
Analyzing the Effect of Cross-lingual
Transfer, Compression and Whitening

on Natural Language Encoding
自然言語符号化における

言語横断的な転移学習、圧縮、白色化の効果の分析

Shota Sasaki

Graduate School of Information Sciences
Tohoku University

This dissertation is submitted for the degree of
Doctor of Information Science

August 2022

Acknowledgements

本研究を進めるにあたり，多くの方々のご協力，ご助言を頂きましたことに感謝
申し上げます．主指導教員である乾健太郎教授には，研究はもちろんのこと，キ
ャリアや私生活に関することまで，親身に相談に乗って頂きました．また理化学
研究所に勤めながら，社会人博士学生として研究を行うという大変貴重な機会を
設けてくださいました．理化学研究所においては，教育関連事業者様との共同研
究にも参加させて頂き，規模・影響力が非常に大きいプロジェクトの推進を任せ
て頂きました．私のこれからの人生の礎となる経験をさせて頂き，誠に感謝いた
します．

篠原歩教授，大町真一郎教授，ならびに鈴木潤教授は，ご多忙の最中，審査委
員として本論文を査読してくださいましたこと，深く感謝いたします．鈴木潤教
授には，修士課程の頃から，共著者として多くの研究をサポートして頂きました．
時には xx 時間に渡る長時間の議論を交わしてくださったこと，感謝いたします．
RIKEN AIPの Benjamin Heinzerlingさん，奈良先端大の大内啓樹助教，北陸先端大
の井之上直也准教授，東京工業大の高瀬翔助教には，メンターとして研究の指針
や，実装レベルの課題，そしてマインドの持ち方についてまで，多くのアドバイ
スを頂きましたこと，心から感謝いたします．研究者としてのロールモデルであ
る皆様との関わりを通じて，私の研究の，また研究者としての確かな核を形成す
ることができました．

Johns Hopkins大学の Kevin Duh先生は，私が修士学生の時に，私を研究インタ
ーン生として快く受け入れてくださりました．そこでの研究を通して，研究の本
当の楽しさ知ることができました．Kevin先生との出会いがなければ，私が博士課
程に進学することはなかったと思います．私の研究者としての道を開いてくださ
ったこと，誠に感謝いたします．留学先での生活を支えてくださった，当時 John
Hopkins大学に在籍なさった坂口慶祐准教授，そして JHU CLSPのメンバー，特に
ルームメイトであった Jinyi Yang さん，Samik Sadhu さん，Xiaofei Wang さん，そ
してホームステイ先の Valerie Long さんに感謝いたします．

研究の相談から日常の雑談まで，様々な面で関わってくださった株式会社サイ
バーエージェントの三田雅人さん，Apple Inc.の吉川将司さん，RIKEN AIPの Ana
Brassard さん，塙一晃さん，LINE 株式会社の清野舜さん，ヤフー株式会社の浅野

広樹さんに感謝いたします．研究室の事務員としていつもサポートしてくださっ
た菅原真由美さん，相澤知佳さん，そして RIKEN AIP での共同研究を支えてくだ
さった磯部順子さん，AIP アシスタントの皆さんに感謝いたします．研究室配属
時から研究室の先輩として多くのことを教えてくださった松林優一郎准教授，山
口健史さん，代勤さん，LINE 株式会社の水本智也さんに感謝いたします．

共同研究を行った後輩の舟山弘晃さん，アクセンチュア株式会社の佐藤俊さん
に感謝いたします．烈々とした勢いで成長する姿から刺激を受け，私自身の成長
にも繋げることができました．また，サーバーマネージャーの仕事や，外部の共同
研究，プライベートで関わることの多かった伊藤拓海さん，阿部香央莉さん，小
林悟郎さんに感謝いたします．

研究をしている中で，時には辛くなる時もありました．そんな時に，お酒を酌
み交わし，研究での大変なことを忘れさせてくれた山形東高校サッカー部の同期
部員，東北大学サッカー部の同期部員に感謝いたします．最後に，これまで見守
ってくれた家族に感謝いたします．

iii

Abstract

A text encoder is an essential component of almost all deep Natural Language Processing
(NLP) models. Its role is to convert the input text into embeddings, i.e., vectors that represent
the meaning of the text. As a result of various refinements of the text encoder, deep NLP
models now perform incrediblywell, however, only on a limited number of tasks. In addition,
recent models lack practical applicability as they are not controllable due to being too large.

This dissertation focuses on further improving text encoders from two perspectives: qual-
ity and applicability. A high-quality text encoder must provide suitable encodings that trans-
form the information obtained from the text without any loss of information. A text encoder
must also be widely applicable in the real world where language has ever-evolving usages
and forms. Aiming for high-quality and widely applicable text encoders, we explore three
aspects with potential for improvement: (i) the required amount of training data, (ii) memory
requirements for embeddings and unknown words, and (iii) biases in embeddings.

We first propose a cross-lingual transfer learning method to address the data size problem
and demonstrate that it improves model performance for low-resource languages. Specifi-
cally, as an example of an application of NLP, we conducted experiments on information
retrieval tasks. We also clarify the model architecture for information retrieval in which the
transfer learning works.

We then propose a method that combines memory sharing and key-value-query (KVQ)
operation idea in order to simultaneously reduce the memory requirement for static word
embeddings and deal with the unknown word problem. The proposed method succeeded in
reducing the amount of required memory while acquiring unknown word embeddings which
performed well on word similarity tasks.

Finally, we examine the semantic effects of whitening, one of the isotropization methods
for anisotropic embeddings, i.e., reducing spatial bias. From our experiments on a sentence
similarity task, we report that the effect on static word embeddings has significant overlap
with the effect of removing word frequency bias, and that this is not the case for contextual-
ized embeddings.

Table of contents

List of figures viii

List of tables xi

1 Introduction 1
1.1 Research Issues . 2
1.2 Contributions . 3
1.3 Overview . 4

2 Background 5
2.1 Text Encoder . 5

2.1.1 Embedding Layer . 5
2.1.2 Task-specific Layer . 7

3 Cross-lingual Transfer Learning for Information Retrieval 8
3.1 Introduction . 8
3.2 Large-scale CLIR Dataset . 9
3.3 Direct Modeling for CLIR . 11

3.3.1 Neural Ranking Model . 11
3.3.2 Sharing Representations . 16

3.4 Experiment Results . 16
3.5 Conclusion and Future Work . 17

4 Subword-based Compact Reconstruction for Open-vocabulary Word Embed-
dings 18
4.1 Introduction . 18
4.2 Related Work . 21
4.3 Reconstruction of Word Embeddings Using Subwords 22

Table of contents

4.3.1 Notation Rules . 23
4.3.2 Preliminaries . 23
4.3.3 Task Definition . 25
4.3.4 Baseline Method . 25
4.3.5 Consideration of Memory Requirement 26

4.4 Methods to Improve Performance . 27
4.4.1 Frequent Subwords . 27
4.4.2 Memory Sharing . 27
4.4.3 Combination of Frequent Subwords and Memory Sharing 28
4.4.4 Attention Operation . 29
4.4.5 Incorporating Multiple Hash Functions 31

4.5 Experimental Settings . 33
4.5.1 Model Shrinkage . 33
4.5.2 OOV Word Embeddings . 35
4.5.3 Downstream Tasks . 41

4.6 Results . 41
4.6.1 Model Shrinkage . 41
4.6.2 Experiments of OOV Word Embeddings 42
4.6.3 Evaluation on Downstream Tasks 44

4.7 Analysis . 45
4.7.1 Calculation Speed . 45
4.7.2 Syntactic and Semantic Tests on Analogy 46
4.7.3 Impact of Hyper-parameter Selection 46
4.7.4 Distribution of FNV Hash . 54

4.8 Conclusion . 55

5 Examining the Effect of Whitening on Static and Contextualized Word Embed-
dings 56
5.1 Introduction . 56
5.2 Background . 57

5.2.1 Anisotropy in Static and Contextualized Word Embeddings 57
5.2.2 Isotropization via the Whitening Transformation 58
5.2.3 Other Isotropization Methods . 59

5.3 Preliminaries . 60
5.4 Frequency Debiasing Method . 61
5.5 Experiments . 63

5.5.1 Settings . 63

vi

Table of contents

5.5.2 Task . 64
5.5.3 Results . 65

5.6 Analysis . 66
5.7 Discussion . 67
5.8 Conclusion . 67

6 Conclusion 69

References 71

List of Publications 79

vii

List of figures

3.1 CLIR data construction process: From an English article (E1), we extract the
English query. Using the inter-language link, we obtain the most relevant
foreign-language document (F1). Any article that has mutual links to and
from F1 are labeled as slightly relevant (F2). All other articles are not rele-
vant (F3). The data is a set of tuples: (English query q, foreign document d,
relevance judgment r), where r ∈ {0, 1, 2} represents the three levels of
relevance. 10

3.2 Illustration of the proposed method. On low resource dataset (e.g. Swahili-
English), the parameters of the CNN for encoding query (CNNEn) and the
parameters of the fully connected layer (OEn–Sw, WEn–Sw) are initialized by
the ones pre-trained on high resource dataset (e.g. Japanese-English). . . . 12

4.1 Intuitive idea for the combination of frequent subwords and memory-shared
embeddings. 28

4.2 Comparison of using single hash function (Fig. 4.1) with the multiple hash
function case. This figure shows the case when P (the number of hash func-
tions) is set to 2. 29

4.3 Illustration of how our KVQ self-attention operation calculates each word
embedding. This example shows a process of obtaining a word embedding
for a word “newer” by using the KVQ self-attention operation. First, we
input the word “newer” into 𝜙(⋅), a word to subword mapping function, to
obtain the subwords of “newer” (green box). Next, we use mapping func-
tions, e.g., 𝜂(⋅), to obtain the indexes of those subwords and pick the corre-
sponding embeddings (blue table). Next, we calculate each weight 𝛼 using
the query and key embeddings and then calculate the weighted sum of the
value embeddings (gray box) to obtain the final embedding of “newer.” . . 30

viii

List of figures

4.4 Overall performance/P curves for each memory-shared method. The x-axis
represents the number of hash functions P; the y-axis represents the overall
performance evaluated over WordSim and Analogy. 38

4.5 Performance/model size curves for WordSim when using fastText.600B
and GloVe.840B as the reconstruction target. The x-axis represents the num-
ber of subword embeddings. The y-axis represents the performance evalu-
ated by the macro-average of Spearman’s rho. 39

4.6 Performance/model size curves for Analogy when using fastText.600B
and GloVe.840B as the reconstruction target. The x-axis represents the num-
ber of subword embeddings. The y-axis represents the performance evalu-
ated by the micro-average accuracy. 48

4.7 Performances on the syntactic and semantic tests of Analogy datasets. Or-
ange lines show the performances of SUM; green lines show the perfor-
mances of KVQ. 49

4.8 Performances on WordSim and Analogy tests. Blue lines show the perfor-
mances whenH = 0.5M; dashed lines show the performances whenH = 0.2M. 50

4.9 Performances on WordSim and Analogy tests. Blue lines show the perfor-
mances whenH = 0.5M; dashed lines show the performances whenH = 0.2M. 51

4.10 Attention distribution of our KVQmodel. Here we used “^” and “@” as spe-
cial characters that represent the beginning and end of a word, respectively.
Subwords in boxes are corresponding subwords obtained from a word at the
left side. 52

4.11 Histograms of (a) the values from Numpy.random.randint, (b) the FNV
hashes when inputting random strings, and (c) the FNV hashes when inputting
subwords from a vocabulary of fastText.600B. 53

5.1 Examples of plots before and after applying whitening to a set of two-
dimensional vectors. Before applying whitening, x and y are correlated,
whereas after applying whitening, they are no longer correlated. 58

5.2 Plots of the first and second principal components (𝛼1 and 𝛼2) before and
after applying whitening to GloVe embeddings. Colors correspond to word
frequency ranks. Black represents frequent words, while yellow represents
infrequent words. 60

5.3 Plots of the first and second principal components (𝛼1 and 𝛼2) before and
after applying whitening to BERT embeddings. Colors correspond to word
frequency ranks. Black represents frequent words, while yellow represents
infrequent words. 60

ix

List of figures

5.4 Performance of GloVe models on STS benchmark development and test set. 64
5.5 Performance of BERT models on STS benchmark development and test set. 65
5.6 Performance/Rdataset curves when using models based on GloVe (left) and

BERT (right). The x-axis represents Rdataset, while the y-axis represents the
STS performance evaluated by the Spearman rank correlation. 68

x

List of tables

3.1 CLIR dataset statistics. For each language X, we show the total number of
documents in language X and the number of English queries. The number
of ”most relevant” documents is by definition equal to #Query. The number
of ”slightly relevant” documents is shown in the column #SR. 13

3.2 P@1/MAP performance (0-100 range, in percent) of the cosine model and
the deep model with different hidden state size on high resource datasets.
Best value in each column is highlighted in bold. 14

3.3 P@1/MAP performances on low resource datasets. Δ columns show the
comparison between the basic deep models with in-language training (In)
and the deep models with sharing parameters (Sh); + indicates Sh outper-
forms In, and - indicates the In outperforms Sh. Best value in each dataset
is highlighted in bold. 15

4.1 Statistics for each setting: The column “# of vecs” represents the number
of embedding vectors. “mem.” represents the memory requirement to store
the vectors and the indexes between words and their vectors. M denotes
1 million. We consider that a real value requires 4 bytes of storage in the
calculation of the memory requirement. 26

4.2 Evaluation datasets used in our experiments. 32
4.3 Model and training settings of the model shrinkage experiments. 33
4.4 Statistics for our methods. 36
4.5 Results of model shrinkage experiments by reconstructing the

fastText.600B (before the slash) or GloVe.840B (after the slash)
embeddings. Each dataset in WordSim was evaluated by Spearman’s rho.
“Macro” represents the macro-average of Spearman’s rho over all WordSim
datasets. 40

xi

List of tables

4.6 Results of model shrinkage experiments by reconstructing the
fastText.600B (before the slash) or GloVe.840B (after the slash)
embeddings. Each dataset in Analogy was evaluated by accuracy. “Micro”
represents the micro-average of accuracy over all Analogy datasets. 43

4.7 Results of (synthetic) OOV word experiments on WordSim and Analogy by
reconstructing the fastText.600B (before the slash) or GloVe.840B (after
the slash) embeddings. Performance was evaluated by Spearman’s rho or
accuracy. 43

4.8 Results of OOV experiments on the Stanford Rare Word dataset. * indicates
the values reported by Zhao et al. (Zhao et al., 2018). Note that fastText
learned subword embeddings from an English Wikipedia dump because this
method is not a reconstruction method. 44

4.9 Model and training settings of the NER and TE experiments. 44
4.10 Results of the NER experiments on the CoNLL-2003 dataset. 45
4.11 Results of the TE experiments on the SNLI dataset. 45
4.12 Calculation speed (in seconds) of SUM-FH and KVQ-FH. P is the number

of hash functions used in our memory sharing method (mentioned in Sec-
tion 3.3.2). 46

xii

Chapter 1

Introduction

With the recent revival of deep learning, many conventional models have been replaced by
deep learning models in Natural Language Processing (NLP). A text encoder is an essential
component of almost all deep NLP models, from text classification models to text gener-
ation models (e.g., translation models). The role of a text encoder is to convert the input
text into embeddings, i.e., vectors that represent the meaning of the text. At the embedding
layer—the entrance of a text encoder—static word embeddings, such asWord2Vec (Mikolov
et al., 2013b) andGloVe (Pennington et al., 2014a), transform discrete information, i.e., word
sequences, into continuous values that machines can handle. The model then further trans-
forms these values through task-specific layers until they reach a final output layer designed
to produce values appropriate for the task at hand. The advent of word embeddings has dra-
matically increased the affinity between NLP and deep learning and has played a leading
role in introducing deep learning into the field of NLP. Since then, methods of obtaining
word, phrase, and sentence embeddings using deeper neural networks have also emerged.
For example, deep contextualized embeddings, such as BERT (Devlin et al., 2019), are the
most widely used word embeddings in recent years.

As a result of these various refinements of the text encoder, deep NLPmodels perform in-
credibly well. In some tasks, they even reportedly exceeded human correctness rates (Kiela
et al., 2021). A question then naturally arises—Have NLP models already reached their
goal? The answer is “No.” Satisfactory performance has only been achieved in a limited
number of tasks, and still, challenging tasks such as discourse comprehension and common
sense reasoning tasks remain. In addition, recently proposed models lack practical applica-
bility in that they are not controllable due to being too large or their black-box nature.

This dissertation focuses on further improving text encoders from two perspectives: qual-
ity and applicability. A high-quality text encoder must provide suitable encodings that trans-

1

1.1 Research Issues

form the information obtained from the text without losing any information. Input texts are
typically very diverse, consisting of combinations of millions of words; a text encoder must
generalize and learn the usage and meaning of the language, usually using large training
data.

A text encoder must also be widely applicable. Language is a living organism with ever-
evolving usages and forms. Therefore, text encoders need to be flexible enough to adapt. In
the real world, different speakers use different languages with various language styles. In
addition, new words that have not been used before will appear. It also needs to work with
compact devices, such as mobile devices or IoT devices, such as smartphones and home
assistants, which do not benefit from the vast computational capacities of research or devel-
opment environments. Establishing an encoder that satisfies these requirements is essential
for future real-world application of the NLPmodels. The ultimate goal of this line of research
is to establish a universal text encoder with “perfect quality” and “wide applicability.”

1.1 Research Issues
This dissertation moves toward the goal of high-quality and widely applicable text encoders
by exploring three aspects with potential for improvement: (i) the required amount of train-
ing data, (ii) memory requirements for embeddings and unknown words, and (iii) biases in
embeddings.

The data size problem: can low-resource languages attain high-resource-level perfor-
mance? Deep learning models are notoriously data-hungry, meaning that a large amount
of data is needed to train themodel; the same is true for text encoders. A handful of languages
may have adequate data, but many more do not have that privilege, limiting the performance
of NLP models using text encoders in those languages. Waiting for equally vast amounts
of data to become available for each language to match high-resource-level performance is
impractical. Thus, an alternative solution is needed to improve the quality of text encoders
in cases where simply increasing the amount of data is not possible.

Memory requirements vs. vocabulary coverage. The strongest text encoders are also
usually very large—unrealistically so for the capacity of devices such as mobile phones or
IoT appliances which require their use. A naive approach to reducing word embeddings’
memory requirement is limiting their vocabulary coverage. However, an unknown word
(OOV; out-of-vocabulary) problem becomes critical, which reduces their usefulness in real-
world applications where diverse vocabularies are expected. There is a trade-off between re-

2

1.2 Contributions

ducing the required amount of memory and the capacity to deal with unknown words. Thus,
a balanced approach that reduces the memory requirement while maintaining the ability to
handle OOV words would improve the applicability of text encoders.

Bias in embeddings. Various undesired biases in word embeddings can negatively impact
a model’s task performance. Even leaving the impact on performance aside, biased models
can be problematic for real-world applications. For example, dialogue generation models
with a gender bias have been reported to produce gender discriminatory statements (Nichol-
son, 2022). Thus, biases in word embeddings pose a barrier to real-world applications in
both quality and applicability. Various methods have been proposed to mitigate undesired
biases. One of them, whitening, has attracted attention due to being simple yet effective in
improving performance and mitigating spatial bias. However, while it is clear that whiten-
ing mitigates spatial bias in word embeddings, its semantic effects (e.g., removal of word
frequency bias) are not clear.

