagonal lattice with periodic bound-

ary conditions to the hexagonal lattice with boundary employed in this chapter. We

investigate exhaustively stable invariant patterns in this space.

The contribution of this chapter is twofold. First, the city system comprising one

large central city and satellite regions (core-satellite pattern) is theoretically found

and shown to be stable by comparative static analysis for the spatial economic model

proposed by Forslid and Ottaviano (2003) (the FO model).28 The transitions of stable

equilibria as the transport cost changes are observed.

Second, we demonstrate that invariant patterns of mono-center, twin cities, three

cities, and racetrack cities in Fig. 3.1 are predominant stable equilibria in the two-

dimensional space. It is noteworthy that these patterns are those which have been

studied extensively in spatial economics. The twin cities, three cities, and racetrack

cities are absorbed into the mono-center as the transport cost decreases, thereby dis-

playing the progress of the formation of a large city at the geographical center. In par-

ticular, it is demonstrated that only the core-satellite pattern is stable in this progress.

Most of the conventional spatial platforms, such as two place (Krugman, 1991), three

places (Castro et al., 2012), and racetrack (Ikeda et al., 2019b) have no geographical

28The FO model has an analytical tractability and a close resemblance to seminal Core-Periphery

model by (Krugman, 1991). Akamatsu et al. (2019) elucidate the bifurcation mechanism of the FO

model in racetrack economy. This mechanism, however, is restricted to the bifurcation from the

uniform state.
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center and cannot express such central city formation. These transitions are an intrinsic

feature observed in the two-dimensional spatial platform with the geographical center.

This chapter is organized as follows. The spatial economic model with the replicator

dynamics is introduced in Section 3.2. Invariant patterns in the regular-hexagonal

domain are presented in Section 3.3. Bifurcation from the mono-center is studied in

Section 3.4. Section 3.5 concludes.

3.2. Spatial equilibrium and replicator dynamics

A spatial economic model with the replicator dynamics is presented. Our theoretical

framework of this chapter, shown in Sections 3.3 and 3.4, is applicable to canonical

spatial economic models which express population migration. We introduce the FO

model, which is to be used in the investigation of the stability of agglomeration patterns

in Sections 3.3 and 3.4.

3.2.1. Basic modeling

We briefly introduce a spatial equilibrium of the economy comprisingK (≥ 2) places,

in which workers (or consumers) are allowed to migrate among the places.

Let P = {1, . . . , K} be the set of places. We focus on indirect utilities that workers

can obtain by residing in a place. We assume that prices and income are functions of the

population distribution and model parameters (e.g., trade freeness). This assumption

implies that indirect utility is also a function of these parameters. We define the

indirect utility function vector v = v(λ, ϕ) ∈ RK as a continuous function of a workers’

distribution vector λ (λi ≥ 0; i ∈ P ) and the trade freeness parameter ϕ. The workers

reside in one of K places and the utility depends on the spatial distribution of them

in the economy. An equilibrium is defined as the workers’ spatial distribution λ that

satisfies the following conditions:




v∗ − vi = 0 if λi > 0,

v∗ − vi ≥ 0 if λi = 0,
(3.1)
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and
∑K

i=1 λi = 1, where v∗ denotes the equilibrium utility level.

We consider the replicator dynamics:

dλ

dt
= F (λ, ϕ), (3.2)

where F (λ, ϕ) = (Fi(λ, ϕ) | i ∈ P ), and

Fi(λ, ϕ) = λi(vi(λ, ϕ)− v̄(λ, ϕ)), i ∈ P. (3.3)

Here, v̄ =
∑

i∈P λivi represents the weighted average utility.

We restate the problem of obtaining a set of stable spatial equilibria by another

problem to find a set of stable stationary points of the replicator dynamics (Sandholm,

2010). Stationary points (rest points) (λ, ϕ) are defined as solutions to the static

governing equation:

F (λ, ϕ) = 0. (3.4)

Using the eigenvalues of the Jacobian matrix J(λ, ϕ) = ∂F /∂λ, a stationary point is

defined as linearly stable if every eigenvalue has a negative real part. We investigate

stable equilibria through finding stable stationary points in Sections 3.3 and 3.4.

3.2.2. Modeling of a spatial economy

As a representative of spatial economic models, a multi-regional version of the ana-

lytically solvable core–periphery model proposed by Forslid and Ottaviano (2003) (the

FO model) is briefly introduced, whereas details are presented in Appendix B.1.

The economy of this model comprises K (≥ 2) places, two factors of production

(skilled and unskilled workers), and two sectors (manufacturing M, and agriculture A).

The agricultural production is constant returns to scale.

The H skilled and L unskilled workers consume final goods of two types: manu-

facturing sector goods and an agricultural sector good. Workers supply one unit of

each type of labor inelastically. Skilled workers are mobile among places. The num-
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ber of skilled workers in place i ∈ P is denoted by λi under the normalizing con-

straint
∑

i∈P λi = 1. Unskilled workers are immobile and distributed equally across all

places with L/K. The mobile skilled labor is used as the fixed input in manufacturing

production, while the immobile unskilled labor is used as the variable input of both

manufacturing and agricultural production.29

Preferences U over the M-sector and A-sector goods are identical across individuals.

The utility of an individual in a place i is

U(CM
i , C

A
i ) = µ lnCM

i + (1− µ) lnCA
i (0 < µ < 1), (3.5)

where µ is the constant expenditure share of manufacturing sector goods, CA
i stands

for the consumption of the A-sector product in the place i, and CM
i represents the man-

ufacturing aggregate in the place i, defined as CM
i ≡

(∑
j∈P
∫ nj

0
qji(ℓ)

(σ−1)/σdℓ
)σ/(σ−1)

,

where qji(ℓ) represents the consumption in the place i ∈ P of a variety ℓ ∈ [0, nj] pro-

duced in the place j ∈ P , nj stands for the number of produced varieties at the place

j, and σ > 1 denotes the constant elasticity of substitution between any two varieties.

The transportation costs for M-sector goods are assumed to take the iceberg form.

That is, for each unit of M-sector goods transported from a place i to a place j ̸= i, only

a fraction 1/τij < 1 actually arrives (τii = 1). It is assumed that τij = exp(τ m(i, j) L̃)

is a function of a transport cost parameter τ > 0, where m(i, j) is an integer expressing

the road distance between the places i and j and L̃ is the distance unit. We further

introduce the trade freeness:

ϕ = exp[− τ(σ − 1)L̃] ∈ (0, 1). (3.6)

29The transition of population agglomeration for the two-regional version of the FO model with

change in transport cost is qualitatively the same as the transition for the core-periphery model pro-

posed by Krugman (1991). Only mobile workers are input for manufacturing production in the Krug-

man model, whereas both mobile and inmobile workers are the input in the FO model. This assumption

is the critical difference between the Krugman and FO models.
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ϕ is to be employed in the analysis in Sections 3.3 and 3.4. The spatial discounting

factor dji = τ 1−σ
ji = ϕm(i,j) represents friction between the places j and i that decays in

proportion to the transportation distance. In our formulation, which relies on dji, the

distance unit L̃ need not be specified.

The wage vector for the skilled workers w = (w1, . . . , wK) can be obtained ana-

lytically ((B.10) in Appendix B.1). The indirect utility vi for them in the place i is

expressed in terms of wi and ∆i =
∑

k∈P dkiλk as

vi =
µ

σ − 1
ln∆i + lnwi. (3.7)

3.3. Invariant patterns in the regular-hexagonal domain

We theoretically investigate symmetric agglomeration patterns for the basic model

in Section 3.2.1. The replicator dynamics with the symmetric spatial platform accom-

modates the so-called invariant patterns which are stationary points of the dynamics for

any values of the trade freeness ϕ and microeconomic parameters (Ikeda et al., 2018b,

2019a). The invariant patterns in a regular-hexagonal domain are obtained as candi-

dates of stable economic agglomeration patterns. The theoretically predicted invariant

patterns are the candidates for the basic model. Some of them actually are shown to

be stable for the FO model (Section 3.3.4).

3.3.1. A hexagonal lattice and the orbit decomposition of the places

We employ, as a spatial platform, a regular-hexagonal domain with a set of K places

at the nodal points where workers locate (Fig. 3.2). In the description of agglomeration

patterns in this domain, it is essential to resort to its regular-hexagonal symmetry

labeled by the dihedral group:

G = D6 = {e, r, . . . , r5, s, sr, . . . , sr5}, (3.8)

where e is the identity transformation, s is the reflection y 7→ −y, and rj is a counter-

clockwise rotation about the center of the circle at an angle of πj/3 (j = 0, 1, . . . , 5).
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Figure 3.2: The regular-hexagonal domain. Nodal points: the place at which workers locate.

We introduce the orbit decomposition of places in the hexagonal domain. The K

nodal points are decomposed into subsets, called orbits. Each orbit is a set of places

and has some geometrical symmetry.30

We consider subgroups of G:

D6 = {e, r, r2, r3, r4, r5, s, sr, sr2, sr3, sr4, sr5}, hexagonal symmetry,

D3 = {e, r2, r4, s, sr2, sr4}, triangle symmetry,

D2 = {e, r3, s, sr3}, rectangle symmetry,

D1 = {e, s}, bilateral symmetry,

C6 = {e, r, r2, r3, r4, r5}, (π/3)−rotation symmetry,

C3 = {e, r2, r4}, (2π/3)−rotation symmetry,

C2 = {e, r3}, π−rotation symmetry,

E = C1 = {e}, asymmetry.

We can decompose the set of places P into disjoint orbits with respect to a subgroup

G′ of G:

P =
⋃

l∈L

Pl, (3.9)

where Pl is an orbit of places with the symmetry labeled by G′ and L is the whole set of

orbits. We define Nl as the number of elements in the orbit Pl. Orbit decompositions

30See, e.g, Golubitsky et al. (Sec. 13.3.1, 1988) for the theoretical detail of the orbit decomposition.
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with respect to subgroups other than E are depicted in Fig. 3.3, while each node

becomes an orbit for G′ = E. The same symbols (such as ⃝ and △) in Fig. 3.3 imply

that they belong to the same orbit. These orbits are proved to correspond to invariant

patterns, which express diverse agglomeration patterns such as hexagons, triangles,

rectangles, twins, and monos (Section 3.3.3).

3.3.2. The symmetry of indirect utilities with the geometrical symmetry

of the hexagonal lattice

The mathematical mechanism of occurrence of places with the same level of vi

is explained below. We assume that the symmetry of the regular-hexagonal domain

corresponds to that of the indirect utility function:

T (g)v(λ, ϕ) = v(T (g)λ, ϕ), g ∈ G, (3.10)

where T (g) is a matrix representation of G that permutes place numbers. This assump-

tion is called equivariance. Equivariance has a pivotal role of investigating the invariant

patterns and the bifurcation patterns from the mono-center in our theoretical analysis

(Sections 3.3.3 and 3.4.1).

Lemma 3.1. vi in the same orbit for a subgroup takes the same value when the

population distribution is symmetric with respect to this subgroup.

Proof. See Appendix B.3.1 for the proof.
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(a) D6 (the mono-center and hexagons)

(b) D3 (triangles)

(c) D2 (rectangles and twins)

(d) D1 (twins and monos)

(e) C6 (hexagons) (f) C3 (triangles) (g) C2 (twins) (h) C1 (monos)

Figure 3.3: Orbit decompositions of the regular-hexagonal domain with respect to subgroups

of G.
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3.3.3. Theory of invariant patterns

The theory of invariant patterns of the replicator dynamics is introduced. Let λPl

be the identical complete agglomeration to the places in the orbit Pl:

λPl
=

{
λi =

1

m
for i ∈ Pl, λi = 0 for i /∈ Pl

}
, (3.11)

where m = Nl is the number of nodes belonging to the orbit Pl. By the symmetry, all

places in the orbit have the same level of indirect utility for λ = λPl
.

Lemma 3.2. If λ = λPl
, we have vi = v̄ for every i ∈ Pl.

Proof. See Appendix B.3.2 for the proof.

This pattern λPl
is an invariant pattern as explained in the following proposition.

Thus a complete and identical agglomeration to the places in each orbit shown in Fig. 3.3

is an invariant pattern.

Proposition 3.1. The pattern λPl
in (3.11) is an invariant pattern.

Proof. See Appendix B.3.3 for the proof.

In addition, the full agglomeration λFA
i of population at the place i:

λFA
i = {λi = 1, λj = 0 for j ̸= i} , (3.12)

which corresponds to the case of m = 1 in (3.11), is an invariant pattern.31

Proposition 3.2. The full agglomeration λFA
i at any place i is an invariant

pattern.

Proof. See Appendix B.3.4 for the proof.

31The full agglomeration was shown to be an invariant solution in a racetrack economy for any

number of places in Castro et al. (2012).
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3.3.4. Stable invariant patterns for the FO model

By the theory in Section 3.3.3, it is possible to obtain invariant patterns exhaustively.

We investigate invariant patterns that are superior in stability as candidates of two-

dimensional agglomerations of economic interest. For this purpose, we consider the

FO model on the regular-hexagonal domain with K = 37 places. This domain has a

total of 45 invariant patterns that are depicted in Fig. 3.4. The value of the constant

elasticity of substitution between any two industrial varieties σ and that of the constant

expenditure share on them µ for the FO model are chosen as (σ, µ) = (6.0, 0.4).

The stability of these 45 invariant patterns was investigated for the trade freeness

ϕ ∈ (0, 1). Only four patterns are stable in some ranges of ϕ shown by the solid lines in

Fig. 3.5. These four stable patterns are the mono-center, twin cities, triangular cities

and racetrack cities. Note that twin cities, triangular (three) cities, and racetrack cities

are employed as spatial platforms in spatial economics.32 These four patterns have

some symmetry. Symmetric invariant patterns thus tend to be superior in stability.

In contrast, the remaining 41 patterns were all unstable for any ϕ ∈ (0, 1); in most of

these patterns, populated places are located too closely each other or to the border and

apparently look inferior in stability.

The mono-center is most superior in stability and is a unique stable invariant pattern

for a wide range of ϕ (> 0.49). The twin cities (0.46 < ϕ < 0.48) and the triangular

cities (0.42 < ϕ < 0.49) coexist as stable invariant patterns with the mono-center. The

racetrack cities is a unique stable invariant pattern for relatively small ϕ (0.348 < ϕ <

0.355). There are no stable invariant patterns for small ϕ (< 0.348). As ϕ increases,

there tend to be fewer and larger agglomerations in line with the observation for spatial

economic models in the literature (e.g., Fujita et al., 1999b).

32To name a few, twin cities were studied by Krugman (1991), the triangular cities by Castro et al.

(2012), and racetrack cities by Tabuchi and Thisse (2011).
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(a) Mono city

(b) Twin cities

(c) Triangular cities

(d) Rectangular cities

(e) Racetrack cities

Figure 3.4: Invariant patterns for a regular-hexagonal domain with K = 37 places. •: the

places with population.
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Mono-center

Twin cities

Triangular cities

Racetrack cities

Figure 3.5: Stable invariant patterns for the regular-hexagonal domain with 37 places for

ϕ ∈ (0, 1). — : stable equilibrium; - - - : unstable equilibrium; ⃝ : bifurcation point; •: the

places with population; (σ, µ) = (6.0, 0.4).

There are bifurcation points at both end points of the stable ranges of ϕ for the

invariant patterns, except for the end point ϕ = 1 for the mono-center. To search for

possible connectivity between these four stable invariant patterns, bifurcating solutions

from these points are obtained in Section 4.2.
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3.4. Bifurcation from the mono-center

The theoretical bifurcation analysis from the mono-center is conducted (Section

3.4.1). This bifurcation produces a state of a large central city surrounded by satellite

regions of various kinds. Such a state is of keen interest of spatial economics to answer

a question: “how and where satellite regions form?”. In particular, a core-satellite

pattern is shown to be superior in stability by comparative static analysis for the FO

model (Section 3.4.2).

3.4.1. Theoretical bifurcation analysis

Let λFA = (1, 0, . . . , 0) be the mono-center (the full agglomeration to the place at

the center). A bifurcation from the mono-center can occur when the Jacobian matrix

is singular. For the mono-center, this matrix takes the following form (see Appendix

B.2 for details):

J(λFA, ϕ) =




−v1 J+0

J0


 , (3.13)

where

J+0 = (−v2, . . . ,−vK), J0 = diag(v2 − v1, . . . , vK − v1). (3.14)

In preparation for the discussion of the bifurcating solutions, we carry out the orbit

decomposition with respect to hexagonal symmetry D6. Each orbit other than the

center in the domain comprises racetracks with six or twelve places (see Fig. 3.3(a)).

We denote these orbits by

S = {c, α1, . . . , αn1, β1, . . . , βn2}, (3.15)

where c denotes an orbit comprising only the place at the center, αi (i = 1, . . . , n1)

denotes orbits with six places (Nℓ = 6), and βi (i = 1, . . . , n2) denotes orbits with

twelve places (Nℓ = 12). For example, Fig. 3.6 depicts orbits for K = 37 places.

46



c α1 α2 α3 α4 β1

Figure 3.6: Orbits representing invariant patterns for a regular-hexagonal domain with 37

places. •: the places with population.

By Lemma 3.1, the indirect utility vi at the places in each orbit other than c takes

the same value. We denote such value as by

vα1, . . . , vαn1 for αi (i = 1, . . . , n1),

vβ1, . . . , vβn2 for βi (i = 1, . . . , n2).
(3.16)

Therefore, the condition of the bifurcation from the mono-center is given by the follow-

ing proposition.

Proposition 3.3. A bifurcation solution in the space
∑K

j=1 λj = 1 emerges from

the mono-center if one of the following conditions is satisfied:

vαi − v1 = 0, i = 1, . . . , n1, (3.17)

vβi − v1 = 0, i = 1, . . . , n2. (3.18)

Proof. See Appendix B.3.5 for the proof.

We investigate bifurcation solutions from the mono-center when vαi − vc = 0 and

vβi − vc = 0 hold. Let ϕc
l be the trade freeness at vl − vc = 0 (l ∈ S − {c}). In the

analysis of bifurcating solutions from a critical point (λFA, ϕc
l ), we employ the so-called

bifurcation equation (e.g., Golubitsky et al., 1988).

The bifurcation equation for Type αi orbit takes a special form given in the following

lemma.
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(a) Type αi orbit (b) Type βi orbit

Figure 3.7: Definition of node numbers within orbits. ⃝: the places within a orbit.

Lemma 3.3. For a bifurcation point associated with an orbit comprising six places

(Type αi orbit for some i), the bifurcation equation is six-dimensional and is expressed

as

F̃1(x1, x2, x3, x4, x5, x6, ψ) = x1R(x1, x2, x3, x4, x5, x6, ψ) = 0,

F̃2(x1, x2, x3, x4, x5, x6, ψ) = x2R(x2, x3, x4, x5, x6, x1, ψ) = 0,

F̃3(x1, x2, x3, x4, x5, x6, ψ) = x3R(x3, x4, x5, x6, x1, x2, ψ) = 0,

F̃4(x1, x2, x3, x4, x5, x6, ψ) = x4R(x4, x5, x6, x1, x2, x3, ψ) = 0,

F̃5(x1, x2, x3, x4, x5, x6, ψ) = x5R(x5, x6, x1, x2, x3, x4, ψ) = 0,

F̃6(x1, x2, x3, x4, x5, x6, ψ) = x6R(x6, x1, x2, x3, x4, x5, ψ) = 0,

(3.19)

where x = (x1, x2, . . . , x6) = {λj | j ∈ αi} (Fig. 3.7(a)) and R is a function with the

symmetry condition:

R(x1, x2, x3, x4, x5, x6, ψ) = R(x1, x6, x5, x4, x3, x2, ψ). (3.20)

Proof. See Appendix B.3.6 for the proof.

This bifurcation equation has the following three properties:

• Migration of agents from the center to some places in the Type αi orbit.

• The product form of the replicator dynamics in (3.3).

• The D6-symmetry (regular-hexagonal symmetry) inherited to the bifurcation equa-

tion.
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Figure 3.8: Geometrical configurations of bifurcating solutions for the Type αi orbit (Nℓ = 6).

•: the population size at the place.

Solving this bifurcation equation, we can show the emergence of a series of bifurcating

solutions from the bifurcation point associated with Type αi orbit.

Proposition 3.4. A bifurcation point associated with Type αi orbit has the follow-

ing seven kinds of bifurcating solutions:

x =





w(1, 1, 1, 1, 1, 1) : Racetrack-I,

w(1, 1, 0, 1, 1, 0) : Rectangle-I,

w(1, 0, 1, 0, 1, 0) : Triangle-I,

w(1, 1, 0, 0, 0, 0) : Twin-I,

w(1, 0, 1, 0, 0, 0) : Twin-II,

w(1, 0, 0, 1, 0, 0) : Twin-III,

w(1, 0, 0, 0, 0, 0) : Mono-I

(3.21)

for some w > 0.

Proof. See Appendix B.3.7 for the proof.

These seven bifurcating solutions can be classified into Racetrack, Rectangle, Triangle,

Twin and Mono in the view of their geometrical symmetry. The geometrical patterns

for these solutions are illustrated in Fig. 3.8.

