

博 士 学 位 論 文

論文題目Machine Intelligence that Understands

 Visual and Linguistic Information and

 Interacts with Humans and Environments

提 出 者 東北大学大学院情報科学研究科

 システム情報科学専攻

 氏 名 Nguyen Van Quang

TOHOKU UNIVERSITY
Graduate School of Information Sciences

Machine Intelligence that Understands Visual and Linguistic
Information and Interacts with Humans and Environments
（視覚と言語情報を理解し人間や環境と作用し合う機械知能）

A dissertation submitted for the degree of Doctor of Philosophy (Information Sciences)
Department of System Information Sciences

by

Nguyen Van Quang

July 8, 2022

Machine Intelligence that Understands Visual and Linguistic
Information and Interacts with Humans and Environments

Nguyen Van Quang

Abstract

Over the past years, Artificial Intelligence has witnessed significant progress in com-
puter vision and natural language processing thanks to deep learning advancements.
Inspired by remarkable success in these two independent fields, there has been a grow-
ing interest in the problems at the intersection of visual and linguistic understanding.
It is believed that advances in solving those mentioned above and related problems
would open the door to many real-world applications, bringing fundamental change
to society. Take virtual assistants that aid the visually impaired, automatic surveil-
lance systems for querying over visual databases, and in-home robots that perform
household tasks as examples. Thus, the integration of vision and language is a viable
approach to achieving one of AI’s visionary goals: building machines that can un-
derstand both the visual and linguistic worlds, communicate with humans in natural
language, and further interact with environments.

In this dissertation, we aim to build and improve agents endowed with such intel-
ligence as a continuation of collective efforts by research communities. Specifically,
we focus our attention on three representative vision language tasks, namely image
captioning, visual dialog, and interactive instruction following tasks.

In the first part of the work, we revisit how to extract and utilize visual repre-
sentations, aiming to build a better and faster model for image captioning. In image
captioning, understanding visual information is crucial to correctly describing its con-
tent in words. Therefore, extracting good visual representations from the input image
is necessary. Current state-of-the-art methods employ region-based features extracted
by high-performance object detectors, e.g., Faster R-CNN. However, they have several
issues, for example, the lack of contextual information, the risk of incorrect detection,
and the high computational cost. The first two could be addressed by additionally
using grid-based features. However, how to extract and integrate these two types of
features was uncharted. We propose a transformer-only neural architecture, dubbed
GRIT (Grid and Region-based Image captioning Transformer), that can effectively
extract and integrate the two visual features to generate better captions for input
images. Specifically, GRIT replaces the CNN-based detector employed in previous

I

methods with a DETR-based one, making it computationally faster and end-to-end
trainable. We find that the proposed method brings about significant performance
improvement, outperforming previous methods in inference accuracy and speed.

In the second part of this work, we tackle the visual dialog task, which requires
agents to maintain a meaningful conversation with humans about the content of
input images by answering questions. Unlike image captioning, the agent must handle
multiple inputs, i.e., an image, a question, a dialog history, or even its individual dialog
components. Thus, the key to success lies in how to model all the interactions between
these inputs effectively and efficiently. We introduce a neural architecture, LTMI
(dubbed Light-weight Transformer for Many Inputs), that can efficiently deal with all
the interactions between multiple inputs in the visual dialog. It has a block structure
similar to the Transformer and employs the same design for attention computation.
With a similar setting on visual dialog, a layer built upon the proposed attention
block has less than one-tenth of the parameters compared with its counterpart, a
natural Transformer extension. It has only a small number of parameters yet has
sufficient representational power for the purpose. The experimental results on the
VisDial dataset validate the effectiveness of our proposed method.

In the last part of this work, we study interactive instruction-following tasks. An
embodied AI agent is required to perform a sequence of actions to accomplish a com-
plicated task in the interactive environment by following natural language directives.
Recent studies have tackled the problem using ALFRED, a well-designed dataset
for the task, but have obtained only very low accuracy. To this end, we propose
a novel method based on a combination of several new ideas, which surpasses the
existing methods by a large margin. One is a two-stage interpretation of the given
instructions. The method first chooses and decodes an instruction without visual
information, yielding a tentative sequence of object and action predictions. It then
integrates this prediction with the visual information to generate the final prediction
of an action and an object. It can localize the object of interest accurately from the
input image. Furthermore, the proposed method utilizes multiple egocentric views
of the environment and extracts crucial information by applying hierarchical atten-
tion conditioned on the selected instruction. It leads to better accuracy in predicting
navigation actions. Our proposed method attains an unseen success rate of 8.37%.

II

Contents

Abstract . I
Table of Contents . i
List of Figures . v
List of Tables . viii

1 Introduction 1
1.1 Artificial Intelligence Overview . 1

1.1.1 Artificial Intelligence Progress 1
1.1.2 Integration of Vision and Language 1

1.2 Our Research Problems . 2
1.2.1 Image Captioning . 3
1.2.2 Visual Dialog . 4
1.2.3 Interactive Instruction Following 5
1.2.4 Research Questions . 7

1.3 Dissertation Outline and Contributions 8

2 Preliminaries 11
2.1 Preliminary Background . 11

2.1.1 Supervised Learning . 11
2.1.2 Optimization . 12
2.1.3 Deep Learning Workflow . 14

2.2 Deep Neural Networks . 15
2.2.1 FeedForward Neural Networks 16
2.2.2 Convolutional Neural Networks 16
2.2.3 Recurrent Neural Networks 19
2.2.4 Transformer Neural Networks 21

3 GRIT: Integrating Dual Visual Features for Image Captioning 23
3.1 Introduction . 23
3.2 Related Work . 25

3.2.1 Visual Representations for Image Captioning 25
3.2.2 Application of Transformer in Vision/Language Tasks 26

3.3 Proposed Method . 27
3.3.1 Extracting Visual Features from Images 27

i

3.3.2 Caption Generation Using Dual Visual Features 30
3.4 Experiments . 33

3.4.1 Datasets . 33
3.4.2 Implementation Details . 34
3.4.3 Training Details . 35
3.4.4 Object Detection Results . 36
3.4.5 Performance of Different Configurations 36
3.4.6 Results on the COCO Dataset 38
3.4.7 Results on the ArtEmis and nocaps Datasets 41
3.4.8 Computational Efficiency . 42
3.4.9 Qualitative Results . 44

3.5 Summary and Conclusion . 44

4 LTMI: Lightweight Transformer for Many Inputs in Visual Dialog 49
4.1 Introduction . 49
4.2 Related Work . 51

4.2.1 Attention Mechanisms for Vision-Language Tasks 51
4.2.2 Visual Dialog . 52

4.3 Lightweight Transformer for Many Utilities 53
4.3.1 Attention Mechanism of Transformer 53
4.3.2 Application to Bi-Modal Tasks 54
4.3.3 Lightweight Transformer for Many Inputs 55
4.3.4 Interactions between All Utilities 57

4.4 Implementation Details for Visual Dialog 57
4.4.1 Problem Definition . 57
4.4.2 Representation of Utilities . 57
4.4.3 Overall Network Design . 61
4.4.4 Design of Decoders . 62
4.4.5 Multi-Task Learning . 64