1.2 Contributions
This dissertation makes the following contributions:

Investigation of the effectiveness of cross-lingual transfer learning. We propose a cross-
lingual transfer learning method and demonstrate that it improves model performance for
low-resource languages. Specifically, as an example of an application of NLP, we con-
ducted experiments on information retrieval tasks. We also clarify the model architecture
for information retrieval in which the transfer learning works.

Reducing memory requirements and handling unknown words. In order to simultane-
ously reduce thememory requirement for static word embeddings and deal with the unknown
word problem, we propose a method that combines memory sharing and key-value-query
(KVQ) operation idea. The proposed method succeeded in reducing the amount of required
memory while acquiring unknown word embeddings which performed well on word simi-
larity tasks.

Examining the effect of whitening on word embeddings. We examined the semantic
effects of whitening, one of the isotropization methods for anisotropic embeddings, i.e., re-
ducing spatial bias. From our experiments on a sentence similarity task, we report that the

3

1.3 Overview

effect on static word embeddings has significant overlap with the effect of removing word
frequency bias, and that this is not the case for contextualized embeddings.

1.3 Overview
The rest of this dissertation is structured as follows:

Chapter 2: Background. This chapter describes the components of text encoders, their
characteristics, and their evolution and provides the background on current issues.

Chapter 3: Cross-lingual Transfer Learning for Information Retrieval. This chapter
presents our examination of the effectiveness of cross-lingual transfer learning in information
retrieval tasks. Specifically, we propose a method in which a task-specific embedding layer
that has already been trained on high-resource language data is used to initialize models for
a low-resource language.

Chapter 4: Subword-based Compact Reconstruction for Open-vocabulary Word Em-
beddings. In this chapter, we demonstrate simultaneously reducing the amount of memory
required for static word embeddings and address the unknown word problem. We propose a
method that combines memory sharing and KVQ operation idea in a subword-based frame-
work, and verify its effectiveness.

Chapter 5: Examining the Effect ofWhitening on Static and ContextualizedWord Em-
beddings. In this chapter, we examine the semantic effects of the whitening transforma-
tion, which is known to remove bias in word embeddings. We apply a reconstruction-based
frequency bias removal method and whitening simultaneously to word embeddings and ob-
serve the behavior of the model to confirm the relationship between their effects.

Chapter 6: Conclusion. We summarize the contributions of this dissertation.

4

Chapter 2

Background

Themain theme of this dissertation is to improve a text encoder that is an essential component
of almost all deep NLP models. This chapter explains the internal components of a text
encoder and their evolution.

2.1 Text Encoder
A text encoder consists of two main components: (i) an embedding layer and (ii) a task-
specific layer. An embedding layer is a general component that models for various tasks
can share. Its role is to serve as an entry point of a text encoder, converting input texts into
embeddings (vectors) that machines can handle. On the other hand, a task-specific layer has
a different network architecture for each task and basically cannot be shared across tasks.
A task-specific layer acts as a bridge between an embedding layer and the goal of a target
task. The resultant vector from a text encoder is used to determine an output of a model. For
example, if the model is a classifier for a text classification task, the encoded vector and the
softmax function are used to calculate the probability of each target class. If the model is
a translation model, the encoded vector is passed to a decoder, which outputs a translation
result. We note that, in this study, we refer to not only the encoder in an encoder-decoder
model (Sutskever et al., 2014) but also the encoding component in broader kinds of models,
e.g., text classification models, as a text encoder.

2.1.1 Embedding Layer
While a task-specific layer needs to perform a task-specific transformation, such as a lan-
guage mapping in a translation task, an embedding layer, as the entry point to a text encoder,

5

2.1 Text Encoder

needs to transform input texts into embeddings that machines can handle. To achieve this, an
embedding layer must capture languages’ universal properties and usages. Generally, these
requirements are satisfied through learning using a large unlabeled text corpus such as web
crawling data and Wikipedia dumps. This learning process is similar to the process of hu-
mans acquiring the usage of languages by hearing many languages over a long period from
their birth. In the following paragraphs, we explain the evolution of an embedding layer
from static word embeddings to contextualized embeddings.

Static Word Embeddings “Word” has long been recognized as the most intuitive and
smallest unit for constructing the meaning of a sentence. At the beginning of the deep learn-
ing era of NLP, distributional representations were used as the semantic representations of
words. Distributional representations are low-dimensional embeddings of words obtained
through dimensionality reduction of a word co-occurrence matrix. This process is based
on distributional hypothesis (Harris, 1954); words’ meanings are determined by the words
in their contexts. Following distributional representations, word embeddings from neural
language models (Bengio et al., 2003) have received more attention. Word embeddings are
low-dimensional vectors assigned to words in advance, then updated through the learning
of a language model task. Skip-gram and CBOW (Mikolov et al., 2013a), also known as
Word2Vec, received a great deal of attention for their success in acquiring representations
that capture relationships between words (word analogies). With the advent of these word
embeddings, the affinity between NLP and deep learning has increased dramatically, and
they have played a leading role in introducing the trend of deep learning into the field of
NLP.

Despite the success of static word embeddings, several drawbacks have been pointed out
due to their static nature. The methods of static word embeddings basically assign a vector to
each word in a predefined vocabulary. The assigned vector retains the meaning of the word
itself without considering its contexts. This property becomes problematic when the scope
of the target is expanded to “sentence”. A naive method to obtain sentence representations
is averaging embeddings of words in a sentence. However, such a method can not model the
property of languages that the meaning of words varies depending on their contexts.

Towards wider scope: to embed the meaning of words in contexts Embedding methods
with an extended scope to contexts of words have also been explored. Skip-thoughts (Kiros
et al., 2015) is a method based on static word embeddings and recurrent neural networks
(RNN), learning general embeddings of sentences. With the evolution of a GPU, models
with more layers and larger hidden states have been explored. ELMo (Peters et al., 2018b)

6

2.1 Text Encoder

and BERT (Devlin et al., 2019) successfully learned word embeddings with contextualized
property, i.e., meaning changes appropriately according to contexts. GPT-3 (Brown et al.,
2020) showed its human-like document generation ability and drew a great deal of attention
in the NLP field.

While performance improvements were reported, undesired biases in embeddings caused
by using a large raw corpus as training data have became apparent. It was reported that a
dialogue generation model made gender discriminatory utterances (Nicholson, 2022). In
addition, the huge internal parameter set and the fact that many high-performance GPUs is
required for the use of the models have raised doubts about their applicability in the real
world.

2.1.2 Task-specific Layer
Following the establishment of an embedding layer, a task-specific layer has been explored
in various ways on a task-by-task basis. A task-specific layer has a different network archi-
tecture for each task, serving as a bridge between an embedding layer and a target task goal.
Following the success of word embeddings, architectures that compose word embeddings
to obtain phrase, sentence, and document embeddings have been explored. A convolutional
neural network (CNN) has been used in text classification models as a task-specific layer to
compose word embeddings (Kim, 2014). RNN, long short-term memory (LSTM) (Hochre-
iter and Schmidhuber, 1997), and gated recurrent unit (GRU) (Cho et al., 2014) incorporated
into a sequence-to-sequence model have had great success in translation tasks. These net-
works were established as a general architecture that views a sentence as a word sequence
rather than a bag-of-words (BoW), and have been applied to a wide range of tasks.

The data used to train an embedding layer is unlabeled text data, which is relatively easy
to obtain in large quantities. In contrast, regarding task-specific data, data shortage problems
tend to occur. Specifically data belonging to special categories such as minor domains or
minor languages is difficult to collect in large scale. One method addressing this problem
is transfer learning, which exploits data from other domains or languages different from a
target one.

7

Chapter 3

Cross-lingual Transfer Learning
for Information Retrieval

3.1 Introduction
Multilingual document collections are becoming prevalent. Thus an important application
is cross-lingual information retrieval (CLIR), i.e. document retrieval which assumes that the
language of the user’s query does not match that of the documents. For example, imagine
an investor who wishes to monitor consumer sentiment of an international brand in Twitter
conversations around the world. She might issue a query string in English, and desire all
relevant tweets in any language.

There are two main approaches to building CLIR systems. The modular approach in-
volves a pipeline of two components: translation (machine translation or bilingual dictio-
nary look-up) and monolingual information retrieval (IR). These approaches may be further
divided into the document translation and query translation approaches (Nie, 2010). In
the former, one translates all foreign-language documents to the language of the user query
prior to IR indexing; in the latter, one indexes foreign-language documents and translates the
query. In both, the idea is to solve the translation problem separately, so that CLIR becomes
document retrieval in the monolingual setting.

A distinctly different way to build CLIR systems is what may be called the direct model-
ing approach (Bai et al., 2010; Sokolov et al., 2013). This assumes the availability of CLIR
training examples of the form (q, d, r), where q is an English query, d is a foreign-language
document, a r is the corresponding relevance judgment for d with respect to q. One directly
builds a retrieval model S(q, d) that scores the query-document pair. While q and d are in
different languages, the model directly learns both translation and retrieval relevance on the

8

3.2 Large-scale CLIR Dataset

CLIR training data. Compared to the modular approach, direct modeling is advantageous in
that it focuses on learning translations that are beneficial for retrieval, rather than translations
that preserve sentence meaning/structure in bitext.

However, there exist no large-scale CLIR dataset that can support direct modeling ap-
proaches in a wide variety of languages. To obtain relevance judgments, one typically needs
a bilingual speaker who can read a foreign-language document and assess whether it is rel-
evant for a given English query. This can be an expensive process. Here, we present a
large-scale dataset that is automatically constructed from Wikipedia: it can support training
and evaluation of CLIR systems between English queries and documents in 25 other lan-
guages (Section 3.2). The data is of sufficient size for direct modeling, and can also serve as
an wide-coverage evaluation data for the modular approaches.1

To demonstrate the utility of the data, we further present experiments for CLIR in low-
resource languages. First, we introduce a neural CLIR model based on the direct modeling
approach (Section 3.3.1). We then show how we can bootstrap CLIR models for languages
with less training data by an appropriate use of paramater sharing among different language
pairs (Section 3.3.2). For example, using the training data for Japanese-English CLIR, we
can improve the Mean Average Precision (MAP) results of a Swahili-English CLIR system
by 5-7 points (Section 3.4).

3.2 Large-scale CLIR Dataset
We construct a large-scale CLIR data from Wikipedia. The idea is to exploit inter-language
links: from an English page, we extract a sentence as query, and label the linked foreign-
document pages as relevant. See Figure 3.1 for an illustration.

This data construction process is similar to (Schamoni et al., 2014) whomade an English-
German CLIR dataset, but ours is at a larger scale. Specifically, we use Wikipedia dumps
released on August 23, 2017. English queries are obtained by extracting the first sentence
of every English Wikipedia article. The intuition is that the first sentence is usually a well-
defined summary of its corresponding article and should be thematically related for articles
linked to it from another language. Similar to (Schamoni et al., 2014), title words from the
query sentences are removed, because theymay be present across different language editions.
This deletion prevents the task from becoming an easy keyword matching task.

For practical purposes, each document is limited to the first 200 words of the article.
Empty documents and category pages are filtered. Currently, our dataset consists of more

1To facilitate CLIR research, the dataset is publicly available at http://www.cs.jhu.edu/~kevinduh/
a/wikiclir2018/.

9

http://www.cs.jhu.edu/~kevinduh/a/wikiclir2018/
http://www.cs.jhu.edu/~kevinduh/a/wikiclir2018/

3.2 Large-scale CLIR Dataset

Figure 3.1 CLIR data construction process: From an English article (E1), we extract the
English query. Using the inter-language link, we obtain the most relevant foreign-language
document (F1). Any article that has mutual links to and from F1 are labeled as slightly
relevant (F2). All other articles are not relevant (F3). The data is a set of tuples: (English
query q, foreign document d, relevance judgment r), where r ∈ {0, 1, 2} represents the three
levels of relevance.

than 2.8 million English queries and relevant documents from 25 other selected languages
(see Table 3.1).

In sum, we have created a CLIR dataset that is large-scale in terms of both the amount
of examples as well as the number of languages. This can be used in two scenarios: (1)
one mixed-language collection where an English query may retrieve relevant documents in
multiple languages. (2) 25 independent datasets for training and evaluating CLIR on English
queries against one foreign language collection. In the experiments in Section 3.4, we will
utilize the dataset in terms of scenario (2).2

2For extensibility purposes, these experiments use only half of the data, randomly sampled by query (the
held-out data is reserved for other uses). Also it only considers binary relevance (most relevant vs not relevant)
for simplicity. The exact data splits will be provided along with the data release.

10

3.3 Direct Modeling for CLIR

3.3 Direct Modeling for CLIR

3.3.1 Neural Ranking Model
Given an English query q and a foreign-language document d, our models compute the rele-
vance score S(q, d). First, we represent each word as n-dimensional vectors, so q and d are
represented as matrices Q ∈ ℝn×|q| and D ∈ ℝn×|d|, where |q| and |d| are the numbers of
tokens in q and d:

Q = [Eq(q1); Eq(q2); ...; Eq(q|q|)]
D = [Ed(d1); Ed(d2); ...; Ed(d|d|)]

qi and di denote the i-th term in q and d. E is embedding function which transforms each
term to a dense n-dimensional vector as its representation. ; is the concatenation operator.
Then, we apply convolutional feature map3 to these matrices, followed by tanh activation
and average-pooling to obtain each representation vector ̂q and d̂.

̂q = CNNq(Q); d̂ = CNNd(D) (3.1)

Next, we define two variations in calculating S(q, d). The first is a cosine model which
computes cosine similarity between ̂q and d̂:

Scos(q, d) = cossim(̂q, d̂) (3.2)

The second is a deep model with a fully connected layer on top of the concatenation of ̂q
and d̂ (a 200-dimensional vector):

Sdeep(q, d) = tanh(O ⋅ hT
vec) (3.3)

= tanh(O ⋅ relu(W ⋅ [̂q; d̂]T))

Here, O ∈ ℝ1×h and W ∈ ℝh×200 are the deep model parameters, and h is the number of
dimensions of the hidden state, hvec ∈ ℝ1×h. For regularization, we set dropout rate as 0.5
(Srivastava et al., 2014) at the hidden layer.

In the training phase, we minimize pairwise ranking loss, which is widely used for
learning-to-rank (Dehghani et al., 2017; Guo et al., 2016; Hui et al., 2017; Pang et al., 2016;

3The n × 4 convolution window has filter size of 100 and takes a stride of 1.

11

3.3 Direct Modeling for CLIR

Figure 3.2 Illustration of the proposed method. On low resource dataset (e.g. Swahili-
English), the parameters of the CNN for encoding query (CNNEn) and the parameters of
the fully connected layer (OEn–Sw, WEn–Sw) are initialized by the ones pre-trained on high
resource dataset (e.g. Japanese-English).

Xiong et al., 2017), defined as follows:

L = max {0, 1 – (S(q, d+) – S(q, d–))} (3.4)

where d+ and d– are relevant and non-relevant document respectively. We fix only the word
embeddings and tune the other parameters.

We note there are many other ranking models that can be adapted to CLIR (Huang et al.,
2013; Mitra et al., 2017; Shen et al., 2014; Xiong et al., 2017); they have a common frame-
work in extracting features from both query and document and optimizing scores S(q, d) via
some ranking loss.

12

3.3 Direct Modeling for CLIR

Language #Doc #Query #SR
Arabic 535 324 194
Catalan 548 339 625
Chinese 951 463 462
Czech 386 233 720
Dutch 1908 687 1646
Finnish 418 273 665
French 1894 1089 4048
German 2091 938 4612
Italian 1347 808 2635
Japanese 1071 426 2912
Korean 394 224 343
Norwegian-Nynorsk 133 99 150
Norwegian-Bokmål 471 299 663
Polish 1234 693 1777
Portuguese 973 611 1130
Romanian 376 199 251
Russian 1413 664 1656
Simple English 127 114 135
Spanish 1302 781 2113
Swahili 37 22 35
Swedish 3785 639 1430
Tagalog 79 48 23
Turkish 295 185 195
Ukrainian 704 348 565
Vietnamese 1392 354 257
(All numbers are in units of one thousand)

Table 3.1 CLIR dataset statistics. For each language X, we show the total number of doc-
uments in language X and the number of English queries. The number of ”most relevant”
documents is by definition equal to #Query. The number of ”slightly relevant” documents
is shown in the column #SR.

13

3.3 Direct Modeling for CLIR

Ja De Fr
Scos(q, d): cos 59/74 49/66 55/70
Sdeep(q, d): h=100 61/75 64/77 69/81
Sdeep(q, d): h=200 68/80 67/79 74/84
Sdeep(q, d): h=300 70/82 70/81 74/84
Sdeep(q, d): h=400 73/83 71/82 75/85
Sdeep(q, d): h=500 73/84 70/81 76/85

Table 3.2 P@1/MAP performance (0-100 range, in percent) of the cosine model and the
deep model with different hidden state size on high resource datasets. Best value in each
column is highlighted in bold.

14

3.3 Direct Modeling for CLIR

Tl
Sw

De
(su

bs
am

pl
e)

Fr
(su

bs
am

pl
e)

In
Sh

Δ
In

Sh
Δ

In
Sh

Δ
In

Sh
Δ

co
s

51
/6
8

50
/6
7

-/-
51

/6
7

49
/6
5

-/-
40

/5
9

38
/5
6

-/-
46

/6
3

43
/6
0

-/-
h=

10
0

34
/5
0

48
/6
2

+/
+

46
/6
2

46
/6
2

=/
=

39
/5
5

46
/6
2

+/
+

40
/5
7

46
/6
2

+/
+

h=
20

0
44

/5
8

55
/6
7

+/
+

47
/6
3

52
/6
7

+/
+

41
/5
7

48
/6
3

+/
+

43
/6
0

51
/6
6

+/
+

h=
30

0
42

/5
7

49
/6
3

+/
+

50
/6
5

58
/7
0

+/
+

44
/6
0

50
/6
5

+/
+

49
/6
5

51
/6
6

+/
+

h=
40

0
49

/6
3

57
/6
9

+/
+

51
/6
6

60
/7
3

+/
+

45
/6
1

51
/6
6

+/
+

47
/6
4

56
/7
0

+/
+

h=
50

0
51

/6
4

54
/6
7

+/
+

53
/6
8

56
/6
9

+/
+

44
/6
0

49
/6
5

+/
+

47
/6
3

51
/6
6

+/
+

Ta
bl
e3

.3
P@

1/
M

AP
pe

rfo
rm

an
ce

so
nl

ow
re
so
ur
ce

da
ta
se
ts.

Δ
co

lu
m
ns

sh
ow

th
ec

om
pa

ris
on

be
tw

ee
nt

he
ba

sic
de

ep
m
od

els
wi

th
in
-la

ng
ua

ge
tra

in
in
g
(In

)a
nd

th
e
de

ep
m
od

els
wi

th
sh

ar
in
g
pa

ra
m
ete

rs
(S

h)
;+

in
di
ca

tes
Sh

ou
tp
er
fo
rm

sI
n,

an
d
-i

nd
ica

tes
th
e
In

ou
tp
er
fo
rm

sS
h.