The bifurcation equation for Type βi orbit can be obtained similarly (see Lemma B.1

in Appendix B.3.8). By solving this bifurcation equation, we can show the emergence

of a series of bifurcation solutions from a bifurcation point associated with the orbit βi

comprising twelve places.
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Proposition 3.5. The critical point for Type βi orbit has the following 16 kinds of

bifurcating solutions:

x =





w(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) : Racetrack-II,

w(1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0) : Racetrack-III,

w(1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0) : Triangle-II,

w(1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1) : Triangle-III,

w(1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0) : Rectangle-II,

w(1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1) : Rectangle-III,

w(1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0) : Rectangle-IV,

w(1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0) : Triangle-IV,

w(1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) : Twin-IV,

w(1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0) : Twin-V,

w(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0) : Twin-VI,

w(1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0) : Twin-VII,

w(1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0) : Twin-VIII,

w(1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0) : Twin-VIIII,

w(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) : Twin-X,

w(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) : Mono-II

(3.22)

for some w > 0.

Proof. The proof is similar to that of Proposition 3.4.

These 16 bifurcating solutions can be classified in the view of their geometrical

symmetry. The geometrical patterns for these solutions are illustrated in Fig. 3.9.

3.4.2. Bifurcating patterns from the sustain point for the FO model

We apply Propositions 3.4 and 3.5 in Section 3.4.1 to the investigation of bifurcating

solutions from the mono-center for the FO model with 37 places in Fig. 3.6. Parameter
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Figure 3.9: Geometrical configurations of bifurcating solutions for Type βi orbit (Nℓ = 12).

• orbit: the population size at the place.

values are chosen as (σ, µ) = (6.0, 0.4) similarly in Section 3.3.4. The 37 places can be

decomposed into six kinds of orbits:





c, the mono-center,

α1, . . . , α4, 6 places,

β1, 12 places,

(3.23)

and there are five kinds of bifurcation points associated with Type α1, . . . , α4, and β1

orbits, whereas the orbit c is not associated with bifurcation.

Among these five bifurcation points, we focus on the bifurcating solutions from the

sustain point at which the system becomes unsustainable as ϕ decreases from 1. The

sustain point was associated with the orbit α2 for (σ, µ) = (6.0, 0.4). The bifurcating

solutions from the sustain point are depicted in Fig. 3.10(a).
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ce
nt

er

(a) Bifurcation diagram

Qα2A1

(Racetrack-I)

(b) The progress of stable equilibria observed as ϕ increases (A1 → Qα2)

Qα2A2 Qα2A3 Qα2A4 Qα2A5 Qα2A6 Qα2A7

(Rectangle-I) (Triangle-I) (Twin-III) (Twin-II) (Twin-I) (Mono-I)

(c) Unstable bifurcating solutions

Figure 3.10: Bifurcation diagram from the sustain point of the mono-center for 37 regions.

— : a stable solution; - - - : an unstable solution; ⃝ : a bifurcation point; •: the size of

population at the place.
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Among seven bifurcating solutions Qα2A1, . . . , Qα2A7 in (3.21), there is only one

stable bifurcating solution Qα2A1 shown by the solid curve, which has an agglomera-

tion pattern with one huge city and hexagonal satellite regions, called a core-satellite

patterns.33 This agglomeration pattern resembles the hexagonal pattern in central place

theory (Christaller, 1933). As the trade freeness ϕ decreases from the sustain point Qα2,

the agglomeration pattern of this bifurcating solution shifts to the hexagonal racetrack-

like satellite regions. Conversely, as ϕ increases from 0.27, we can see that the satellite

regions are absorbed into the city at the center, thereby engendering the mono-center at

the point Qα2 (Fig. 3.10(b)). Other bifurcating solutions the point Qα2Aj (j = 2, . . . , 7)

in Fig. 3.10(c) were all unstable. Because the change of agglomeration pattern is qual-

itatively the same as the result for the square lattice (Kogure and Ikeda, 2022), the

change is robust in terms of the spatial structure of a geographical space.

3.4.3. Comparison of spatial platforms with and without the geographi-

cal center

In preparation for the discussion of the difference of agglomerations in various kinds

of spatial platforms, we investigate the transitions (via bifurcating solutions) from the

three kinds of agglomeration patterns of twin cities, triangular cities, and racetrack

cities in Fig. 3.5(a) by the comparative static analysis with respect to ϕ. The bifurcating

solutions for the twin cities branching from I ′1 and the triangular cities branching from I ′2

both reached the stable mono-center although these solutions were unstable throughout

(Figs. 3.11(a) and (b)). In contrast, the bifurcating solution for the racetrack cities (α4)

from I ′3 is stable at first, loses stability on the way, and reaches the mono-center at the

point Qα4.
34 At point C, there emerges a stable core-satellite pattern, which is a two-

33Such pattern was also observed in Ikeda et al. (2017b) and was called a core-satellite pattern (Ikeda

et al., 2020).
34Figs. 3.10(a) and 3.11(c) contain all stable bifurcating solutions from the mono-center.
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dimensional counterpart of the core-periphery pattern (Krugman, 1991).
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A bifurcation pattern

from I1.

(a) The bifurcation diagram for twin cities (Twin-III for α1)

A bifurcation pattern

from I2.

(b) The bifurcation diagram for triangular cities (Triangle-I for α1)

Qα4

(c) The bifurcation diagram for racetrack cities (Racetrack-I for α4)

Figure 3.11: Bifurcation solutions from stable invariant patterns for 37 regions. — : stable

equilibria; - - - : unstable equilibria; ⃝ : bifurcation point; •: the size of population at the

place.
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(unstable)

(unstable)

(unstable)

Two places (Krugman, 1991) Two places

(unstable) (unstable)

Three places (Castro et al., 2012) Three places

(unstable) (unstable)

Racetrack (Ikeda et al., 2019b) Racetrack (this paper and Ikeda et al., 2017b)

(a) Some spaces without the center (b) Two-dimensional space with the center

Figure 3.12: The progress of agglomeration patterns for several kinds of spatial platforms as

the trade freeness increases. •: the size of population at the place.

With reference to these results, we discuss the difference of agglomerations in spatial

platforms with and without the geographical center. In the two place, three place,

and racetrack, every potential city is identical geographically and there is no apparent

geographical center. The uniform population distribution prevails for large transport

cost and encounters the bifurcation (Krugman, 1991; Castro et al., 2012; Ikeda et al.,

2019b) to engender an asymmetric agglomeration pattern as the trade freeness increases

(Fig. 3.12(a)). As the trade freeness ϕ increases, one of the identical cities grow into a

mono-center. On the other hand, in spatial platforms with the geographical center (e.g.,

our spatial platform), the city located at the center absorbs all population in satellite
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(a) 3 places (Ago et al., 2006) (b) 17 places (Ikeda et al., 2017a)

Figure 3.13: The progress of agglomeration patterns in a line segment as the trade freeness

increases. •: the size of population at the place.

regions as the trade freeness increases (Fig. 3.12(b)).35 Such emergence of the city

at the geographical center is what most of the conventional spatial platforms cannot

express. An exception is a linear or line segment economy, in which the emergence of

the mono-center from the state of the predominant twin cities was observed as the trade

freeness increases (Ago et al., 2006; Ikeda et al., 2017a) (Fig. 3.13).

3.5. Conclusions

We have investigated where satellite regions emerge around the mono-center in a

two-dimensional space, in which discrete locations are evenly spread over a regular-

hexagonal domain. We have proposed several candidates of stable economic agglomer-

ation patterns: invariant patterns and bifurcating patterns engendered from the mono-

center. It is to be emphasized that the proposed theory is applicable to general spatial

economic models with the replicator dynamics.

As an contribution of this chapter, the core-satellite pattern was highlighted as a

stable equilibria that emerges from the mono-center as the trade freeness ϕ decreases

for the FO model. This core-satellite pattern is a two-dimensional counterpart of the

core-periphery pattern (Krugman, 1991). Conversely, as ϕ increases, satellite regions

35The emergence of central city from racetrack cities was observed in a ad-hoc manner in Ikeda et al.

(2017b).
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were absorbed into the city at the center, engendering the mono-center.

We have demonstrated that spatial patterns of the mono-center, twin cities, three

cities, and racetrack cities are predominant stable equilibria in the two-dimensional

space. These are, in fact, spatial patterns that have been studied in spatial economics,

for example, in a two places economy (Krugman, 1991), three places economy (Castro

et al., 2012), and racetrack economy (Takayama et al., 2020). This chapter thus has

a close relation with the previous studies for other spatial platforms and can present

an insight on economic agglomerations. Moreover, the two-dimensional space treated

in this chapter can represent various patterns of satellite region formations that one-

dimensional spatial platforms cannot express completely.

In this chapter, the stability of equilibrium was investigated only for the FO models.

It will be a future topic to extend the horizon of such investigation. For example,

application of the bifurcation theory in our chapter is limited to an economy with

one industry. There, however, are many industries in the real world. Some researches

explain spatial agglomeration patterns of population based on central place theory (e.g.,

Tabuchi and Thisse, 2011). One of future works is to apply the bifurcation theory to

such researches.
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4. How should place-based policies be designed for efficiently promoting retail

agglomeration?

4.1. Introduction

Shopping is an indispensable daily activity in our lives. The decline of retail stores

operating in downtown areas has been regarded as an urban problem over the past

several decades. Local governments have recently implemented place-based policies

in order to make retail stores agglomerate in downtown areas. A feature of place-

based policies is that stores and/or consumers in a targeted area are subsidized. For

example, the city of Albuquerque in the U.S.A. subsidizes retail stores operating in the

downtown area. Toyama in Japan subsidizes consumers who migrate from outside to

an area around the downtown area.

Impacts of place-based policies on retail stores have been empirically investigated

(e.g., Givord et al., 2013; Neumark and Simpson, 2015; Iwata and Kondo, 2021). For

example, Givord et al. (2013) empirically show that, in France, the government has

promoted the agglomeration of retail stores by a place-based policy, which indicates

that place-based policies can revitalize downtown areas. However, the place-based

policy does not ensure that social welfare increases because it can produce deadweight

losses in the policy-implemented market, and can cause a decline in the number of retail

stores in other areas. We theoretically clarify which place-based policies increase social

welfare, and which decrease social welfare.

Since agglomeration of retail stores generally involves market failures, a place-based

policy may increase social welfare. Examples of such market failures are the shopping

externality generated by multipurpose shopping (O’Sullivan, 1993), which is purchasing

goods from stores on a single trip, and price distortions caused by imperfect competition

among stores. Arentze et al. (2005) empirically show that agglomeration of retail stores

relates to multipurpose shopping.
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General equilibrium models in which consumers engage in multipurpose shopping

with imperfect competition in a marketplace (e.g., shopping streets and shopping malls)

have been developed (Henkel et al., 2000; Arakawa, 2006; Tabuchi, 2009; Ushchev et al.,

2015). Most multipurpose shopping models have two features. One feature is that retail

stores operating in marketplaces are under monopolistic competition. The other feature

is that the spatial distribution of consumers is exogenous.

In order to evaluate place-based policies, we need to consider the endogenous spatial

distribution of consumers rather than the exogenous spatial distribution. Some studies

develop spatial competition models in which consumers and firms compete in the land

market (e.g., Fujita and Thisse, 1986; Fujita, 1988; Liu and Fujita, 1991). However,

these studies do not answer how place-based policies affect social welfare. One of the

place-based policies is to subsidize consumers to reside around downtown areas. This

policy intends to agglomerate retail stores in downtown areas by encouraging more

consumers to reside close to the downtown areas and visit the downtown areas for

shopping. This policy can be adopted in a sprawled city to revitalize the center of the

city. Another place-based policy is direct subsidies for stores to agglomerate.

We evaluate the welfare impacts of place-based policies for retail agglomeration

by developing a multipurpose shopping model. In the model, retail stores are under

monopolistic competition, and consumers are free to choose where to reside. We focus

on two place-based policies which have been adopted by local governments. One is

location subsidies to consumers, and the other is location subsidies to stores. We

evaluate the welfare impacts of these policies in terms of social surplus.

The welfare impacts of adopting place-based policies can be decomposed into three

terms, according to Harberger’s welfare change measurement formula (Harberger, 1971).

The first term is the total change in deadweight losses caused by the price distortions

of the varieties supplied in marketplaces. The second term is the net social benefit

generated by so-called variety distortion (e.g., Kanemoto, 2013a). The third term is
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the migration fiscal externality generated by income transfer inefficiency by a place-

based policy (Boadway and Flatters, 1982; Kono et al., 2007).

Our investigation finds that whether or not place-based policies are socially efficient

depends on the recipients of the subsidies, even if the policies promote downtown retail

agglomeration. Specifically, with the constant elasticity of substitution (CES) utility

function of varieties, location subsidies to consumers is harmful from the viewpoint of

welfare, whereas location subsidies to stores is desirable. Location subsidies to stores

is desirable because positive net benefits generated by variety distortions necessarily

exceed the negative deadweight losses caused by price distortions. On the other hand,

location subsidies to consumers is harmful because they cause negative net benefits.

In order to validate the theoretical results, we numerically evaluate the welfare

impacts with the CES utility function. We show that the numerical results are the same

as the theoretical results. Moreover, we conduct numerical analyses with a variable

elasticity of substitution (VES) utility function in order to examine whether or not

relaxing the assumption regarding the elasticity affects the welfare impacts. We show

that the welfare impacts are qualitatively the same as the results of the CES function. In

the numerical analyses as well as the theoretical derivation, we decompose the welfare

change into net benefits generated by the price distortion and the variety distortion

by using Harberger’s welfare measurement formula. With the location subsidies to

residents, both net benefits are negative. With subsidizing retail stores, the former and

the latter are negative and positive, respectively, and the latter exceeds the former.

Our paper is organized as follows. Basic assumptions are introduced in Section

2. The formula to evaluate the welfare impact of place-based policies is introduced in

Section 3. Welfare analysis is conducted in Section 4. Section 5 concludes our paper.
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4.2. Model

4.2.1. Basic assumptions

The model city is a closed city where N homogeneous consumers reside. This

city consists of residential zones and marketplaces. Let I ≡ {1, . . . , I} and J ≡

{1, . . . , J} denote the sets of the residential zones and marketplaces, respectively (I, J >

2). Consumers reside in a residential zone and visit a marketplace for shopping. They

can choose where to reside.

4.2.2. Consumers

We explain the utility and the budget constraint of consumers residing in residential

zone i (∈ I) and visiting marketplace j (∈ J ) for shopping. Consumers in the city

derive utility from differentiated goods, housing measured in floor area, and a composite

good. The utility of consumers residing in residential zone i is given by Ui(Mi, hi, ai),

where Mi is the composite index of the consumption of differentiated goods, hi is

the consumption of housing measured by floor area, and ai is the consumption of the

composite good. Mi is assumed to be an additively separable function over the varieties

(i.e., the differentiated goods) supplied in a marketplace:

Mi =

∫ mj

0

u(qi(k))dk, (4.1)

where qi(k) is the consumption of the kth variety andmj is the mass of varieties supplied

in the jth marketplace.36

The budget constraint of the consumers is given by
∫ mj

0

pMj (k)qi(k)dk + pHi hi + ai = yi, (4.2)

where pMj (k) is the price of kth variety supplied in the jth marketplace, pHi is the price

per square foot of housing in residential zone i, and yi is the net income of consumers

residing in residential zone i. The composite good is assumed to be the numéraire.

36See Zhelobodko et al. (2012) for the properties of additively separable functions.
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We assume public ownership of land and firms for simplicity. Consumers’ net income

yi is composed of common income y, travel cost to the marketplace ti, equal share of

profits and rents Π, and subsidy (or tax) si(s): yi = ỹi(s) ≡ y−ti+Π+si(s). Each place-

based policy determines si(s) and s (∈ R) expresses the level of policy implemented.

We call s the policy instrument.

Our paper considers two place-based policies: location subsidies to stores, and loca-

tion subsidies to consumers.37 Consumers (retail stores) in the same zone can receive

the same amount of subsidy with these policies. Let ni and sMj (s) denote the total

number of consumers residing in residential zone i and the total subsidy provided to

retail stores in marketplace j, respectively. The formal definitions for the place-based

policies are as follows.

Definition 4.1. Let NÎ denote the total population in target area Î (⊂ I) (i.e.,

NÎ =
∑

a∈Î na). Location subsidies to consumers in target area Î is the place-based

policy such that the following equations hold.

si(s) =





(
N −NÎ

)
s/NÎ (i ∈ Î),

−s (i /∈ Î),
sMj (s) = 0 ∀j ∈ J . (4.3)

Definition 4.2. Location subsidies to stores is the place-based policy such that the

following equations hold.

si(s) = −s/N ∀i ∈ I, sMj (s) =





s (j = 1),

0 (j ̸= 1).
(4.4)

Location subsidies to consumers implies that consumers residing in a target area

are subsidized. Location subsidies to stores implies that retail stores operating in a

37Similar policies to both policies are adopted by local governments in the real world (e.g., Albu-

querque in the U.S.A. and Toyama in Japan).
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marketplace are subsidized. The subsidies with the policies are paid by consumers:

∑

i∈I

nisi(s) +
∑

j∈J

sMj (s) = 0. (4.5)

In order to evaluate the welfare impacts of the place-based policies with Harberger’s

welfare change measurement formula (Harberger, 1971), we solve the following expen-

diture minimization problem:

min
{qi(k)}k,hi,ai

∫ mj

0

pMj (k)qi(k)dk + pHi hi + ai s.t. Eq. (4.1) and Ui = U, (4.6)

where U denote the target utility. We decompose the expenditure minimization prob-

lem into two problems regarding two-stage budgeting. The conditional demands are

functions of k, {pMj (k)}k, mj, and Mi:

q∗i (k) = q̃∗i ({pMj (k)}k,mj,Mi) ∀k ∈ [0,mj], (4.7)

where superscript “ ∗ ” and tilde “ •̃ ” denote the optimal solution and a function that

maps arguments onto “ • ”, respectively. We assume that all the consumers consume

all the varieties (i.e., q∗i (k) > 0 (∀k ∈ [0,mj])). The demand functions are functions of

{pMj (k)}k, mj, p
H
i , and U :

M∗
i = M̃∗

i

(
{pMj (k)}k,mj, p

H
i , U

)
,

h∗i = h̃∗i
(
{pMj (k)}k,mj, p

H
i , U

)
,

a∗i = ã∗i
(
{pMj (k)}k,mj, p

H
i , U

)
.

Substituting M∗
i into q∗i (k) yields

q∗i (k) = q̃∗i

(
{pMj (k)}k,mj, M̃∗

i

(
{pMj (k)}k,mj, p

H
i , U

))
. (4.8)

See Appendix C.1.1 for detailed derivation of the demand functions.
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4.2.3. Retail stores

Retail stores supply differentiated goods in marketplaces. Each retail store supplies

a variety in a marketplace. They are under monopolistic competition. Hence, the total

mass of retail stores in each marketplace is endogenously determined by free entry.

They rent units of land in marketplaces.

All the retail stores incur the same marginal production cost c to supply varieties.

The retail store that supplies the kth variety incurs k + rj(k) for the fixed cost, where

k also represents the fixed cost that depends on varieties, and rj(k) is land rent of a

constant unit of land for a store. Some retail stores can receive subsidies, as shown in

Definitions 4.1 and 4.2.

Let Qj(k) and π
M
j (k) denote the supply of the kth variety and the profit of the retail

store supplying the kth variety in marketplace j, respectively. πM
j (k) is given by

πM
j (k) = (pMj (k)− c)Qj(k)− k +

sMj (s)

mj

− rj(k) ∀k ∈ [0,mj]. (4.9)

We assume that each store pays the bid rent. Using profit (4.9) yields the maximum

land rent that each store can pay:

rj(k) = max
pMj (k)

(
(pMj (k)− c)Qj(k)− k +

sMj (s)

mj

)
. (4.10)

Eq. (4.10) implies that the more demand for a variety in a marketplace, the larger the

bid rent. Hence, if the prices of a variety supplied in some marketplaces are the same,

then a retail store operating in a larger marketplace can propose a higher bid rent.

Since the total demand depends on the number of customers, we have to determine

how many consumers visit each marketplace in order to solve maximization problem

(4.10). Our paper focuses on an equilibrium such that all consumers in the same

residential zone visit the same marketplace. In order to express such an equilibrium,

we introduce market area. Let Ij (⊂ I) denote the residential zones where consumers
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Residential zones

Market area for 
marketplace 2

Market area for 
marketplace 1

Shopping Shopping

(a) A line segment city with two symmetric marketplaces.

Market area for 
marketplace 1

Market area for 
marketplace 2

Shopping Shopping

(b) A city with a large marketplace and a small marketplace.