4.5 Experiments on Visual Dialog . 64
4.5.1 Experimental Setup . 64
4.5.2 Comparison with State-of-the-art Methods 66
4.5.3 Ablation Study . 69
4.5.4 Qualitative Results . 71

4.6 Experiments on Audio Visual Scene-aware Dialog 73
4.6.1 Network Design . 74
4.6.2 Experimental Setup . 75
4.6.3 Experimental Results . 75

4.7 Summary and Conclusion . 75

5 LWIT: Improving Performance on Instruction Following Tasks 81
5.1 Introduction . 81
5.2 Related Work . 83

5.2.1 Embodied Vision-Language Tasks 83

ii

5.2.2 Existing Methods for ALFRED 83
5.3 Proposed Method . 84

5.3.1 Summary of ALFRED . 84
5.3.2 Feature Representations . 85
5.3.3 Instruction Decoder . 86
5.3.4 Action Decoder . 89
5.3.5 Mask Decoder . 91

5.4 Experiments . 92
5.4.1 Experimental Configuration 92
5.4.2 Experimental Results . 94
5.4.3 Ablation Study . 95
5.4.4 Qualitative Results . 97

5.5 Analyses of Failure Cases . 99
5.5.1 Navigation Failures . 99
5.5.2 Manipulation Failures . 101

5.6 Summary and Conclusion . 101

6 Conclusion 103

Bibliography 107

Acknowledgments 127

iii

List of Figures

1.1 From Image Classification to Image Captioning. Left) Predict an cat-
egory for an image; Right) Generate a description in a sentence for the
image. 3

1.2 From Visual Question Answering to Visual Dialog. Left) Answer a
single question; Right) Answer multiple questions in dialog. 5

1.3 An example of the ALFRED task with highlighted frames correspond-
ing to a portion of accompanying instructions. Source: [1]. 6

1.4 Illustrations of the research problems with our corresponding proposed
agents in this dissertation. Each proposed agent/model is encapsulated
with a black bounding box, outputting the predictions highlighted in
green. Top) We propose GRIT, a Grid- and Region-based Transformer
for Image captioning. Middle) We propose LTMI, a lightweight trans-
former that handles multiple inputs in Visual Dialog. Bottom) We
propose LWIT, a neural agent that performs household tasks following
humans’ instructions. 8

2.1 Examples of cat images. They are of different cat breed, position, size,
color intensity, etc. Source: Kaggle dataset. 17

2.2 The architecture of LeNet-5, the first convolutional neural network
introduced by Lecun et al. [2] for character recognition. The architec-
ture of LeNet-5 consists of two convolutional layers, two subsampling
(pooling) layers, and two fully connected layers. Soure: [2]. 17

2.3 Illustration of a Long Short-Term Memory cell. 20
2.4 (left) Scaled Dot-Product Attention. (right) Multi-Head Attention

consists of several attention layers running in parallel. Source: [3]. . . 21

3.1 Comparison of GRIT and other region-based methods for image cap-
tioning. Left: Running time per image of performing inference with
beam size of five and the maximum length of 20 on a V100 GPU.
Right: Their architectures . 24

3.2 Overview of the architecture of GRIT 27
3.3 Three designs of cross-attention mechanism to use dual visual features 31

v

3.4 Qualitative examples from our method (GRIT) and a region-based
method (M2 Transformer) on the COCO test images. Zoom in for
better view. 45

3.5 Qualitative examples from our method (GRIT) and a region-based
method (M2 Transformer) on the COCO test images. Zoom in for
better view. 46

3.6 Qualitative examples from our method (GRIT) and a region-based
method (M2 Transformer) on the COCO test images. Zoom in for
better view. 47

3.7 Qualitative examples from our method (GRIT) and a region-based
method (M2 Transformer) on the COCO test images. Zoom in for
better view. 48

4.1 (a) Source-to-target attention for bi-modal problems implemented by
the standard Transformer block; the source Y is attended by weights
computed from the similarity between the target X and Y . (b) The
proposed block that can deal with many utilities; the source features
{Y1, . . . , YU−1} are attended by weights computed between them and
the target X. Shaded boxes have learnable weights 54

4.2 (a) Simplified symbol of the proposed block shown in Fig. 4.1(b). (b)
Its application to Visual Dialog . 56

4.3 The entire network built upon the proposed LTMI for Visual Dialog . 61
4.4 Examples of visualization for the attention weights generated in our

model at two Q&A rounds on two images. See Sec. 4.5.4 for details. 73
4.5 Examples of results for which the top-1 prediction is the same as the

ground truth answer on the validation split of Visdial v1.0. Each row
shows selected two rounds of Q&A for one image. 76

4.6 Examples of results for which the top-1 prediction is the same as the
ground truth answer on the validation split of Visdial v1.0. Each row
shows selected two rounds of Q&A for one image. 77

4.7 Examples of results for which the top-1 prediction is different from the
ground truth answer on the validation split of Visdial v1.0. 78

4.8 Examples of results for which the top-1 prediction is different from the
ground truth answer on the validation split of Visdial v1.0. 79

5.1 Architecture overview of the proposed model. It consists of the mod-
ules encoding the visual inputs and the language directives (Sec. 5.3.2),
the instruction decoder with an instruction selector (Sec. 5.3.3), the
action decoder (Sec. 5.3.4), and the mask decoder (Sec. 5.3.5). 85

5.2 An example illustrates how we reinitialize the hidden states of the two
LSTMs in the instruction encoder by smt when mt = mt−1 +1 (mt = 4). 87

5.3 Our agent completes an Examine task “Examine an empty box by the
light of a floor lamp” in an unseen environment. 98

vi

5.4 Our agent completes a Pick & Place task “Place the green bottle on
the toilet basin” in an unseen environment. 98

5.5 Our agent completes a Pick Two & Place task “To move two bars of
soap to the cabinet” in an unseen environment. 99

5.6 Our agent completes a Cool & Place task “Put chilled lettuce on the
counter” in an unseen environment. 99

5.7 Our agent completes a Heat & Place task “Put a heated apple next
to the lettuce on the middle shelf in the refrigerator” in an unseen
environment. 100

5.8 The prediction masks generated by Shridhar et al.and our method
where the agents are moved to the same location to accomplish Slice
sub-goal. 100

vii

List of Tables

3.1 Statistics of the pretraining datasets for object detection. 33
3.2 Performance of object detection on the COCO and Visual Genome

datasets. ‘4DS’ denotes the four object detection datasets. 36
3.3 Results of ablation tests on the COCO test split. All the models are

trained with the XE loss and finetuned by the CIDEr optimization . 37
3.4 Offline results evaluated on the COCO Karpathy test split. ‘V. E.

type’ indicates the type of visual features; ‘# VL Data’ is the number
of image-text pairs used for vision-language pretraining. 39

3.5 Online evaluation results on the COCO image captioning dataset. . 40
3.6 Performance on the ArtEmis and nocaps datasets. 41
3.7 The inference time on feature extraction of different methods. 43
3.8 The inference time on caption generation of different methods. 43