Be
st

va
lu
ei

n
ea

ch
da

tas
et

is
hi
gh

lig
ht
ed

in
bo

ld
.

15

3.4 Experiment Results

3.3.2 Sharing Representations
Training a network like the deep model generally requires a nontrivial amount of data. To
address the data requirement for low-resource languages, we propose a simple yet effective
method that shares representations across CLIR models trained in different language-pairs.
Basically, we use the same architecture as the deep model (Sdeep(q, d), Equation 3.3). How-
ever, we use the parameters trained on a high-resource dataset (e.g Japanese-English) to
initialize the parameters for a low-resource language-pair (e.g. Swahili-English).

Figure 3.2 illustrates the idea: Concretely, we initialize the parameters of the CNN for
encoding query (CNNq) and the parameters of the fully connected layer (O, W) by using the
pre-trained parameters. When training on low-resource data, we fix only the word embed-
ding, and tune the parameters of CNNs and the fully connected layer.

The intuition behind this is that our direct modeling approach enforces ̂q and d̂ to become
language-independent representations of the query and document. The parameters O and W
in the deep layer can therefore be used for any language-pair. Note for the cosine model, we
can also share parameters for CNNq.

3.4 Experiment Results
Setup: We use datasets of 3 high-resource languages (Japanese [Ja], German [De], French
[Fr]) and 2 low-resource languages (Tagalog [Tl], Swahili [Sw]). We also subsample Ger-
man and French data to be equivalent to the size of Swahili, in order to compare training size
effects. Word embedding with dimension 100 for each language is trained on Wikipedia cor-
pus, using word2vec SGNS (Mikolov et al., 2013b). The size of hidden states in the deep
model is {100, 200, 300, 400, 500}. We adopt Adam (Kingma and Ba, 2014) for opti-
mization, train for 20 epochs and pick the best epoch based on development set loss. For
the proposed method of parameter sharing, we use the weight parameters pre-trained on
Japanese-English dataset to initialize parameters.
High-resource results: Table 3.2 shows the P@1 (precision at top position) andMAP (mean
average precision) for datasets consisting of on the order of 100k+ training queries. The deep
models outperformed the cosine models under all conditions, suggesting that the fully con-
nected layer can exploit the large training set in learning more expressive scoring functions.
Low-resource results: Table 3.3 shows the results on the low resource datasets under two
conditions: training on only the language-pair of interest (in-language), or additionally shar-
ing parameters using a pre-trained Japanese-English model. For the in-language case, we
observe the cosine model outperforms the deep model. In contrast to the high-resource re-

16

3.5 Conclusion and Future Work

sults, this implies that deep models, which have a lot of parameters, only become effective
if provided with sufficient training data.

For the sharing case, the deep models with parameter sharing outperformed the basic
deep models trained only on in-language data under almost all conditions. This indicates that
our sharing method reduces training data requirement. Importantly, by sharing parameters,
the deep models are now able to outperform the cosine model and achieve the best results
on all datasets.4

3.5 Conclusion and Future Work
We introduce a large-scale CLIR dataset in 25 languages. This enables the training and
evaluation of direct modeling approaches in CLIR. We also present a neural ranking model
with shared representations, and demonstrate its effectiveness in bootstrapping CLIR in low-
resource languages.

Future work includes: (a) expansion of the dataset to more languages, (b) extraction
of different types of queries and relevant judgments from Wikipedia, and (c) development
of other ranking models. Importantly, we also plan to evaluate our models on standard
CLIR test sets such as TREC (Schäuble and Sheridan, 1997), NTCIR (2007), FIRE (2013)
and CLEF (2016). This will help answer the question of whether knowledge learned from
automatically-generated datasets can be transferred to a wide range of CLIR problems.

4Sharing representations with the cosine models did not help; we hypothesize that cross-lingual sharing
only works if given sufficient model expressiveness. We also tried the shared deep models on high resource
datasets (e.g. using Japanese parameters on the full French dataset without subsampling). As expected, results
did not change significantly.

17

Chapter 4

Subword-based Compact
Reconstruction for
Open-vocabulary Word
Embeddings

4.1 Introduction
Machine-readable representation of word meanings is one of the essential tools for tackling
natural language understanding by computers. A recent trend is to embed word meanings
into a vector space by using the rapidly developing neural word embedding methods, such
as Skip-gram (Mikolov et al., 2013c), GloVe (Pennington et al., 2014a), and fastText (Bo-
janowski et al., 2017). The basic idea used to construct a vector space model is derived
from the intuition that similar words tend to appear in similar contexts (Miller and Charles,
1991). These methods have successfully been proven to capture high-quality syntactic and
semantic relationships in a vector space. For example, studies in compositional semantics
have revealed that the calculations underlying embedding vectors, such as addition and in-
ner product, can be considered satisfactory approximations of the composed word meaning
and the similarity between words, respectively (Mikolov et al., 2013c). Furthermore, pre-
trained word embeddings, especially those trained on a vast amount of text data, such as
the Common Crawl (CC) corpus1, are now considered as highly beneficial, fundamental lan-

1http://commoncrawl.org

18

http://commoncrawl.org

4.1 Introduction

guage resources for tackling many applications in the AI field. Typical examples of large,
well-trained word embeddings are those trained on the CC corpus with 600 billion tokens
by fastText (Bojanowski et al., 2017) and with 840 billion tokens by GloVe (Pennington
et al., 2014a), which we refer to as fastText.600B2 and GloVe.840B3，respectively. Such
word embeddings are often used to improve performance in many natural language process-
ing (NLP) tasks, such as constituency parsing (Gómez-Rodríguez and Vilares, 2018; Suzuki
et al., 2018), discourse parsing (Yu et al., 2018), semantic parsing (Dong and Lapata, 2018;
Groschwitz et al., 2018), and semantic role labeling (Strubell et al., 2018).

However, well-trained word embeddings have several limitations, and in this paper, we
focus on two issues surrounding them: (i) the massive memory requirement and (ii) the inap-
plicability of out-of-vocabulary (OOV) words. Addressing such issues is crucial, especially
when applying them to real-world open systems. The total number of embeddings (i.e., the
total memory requirement of such word embeddings) often becomes unacceptably large, es-
pecially in limited-memory environments, including GPUs, because the vocabulary size is
more than 2 million words, requiring at least 2 gigabytes (GB) of memory for storage.

The memory requirement could be straightforwardly reduced by merely discarding the
less important words from the vocabulary. However, such a naive method worsens the draw-
back of the inapplicability of OOVwords, whose handling is highly desirable in real systems
because input words can be uncontrollably diverse. Therefore, at present, there is a trade-off
between the number of embedding vectors and the applicability of OOV words. Our goal
is to investigate and develop a method that simultaneously equips less memory requirement
and high applicability of OOV words, both desirable properties for word embeddings in real-
world open systems.

A popular approach for mitigating or solving OOV word issues is to use subword infor-
mation. Conceptually, the subword-based approach covers all words that can be constructed
by a combination of subwords. Thus, the subword-based approach can greatly mitigate (or
solve) the OOV word issue. In this study, we extend this approach to simultaneously reduce
the total number of embedding vectors through the reconstruction of word embeddings by
using subwords. The key techniques of our approach are twofold: memory-shared embed-
dings and a variant of the key-value-query (KVQ) self-attention mechanism (Vaswani et al.,
2017). That is, our approach reconstructs well-trained word embeddings by using a limited
number of embedding vectors that are shared by all the subwords with an effective weighting
calculated by the self-attention mechanism.

2https://fasttext.cc/docs/en/english-vectors.html
3https://nlp.stanford.edu/projects/glove/

19

https://fasttext.cc/docs/en/english-vectors.html
https://nlp.stanford.edu/projects/glove/

4.1 Introduction

We experimentally show that our reconstructed subword-based embeddings can success-
fully imitate well-trained word embeddings, such as fastText.600B and GloVe.840B, in a
small fixed space while preventing quality degradation across several linguistic benchmark
datasets from word similarity and analogy tasks. We also demonstrate the effectiveness of
our reconstructed embeddings for representing the embeddings of OOV words. Finally, we
confirm the performance of our reconstructed embeddings in several downstream tasks such
as the named entity recognition task and the textual entailment task.

Our prior conference paper (Sasaki et al., 2019) introduced the basic idea of the proposed
method. The basic idea is to characterize subwords by their subword indexes given by hash
functions. The indexes are restricted to a fixed size bucket so that models can have reduced
memory requirements. We extend this method that handles multiple hash functions as it al-
lows us to perform the multi-mapping of subword embedding vectors, to further improve the
performance (Section 4.4.2). Moreover, as the primary extension of our paper, we increase
the reliability of our analyses and conclusions by conducting extensive, comprehensive ex-
periments:

(i) model shrinkage experiments on GloVe.840B embeddings as the reconstruction target
(Figs. 4.5 and 4.6 and Tables 4.5 and 4.6 in Section 4.6.1),

(ii) synthetic OOV experiments on GloVe.840B embeddings as the reconstruction target
embeddings (Table 4.7 in Section 4.6.2),

(iii) synthetic OOV experiments on analogy datasets (Table 4.7 in Section 4.6.2),

(iv) calculation speed analysis including an investigation of the influence of the multi-
mapping process (Section 4.7.1),

(v) more in-depth analyses of the model behaviors on the semantic and syntactic analogy
tests (Fig. 4.7 in Section 4.7.2), and

(vi) comprehensive evaluations to investigate the impacts of hyper-parameters, such as F
in the combination methods and the scaling hyper-parameter Z in a softmax function
(Figs. 4.8 and 4.9 in Section 4.7.3), and

(vii) investigation of the distribution of FNV hash function (Fig. 4.11 in Section 4.7.4).

These additional experiments strongly support the usefulness of the proposed method.
The remainder of the paper is organized as follows. First, in Section 4.2, we introduce

the studies related to our proposed method. Next, we provide the definition of baseline con-
ventional neural word embeddings and describe the problem setting of our target task in Sec-
tion 4.3. Then, we present the proposed method in Section 4.4. We explain the three distinct

20

4.2 Related Work

settings of our experiments, (i) evaluation of the model shrinkage performance on standard
semantic meaning representations, (ii) evaluation of the performance on OOV words, and
(iii) evaluation of the performance of applying word embeddings to downstream tasks, in
Sections 4.5.1, 4.5.2, and 4.5.3, respectively. We report the results of our experiments in
Sections 4.6.1, 4.6.2 and 4.6.3. Finally, we present the analyses in Section 4.7.

4.2 Related Work
Researchers have often aimed to reduce the memory consumption of word embeddings in
the real world because a relatively large memory is required. Suzuki and Nagata (Suzuki
and Nagata, 2016) proposed a parameter reduction method for word embeddings that used
machine learning techniques. Our method can also be interpreted as a type of parameter
reduction method based on subword features. However, their method only considers model
shrinkage and does not utilize any subword information or consider the OOV issue.

The OOV word issue is a widely discussed topic in word embedding research that sev-
eral researchers have recently attempted to solve. For example, methods that leverage sub-
word information, such as character N-grams (including character unigrams) (Bojanowski
et al., 2017; Pinter et al., 2017; Zhao et al., 2018), and morphological features (Luong et al.,
2013), have recently been discussed as means of constructing word embeddings that con-
sider the applicability of OOV words. Moreover, SemLand (Pilehvar and Collier, 2017) and
ALIGN (Prokhorov et al., 2019) have been proposed, which induce OOV word embeddings
by leveraging external resources. Similar methods that estimate OOV word embeddings
by using an additional LSTM (Bahdanau et al., 2017) and leveraging a small additional
dataset (Herbelot and Baroni, 2017) have also been recently proposed.

Among these studies, the study most closely related to ours is that of Zhao et al. (Zhao
et al., 2018). Their basic idea is to reconstruct each pre-trained word embedding by using
bag-of-character N-grams. We refer to their method as “BoS.” The motivation for recon-
structing pre-trained word embeddings and utilizing character N-grams in our approach is
substantially the same; however, an essential difference from BoS is that we additionally
consider jointly reducing the total number of embedding vectors.

Another study with the same motivation and goal is that of Pinter et al. (Pinter et al.,
2017). Their method, referred to as MIMICK, utilizes only character information instead
of character N-grams by mixing it with a more sophisticated neural network, namely,
LSTM (Hochreiter and Schmidhuber, 1997). MIMICK can produce a more compact model
than the original word embeddings can. The important difference between their method and
ours is that our method only consists of subword embeddings, whereas their method con-

21

4.3 Reconstruction of Word Embeddings Using Subwords

sists of character embeddings and several transformation matrices for calculating LSTMs.
We compare their method with ours in our experiments and empirically show the effective-
ness of our approach.

Moreover, Bojanowski et al. (Bojanowski et al., 2017) proposed a method called
fastText, which also incorporates character N-gram embeddings in addition to word em-
beddings. However, they did not explicitly prove the effectiveness of OOV word embed-
dings. Thus, how well the combination of character N-grams can reconstruct appropriate
embeddings for OOV words remains unclear. In addition, their method trains word embed-
dings from a corpus, which is not a reconstruction setting discussed in this paper. Therefore,
we consider their method orthogonal to ours.

For neural language models (LMs), Labeau and Allauzen (Labeau and Allauzen, 2017)
investigated a setting: using full word embeddings for frequent words and character-based
embeddings for less frequent words. This setting can be viewed as simultaneously achieving
a smaller number of memory requirement and a higher applicability of OOV words. How-
ever, they did not explore the relation between memory requirement and the applicability
of OOV words, because the main purpose of their work was to investigate the effect on a
language model’s performance when using the subword embeddings in output layers of the
LMs.

In summary, in the context of obtaining word embeddings, no study has attempted to
simultaneously achieve a smaller number of embedding vectors and a higher applicability
of OOV words; thus, this paper is the first attempt to investigate how these two aims can be
simultaneously achieved.

Additionally, deep contextualized pre-trained LMs, such as ELMo (Peters et al., 2018a),
BERT (Devlin et al., 2019), and several variants of them have recently been proposed as alter-
natives to the pre-trained word embeddings to further improve task performances. However,
some pre-trained LMs, such as ELMo, continue to take advantage of pre-trained word em-
beddings to achieve their state-of-the-art performance. Moreover, up-to-date contextualized
embeddings have been demonstrated to be insufficient for handling rare words, and learning
embeddings specifically for rare words could still be beneficial (Schick and Schütze, 2020;
Schick and Schütze, 2020). This finding implies that pre-trained word embeddings can still
be combined with strong pre-trained LMs; thus, the importance of word embeddings in the
literature remains unchanged, although stronger pre-trained models have been established.

4.3 Reconstruction of Word Embeddings Using Subwords
In this section, we formally define the task we tackled in this paper.

22

4.3 Reconstruction of Word Embeddings Using Subwords

4.3.1 Notation Rules
We use the following notation rules unless otherwise specified.

1. A lower-case bold letter (e.g., v or e) represents a column vector.

2. An upper-case bold letter (e.g., V or E) represents a matrix.

3. An upper-case letter in calligraphy form (e.g., W or S) denotes a set.

4. A Greek letter (e.g., Φ or 𝜂) indicates a function.

5. A lower-case letter (e.g., z or i) denotes a scalar variable, index, or symbol.

6. An upper-case letter (e.g., C or H) indicates a scalar hyper-parameter.

7. The notation V[i] is introduced to represent the i-th column vector in the matrix V to
simplify the representation.

8. ‖v‖p represents the Lp-norm of the given vector v.

9. The absolute value of a set, such as |W| or |S|, indicates the number of instances in
the corresponding set.

4.3.2 Preliminaries
Words and their embedding

We define a mapping function 𝜁(⋅) from the word space to the corresponding index space as
follows:

𝜁(⋅) ∶ W → I|W|, (4.1)

where W is a set of words (vocabulary), and I|W| is a set of integers that represents the set
of indices of word embeddings. In this paper, we define that 𝜁(⋅) is a bijective function;
thus, each word has its own unique index between 1 and |W|. This also implies that the
relation |W| = |I|W|| always holds. Let ew be a D-dimensional embedding vector for the
word w ∈ W, and E ∈ ℝD×|I|W|| denotes an embedding matrix for all words in W. We then
assume that the following relation always holds between ew and E:

ew = E[i], where i = 𝜁(w). (4.2)

23

4.3 Reconstruction of Word Embeddings Using Subwords

Therefore, the i-th column vector in the matrix E represents the word embedding of the
corresponding word w that satisfies i = 𝜁(w).

Subwords and their embedding

Let S be a vocabulary for all pre-defined subwords obtained from the words inW. We assume
that the subwords are the character N-grams that appeared in w ∈ W. Similar to Eq. 4.1,
we also define a mapping function 𝜂(⋅) from the subword space to the corresponding index
space as follows:

𝜂(⋅) ∶ S → I|S|, (4.3)

where I|S| is a set of integers that represents the set of indices of subword embeddings. As
well as 𝜁(⋅) in Eq. 4.1, 𝜂(⋅) is generally defined as a bijective function.4 In this case, each
subword has its own unique index between 1 and |S|, and the relation |S| = |I|S|| always
holds. We also assume the following relation between vs and V:

vs = V[j], where j = 𝜂(s), (4.4)

where vs is aD-dimensional vector for the subword s ∈ S, andV ∈ ℝD×|I|S|| is an embedding
matrix for all subwords in S. Therefore, the j-th column vector in the matrix V represents
the subword embedding of the corresponding subword s that satisfies j = 𝜂(s).

Word to subword mapping

Let L represent a set of the lists that consists of s ∈ S. We then introduce a mapping function
𝜙(⋅) as follows:

𝜙(⋅) ∶ W → L. (4.5)

For example, if we specifically define S as all the character bi-grams appearing in w ∈ W,
then 𝜙(w), where w = “newer”, returns a list of seven distinct subword indices of “⟨w⟩n”,
“ne”, “ew”, “we”, “er”, and “r⟨/w⟩”, where “⟨w⟩” and “⟨/w⟩” are special characters that
represent the beginning and end of a word, respectively.

4We redefine 𝜂 as a surjective function in Section 4.4.2.

24

4.3 Reconstruction of Word Embeddings Using Subwords

4.3.3 Task Definition
Conceptually, we aim to reconstruct all the embeddings in E using V and a pre-defined
subword mixing function 𝜏(⋅). Formally, our reconstruction problem is represented as a
minimization problem of the following form:

V̂ = arg min
V

{Ψ(E, V, 𝜏)}, (4.6)

where Ψ(⋅) is the loss function used to calculate the total reconstruction loss between E and
V. In summary, our goal is to find V̂ for which the loss function Ψ(⋅) is minimized from a
machine learning perspective.

4.3.4 Baseline Method
Subword mixing function 𝜏(⋅)

The role of the function 𝜏(⋅) is to calculate an alternative embedding of the word embedding
ew using a list of subwords contained in the givenwordw. One of themost popular definitions
of 𝜏(⋅) is to simply sum all the obtained subwords as follows:

𝜏sum(V, w) = ∑
s∈𝜙(w)

vs. (4.7)

A subword mixing function of this form has been used in the previous methods, such as
fastText and BoS.