Figure 4.1: Two examples of the model city with two marketplaces given market areas. Circles:

residential zones in the city; Triangles: marketplaces in the city.

visit the jth marketplace for shopping.38 Ij is the market area represented by residential

zones.39 Figure 4.1(a) and (b) represent examples of geographical patterns of residential

zones and marketplaces with market areas. If each residential zone is small and the

zones densely line up, shown in Figure 4.1, then we can interpret the geographical

setting in our model as a discrete version of a continuous geographical space employed

by most multipurpose shopping models (Tabuchi, 2009; Ushchev et al., 2015).

38We introduce market equilibrium conditions given market area {Ij}j∈J in Section 4.2.5. One

may consider that the market area should be endogenous. Note that our aim is to investigate how

place-based policies affect social welfare at market equilibrium. Hence, we can accomplish our aim

by conducting welfare analysis for any given market area. We will conduct the theoretical analysis in

Sections 4.3 and 4.4.
39We have Ij ̸= ∅ (∀j ∈ J ), Ij1 ∩ Ij2 = ∅ (j1 ̸= j2), and I = ∪J

j=1Ij .
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The total supply (or demand) is given by

Qj(k) =
∑

a∈Ij

naq
∗
a(k). (4.11)

The first order condition for maximization problem (4.10) is given by

Qj(k)

pMj (k)
(pMj (k) + (pMj (k)− c)ηMj (k)) = 0, (4.12)

where ηMj (k) is the price elasticity of the total demand: ηMj (k) = ∂ lnQj(k)/∂ ln p
M
j (k).

For simplicity, we focus on a symmetric price equilibrium40 such that the following

holds:

ηMj (k) = ηMj (k′) ∀k, k′ ∈ [0,mj]. (4.13)

We can obtain the above equation with subutility function Mi employed in Section 4.4

(e.g., CES function). Using the first order condition (4.12) and Eq. (4.13) yields the

prices of varieties supplied in marketplace j:

pMj (k) = p̃Mj ({ni}i∈Ij ,mj, {pHi }i∈Ij , U) ∀k ∈ [0,mj]. (4.14)

Since the prices do not depend on k, we express pMj (k) as pMj . Furthermore, under

the symmetric price equilibrium, the total demand for varieties supplied in the same

marketplace are the same: Qj(k) = Qj(k
′) (∀ k, k′ ∈ [0,mj]). Hence, we express Qj(k)

as Qj.

4.2.4. Developers

Developers are assumed to be perfectly competitive and homogeneous. They supply

residential buildings in residential zones.

Following Brueckner (2007) and Domon et al. (2022), we specify developers as fol-

lows. Buildings are produced by combining one unit of land and housing capital (or

40DellaVigna and Gentzkow (2019) empirically show that retail stores in the U.S.A. charge nearly

uniform prices across stores. Based on this result, we focus on a symmetric price equilibrium.
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building materials). The area of land in each residential zone is assumed to be one

unit. The building output per unit of land is expressed as g(b), where g is the housing

production function and b is the capital-to-land ratio. Let πH
i and Hi denote the devel-

opers’ net profit in residential zone i and the housing output, respectively. πH
i is given

by

πH
i = pHi Hi − g−1(Hi)−RH

i , (4.15)

where g−1 is the inverse function of g and RH
i (i ∈ I) is the total land rent in residential

zone i.

We assume that developers pay the bid land rent. Using profit (4.15) yields the

maximum land rent that developers can pay:

RH
i = max

Hi

(
pHi Hi − g−1(Hi)

)
. (4.16)

The first order condition for maximization problem (4.16) is

pHi − ∂g−1(Hi)

∂Hi

= 0 ∀i ∈ I. (4.17)

Using this condition, we can obtain H∗
i = H̃∗

i (p
H
i ). Hence, the bid rent is expressed as

RH
i = pHi H

∗
i − g−1(H∗

i ) ∀i ∈ I. (4.18)

4.2.5. Market equilibrium condition

We introduce market equilibrium condition. In the equilibrium, given the spatial

distribution of consumers (i.e., (ni)i∈I), the market clearing condition of housing holds

and the mass of retail stores is determined.

The market clearing condition for housing is given by

H̃∗
i (p

H
i ) = nih̃∗i (p

M
j(i),mj(i), p

H
i , U) ∀i ∈ I, (4.19)
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where j(i) (∈ J ) denotes the marketplace that consumers in residential zone i visit

for shopping.41 Next, we focus on the mass of retail stores (i.e., mj). Since pMj and

Qj do not depend on k, (pMj − c)Qj + sMj (s)/mj also does not depend on k. Land

rent rj(k), shown by Eq. (4.10), monotonously decreases with an increase in k. Using

this monotonicity, rj(k) ≥ 0 (∀k ∈ [0,mj]), and Eq. (4.10), we obtain the following

condition for the mass of stores mj:

rj(mj) = (pMj − c)Qj −mj +
sMj (s)

mj

= 0 ∀j ∈ J . (4.20)

Eq. (4.20) implies that sales are equals to the cost for the store supplying variety mj.

Let n ≡ (ni)i∈I denote the spatial distribution of the consumers in the city. The

total number of equations, which are Eqs. (4.19) and (4.20), is equal to that of en-

dogenous variables, which are mj and pHi . Using these equations, we can obtain these

variables as functions of spatial distribution n, target utility U , and policy instrument

s:

mj = m̃j(n, U, s), pHi = p̃Hi (n, U, s).

Substituting these functions into p̃Mj (i.e., Eq. (4.14)), we obtain p̃Mj as a function of

n, U , and s. Since the prices and the mass are functions of n, U , and s, the demand

functions are also functions of n, U , and s in the equilibrium.

4.3. Marginal welfare impacts of place-based policies

4.3.1. Allais surplus

We investigate the welfare impact of place-based policies. In this paper, we measure

the welfare impact in terms of the Allais surplus (Allais, 1977). The Allais surplus is

41The formal definition of j(i) is as follows. We define mappings J1 : i 7→ Ij , where i ∈ Ij , and

J2 : Ij 7→ j. Note that J1 is well-defined since the definition of the market area determines unique Ij

for each i (∈ I). j() is the composite mapping of J1 and J2: j(i) ≡ (J2 ◦ J1)(i).
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defined as a surplus of goods that can be taken up with a policy to keep the utility levels

constant. There are two advantages of employing the Allais surplus when we evaluate

welfare impact. First, we can evaluate the welfare impact in terms of the compensation

criterion. Second, we can interpret the welfare impact in terms of distortions generated

by market failure; our paper focuses on this advantage.

Following Wheaton (1977) and Kono and Kishi (2018), we define the Allais surplus

with population migration. The Allais surplus is the weighted sum of income minus the

expenditure function of consumers with the weights being the number of consumers.

We obtain the surpluses that are equal among the residential zones.42

The substructed income of consumers residing in zone i with the expenditure is given

by yi − ei = y − ti + Π + si(s)− ei, where ei is the expenditure function of consumers

residing zone i. Using the assumption of the public ownership, we obtain equal share

of profits and rents Π:

Π = N
−1

(∑

i∈I

(
πH
i +RH

i

)
+
∑

j∈J

(∫ mj

0

πM
j (k)dk +

∫ mj

0

rj(k)dk

))
. (4.21)

Substituting Eqs. (4.9) and (4.18) into the above Π yields

Π = N
−1

(∑

i∈I

(pHi H
∗
i − g−1(H∗

i )) +
∑

j∈J

(
(pMj − c)Qjmj −

m2
j

2
+ sMj (s)

))
. (4.22)

The condition for the equal surpluses among the residential zones is given by

y − ti +Π+ si(s)− ei = E ∀i ∈ I, (4.23)

where E (∈ R) is the surplus level in each residential zone. Moreover, population

constraint condition holds in the closed city:

∑

i∈I

ni = N. (4.24)

42Our definition of the Allais surplus is called the Equalized-β measure as shown in Kono and Kishi

(2018).
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Using Eqs. (4.23) and (4.24), we can obtain spatial distribution n as a function of

policy instrument s: n = n(s).

Let AS denote the Allais surplus. We can obtain AS as a function of s, keeping the

utility level at U :

AS(n(s), s, U) =
∑

i∈I

ni(y − ti +Π+ si(s)− ei) = N × E. (4.25)

4.3.2. Marginal change in Allais surplus AS with a change in policy

instrument s

Investigating marginal change in AS with an increase in policy instrument s, we

evaluate the welfare impact of adopting a place-based policy. In order to evaluate the

welfare impact, we need to determine target utility level U . We set the target utility

level such that all the consumers maximize their utility under the equilibrium prices

with no policy. We focus on target utility level U∗ and spatial distribution n∗ such that

following equation holds:

y − ti +Π+ si(0)− ei = 0 ∀i ∈ I, (4.26)

which is condition (4.23) at s = 0 and E = 0. This condition implies that under the

equilibrium prices and U∗, all the consumers maximize their utility because expenditure

ei equals net income yi (See Eq. (4.2)).

We focus on marginal change in AS from (n∗, U∗) with an increase in s from zero

along the equilibrium path. We can obtain dAS/ds with the market distortions gen-

erated by monopolistic competition and place-based policies, which is consistent with

Harberger’s welfare change measurement formula (Harberger, 1971).

Lemma 4.1. For any given market area {Ij}j∈J , the following holds for s ≥ 0 :

dAS

ds
=PDH + PD + VD + FD, (4.27)
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where

PDH =
∑

i∈I





p

H
i − ∂g−1

∂Hi︸ ︷︷ ︸
=0




dH∗
i

ds


 , PD ≡

∑

j∈J

(pMj − c)mj︸ ︷︷ ︸
≥0

dQj

ds
,

VD ≡
∑

j∈J




∑

a∈Ij

(
nap

M
j u(qa)

u′(qa)

)
− cQj −mj

︸ ︷︷ ︸
≥0




dmj

ds
, FD =

∑

i∈I

(−si)
dni

ds
.

Note that the variables in these equations are obtained with the Hicksian demands.

Proof. See Appendix C.1.2.

Eq. (4.27) shows that dAS/ds is decomposed into four parts.43 PDH and PD express

the total change in deadweight losses in the housing markets and the differentiated goods

markets, respectively. VD is caused by so-called variety distortion (Kanemoto, 2013a,b;

Behrens et al., 2015). FD is caused by uneven income transfer among residential zones

with a place-based policy.44 FD indicates that place-based policies distort market

allocation and decrease surplus. For example, if population in residential zone i where

consumers can receive subsidy increases by a place-based policy, then the city loses

si × dni/ds of surplus.

We can decompose PD and VD into two effects, which are employed in Section 4.4.

One is the effect generated by population migration, whereas the other is the effect

generated by only subsidy. Let EP and ES denote the former effect and the latter

43If the geographical space of the city is continuous, then the welfare impact generated by change

in a market boundary is added to the welfare measurement formula. In our model, the welfare impact

is composed of a difference between travel costs from the market boundary to marketplaces. Hence, if

the difference is small, then the welfare impact is almost the same as that of the discrete model.
44We can interpret FD as the migration fiscal externality generated by income transfer inefficiency

by a place-based policy (Boadway and Flatters, 1982; Kono et al., 2007).
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effect, respectively. Using PD and VD, we can express EP and ES as

EP = PDP + VDP , ES = PDS + VDS,

where

PDP =
∑

j∈J

[
(pMj − c)mj

∑

a∈I

∂Qj

∂na

dna

ds

]
, (4.28)

PDS =
∑

j∈J

[
(pMj − c)mj

∂Qj

∂s

]
, (4.29)

VDP =
∑

j∈J




∑

a∈Ij

(
nap

M
j u(qa)

u′(qa)

)
− cQj −mj



(∑

a∈I

∂mj

∂na

dna

ds

)
 , (4.30)

VDS =
∑

j∈J


∑

a∈Ij

(
nap

M
j u(qa)

u′(qa)

)
− cQj −mj


 ∂mj

∂s
. (4.31)

We can interpret VD as follows. Using one of the first-order conditions for utility

maximization (4.6), we can interpret u′(qa)/p
M
j (a ∈ Ij) as the marginal utility of

shopping expenditure. This interpretation implies that pMj u(qa)/u
′(qa) is the benefit

that a consumer can obtain by consuming an additional variety of goods supplied in

marketplace j. Hence, the first term of VD is the total benefit that the consumers in

the city can obtain. Furthermore, since cQj + mj is the cost that new retail stores

entering in marketplace j must incur, the second term is the total cost caused by a

place-based policy. That is, we can interpret VD as the total benefit subtracted by the

total cost.

Since developers are under perfect competition, the price of housing and the marginal

cost are the same. This implies PDH = 0; dAS/ds is composed of PD, VD, and FD.

This equation is similar to welfare change measurement formulae with monopolistic

competition (Kanemoto, 2013a,b; Behrens et al., 2015). In contrast to these studies,

we focus on income transfer among consumers and retail stores by a place-based pol-

icy. FD, which does not appear in Kanemoto (2013a,b) and Behrens et al. (2015), is
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added to the welfare change measurement formula because our model takes account of

place-based policies generating migration fiscal distortions.

To explore welfare analyses of policies, we explain the signs of coefficients in PD

and VD. Since each retail store operating in a marketplace supplies a good at a price

larger than marginal cost c, we have (pMj − c)mj ≥ 0 (∀j ∈ J ).

We can obtain the sign of the coefficient of dmj/ds as follows. Using the love

of variety condition (e.g., Behrens and Murata, 2007; Behrens et al., 2015) yields

u(qi)/u
′(qi) ≥ qi (∀i ∈ I). Using this inequality, the definition of total demand, and

Eq. (4.20) yields

∑

a∈Ij

(
nap

M
j u(qa)

u′(qa)

)
− cQj −mj ≥ pMj Qj − cQj −mj = 0. (4.32)

The signs of the coefficients of dQj/ds and dmj/ds are non-negative, whereas

those of dQj/ds and dmj/ds depend on place-based policies. We can intuitively

predict that policies promoting marketplace j1 generate dQj1/ds, dmj1/ds > 0 and

dQj/ds, dmj/ds ≤ 0 (j ̸= j1). We, however, cannot determine dAS/ds > 0 for such

a policy since all the coefficients are non-negative. Hence, the welfare impact of a

place-based policy depends on how we specify the utility function and the place-based

policy. Specifying the utility function in Section 4.4, we investigate the welfare impact

of place-based policies.

4.4. Welfare analysis of place-based policies with the constant elasticity of substitution

and the variable elasticity of substitution cases

We evaluate the welfare impact of adopting place-based policies. We focus on two

place-based policies shown in Definitions 4.1 and 4.2 (i.e., location subsidies to con-

sumers and location subsidies to stores).
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4.4.1. Model specification with the constant elasticity of substitution

Specifying the utility function and the housing production function, we demonstrate

how place-based policies improve social welfare with the Allais surplus defined in Section

4.3.1.

Most multipurpose shopping models in which retail stores are under monopolistic

competition represent consumers’ love of variety with constant elasticity of substitution

(CES) function (e.g., Henkel et al., 2000; Tabuchi, 2009; Ushchev et al., 2015). We

evaluate the welfare impact with the following utility function:

Ui =
σµ

σ − 1
lnMi + (1− µ) lnhi + ai, 0 < µ < 1, (4.33)

whereMi =
∫ mj

0
qj(k)

(σ−1)/σdk. σ and µ are the elasticities of substitution between any

two varieties and the shopping expenditure, respectively.45 In addition to the above

specification for consumers’ preference, we specify the housing production function

employed by urban economics models (e.g., Brueckner, 2007; Kono et al., 2019; Domon

et al., 2022):

g(b) = θbβ (0 < θ, 0 < β < 1). (4.34)

Properties of dAS/ds

We show properties of dAS/ds with the specification in order to discuss the welfare

impacts of the place-based policies. We can obtain the variables to express EP and ES

with the market equilibrium conditions (see Appendix C.2.1 for the derivation):

mj =


µ
σ

∑

a∈Ij

na + sMj (s)




1/2

∀j ∈ J , (4.35)

q∗i = µ(pMmj(i))
−1 ∀i ∈ I, (4.36)

Qj =
∑

a∈Ij

naq
∗
a ∀j ∈ J , (4.37)

45In addition, 1− µ implies the housing expenditure share.
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where pM = cσ/(σ−1). The following lemma holds with the above model specification.

Lemma 4.2. If the utility function and the production function are expressed by

(4.33) and (4.34) respectively, then PDP = VDP = 0 holds at the market equilibrium

(i.e., (n, s, U) = (n∗, 0, U∗)).

Proof. See Appendix C.2.3.

Lemma 4.2 shows that PD = PDS, VD = VDS, and dAS/ds = ES hold. This result

would be obtained because all the retail stores in the city supply varieties at the same

price. Such pricing is caused when we assume the CES preference because the CES

preference causes the price elasticity of the total demand to be constant (i.e., σ).

Location subsidies to consumers

We focus on location subsidies to consumers. If a place-based policy does not

subsidize retail stores, then mass of variety mj is not affected by policy instrument

s (see Eq. (4.35)). Hence, dAS/ds = ES = 0 holds for any location subsidies to

consumers. This result indicate AS at (n, s, U) = (n∗, 0, U∗) is locally maximized.

Formulating a maximization problem for AS, we examine whether or not AS is

locally maximized for place-based policies that do not generate ES. The maximization

problem of AS is defined as follows:

max
n

AS (4.38)

s.t. γi(n) ≡ −ni ≤ 0 (i ∈ I), Γ(n) ≡ N −
∑

i∈I

ni = 0.

We analyze this maximization problem with the Karush-Kuhn-Tucker (KKT) condition.

The results regarding the first-order necessary conditions and the second-order sufficient

conditions are as follows.

Lemma 4.3. At the market equilibrium (i.e., (n, s, U) = (n∗, 0, U∗)), n∗ satisfies

the KKT conditions of maximization problem (4.38).
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Proof. See Appendix C.2.3.

Lemma 4.4. At the market equilibrium (i.e., (n, s, U) = (n∗, 0, U∗)), n∗ satisfies

the second-order sufficient conditions of maximization problem (4.38) if µ/(1 − µ) <

2(σ − 1)(1− β).

Proof. See Appendix C.2.3.

Even though there is a market failure generated by monopolistic competition (i.e.,

imperfect competition), Lemma 4.4 implies that any inner market equilibrium is locally

maximized if the expenditure share of differentiated goods and housing is lower than

2(σ − 1)(1 − β). Low σ implies that consumers love variety, whereas high β implies

that developers are more productive. Lemma 4.4 implies that any policy that generates

population migration (i.e., change in n), as well as location subsidies to consumers,

decrease the Allais surplus. For example, adopting land-use regulation decreases the

Allais surplus. We restate Lemma 4.4 in the following proposition:

Proposition 4.1. The inner market equilibria are locally efficient regarding the

spatial distribution of consumers, even though there are price distortions and the variety

distortions generated by monopolistic competition.

Proposition 4.1 is similar to one of the results shown by Dhingra and Morrow (2019).

Dhingra and Morrow (2019) compare the allocation at market equilibrium with that at

the socially optimal state in an economy that consists of workers and firms under mo-

nopolistic competition. In particular, they show that if workers’ demands for varieties

are expressed by the CES preference, then the allocation at the market equilibrium is

socially optimal in a non-space economy with no migration. We show that, in an econ-

omy with population migration and monopolistic competition, allocations determined

by n at the equilibrium are locally efficient, in contrast to the results of Dhingra and

Morrow.
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Regarding Proposition 4.1, we should note that at the equilibrium, mass of variety

mj is determined by n (see Eq. (4.35)). Since policymakers can choose the level of

the mass, Proposition 4.1 does not ensure that the equilibrium is first-best, which is

a difference between Proposition 4.1 and the results of Dhingra and Morrow (2019).

For example, place-based policies that generate positive direct benefit (i.e., MS > 0)

increase the Allais surplus.46

Location subsidies to stores

We explore location subsidies to stores. This place-based policy is an example in

which ES ̸= 0 could hold. Using Eq. (4.4) in Definition 4.2 and Eq. (4.35) yields

∂m1/∂s ̸= 0. Furthermore, we obtain the following result.

Lemma 4.5. At the market equilibrium (i.e., (n, s, U) = (n∗, 0, U∗)), the following

holds.

dAS

ds
= PD︸︷︷︸

<0

+ V D︸︷︷︸
>0

> 0.

Proof. See Appendix C.2.3.

Lemma 4.5 shows that adopting location subsidies to stores marginally increases the

Allais surplus. While the deadweight loss generated by the price distortion decreases

AS, the total net benefit generated by the variety distortion exceeds the loss.

In this subsection, we have shown that subsidizing retail stores operating in a mar-

ketplace (e.g., the downtown area in a city) is desirable from the viewpoint of wel-

fare, whereas subsidizing consumers residing near the marketplace is harmful. Hence,

whether or not place-based policies are socially efficient depends on the recipients of

the subsidies, even if the policies promote retail agglomeration in the downtown area.

46Note that although there is no income effect for the quasi-linear preference, any subsidy policy

can affect the total demand. This is because the policy can affect the mass of variety, which generates

a change in the total demand (see Eqs. (4.35)–(4.37)).
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4.4.2. Numerical examples

Conducting numerical analysis of the equilibrium and the Allais surplus on the

equilibrium for s ≥ 0, we demonstrate how the surplus changes on the equilibrium.