4.1 Hyper-paramters used in the training procedure. 66
4.2 Comparison of the performances of different methods on the validation

set of VisDial v1.0 with discriminative and generative decoders. . . . 66
4.3 Comparison in terms of single-model performance on the blind test-

standard v1.0 split of the VisDial v1.0 dataset. The result obtained
by early stopping on MRR metric is denoted by ⋆ and those with
fine-tuning on dense annotations are denoted by †. 68

4.4 Comparison in terms of ensemble-model performance on the blind
test-standard v1.0 split of the VisDial v1.0 dataset. The result ob-
tained by early stopping on MRR metric is denoted by ⋆ and those
with fine-tuning on dense annotations are denoted by †. 69

4.5 Comparison in terms of the number of parameters of the attention
mechanism. The result obtained by early stopping on MRR metric
is denoted by ⋆ and those with fine-tuning on dense annotations are
denoted by †. 70

4.6 Ablation study on the components of our method on the val v1.0 split
of VisDial dataset. ↑ indicates the higher the better. 71

4.7 Ablation study on the components of our method on the val v1.0 split
of VisDial dataset. ↑ indicates the higher the better. 72

viii

4.8 Comparison of response generation evaluation results with objective
measures. 73

5.1 Task and Goal-Condition Success Rate. For each metric, the corre-
sponding path weighted metrics are given in (parentheses). The high-
est values per fold and metric are shown in bold. 93

5.2 Sub-goal success rate. All values are in percentage. The agent is
evaluated on the Validation set. Highest values per fold are indicated
in bold. 94

5.3 Success rate across 7 task types. All values are in percentages. The
agent is evaluated on the validation set. Highest values per split are
indicated in bold. 95

5.4 Ablation study for the components of the proposed model. We report
the success rate (Task score) on the validation seen and unseen splits.
The 7 mark denotes that a corresponding component is removed from
the proposed model. 96

5.5 Results of an ablation test for examining the effectiveness of each com-
ponent of the proposed model. The path weighted scores are reported
in the parentheses. 97

5.6 Results of experiments comparing activation functions in the mod-
ule for aggregating and encoding multi-view visual inputs. The path
weighted scores are reported in the parentheses. 97

ix

Chapter 1

Introduction

1.1 Artificial Intelligence Overview

1.1.1 Artificial Intelligence Progress

Artificial Intelligence (AI), or Machine Intelligence, has advanced rapidly in re-
cent years. This achievement is arguably attributed to tremendous progress in AI sub-
fields, including computer vision (CV) and natural language processing (NLP), thanks
to deep learning advancements. Computer vision has seen many remarkable achieve-
ments in many tasks, such as image recognition [4–7], object detection [8], semantic
segmentation [9], using large labeled datasets [10], or employing self-supervision [11]
on large-scale unlabeled data. Similarly, NLP has experienced unprecedented studies
using deep learning, achieving remarkable performance on many downstream tasks
powered by neural networks pre-trained on large-scale text corpora [12–14]. Conse-
quently, there is also a growing interest in the problems at the intersection between
these two independent fields that require visual and linguistic understanding.

1.1.2 Integration of Vision and Language

Integrating the two fields of computer vision and natural language processing is
a viable approach toward one long-standing goal of AI: building machines that can
perceive the worlds of vision and language, communicate with humans in natural
language, and further interact with the physical environments around us. Inspired

1

by the tremendous success in CV and NLP, an increasing amount of attention has
been paid to the problems lying at the intersection between vision and language do-
mains, taking further steps towards this visionary goal. Many pilot tasks in this
intersecting region have been designed and introduced to the research community,
together with datasets. It remains challenging as the tasks require future machine
intelligence not only to (1) acquire a comprehensive understanding of visual and/or
linguistic information but also to (2) generate descriptions or stories about the vi-
sual content [15,16], (3) specify salient regions and objects and their relationships in
the image to reason about, or answer arbitrary questions about its content [17, 18],
(4) navigate through and interact with physical environments by leveraging natural
language instructions [1, 19–21], etc. Methods that can deal with and translate be-
tween various modalities (for example, visual and linguistic inputs) are classified as
a sub-category of multi-modal models, which were originally described [22].

Practical Applications Advances in tackling the aforementioned and other re-
lated challenges are expected to open the door to a broad range of practical applica-
tions, bringing about a radical change in society. For example, the visually impaired
can be helped better by a future generation of virtual assistants. They can obtain
helpful information about a scene from generated descriptions and by being able to
ask questions about it. It can be used in automatic surveillance for querying from
enormous image and video databases using natural language and in personal navi-
gation systems that can process or even generate navigation instructions in natural
language [18, 19]. It also includes in-home robots that perform household tasks [1].
Lastly, these problems play a critical role in evaluating the performance of AI systems
that contribute to the progress of designing better machines with more collectively
comprehensive intelligence than independent ones in CV and NLP.

1.2 Our Research Problems

In this dissertation, we aim to build and improve agents endowed with such the
intelligence as a continuation of collective efforts by research communities. In partic-
ular, we study three representative vision language tasks, namely image caption-

2

ing [15], visual dialog [18], and interactive instruction following [1].

Challenges When tackling tasks that require visual and linguistic understanding
with the translation between the two modalities, humans can do it with ease. For
example, a human can point out and convey an enormous quantity of information
about a visual scene with just a cursory look at it. On the other hand, computers
find it difficult when they deal with unstructured data, e.g., images and text. Next,
we will describe the three tasks, the challenges we confront when designing agents,
and the shortcomings of previous studies, and summarize our proposed approaches.

1.2.1 Image Captioning

Move AheadTurn Left

Image Classification

Vision Language Interactive FollowingVision Language Navigation

cat

GRIT

A cat sitting
on the couch

LTMI

A1: sitting on
the couch

Q1: What is the
cat doing?

Image Captioning

Visual Dialog

A2: It is gray

Q2: What color is
the couch?

LWIT

Instruction Following

1. Walk to kitchen bar
2. Pick up dirty mug

3. Turn around, walk to
to the sink ...

Environment

T
T-1

T
T-1

Cat

Image Captioning

A cat sitting on
the couch

VQA
Q: How many cats are there?

One

Visual Dialog
Q1: What is the cat doing?
A2: Sitting on the couch.

Q1: Is it looking at the camera?

A2: Yes, it faces the camera

Figure 1.1: From Image Classification to Image Captioning. Left) Predict an category
for an image; Right) Generate a description in a sentence for the image.

The task of image captioning requires generating a sentence describing the content
of a scene for a given image. We usually represent an image by an array of pixels with
intensity values in the color channel(s) (e.g., RGB images have three color channels
while black-white images have a single channel); a typical image might have millions
of pixels. To recognize the objects in the image (e.g., a cat as in Fig.1.1), the agent
must convert these raw intensity values into high-level concepts of objects. On the
other hand, many objects share similar low-level patterns (e.g., from cats and dogs
to carpets and coats, they all have fur). It makes the recognition of objects in the
image by manually programming unattainable.