Loss function Ψ(⋅)

First, to improve readability, we introduce v̂w as an abbreviated notation of 𝜏(V, w), namely,

v̂w = 𝜏(V, w). (4.8)

Several choices are possible for the definition of the loss function Ψ(⋅). We consider using a
squared loss function, which can be written as the summation of the squared losses over an
individual embedding vector ew:

Ψ(E, V, 𝜏) = ∑
w∈W

Cw‖ew – v̂w‖
2
2, (4.9)

25

4.3 Reconstruction of Word Embeddings Using Subwords

Table 4.1 Statistics for each setting: The column “# of vecs” represents the number of em-
bedding vectors. “mem.” represents the memory requirement to store the vectors and the
indexes between words and their vectors. M denotes 1 million. We consider that a real value
requires 4 bytes of storage in the calculation of the memory requirement.

ID Setting # of vecs mem. (GB)
(a) original fastText.600B 2.0 M 2.3 GB
(b) char N-gram N = 1, 2, 3 0.2 M 0.2 GB
(c) N = 3, 4, 5, 6 6.2 M 7.0 GB
(d) N = 1 to 6 6.3 M 7.1 GB
(e) N = 1 to ∞ 24.9 M 28.1 GB

(f) original GloVe.840B 2.2 M 2.5 GB
(g) char N-gram N = 1, 2, 3 0.2 M 0.2 GB
(h) N = 3, 4, 5, 6 7.1 M 8.0 GB
(i) N = 1 to 6 7.1 M 8.0 GB
(j) N = 1 to ∞ 30.6 M 34.6 GB

where Cw is a logarithm of the frequency of word w in a corpus. Intuitively, Ψ(⋅) calculates
the weighted sum of the L2-norm distances between the reference vector ew and a vector
calculated by using the subword mixing function 𝜏(⋅).

4.3.5 Consideration of Memory Requirement
An important aspect to consider in our subword-based approach is the number of embedding
vectors. Table 4.1 presents the total number of embedding vectors and the total memory
requirement in several settings. The original fastText.600B word embeddings consist of
2 million words. Each word embedding is a D = 300 dimensional vector and thus requires
2.3 GB of storage (row (a)). Breaking these down into character N-grams allows for a
greater flexibility leading to the successful handling of OOV words, however, the memory
requirement greatly varies depending on N. For example, if we were to use every possible
character N-gram obtained from every word (row (e)), the memory requirement increases
to approximately 28 GB, which is too large for practical use. Therefore, finding a balanced
approach to technically reduce the memory requirement is crucial.

A fairly straightforward approach is to only use a range of smaller N-grams, such as
N = 1 to 3 (row (b)) or N = 3 to 6 (row (c)). However, a smaller subword setting (e.g.,
(b)) might lag behind the original word embeddings in terms of performance. The optimal
setting would therefore be when the number of vectors (i.e., the memory requirement) is
smaller than the original embeddings while maintaining a comparable performance to theirs.

26

4.4 Methods to Improve Performance

4.4 Methods to Improve Performance
To achieve the goal of a lower memory requirement while maintaining original performance,
we introduce several modifications to the baseline word embedding reconstruction approach
explained in Section 4.3. Basically, we enhance the mapping function 𝜂(⋅) and the subword
mixing function 𝜏(⋅).

4.4.1 Frequent Subwords
Instead of all possible subwords, we use the top-F frequent subwords that can be taken from
the words in vocabulary W. Let SF represent the set of the top-F frequent subwords (F =
|SF|), where SF ⊆ S. We define a new mapping function 𝜂F(⋅) as follows:

𝜂F(⋅) ∶SF → IF. (4.10)

Hereafter, we assume that S is substituted by SF whenwe calculate 𝜙(⋅) for 𝜂F(⋅). This means
that 𝜙(⋅), which is a word to subword mapping, returns only the top-F frequent subwords.

4.4.2 Memory Sharing
In the baseline method, we assume that the mapping function 𝜂(⋅) is a bijective function as
described in Section 4.3.2. Again, this means that each subword has its own unique subword
index. We modify 𝜂(⋅) to a surjective function by introducing the following new mapping
function 𝜂H(⋅) as a replacement for 𝜂(⋅) in Eq. 4.3:

𝜂H(⋅) ∶S → IH. (4.11)

Here, we assume H < |S|. This mapping function 𝜂H(⋅) implies that each subword is mapped
to an index, but the index is not unique and may be shared with other subwords. Therefore,
the number of subword embeddings can also be reduced to H by sharing the embeddings;
thus, the subword embedding matrix V can also be reduced from V ∈ ℝD×|S| to V ∈ ℝD×H.
If we assume the relation H ≪ |S|, we can greatly reduce the total embedding size.

Despite the several possible choices for the definition of the mapping function 𝜂H(⋅), we
use a hash function which takes a string and returns a random integer from uniform distri-
bution. We simply consider the remainder of a hash value divided by H as an index of a
subword. Thus, subword embeddings are randomly shared over the subwords. Our models
optimize their embedding parameters so that the collisions are well tolerated. An advantage
of using simple hash functions is that an external mapping structure is not required for every

27

4.4 Methods to Improve Performance

Figure 4.1 Intuitive idea for the combination of frequent subwords and memory-shared em-
beddings.

(subword, subword index) pair, which also matches our goal of reducing the memory require-
ment in actual use cases. Specifically, following a previous study, FastText (Bojanowski
et al., 2017), we use a Fowler–Noll–Vo (FNV)5 hash function.

4.4.3 Combination of Frequent Subwords and Memory Sharing
𝜂F(⋅) and 𝜂H(⋅) can also be combined step by step. We first reduce the subword vocabulary S
to the top-F frequent subwords SF as described in Section 4.4.1. We then apply our memory
sharing method to only SF, in contrast to applying it to S in Section 4.4.2. Here, we define
a new mapping function 𝜂FH(⋅) as follows:

𝜂FH(⋅) ∶SF → IH. (4.12)
5http://www.isthe.com/chongo/tech/comp/fnv/index.html

28

http://www.isthe.com/chongo/tech/comp/fnv/index.html

4.4 Methods to Improve Performance

Figure 4.2 Comparison of using single hash function (Fig. 4.1) with the multiple hash func-
tion case. This figure shows the case when P (the number of hash functions) is set to 2.

Similar to 𝜂F(⋅), we use SF to calculate 𝜙(⋅) for 𝜂FH(⋅) instead of S. Moreover, we assume
F ≥ H. Note that Eq. 4.12 becomes identical to Eq. 4.11, Eq. 4.10, and Eq. 4.3 if we set
F = |S|, H = |SF|, and H = F = |S|, respectively. An intuitive idea for the combination of
frequent subwords and memory-shared embeddings is illustrated in Fig. 4.1.

4.4.4 Attention Operation

29

4.4 Methods to Improve Performance

Fi
gu

re
4.
3
Ill

us
tra

tio
n
of

ho
w

ou
rK

VQ
se
lf-

att
en

tio
n
op

er
ati

on
ca

lcu
lat

es
ea

ch
wo

rd
em

be
dd

in
g.

Th
is

ex
am

pl
es

ho
ws

ap
ro
ce

ss
of

ob
tai

ni
ng

a
wo

rd
em

be
dd

in
g
fo
ra

wo
rd

“n
ew

er
”
by

us
in
g
th
e
KV

Q
se
lf-

att
en

tio
n
op

er
ati

on
.F

irs
t,
we

in
pu

tt
he

wo
rd

“n
ew

er
”
in
to

𝜙(
⋅),

aw
or
dt

os
ub

wo
rd

m
ap

pi
ng

fu
nc

tio
n,

to
ob

tai
nt

he
su

bw
or
ds

of
“n

ew
er
”(

gr
ee

nb
ox

).
Ne

xt
,w

eu
se

m
ap

pi
ng

fu
nc

tio
ns

,e
.g
.,𝜂

(⋅)
,

to
ob

tai
n
th
ei

nd
ex

es
of

th
os

es
ub

wo
rd
sa

nd
pi
ck

th
ec

or
re
sp

on
di
ng

em
be

dd
in
gs

(b
lu
et

ab
le)

.N
ex

t,
we

ca
lcu

lat
ee

ac
h
we

ig
ht

𝛼
us

in
g

th
eq

ue
ry

an
dk

ey
em

be
dd

in
gs

an
dt

he
nc

alc
ul
ate

th
ew

eig
ht
ed

su
m

of
th
ev

alu
ee

m
be

dd
in
gs

(g
ra
yb

ox
)t
oo

bt
ain

th
efi

na
le

m
be

dd
in
g

of
“n

ew
er.

”

30

4.4 Methods to Improve Performance

Previous methods such as fastText and BoS treat 𝜏(V, w) as a summation of all subword
embeddings described by Eq. 4.7. However, the summation is less expressive and might
not have capability in a memory-sharing setting because subwords share their embeddings
randomly. One possible improvement is to handle the importance of each subword based on a
givenword during the calculation of Φ(V, w). A simple approach to realize this improvement
is to incorporate a “context-dependent” weighting factor for each subword in a given word.

Thus, we consider the following subword mixing function:

𝜏kvq(V, w) = ∑
s∈𝜙(w)

as,wvs, (4.13)

where as,w represents a context-dependent weighting factor of the subword s, where the “con-
text” means all the subwords obtained from 𝜙(w).

To calculate as,w, we first introduce ks and qs, which are defined similarly to vs in Eq. 4.4,
namely,

ks = V[m], where m = 𝜇FH(s), (4.14)

and

qs = V[n], where n = 𝜈FH(s). (4.15)

Similar to 𝜂FH(⋅) in Eq. 4.12, 𝜇FH(⋅) and 𝜈FH(⋅) are two distinct mapping functions that
map a given subword s into a subword index. Next, we introduce a key-value-query (KVQ)
self-attention operation inspired by Transformer (Vaswani et al., 2017):

as,w = exp(Zq̂ ⋅ ks)
∑s′∈𝜙(w) exp(Zq̂ ⋅ ks′) , (4.16)

q̂ = ∑
s∈𝜙(w)

qs, (4.17)

whereZ is a scaling hyper-parameter. Overall, Fig. 4.3 illustrates how ourKVQ self-attention
operation calculates each word embedding.

4.4.5 Incorporating Multiple Hash Functions
We can further enhance the memory-sharing method by introducing multiple hash functions.
Let P be the number of distinct hash functions. We can, for example, straightforwardly

31

4.4 Methods to Improve Performance

Table 4.2 Evaluation datasets used in our experiments.

data number of OOV data
abbre. size fastText.600B GloVe.840B
Word similarity estimation (WordSim)
MEN (Bruni et al., 2014) 3,000 0 0
M&C (Miller and Charles, 1991) 30 0 0
MTurk (Radinsky et al., 2011) 287 0 0
RW (Luong et al., 2013) 2,034 37 36
R&G (Rubenstein and Goodenough, 1965) 65 0 0
SCWS (Huang et al., 2012) 2,003 2 2
SLex (Hill et al., 2014) 998 0 0
WSR (Agirre et al., 2009) 252 0 0
WSS (Agirre et al., 2009) 203 0 0
Word analogy estimation (Analogy)
GL (Mikolov et al., 2013a) 19,544 0 0
MSYN (Mikolov et al., 2013d) 8,000 1000 1000

prepare P distinct hash functions, without changing any hash algorithm, by introducing P
different random seeds when we calculate the hash functions.

An advantage of introducing multiple hash functions is that we can significantly reduce
the probability of assigning an identical index set to multiple subwords. For instance, if we
suppose that each hash function returns a fully random index given an input s, the probability
of assigning a certain index set can be estimated as (1/H)P. Therefore, a larger P may
alleviate the negative effect of hash collision.

To incorporate multiple hash functions into our method, we reformulate some equations
by adding an index p, where 1 ≤ p ≤ P. to several components. First, we substitute as,w,
vs, ks qs with as,w,p, vs,p, ks,p, and qs,p, respectively. Second, we add another summation of
p inside the summation of s ∈ 𝜙(w) in Eqs. 4.13, 4.16, and 4.17. For example, Eq. 4.13 is
reformulated to the following equation for utilizing a multiple hash function case:

𝜏kvq(V, w) = ∑
s∈𝜙(w)

∑
1≤p≤P

as,w,pvs,p, (4.18)

Third, we introduce 𝜂FH,p(⋅), 𝜇FH,p(⋅) and 𝜈FH,p(⋅) as the proxy of 𝜂FH(⋅) in Eq. 4.12, 𝜇FH(⋅)
in Eq. 4.14, and 𝜈FH(⋅) in Eq. 4.15, respectively, to explicitly distinct P hash functions. For
example, Eq. 4.14 is rewritten as follows:

ks,p = V[m], where m = 𝜇FH,p(s), (4.19)

32

4.5 Experimental Settings

Table 4.3 Model and training settings of the model shrinkage experiments.

Model Word embedding (dimension) D = 300
setting Scaling parameter in Eq. 4.16 Z = √D
Training Optimizer Adam
setting Options of Adam 𝛼 = 0.0001

𝛽1 = 0.9
𝛽2 = 0.999

𝜖 = 1 × 10–8

Mini-batch size 200
of epochs 300

Fig. 4.2 illustrates the case of using multiple hash functions for 𝜂FH,p(⋅). The difference
between single and multiple hash function cases is found by comparing Figs. 4.1 and 4.2.

It is worth noting here that there is a limitation for increasing P; as the number of hash
functions increases, so does the possibility of collisions; i.e., the total amount of subwords
being mapped to the samememory segment. Thus, we need to explore the appropriate P that
balances the positive effect (increasing distinguishability of each subword) and the negative
effect (increasing the collision probability) of increasing the number of hash functions.

4.5 Experimental Settings
We analyze the benefits of our method by using three sets of experiments: model shrinkage,
OOV word embeddings, and downstream tasks. The model shrinkage experiments demon-
strate how our models reduce the memory requirement while maintaining the original perfor-
mance. The OOV word embedding experiments confirm that our learned embeddings can
be applied to OOV words. The experiments on downstream tasks confirm that our reduced
embeddings can still be useful for real-world applications through extrinsic evaluation tasks
such as named entity recognition (NER) and textual entailment (TE). The following sections
contain detailed descriptions of the experimental settings for each set of experiments.

4.5.1 Model Shrinkage
We compare five distinct settings of subword-based reconstruction of word embeddings:

1. SUM-F: Select 𝜂F(⋅) in Eq. 4.10 (Section 4.4.1) for the subword mapping function
and 𝜏sum(⋅) in Eq. 4.7 for the subword mixing function.

33

4.5 Experimental Settings

2. SUM-H: As in the first setting but substitute 𝜂F(⋅) with 𝜂H(⋅) in Eq. 4.11 (Sec-
tion 4.4.2).

3. KVQ-H: As in the second setting but substitute 𝜏sum(⋅) in Eq. 4.7 with 𝜏kvq(V, w) in
Eq. 4.13 (Section 4.4.4).

4. SUM-FH: As in the second setting but substitute 𝜂H(⋅) with 𝜂FH(⋅) in Eq. 4.12 (Sec-
tion 4.4.3).

5. KVQ-FH: As in the third setting but substitute 𝜂H(⋅) with 𝜂FH(⋅) in Eq. 4.12 (Sec-
tion 4.4.3).

Each setting is tested on well-studied linguistic benchmark tasks, namely, nine for word
similarity (WordSim) tasks and two for word analogy (Analogy) tasks. The evaluation
datasets used in our experiments are summarized in Table 4.2. A unit of data is a pair of
words whose similarity needs to be measured in the WordSim test; by contrast, in the Anal-
ogy test, a sample consists of a list of four words, e.g., [‘king’,‘queen’,‘man’,‘woman’
]. We call such samples that contain at least one OOV word as “OOV data”.

Following the standard evaluation criteria used in previous studies, we discard OOV data
in the evaluation datasets.

Although our models can calculate OOV word embeddings, we enforce this restriction
for a fair comparison to the original (word-based) word embeddings.

For the reconstruction target, namely E in Eq. 4.2, we select fastText.600B or
GloVe.840B. Note that fastText.600B achieved state-of-the-art performance on theWord-
Sim and Analogy datasets (Bojanowski et al., 2017). The hyper-parameters D = 300 and
|W| are automatically obtained from the properties of fastText.600B and GloVe.840B.
For Cw in Eq. 4.9, we utilize the occurrence information calculated from a large external
corpus. We apply a function that returns a set of all the character N-grams, where N = 3 to
30, of a given word as the subword mapping function 𝜙(⋅) defined in Eq. 4.5. The remaining
hyper-parameters are presented in Table 4.3.

Additionally, as preliminary experiments of the hyper-parameter search, we explore the
optimal P for each memory-shared method, namely, SUM-H, KVQ-H, SUM-FH and KVQ-FH,
individually and independently from the range of [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Here we select
a single P per method. This means that we use the selected P regardless of the shared
memory size H, tasks such as WordSim, and the vector types such as fastText.600B.

34

4.5 Experimental Settings

Concretely, we calculate overall performances of models among various Hs and tasks
(WordSim and Analogy) as follows:

Up
overall =

Up
WordSim + Up

Analogy

2 , (4.20)

Up
WordSim =

∑h∈H Up,h
WordSim

|H|
, Up

Analogy =
∑h∈H Up,h

Analogy

|H|
, (4.21)

where H = {0.2M, 0.3M, 0.4M, 0.5M}, a set of the size H for memory sharing. Up,h is the
evaluation score of each method that is normalized in the range of [0,1]. To obtain a vector-
independent P, we first compute Up

overall for fastText.600B and Up
overall for GloVe.840B,

respectively, and then average them. Here, we assume that such preliminary experiments are
the development set for the P selection. We select the P with which a model has the best
overall performance. We use the obtained Ps in the remaining OOV (Section 4.5.2, 4.6.2)
and downstream tasks (Section 4.5.3, 4.6.3).

4.5.2 OOVWord Embeddings
As demonstrated in Table 4.2, the numbers of OOV problems for fastText.600B and
GloVe.840B is very small because their vocabulary sizes exceed 2 million words; more-
over, the words contained in the evaluation datasets tend to be “non-rare words” in general.
Therefore, it is difficult to precisely evaluate the effectiveness of the estimation of OOVword
embeddings. To overcome this issue, we conduct a synthetic OOV experiment in addition
to non-synthetic ones from previous studies.