We consider the model city shown in Figure 4.1(b). That is, this city consists of

the downtown area and the suburb. The downtown area and the suburb have one

marketplace (i.e., J = 2). There are more residential zones in the downtown area

than the zones in the suburb. We represent the assumption as I = {1, 2, . . . , 8},

I1 = {1, 2, . . . , 5}, and I2 = {6, 7, 8}. The travel costs to the marketplaces are the

same: ti = 10 (∀i ∈ I). We set common income of consumers y at 1000. Hence, 1% of

the common income is the travel cost to the marketplace. N is set at 1; ni is interpreted

as the ratio to the total population in the city.

How the place-based policies change the Allais surplus

We conduct numerical analysis with utility function (4.33) and production function

(4.34). There are five exogenous parameters: θ, β, µ, σ, and c. Referring to the

empirical results shown by Domon et al. (2022), we set θ and β at 0.0028 and 0.75,

respectively. We set µ at 0.4, which means that the ratio of the shopping expenditure

to the housing expenditure is about 66%. σ and c are set at 6.0 and 1.0, respectively.

We numerically evaluate the two place-based policies defined in Section 4.2. One is

location subsidies to consumers residing in the downtown area:

si(s) =





((
∑

a∈I1 na)
−1 − 1)s (i ∈ I1),

−s (i ∈ I2),
sMj (s) = 0 ∀j ∈ J , (4.39)

which is the case for Î = I1 in Definition 4.1. The other is location subsidies to stores

operating in the downtown area:

si(s) = −s, sMj (s) =





s (j = 1),

0 (j = 2),
(4.40)

which is the case for J = 2 in Definition 4.2.
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n₁

AS

AS

Figure 4.2: Population and the Allais surplus on the equilibria with utility function (4.33)

and production function (4.34) . Left: population in residential zone 1. Right: the Allais

surplus. Red dashed-dotted line: the result obtained for policy function (4.40); blue dashed

line: the result obtained for policy function (4.39).

We investigate the equilibrium and the Allais surplus for 0 ≤ s ≤ 10. Figure 4.2

shows the population in residential zone 1 (i.e., n1) and the Allais surplus (i.e., AS),

which changes as policy instrument s changes. The Allais surplus increases with the

place-based policy expressed by Eq. (4.40) and decreases with the place-based policy

expressed by Eq. (4.39) from s = 0. Both results are consistent with the theoretical

results shown in Section 4.4.1 (i.e., Lemmas 4.4 and 4.5). We also check that the Allais

surplus monotonously decreases for 0.04 ≤ s ≤ 10. In order to clearly show that the

Allais surplus increases for location subsidies to the retail stores, the results for the

range are not shown.

Relaxing the assumption regarding the elasticity of substitution between

varieties

We show the theoretical results under the constant elasticity of substitution between

varieties in Section 4.4.1. In this section, relaxing this assumption, we explore how the

welfare impacts of adopting the place-based policies change. We employ the Constant

Absolute Risk Aversion (CARA) utility function as a utility function that represents the
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n₁
AS

Figure 4.3: Population and the Allais surplus on the equilibria with utility function (4.41) and

production function (4.34). Left: population in residential zone 1. Right: the Allais surplus.

Red dashed-dotted line: the result obtained for policy function (4.40); blue dashed line: the

result obtained for policy function (4.39).

variable elasticity of substitution between varieties. Behrens and Murata (2007) show

that a pro-competitive effect emerges when we employ this function. In our model, the

pro-competitive effect implies that the price of varieties in a marketplace pMj decreases

with an increase in the mass of the varieties mj.

We investigate the welfare impacts of adopting the place-based policies with the

following utility function:

Ui = µ1 lnMi + µ2 lnhi + µ3 ln ai, (4.41)

where µ1, µ2, µ3 > 0, µ1 + µ2 + µ3 = 1, and

Mi =

∫ mj

0

1− α exp(−ωqi(k))dk, α, ω > 0. (4.42)

We employ the same production function (i.e., Eq. (4.34)). Because the specification is

so intractable that we cannot obtain even the closed forms of the expenditure function

and the indirect utility, we resort to conducting only numerical analysis for the welfare

impacts. The set of parameters α = 1, ω = 1, µ1 = 0.1, µ2 = 0.3, and µ3 = 0.6 is

employed to investigate the welfare impacts.
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Table 4.1: The composition of dAS/ds.

PD VD Total

PDP PDS Total VDP VDS Total

Location subsidies
-0.00570 -0.0450 -0.0507 -0.00536 0.321 0.316 0.27

to stores

Location subsidies
-0.00645 0 -0.00645 -0.00607 0 -0.00607 -0.013

to consumers

Notes: PDP , PDS, VDP , and VDS are given by Eqs. (4.28)–(4.31). For the location subsidies to

consumers, policy instrument s does not affect the Hicks demands and the equilibrium conditions;

this value affects only population migration. Hence, we obtain PDS = VDS = 0 for the policy.

Figure 4.3 shows population in residential zone 1 and the Allais surplus on the equi-

libria with the utility function and the production function for 0 ≤ s ≤ 10. The Allais

surplus increases with the place-based policy expressed by Eq. (4.40) and decreases

with the place-based policy expressed by Eq. (4.39) from s = 0. Hence, these results

are qualitatively the same as the CES case.

Table 4.1 shows the composition of dAS/ds at the market equilibrium for s = 0.

Table 4.1 shows that PDP and VDP are negative for both policies unlike the CES case

(Lemma 4.2). With location subsidies to consumers, both welfare changes generated

by the price and the variety distortions are negative. With location subsidies to stores,

the former and the latter are negative and positive, respectively, and the latter exceeds

the former.

4.5. Conclusion

We have evaluated how place-based policies affect social welfare. Conducting theo-

retical analyses with constant and variable elasticity of substitution between varieties

supplied in marketplaces, we obtain two main findings: (1) subsidizing retail stores

operating in downtown areas is desirable from the viewpoint of welfare, and (2) sub-

82



sidizing consumers residing near the downtown areas is harmful. The main reason for

the difference is the level of variety distortion generated by a place-based policy. Since

directly subsidizing retail stores generates a positive net benefit with the variety dis-

tortion, we obtain these results. Furthermore, we have shown that adopting policies

that change the spatial distribution of consumers (e.g., land-use regulation) is harmful

with the constant elasticity of substitution, even though there are market distortions

generated by monopolistic competition.

Our model can be extended in the following manner. By developing a structural

model that expresses the agglomeration of retail stores in marketplaces, we can quantita-

tively evaluate the benefit of place-based policies. For example, combining the so-called

Quantitative Spatial Economics model (e.g., Redding and Rossi-Hansberg, 2017) and

our multipurpose shopping model will enable us to evaluate such a benefit.
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5. Quantitative Welfare Analyses of Place-based Policies

5.1. Introduction

Place-based policies have been applied worldwide. Empirical research to evaluate

the policy impacts of place-based policies has been performed.47 For example, Iwata and

Kondo (2021) investigate the policy impact of a place-based policy applied in Toyama,

which aims to revitalize the downtown area. However, little attention has been given

to the welfare evaluation of place-based policies for retail agglomeration.

In this chapter, we aim to quantitatively evaluate the welfare impacts of place-

based policies to agglomerate retail stores in the downtown area of a city. Building the

multipurpose shopping model developed in Chapter 4, we quantitatively evaluate the

following place-based policies:

• Location subsidies to households residing in the downtown area.

• Location subsidies to retail stores operating in the downtown area.

The quantitative results show that the welfare impacts are qualitatively the same as

the theoretical results shown in Chapter 4.

This chapter relates to quantitative research that focuses on what drives retail ag-

glomeration (e.g., Davis, 2006; Koster et al., 2019). For example, Koster et al. (2019)

show the existence of shopping externality with the data for the number of pedestrians

that pass shops in shopping streets. They evaluate the welfare impact measured by

the profits of retail stores of a retail policy that subsidizes retail stores. In contrast

to Koster et al. (2019), we focus on households’ location choices as well as the stores’

location choices in order to evaluate the welfare impacts of place-based policies. Our

welfare evaluation, moreover, is based on a general equilibrium framework.

47See Neumark and Simpson (2015) for a survey.
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Some quantitative studies evaluate the welfare impacts of place-based policies (e.g.,

Busso et al., 2013) with quantitative spatial equilibrium models. These studies focus

on spatial consumers’ commuting and residing patterns in order to evaluate the welfare

impact of policies to promote the growth of a business area. In contrast to these studies,

we focus on spatial households’ residing patterns affected by retail agglomeration in or-

der to evaluate retail place-based policies. In particular, we focus on the agglomeration

economy driven by the agglomeration of retail stores in marketplaces.

The rest of this chapter is organized as follows. Basic assumptions are introduced in

Section 5.2. The results of the quantitative analyses are shown in Section 5.3. Section

5.4 concludes this chapter.

5.2. Model

5.2.1. Basic assumptions

The basic structure of our model is as follows. We consider a closed city where

homogeneous N households reside. This city consists of the downtown area and homo-

geneous suburbs. Let I ≡ {0, 1, 2, . . . , I} denote the set of residential zones. I is the

number of the suburbs in the city. We regard residential zone 0 as the downtown area

and zone i (= 1, . . . , I) as the suburb. There is one marketplace in each residential zone.

In the marketplaces, retail stores supply goods; households choose where to reside.

5.2.2. Households

Households in the city derive utility from differentiated goods, housing measured in

floor area, and a composite good. The utility of households residing in residential zone

i (∈ I) is given by

Ui(Mi, hi, ai) = µ1 lnMi + µ2 lnhi + µ3 ln ai + Ai, µ1 + µ2 + µ3 = 1, (5.1)

where Mi is the composite index of the consumption of differentiated goods, hi is

the consumption of housing measured by floor space, ai is the consumption of the
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composite good, and Ai is the level of amenities in zone i, which is a constant term.

A1 = A2 = · · · = AI holds since the suburbs are homogeneous. Mi is assumed to be

the constant elasticity of substitution function:

Mi =

(∫ mi

0

qi(k)
(σ−1)/σdk

) σ
σ−1

, (5.2)

where qi(k) is the consumption of the kth variety, mi is the mass of varieties supplied

in zone i.

Households residing in the downtown area do not need land for housing. In the

downtown area, floor space is supplied with residential buildings. On the other hand,

households residing in the suburb need land for housing. In the suburb, floor space

is supplied with housing and land. Let ϕ denote the floor-area ratio in the suburb for

housing. Households need 1/ϕ unit of land for one unit of floor space in the suburb. We

assume that households residing in the suburb periodically pay land rent. We regard

land consumption as a flow.

The budget constraint of the households residing in zone i is given by




∫ m0

0
pM0 (k)q0(k)dk + pH0 h0 + a0 = y0 (i = 0),

∫ mi

0
pMi (k)qi(k)dk + pihi + (RH

i /ψ)hi + ai = yi (i = 1, . . . , I),
(5.3)

where pMi (k) is the price of the kth variety supplied in zone i, pH0 is the price per square

foot of housing in the downtown area, and yi is the net income of households. pi and

RH
i (i = 1, . . . , I) are the price of housing and land rent per square foot in the suburb,

respectively. pihi and (RH
i /ψ)hi are the total housing cost and land rent in the suburb,

respectively. We summarize the prices with pHi ≡ pi + RH
i /ψ (i = 1, . . . , I), which is

the housing price per square foot in the suburb. The composite good is assumed to be

the numéraire.

We assume public ownership of land and firms for simplicity. Households’ net income

yi is composed of common income y, equal share of the sum of profits and rents Π, and

subsidy (or tax) si(s): yi = ỹi(s) ≡ y + Π + si(s). Each place-based policy determines
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si(s) and s (∈ R) expresses the level of policy implemented. We call s the policy

instrument.

This chapter considers two place-based policies: location subsidies to stores, and

location subsidies to households. These policies are the same as the policies focused on

in Chapter 4. Households (retail stores) in the same zone can receive the same amount

of subsidy for the policies. Let ni and sMi (s) denote the total number of households

and the total subsidy provided to retail stores in residential zone i, respectively. The

formal definitions for the place-based policies are as follows.

Definition 5.1. Location subsidies to households in the downtown area is the place-

based policy such that the following equations hold.

si(s) =





(N − n0)s/n0 (i = 0),

−s (i = 1, . . . , I),
sMi (s) = 0 (i ∈ I). (5.4)

Definition 5.2. Location subsidies to stores in the downtown area is the place-based

policy such that the following equations hold.

si(s) = −s/N (i ∈ I), sMi (s) =





s (i = 0),

0 (i = 1, . . . , I).
(5.5)

“Location subsidies to households” imply that households residing in the downtown

are subsidized. “Location subsidies to stores” imply that retail stores operating in the

downtown are subsidized. The subsidies with the policies are paid by households:

∑

i∈I

(nisi(s) + sMi (s)) = 0. (5.6)

We solve the following utility maximization problem:

max
{qi(k)}k,hi,ai

Ui(Mi, hi, ai) s.t. Eqs. (5.2) and (5.3). (5.7)
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We decompose the utility maximization problem into two problems regarding two-stage

budgeting. The conditional demands are given by

q∗i (k) = pMi (k)−σP σ
i Mi ∀k ∈ [0,mi],

where superscript “ ∗ ” denotes the optimal solution and Pi is the price index for the

varieties supplied in residential zone i:

Pi =

(∫ mi

0

pMi (k)1−σdk

)1/(1−σ)

.

The demand functions are given by

M∗
i = µ1yi/Pi, h∗i = µ2yi/p

H
i , a∗i = µ3yi.

Substituting M∗
i into q∗i (k) yields

q∗i (k) = µ1p
M
i (k)−σyi/P

1−σ
i .

Let Vi denote the indirect utility of households residing in residential zone i. Substi-

tuting the demand functions into the indirect utility yields

Vi = ln yi − µ1 lnPi − µ2 ln p
H
i + Ai + ξ, (5.8)

where ξ = µ1 lnµ1 + µ2 lnµ2 + µ3 lnµ3.

5.2.3. Retail stores

Retail stores supply differentiated goods in marketplaces. Each retail store sup-

plies a variety in a marketplace. They are under monopolistic competition (Dixit and

Stiglitz, 1977). Hence, the total mass of retail stores in each marketplace is endoge-

nously determined by free entry. They rent units of land in marketplaces.

All the retail stores incur the same marginal production cost c to supply varieties.

The retail store that supplies the kth variety incur k + ri(k) for the fixed cost, where

k also represents the fixed cost that depends on varieties, and ri(k) is land rent of a
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constant unit of land for a store. Some retail stores can receive subsidies, as shown in

Definitions 4.1 and 4.2.

Let Qi(k) and π
M
i (k) denote the supply of the kth variety and the profit of the retail

store supplying the kth variety in residential zone i, respectively. πM
i (k) is given by

πM
i (k) = (pMi (k)− c)Qi(k)− k − ri(k) +

sMi (s)

mi

∀k ∈ [0,mi]. (5.9)

We assume that each store pays the bid rent. Using the profit yields the maximum land

rent that each store can pay:

ri(k) = max
pMi (k)

(
(pMi (k)− c)Qi(k)− k +

sMi (s)

mi

)
. (5.10)

This equation implies that the more demand for a variety in a marketplace, the higher

the bid rent. Hence, if the prices of a variety supplied in some marketplaces are the

same, then a retail store operating in a larger marketplace can propose a higher bid

rent.

The total supply (or demand) is given by

Qi(k) = niq
∗
i (k). (5.11)

Using this equation and solving maximization problem (5.10) yields the prices of vari-

eties supplied in zone i.

pMi (k) = cσ/(σ − 1), ∀j ∈ J , ∀k ∈ [0,mi].

Since the prices do not depend on i and k, we express pMi (k) as pM . Under the symmetric

price equilibrium, the demand and the total demand for varieties are given by

q∗i (k) = µ1yi/(p
Mmi) ∀k ∈ [0,mi], (5.12)

Qi(k) = µ1niyi/(p
Mmi) ∀k ∈ [0,mi]. (5.13)
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5.2.4. Firms supplying floor space

Floor space is supplied by developers and house builders. Developers and house

builders supply floor space in the downtown area and the suburb, respectively. They

are under perfect competition.

Developers

Following Brueckner (2007) and Domon et al. (2022), we specify developers as fol-

lows. Residential buildings are produced by combining land and housing capital (or

building materials). The area of land in the downtown area is L0. The building output

measured in height per unit of land is expressed as g(b) = θbβ (0 < θ, 0 < β < 1),

where b is the capital-to-land ratio. Let πH
0 and H0 denote the developers’ net profit in

the downtown area and the height of buildings, respectively. πH
0 is given by

πH
0 = pH0 L0H0 − L0g

−1(H0)− L0R
H
0 , (5.14)

where g−1 is the inverse function of g and RH
0 is the land rent per unit of land in the

downtown area.

We assume that developers pay the bid land rent. Using the profit yields the maxi-

mum land rent that developers can pay:

RH
0 = max

H0

(pH0 H0 − g−1(H0)). (5.15)

Solving this maximization problem yields the height of buildings, the aggregated profits,

and the bid rent:

H∗
0 = θ1/(1−β)(βpH0 )

β/(1−β), (5.16)

πH
0 = L0

[
θ1/(1−β)(ββ/(1−β) − β1/(1−β))(pH0 )

1/(1−β) −RH
0

]
, (5.17)

RH
0 = pH0 H

∗
0 − g−1(H∗

0 ) = θ1/(1−β)(ββ/(1−β) − β1/(1−β))(pH0 )
1/(1−β). (5.18)

House builders

House builders supply floor area in the suburb with constant marginal cost cH and

no fixed cost.
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5.2.5. Market equilibrium condition

Considering the short-run equilibrium and the long-run equilibrium, we obtain the

market equilibrium. In the short-run equilibrium, given the spatial distribution of

households (i.e., (ni)i∈I), the market clearing condition of housing holds and the mass

of retail stores is determined. In the long-run equilibrium, the spatial distribution is

determined. We focus on the market equilibrium at which the numbers of households

residing in the suburbs are the same (i.e., n1 = n2 = · · · = nI).

We focus on the market clearing conditions for housing. Since the marginal cost

of house builders is constant, p1 = cH holds. The other market clearing conditions

regarding housing are the market clearing condition for floor space in the downtown

area and land in the suburb:

n0h
∗
0 = L0H

∗
0 , (5.19)

n1h
∗
1 = ψL1. (5.20)

Using Eq. (5.19), we obtain the floor area price in the residential zone:

pH0 =
[
µ2θ

−1/(1−β)β−β/(1−β)n0y0/L0

]1−β
. (5.21)

Using Eq. (5.20), we obtain the land rent in the residential zone:

RH
1 = ψ(µ2n1y1/(ψL1)− cH), (5.22)

where L1 is the area of land in the suburb. Substituting cH and Eq. (5.22) into total

housing price pH1 yields pH1 = µ2n1y1/(ψL1).

Next, mass of retail stores mi is determined as follows. Since pM and Qi do not

depend on k, (pM −c)Qi+s
M
i (s)/mi also does not depend on k. Land rent ri(k), shown

by Eq. (5.10), monotonously decreases with an increase in k. Using this monotonicity,

ri(k) ≥ 0 (∀k ∈ [0,mi]), and Eq. (5.10), we obtain the following condition for mass of

stores mi:

ri(mi) = (pMi − c)Qi −mi +
sMi (s)

mi

= 0. (5.23)
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This equation implies that sales equals the cost for the store supplying variety mj.

Substituting Eq. (5.13) into Eq. (5.23) yields

mi =

√
µ1

σ
niyi + sMi (s). (5.24)

We focus on the net income of households (i.e., yi). With the assumption of the

public ownership, the profits and rents are equally divided among households:

Π = N
−1
(
πH
0 + L0R

H
0 + IL1R

H
1 +

∫ m0

0

πM
0 (k) + r0(k) dk + I

∫ m1

0

πM
1 (k) + r1(k) dk

)
.

(5.25)

Using the market clearing conditions regarding housing yields

L0R
H
0 + πH

0 = µ2n0y0(1− β), (5.26)

L1R
H
1 = µ2n1y1 − cHψL1. (5.27)

Using Eqs. (5.9) and (5.24) yields

∫ m0

0

πM
0 (k) + r0(k) dk + I

∫ m1

0

πM
1 (k) + r1(k) dk =

1

2

(µ1

σ
n0y0 +

µ1

σ
In1y1 + sM0 (s) + IsM1 (s)

)
. (5.28)

Substituting Eqs. (5.26)–(5.28) into Eq. (5.25) yields

Π =
1

N

[
n0y0

(µ1

2σ
+ µ2(1− β)

)
+ In1y1

(µ1

2σ
+ µ2

)
+
sM0 + IsM1

2
− cHψIL1

]
.

We can solve yi = y +Π+ si(s) for i = 0, 1:

y0 = ỹ0(n0, n1, s) ≡ ϕ

(
y +

sM0 + IsM1
2N

− cHψIL1

N
+ (1− b)s0 + bs1

)
, (5.29)

y1 = ỹ1(n0, n1, s) ≡ ϕ

(
y +

sM0 + IsM1
2N

− cHψIL1

N
+ as0 + (1− a)s1

)
, (5.30)

where ϕ = (1− a− b)−1, a = N
−1
n0 (µ1/(2σ) + µ2(1− β)) , b = N

−1
n1 (µ1/(2σ) + µ2).