Generating a sentence in natural language is also a challenging task. Unlike the
object recognition task that assigns one or a few labels to the image, computers must
output a sequence of words in a large vocabulary to reflect their understanding of the
visual content (see Fig. 1.1). Therefore, image captioning requires a complex pattern

3

recognition process of identifying salient objects and regions and annotating them
with a sequence of integers to represent words in the caption.

It is believed in the community that extracting visual representations from an
input image plays a crucial role in generating better captions. Identifying exist-
ing objects and their relationships in the image is especially beneficial for precisely
describing its visual content. The state-of-the-art methods utilize the region-based
features obtained from CNN-based detectors, such as Faster R-CNN [8], since they
encode detected objects directly. However, the region-based features have several
issues, such as a lack of contextual information, risk of false detection, and expensive
computation. The grid-based features are the high-level feature maps extracted from
the entire image. They thus represent contextual information while being free from
the risk of incorrect object detection.

In this dissertation, we revisit how to extract these dual visual features from input
images and how to combine such region and grid features in an integrated manner,
aiming to build a better and faster model for image captioning. The underlying idea
is that appropriate integration of the two visual features will provide a better repre-
sentation of the input image since they are complementary, as explained above. In
particular, in Chapter 3, we propose a Transformer-only neural architecture, dubbed
GRIT (Grid and Region-based Image captioning Transformer), that effectively utilizes
the two visual features to generate better captions. GRIT replaces the CNN-based
detector employed in previous methods with a DETR-based one, making it compu-
tationally faster. Moreover, the monolithic design consisting only of Transformers
makes it end-to-end trainable. We find that the proposed method obtains consider-
able performance gain, surpassing previous methods in both inference accuracy and
speed.

1.2.2 Visual Dialog

Unlike the image captioning task, where agents perform only one-way commu-
nication by returning only the image description to humans, visual dialog agents
communicate with humans in a two-way manner (see Fig. 1.4). Specifically, the task
of visual dialog demands an agent to maintain a meaningful conversation with humans
in natural language by answering questions about the visual content. Visual dialog

4

Move AheadTurn Left

Image Classification

Vision Language Interactive FollowingVision Language Navigation

cat

GRIT

A cat sitting
on the couch

LTMI

A1: sitting on
the couch

Q1: What is the
cat doing?

Image Captioning

Visual Dialog

A2: It is gray

Q2: What color is
the couch?

LWIT

Instruction Following

1. Walk to kitchen bar
2. Pick up dirty mug

3. Turn around, walk to
to the sink ...

Environment

T
T-1

T
T-1

Cat

Image Captioning

A cat sitting on
the couch

VQA
Q: How many cats are there?

One

Visual Dialog
Q1: What is the cat doing?
A2: Sitting on the couch.

Q1: Is it looking at the camera?

A2: Yes, it faces the camera

Figure 1.2: From Visual Question Answering to Visual Dialog. Left) Answer a single
question; Right) Answer multiple questions in dialog.

has been developed aiming at a higher level of vision-language interactions [18], as
compared with VQA (visual question answering) [17] and VCR (visual commonsense
reasoning); see Figure 1.2. It extends VQA to multiple rounds; given an image and a
history of question-answer pairs about the image, an agent is asked to answer a new
question. This task requires multiple sub-problems ranging from visual understand-
ing to natural language tasks such as language generation, co-reference resolution,
etc. For example, to answer the question ‘What color are they?’, the agent needs to
understand the context from a dialog history to know what ‘they’ refers to and look
at the relevant image region to find out the color.

The key to success in visual dialog lies in how to model the interactions between
multiple inputs, i.e., the input image, the dialog history, and a question. To this
end, we propose in Chapter 4 a neural architecture named Light-weight Transformer
for Many Inputs (LTMI) that can efficiently deal with all the interactions between
multiple such inputs in visual dialog. It has a block structure similar to the Trans-
former and employs the same design for attention computation. In contrast, it has
only a small number of parameters yet has sufficient representational power for the
purpose. With a similar setting on visual dialog, a layer built upon the proposed
attention block has less than one-tenth of the parameters compared with its coun-
terpart, a natural Transformer extension. The experimental results on the VisDial
dataset validate the effectiveness of the proposed method.

1.2.3 Interactive Instruction Following

The image captioning and visual dialog problems are beneficial for stimulating
and evaluating progress on the problems involving both vision and language domains.

5

Figure 1.3: An example of the ALFRED task with highlighted frames corresponding
to a portion of accompanying instructions. Source: [1].

They do, however, share a flaw: they are both passive. In these tasks, the agent is
not allowed to move or manipulate the camera or interact with the environment.
Therefore, the visual inputs are static, i.e., fixed images. It underestimates one of
the most important aspects of several practical applications stated in Section 1.1.2,
as each of these examples (e.g., in-home robots) requires an embodied agent.

In the last part of our work, we focus on the interactive instruction following
tasks. We examine a more complex problem by addressing a recently constructed
benchmark known as ALFRED [1]. An agent must do a household task in an interac-
tive environment by following verbal directions. In comparison with a close problem
called vision-language navigation (VLN) [19], ALFRED is more difficult because the
agent must (1) reason over a larger number of instructions and (2) predict actions
from a wider action space in order to complete a task across longer time horizons.
The agent must also (3) predict the pixel-wise masks to localize the objects of inter-
est. Previous studies (e.g., [1]) employ a Seq2Seq model, which performs well on the
VLN tasks [23]. However, it does not work well on ALFRED. Consequently, previous
approaches have poor performance and a large gap compared with humans.

In Chapter 5, we present a new method, which surpasses the prior methods by
a significant margin. We propose an embodied agent based on several new ideas.

6

One is a two-stage interpretation of the given instructions. The method first selects
and decodes an instruction without visual information, yielding a tentative sequence
prediction of objects and actions. It then combines this prediction with the visual
information, obtaining the final prediction of an action and an object with better
accuracy. Furthermore, our method utilizes multiple ego-centric views and extracts
crucial information using hierarchical attention conditioned on the selected instruc-
tion.

1.2.4 Research Questions

As a result, we will address three main research questions (RQs) while studying
the three research problems:

RQ1: In vision-language tasks, understanding visual information is of importance.
It is reasonably valid for image captioning, in which agents must grasp visual
information before describing an input image in words. To this end, we need
a form of representation for visual inputs so that neural networks can learn
helpful information to caption an image effectively. We raise a question: how
do we extract good visual representations from input images?

RQ2: In RQ1, neural networks process only the visual inputs. Meanwhile, visual
dialog tasks require neural networks to gain understanding from both visual and
linguistic inputs in order to answer questions. We deal with multiple inputs in
these tasks, e.g., an image, a dialog history, and a question. It is thus essential to
address a question: how do we model the interactions between multiple
inputs efficiently?

RQ3: Agents process information passively in the above problems, i.e., agents only
receive and process the inputs given by humans. We ask a question: how do we
build embodied agents that interact with physical environments and
collect visual inputs actively itself? We attempt to answer this question
by tackling ALFRED, a well-defined embodied problem.