Synthetic OOV experiment

In a synthetic OOV experiment, we artificially form OOV words in the reconstruction prob-
lem, namely, we discard the words in the evaluation datasets from the vocabulary W for
training. We suppose that (wa

i , wb
i) represents the i-th evaluation instance of a WordSim

dataset that consists of a word pair wa
i and wb

i . Next, we let D be the WordSim dataset, that
is, (wa

i , wb
i) ∈ D. We build a word set Wb by extracting one word from each evaluation

instance, namely, Wb = {wb
i |(wa

i , wb
i) ∈ D, 1 ≤ i ≤ |D|}. Next, we eliminate the word

embeddings corresponding to the words in Wb from the reconstruction target embeddings
such as fastText.600B. As a result, we obtain a subset of embeddings and use them as
the target embeddings of our reconstruction strategy instead of the original ones. We can

35

4.5 Experimental Settings

Table 4.4 Statistics for our methods.

method F H |W| |S| size (GB)
fastText.600B 2M – 2.26GB
SUM-F 0.5M - 2M 0.5M 0.59GB
SUM-H - 0.5M 2M 24.9M 0.59GB
KVQ-H - 0.5M 2M 24.9M 0.59GB
SUM-FH 1.0M 0.5M 2M 1.0M 0.59GB
KVQ-FH 1.0M 0.5M 2M 1.0M 0.59GB
SUM-F 0.2M - 2M 0.2M 0.23GB
SUM-H - 0.2M 2M 24.9M 0.23GB
KVQ-H - 0.2M 2M 24.9M 0.23GB
SUM-FH 1.0M 0.2M 2M 1.0M 0.23GB
KVQ-FH 1.0M 0.2M 2M 1.0M 0.23GB

method F H |W| |S| size (GB)
GloVe.840B 2.2M – 2.48GB
SUM-F 0.5M - 2.2M 0.5M 0.59GB
SUM-H - 0.5M 2.2M 30.6M 0.59GB
KVQ-H - 0.5M 2.2M 30.6M 0.59GB
SUM-FH 1.0M 0.5M 2.2M 1.0M 0.59GB
KVQ-FH 1.0M 0.5M 2.2M 1.0M 0.59GB
SUM-F 0.2M - 2.2M 0.2M 0.23GB
SUM-H - 0.2M 2.2M 30.6M 0.23GB
KVQ-H - 0.2M 2.2M 30.6M 0.23GB
SUM-FH 1.0M 0.2M 2.2M 1.0M 0.23GB
KVQ-FH 1.0M 0.2M 2.2M 1.0M 0.23GB

consider the words in Wb to be synthetic OOV words because our models do not see the
embeddings corresponding to the words in Wb in the training phase. Also, we process the
datasets of word analogy tasks in the same manner. Thus, all the problems in the evaluation
datasets become OOV problems. In other words, the amount of OOV data in Table 4.2 in
this setting always equals the amount of evaluation data, such as 2034 for RW. Here we used
the same experimental settings as in Section 4.5.1 unless otherwise specified.

Comparison with previous studies

As discussed in Section 4.2, several closely related methods have also been used in attempts
to solve the OOV word issue, such as MIMICK and BoS. To directly compare our approach
with these methods, we strictly follow the experimental settings described in the previous
study (Zhao et al., 2018) and compare the performance under fair conditions. In the evalu-

36

4.5 Experimental Settings

ation setting, the OOV word performance is evaluated over RW (Table 4.2), where all the
words appearing in RW were included as the evaluation data, in contrast to discarding the
OOV data in Section 4.5.1.

The target word embeddings for the reconstruction were the embeddings trained on
Google News with 100 billion tokens6 that were pre-cleaned by the previous study (Zhao
et al., 2018). The resultant embeddings consist of 0.16M lower-cased word embeddings.
We compare our approach with the following related methods:

1. Random: the performance when random vectors are used for OOV words.

2. MIMICK7 (Pinter et al., 2017).

3. BoS8 (Zhao et al., 2018).

For our reconstruction model, the shared memory size H was set to 0.04M because the
vocabulary of this setting is relatively small compared with that in our experiments, namely,
2M vs 0.16M. For the other settings, for example, subword mapping function 𝜙(⋅), we use
the same settings as in Section 4.5.1.

6https://code.google.com/archive/p/word2vec/
7https://github.com/yuvalpinter/Mimick
8https://github.com/jmzhao

37

https://code.google.com/archive/p/word2vec/
https://github.com/yuvalpinter/Mimick
https://github.com/jmzhao

4.5 Experimental Settings

Figure 4.4 Overall performance/P curves for each memory-shared method. The x-axis repre-
sents the number of hash functionsP; the y-axis represents the overall performance evaluated
over WordSim and Analogy.

38

4.5 Experimental Settings

(a) fastText.600B

(b) GloVe.840B

Figure 4.5 Performance/model size curves for WordSim when using fastText.600B and
GloVe.840B as the reconstruction target. The x-axis represents the number of subword em-
beddings. The y-axis represents the performance evaluated by the macro-average of Spear-
man’s rho.

39

4.5 Experimental Settings

Ta
bl
e4

.5
Re

su
lts

of
m
od

el
sh

rin
ka

ge
ex

pe
rim

en
ts

by
re
co

ns
tru

cti
ng

th
ef

as
tT

ex
t.

60
0B

(b
ef
or
et

he
sla

sh
)o

rG
lo

Ve
.8

40
B
(a
fte

rt
he

sla
sh

)e
m
be

dd
in
gs

.E
ac
hd

ata
se
ti
nW

or
dS

im
wa

se
va

lu
ate

db
yS

pe
ar
m
an

’s
rh
o.

“M
ac

ro
”r

ep
re
se
nt
st
he

m
ac

ro
-a
ve

ra
ge

of
Sp

ea
rm

an
’s

rh
o
ov

er
all

W
or
dS

im
da

tas
ets

.

m
eth

od
F

H
P

M
EN

M
C

M
Tu

rk
RW

R&
G

SC
W

S
Sl
ex

W
SR

W
SS

M
ac

ro
Or

g.
-

-
-

.8
15

/.8
05

.8
50

/.7
88

.7
35

/.6
93

.5
72

/.4
62

.8
71

/.7
69

.6
84

/.6
32

.4
71

/.4
08

.6
40

/.6
88

.8
35

/.8
03

.7
19

/.6
72

SU
M-

F
0.
5M

-
-

.7
68

/.7
84

.8
29

/.7
50

.7
46

/.6
84

.5
66

/.5
08

.8
17

/.6
96

.6
68

/.6
39

.4
02

/.4
21

.5
78

/.6
48

.8
06

/.7
67

.6
87

/.6
55

SU
M-

H
-

0.
5M

5
.7
51

/.8
08

.85
2/
.7
55

.7
11

/.7
20

.5
28

/.4
74

.8
37

/.7
35

.6
59

/.6
23

.3
75

/.4
12

.5
53

/.6
75

.8
04

/.7
77

.6
74

/.6
64

KV
Q-

H
-

0.
5M

6
.8
02

/.7
85

.8
42

/.7
75

.7
42

/.6
75

.5
48

/.4
73

.8
28

/.7
67

.6
80

/.6
06

.4
42

/.3
84

.6
14

/.6
05

.8
11

/.7
76

.7
01

/.6
50

SU
M-

FH
1.
0M

0.
5M

4
.7
74

/.8
12

.7
89

/.7
41

.7
47

/.6
93

.5
66

/.5
04

.8
11

/.7
40

.6
59

/.6
44

.3
97

/.4
22

.5
85

/.6
52

.8
05

/.7
75

.6
82

/.6
65

KV
Q-

FH
1.
0M

0.
5M

4
.80

6/
.7
85

.8
40

/.7
22

.7
50

/.6
74

.5
73

/.4
71

.85
4/
.7
20

.68
9/
.6
13

.4
35

/.3
98

.6
34

/.5
51

.82
9/
.7
35

.71
2/
.6
30

SU
M-

F
0.
2M

-
-

.7
31

/.7
26

.8
09

/.7
03

.7
10

/.6
59

.5
26

/.4
84

.7
77

/.6
29

.6
42

/.6
13

.3
69

/.3
87

.4
82

/.5
77

.7
62

/.7
40

.6
45

/.6
13

SU
M-

H
-

0.
2M

5
.6
77

/.7
40

.7
83

/.8
26

.6
79

/.6
58

.4
80

/.4
41

.7
35

/.7
25

.6
14

/.5
94

.3
12

/.3
52

.4
05

/.5
55

.7
60

/.7
50

.6
05

/.6
27

KV
Q-

H
-

0.
2M

6
.7
36

/.7
02

.83
9/
.7
61

.6
79

/.5
72

.4
98

/.4
30

.8
14

/.7
16

.6
58

/.5
60

.3
89

/.3
31

.5
01

/.4
50

.7
52

/.6
45

.6
52

/.5
74

SU
M-

FH
1.
0M

0.
2M

4
.7
20

/.7
80

.7
82

/.7
96

.72
8/
.71

6
.5
18

/.5
04

.7
82

/.7
05

.6
35

/.6
31

.3
36

/.3
92

.4
87

/.6
35

.7
78

/.7
84

.6
41

/.6
60

KV
Q-

FH
1.
0M

0.
2M

4
.76

3/
.7
38

.8
20

/.7
83

.7
28

/.6
14

.5
40

/.4
66

.81
6/
.75

9
.66

4/
.5
84

.3
86

/.3
40

.5
45

/.5
64

.79
6/
.7
06

.67
3/
.6
17

40

4.6 Results

4.5.3 Downstream Tasks
For the evaluation of downstream tasks, we use the CoNLL-2003 dataset (Tjong Kim Sang
andDeMeulder, 2003) for the NER experiment and the StanfordNatural Language Inference
(SNLI) dataset (Bowman et al., 2015) for the TE experiment.

We compare the performance of our reconstruction models obtained in the model shrink-
age experiments (Section 4.5.1) with the performance of original word embeddings, namely,
fastText.600B and GloVe.840B. For our reconstruction models, we calculate the embed-
dings of all the words in the datasets; thus, there are no OOVwords when using our methods.

We use AllenNLP9 to train the base NER and TE models. Specifically, in the NER
experiments, the base NER model consists of a word embedding layer, character embedding
with CNN layer, two bidirectional LSTM layers, and a conditional random field layer. In the
TE experiments, the base TEmodel is the ESIM sequence model (Chen et al., 2017) which is
composed of a biLSTM to encode the premise and hypothesis, followed by a matrix attention
layer, a local inference layer, another biLSTM inference composition layer, a pooling layer
and a final output layer. Table 4.9 shows the hyper-parameters of model and training settings,
respectively, whose values are obtained from the recommended (default) values of each task
implemented in the AllenNLP tool.

We also introduce one hyper-parameter K to rescale the embeddings (i.e., all the ele-
ments in the embeddings were multiplied by K) because we learned that the rescaling might
significantly affect the overall performance of downstream tasks in certain situations. We
search K from [1, 5, 10, 20, 50, 100] on the validation set of each dataset.

4.6 Results

4.6.1 Model Shrinkage
Fig. 4.4 shows the results of the preliminary experiments, namely, the overall performance/P
curves. According to the results, we obtain the best overall performance at P = 5 for SUM-H,
P = 6 for KVQ-H, P = 4 for SUM-FH and P = 4 for KVQ-FH. We use the selected Ps for our
methods in all the remaining experiments.

Fig. 4.5 shows the performance/model size (or performance/number of embedding vec-
tors) curves for WordSim. Table 4.4 shows the statistics of each setting. Table 4.5 shows the
detailed result for each dataset. These results demonstrate that

9https://allennlp.org/

41

https://allennlp.org/

4.6 Results

A-i) when reconstructing fastText.600B, we observed a consistent tendency that the
methods using KVQ obtained a better performance than the methods using SUM;

A-ii) when reconstructing GloVe.840B, we observed that KVQ showed no improvement
in performance compared with SUM; and

A-iii) for some datasets, we observed that our reconstruction methods achieved the perfor-
mance of the original word embeddings such as fastText.600B or GloVe.840B
when H = 0.5M.

Fig. 4.6 shows the performance/model size (or performance/number of embedding vec-
tors) curves for Analogy. Table 4.6 shows the detailed result of the Analogy experiments for
each dataset. These results demonstrate that

A-iv) the methods using KVQ obtained better results than the methods using SUM in most
cases, and

A-v) notably, KVQ-H significantly outperformed SUM-F and SUM-FH bymore than 10 points
in terms of the micro-average accuracy of all Analogy datasets when H = 0.5M.

Based on result A-iii, our methods with H = 0.5M successfully reduced the model size
nearly fourfold compared with the original word embeddings while maintaining the original
performance.

4.6.2 Experiments of OOVWord Embeddings
Table 4.7 shows the results of the synthetic OOV word experiments. The results indicate
that

B-i) the performance of the Random baseline was nearly zero on the WordSim and exactly
zero on the Analogy datasets; and

B-ii) the performances of KVQ-FH were significantly improved compared with that of
Random, by 38–52 points on WordSim and by 7–28 points on Analogy.

Table 4.8 shows the results of nonsynthetic OOV word experiments to compare our method
with previous studies.

We observed that

B-iii) KVQ-FH outperformed BoS, the previous state-of-the-art method, with substantial im-
provements by 6 points; and

42

4.6 Results

Table 4.6 Results of model shrinkage experiments by reconstructing the fastText.600B
(before the slash) or GloVe.840B (after the slash) embeddings. Each dataset in Analogy was
evaluated by accuracy. “Micro” represents the micro-average of accuracy over all Analogy
datasets.

method F H P GL MSYN Micro
Org. - - - 84.9 / 82.3 87.8 / 80.7 85.6 / 81.9
SUM-F 0.5M - - 53.3 / 34.6 71.2 / 45.4 58.0 / 37.5
SUM-H - 0.5M 5 65.1 / 63.8 83.6 / 71.9 70.0 / 66.0
KVQ-H - 0.5M 6 77.1 / 68.3 86.6 / 69.6 79.6 / 68.6
SUM-FH 1.0M 0.5M 4 58.3 / 50.5 76.5 / 57.4 63.1 / 52.3
KVQ-FH 1.0M 0.5M 4 73.0 / 66.0 83.1 / 67.8 75.7 / 66.5
SUM-F 0.2M - - 40.3 / 26.1 66.2 / 42.1 47.2 / 30.3
SUM-H - 0.2M 5 42.2 / 38.8 70.8 / 56.5 49.8 / 43.4
KVQ-H - 0.2M 6 48.1 / 40.8 74.8 / 59.3 55.2 / 45.7
SUM-FH 1.0M 0.2M 4 39.9 / 32.5 65.7 / 48.7 46.7 / 36.8
KVQ-FH 1.0M 0.2M 4 47.8 / 42.6 72.2 / 59.5 54.2 / 47.1

Table 4.7 Results of (synthetic) OOV word experiments on WordSim and Analogy by re-
constructing the fastText.600B (before the slash) or GloVe.840B (after the slash) embed-
dings. Performance was evaluated by Spearman’s rho or accuracy.

method F H P WordSim Analogy
Random - - - .110 / .036 0.0 / 0.0
KVQ-FH 1.0M 0.5M 4 .629 / .411 26.3 / 7.1
KVQ-FH 1.0M 0.2M 4 .620 / .465 27.8 / 8.3

B-iv) KVQ-FH achieved the highest performance in this comparison.

The result B-i means that we observe no correlation between the Random and human-
annotated scores, which is a reasonable observation because OOV words are always con-
tained in the evaluation WordSim/Analogy data, that is, a pair of two words/a list of four
words. Random provides random vectors for the OOV words, thus we expect the problems to
be unsolvable. Despite this difficult situation, KVQ-FH has large gains in performance from
Random (B-ii), indicating that KVQ-FH successfully predicted the OOV word embeddings.

In the nonsynthetic experiments, the previous studies had little improvement from
Random. However, KVQ-FH has substantially improved the performance compared with the
ones of the Random and the previous methods (B-iii, B-iv).

43

4.6 Results

Table 4.8 Results of OOV experiments on the Stanford Rare Word dataset. * indicates the
values reported by Zhao et al. (Zhao et al., 2018). Note that fastText learned subword
embeddings from an English Wikipedia dump because this method is not a reconstruction
method.

method F H P |W| |S| RW
Random - - - 0.16M - .452
MIMICK (Pinter et al., 2017) - - - 0.16M <1K .201
BoS (Zhao et al., 2018) - - - 0.16M 0.53M .46*
KVQ-FH 0.50M 0.04M 4 0.16M 0.50M .521
fastText (Bojanowski et al., 2017) - - - 0.16M 0.53M .48*

Table 4.9 Model and training settings of the NER and TE experiments.

NER TE
Model Word embedding layer (dimension) 300
setting Character embedding layer (dimension) 16 —

w/ CNN (kernel size) 3 —
(filter size) 128 —

Hidden state (dimension) 200 300
Training Optimizer Adam
setting Mini-batch size 64 32

Dropout rate 0.5

4.6.3 Evaluation on Downstream Tasks
To investigate the effectiveness of our reconstructed embeddings in downstream tasks, we
evaluated them in the NER and TE tasks. Tables 4.10 and 4.11 show a comparison between
the original (large) embeddings and our reconstructed (small) embeddings. We observed
that

C-i) when H = 0.5M, the performances of our reconstructed embeddings are equivalent
to or even better than those of the original embeddings; and

C-ii) when H = 0.2M, the performances of our reconstructed embeddings are comparable
to them.

We could have been surprised by such comparable (or possibly improved) results for KVQ-FH
because the model sizes of KVQ-FH were relatively very small compared with the original
embeddings. However, we consider that this observation might be reasonable because our
method additionally provided the embeddings of OOV words that cannot be handled by the
original embeddings. Actually, we confirmed that the OOV rates for the fastText.600B
vocabulary are 12.8% in NER and 11.9% in TE tasks. For the GloVe.840B vocabulary, the
OOV rates are 11.4% in NER and 11.9% in TE tasks.

44

4.7 Analysis

Table 4.10 Results of the NER experiments on the CoNLL-2003 dataset.

method F H P K size (GB) F1
fastText.600B - - - 20 2.26GB 90.3
KVQ-FH 1.0M 0.5M 4 100 0.59GB 89.9
KVQ-FH 1.0M 0.2M 4 50 0.23GB 89.4
GloVe.840B - - - 10 2.48GB 90.8
KVQ-FH 1.0M 0.5M 4 100 0.59GB 90.9
KVQ-FH 1.0M 0.2M 4 100 0.23GB 90.4

Table 4.11 Results of the TE experiments on the SNLI dataset.

method F H P K size (GB) Acc
fastText.600B - - - 10 2.23GB 87.8
KVQ-FH 1.0M 0.5M 4 10 0.59GB 87.5
KVQ-FH 1.0M 0.2M 4 20 0.23GB 87.6
GloVe.840B - - - 1 2.45GB 88.3
KVQ-FH 1.0M 0.5M 4 10 0.59GB 87.6
KVQ-FH 1.0M 0.2M 4 10 0.23GB 87.3

4.7 Analysis
To deeply understand our models, we conduct the following four analyses:

• Calculation speed analysis

• Syntactic and semantic Analogy tests

• An investigation of the impact of hyper-parameter selection

• An investigation of the distribution of FNV hash function

4.7.1 Calculation Speed
Models should quickly calculate word embeddings for real-world applications that require
immediacy, such as a real-time translation system. We investigate the difference in calcu-
lation speed between SUM-FH and KVQ-FH. To achieve this objective, we calculate the time
required to compute word embeddings from subword embeddings by using each operation
(Table 4.12). The speed is slower when using a larger P because preparing the indexes of
subword vectors takes more time in using multiple hash functions. When P = 1, SUM-FH
and KVQ-FH took 3.6 × 10–4 and 7.5 × 10–4 seconds per word, respectively, namely, KVQ
took 2.1 times longer than SUM. However, the calculation speed per word is sufficiently
high, for example, at most, KVQ-FH with P = 10 took 4.4 × 10–3 seconds per word. This can

45

4.7 Analysis

Table 4.12 Calculation speed (in seconds) of SUM-FH and KVQ-FH. P is the number of hash
functions used in our memory sharing method (mentioned in Section 3.3.2).