Let n ≡ (n0, n1) denote the spatial distribution of the households in the downtown

and the suburb. Using ỹi(n, s), we obtain the prices, the masses, and the net income
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as functions of n and s. Hence, the indirect utilities are also functions of n, s, and

exogenous variables:

V0(n, s) = ln ỹ0 +
µ1

2(σ − 1)
ln

(
µ1n0ỹ0
σ

+ sM0

)
− µ2(1− β) ln(n0ỹ0) + Ψ0 + κ, (5.31)

V1(n, s) = ln ỹ1 +
µ1

2(σ − 1)
ln

(
µ1n1ỹ1
σ

+ sM1

)
− µ2 ln(n1ỹ1) + Ψ1 + κ, (5.32)

where

Ψ0 = A0 + µ2(1− β) lnL0 + µ2β lnµ2 + µ2 ln(θβ
β), Ψ1 = A1 + µ2 ln(ψL1),

κ = −µ1 ln p
M − µ2 lnµ2 + ξ.

In the long-run equilibrium, the spatial distribution is determined. n is an equilib-

rium iff V exists such that the following conditions hold:




Vi(n, s) = V if ni > 0,

Vi(n, s) < V if ni = 0,
(i = 0, 1), (5.33)

and

n0 + In1 = N. (5.34)

5.3. How much benefit the place-based policies generate

5.3.1. Parameter calibration

In order to quantitatively evaluate the welfare impact, we calibrate exogenous pa-

rameters. We calibrate number of total households, N ; number of households in residen-

tial zone i, ni; number of the suburbs, I ; expenditure share, µj (j = 1, 2, 3); common

income, y; marginal cost that house builders incur, ch; elasticities of substitution, σ;

land area in zone i, Li; marginal cost that retail stores incur, c; exogenous parameters

regarding constructing buildings in the downtown area, β and θ; and amenities level in

zone i, Ai.

Using the data of Sendai in Japan, we calibrate the parameters. The center of the

CBD is at Sendai Station. We regard the downtown area as the area within a range of
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2km from the CBD. We regard a suburb as the area within a range of 2km from the

center of Izumi-Park town, which is a suburban town in Sendai. We consider that the

center is at Sendai-Izumi Premium Outlet.

The calibration procedures are as follows.

Number of total households N , and number of households in zones ni, num-

ber of suburbs I

We use the data provided by Population Census 2005 of Japan and GIS. In our

quantitative analyses, we focus on the behavior of nuclear families and benefits to the

families with place-based policies. Hence, we assume that each household consists of

three people (i.e., two parents with a child). We calibrate ni by dividing the population

in each area by three. We set n1 and n2 at 32, 131 and 7, 253, respectively. Because

there are Izumi-Park town and a suburban town around Nagamachi station as suburbs

around the Sendai Station, We set I at 2.

Land area Li

We use the data provided by the Population Census 2005 of Japan and floor area

ratio determined by Sendai City Government. We obtain the total floor area from the

data. The total floor space in the downtown area, employed by our calibration, is the

space in residential buildings, whereas the total floor space in the suburb is the space

in houses. Referring to the data regarding urban planning provided by Sendai City

Government, we set floor area ratio in the downtown area and the suburb at 4.0 and

0.6, respectively.48 We calibrate Li by dividing the total floor space by the floor area

ratio. We set L1 and L2 at 675, 977 (m2) and 1, 646, 686 (m2), respectively.

Common income y and expenditure share µj (j = 1, 2, 3)

We use the data provided by the National Family Expenditure Structure Survey 2019

48See http://www.city.sendai.jp/toshi-kekakuchose/kurashi/machi/kaihatsu/toshikekaku/service.html

(last accessed on 1 December 2022).
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of Japan. We set common income y at 3, 923, 988 (JPY/year). We assume that the

shopping expenditure of households µ1 consists of the expenditure for food, manufac-

tured goods, and clothes. We set µ1, µ2, and µ3 at 0.280, 0.224, and 0.496, respectively.

Marginal cost ch and c

We use the data provided by the Statistical Survey of Construction Starts 2021 of

Japan. We use the average production cost of houses per square foot of floor space in

the data. Since housing consumption is regarded as a flow in our model, we use the

average production cost transformed into the present value. We assume that households

pay the total housing price over 30 years. Using discount rate per year set at 2%, we

set ch at 6, 566 (JPY/year).

Since marginal cost that retail stores incur c affects neither the market equilibrium

nor the welfare analyses, the level of c does not matter. Hence, we set c at 1.0.

Parameters regarding construction of residential buildings β, θ

We set β and σ at 0.70 and 0.0028 so that the consumption levels of floor space

in the downtown area and the suburb are roughly 85 (m2) and 135 (m2), respectively.

Domon et al. (2022) estimate β and σ as 0.75 and 0.0028, respectively. Hence, the

calibrated parameters are close to the parameters estimated by Domon et al. (2022).

Elasticities of substitution σ

In our model, σ is equal to price elasticity for the varieties since we employ the CES

function. DellaVigna and Gentzkow (2019) show the histogram of price elasticities

for goods that retail stores supply. Based on the histogram, we set σ (i.e., the price

elasticity) at 2.5, which is similar to the elasticity taking the maximum value of the

histogram.

Amenities level Ai

We set A2 at 0 for the purpose of normalization. We calibrate amenities level A1

with long-run equilibrium condition (5.33). Using the calibrated parameters, we set A1
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Table 5.1: Calibrated parameters

Total households N 46,687 Elasticities of substitution σ 2.5

Households in the downtown area n0 32,181 Land area in the downtown area L1 675,977

Households in the suburb n1 7,253 Land area in the suburb L2 1,646,686

Expenditure share for shopping µ1 0.280 Marginal cost c 1.0

Expenditure share for housing µ2 0.224 Parameter regarding buildings β 0.70

Expenditure share for other goods µ3 0.496 Parameter regarding buildings θ 0.0028

Common income y 3,923,988 Amenities level in the downtown A1 -0.034351

Marginal cost ch 6,566 Amenities level in the suburb A2 0

Floor area ratio in the suburb ψ 0.6 Number of the suburbs I 2

at −0.034351.

Table 5.1 shows the results of the calibration.

5.3.2. Quantitative result

Simulation setting

We conduct equilibrium and welfare analyses for the place-based policies shown in

Definitions 4.1 and 4.2. In order to evaluate the welfare of the market equilibrium after

the place-based policies are applied, we evaluate the welfare impact of the place-based

policies with the equivalent variation. Let Ei(Pi, p
H
i , U) denote the expenditure function

for goods supplied in residential zone i. In our analysis, the prices are the functions

of spatial distribution of households n: Pi = Pi(n), p
H
i = pHi (n). Let EVi denote the

equivalent variation for the households residing in zone i. EVi is given by

EVi ≡ Ei(Pi(nbefore), p
H
i (nbefore), Uafter)− Ei(Pi(nbefore), p

H
i (nbefore), Ubefore), (5.35)

where variables with subscripts “before” and “after” denote variables before and after

place-based policies are applied, respectively. Since we regard nbefore as the calibrated

spatial households distribution, nbefore = (n1, n2) = (32, 181, 7, 253) holds. Let ni,after
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Table 5.2: Equivalent variation for applying the place-based policies

(1) (2)

Place-based policy

Location subsidies Location subsidies

to households to stores

Income transfer (JPY / year) 100, 000 98, 700

Spatial distribution n1,after 35, 007 34, 345

of households n2,after 5, 840 6, 171

EV per household EV1 −12, 118 7, 328

(JPY / year) EV2 −12, 118 7, 328

Total EV (106 JPY / year) SEV −566 342

denote the population in zone i. The aggregated equivalent variation is given by SEV ≡

n1,after × EV1 + I × n2,after × EV2. We employ SEV to evaluate the welfare impacts.

We conduct welfare analyses for each place-based policy by changing policy instru-

ment s. In order to restrict income transfer among households with place-based policies

to be applicable in the real world, we restrict s to satisfy the condition that the income

transfer is within 100, 000 (JPY / year). Conducting the analyses, we elucidate the effi-

cient level of the policy instrument. If applying a place-based policy decreases welfare,

we calculate the size of the decrease in welfare by applying the policy that generates

income transfer with 100, 000 (JPY / year).

Results

Table 5.2 shows the result of the welfare analyses. Column (1) shows the result of

applying location subsidies to households. Since n1after > n1 holds, this policy promotes

the flourishing of the downtown area. We check whether this policy monotonously

decreases the welfare. The result shown in Column (1) is the result where the policy
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is applied to generate income transfer with 100, 000 Japanese yen. As SEV shows, a

negative benefit being equal to 566× 106 Japanese yen occurs for each year.

Column (2) shows that of applying location subsidies to stores. The sign of the

result regarding welfare is the opposite of the location subsidies to households. The

efficient level of income transfer is 98, 700 Japanese yen. Since this policy agglomerates

households in the downtown area and increases the welfare, this policy is a desirable

place-based policy.

5.4. Conclusion

We have quantitatively evaluated how place-based policies affect social welfare. We

obtain two main findings: (1) subsidizing retail stores operating in downtown is de-

sirable from the viewpoint of welfare, and (2) subsidizing consumers residing near the

downtown is harmful. These results are qualitatively the same as the results in Chapter

4. The results indicate that policy makers should apply place-based policies that not

indirectly but directly agglomerate retail stores in the downtown area.

Our model can be extended in the following manner. In this chapter, quantitative

analysis with the CES preference is conducted. It will be a future topic to quantitatively

evaluate welfare impacts with variable elasticity of substitution (VES) preferences. In

spatial Economics, quantitative models with VES preferences have recently been de-

veloped (e.g., Bertoletti et al., 2018; Arkolakis et al., 2019). Quantitative methods

employed by such studies will enable us to evaluate more elaborate quantitative anal-

yses.
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6. Concluding Remarks

The present thesis introduces a methodology with symmetry of geographical spaces

for spatial economic models and elucidates which spatially dependent policies are so-

cially efficient.

Chapter 2 investigates where retail stores agglomerate in a road network with ra-

dial roads and a ring road in a two-dimensional space. We show 1) how a difference

in improvement sequences in the radial and ring roads generates a difference in the

agglomeration patterns with different welfare levels and 2) how the two-dimensional

geographical position of shopping agglomerations ensuring the highest welfare level dif-

fers from that in market equilibrium. These results indicate that policy makers should

regulate the locations of marketplaces in order to generate the socially efficient geo-

graphical positions of retail stores.

Chapter 3 introduces an example of analysis with symmetry of a geographical space.

We introduce two viewpoints with symmetry: (1) the bifurcation mechanism of the full

agglomeration at the geographical center in this domain (mono-center) and (2) the

existence of invariant patterns, which are equilibria for any value of the transport cost

parameter. We theoretically find one large central city surrounded by hexagonal satellite

regions with a spatial economic model proposed by Forslid and Ottaviano (2003) with

the regular-hexagonal domain. This transition is an intrinsic feature observed in the

two-dimensional spatial platform with a geographical center.

Chapters 4 and 5 focus on place-based policies to revitalize decayed shopping areas

in the downtown area. We show that, whether or not place-based policies are efficient

depends on the recipients to whom the policies give benefits, even if the policies promote

retail agglomeration in the downtown area. Specifically, subsidizing consumers residing

near the downtown area is inevitably harmful from the viewpoint of welfare, whereas

subsidizing retail stores is efficient. These results indicate that policy makers should
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not indirectly but directly agglomerate retail stores in the downtown area.

There are many research directions which we have not investigated in the present

thesis. One direction is to develop multipurpose shopping models that are analytically

tractable and are applied for empirical tests. In order to precisely evaluate the welfare

impacts of spatially dependent policies, we need to conduct welfare analyses with such

a model. Since we obtain several analytical results with the CES preference in the

present thesis, one extension for the shopping models of the present thesis is to build

the models which are analytically tractable with variable elasticity of substitution (VES)

preferences. Using theoretical results for VES preferences (e.g., Parenti et al., 2017;

Fally, 2022) may enable us to conduct the extension.
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A. Appendices for Chapter 2

A.1. Proof of Lemma 2.1

(⇒) It is obvious. (⇐) Let n∗ = (n∗
0, n

∗
1, . . . , n

∗
6) be the stationary point of dy-

namics (2.8). Using n∗ and dynamics (2.8), we obtain n∗
iπi(n

∗) = 0 (i = 0, 1, . . . , 6).

n∗
iπi(n

∗) = 0 holds if and only if

n∗
i = 0 or πi(n

∗) = 0. (A.1)

We check that market equilibria condition (2.7) holds at n∗. If n∗
i > 0, then we

obtain πi(n
∗) = 0 by condition (A.1). On the other hand, if n∗

i = 0, Qi = 0 holds by

Eq. (2.6). Therefore, πi(n
∗) = −f < 0 holds.

A.2. Theoretical properties of the dispersion

A.2.1. Market boundary

We focus on market boundaries. A market boundary is a position at which con-

sumers obtain the same indirect utility across multiple marketplaces.49 Let ti denote

the market boundary between the center and suburb i and Ti denote the market bound-

ary between suburb i and j (≡ i+ 1 mod 6). Since the length of all the roads between

the marketplaces is one, ti, Ti ∈ (0, 1) (i = 0, 1, . . . , 6) hold.

Using the market boundaries, we express the market areas. To express the market

areas as subsets of all the positions on the road network L, we define the following

sets: Di(Y ) = {(D, i, x) ∈ L | x ∈ Y }, Si(Y ) = {(S, i, x) ∈ L | x ∈ Y } (i ∈ P).

Di(Y ) denotes an area on the radial road between the center and suburb i, whereas

Si(Y ) denotes an area on the ring road between suburb i and j (≡ i+1 mod 6). These

subsets are employed in Appendix A.2.2 and A.3.

49Market boundaries between marketplaces i and j (i ̸= j), for example, are Mi ∩Mj .
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A.2.2. The definitions of market pattern (D) and the dispersion

We define market pattern (D) with the market boundaries.

Definition A.1. Market pattern (D) is market areas given by

M0 = ∪m∈P Dm( (0, tm] ), (A.2)

Mi = Di( [ti, 1) ) ∪ Si( (0, Ti] ) ∪ Sj( [Tj, 1) ), i, j ∈ P , j ≡ i− 1 mod 6. (A.3)

The definition of market pattern (D) implies that every marketplace has a market

area nearby. We can obtain the market boundaries as follows.

Lemma A.1. In market pattern (D), market boundaries ti, Ti (i ∈ P) are given by

ti =
1

2

(
ln (n0/ni)

ϕ(σ − 1)
+ 1

)
, (A.4)

Ti =
1

2

(
ln (ni/nj)

τ(σ − 1)
+ 1

)
, j ≡ i+ 1 mod 6. (A.5)

Proof. See Appendix A.5.1.

We can obtain dynamics (2.8) with ti and Ti in market pattern (D).

Lemma A.2. Dynamics (2.8) in market pattern (D) is given by

F0(n) = n0

(
1

σn0

6∑

m=1

tm − f

)
, (A.6)

Fi(n) = ni

(
1

σni

((1− ti) + Ti + (1− Tj))− f

)
, i, j ∈ P , j ≡ i− 1 mod 6. (A.7)

Proof. See Appendix A.5.2.

The dispersion is the stationary points of dynamics (2.8) given by (A.6) and (A.7).

A.2.3. Proofs of Lemmas in Section 2.3.1

Proof of Lemma 2.2

Substituting n = (n0, n1, . . . , n1) into (A.6) and (A.7), we can obtain (2.11) and

(2.12).
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Brief proof of Lemma 2.3

We use the implicit function theorem. Using the Jacobian matrix of F̃ = (F0, F1)
⊤

with respect to ñ = (n0, n1) and the linearly-stable condition of the dispersion, we can

prove the Lemma. Since the proof is long, see Appendix A.5.4 for details.

Brief proof of Lemma 2.4

We can analytically obtain the eigenvalues of ∂F /∂n at nd. Obtaining the eigen-

vector for the largest of these eigenvalues, we can prove the Lemma. Since the proof is

long, see Appendix A.5.5 for details.

A.3. Mathematical explanation of the corner equilibria in Section 2.3.2

In this appendix, we show the definitions of market area patterns and corner equi-

libria shown in Section 2.3.2. To express F (n) as a matrix, we appropriately permute

the components of F (n) as follows:

F̂ (n) =




F+(n)

F 0(n)


 , (A.8)

where

F+(n) = (Fi1(n), . . . , Fim(n))
⊤, (i1 < · · · < im, Mi1 , . . . ,Mim ̸= ϕ),

F 0(n) = (Fj1(n), . . . , Fjk(n))
⊤, (j1 < · · · < jk, Mj1 = · · · = Mjk = ϕ).

ir (r = 1, . . . ,m) denotes an index assigned to a marketplace with a market area,

whereas jr (r = 1, . . . , k) denotes an index assigned to one with no market area.

A.3.1. The full agglomeration

We focus on market pattern (F) and the full agglomeration.

Definition A.2. Market pattern (F) is market areas given by M0 = L,Mi =

∅ (i ∈ P).
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The definition of market pattern (F) implies that the center has the market area

entirely covering the entire city. We can obtain inequality conditions in this market

pattern.

Lemma A.3. Market pattern (F) holds if and only if the following inequality holds.

ϕ ≤ σ−1ln (n0/ni) , i ∈ P , (A.9)

where σ−1 = (σ − 1)−1.

Proof. See Appendix A.6.1.

In market pattern (F), i1 = 0 and (j1, . . . , j6) = (1, . . . , 6). We can obtain F̂ (n) in

this market pattern as follows.

Lemma A.4. In market pattern (F), F+(n) and F 0(n) are given by

F+(n) =
12

σ
− fn0, F 0(n) = −fn0, (A.10)

where n0 = (n1, . . . , n6)
⊤.

Proof. The proof is similar to that of Lemma A.2.

The full agglomeration is the stationary points of dynamics (2.8) given by (A.10).

Note that the full agglomeration is always linearly-stable because the eigenvalues are

−f , which is negative.

A.3.2. The triangle pattern

We focus on market pattern (P) and the triangle pattern.

Definition A.3. Market pattern (P) is market areas given by

M0 = ∪m∈P Dm( (0, tm] ), (A.11)

M1 = (∪m∈{1,2,6} Dm( [tm, 1) )) ∪ (∪m∈{1,6} Sm(X)) ∪ S2( (0, T2] ) ∪ S5( [T5, 1) ),

(A.12)
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M3 = (∪m∈{3,4} Dm( [tm, 1) )) ∪ S3(X) ∪ S2( [T2, 1) ) ∪ S4( (0, T4] ), (A.13)

M5 = D5( [t5, 1) ) ∪ S4( [T4, 1) ) ∪ S5( (0, T5] ), (A.14)

M2 = M4 = M6 = ∅. (A.15)

The definition of market pattern (P) has three features: (1) the center has a market

area only on the radial roads, (2) suburbs 1, 3, and 5 have a market area on both radial

roads and the ring road, and (3) µ(M5) < µ(M3) < µ(M1) always holds. We can

obtain inequality conditions in this market pattern.

Lemma A.5. Market pattern (P) holds if and only if the following inequalities

hold.

−ϕ < σ−1ln (ni/nj) < ϕ− τ, (i, j) = (0, 1), (0, 3), (A.16)

−ϕ < σ−1ln (n0/n5) < ϕ, (A.17)

0 < σ−1ln (ni/nj) < 2τ, (i, j) = (1, 3), (3, 5), (1, 5), (A.18)

τ < σ−1ln (ni/nj) , (i, j) = (1, 2), (3, 4), (1, 6). (A.19)

Proof. See Appendix A.6.2.

In market pattern (P), (i1, i2, i3, i4) = (0, 1, 3, 5) and (j1, j2, j3) = (2, 4, 6). We can

obtain F̂ (n) in this market pattern as follows.

Lemma A.6. In market pattern (P), F+(n) and F 0(n) are given by

F+(n) =
1

2σ
(APz

+
P + bP )− fn+

P , F 0(n) = −fn0
P , (A.20)

where

AP =
1

σ − 1


 6ϕ−1 −ϕ−1c⊤P

−ϕ−1cP ϕ−1BP + τ−1CP


 ,

z+
P = (lnn0, lnn1, lnn3, lnn5)

⊤, cP = (3, 2, 1)⊤, BP = diag (3, 2, 1),
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CP =




2 −1 −1

−1 2 −1

−1 −1 2


 , bP =

(
3τϕ−1 + 6

bP1

)
,

bP1 = (−2τϕ−1 + 7,−τϕ−1 + 6, 5)⊤,

n0
P = (n2, n4, n6)

⊤.

Proof. The proof is similar to that of Lemma A.2.

The triangle pattern is the stationary points of dynamics (2.8) given by (A.20).

A.3.3. The asymmetric pattern

We focus on market pattern (A) and the asymmetric pattern.