7

Move AheadTurn Left

Image CaptioningImage Classification

Visual DialogVisual Question Answering

Vision Language Interactive FollowingVision Language Navigation

cat
A cat sitting
on the couch

GRIT

A cat sitting
on the couch

LTMI

A1: sitting on
the couch

Q1: What is the
cat doing?

Image Captioning

Visual Dialog

A2: It is gray

Q2: What color is
the couch?

How many cats are there?

Q: What is the cat doing?
A: Sitting on the couch.
Q: Is it looking at the

camera?

Yes, it faces
the camera

There is only
1 cat

LWIT

Instruction Following

1. Walk to kitchen bar
2. Pick up dirty mug

3. Turn around, walk to
to the sink ...

Environment

T
T-1

T
T-1

Figure 1.4: Illustrations of the research problems with our corresponding proposed
agents in this dissertation. Each proposed agent/model is encapsulated with a black
bounding box, outputting the predictions highlighted in green. Top) We propose
GRIT, a Grid- and Region-based Transformer for Image captioning. Middle) We
propose LTMI, a lightweight transformer that handles multiple inputs in Visual Di-
alog. Bottom) We propose LWIT, a neural agent that performs household tasks
following humans’ instructions.

1.3 Dissertation Outline and Contributions

In this dissertation, we develop new models for machine intelligence that under-
stand visual and linguistic information and interact with humans and environments,
focusing on the three representative vision-language problems; See the overview in
Figure 1.4. We present the dissertation’s outline and summarize each chapter’s con-
tributions (if any) as follows.

Chapter 2–Background This chapter provides some fundamental background
that is applied throughout the rest of the dissertation.

8

Chapter 3–GRIT: Integrating Dual Visual Features for Image Captioning
In this chapter, we revisit the representation of visual features, aiming to build a

better and faster image captioning model. We then propose GRIT, an Grid- and
Region-based Image-captioning Transformer that effectively utilizes the two visual
features to generate better captions. GRIT replaces the CNN-based detector with a
DETR-based one, making it computationally faster and end-to-end trainable. The
experimental results show that GRIT outperforms the previous methods by a large
margin in inference speed and accuracy.

Chapter 4–LTMI: Light-weight Transformer for Many Inputs in Visual
Dialog In this chapter, we tackle the visual dialog task, which requires the agent to
handle multiple inputs, i.e., an image, a question, a dialog history, or its components.
We introduce a neural architecture named Light-weight Transformer for Many Inputs
(LTMI) that can efficiently deal with all the interactions between multiple such inputs
in visual dialog. LTMI possesses sufficient representational power with much fewer
parameters and a similar block structure to Transformer. The experimental results
on the VisDial dataset validate the effectiveness of our proposed method.

Chapter 5–LWIT: Improving Performance on Instruction Following Tasks
In this chapter, we tackle ALFRED, the interactive instruction following tasks.

Previous methods only show limited performance on the task; there is a huge gap
with human performance. We propose LWIT (Look Wide Interpret Twice), a new
method which outperforms the previous methods by a large margin. It is based on
a combination of several new ideas, such as a two-stage interpretation of the pro-
vided instructions, using multiple egocentric views of the environment and extracting
essential information by applying hierarchical attention conditioned on the current
instruction, etc.

Chapter 6–Conclusion and Future Directions We conclude the dissertation by
summarizing the main contributions and discussing future research toward improving
this machine intelligence.

9

Chapter 2

Preliminaries

This chapter summarizes the introductory knowledge on recent deep learning that
we will apply throughout the dissertation. To acquire a broader and deeper under-
standing, we highly recommend the Deep Learning textbook [24] which gives a more
comprehensive introduction.

2.1 Preliminary Background

The proposed methods in this dissertation are mainly built upon modern deep
learning techniques. Recent deep learning advances provide a powerful framework for
supervised learning. Throughout this dissertation, we tackle several supervised learn-
ing problems that require learning an input-to-output mapping from training exam-
ples. We will present a generic supervised learning problem, optimization techniques
to learn the mapping, and a typical workflow for building deep learning algorithms.

2.1.1 Supervised Learning

A supervised learning problem requires learning a mapping f : X → Y , where
X and Y represent the space for input and output, respectively. Supervised learning
algorithms are those that are able to learn from a labeled dataset. Each sample in
the dataset is represented by a vector x and associated with a label y, forming a data-
point (x, y). A classical example of supervised learning problems is Iris classification,
in which each datapoint is associated with a plant. We represent a plant by a single

11

vector x which is composed of four measurements: the petal length, the sepal length,
the petal width, and the sepal width. The species form the output space Y . Take
image captioning as a more complicated supervised learning example in this disserta-
tion. The input x is an image, while the output y is a sentence describing the content
of the image. It can often be challenging to manually define the mapping f that can
be explicitly programmed using standard techniques. As an instance, take writing a
hand-coded program that can describe an image in natural language. On the other
hand, supervised learning algorithms provide an alternate approach by learning from
many training examples (x, y) ∈ X × Y that can be collected easily in practice.

Formally, a supervised learning model can be defined as y = f(x; θ) where θ are
the parameters learned from the training examples that result in the best approx-
imation of f ⋆. Given n training examples {(x1, y1), (x2, y2), . . . , (xn, yn)}, the best
approximation f ⋆ is defined as

f ⋆ = argmin
θ

n∑
i

L(f(xi; θ), yi), (2.1)

where L is the per-sample loss (e.g., the mean square error (MSE), cross entropy).
The loss function J(θ) measuring the model performance over the entire training
samples is defined by

J(θ) =
n∑
i

L(f(xi; θ), yi). (2.2)

2.1.2 Optimization

As of now, it becomes an optimization problem by minimizing the loss function,
e.g., J(θ). Maximization can be performed via a minimization algorithm by minimiz-
ing its negative function, e.g., −J(θ). In deep learning, the loss function can be the
cost function, objective function, or training error.

Gradient Descent Suppose a function y = f(x), where x and y are real numbers.
The slope of f(x) at the point x is given by its derivative, denoted as f ′(x) or dy

dx
.

It reflects how f(x) changes in relation to the change in x. Using this knowledge,
we can minimize f(x) by moving x in small steps in the opposite direction of the

12

derivative’s sign. This is known as the gradient descent algorithm. It is natural to
apply this algorithm to the optimization problem in 2.1 in order to find a function f ⋆

by adjusting θ values. It is required computing the following gradient

∇θ =
n∑
i

∇θL(f(xi; θ), yi). (2.3)

Stochastic Gradient Descent In many practical problems, a sufficiently large
dataset is required to seek a better model with sufficient generalizability. As a result,
applying gradient descent directly to Eq.2.1 is computationally expensive, slowing
down the optimization. In practice, to train a deep learning model on a large dataset,
we usually use its extension, Stochastic Gradient Descent (SGD). The loss function
is computed over a small number of training examples, which are sampled randomly
during the training phase. Specifically, at one optimization step, we sample a mini-
batch of m samples {(xi, yi)}mi=1 from the training set. Thus, rather than computing
the gradient in 2.3 across all training examples, we only need to compute the gradient
shown below.