P SUM-FH KVQ-FH
1 3.6 × 10–4 7.5 × 10–4

2 6.2 × 10–4 1.4 × 10–3

3 9.0 × 10–4 2.1 × 10–3

5 1.4 × 10–3 2.9 × 10–3

10 2.6 × 10–3 4.4 × 10–3

be negligible in real applications because other operations such as calculating deep neural
networks may take much longer.

4.7.2 Syntactic and Semantic Tests on Analogy
The questions in Google’s analogy dataset (Mikolov et al., 2013a) can be split into two types,
namely, semantic and syntactic test sets. We also used these categorized test sets to exam-
ine the model’s behavior in the Analogy evaluation. The semantic tests consist of questions
assessing whether models can catch semantic relationships between words, e.g., “France”
is to “Paris” as “Germany” is to “Berlin”. On the other hand, the syntactic tests consist of
questions about syntactic relationships, e.g., “small” is to “smallest” as “big” is to “biggest”.
In this analysis, we used models with H = 0.5M trained by reconstructing fastText.600B.
For KVQ models, we used KVQ-H with P = 6 and KVQ-FH with P = 4. Fig. 4.7 shows
the model performances on the categorized Analogy datasets. Orange lines show the perfor-
mances of SUM; green lines show the performances of KVQ. Although the SUM models
and the KVQmodels had comparable performances on the syntactic test sets, the SUMmod-
els had poor performances on the semantic test sets. We posit that the syntactic tests can be
answered by using partial information from word’s suffixes, but the semantic tests require
the models to be more expressive.

4.7.3 Impact of Hyper-parameter Selection
We investigated the impact of the hyper-parameter selection of each component in our
method. Specifically, we evaluated the effects of changing the hyper-parameters of (1) F
in the combination methods (Section 4.4.3) and (2) Z appearing in Eq. 4.16. In all the ex-
periments in these investigations, we used the KVQ-FH (H = 0.2M or H = 0.5M and P = 4)
with fastText.600B as the reconstruction target embeddings. We evaluated the perfor-

46

4.7 Analysis

mances on the WordSim and Analogy datasets as described in Table 4.2, similarly to in the
experiments in Section 4.5.1.

Fig. 4.8 shows the performance/F value curves for WordSim and Analogy. The perfor-
mance was improved by using a larger value of F on Analogy datasets, and on WordSim
datasets, the performance worsened. We recognize that the models may be more expressive,
especially for infrequent words, by taking advantage of many infrequent subword vectors,
i.e., setting a large value into F, contributing to the improvement of the performance on Anal-
ogy. However, taking advantage of too many subwords and sharing their vectors may result
in negative effects especially for the reconstruction of frequent word vectors, causing the per-
formance degradation on WordSim since most of words in WordSim datasets are frequent
words.

47

4.7 Analysis

(a) fastText.600B

(b) GloVe.840B

Figure 4.6 Performance/model size curves for Analogy when using fastText.600B and
GloVe.840B as the reconstruction target. The x-axis represents the number of subword em-
beddings. The y-axis represents the performance evaluated by the micro-average accuracy.

48

4.7 Analysis

(a) Syntactic tests

(b) Semantic tests

Figure 4.7 Performances on the syntactic and semantic tests of Analogy datasets. Orange
lines show the performances of SUM; green lines show the performances of KVQ.

49

4.7 Analysis

(a) WordSim

(b) Analogy

Figure 4.8 Performances on WordSim and Analogy tests. Blue lines show the performances
when H = 0.5M; dashed lines show the performances when H = 0.2M.

50

4.7 Analysis

(a) WordSim

(b) Analogy

Figure 4.9 Performances on WordSim and Analogy tests. Blue lines show the performances
when H = 0.5M; dashed lines show the performances when H = 0.2M.

51

4.7 Analysis

Fi
gu

re
4.
10

At
ten

tio
n
di
str

ib
ut
io
n
of

ou
rK

VQ
m
od

el.
He

re
we

us
ed

“^
”a

nd
“@

”a
ss

pe
cia

lc
ha

ra
cte

rs
th
at

re
pr
es
en

tt
he

be
gi
nn

in
g

an
d
en

d
of

aw
or
d,

re
sp

ec
tiv

ely
.S

ub
wo

rd
si

n
bo

xe
sa

re
co

rre
sp

on
di
ng

su
bw

or
ds

ob
tai

ne
d
fro

m
aw

or
d
at

th
el

ef
ts

id
e.

52

4.7 Analysis

(a
)N

um
py

.r
an

do
m.

ra
nd

in
t

(b
)R

an
do

m
str

in
gs

(c
)S

ub
wo

rd
s

Fi
gu

re
4.
11

Hi
sto

gr
am

so
f(

a)
th
ev

alu
es

fro
m

Nu
m
py

.ra
nd

om
.ra

nd
in
t,
(b
)t
he

FN
V
ha

sh
es

wh
en

in
pu

tti
ng

ra
nd

om
str

in
gs

,a
nd

(c
)t
he

FN
V
ha

sh
es

wh
en

in
pu

tti
ng

su
bw

or
ds

fro
m

av
oc

ab
ul
ar
y
of

fa
st

Te
xt

.6
00

B.

53

4.7 Analysis

Fig. 4.9 shows the performance/Z value curves for WordSim and Analogy. We found
that the KVQ model had the best performance on both WordSim and Analogy when we
set Z to approximately √D. Notably, this value is relatively larger than that used in
Transformer (Vaswani et al., 2017), that is, Z = 1/√D. We then checked actual atten-
tion distributions in KVQ-FH to investigate the tendency. Fig. 4.10 shows typical examples
by some picked words. We observed that attention distributions tend to be a flat distribution
rather than a peaky distribution, but never match a near-uniform distribution. This implies
that the attention mechanism works as the weighting factor to assign the importance to sub-
words. However, this is also worth noting here that determining the importance of subwords
seems not an easy task. This might be the reason why Z tends to require a relatively large
value. If we select a smaller Z, the distribution may become closer to the uniform distri-
bution, and the performance would decrease since the uniform distribution is essentially
identical to SUM-FH. Moreover, we observed that different attention values were assigned
to the identical subwords when their “context” subwords differed; thus, the KVQ models
successfully captured “context-dependent” weighting for each subword.

4.7.4 Distribution of FNV Hash
For themapping function 𝜂H(⋅) in Eq. 4.11, we used a FNV hash function, following a previous
study (Bojanowski et al., 2017). FNV is a lightweight hash function that takes a string and
returns a random integer from a specific distribution. We expected the distribution to be
uniform, however, there is no theoretical proof of it as far as we know.

To clarify the empirical distribution of FNV, we plotted histograms of the FNV
hash values and compared them with that of the standard random function, such as
‘Numpy.random.randint’ implemented as a Python library. Figure 4.11 shows the results
of this experiment. Figure 4.11a is the histogram of the ‘Numpy.random.randint’ values
sampled 10 million times from the range of [0, H – 1]. H corresponds to the hash size of our
method. Here we use H = 100000. Then, Figure 4.11b and 4.11c are the histograms of the
FNV hash values divided by H based on the randomly generated strings 10 million times or 10
million subwords obtained from a vocabulary of fastText.600B embeddings, respectively.
Additionally, we conducted an F-test to check the equality of variances between Figure 4.11b
and 4.11c, and confirmed the p-values was 0.734. The 95% confidence intervals for vari-
ances were 99.8 <= 𝜎2 <= 101.6 for Figure 1(a), 99.6 <= 𝜎2 <= 101.4 for Figure 1(c),
respectively. The mean value was 100 for both. These indicate the distribution of FNV hash
values is quite similar or almost equal to that of the standard random function. We can con-
clude that the FNV hash function we used for our experiments was random enough as well as
a standard random function implemented as a well-used library.

54

4.8 Conclusion

4.8 Conclusion
We have discussed and investigated an approach that reconstructs subword-based word em-
beddings in a reduced memory space. We have demonstrated that memory-shared embed-
dings with the KVQ self-attention operation significantly outperformed the conventional
summation-based approaches, such as BoS. Moreover, our best setting successfully reduced
the number of embedding vectors to approximately 10 times smaller than that of the orig-
inal word embeddings while maintaining an acceptable performance loss on downstream
tasks. We have also confirmed the effectiveness of our approach in its the applicability of
OOV words. We believe that our reconstructed subword-based word embeddings can be
better alternatives to fastText.600B and GloVe.840B because they require less memory
requirement and have high applicability of OOV words.10

10Our code and reconstructed subword-based word embeddings trained from GloVe.840B and
fastText.600B are available at https://github.com/losyer/compact_reconstruction

55

https://github.com/losyer/compact_reconstruction

Chapter 5

Examining the Effect of
Whitening on Static and
Contextualized Word Embeddings

5.1 Introduction
Static word embeddings (SWE) (Mikolov et al., 2013c; Pennington et al., 2014b) and con-
textualized word embeddings (CWE) (Devlin et al., 2019; Peters et al., 2018b; Raffel et al.,
2020, i.a.) are the foundation of modern natural language processing systems. However,
while the aim of creating such embeddings is to provide accurate representations of word,
phrase, and sentence meaning, they also reflect and sometimes amplify biases inherent in
the training data, such as gender bias (Zhao et al., 2019), social bias (Kaneko and Bollegala,
2022), and word frequency bias (Gong et al., 2018). For SWE, prior research has demon-
strated that the embedding space exhibits a spatial frequency bias; namely, frequent words
tend to concentrate along a particular direction (Mu and Viswanath, 2018). Generally, this
anisotropy, i.e., the non-uniform angular distribution of word vectors, is undesirable because
it leads to inefficient use of the embedding space. Furthermore, frequency-based anisotropy
causes frequent words to be represented by similar vectors simply by virtue of their high
frequency, although their meaning may not be similar.

Aiming to reduce the negative impact of anisotropy, several isotropizationmethods have
been proposed. These methods make embeddings more isotropic, i.e., transform embedding
vectors so that they have a more uniform angular distribution. Isotropization methods can
be divided into supervised debiasing methods and unsupervised post-processing methods.

56

5.2 Background

The primary goal of supervised debiasing methods is to remove biases with respect to spe-
cific categories, such as gender, nationality, and word frequency. If the bias manifests itself
as an uneven distribution of word embeddings, then debiasing results in a more isotropic
embedding space. A representative example of such an approach is the adversarial removal
of protected social variables proposed by Zhang et al. (2018). In contrast to supervised de-
biasing methods, unsupervised post-processing methods aim to improve word embeddings
without relying on word meaning or associated categories.

The focus of this study is the arguably simplest and most common unsupervised
isotropization method, namely whitening. Informally, whitening is a linear operation that
transforms a set of spatially correlated (and therefore anisotropic) vectors into a set of uncor-
related (isotropic) vectors (see Section 5.2.2 for a formal definition). Although whitening is
a standard data transformation technique, applications to NLP and CWE, in particular, have
appeared only recently (Huang et al., 2021; Su et al., 2021). These applications have demon-
strated that whitening performs better than other isotropization methods for CWE. However,
a major disadvantage of whitening and other unsupervised post-processing methods is that
their impact on various forms of bias and other semantic properties of embeddings is not yet
understood, although understanding bias in SWE and CWE is a prerequisite for their ethical
use in real-world applications. In this paper, we present an initial analysis of the semantic
impact of unsupervised post-processing. In particular, we analyze changes in the frequency
bias when applying the whitening transformation to SWE and CWE.

Our preliminary analysis indicates that the effect of whitening partially includes the ef-
fect of frequency debiasing. Our research question is thus whether the effect of whitening
consists of frequency debiasing only. To increase the granularity of the effect of whitening,
we employ a method whose effect is frequency debiasing only; specifically, we propose a
reconstruction-based frequency debiasing (RFD), which focuses only on removing frequency
bias in embeddings. We then compare the behavior of whitening with that of RFD. Our ex-
perimental results indicate that whitening removes word frequency bias in SWE as well as
biases other than word frequency bias in CWE.

5.2 Background

5.2.1 Anisotropy in Static and Contextualized Word Embeddings
Mu and Viswanath (2018) reported an anisotropy problem that leads to reduce expressive-
ness of SWE. Ethayarajh (2019) reported that anisotropy also existed in CWE. Accordingly,
there has been much discussion about the causes of anisotropy in embeddings. Mu and

57

5.2 Background

Figure 5.1 Examples of plots before and after applying whitening to a set of two-dimensional
vectors. Before applying whitening, x and y are correlated, whereas after applying whiten-
ing, they are no longer correlated.

Viswanath (2018) reported that word frequency information is embedded in the first and
second principal components of SWE, and is the cause of anisotropy in SWE. In CWE, fre-
quency bias is the most common issue. Li et al. (2020) empirically demonstrated that there
is a frequency bias in the vectors of the word embedding layer in BERT Devlin et al. (2019).
Specifically, they demonstrated that vectors of frequent words are embedded closer to the
origin, while infrequent words are embedded farther from the origin. Moreover, they showed
that vectors of high-frequency words are densely embedded, while vectors of low-frequency
words sparsely dispersed. Liang et al. (2021) also reported that there is a correlation between
the logarithm of word count and the norm/average cosine similarity of word vectors. In ad-
dition to frequency bias, outlier dimensions in CWE have also recently received attention.
Luo et al. (2021) and Kovaleva et al. (2021) identified dimensions in the embeddings of
BERT and RoBERTa Liu et al. (2019) that were significantly higher than other dimensions,
suggesting that they were the cause of anisotropy in the embeddings.

5.2.2 Isotropization via the Whitening Transformation
Whitening is a linear transformation that transforms a set of vectors into a new set where the
covariance matrix is the identity matrix. The fact that the covariance matrix is an identity
matrix signifies that the transformation makes each dimension uncorrelated (uncorrelation)
and sets the variance to 1 (variance flattening). Through the transformation, the resulting
whitened embeddings become more isotropic (Figure 5.1). Let X ∈ ℝN×d be a set of vectors

58

5.2 Background

such as word embeddings. The embeddings transformed bywhitening are defined as follows:

X′ = (X – m)U√S–1, (5.1)

where m is the mean vector of the vectors in X, and U and S are given by singular value
decomposition of the covariance matrix Σ of X:

Σ = USUT. (5.2)

Whitening is commonly used in machine learning to reduce bias in the training data, and
it has been applied to a set of feature vectors as a feature preprocessing method (Coates et al.,
2011; Ranzato et al., 2010). It has been reported that reducing bias helps deep learning mod-
els learn high-quality representation and speeds up model convergence. Since whitening is
a general-purpose algorithm that can be applied to a set of vectors, it can also be applied
to sentence vectors obtained by CWE. Huang et al. (2021) applied whitening to CWE to
address the anisotropy problem and demonstrated that it improved the performance of the
CWE. Whitening is mathematically well defined; however, analysis has not yet been per-
formed to clarify what information in SWE and CWE is processed and how the information
is transformed by whitening. In this study, we aim to clarify the mechanism of whitening
(i.e., uncorrelation and variance flatting) in SWE and CWE.

5.2.3 Other Isotropization Methods
In addition to whitening, several other methods to address anisotropy have been proposed.
One class of isotropization methods removes the principal components of embeddings. Mu
and Viswanath (2018) suggested that there is a word frequency bias in SWE, and reported
that the bias negatively affects task performance. Specifically, they observed a frequency
bias in the first and second principal components of GloVe (Pennington et al., 2014b) and
Word2Vec (Mikolov et al., 2013c) embeddings, and proposed a method to remove the top-D
principal components, denoted the RPC method. They found that the RPC method improves
the performance of tasks and reduces the anisotropy of SWEs. Rajaee and Pilehvar (2021)
proposed a cluster-based version of the RPC method, while Liang et al. (2021) proposed a
weighted version.

Several mathematically-motivated methods have also been proposed to handle
anisotropic embeddings. Li et al. (2020) proposed BERT-flow, which learns a flow function
that projects embeddings obtained from BERT to a standard Gaussian latent space. Their
theoretical motivation was that embeddings with a standard Gaussian distribution are a suf-

59

5.3 Preliminaries

Figure 5.2 Plots of the first and second principal components (𝛼1 and 𝛼2) before and after ap-
plying whitening to GloVe embeddings. Colors correspond to word frequency ranks. Black
represents frequent words, while yellow represents infrequent words.

Figure 5.3 Plots of the first and second principal components (𝛼1 and 𝛼2) before and after ap-
plying whitening to BERT embeddings. Colors correspond to word frequency ranks. Black
represents frequent words, while yellow represents infrequent words.

ficient condition for isotropy and an efficiently embedded space, which they described as
lacking holes.

5.3 Preliminaries
Following the work of Mu and Viswanath (2018), we performed an analysis to explore the
effect of whitening in preliminary experiments. Figures 5.2 and 5.3 present plots of the first
and second principal components of the embeddings before and after applying whitening
to GloVe and BERT embeddings, respectively. Before applying whitening, we observed a
frequency bias, i.e., a correlation between the principal components of word embeddings

60

5.4 Frequency Debiasing Method

and their word frequencies in both GloVe and BERT embeddings. In particular, GloVe
embeddings had a strong frequency bias, which is consistent with the reports from Mu and
Viswanath (2018). However, after applying whitening, we found that there was no bias in
the first and second principal components of the embeddings, which indicates that whitening
has the effect of frequency debiasing.

Based on this analysis, we aim to clarify the effect of whitening. Our research question
is whether whitening is equivalent to frequency debiasing or whether it has effects other than
frequency debiasing. To address this question, we conduct an experiment in which we apply
both whitening and a frequency debiasing method, which is introduced in Section 5.4, to the
model at the same time. When both are applied to the model, if the effects of whitening and
frequency debiasing are independent, then respective gains can be expected, while if there
is an overlap between the two effects, then the improvements can be limited.

5.4 Frequency Debiasing Method
In this section, we introduce a frequency debiasing method SWE and CWE that focuses only
on the effect of frequency debiasing without affecting the original quality of the embeddings.
Gong et al. (2018) proposed a method of frequency debiasing for word embeddings using
adversarial training. Given a certain task, such as text classification, their method optimizes
each vector in the word embeddings layer with the debiasing loss simultaneously as learning.
With these settings, the resulting word embeddings are task-specific representations. We aim
to obtain general representations rather than task-specific representations; thus, we propose
a reconstruction-based frequency debiasing (RFD) inspired by Gong et al. (2018). Like Gong
et al. (2018), we assume that word embeddings are trained to fool a discriminator attempting
to identify whether the words are rare or popular. Instead of a task-specific loss, we introduce
a reconstruction loss that aims to preserve the pretrained representations such as embeddings
from GloVe or BERT.

First, we present a reconstruction loss for SWE such as GloVe. Let W be a set of words
in a vocabulary, e(w) be the pretrained fixed embeddings of word w and v(w; 𝜃emb) be the
learnable embeddings of word w, where 𝜃emb ∈ ℝd×V is the parameter matrix of the word
embeddings. Here d is the number of dimensions of the embeddings and V (= |W|) is the
vocabulary size. The reconstruction loss for SWE is defined as follows:

LRswe(W; 𝜃emb) = ∑
w∈W

‖e(w) – v(w; 𝜃emb)‖
2
2. (5.3)

61

5.4 Frequency Debiasing Method

Regarding the discriminator part for SWE,we follow the settings used byGong et al. (2018)’s
settings. First, we divide the vocabulary W into two parts: Wpop and Wrare. Words in Wpop
are the top-t% frequent words, while Wrare = W ⧵ Wpop. Let f𝜃D represent a discriminator
with parameters 𝜃D that takes word embeddings as input and returns a probability score
indicating whether the word is rare or not. The loss of the discriminator for SWE is defined
as follows:

LDswe(W; 𝜃D, 𝜃emb) = 1
|Wpop| ∑

w∈Wpop

logf𝜃D(v(w; 𝜃emb)) + 1
|Wrare| ∑

w∈Wrare

log(1 – f𝜃D(v(w; 𝜃emb)).