Definition A.4. Market pattern (A) is market areas given by

M0 = ∪m∈P Dm( (0, tm] ), (A.21)

M1 = (∪m∈{1,2,5,6}Dm([tm, 1))) ∪ (∪m∈{1,5,6}Sm(X)) ∪ S2((0, T2]) ∪ S4( [T4, 1) ),

(A.22)

M3 = (∪m∈{3,4} Dm( [tm, 1) )) ∪ S3(X) ∪ S2( [T2, 1) ) ∪ S4( (0, T4] ), (A.23)

M2 = M4 = M5 = M6 = ∅. (A.24)

The definition of market pattern (A) has three features: (1) the center has a market

area only on the radial roads, (2) suburbs 1 and 3 each have a market area on both

radial roads and the ring road, and (3) µ(M3) < µ(M1) always holds. We can obtain

inequality conditions as follows.

Lemma A.7. Market pattern (A) holds if and only if the following inequalities

hold.

−ϕ < σ−1ln (n0/n1) < ϕ− 2τ, (A.25)

−ϕ < σ−1ln (n0/n3) < ϕ− τ, (A.26)

0 < σ−1ln (n1/n3) < 2τ, (A.27)

τ < σ−1ln (ni/nj) , (i, j) = (1, 2), (1, 6), (3, 4), (A.28)

2τ < σ−1ln (n1/n5) . (A.29)
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Proof. The proof is similar to that of Lemma A.5.

In market pattern (A), (i1, i2, i3) = (0, 1, 3) and (j1, j2, j3, j4) = (2, 4, 5, 6). We can

obtain F̂ (n) in this market pattern as follows.

Lemma A.8. In market pattern (A), F+(n) and F 0(n) are given by

F+(n) =
1

2σ
(AAz

+
A + bA)− fn+

A, F 0(n) = −fn0
A, (A.30)

where

AA =
1

σ − 1


 6ϕ−1 −ϕ−1c⊤A

−ϕ−1cA ϕ−1BA + τ−1CA


 ,

z+
A = (lnn0, lnn1, lnn3)

⊤, cA = (4, 2)⊤, BA = diag (4, 2),

CA = 2

(
1 −1

−1 1

)
, bA =

(
5τϕ−1 + 6

bA1

)
,

bA1 = (−4τϕ−1 + 10,−τϕ−1 + 8)⊤,

n0
A = (n2, n4, n5, n6)

⊤.

Proof. The proof is similar to that of Lemma A.2.

The asymmetric pattern is the stationary points of dynamics (2.8) given by (A.30).

A.3.4. The linear pattern

We focus on market pattern (L) and the linear pattern.

Definition A.5. Market pattern (L) is market areas given by

M0 = ∪6
i=1 Di( (0, ti] ), (A.31)

M1 = (∪i∈{1,2,6} Di( [ti, 1) )) ∪ (∪i∈{1,6} Si(X)) ∪ S2( (0, T2] ) ∪ S5( [T5, 1) ), (A.32)

M4 = (∪i∈{3,4,5} Di( [ti, 1) )) ∪ (∪i∈{3,4} Si(X)) ∪ S2([T2, 1)) ∪ S5( (0, T5] ), (A.33)

M2 = M3 = M5 = M6 = ∅. (A.34)

The definition of market pattern (L) has two features: (1) the center has a market

area only on the radial roads, (2) suburbs 1 and 4 each have a market area on both

radial roads and the ring road. We can obtain inequality conditions as follows.
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Lemma A.9. Market pattern (L) holds if and only if the following inequalities hold.

−ϕ < σ−1ln (n0/nj) < ϕ− τ, j = 1, 4, (A.35)

−τ < σ−1ln (n1/n4) < τ, (A.36)

τ < σ−1ln (ni/nj) , (i, j) = (1, 2), (1, 6), (4, 3), (4, 5). (A.37)

Proof. The proof is similar to that of Lemma A.5.

In market pattern (L), (i1, i2, i3) = (0, 1, 4) and (j1, j2, j3, j4) = (2, 3, 5, 6). We can

obtain F̂ (n) in this pattern as follows.

Lemma A.10. In market pattern (L), F+(n) and F 0(n) are given by

F+(n) =
1

2σ
(ALz

+
L + bL)− fn+

L , F 0(n) = −fn0
L, (A.38)

where

AL =
1

σ − 1


 6ϕ−1 −ϕ−13⊤

2

−ϕ−132 3ϕ−1I2 + τ−1CL


 , z+

L = (lnn0, lnn1, lnn4)
⊤,

CL = 2

(
1 −1

−1 1

)
, bL =

(
4τϕ−1 + 6

bL1

)
,

bL1 = (−2τϕ−1 + 9,−2τϕ−1 + 9)⊤,

n0
L = (n2, n3, n5, n6)

⊤.

Proof. The proof is similar to that of Lemma A.2.

The linear pattern is the stationary points of dynamics (2.8) given by (A.38).

A.4. Proof of Proposition 2.1

Let Ap be the closure of the set of n satisfying the inequality conditions for market

pattern (P), Aa be the closure for market pattern (A), and Al be the closure for market

pattern (L). Ap,Aa, and Al are given by

Ap = cl {n ∈ R7
+ | (A.16)–(A.19)}, (A.39)

Aa = cl {n ∈ R7
+ | (A.25)–(A.29)}, (A.40)
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Al = cl {n ∈ R7
+ | (A.35)–(A.37)}, (A.41)

where cl {·} is the closure of {·}. Since the closure of (A.19) and the closure of (A.37)

are disjoint sets. Ap ∩ Al = ∅ thus holds. Similarly, Aa ∩ Al = ∅ holds. Therefore,

the solution starting at any point in market pattern (P) (or market pattern (A)) under

dynamics (2.8) does not go to any state in market pattern (L).

A.5. Proofs in Appendix A.2

A.5.1. Proof of Lemma A.1

For any i ∈ P , the following conditions hold in market pattern (D):

ℓ = (D, i, ti) ⇒ V (ℓ, 0) = V (ℓ, i), (A.42)

ℓ = (S, i, Ti), j ≡ i+ 1 mod 6 ⇒ V (ℓ, i) = V (ℓ, j). (A.43)

Using (2.4) and (A.42), we can obtain (A.4). On the other hand, using (2.4) and (A.43),

we can obtain (A.5).

A.5.2. Proof of Lemma A.2

Using market boundaries ti and Ti (i ∈ P), we obtain µ(M0) and µ(Mi) in market

pattern (D):

µ(M0) =
6∑

m=1

tm, (A.44)

µ(Mi) = (1− ti) + Ti + (1− Tj), i ∈ P , j ≡ i− 1 mod 6. (A.45)

Substituting (A.44) (or (A.45)) into (2.6), we obtain Qj (j = 0, 1, . . . , 6) in market

pattern (F). Since πj in (2.3) is determined by Qj, we can obtain njπj in dynamics

(2.8), which is equal to (A.6) (or (A.7)).
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A.5.3. The eigenvalues of the Jacobian matrix of F (n) for nd

To obtain the eigenvalues of the Jacobian matrix ∂F /∂n in market pattern (D), we

rewrite F (n) as a matrix:

F (n) =
1

2σ
(Az + b)− fn, (A.46)

where

A =
1

σ − 1




6a1 −a11⊤
6

−a116 a1I6 + a2B


 , a1 = 1/ϕ, a2 = 1/τ,

B =




2 −1 −1

−1 2 −1

−1 2 −1

−1 2 −1

−1 2 −1

−1 −1 2




,
z = (ln (n0) , ln (n1) , . . . , ln (n6))

⊤,

b = (6, 3, 3, 3, 3, 3, 3)⊤.

k6 is all-k 6-dimensional column vector whereas Ik is k × k identity matrix.

The following Lemma is employed for proofs of Lemmas 2.3 and 2.4.

Lemma A.11. For n = nd, the eigenvalues of Jacobian matrix ∂F /∂n are given

by




λ1 = −f,

λ2 =
1

2ϕσ(σ−1)

(
6
n0

+ 1
n1

)
− f,

λ3 =
1

2n1σ(σ−1)

(
1
ϕ
+ 4

τ

)
− f,

λ4 =
1

2n1σ(σ−1)

(
1
ϕ
+ 3

τ

)
− f (repeated twice),

λ5 =
1

2n1σ(σ−1)

(
1
ϕ
+ 1

τ

)
− f (repeated twice).

(A.47)

Proof. Let J(n) denote Jacobian matrix ∂F /∂n. Using (A.46), we obtain J(nd) as

follows:

J(nd) =
1

2σ

(
A
∂z

∂n
(nd)

)
− fI7 =


 6d1 − f −d21⊤

6

−d116 (d2 − f)I6 + d3B


 , (A.48)
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where d1 = d0/ϕn0, d2 = d0/ϕn1, d3 = d0/τn1, d0 = 1/2σ(σ − 1). Let λ be an eigen-

value of J(nd). Using elementary transformation of matrices, we obtain the determinant

of J − λI7:

det(J(nd)− λI7) = det


 6d1 − f − λ −d21⊤

6

−d116 (d2 − f − λ)I6 + d3B




= det


 −f − λ 0⊤

6

−d116 J1




= (−f − λ) det J1,

where J1 = d1161
⊤
6 + (d2 − f − λ)I6 + d3B.

Next, we calculate det J1 with the property of orthogonal matrices. We consider the

following orthogonal matrix:

Q =




1/
√
6 1/

√
6 −1/

√
12 1/

√
4 1/

√
12 1/

√
4

1/
√
6 −1/

√
6 −1/

√
12 −1/

√
4 2/

√
12 0

1/
√
6 1/

√
6 2/

√
12 0 1/

√
12 −1/

√
4

1/
√
6 −1/

√
6 −1/

√
12 1/

√
4 −1/

√
12 −1/

√
4

1/
√
6 1/

√
6 −1/

√
12 −1/

√
4 −2/

√
12 0

1/
√
6 −1/

√
6 2/

√
12 0 −1/

√
12 1/

√
4




. (A.49)

Since Q is an orthogonal matrix, det(J1) = det(Q⊤J1Q) holds. We carry out or-

thogonal transformation to matrices in J1: Q
⊤161

⊤
6 Q = diag(6, 0, 0, 0, 0, 0), Q⊤I6Q =

I6, Q
⊤BQ = diag(0, 4, 3, 3, 1, 1). Using these matrices, we obtain det(J(nd) − λI7) =

(−f − λ)e1e2e
2
3e

2
4, where e1 = 6d1 + d2 − f − λ, e2 = d2 + 4d3 − f − λ, e3 = d2 + 3d3 −

f − λ, e4 = d2 + d3 − f − λ. Therefore, the eigenvalues of Jacobian matrix J(nd) are

given by (A.47).

A.5.4. Detailed proof of Lemma 2.3

Let J̃ denote ∂F̃ /∂ñ. Using (2.11) and (2.12), we can obtain J̃ :

J̃ =

(
6α1 − f −6α2

−α1 α2 − f

)
, (A.50)
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where α1 = α/n0, α2 = α/n1, α = 1/2ϕσ(σ − 1). We can obtain det J̃ with one of

eigenvalues (A.47):

det J̃ = f(f − 6α1 − α2) = −fλ2.

Since we assume that nd is linearly-stable, λ2 < 0 (i.e., λ2 ̸= 0) holds. Hence, we can

apply the implicit function theorem:

(∂n0/∂ϕ ∂n1/∂ϕ)
⊤ = λ−1

2 γ (6 − 1)⊤ . (A.51)

where γ = (2ϕ2σ(σ − 1))−1ln (n0/n1). Since the sign of ∂n0/∂ϕ and ∂n1/∂ϕ are deter-

mined by that of ln (n0/n1), we can obtain (2.13) and (2.14).

A.5.5. Detailed proof of Lemma 2.4

We focus on the signs of the eigenvalues in (A.47). λ1 is negative because f is

positive. Moreover, if an equilibrium is stable, λ2 is always negative regardless of τ .

It is obvious that λ4, λ5 < λ3. Therefore, if the equilibrium becomes unstable with a

decrease in τ , λ3 becomes positive.

We define ξ = 1√
6
(0, 1,−1, 1,−1, 1,−1)⊤. Since J(nd)ξ = λ3ξ holds, ξ is the eigen-

vector for λ3.

A.6. Proofs in Appendix A.3

A.6.1. Proof of Lemma A.3

V (ℓ, 0) > V (ℓ, i) (∀ℓ ∈ L, ∀i ∈ P) holds if and only if market pattern (F) holds. By

Eq. (2.4), this inequality is equivalent to the following inequalities:





σ−1ln (n0/nj) > t((D, 0, x), 0)− t((D, i, x), j)

σ−1ln (n0/nj) > t((S, 0, x), 0)− t((S, i, x), j)
∀i, j ∈ P , ∀x ∈ X. (A.52)

By Eq. (2.9), one of the inequalities in (A.52) is equivalent to the following inequalities:

σ−1ln (n0/nj) > t((D, 0, x), 0)− t((D, i, x), j) ∀i, j ∈ P , ∀x ∈ X
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⇔ σ−1ln (n0/nj) > ϕ(2x− 1) ∀j ∈ P , ∀x ∈ X

⇔ σ−1ln (n0/nj) ≥ ϕ ∀j ∈ P . (A.53)

On the other hand, by Eq. (2.10), the other inequality is equivalent to the followings:

σ−1ln (n0/nj) > t((S, 0, x), 0)− t((S, i, x), j) ∀i, j ∈ P , ∀x ∈ X

⇔ σ−1ln (n0/nj) > ϕ+ τ

(
1

2
−
∣∣∣∣x−

1

2

∣∣∣∣−min {x, 1− x}
)

∀j ∈ P , ∀x ∈ X

⇔ σ−1ln (n0/nj) > ϕ ∀j ∈ P . (A.54)

By (A.53) and (A.54), (A.52) is equivalent to (A.9).

A.6.2. Proof of Lemma A.5

We rewrite inequalities (A.16)–(A.19) to concisely show our proof:

−ϕ < σ−1ln (n0/n1) < ϕ− τ, (A.55)

−ϕ < σ−1ln (n0/n3) < ϕ− τ, (A.56)

−ϕ < σ−1ln (n0/n5) < ϕ, (A.57)

0 < σ−1ln (n1/n3) < 2τ, (A.58)

0 < σ−1ln (n3/n5) < 2τ, (A.59)

0 < σ−1ln (n1/n5) < 2τ, (A.60)

τ < σ−1ln (n1/n2) , (A.61)

τ < σ−1ln (n3/n4) , (A.62)

τ < σ−1ln (n1/n6) . (A.63)

(⇒) We check that (A.55)–(A.63) hold when market pattern (P) holds. In other

words, using (A.11)–(A.15), we prove that inequalities (A.55)–(A.63) hold. First, since

M0 ∩M1 = {(D, 1, t1), (D, 2, t2), (D, 6, t6)} holds by (A.11) and (A.12), we can obtain

t1, t2 and t6:

t1 =
1

2

[
ln (n0/n1)

ϕ(σ − 1)
+ 1

]
, t2 =

1

2

[
ln (n0/n1)

ϕ(σ − 1)
+ 1 +

τ

ϕ

]
, t6 =

1

2

[
ln (n0/n1)

ϕ(σ − 1)
+ 1 +

τ

ϕ

]
.
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Since 0 < t1, t2, t6 < 1, we obtain (A.55). Similarly, using (A.11), (A.13) and (A.14),

we obtain (A.56) and (A.57).

Since M1 ∩ M3 = {(S, 2, T2)} holds by (A.12) and (A.13), we can obtain T2 =

σ−1(2τ)
−1ln (n1/n3). Since 0 < T2 < 1, we obtain (A.58). Similarly, using (A.12)–

(A.14), we obtain (A.59) and (A.60).

Next, since S2( (0, T2] ) ⊂ M1 holds by (A.12), we obtain the following inequality:

V ((S, 2, x), 1) > V ((S, 2, x), 2) ∀x ∈ (0, T2]. (A.64)

Using (A.64), we can obtain (A.61):

(A.64) ⇔ σ−1lnn2 − τx < σ−1lnn1 − τ(x+ 1) ∀x ∈ (0, T2]

⇒ τ < σ−1ln (n1/n2) .

Similarly, using (A.12)–(A.14), we can obtain (A.62) and (A.63).

(⇐) We check that market pattern (P) holds when (A.55)–(A.63) hold. We first

prove M2 = M4 = M6 = ∅ (i.e., (A.15)). We prove M2 = ∅. The following holds by

Eq. (2.10):

t(ℓ, 1)− t(ℓ, 2) ≤ τ ∀ℓ ∈ ∪m∈P Sm(X). (A.65)

Using (2.4), (A.61) and (A.65), we obtain

V (ℓ, 1)− V (ℓ, 2) ≥ σ−1ln (n1/n2)− τ > τ − τ = 0 ∀ℓ ∈ ∪m∈P Sm(X). (A.66)

For any i ∈ P , the following holds by Eqs. (2.4) and (2.9):

V (ℓ, 2) ∈ {va1, va2} ∀ℓ ∈ Di(X), (A.67)

where va1 = σ−1lnn2−ϕ(1+x)+VD, va2 = σ−1lnn2−ϕ(1−x)− τLi2+VD. By (A.55)

and (A.61), the following holds:

V (ℓ, 0)− va1 = σ−1ln (n0/n2) + ϕ > τ > 0 ∀ℓ ∈ Di(X). (A.68)
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Moreover, since V (ℓ, 1) ≥ σ−1 lnn1−ϕ(1−x)− τLi1+VD (∀ℓ ∈ Di(X)) holds by (2.9),

the following holds by (A.61):

V (ℓ, 1)− va2 ≥ σ−1ln (n1/n2) + τLi2 − τLi1 > 0 ∀ℓ ∈ Di(X). (A.69)

By (A.66)–(A.69), either V (ℓ, 2) < V (ℓ, 0) or V (ℓ, 2) < V (ℓ, 1) holds (∀ℓ ∈ L), which

implies M2 = ∅. Similarly, by (A.55), (A.56), (A.62) and (A.63), M4 = M6 = ∅ holds.

Next, we prove (A.11)–(A.14). Note that M0,M1,M3,M5 are determined by

the relationship only among V (ℓ, 0), V (ℓ, 1), V (ℓ, 3) and V (ℓ, 5) because M2 = M4 =

M6 = ∅.

We focus on the market areas on the ring road (i.e., ℓ ∈ ∪m∈PSm(X)). Using (2.4),

(2.10), and (A.55), we can obtain the following inequality:

V (ℓ, 0) < V (ℓ, 1) ∀ ℓ ∈ S1(X) ∪ S2( (0, 1/2] ) ∪ S5( [1/2, 1) ) ∪ S6(X). (A.70)

Similarly, by (A.56) and (A.57), the followings hold:

V (ℓ, 0) < V (ℓ, 3) ∀ ℓ ∈ S2( [1/2, 1) ) ∪ S3(X) ∪ S4( (0, 1/2] ), (A.71)

V (ℓ, 0) < V (ℓ, 5) ∀ ℓ ∈ S4( [1/2, 1) ) ∪ S5( (0, 1/2] ). (A.72)

By (A.70)–(A.72), M0 ∩ (∪m∈P Sm(X)) = ∅ and ∪m∈P Sm(X) ⊂ M1 ∪M3 ∪M5 hold.

We compare V (ℓ, 1), V (ℓ, 3) and V (ℓ, 5) for ℓ ∈ ∪m∈PSm(X). These functions

are shown in Table A.1. By the results in Table A.1 and (A.58)–(A.60), there exist

T2, T4, T5 ∈ X such that

S1(X) ∪ S2( (0, T2] ) ∪ S5( (T5, 1) ) ∪ S6(X) ⊂ M1, (A.73)

S2( (T2, 1) ) ∪ S3(X) ∪ S4( (0, T4) ) ⊂ M3, (A.74)

S4 × ( (T4, 1) ) ∪ S5( (0, T5) ) ⊂ M5. (A.75)

Next, we focus on the market areas on the radial roads (i.e., ℓ ∈ ∪m∈PDm(X)). By

(A.55)–(A.57) and (A.73)–(A.75), a similar argument to the derivation of (A.67)–(A.69)
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Table A.1: The list of the indirect utilities for ℓ ∈ ∪m∈PSm(X).