∇θ =
m∑
i

∇θL(f(xi; θ), yi), (2.4)

where m is a relatively smaller number that is independent of the number of training
examples n. As a result, the model’s parameters θ are updated as follows:

θ ←− θ − ϵ∇θ, (2.5)

where epsilon represents the learning rate. It is critical to set the learning rate to
a suitable value that allows the optimization to properly converge. Inappropriate
learning rates will slow convergence or cause the optimization to diverge.

Advanced Optimization Algorithms Several advanced gradient-based optimiza-
tion algorithms have been developed that result in faster convergence. The momen-
tum methods [25, 26] can be used to accelerate training with SGD. It accumulates
an exponentially decaying moving average of previous gradients and keeps moving
in their direction. Several approaches, including Adam [27], AdaGrad [28], and RM-
SProp [29], use adaptive learning rates to speed up optimization. It should be noted

13

that this dissertation mostly employs Adam as the primary optimizer choice.

2.1.3 Deep Learning Workflow

We already know how to solve a generic supervised learning problem using opti-
mization. To solve this optimization problem, we can use the SGD algorithm to find
the best f ⋆ possible. In general, any deep learning algorithm can be thought of as
an instance of a simple recipe that combines a dataset, a cost function, a model, and
an optimization function. The following is a typical workflow for applying any deep
learning model:

Data preparation The first step in most deep learning workflows is to obtain and
prepare the dataset. The dataset is divided into training, development, and testing
splits. In this dissertation, we focus on well-defined tasks with datasets that are
primarily divided into training and development/validation splits. Each dataset also
includes a testing split without any annotations; the result of this split can only be
obtained by submitting it to the dataset’s online server. Following that, it is critical
to inspect a dataset to gain an initial understanding of the task at hand, such as its
distribution, how samples are collected and labeled, existing issues, and so on.

Data preprocessing Preprocessing data usually speeds up the training procedure,
allowing the optimization to converge more quickly. Images are preprocessed, for ex-
ample, by normalizing pixel values in each dimension with a given mean and standard
deviation. This step is necessary in two situations: (1) when we extract features or
finetune a pretrained backbone on a larger dataset, such as ImageNet, and (2) when
we preprocess the samples during deployment using the same estimate statistics as
training samples.

Architecture design All the deep learning algorithms require specifying the func-
tion space or the architecture family the optimization will seek. Based on the under-
standing of the dataset, one can make a heuristic on which kind of architecture can be
employed. For example, CNNs are commonly used for grid-like data (e.g., images),
whereas RNNs can handle sequential data (e.g., text), and so on. A heuristic like

14

this would help us quickly build viable architectures and establish initial baselines.
Section 2.2 will present several common neural architectures upon which we build our
proposed methods. Designing architecture is not limited by prior experience; thus,
we can experiment with various architectures through trials and errors.

Training and Validation During the training steps, the designed model learns
patterns from the training samples by utilizing optimization algorithms. While there
are many popular optimization algorithms, researchers recommend using Adam with
the default learning rate and first and second moment coefficients at the very first
training. It is also common to use learning rate schedulers, which adjust the learning
rate throughout training. We can also validate the model’s prediction ability on the
validation split during the training steps.

Hyper-parameter optimization Deep learning algorithms involve numerous hyper-
parameter decisions. Because it is difficult to find the optimal combination for all
hyper-parameters, it is common to begin with the default settings in previous stud-
ies. Grid search and random search are the two standard techniques for performing
hyper-parameter search efficiently. By evaluating the model on the validation set,
we perform a hyper-parameter search. The final best model with the best valida-
tion performance is then chosen to perform on the test split in order to measure its
performance.

2.2 Deep Neural Networks

Neural networks are well-known in the deep learning regime for approximating f .
In the previous section, we defined the arbitrary function f that uses an optimization
algorithm to learn the mappingX → Y for supervised learning problems. This section
will explore several deep neural networks commonly used for visual and linguistic
understanding.

15

2.2.1 FeedForward Neural Networks

The development of Feedforward Neural Networks dates back to 1958 when Frank
Rosenblatt introduced the first Artificial Neural Network [30], named perceptron.
The concept of the perceptron was inspired by the operation of a biological brain.
Perceptrons were not learning efficiently until 1986 when David et al. [31] proposed
the back-propagation algorithm, which can compute the gradient efficiently.

Feedforward neural networks are constructed by combining multiple functions.
The most common method of building feedforward neural networks is by stacking
multiple functions in a chain structure. For example, a two-layer network can be
formed as f(x) = W2σ(W1x + b1) + b2, where W1 and W2 are learnable matrices, b1
and b2 are learnable biases, and σ is a non-linear function (e.g., tanh, sigmoid). A
function transforming input x into Wx+ b with learnable parameters W and b forms
a Fully-Connected (FC) layer. It is noted that an activation function, denoted
by σ, is added to introduce non-linearity and enhance the representational power of
the neural network (its learning capacity). The number of layers in these structures
indicates the depth of neural networks, giving birth to the terminology Deep Neural
Networks (DNN).

Feedforward neural networks are the foundation of many architecture designs. The
specialized feedforward neural network types include convolutional neural networks,
recurrent neural networks, and transformers. In the sections that follow, we will
introduce briefly the neural architecture of these networks.

2.2.2 Convolutional Neural Networks

Simple neural networks composed of multiple FC layers make no assumptions
about the input data. It becomes inefficient when processing high-dimensional input
data, such as images with several hundred pixels per dimension. Many statistical
properties of natural images are invariant to translation.

For instance, we classify the cat images as “cat” regardless of their breed, scale,
and location in the image; see Figure 2.1. Convolutional neural networks (CNN) [2]
are proposed to deal with these grid-like data (e.g., images, videos, etc). CNNs take
this invariance into account by performing convolution across different locations in

16

Figure 2.1: Examples of cat images. They are of different cat breed, position, size,
color intensity, etc. Source: Kaggle dataset.

the input representations with the kernels using shared parameters.
CNNs possess a number of characteristics that make them ideal for grid-like

data [24]. First, because convolutions are translation invariant, objects and other
characteristics can be recognized regardless of where they are in the image. Second,
CNNs use the same kernels at every input location. Therefore, convolutional architec-
ture is computationally more efficient than architectures with fully connected layers.
Lastly, interactions in a convolutional layer are sparse, as only a few neighboring
tensors are convolved with the kernels.

A typical convolutional neural network is formed by stacking convolutional lay-
ers and pooling layers. LetNet-5 [2] has two convolutional layers, two subsampling
(pooling) layers, two fully connected layers, and two fully connected layers. All the
layers are stacked in a chain structure as shown in Figure 2.2.

Figure 2.2: The architecture of LeNet-5, the first convolutional neural network in-
troduced by Lecun et al. [2] for character recognition. The architecture of LeNet-5
consists of two convolutional layers, two subsampling (pooling) layers, and two fully
connected layers. Soure: [2].

Convolutional layers The input to the convolutional layer is a tensor. It then
produces an output tensor by convolving the input with a set of filters. We can

17

convolve the filter by sliding it across all spatial positions of the input tensor and
computing a dot product between it and a small region of the input tensor at each
spatial position. This will result in an activation map. As a specific example, consider
a 256 × 256 × 3 input that is processed with a layer having 32 5× 5× 3 filters with
padding of 2 and stride of 1. In this instance, the output would be 256 × 256 × 32,
representing the firing of all filters at all spatial locations.