(5.4)

Lastly, we optimize 𝜃emb and 𝜃D using the adversarial training procedure with the min-max
objective as follows:

arg min
𝜃emb

arg max
𝜃D

LRswe(W; 𝜃emb) – 𝜆LDswe(W; 𝜃D, 𝜃emb), (5.5)

where 𝜆 is a hyperparameter used as a weight coefficient. Following Gong et al. (2018),
we alternate between optimizing the argmin objective for 𝜃emb and optimizing the argmax
objective for 𝜃D.

For CWE, we prepare a training corpus C and optimize the embeddings obtained by
encoding sentences from C. Let s represent a sentence from corpus C, Ws represent a set of
words1 in s, and L be a target set of layers in a CWE model such as BERT. Let el(w, s) be the
pretrained l-th layer embeddings of word w obtained by encoding sentence s. Embeddings
vl(w, s; 𝜃emb) is similar to el(w, s) but embeddings from a new CWE model with learnable
parameters 𝜃emb. The reconstruction loss and discriminator loss for CWE are defined as
follows:

LRcwe(C; 𝜃emb) = ∑
s∈C

∑
w∈Ws

∑
l∈L

‖el(w, s) – vl(w, s; 𝜃emb)‖
2
2, (5.6)

LDcwe(C; 𝜃D, 𝜃emb) = ∑
s∈C

∑
w∈Ws

∑
l∈L

L′
Dcwe

(w, l; 𝜃D, 𝜃emb), (5.7)

1Note that we use “word” to refer to “token” for the sake of clarity even though words are separated into
tokens in CWE models; for example, “interferometer” is separated into “inter”, “##fer” and “##ometer”.

62

5.5 Experiments

L′
Dcwe

(w, l; 𝜃D, 𝜃emb) = 1
|Ws,pop| ∑

w∈Ws,pop

logf𝜃D(vl(w, s; 𝜃emb))

+ 1
|Ws,rare| ∑

w∈Ws,rare

log(1 – f𝜃D(vl(w, s; 𝜃emb)),

(5.8)

where Ws,pop = Ws ∩ Wpop and Ws,rare = Ws ⧵ Ws,pop. The objective for CWE is defined
as follows:

arg min
𝜃emb

arg max
𝜃D

LRcwe(C; 𝜃emb) – 𝜆LDcwe(C; 𝜃D, 𝜃emb). (5.9)

5.5 Experiments
We conduct experiments with several models to investigate the effect of whitening. When
applied simultaneously, if the performance of whitening and frequency debiasing is equiv-
alent to that of a single applied model, this indicates that whitening has the same effect as
frequency debiasing.

5.5.1 Settings
We use GloVe embeddings (Pennington et al., 2014b) as the SWE. Of the various types
of GloVe embeddings, we use embeddings trained on the Common Crawl dataset contain-
ing 840 billion tokens.2 The vocabulary size is V = 2, 196, 016. We use a BERT-base
model (Devlin et al., 2019) from Huggingface Transformer Library (Wolf et al., 2020) as the
CWE. The vocabulary size is V = 28, 996.

We compare four distinct settings of SWE and CWE:

1. Vanilla models (GloVe, BERT): models that use raw embeddings without post-
processing.

2. Whitening models (GloVe-wh, BERT-wh): models with whitening applied.

3. Frequency debiasing models (GloVe-Fdeb, BERT-Fdeb): models with frequency de-
biasing applied.

4. Frequency debiasing and whitening models (GloVe-Fdeb-wh, BERT-Fdeb-wh): mod-
els with frequency debiasing applied followed by whitening.

2https://nlp.stanford.edu/projects/glove/

63

https://nlp.stanford.edu/projects/glove/

5.5 Experiments

Figure 5.4 Performance of GloVe models on STS benchmark development and test set.

For frequency debiasing, we use RFD, which is introduced in Section 5.4. We use the sen-
tences from the semantic textual similarity (STS) datasets as the training corpus for RFD for
BERT. Following Gong et al. (2018), we use 𝜆 = 0.02. We also use t = 10 as the threshold
for a set of frequent words. The target layer list L in equations ?? and ?? is [1, 12]. We fix
the batch size to 128, and search the learning rate from [1e–3, 5e–3, 1e–2], and the number
of epochs from [1, 3, 5, 10, 20, 30, 40, 50] in the development set.

5.5.2 Task
Dataset To evaluate the quality of the embeddings, we used the STS Benchmark
dataset (Cer et al., 2017), which consists of sentence pairs with manually annotated scores
as sentence similarities. The scores range from 0 to 5.

Evaluation Following previous studies (Huang et al., 2021; Reimers and Gurevych, 2019),
we compute the Spearman rank correlation between the annotated ground truth scores and
the similarities predicted by models. We calculate the cosine similarities of the sentence
vectors as the similarities between sentences. For GloVe, the sentence vectors are calculated
by averaging the vectors of all words. For BERT, following Huang et al. (2021), we average
the vectors of words at the first and 12th hidden layers.

64

5.5 Experiments

Figure 5.5 Performance of BERT models on STS benchmark development and test set.

5.5.3 Results
Figures 5.4 and 5.5 show the performance of the models on the STS Benchmarks develop-
ment and test sets. The results are as follows:

(i) In both the GloVe and BERT experiments, whitening improved the performance. The
performance of GloVe-wh was 3.6 points higher than that of GloVe, while the perfor-
mance of BERT-wh was 7.7 points higher than that of BERT on the test set.

(ii) We observed performance improvement by the effect of frequency debiasing in both
the GloVe and BERT experiments. Notably, the performance of GloVe-Fdeb was 7.7
points higher than that of GloVe in the test set.

(iii) GloVe-Fdeb-wh had no significant improvement over GloVe-Fdeb.

(iv) Unlike the GloVe results, the performance of BERT-Fdeb-wh was 5.8 points higher
than that of BERT-Fdeb on the test set.

The observation of result (i) is consistent with the results from a previous study (Huang
et al., 2021). Regarding result (ii), the gain from frequency debiasing for GloVe was smaller
than that for BERT. We assumed that this was because GloVe had a stronger frequency bias,
as suggested by the plot of the PCA coefficients in Section 5.3. To verify this assumption,
we present an analysis in Section 5.6.

Regarding results (iii) and (iv), if the effects of whitening and frequency debiasing are
independent, then respective gains can be expected when both are applied to the model.
However, result (iii) indicates that no significant difference between GloVe-Fdeb and

65

5.6 Analysis

GloVe-Fdeb-wh was observed for SWE. This observation reveals that the effect of whiten-
ing on SWE is almost the same as that of frequency debiasing, or that there is a large overlap
between the two. In contrast, result (iv) indicates that on CWE, whitening has effects other
than frequency debiasing, such as the correction of defects inherent in CWE that do not exist
in SWE. We speculate that one of these effects may be the correction of the outlier problems
reported by Kovaleva et al. (2021); Luo et al. (2021).

5.6 Analysis
In Section 5.5, we assume that whitening has effects on CWE other than frequency debiasing
only. In this section, we describe a more in-depth analysis that we conduct to support this
assumption. Specifically, we investigate how the quality of embeddings in each model varies
with the frequency of words in the sentence. Given a sentence pair p in the STS dataset, we
compute the average word frequency ranks defined as follows:

Rsent(p) = 1
N ∑

w
r(w), (5.10)

where N is the number of words in p, w represents a word in p, and r(⋅) is a function that
takes a word w and returns the frequency rank of w in a predefined vocabulary. Based on
Rsent, we sort the sentence pairs in the STS evaluation data, and exclude sentence pairs with
the highest Rsent one by one, and then we evaluate the models on each subset of the dataset.
By this procedure, we reduce an average Rsent across the dataset, which is defined as follows:

Rdataset = 1
P ∑

p
Rsent(p), (5.11)

where P is the number of pairs in the dataset. A Higher Rdataset signifies that the dataset
contains more rare words, while a lower Rdataset signifies that the dataset contains more
frequent words.

Figure 5.6 presents graphs of the STS performance when varying Rdataset for the STS-
14 dataset. We observed that for GloVe, the larger the Rdataset, the lower the performance.
This indicates that the embeddings of rare words in GloVe had a negative impact on STS
performance. In contrast, we did not observe this tendency for BERT. This suggests that the
embeddings of rare words in BERT had a small effect on the STS performance. This supports
the fact that the representation learning of BERT, which separates infrequent words into sub-
words, was effective. As mentioned in Section 5.5, we observed significant improvements

66

5.7 Discussion

when whitening was applied to CWE, whereas the impact of frequency debiasing was lim-
ited. Thus, we conclude that whitening has other effects other than frequency debiasing.

5.7 Discussion
In this section, we discuss the limitations of our work. In the experiment in Section 5.5,
we investigated the relationship between the effects of whitening and frequency debiasing
by comparing the performance on the STS task. However, there may be the effects of these
methods that are reflected in STS performance and effects that are not. To get a complete
picture of the effects of whitening, it is necessary to evaluate them on various tasks.

In addition, the effects of the RFD method used in the experiments must be carefully
discussed. The conclusion of this chapter assumes that the RFD is working as expected; (i)
the frequency debiasing is fully effective and (ii) it has only frequency debiasing influence.
Since our proposed RFD is based on existing successful work (Gong et al., 2018), we think
these assumptions are not too strong. However, (i) and (ii) assumptions need to be justified
through multifaceted observations.

5.8 Conclusion
In this study, we investigated the effect of whitening on SWE and CWE. In a preliminary
experiment, we confirmed the existence of a frequency bias in SWE and CWE by visualiz-
ing the PCA coefficients of the embeddings and proposed that the application of whitening
can remove the bias in the embeddings. In our main experiment, we empirically examined
whether whitening had effects other than the effect of frequency debiasing. The results in-
dicated that there was a large overlap between the effects of whitening and the effect of fre-
quency debiasing on SWE. However, on CWE, whitening had effects other than frequency
debiasing only.

The main contributions of this work are the discovery of differences in the effects of
whitening on GloVe and BERT, and the suggestion that whitening has effects on CWE other
than the removal of frequency bias, which is the most studied cause of anisotropy in word
embeddings. It remains for future work to identify the remaining effects of whitening and to
investigate whether the results of this study can be generalized to other SWE and CWE3.

3Our codes are available at https://github.com/losyer/whitening_effect

67

https://github.com/losyer/whitening_effect

5.8 Conclusion

Figure 5.6 Performance/Rdataset curves when using models based on GloVe (left) and BERT
(right). The x-axis represents Rdataset, while the y-axis represents the STS performance eval-
uated by the Spearman rank correlation.

68

Chapter 6

Conclusion

In this dissertation, we addressed following research issues:

The data size problem: can low-resource languages attain high-resource-level perfor-
mance? The learning of text encoders are notoriously data-hungry, meaning that a large
amount of data is needed to train the model. A handful of languages may have adequate data,
but many more do not have that privilege, limiting the performance of NLP models using
text encoders in those languages. In cases where simply increasing the amount of data is not
possible, an alternative solution is needed to improve the quality of text encoders.

Memory requirements vs. vocabulary coverage. The strongest text encoders are also
usually very large—unrealistically so for the capacity of devices such asmobile phones or IoT
appliances which require their use. A naive approach to reducingword embeddings’ memory
requirement is limiting their vocabulary coverage. However, an unknown word (OOV; out-
of-vocabulary) problem then becomes critical, which reduces their usefulness in real-world
applications where diverse vocabularies are expected. There is a trade-off between reducing
the required amount of memory and the capacity to deal with unknown words. Thus, a
balanced approach that reduces the memory requirement while maintaining the ability to
handle OOV words would improve the applicability of text encoders.

Bias in embeddings. Various undesired biases in word embeddings can negatively impact
a model’s task performance. Even leaving the impact on performance aside, biased models
can be problematic for real-world applications. Various methods have been proposed to mit-
igate undesired biases. One of them, whitening, has attracted attention due to being simple
yet effective in improving performance and mitigating spatial bias. However, while it is clear

69

that whitening mitigates spatial bias in word embeddings, its semantic effects (e.g., removal
of word frequency bias) are not clear.

The key contributions of this dissertation are summarized as follows:

Investigation of the effectiveness of cross-lingual transfer learning. We proposed a
cross-lingual transfer learningmethod and demonstrated that it improvedmodel performance
for low-resource languages. Specifically, as an example of an application of NLP, we con-
ducted experiments on information retrieval tasks. We also clarified the model architecture
for information retrieval in which the transfer learning works.

Reducing memory requirements and handling unknown words. In order to simultane-
ously reduce thememory requirement for static word embeddings and deal with the unknown
word problem, we proposed a method that combines memory sharing and key-value-query
(KVQ) operation idea. The proposed method succeeded in reducing the amount of required
memory while acquiring unknown word embeddings which performed well on word simi-
larity tasks.

Examining the effect of whitening on word embeddings. We examined the semantic
effects of whitening, one of the isotropization methods for anisotropic embeddings, i.e., re-
ducing spatial bias. From our experiments on a sentence similarity task, we reported that the
effect on static word embeddings had significant overlap with the effect of removing word
frequency bias, and that this was not the case for contextualized embeddings.

70

References
(2007). NII test collection for IR systems project. http://research.nii.ac.jp/ntcir/ntcir-ws6/

ws-en.html.

(2013). Forum for information retrieval evaluation. https://www.isical.ac.in/~fire/2013/
index.html.

(2016). Conference and labs of the evaluation forum. http://clef2016.clef-initiative.eu/.

Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Paşca, M., and Soroa, A. (2009). A Study
on Similarity and Relatedness Using Distributional and WordNet-based Approaches. In
Proceedings of Human Language Technologies: The 2009 Annual Conference of the
North American Chapter of the Association for Computational Linguistics (NAACL),
pages 19–27.

Bahdanau, D., Bosc, T., Jastrzebski, S., Grefenstette, E., Vincent, P., and Bengio, Y. (2017).
Learning to Compute Word Embeddings On the Fly. arXiv preprint arXiv:1706.00286.

Bai, B., Weston, J., Grangier, D., Collobert, R., Sadamasa, K., Qi, Y., Chapelle, O., and
Weinberger, K. (2010). Learning to rank with (a lot of) word features. Information Re-
trieval, 13(3):291–314.

Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. (2003). A neural probabilistic language
model. J. Mach. Learn. Res., 3(null):1137–1155.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2017). Enriching Word Vectors
with Subword Information. Transactions of the Association for Computational Linguistics
(TACL), 5:135–146.

Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D. (2015). A large annotated cor-
pus for learning natural language inference. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 632–642.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan,
T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler,
E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford,
A., Sutskever, I., and Amodei, D. (2020). Language models are few-shot learners. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H., editors, Advances in
Neural Information Processing Systems, volume 33, pages 1877–1901. CurranAssociates,
Inc.

71

http://research.nii.ac.jp/ntcir/ntcir-ws6/ws-en.html
http://research.nii.ac.jp/ntcir/ntcir-ws6/ws-en.html
https://www.isical.ac.in/~fire/2013/index.html
https://www.isical.ac.in/~fire/2013/index.html
http://clef2016.clef-initiative.eu/

References

Bruni, E., Tran, N. K., and Baroni, M. (2014). Multimodal Distributional Semantics. Journal
of Artificial Intelligence Research, 49(1):1–47.

Cer, D., Diab, M., Agirre, E., Lopez-Gazpio, I., and Specia, L. (2017). SemEval-2017
task 1: Semantic textual similarity multilingual and crosslingual focused evaluation. In
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017),
pages 1–14. Association for Computational Linguistics.

Chen, Q., Zhu, X., Ling, Z.-H., Wei, S., Jiang, H., and Inkpen, D. (2017). Enhanced LSTM
for Natural Language Inference. In Proceedings of the 55th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages 1657–1668.

Cho, K., van Merriënboer, B., Bahdanau, D., and Bengio, Y. (2014). On the properties
of neural machine translation: Encoder–decoder approaches. In Proceedings of SSST-
8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, pages
103–111, Doha, Qatar. Association for Computational Linguistics.

Coates, A., Ng, A., and Lee, H. (2011). An analysis of single-layer networks in unsupervised
feature learning. In Gordon, G., Dunson, D., and Dudík, M., editors, Proceedings of the
Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15
of Proceedings of Machine Learning Research, pages 215–223. PMLR.

Dehghani, M., Zamani, H., Severyn, A., Kamps, J., and Croft, W. B. (2017). Neural ranking
models with weak supervision. In Proceedings of the 40th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 65–74. ACM.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186.

Dong, L. and Lapata, M. (2018). Coarse-to-Fine Decoding for Neural Semantic Parsing. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(ACL), pages 731–742.

Ethayarajh, K. (2019). How contextual are contextualized word representations? Comparing
the geometry of BERT, ELMo, and GPT-2 embeddings. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 55–65. As-
sociation for Computational Linguistics.

Gómez-Rodríguez, C. and Vilares, D. (2018). Constituent Parsing as Sequence Labeling.
In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1314–1324.

Gong, C., He, D., Tan, X., Qin, T., Wang, L., and Liu, T.-Y. (2018). FRAGE: Frequency-
agnostic word representation. In Advances in Neural Information Processing Systems,
volume 31, page 12 pages. Curran Associates, Inc.

Groschwitz, J., Lindemann, M., Fowlie, M., Johnson, M., and Koller, A. (2018). AMR
Dependency Parsing with a Typed Semantic Algebra. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (ACL), pages 1831–1841.

72

References

Guo, J., Fan, Y., Ai, Q., and Croft, W. B. (2016). A deep relevance matching model for ad-
hoc retrieval. InProceedings of the 25th ACM International on Conference on Information
and Knowledge Management, pages 55–64. ACM.

Harris, Z. S. (1954). Distributional structure. <i>WORD</i>, 10(2-3):146–162.

Herbelot, A. and Baroni, M. (2017). High-risk learning: acquiring new word vectors from
tiny data. In Proceedings of the 2017 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 304–309.

Hill, F., Reichart, R., and Korhonen, A. (2014). SimLex-999: Evaluating Semantic Models
with (Genuine) Similarity Estimation. arXiv preprint arXiv:1408.3456.

Hochreiter, S. and Schmidhuber, J. (1997). Long Short-TermMemory. Neural Computation,
9(8):1735–1780.

Huang, E. H., Socher, R., Manning, C. D., and Ng, A. Y. (2012). Improving Word Repre-
sentations via Global Context and Multiple Word Prototypes. In Proceedings of the 50th
Annual Meeting of the Association for Computational Linguistics (ACL), pages 873–882.

Huang, J., Tang, D., Zhong, W., Lu, S., Shou, L., Gong, M., Jiang, D., and Duan, N. (2021).
WhiteningBERT: An easy unsupervised sentence embedding approach. In Findings of the
Association for Computational Linguistics: EMNLP 2021, pages 238–244. Association
for Computational Linguistics.