V (ℓ, 1) V (ℓ, 3) V (ℓ, 5)

ℓ ∈ S1(X) β1 − τx β2 − τ(2− x) β3 − τ(2 + x)

ℓ ∈ S2(X) β1 − τ(1 + x) β2 − τ(1− x) β3 − τ(3− x)

ℓ ∈ S3(X) β1 − τ(2 + x) β2 − τx β3 − τ(2− x)

ℓ ∈ S4(X) β1 − τ(3− x) β2 − τ(1 + x) β3 − τ(1− x)

ℓ ∈ S5(X) β1 − τ(2− x) β2 − τ(2 + x) β3 − τx

ℓ ∈ S6(X) β1 − τ(1− x) β2 − τ(3− x) β3 − τ(1 + x)

Notes: β1 = σ−1lnn1 + VD; β2 = σ−1lnn3 + VD; β3 = σ−1lnn5 + VD.

shows that there exist ti ∈ X (∀i ∈ P) such that

∪6
m=1 Dm( (0, ti] ) ⊂ M0, (A.76)

D1( [t1, 1) ) ∪ D2( [t2, 1) ) ∪ D6( [t6, 1) ) ⊂ M1, (A.77)

D3( [t3, 1) ) ∪ D4( [t4, 1) ) ⊂ M3, (A.78)

D5( [t5, 1) ) ⊂ M5. (A.79)

(A.73)–(A.79) are equal to (A.11)–(A.14) .
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B. Appendices for Chapter 3

B.1. Details of modeling of the FO model

The fundamental logic and the governing equation of a multi-regional version of the

model by Forslid and Ottaviano (2003) are presented (see Akamatsu et al., 2012). The

budget constraint is given as

pAi C
A
i +

∑

j∈P

∫ nj

0

pji(ℓ)qji(ℓ)dℓ = Yi, (B.1)

where pAi represents the price of the A-sector good in place i, CA
i is the consumption

of A-sector goods in place i, P = {1, ..., K}, nj is the number of varieties produced in

region j, pji(ℓ) denotes the price of a variety ℓ in place i produced in place j, qji(ℓ)

is the consumption of variety ℓ ∈ [0, nj] in place i produced in place j, and Yi is the

income of an individual in place i. The incomes (wages) of skilled workers and unskilled

workers are represented respectively by wi and w
L
i .

An individual at place i maximizes the utility in (3.5) subject to the budget con-

straint in (B.1). This maximization yields the following demand functions

CA
i = (1− µ)

Yi
pAi
, CM

i = µ
Yi
ρi
, qji(ℓ) = µ

ρσ−1
i Yi
pji(ℓ)σ

,

where ρi denotes the price index of the differentiated products in place i, and is given

by

ρi =

(∑

j∈P

∫ nj

0

pji(ℓ)
1−σdℓ

)1/(1−σ)

. (B.2)

Because the total income in place i is wiλi +wL
i , the total demand Qji(ℓ) in place i for

a variety ℓ produced in place j is given as

Qji(ℓ) = µ
ρσ−1
i

pji(ℓ)σ
(wiλi + wL

i ). (B.3)

The A-sector is perfectly competitive and produces homogeneous goods under constant-

returns-to-scale, and requires one unit of unskilled labor per unit of output. The
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A-sector good is traded freely across locations and is chosen as the numéraire. In

equilibrium, pAi = wL
i = 1 for each i.

The M-sector output is produced under increasing-returns-to-scale and Dixit–Stiglitz

monopolistic competition. A firm incurs a fixed input requirement of α units of skilled

labor and a marginal input requirement of β units of unskilled labor. An M-sector firm

located in place i chooses (pij(ℓ) | j ∈ P ) that maximizes its profit

Πi(ℓ) =
∑

j∈P

pij(ℓ)Qij(ℓ)− (αwi + βxi(ℓ)) , (B.4)

where xi(ℓ) denotes the total supply of variety ℓ produced in place i and αwi + βxi(ℓ)

signifies the cost function introduced by Flam and Helpman (1987).

With the use of the iceberg form of the transport cost, we have

xi(ℓ) =
∑

j∈P

τijQij(ℓ). (B.5)

Then the profit function of the M-sector firm in place i, given in (B.4) above, can be

rewritten as

Πi(ℓ) =
∑

j∈P

pij(ℓ)Qij(ℓ)−

(
αwi + β

∑

j∈P

τijQij(ℓ)

)
,

which is maximized by the firm. The first-order condition for this profit maximization

yields the following optimal price

pij(ℓ) =
σβ

σ − 1
τij. (B.6)

This result implies that pij(ℓ), Qij(ℓ), and xi(ℓ) are independent of ℓ. Therefore, the

argument ℓ is suppressed subsequently.

In the short run, skilled workers are immobile between places, i.e., their spatial

distribution λ = (λi | i ∈ P ) is assumed to be given. The market equilibrium conditions

consist of three conditions: the M-sector goods market clearing condition, the zero-

profit condition attributable to the free entry and exit of firms, and the skilled labor
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market clearing condition. The first condition is written as (B.5) above. The second

one requires that the operating profit of a firm, given in (B.4), be absorbed entirely by

the wage bill of its skilled workers. This gives

wi =
1

α

{∑

j∈P

pijQij − βxi

}
. (B.7)

The third condition is expressed as αni = λi and the price index ρi in (B.2) can be

rewritten using (B.6) as

ρi =
σβ

σ − 1

(
1

α

∑

j∈P

λjdji

)1/(1−σ)

. (B.8)

The market equilibrium wage wi in (B.7) can be represented as

wi =
µ

σ

∑

j∈P

dij
∆j

(wjλj + 1) (B.9)

using dji = τ 1−σ
ji = ϕm(i,j), (B.3), (B.5), (B.6), and (B.8). Here, ∆j =

∑
k∈P dkjλk.

Equation (B.9) can be rewritten, using w = (w1, . . . , wK), as w = µ
σ
D∆−1(Λw + 1),

which is solved for w as

w =
µ

σ

(
I − µ

σ
D∆−1Λ

)−1

D∆−11 (B.10)

with I being the identity matrix, 1 = (1, . . . , 1)⊤, and

D = (dij), ∆ = diag(∆1, . . . ,∆K), Λ = diag(λ1, . . . , λK). (B.11)

B.2. Classifications of stationary points

The mono-center is classified into corner solutions, for which some places have zero

population. We can appropriately permute the components of λ, without loss of gen-

erality, to arrive at

λ̂ = (λ+,0K−m),
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where all components of λ+ = (λ1, . . . , λm) are positive and 0K−m is the (K − m)-

dimensional zero vector. 0K−m is present for corner solutions (K > m). For corner

solutions, the governing equation (3.4) and associated Jacobian matrix can be rear-

ranged, respectively, as (Ikeda et al., 2018b)

F̂ =



F+(λ̂, ϕ)

F0(λ̂, ϕ)


 , Ĵ =

∂F̂

∂λ̂
=



J+ J+0

O J0


 ,

where

J+ = diag(λ1, λ2, . . . , λm)×
(
∂(vi − v̄)

∂λj
| i, j = 1, . . . ,m

)
,

J+0 = diag(λ1, λ2, . . . , λm)×
(
∂(vi − v̄)

∂λj
| i = 1, . . . ,m; j = m+ 1, . . . , K

)
,

J0 = diag(vm+1 − v̄, . . . , vK − v̄),

and diag(· · · ) denotes a diagonal matrix with the entries in parentheses.

The stability condition of a stable corner solution is decomposed into two conditions:





Stability condition for λ+ : all eigenvalues of J+ are negative.

Sustainability condition: all diagonal entries of J0 are negative.

Both of these two conditions are satisfied if and only if all eigenvalues of Ĵ are negative.50

Critical points are those which have one or more zero eigenvalue(s) of the Jacobian

matrix Ĵ . Critical points are classified into a bifurcation point with singular J+ or J0,

and a limit point of ϕ with singular J+. We classify bifurcation points into a break

bifurcation point with singular J+ and a corner bifurcation point with singular J0. The

corner bifurcation from the mono-center is theoretically investigated in this chapter.

50Since the solution space of the governing equation is the (K − 1)-dimensional simplex with a

constant total population, the eigenvector η∗ = (1, . . . , 1) and the associated eigenvalue e∗ must be

excluded in the investigation of stability and sustainability of the solutions.
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B.3. Theoretical details

B.3.1. Proof of Lemma 3.1

Since T (g)λ = λ for a subgroup G′ of G, we have T (g)v(λ, ϕ) = v(λ, ϕ) for g ∈ G′

by (3.10). This means that vi in the same orbit is permutable. This suffices for the

proof.

B.3.2. Proof of Lemma 3.2

We can rearrange the components of λPl
to arrive at λ̂ = ( 1

m
1m,0K−m), where

1m is the m-dimensional all-one vector, and 0K−m is the (K − m)-dimensional zero

vector. The m (= Nl) places belonging to λ+ = 1
m
1m are permuted each other by the

geometrical transformation by an element of a subgroup of G and λ+ is invariant with

respect to the permutation. By equivariance (3.10), we have v1 = · · · = vm, as well as

λ1 = · · · = λm = 1/m. Thus we have vi = v̄ (i ∈ Pl).

B.3.3. Proof of Proposition 3.1

By Lemma 3.2, we have vi − v̄ = 0 (i = 1, . . . ,m). Thus, F+(
1
m
1m,0K−m, ϕ) = 0m

is satisfied. For K −m places with no population, we have λj = 0, thereby satisfying

F0(
1
m
1m,0K−m, ϕ) = 0K−m. This shows that (λ+,λ0, ϕ) = ( 1

m
1m,0K−m, ϕ) serves as a

solution to (3.4) for any ϕ.

B.3.4. Proof of Proposition 3.2

By choosing G = E, which leaves each place unchanged, each place forms an orbit.

Therefore, the full agglomeration at any place i is an invariant pattern by Proposi-

tion 3.1.

B.3.5. Proof of Proposition 3.3

The bifurcating conditions of the Jacobian matrix (3.13) are given by as follows:

v1 = 0, (B.12)
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vαi − vc = 0, i = 1, . . . , n1, (B.13)

vβi − vc = 0, i = 1, . . . , n2. (B.14)

However, no bifurcation solution emerges in the space
∑K

i=1 λi = 1 because the direction

of this solution is (1, 0, . . . , 0). Therefore, only (B.13) and (B.14) are the bifurcating

conditions from the mono-center.

B.3.6. Proof of Lemma 3.3

By the product form of the replicator dynamics in (3.3), F̃i(x, ψ) takes the product

form: F̃i(x, ψ) = xiGi(x, ψ) (i ∈ Pl). Since the group D6 is generated by the elements r

and s, it suffices to consider the symmetry condition T (g)F̃ (x) = F̃ (T (g)x) for g = r, s.

This condition for g = r gives the form (3.19) for some function R(x, ψ) and that for

g = s gives the symmetry condition (3.20).

B.3.7. Proof of proposition 3.4

Proof of Proposition 3.4: To begin with, we consider x = w(1, 1, 1, 1, 1, 1). Then

(3.19) reduced to a single condition wR(w,w,w,w,w,w, ψ) = 0. Since w = 0 corre-

sponds to the pre-bifurcation solution, we focus on a relation R(w,w,w,w,w,w, ψ) = 0.

Because this relation in general has a solution of the form ψ = aw+(higher order terms)

for some real constant a in the neighborhood of the bifurcation point, the bifurcating

solution of the form x = w(1, 1, 1, 1, 1, 1) exists. The other five cases can be treated

similarly.

B.3.8. The detail of the bifurcation equation for the orbit of Type βi

Lemma B.1. For the orbit of Type βi Bifurcation equation for Type βi orbit is

derived as follow: some i, which comprises twelve points, the bifurcation equation be-

comes:

F̃1(x, ψ) = x1R(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, ψ) = 0,

122



F̃2(x, ψ) = x2R(x2, x1, x12, x11, x10, x9, x8, x7, x6, x5, x4, x3, ψ) = 0,

F̃3(x, ψ) = x3R(x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x1, x2, ψ) = 0,

F̃4(x, ψ) = x4R(x4, x3, x2, x1, x12, x11, x10, x9, x8, x7, x6, x5, ψ) = 0,

F̃5(x, ψ) = x5R(x5, x6, x7, x8, x9, x10, x11, x12, x1, x2, x3, x4, ψ) = 0,

F̃6(x, ψ) = x6R(x6, x5, x4, x3, x2, x1, x12, x11, x10, x9, x8, x7, ψ) = 0,

F̃7(x, ψ) = x7R(x7, x8, x9, x10, x11, x12, x1, x2, x3, x4, x5, x6, ψ) = 0,

F̃8(x, ψ) = x8R(x8, x7, x6, x5, x4, x3, x2, x1, x12, x11, x10, x9, ψ) = 0,

F̃9(x, ψ) = x9R(x9, x10, x11, x12, x1, x2, x3, x4, x5, x6, x7, x8, ψ) = 0,

F̃10(x, ψ) = x10R(x10, x9, x8, x7, x6, x5, x4, x3, x2, x1, x12, x11, ψ) = 0,

F̃11(x, ψ) = x11R(x11, x12, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, ψ) = 0,

F̃12(x, ψ) = x12R(x12, x11, x10, x9, x8, x7, x6, x5, x4, x3, x2, x1, ψ) = 0,

where x = (x1, . . . , x12) = {λi | i ∈ βi} (Fig. 3.7(b)) and ψ = ϕ− ϕc
l .

Proof. By the product form of the replicator dynamics in (3.3), F̃i(x, ψ) takes the

product form: F̃i(x, ψ) = xiRi(x, ψ) (i ∈ Pβi). Since the group D6 is generated by the

elements r and s, it suffice to consider the symmetry condition T (g)F̃ (x) = F̃ (T (g)x)

for g = r, s. This condition for g = r gives the form for F̃i (i = 1, 3, . . . , 11) for some

function R(x, ψ) and that for g = s gives the form for F̃i (i = 2, 4, . . . , 12).

B.4. Robustness check with 91 regions case

Conducting bifurcation analysis for stable agglomeration patterns for K = 91, we

examine whether or not the number of regions qualitatively affects the change of agglom-

eration pattern with a change in the transportation cost. Fig. B.1 shows a transition

from the agglomeration pattern of racetrack cities by the comparative static analysis

with a change in ϕ. The bifurcating solution for the racetrack cities branching from

I ′β reached the stable mono-center. At point C, there emerges a stable core-satellite
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(a) The bifurcation diagram for twin cities (Twin-III for α1)

Figure B.1: Bifurcation solutions from stable invariant patterns for 91 regions ((σ, µ) =

6.0, 0.4). — : stable equilibria; - - - : unstable equilibria; ⃝ : bifurcation point; •: the size of

population at the place.

pattern. Because the direction of the local unstable manifold at I ′β is the mono-center,

the racetrack cities dynamically changes to the stable mono-center near ϕ = 0.565.

Hence, the result of the comparative static analysis is qualitatively the same as the

results shown in Section 3.4.3.
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C. Appendices for Chapter 4

C.1. Theoretical details of Section 4.3

We show theoretical details given market area {Ij}j∈J in this Appendix. Using the

market area, we focus on equilibrium such that consumers in residential zone i (∈ I)

visit marketplace j(i) (∈ J ) for shopping.

C.1.1. First order conditions for the expenditure minimization problem

We solve the following expenditure minimization problem:

min
{qi(k)}k

∫ mj(i)

0

pMj(i)(k)qi(k)dk, s.t. Mi =

∫ mj(i)

0

u(qi(k))dk. (C.1)

The first order condition for the optimization of problem (C.1) is given by

pMj(i)(k) = ρ1u
′(qi(k)) ∀k, (C.2)

Mi =

∫ mj(i)

0

u(qi(k))dk, (C.3)

where ρ1 is the Lagrange multiplier. Solving this problem with the above first order

condition, we can obtain conditional demand (4.7), as shown in Section 4.2:

q∗i (k) = q̃∗i ({pMj(i)(k)}k,mj(i),Mi).

Let eMi be expenditure function regarding the above conditional demands. This is given

by

eMi ({pMj(i)(k)}k,mj(i),Mi) =

∫ mj(i)

0

pMj(i)(k)q
∗
i (k)dk.

Next, we solve the following expenditure minimization problem:

min
Mi,hi,ai

pHi hi + eMi ({pMj(i)(k)}k,mj(i),Mi) + ai, s.t. Ui = U. (C.4)

The first order condition for the above optimization problem is given by

pHi = ρ2
∂ Ui

∂ hi
, (C.5)
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∂ eMi
∂ Mi

= ρ2
∂ Ui

∂ Mi

, (C.6)

1 = ρ2
∂ Ui

∂ ai
, (C.7)

Ui = U, (C.8)

where ρ2 is the Lagrange multiplier. Solving this problem with the above first order

condition, we can obtain the Hicksian demand functions:

M∗
i = M̃∗

i ({pMj(i)(k)}k,mj(i), p
H
i , U),

h∗i = h̃∗i ({pMj(i)(k)}k,mj(i), p
H
i , U),

a∗i = ã∗i ({pMj(i)(k)}k,mj(i), p
H
i , U).

Substituting M∗
i into conditional demand q∗i (k) yields

q∗i (k) = q̃∗i

(
{pMj(i)(k)}k,mj(i), M̃

∗
i ({pMj(i)(k)}k,mj(i), p

H
i , U)

)
.

Using the Hicksian demands, we obtain expenditure function for consumers residing in

zone i:

ei = pHi h
∗
i + eMi ({pMj(i)(k)}k,mj(i),M

∗
i ) + a∗i . (C.9)

C.1.2. Proof of Lemma 4.1

We focus on a marginal change in the Allais surplus at (n(s), U∗) with respect to

s. We have

dAS

ds
=
∑

i∈I

ni
d

ds
(y − ti +Π+ si(s)− ei) + (y − ti +Π+ si(s)− ei)

dni

ds
. (C.10)

Since y − ti + Π + si(s) − ei = E and
∑

i∈I dni/ds = 0 hold by conditions (4.23) and

(4.24), the second term is zero. Furthermore, y and ti are not functions of s. Hence,

we have

dAS

ds
=
∑

i∈I

ni
d

ds
(si(s) + Π− ei) . (C.11)
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We focus on the derivative of the expenditure function. Under the price equilibrium

of varieties, the prices of the varieties supplied in a marketplace are the same as shown

in (4.14). Hence, the derivative of expenditure function (C.9) is given by

dei
ds

= h∗i
dpHi
ds

+ pHi
dh∗i
ds

+
∂eMi
∂pMj(i)

dpMj(i)
ds

+
∂eMi
∂mj(i)

dmj(i)

ds
+
∂eMi
∂Mi

dM∗
i

ds
+

da∗i
ds

. (C.12)

Substituting the Hicksian demands into the utility function yields Ui(M
∗
i , h

∗
i , a

∗
i ) =

U∗. The derivative of the utility is given by

dUi

ds
=

∂Ui

∂Mi

dM∗
i

ds
+
∂Ui

∂hi

dh∗i
ds

+
∂Ui

∂ai

da∗i
ds

= 0. (C.13)

Using first order conditions (C.5)–(C.7) for expenditure minimization problem (C.4)

yields

∂eMi
∂Mi

=

(
∂Ui

∂Mi

)(
∂Ui

∂ai

)−1

, (C.14)

pHi =

(
∂Ui

∂hi

)(
∂Ui

∂ai

)−1

. (C.15)

Multiplying both sides of Eq. (C.13) by (∂Ui/∂ai)
−1 and substituting (C.14) and (C.15)

into the equation yields

∂eMi
∂Mi

dM∗
i

ds
+ pHi

dh∗i
ds

+
da∗i
ds

= 0. (C.16)

In the equilibrium, using first order conditions (C.2) and (C.3) for expenditure

minimization problem (C.1) yields

∂eMi
∂pMj(i)

= mj(i)q
∗
i , (C.17)

∂eMi
∂mj(i)

= −
pMj(i)u(q

∗
i )

u′(q∗i )
+ pMj(i)q

∗
i . (C.18)

Substituting Eqs. (C.16)–(C.18) into (C.12) yields

dei
ds

= h∗i
dpHi
ds

+mj(i)q
∗
i

dpMj(i)
ds

+

(
−
pMj(i)u(q

∗
i )

u′(q∗i )
+ pMj(i)q

∗
i

)
dmj(i)

ds
. (C.19)
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Substituting the derivative of total profit (4.22) and Eq. (C.19) into (C.11) and

using Eq. (4.5) yields

dAS

ds
=
∑

i∈I

[
(H∗

i − nih
∗
i )
dpHi
ds

+

(
pHi − ∂g−1

∂Hi

)
dH∗

i

ds

]

+
∑

j∈J




Qjmj −

∑

a∈Ij

namjq
∗
a


 dpMj

ds
+ (pMj − c)mj

dQj

ds

+


(pMj − c)Qj −mj +

∑

a∈Ij

na

(
pMj(a)u(q

∗
a)

u′(q∗a)
− pMj q

∗
a

)
 dmj

ds




+

(∑

i∈I

ni
dsi
ds

)
+

(∑

j∈J

dsMj
ds

)
. (C.20)

Using equilibrium conditions (4.11) and (4.19), and Eq. (4.5) yields

∑

i∈I

(H∗
i − nih

∗
i )
dpHi
ds

= 0, (C.21)

∑

j∈J


Qjmj −

∑

a∈Ij

namjq
∗
a


 dpMj

ds
= 0, (C.22)

∑

i∈I

(
ni
dsi
ds

+ si
dni

ds

)
+
∑

j∈J

dsMj
ds

= 0. (C.23)

Substituting Eqs. (C.21)–(C.23) into Eq. (C.20) and using equilibrium condition (4.11)

yields Eq. (4.27).

C.2. Theoretical details of Section 4.4

C.2.1. Endogenous variables in the equilibrium with the specification in

Section 4.4.1

Following the discussion in Section 4.2, we obtain endogenous variables in the equi-

librium and the Allais surplus with the specification in Section 4.4.1.