Following are characteristics of a typical convolutional layer.

• It takes a tensor of size W1 ×H1 ×D1 (e.g., 3D tensors).

• It has four hyper-parameters: K is the number of filters, F is their spatial
extent, S is the stride, and P is zero padding on the input’s borders.

• It produces an output having a size of W2 × H2 × D2, in which W2 = (W1 −
F + 2P)/S + 1;H2 = (H1 − F + 2P)/S + 1, and D2 = K.

• Each filter is (F ∗ F ∗D1) parameters, for a total of (F ∗ F ∗D1 ∗K) weights
and K biases. It is noted that the receptive field of the filters is small with an
area of F ×F , but that it always traverses the entire depth of the input tensor
(D1).

• The size of the d-th of the output tensor is (W2 × H2). It is the result of
convolving the d-th filter over the input tensor with a stride of S and then
offsetting by the d-th bias.

Pooling layers In addition to convolutional layers, pooling layers are typically
used to downsample feature maps. Pooling layers, unlike convolutional layers, trans-
form input tensors without employing any learnable parameters. In particular, the
pooling layers perform independently on each channel (activation map) and spatially
downsample them. Max pooling layer and average pooling layer are frequently used
as the building blocks in designing CNN architectures. Consider a max pooling layer
with 2× 2 filters and a stride of 2, where each filter performs the max operation over
four numbers. Therefore, an input tensor is precisely downscaled by a factor of two
in both width and height, and the representation size is reduced by a factor of four
at the cost of some local spatial information loss.

18

2.2.3 Recurrent Neural Networks

Recurrent Neural Networks (RNN) [32] is a type of neural network designed to
process sequential data. Unlike other feedforward neural networks, RNNs contain one
or more feedback loops and a hidden state (memory) that is updated as each element
in an input or output sequence is processed. This structure enables the network to
process and remember signals, thereby enabling the model to learn sequential data
dependencies. Given an input vector xt at time step t, the hidden state ht is computed
by using a recurrent formulation:

ht = fθ(ht−1, xt), (2.6)

where f represents the computation of RNNs by using the same learnable parameters
θ for all the time steps. Thus, it can process any sequence of arbitrary length. The
hidden state ht−1 can be interpreted as a running memory from all previous time
steps. Specifically, ht in a Vanilla Recurrent Neural Network is computed as
follows:

ht = tanh(Wxhxt +Whhht−1), (2.7)

where Wxh and Whh are the learnable parameters, and tanh(·) is a hyperbolic activa-
tion function. Equation 2.6 and 2.7 omits bias vectors for the sake of brevity.

Long Short-Term Memory Networks The undesirable nature of vanilla RNNs
is that the gradients tend to either vanish or explode over long time steps. Long
Short-Term Memory (LSTM) networks [33] are a particular RNN implementation
which is designed to handle the RNN limitations. In addition to the hidden state ht,
it also maintains the memory cell state ct as follows:

ht, ct = LSTM(xt, ht−1, ct−1). (2.8)

Figure 2.3 illustrates all the feed-forward computations and internal updates of LSTM.
At each time step, the LSTM can choose to read from, write to, or reset the cell using
explicit gating mechanisms. Specifically, given xt as input to a LSTM layer of N
hidden units, the N -dimensional input gate it, forget gate ft, output gate ot, and

19

2.1 Recurrent Neural Networks and LSTM Modules 9

2.1.2 Long Short-Term Memory (LSTM)

� � tanh �

⇥ +

⇥ ⇥

tanh

ct�1

Cell State

ht�1

Hidden State

xtInput

ct

Cell State

ht

Hidden State

ytOutput

Figure 2.3: Model Schematic for Long Short-Term Memory

The primary reason behind vanishing gradients in vanilla RNN units is the use of the tanh
non-linearity whose value lies in [0,1]. The LSTM modules proposed by Hochreiter and
Schmidhuber [1997] uses a gated mechanism where gradients do not flow back in time but
are scaled by the output gate and its non-linearity and can then flow back indefinitely [Gers,
2001]. These features allow the LSTM modules to handle arbitrary input/output time lags
[Gers, 2001]. While vanilla RNN modules use simplistic (tanh) activations to squash input
and hidden state vectors, LSTM module uses a more complex activation function controlled
by gates that selectively allow information to pass through the module. LSTM modules use
three gates to control the cell state:

1. The Forget gate f
(t) is a trainable gate that determines the components to be retained

from the long-term memory. A sigmoid activation is used for this gate. A gate output of
‘1’ completely erases memory whereas ‘0’ will not remove any components from memory
and allow them to be retained. This module allows the LSTM to essentially reset its
state to signal the end of the previous context.

2. The Input gate i
(t) ascertains what parts of the input need to be retained and what

can be dropped. It is a conventional ‘gate’ since it denotes the extent (0-1) to which
information needs to be added to the current cell state. This gate chooses to either add
new information or to reinforce reoccurring information.

An additional component of this gate is referred to as input modulation and is tasked
with generating candidate additions to the long-term memory. This is not a traditional
’gate’ since it represents information rather than the extent of information that is to be
retained and hence uses a tanh activation.

3. The output gate o
(t) determines what parts of the memory are immediately useful and

the extent to which the long-term memory must be used in ascertaining the output.
The output gate is a traditional gate and uses the sigmoid activation.

Figure 2.3: Illustration of a Long Short-Term Memory cell.

input modulation gate gt at time step t are updated as

it = sigm(Wxixt +Whiht−1 + bi), (2.9)

ft = sigm(Wxfxt +Whfht−1 + bf), (2.10)

ot = sigm(Wxoxt +Whoht−1 + bo), (2.11)

gt = tanh(Wxcxt +Whcht−1 + bc), (2.12)

where ht−1 ∈ RN is the hidden state from the previous time step, W and b are
learned weights and biases, and sigm(·) and tanh(·) are sigmoid and tanh functions,
respectively. The above gates control the memory cell activation vector ct ∈ RN and
output ht ∈ RN of the LSTM as follows:

ct = ft ⊙ ct−1 + it ⊙ gt (2.13)

ht = ot ⊙ tanh(ct), (2.14)

where ⊙ represents element-wise multiplication.

20

2.2.4 Transformer Neural Networks

Transformers [3] are powerful neural networks with remarkable success in numer-
ous areas across different data modalities, from language [12, 13] to images [7, 34],
etc. The self-attention mechanism of transformers is their most important success
factor. This mechanism learns the self-alignment between the tokens by calculating
the similarity of a given token to all other tokens. Each token is then updated with a
weighted representation of all tokens (including itself). It is observed that the weight
value is proportional to each token pair’s affinity score. It will be described in detail
in the text that follows.

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

query with all keys, divide each by
p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

Multi-head attention allows the model to jointly attend to information from different representation
subspaces at different positions. With a single attention head, averaging inhibits this.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

Figure 2.4: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention con-
sists of several attention layers running in parallel. Source: [3].