Huang, P.-S., He, X., Gao, J., Deng, L., Acero, A., and Heck, L. (2013). Learning deep struc-
tured semantic models for web search using clickthrough data. In Proceedings of the 22nd
ACM international conference on Conference on information & knowledge management,
pages 2333–2338. ACM.

Hui, K., Yates, A., Berberich, K., and de Melo, G. (2017). PACRR: A position-aware neural
ir model for relevance matching. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 1049–1058. Association for Computa-
tional Linguistics.

Kaneko, M. and Bollegala, D. (2022). Unmasking the mask – evaluating social biases in
masked language models. In Proceedings of the 36th AAAI Conference on Artificial Intel-
ligence, page 13.

Kiela, D., Bartolo, M., Nie, Y., Kaushik, D., Geiger, A., Wu, Z., Vidgen, B., Prasad, G.,
Singh, A., Ringshia, P., Ma, Z., Thrush, T., Riedel, S., Waseem, Z., Stenetorp, P., Jia, R.,
Bansal, M., Potts, C., and Williams, A. (2021). Dynabench: Rethinking benchmarking
in NLP. In Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 4110–
4124, Online. Association for Computational Linguistics.

Kim, Y. (2014). Convolutional neural networks for sentence classification. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 1746–1751, Doha, Qatar. Association for Computational Linguistics.

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

73

References

Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R., Urtasun, R., Torralba, A., and Fidler,
S. (2015). Skip-thought vectors. In Cortes, C., Lawrence, N., Lee, D., Sugiyama, M.,
and Garnett, R., editors, Advances in Neural Information Processing Systems, volume 28.
Curran Associates, Inc.

Kovaleva, O., Kulshreshtha, S., Rogers, A., and Rumshisky, A. (2021). BERT busters:
Outlier dimensions that disrupt transformers. In Findings of the Association for Computa-
tional Linguistics: ACL-IJCNLP 2021, pages 3392–3405. Association for Computational
Linguistics.

Labeau, M. and Allauzen, A. (2017). Character and subword-based word representation for
neural language modeling prediction. In Proceedings of the First Workshop on Subword
and Character Level Models in NLP, pages 1–13.

Li, B., Zhou, H., He, J., Wang, M., Yang, Y., and Li, L. (2020). On the sentence embeddings
from pre-trained language models. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 9119–9130. Association for
Computational Linguistics.

Liang, Y., Cao, R., Zheng, J., Ren, J., and Gao, L. (2021). Learning to remove: Towards
isotropic pre-trained bert embedding. InArtificial Neural Networks andMachine Learning
–ICANN 2021: 30th International Conference on Artificial Neural Networks, Bratislava,
Slovakia, September 14–17, 2021, Proceedings, Part V, pages 448–459. Springer-Verlag.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer,
L., and Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692.

Luo, Z., Kulmizev, A., and Mao, X. (2021). Positional artefacts propagate through masked
language model embeddings. In Proceedings of the 59th Annual Meeting of the Associ-
ation for Computational Linguistics and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers), pages 5312–5327. Association for
Computational Linguistics.

Luong, T., Socher, R., andManning, C. (2013). Better Word Representations with Recursive
Neural Networks for Morphology. In Proceedings of the 17th Conference on Computa-
tional Natural Language Learning (CoNLL), pages 104–113.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient Estimation of Word
Representations in Vector Space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013b). Distributed repre-
sentations of words and phrases and their compositionality. In Proceedings of the 26th
International Conference on Neural Information Processing Systems - Volume 2, pages
3111–3119. Curran Associates Inc.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013c). Distributed
Representations of Words and Phrases and their Compositionality. In Advances in Neural
Information Processing Systems (NIPS), pages 3111–3119.

74

References

Mikolov, T., Yih, W.-t., and Zweig, G. (2013d). Linguistic Regularities in Continuous Space
Word Representations. In Proceedings of the 2013 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies (NAACL), pages 746–751.

Miller, G. A. and Charles, W. G. (1991). Contextual Correlates of Semantic Similarity.
Language & Cognitive Processes, 6(1):1–28.

Mitra, B., Diaz, F., and Craswell, N. (2017). Learning to match using local and distributed
representations of text for web search. In Proceedings of the 26th International Confer-
ence on World Wide Web, pages 1291–1299. International World Wide Web Conferences
Steering Committee.

Mu, J. and Viswanath, P. (2018). All-but-the-top: Simple and effective postprocessing for
word representations. In Proceedings of International Conference on Learning Represen-
tations, page 25.

Nicholson, J. (2022). The gender bias inside gpt-3. https://medium.com/madebymckinney/
the-gender-bias-inside-gpt-3-748404a3a96c.

Nie, J.-Y. (2010). Cross-Language Information Retrieval. Morgan & Claypool Publishers.

Pang, L., Lan, Y., Guo, J., Xu, J., and Cheng, X. (2016). A study of match pyramid models
on ad-hoc retrieval. In Neu-IR‘16 SIGIR Workshop on Neural Information Retrieval.

Pennington, J., Socher, R., and Manning, C. (2014a). GloVe: Global Vectors for Word
Representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543.

Pennington, J., Socher, R., and Manning, C. (2014b). GloVe: Global Vectors for Word
Representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543.

Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer, L.
(2018a). Deep Contextualized Word Representations. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL), pages 2227–2237.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer,
L. (2018b). Deep contextualized word representations. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers), pages 2227–2237. Association
for Computational Linguistics.

Pilehvar, M. T. and Collier, N. (2017). Inducing Embeddings for Rare and Unseen Words
by Leveraging Lexical Resources. In Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics (EACL), pages 388–393.

Pinter, Y., Guthrie, R., and Eisenstein, J. (2017). Mimicking Word Embeddings using Sub-
word RNNs. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 102–112.

75

https://medium.com/madebymckinney/the-gender-bias-inside-gpt-3-748404a3a96c
https://medium.com/madebymckinney/the-gender-bias-inside-gpt-3-748404a3a96c

References

Prokhorov, V., Pilehvar, M. T., Kartsaklis, D., Liò, P., and Collier, N. (2019). Unseen word
representation by aligning heterogeneous lexical semantic spaces. In The Thirty-Third
AAAI Conference on Artificial Intelligence, pages 6900–6907.

Radinsky, K., Agichtein, E., Gabrilovich, E., and Markovitch, S. (2011). A Word at a Time:
Computing Word Relatedness Using Temporal Semantic Analysis. In Proceedings of the
20th International Conference on World Wide Web (WWW), pages 337–346.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W.,
and Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21(140):1–67.

Rajaee, S. and Pilehvar, M. T. (2021). A cluster-based approach for improving isotropy
in contextual embedding space. In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 2: Short Papers), pages 575–584. Association for
Computational Linguistics.

Ranzato, M., Krizhevsky, A., and Hinton, G. (2010). Factored 3-way restricted boltzmann
machines for modeling natural images. In Teh, Y. W. and Titterington, M., editors, Pro-
ceedings of the Thirteenth International Conference on Artificial Intelligence and Statis-
tics, volume 9 of Proceedings of Machine Learning Research, pages 621–628. PMLR.

Reimers, N. and Gurevych, I. (2019). Sentence-BERT: Sentence embeddings using Siamese
BERT-networks. In Proceedings of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3982–3992. Association for Computational
Linguistics.

Rubenstein, H. and Goodenough, J. B. (1965). Contextual Correlates of Synonymy. Com-
mun. ACM, 8(10):627–633.

Sasaki, S., Suzuki, J., and Inui, K. (2019). Subword-based Compact Reconstruction ofWord
Embeddings. In Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies (NAACL),
pages 3498–3508.

Schamoni, S., Hieber, F., Sokolov, A., and Riezler, S. (2014). Learning translational and
knowledge-based similarities from relevance rankings for cross-language retrieval. In
Proceedings of the 52 Annual Meeting of the Association for Computational Linguistics.

Schäuble, P. and Sheridan, P. (1997). Cross-language information retrieval (CLIR) track
overview. In Proceedings of TREC Conference.

Schick, T. and Schütze, H. (2020). BERTRAM: Improved word embeddings have big impact
on contextualized model performance. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 3996–4007.

Schick, T. and Schütze, H. (2020). Rare words: A major problem for contextualized embed-
dings and how to fix it by attentive mimicking. In The Thirty-Fourth AAAI Conference on
Artificial Intelligence, pages 8766–8774.

76

References

Shen, Y., He, X., Gao, J., Deng, L., and Mesnil, G. (2014). A latent semantic model with
convolutional-pooling structure for information retrieval. In Proceedings of the 23rd ACM
International Conference on Conference on Information and Knowledge Management,
pages 101–110. ACM.

Sokolov, A., Jehl, L., Hieber, F., and Riezler, S. (2013). Boosting cross-language retrieval
by learning bilingual phrase associations from relevance rankings. In Proceedings of the
2013 Conference on Empirical Methods in Natural Language Processing, pages 1688–
1699. Association for Computational Linguistics.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. Journal of machine
learning research, 15(1):1929–1958.

Strubell, E., Verga, P., Andor, D., Weiss, D., and McCallum, A. (2018). Linguistically-
Informed Self-Attention for Semantic Role Labeling. In Proceedings of the 2018 Confer-
ence on EmpiricalMethods in Natural Language Processing (EMNLP), pages 5027–5038.

Su, J., Cao, J., Liu, W., and Ou, Y. (2021). Whitening sentence representations for better
semantics and faster retrieval. CoRR.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to Sequence Learning with Neural
Networks. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D., and Weinberger,
K. Q., editors, Advances in Neural Information Processing Systems 27, pages 3104–3112.
Curran Associates, Inc.

Suzuki, J. andNagata, M. (2016). LearningCompact NeuralWord Embeddings by Parameter
Space Sharing. In Proceedings of the 25th International Joint Conference on Artificial
Intelligence (IJCAI), pages 2046–2052.

Suzuki, J., Takase, S., Kamigaito, H., Morishita, M., and Nagata, M. (2018). An Empirical
Study of Building a Strong Baseline for Constituency Parsing. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (ACL), pages 612–618.

Tjong Kim Sang, E. F. and De Meulder, F. (2003). Introduction to the CoNLL-2003 shared
task: Language-independent named entity recognition. In Proceedings of the 7th Confer-
ence on Natural Language Learning (CoNLL), pages 142–147.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
and Polosukhin, I. (2017). Attention is All you Need. In Advances in Neural Information
Processing Systems (NIPS), pages 5998–6008.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T.,
Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y.,
Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame, M., Lhoest, Q., and Rush, A. M. (2020).
Transformers: State-of-the-art natural language processing. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing: System Demonstra-
tions, pages 38–45. Association for Computational Linguistics.

Xiong, C., Dai, Z., Callan, J., Liu, Z., and Power, R. (2017). End-to-end neural ad-hoc rank-
ing with kernel pooling. In Proceedings of the 40th International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 55–64. ACM.

77

References

Yu, N., Zhang, M., and Fu, G. (2018). Transition-based Neural RST Parsing with Implicit
Syntax Features. In Proceedings of the 27th International Conference on Computational
Linguistics (COLING), pages 559–570.

Zhang, B. H., Lemoine, B., and Mitchell, M. (2018). Mitigating unwanted biases with ad-
versarial learning. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and
Society, pages 335–340.

Zhao, J., Mudgal, S., and Liang, Y. (2018). Generalizing Word Embeddings using Bag
of Subwords. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 601–606.

Zhao, J., Wang, T., Yatskar, M., Cotterell, R., Ordonez, V., and Chang, K.-W. (2019). Gen-
der bias in contextualized word embeddings. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 629–634. Association
for Computational Linguistics.

78

List of Publications

Journal Papers (Refereed)
1. Shota Sasaki, Jun Suzuki and Kentaro Inui. Subword-Based Compact Reconstruction

for Open-Vocabulary Neural Word Embeddings. In IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, Vol.29, pp.3551-3564, November 2021.

International Conference Papers (Refereed)
1. Kazuaki Hanawa*, Shota Sasaki*, Hiroki Ouchi, Jun Suzuki and Kentaro Inui. The

Sally Smedley Hyperpartisan News Detector at SemEval-2019 Task 4. In Proceedings
of the 13th InternationalWorkshop on Semantic Evaluation (SemEval), pp.1057-1061,
June 2019. (* Equal contribution)

2. Shota Sasaki, Jun Suzuki and Kentaro Inui. Subword-based Compact Reconstruction
of Word Embeddings. In Proceedings of the 17th Annual Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies (NAACL-HLT 2019), pp. 3498-3508, June 2019.

3. Shota Sasaki, Shuo Sun, Shigehiko Schamoni, Kevin Duh and Kentaro Inui. Cross-
lingual Learning-to-Rank with Shared Representations. In Proceedings of the 16th
Annual Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies (NAACL-HLT 2018), pp.458-463,
June 2018.

4. Shota Sasaki, Sho Takase, Naoya Inoue, Naoaki Okazaki, and Kentaro Inui. Handling
Multiword Expressions in Causality Estimation. In Proceedings of the 12th Interna-
tional Conference on Computational Semantics (IWCS), 6 pages, September 2017.

79

Non-archival articles (Refereed)
1. Hiroaki Funayama, Shota Sasaki, Yuichiroh Matsubayashi, Tomoya Mizumoto, Jun

Suzuki, Masato Mita and Kentaro Inui. Preventing Critical Scoring Errors in Short
Answer Scoringwith Confidence Estimation. In Proceedings of the 2020ACLStudent
Research Workshop (2020 ACL SRW, Non-archival), pp.237–243, July 2020.

80

Awards
1. 第 13 回 NLP 若手の会シンポジウム奨励賞

2. 言語処理学会第 24 回年次大会若手奨励賞

3. 情報処理学会第 249 回自然言語処理研究会優秀研究賞

4. EMNLP 2021 Outstanding Reviewer

81

Other publications (Non-refereed)
1. 佐藤俊，大内啓樹，塙一晃，佐々木翔大，乾健太郎. 事例ベース推論を行う

ニューラルモデルの説明性とハブ現象の関係. 情報処理学会第 249 回自然言
語処理研究会 (NL 研)，7 月 2021.

2. 佐藤俊，大内啓樹，佐々木翔大，塙一晃，乾健太郎. 説明性の高いニュー
ラルモデルの予測確信度に関する分析. 言語処理学会第 27 回年次大会，
pp.1204-1209，3 月 2021.

3. 佐々木翔大，大内啓樹，鈴木潤，Ana Brassard，乾健太郎．単一評価サンプ
ルのためのトランズダクティブ学習．言語処理学会第 26 回年次大会，3 月
2020.

4. 舟山弘晃，佐々木翔大，水本智也，三田雅人，鈴木潤，松林優一郎，乾健太
郎．記述式答案自動採点のための確信度推定手法の検討．言語処理学会第 26
回年次大会，3 月 2020.

5. 佐藤俊，大内啓樹，塙一晃，佐々木翔大，乾健太郎. 訓練過程における予測
ラベルの遷移頻度情報を用いた予測確信度計算手法の改善. 第 15 回 NLP 若
手の会シンポジウム (YANS)，9 月 2020.

6. 佐藤俊，佐々木翔大，大内啓樹，鈴木潤，乾健太郎．評価データのクラスタ
リングを用いた記述式答案自動採点のためのトランズダクティブ学習. 言語
処理学会第 26 回年次大会，3 月 2020.

7. 舟山弘晃，佐々木翔大，水本智也，三田雅人，鈴木潤，乾健太郎．自動採点
における確信度推定手法．第 14 回 NLP 若手の会シンポジウム，8 月 2019.

8. 中村拓，田然，佐々木翔大，乾健太郎．単語埋め込みにおける複数視点の対
義語判定．2019 年度人工知能学会全国大会 (第 33 回)，4 pages，6 月 2019.

9. 佐々木翔大，鈴木潤，乾健太郎．サブワードに基づく単語分散表現の縮約モ
デリング．言語処理学会第 25 回年次大会，3 月 2019.

10. 佐々木翔大，鈴木潤，乾健太郎．サブワードに基づく単語ベクトルの再
構築．第 13 回 NLP 若手の会シンポジウム，8 月 2018. Shota Sasaki, Shuo
Sun, Shigehiko Schamoni, Kevin Duh and Kentaro Inui. Cross-lingual Information
Retrieval with Shared Representations. The 5th CWRU-TOHOKU Joint Workshop，
8 月 2018.

82

11. 佐々木翔大，Shuo Sun，Shigehiko Schamoni，Kevin Duh，乾健太郎．言語横断
的情報検索の大規模データセットとパラメータ共有モデル．言語処理学会第
24 回年次大会，3 月 2018.

12. 佐々木翔大，田然，乾健太郎．数量表現と比較に着目した意味解析に向けて．
第 12 回 NLP 若手の会シンポジウム，9 月 2017.

13. 佐々木翔大，高瀬翔，井之上直也，岡崎直観，乾健太郎．複単語表現を利用
した因果関係推定モデルの改善．第 231回自然言語処理研究会・第 116回音
声言語情報処理研究会，5 月 2017.

83

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Research Issues
	1.2 Contributions
	1.3 Overview

	2 Background
	2.1 Text Encoder
	2.1.1 Embedding Layer
	2.1.2 Task-specific Layer

	3 Cross-lingual Transfer Learning for Information Retrieval
	3.1 Introduction
	3.2 Large-scale CLIR Dataset
	3.3 Direct Modeling for CLIR
	3.3.1 Neural Ranking Model
	3.3.2 Sharing Representations

	3.4 Experiment Results
	3.5 Conclusion and Future Work

	4 Subword-based Compact Reconstruction for Open-vocabulary Word Embeddings
	4.1 Introduction
	4.2 Related Work
	4.3 Reconstruction of Word Embeddings Using Subwords
	4.3.1 Notation Rules
	4.3.2 Preliminaries
	4.3.3 Task Definition
	4.3.4 Baseline Method
	4.3.5 Consideration of Memory Requirement

	4.4 Methods to Improve Performance
	4.4.1 Frequent Subwords
	4.4.2 Memory Sharing
	4.4.3 Combination of Frequent Subwords and Memory Sharing
	4.4.4 Attention Operation
	4.4.5 Incorporating Multiple Hash Functions

	4.5 Experimental Settings
	4.5.1 Model Shrinkage
	4.5.2 OOV Word Embeddings
	4.5.3 Downstream Tasks

	4.6 Results
	4.6.1 Model Shrinkage
	4.6.2 Experiments of OOV Word Embeddings
	4.6.3 Evaluation on Downstream Tasks

	4.7 Analysis
	4.7.1 Calculation Speed
	4.7.2 Syntactic and Semantic Tests on Analogy
	4.7.3 Impact of Hyper-parameter Selection
	4.7.4 Distribution of FNV Hash

	4.8 Conclusion

	5 Examining the Effect of Whitening on Static and Contextualized Word Embeddings
	5.1 Introduction
	5.2 Background
	5.2.1 Anisotropy in Static and Contextualized Word Embeddings
	5.2.2 Isotropization via the Whitening Transformation
	5.2.3 Other Isotropization Methods

	5.3 Preliminaries
	5.4 Frequency Debiasing Method
	5.5 Experiments
	5.5.1 Settings
	5.5.2 Task
	5.5.3 Results

	5.6 Analysis
	5.7 Discussion
	5.8 Conclusion

	6 Conclusion
	References
	List of Publications