Solving (C.1) with Mi =
∫ mj(i)

0
qj(i)(k)

(σ−1)/σdk, we obtain the conditional demand:

q∗j(i)(k) = pMj(i)(k)
−σP σ

j(i)M
σ/(σ−1)
i , (C.24)
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where Pj =
(∫ mj

0
pMj (k)1−σdk

)1/(1−σ)
is the price index of differentiated goods supplied

in marketplace j. We can obtain the expenditure function as a function of the price

index and the composite index: eMi =
∫ mj(i)

0
pMj(i)(k)qj(i)(k)dk = Pj(i)M

σ/(σ−1)
j(i) . Solving

(C.4) gives us the Hicksian demands:

M∗
i =

(
µP−1

j(i)

)(σ−1)/σ

, (C.25)

h∗i = (1− µ)/pHi , (C.26)

a∗i = U + µ ln
(
Pj(i)

)
+ (1− µ) ln(pHi )− µ ln(µ)− (1− µ) ln(1− µ). (C.27)

Substituting Eq. (C.25) into Eq. (C.24) yields q∗i (k) = µpMj(i)(k)
−σP σ−1

j(i) . The expendi-

ture function is given by

ei = U + µ ln
(
Pj(i)

)
+ (1− µ) ln(pHi )− µ ln(µ)− (1− µ) ln(1− µ) + 1. (C.28)

We focus on retail stores and developers. Using q∗i (k) gives us the total demand:

Qj(k) = µpMj (k)−σP σ−1
j

∑

i∈Ij

ni (j ∈ J ).

The price elasticity of the total demand is ηMj (k) = −σ (j ∈ J ). Using Eq. (4.12)

gives us the equilibrium price: pMj (k) = cσ/(σ − 1) (∀j, k). We express pMj (k) as pM .

Applying Eq. (4.17) to g(b) = θbβ gives us the profit maximizing supply as a function

of the price: H∗
i = θ1/(1−β)(βpHi )

β/(1−β) (∀i ∈ I). Using this function gives us the bid

rent in the residential zones:

RH
i = θ1/(1−β)(ββ/(1−β) − β1/(1−β))(pHi )

1/(1−β).

We focus on the short-run equilibrium. Under the equilibrium price for the retail

stores, we have

q∗i (k) = µ(pMmj(i))
−1, (C.29)

Qj(k) = µ(pMmj)
−1
∑

i∈Ij

ni. (C.30)
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Substituting Qj(k) into equilibrium condition (4.20) yields the equilibrium mass:

mj =


µ
σ

∑

a∈Ij

na + sMj (s)




1/2

∀j ∈ J . (C.31)

The market clearing condition regarding housing (4.19) gives us the equilibrium price:

pHi = (θββ)−1 ((1− µ)ni)
1−β (i ∈ I).

Next, we will obtain the Allais surplus. Substituting pHi and H∗
i into the first term

of (4.22) yields

N
−1∑

i∈I

(pHi H
∗
i − g−1(H∗

i )) = N
−1
(1− β)(1− µ)

∑

i∈I

ni = (1− β)(1− µ). (C.32)

Substituting pM , Qj(k), and mj into the second term of (4.22) yields

N
−1∑

j∈J

(
(pMj − c)Qjmj −

m2
j

2
+ sMj (s)

)
=

µ

2σ
+N

−1∑

j∈J

sMj (s). (C.33)

Substituting (C.32) and (C.33) into (4.22) yields

Π̃(n, s, U) = (1− β)(1− µ) + µ/(2σ) +N
−1∑

j∈J

sMj (s). (C.34)

In addition, we can obtain expenditure function (C.28) with equilibrium mass mj, price

of varieties pM , and housing price pHi :

ẽi(n, s, U) = U − ζ1 ln


µ
σ

∑

a∈Ij(i)

na + sMj(i)(s)


+ ζ2 lnni +Ψ, (C.35)

where ζ1, ζ2, and Ψ are constant values:

ζ1 =
µ

2(σ − 1)
, ζ2 = (1− µ)(1− β),

Ψ = µ ln pM − µ lnµ− β(1− µ) ln(1− µ)− (1− µ)(ln θ + β ln β) + 1.

Substituting Eqs. (C.34) and (C.35) into Eq. (4.25) yields the Allais surplus.
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C.2.2. Lemmas proving Lemmas 4.3 and 4.4

We introduce two lemmas employed to prove Lemmas 4.3 and 4.4 in Section 4.4.

These lemmas are related to algebraic properties of the model.

We can express Allais surplus (4.25) with matrices:

AS = n⊤Y , (C.36)

where Y = s + y + Π̃ · 1I − ẽ, s = (si(s))i∈I ,y = (y − ti)i∈I , ẽ = (ẽi(n, U, s))i∈I , and

1I is the I dimensional vector with each component equaling one. ẽ has a symmetric

property expressed by the following lemma.

Lemma C.1. For s = 0, ∂ẽ/∂n is a symmetric matrix and the following holds:

∂ẽ

∂n
= −ζ1E1 + ζ2E2, (C.37)

(
∂ẽ

∂n

)⊤

n = −(ζ1 − ζ2)1I , (C.38)

where

E1 =




(
∑

a∈I1 na)
−11I11

⊤
I1

(
∑

a∈I2 na)
−11I21

⊤
I2

. . .

(
∑

a∈IJ na)
−11IJ1

⊤
IJ



,

E2 = diag(n−1
1 , n−1

2 , . . . , n−1
I ).

Proof. See Supplement C.3.1.

The following lemma has an important role in proving Lemma 4.4.

Lemma C.2. For n ≥ 3 and a1, a2, . . . , an, b1, b2, . . . , bn ∈ R, the following holds:

(
n∏

i=1

ai

) (
n∑

i=1

bi

)2

−

(
n∑

i=1

ai

)
n∑

i=1


b2i

∏

j∈N\{i}

aj
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= −
∑

i,j∈N ,i̸=j


1

2
(aibj − ajbi)

2
∏

k∈N\{i,j}

ak


 , (C.39)

where N = {1, 2, . . . , n}.

Proof. See Supplement C.3.2.

C.2.3. Proofs of main lemmas shown in Section 4.4

Proof of Lemma 4.2

We prove PDP = 0. Using Eq. (4.11) yields

∑

a∈Ij

∂Qj

∂na

dna

ds
=
∑

a∈Ij


q∗a +

∑

b∈Ij

nb
∂q∗b
∂na


 dna

ds
. (C.40)

Using Eqs. (C.24), (C.25), and (C.31) yields the derivative of q∗b and mj for b ∈ Ij and

s = 0:

∂q∗b
∂na

= − µ

pMm2
j

∂mj

∂na

,
∂mj

∂na

=
µ

2σmj

.

Using these equations yields (∂q∗b/∂na) = −µ2(2σpMm3
j)

−1. Substituting (C.29) and

this equation into (C.40) yields

∑

a∈Ij

∂Qj

∂na

dna

ds
=

µ

2pMmj

∑

a∈Ij

dna

ds
. (C.41)

Because we have
∑

i∈I(dni/ds) = 0 with Eq. (4.24), using this equation yields PDP = 0.

The proof of VDP = 0 is similar to the above proof:

∑

j∈J


∑

a∈Ij

(
nap

M
j(a)u(qa)

u′(qa)

)
− cQj −mj


∑

a∈Ij

∂mj

∂na

dna

ds
=

µ

2σ

(
σ2

σ − 1
− cσ

pM
− 1

)∑

i∈I

dni

ds
= 0. (C.42)

Proof of Lemma 4.3

Let L denote the Lagrangian for maximization problem (4.38). L is given by

L = AS −
∑

i∈I

νiγi − λΓ, (C.43)

132



where νi and λ are the Lagrange multipliers. The KKT conditions for this problem are

as follows:

∂AS

∂n
=
∑

i∈I

νi
∂γi(n)

∂n
+ λ

∂Γ(n)

∂n
, (C.44)

γi(n) ≤ 0, Γ(n) = 0, (C.45)

νi ≥ 0, νiγi = 0. (C.46)

Using (C.36) gives us the derivative of the Allais surplus:

∂AS

∂n
= Y + 1I

(
∂Π

∂n

)⊤

n−
(
∂ẽ

∂n

)⊤

n. (C.47)

We focus on the first term of (C.47). Since consumers maximize their utility for s = 0,

we have Vi = U and ẽi(n
∗, U, 0) = y − ti + Π̃(n∗, U, 0) (∀i ∈ I). Hence, Y = 0 holds

for s = 0. The second term is zero because (∂Π/∂n) = 0 holds for s = 0 by Eq. (C.34).

In addition, we have (∂ẽ/∂n)⊤n = −(ζ1 − ζ2)1I by Lemma C.1. Hence we have

∂AS

∂n
= (ζ1 − ζ2)1I . (C.48)

Substituting (C.48) into (C.44) gives us ν+(ζ1− ζ2+λ)1I = 0I , where ν = (νi)i∈I .

Since we focus on an inner equilibrium, γi < 0 and Γ = 0 hold. Furthermore, if we set

ν = 0 and λ = −ζ1 + ζ2, then the other conditions are satisfied.

Proof of Lemma 4.4

The Hessian of Lagrangian (C.43) is given by

∂2L

∂n2
=
∂2 (n⊤Y )

∂n2
=
∂Y

∂n
+

∂

∂n

((
∂Y

∂n

)⊤

n

)
. (C.49)

We have (∂Y /∂n) = −(∂ẽ/∂n). Hence, Lemma C.1 yields

∂2L

∂n2
=
∂Y

∂n
= ζ1E1 − ζ2E2. (C.50)

We focus on I ≥ 3. We define the following:

M+ ≡

{
z ∈ RI

∣∣∣∣∣

(
∂γi
∂n

)⊤

z = 0

}
=

{
z ∈ RI

∣∣∣∣∣
∑

i∈I

zi = 0

}
.

133



Since we have ζ1 < ζ2 by assumption of Lemma 4.4, this inequality and E1 and E2,

shown in Lemma C.1, gives us the following for any z ∈ M+\{0}:

z⊤∂Y

∂n
z = ζ1z

⊤E1z − ζ2z
⊤E2z < ζ1

∑

j∈J

Zj, (C.51)

where Zj = (
∑

a∈Ij na)
−1(
∑

a∈Ij za)
2 −

∑
a∈Ij(z

2
a/na). Because Zj ≤ 0 (∀j ∈ J ) holds

by Lemma C.2, we obtain z⊤(∂Y /∂n) z < 0.

A similar argument to the above discussion shows that z⊤(∂Y /∂n) z < 0 holds for

I = 2.

Proof of Lemma 4.5

Using (C.31) gives us the mass of stores for the given policy function:

mj =


µ
σ


∑

a∈Ij

na


+ δjs




1/2

∀j ∈ J , (C.52)

where δ1 = 1 and δj = 0 (j ̸= 1).

Lemma 4.2 yields dAS/ds = PDS + VDS. Furthermore, the following hold:

∂pM1
∂s

= · · · = ∂pMJ
∂s

= 0,
∂Q2

∂s
= · · · = ∂QJ

∂s
= 0,

∂m2

∂s
= · · · = ∂mJ

∂s
= 0.

Hence, we have

PDS = (pM1 − c)m1
∂Q1

∂s
, VDS =

(∑

a∈I1

(
nap

M
j(a)u(qa)

u′(qa)

)
− cQ1 −m1

)
∂m1

∂s
.

Using Eqs. (C.30) and (C.52) yields for s = 0: PDS = −1/2 < 0, while using Eqs.

(C.24) and (C.52) yields for s = 0: VDS = σ/(2(σ − 1)) > 0. Substituting PDS and

VDS into dAS/ds yields dAS/ds = (2(σ − 1))−1 > 0.

C.3. Proofs of Lemmas shown in Appendix C.2

C.3.1. Proof of Lemma C.1

We express ẽ as a matrix: ẽ = −ζ1(Lo ◦G1)(n) + ζ2 Lo(n) + (U −Ψ)1I , where

Lo(z1, z2, . . . , zI) = (ln z1, ln z2, . . . , ln zI)
⊤,
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G1(n) =

((
µ

σ

∑

a∈I1

na + sM1 (s)

)
1⊤
I1
, . . . ,

(
µ

σ

∑

a∈IJ

na + sMJ (s)

)
1⊤
IJ

)⊤

.

∂ẽ/∂n is given by

∂ẽ

∂n
= −ζ1

∂((Lo ◦G1)(n))

∂n
+ ζ2

∂Lo(n)

∂n
. (C.53)

Using the chain rule, we obtain the Jacobian matrix of (Lo ◦ G1)(n) and Lo(n) for

s = 0:

∂((Lo ◦G1)(n))

∂n
=




(
∑

a∈I1 na)
−11I11

⊤
I1

(
∑

a∈I2 na)
−11I21

⊤
I2

. . .

(
∑

a∈IJ na)
−11IJ1

⊤
IJ



, (C.54)

∂Lo(n)

∂n
= diag(n−1

1 , n−1
2 , . . . , n−1

I ). (C.55)

Since the sum of symmetric matrices is also a symmetric matrix, ∂V /∂n is a symmetric

matrix. Furthermore, substituting (C.54) and (C.55) into (C.53), we obtain (C.37) and

(C.38).

C.3.2. Proof of Lemma C.2

Using the mathematical induction, we prove the lemma.

We obtain (C.39) for n = 3 by a simple deformation:

a1a2a3(b1 + b2 + b3)
2 − (a1 + a2 + a3)(a2a3b

2
1 + a3a1b

2
2 + a1a2b

2
3)

= −a3(a2b1 − a1b2)
2 − a2(a3b1 − a1b3)

2 − a1(a2b3 − a3b2)
2.

Next, we assume that Eq. (C.39) holds for n. We verify whether Eq. (C.39) holds

for n+ 1. That is, we will show the following holds:
(

n+1∏

i=1

ai

) (
n+1∑

i=1

bi

)2

−

(
n+1∑

i=1

ai

)
n+1∑

i=1


b2i

∏

j∈N̂\{i}

aj
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= −
∑

i,j∈N̂ ,i̸=j


1

2
(aibj − ajbi)

2
∏

k∈N̂\{i,j}

ak


 , (C.56)

where N̂ = {1, 2, . . . , n+ 1}.

We define Bn =
∑n

i=1 bi. We focus on the LHS of (C.56):

(LHS) =

(
n+1∏

i=1

ai

)
(
B2

n + 2Bnbn+1 + b2n+1

)

−

(
n+1∑

i=1

ai

)
n∑

i=1


b2i

∏

j∈N̂\{i}

aj + b2n+1

∏

j∈N̂\{n+1}

aj




= X + Y, (C.57)

where

X = B2
n

(
n+1∏

i=1

ai

)
−

(
n∑

i=1

ai

)


n∑

i=1

b2i
∏

j∈N̂\{i}

aj


 ,

Y = −an+1




n∑

i=1

b2i
∏

j∈N̂\{i}

aj


+ (2Bnbn+1 + b2n+1)

(
n+1∏

i=1

ai

)

− b2n+1

(
n+1∑

i=1

ai

)
 ∏

j∈N̂\{n+1}

aj


 .

Using the assumption, we deform X as follows:

X = −
∑

i,j∈N ,i̸=j

1

2
(aibj − ajbi)

2
∏

k∈N̂\{i,j}

ak.

We deform Y as follows:

Y = −an+1

n∑

i=1


b2i

∏

j∈N̂\{i}

aj


+ 2Bnbn+1

n+1∏

i=1

ai + Y1, (C.58)

where

Y1 = b2n+1




n+1∏

i=1

ai −

(
n+1∑

i=1

ai

) ∏

j∈N̂\{n+1}

aj


 . (C.59)
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We deform Y1 as follows:

Y1 = −b2n+1

(
n∑

i=1

ai

) ∏

i∈N̂\{n+1}

ai. (C.60)

Using (C.60), we deform Y as follows:

Y = −
n∑

i=1

1

2
(an+1bi − aibn+1)

2
∏

j∈N̂\{i,n+1}

aj

−
n∑

i=1

1

2
(aibn+1 − an+1bi)

2
∏

j∈N̂\{i,n+1}

aj. (C.61)

Substituting X and Y into (C.57) implies that LHS of (C.56) equals the RHS of (C.56).

C.4. The case of continuous space

In this section, we obtain the welfare impact of a place-based policy in a continuous

space. We show that the difference between a discrete space and the continuous space is

the marginal welfare change generated by a change in a market boundary. Assumptions

in the continuous space model other than geographical space of the city are the same

as the discrete space model. We assume that functions are so continuous that we can

obtain derivatives.

C.4.1. Model setting

The geographical space of the continuous space model is given by [0, I] (I > 0).

Consumers can reside in (0, I) and retail stores can operate at 0 or I (0, I ∈ [0, I]).

The utility of consumers who reside in x (∈ (0, I)) and visit marketplace j (∈ {0, I})

for shopping is given by U(Mj(x), h(x), a(x)), where Mj(x) =
∫ mj

0
u(q(x, k))dk. The

budget constraint is given by:
∫ mj

0

pMj (k)q(x, k)dk + pH(x)h(x) + a(x) = yj(x), (C.62)

where yj(x) = ỹj(x, s) ≡ y − tj(x) + Π + sj(x, s). The profit of retail store supplying

the kth variety in marketplace j is given by

πM
j (k) = (pMj (k)− c)Qj(k)− k +

sMj (s)

mj

− rj(k) ∀k ∈ [0,mj], (C.63)
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where Qj(k) =
∫ I

0
q(x, k)dx. The developers’ net profit at x (∈ [0, x]) is given by

πH(x) = pH(x)H(x)− g−1(H(x))−RH(x). (C.64)

An equal division of the profits and rents is given by

Π = N
−1

(∫ I

0

πH(x) +RH(x) dx+
∑

j∈J

(∫ mj

0

πM
j (k)dk +

∫ mj

0

rj(k)dk

))
,

where J = {0, I}.

Equilibrium conditions are given by

H(x) = n(x, s)h(x) ∀x ∈ (0, I), (C.65)

(pMj − c)Qj −mj +
sMj (s)

mj

= 0 ∀j ∈ J ≡ {0, I}, (C.66)

y(x, s) = y − tj(x)(x) + Π + sj(x)(x, s) ∀x ∈ [0, I], (C.67)

where j(x) (∈ J ) is the marketplace that consumers residing in x (∈ (0, I)) visit for

shopping. Let e(x, j, s) denote the expenditure function of consumers who reside in x

and visit marketplace j. The equilibrium conditions for the Allais surplus are given by

y − tj(x) +Π+ sj(x)(x, s)− e(x, j, s) = E ∃E ∈ R ∀x ∈ (0, I), (C.68)
∫ I

0

n(x, s) dx = N. (C.69)

C.4.2. Welfare impact of a place-based policy for the continuous space

model

We can obtain the differentiation of the Allais surplus with the continuous space

model. Let b(s) ∈ (0, I) denote the market boundary given policy instrument s with

equilibrium conditions (C.65)–(C.69). We focus on a utility level at which consumers

residing in x ∈ (0, b(s)] visit marketplace 0 and consumers residing in x ∈ [b(s), I) visit

marketplace I. At the utility level, we obtain the Allais surplus:

AS =

∫ I

0

n(x, s)E dx
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=

∫ I

0

n(x, s)
(
y − tj(x)(x) + Π + sj(x)(x, s)− e(x, j(x), s)

)
dx. (C.70)

We differentiate the Allais surplus with respect to s:

dAS

ds
=

∫ I

0

n(x, s)
d

ds

(
y − tj(x)(x) + Π + sj(x)(x, s)− e(x, j(x), s)

)
dx

+

∫ I

0

dn(x, s)

ds

(
y − tj(x)(x) + Π + sj(x)(x, s)− e(x, j(x), s)

)
dx+BD,

where

BD = n(b(s), s)(YI − Y0)
db(s)

ds
,

Y0 = t0(b(s)) + e(x, 0, s)− s0(b(s), s), YI = tI(b(s)) + e(x, I, s)− sI(b(s), s).

When we evaluate the welfare impact with the continuous model, the welfare impact

generated by the change in the market boundary BD is added to the welfare measure-

ment formula. The same discussion for the derivation of the derivative of the Allais

surplus, shown in Appendix C.1.2, gives us

dAS

ds
= PD + VD + FD +BD, (C.71)

where

PD ≡
∑

j∈J

(pMj − c)mj
dQj

ds
,

VD ≡

(∫ b(s)

0

n(x, s)pM0 u(q(x))

u′(q(x))
dx− cQ0 −m0

)
dm0

ds

+

(∫ I

b(s)

n(x, s)pMI u(q(x))

u′(q(x))
dx− cQI −mI

)
dmI

ds
,

FD =

∫ I

0

−sj(x)(x, s)
dn(x, s)

ds
dx.

Since YI − Y0 = tI(b(0)) − t0(b(0)) holds for s = 0, we have BD = (tI(b(0)) −

t0(b(0)))db(s)/ds. If the difference in the travel costs is small, then BD is small. That

is, BD hardly affects the welfare impact of adopting a place-based policy.
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