Self-Attention A self-attention function requires a query Q of dimension dk and
a set of key-value pairs (i.e., K, V) of dimension dv for the sequence as inputs. It
outputs a weighted sum of the values, in which we associate each value with a weight
by computing the similarity between its respective query and key. Specifically, the
function computes the dot products of the query with all the keys, divides each by
√
dk, then applies a softmax function to obtain the normalized weights on the values.

The attention function is given by

Attention(Q,K, V) = softmax(QKT

√
dk

)V. (2.15)

Transformers utilize a multi-head attention mechanism, as shown in Figure 2.4,

21

to learn multiple attended features from different sub-spaces at different positions.

MultiHead(Q,K, V) = Concat(head1, . . . , headh)WO, (2.16)

where headi = Attention(QWQ
i , KWK

i , V W V
i), and the projections are parameter

matrices WQ
i ∈ Rdm×dk , WK

i ∈ Rdm×dk , W V
i ∈ Rdm×dv , and WO

i ∈ Rdm×dv .
Position-wise Feed-Forward Networks. In addition to the Self-Attention sub-

layer, a typical transformer layer also includes a Feedforward Network (FFN) that
is applied separately and identically to each position. The network consists of two
linear transformations separated by a ReLU activation. Its computation is provided
by

FFN(x) = ReLU(xW1 + b1)W2 + b2. (2.17)

22

Chapter 3

GRIT: Integrating Dual Visual
Features for Image Captioning

3.1 Introduction

Image captioning is the task of generating a semantic description of a scene in
natural language, given its image. It requires a comprehensive understanding of
the scene and its description reflecting the understanding. Therefore, most existing
methods solve the task in two corresponding steps; they first extract visual features
from the input image and then use them to generate a scene’s description. The key
to success lies in the problem of how we can extract good features.

Researchers have considered several approaches to the problem. There are two
primary methods, referred to as grid features [35–37] and region features [38]. Grid
features are local image features extracted at the regular grid points, often obtained
directly from a higher layer feature map(s) of CNNs/ViTs. Region features are a set
of local image features of the regions (i.e., bounding boxes) detected by an object
detector.

The current state-of-the-art methods employ the region features since they encode
detected object regions directly. Identifying objects and their relations in an image
will be useful to correctly describing the image. However, the region features have
several issues. First, they do not convey contextual information such as objects’
relation since the regions do not cover the areas between objects. Second, there is

23

~670 ms
(Extracting region features)

70 ms
(R101)

~170 ms ~130 ms
(R152)

~540 ms
(Generating a caption)

~840 ms

~910 ms

~32 ms

Ours: GRIT
(144.2 / 42.4)

M2-Transformer
 (132.0 / 39.1)

VinVL-Large
(140.4 / 40.9)

Method
(CIDEr / B@4)

train
end-to-end

not
end-to-end

Inference Time Region-based Methods
(M2-Transformer, VinVL, etc)

Our method: GRIT

~170 ms

(batch prediction)

CNN Grid
Features

Region
Features

Region
Selection

Caption
Generation Image

Swin

Grid
Features

Region
Features

Caption
Generation Image

pretrained on
large V&L data

~170 ms

Figure 3.1: Comparison of GRIT and other region-based methods for image caption-
ing. Left: Running time per image of performing inference with beam size of five and
the maximum length of 20 on a V100 GPU. Right: Their architectures

a risk of erroneous detection of objects; important objects could be overlooked, etc.
Third, computing the region feature is computationally costly, which is especially
true when using a high-performance CNN-based detector, such as Faster R-CNN [8].

The grid features are extracted from the entire image, typically a high-layer feature
map of a backbone network. While they do not convey object-level information,
they are free from the first two issues with the region features. They may represent
contextual information such as objects’ relations in images, and they are free from
the risk of erroneous object detection.

In this study, we consider using such region and grid features in an integrated
manner, aiming to build a better model for image captioning. The underlying idea is
that properly integrating the two types of features will provide a better representation
of input images since they are complementary, as explained above. While a few recent
studies consider their integration [39, 40], it is still unclear what the best way is. In
this study, we reconsider how to extract each from input images and then consider
how to integrate them.

There is yet another issue with the region features, usually obtained by a CNN-
based detector. At the last stage of its computation, CNN-based detectors employ
non-maximum suppression (NMS) to eliminate redundant bounding boxes. This
makes the end-to-end training of the entire model hard, i.e., jointly training the
decoder part of the image-captioning model and the detector by minimizing a single
loss. Recent studies detach the two parts in training; they first train a detector on

24

the object detection task and then train only the decoder part on image captioning.
This could be a drag on achieving optimal performance of image captioning.

To overcome this limitation of CNN-based detectors and also cope with their
high-computational cost, we employ the framework of DETR [41], which does not
need NMS. We choose Deformable DETR [42], an improved variant, for its high
performance, and also replace a CNN backbone used in the original design with Swin
Transformer [34] to extract initial features from the input image. We also obtain the
grid features from the same Swin Transformer. We input its last layer features into a
simple self-attention Transformer and update them to obtain our grid features. This
aims to model spatial interaction between the grid features, retrieving contextual
information absent in our region features.

The extracted two types of features are fed into the second half of the model, the
caption generator. We design it as a lightweight Transformer generating a caption
sentence in an autoregressive manner. It is equipped with a unique cross-attention
mechanism that computes and applies attention from the two types of visual features
to caption sentence words.

These components form a Transformer-only neural architecture, dubbed GRIT
(Grid- and Region-based Image-captioning Transformer). Our experimental results
show that GRIT has established a new state-of-the-art on the standard image cap-
tioning benchmark of COCO [43]. Specifically, in the offline evaluation using the
Karpathy test split, GRIT outperforms all the existing methods without vision and
language (V&L) pretraining. It also performs at least on a par with SimVLMhuge [44]
leveraging V&L pretraining on 1.8B image-text pairs.

3.2 Related Work

3.2.1 Visual Representations for Image Captioning

Recent image captioning methods typically employ an encoder-decoder architec-
ture. Specifically, given an image, the encoder extracts visual features; the decoder
receives the visual features as inputs and generates a sequence of words. Early meth-
ods use a CNN to extract a global feature as a holistic representation of the input

25

image [16, 45]. Although it is simple and compact, this holistic representation suf-
fers from information loss and insufficient granularity. To cope with this, several
studies [35–37] employed more fine-grained grid-based features to represent input im-
ages and also used attention mechanisms to utilize the granularity for better caption
generation. Later, Anderson et al. [38] introduced the method of using an object
detector, such as Faster R-CNN, to extract object-oriented features, called region
features, showing that this leads to performance improvement in many V&L tasks,
including image captioning and visual question answering. Since then, region features
have become the de facto choice of visual representation for image captioning. Point-
ing out the high computational cost of the region features, Jiang et al. [46] showed
that the grid features extracted by an object detector perform well on the VQA task.
RSTNet [47] has recently applied these grid features to image captioning.

3.2.2 Application of Transformer in Vision/Language Tasks

Transformer has long been a standard neural architecture in natural language
processing [3, 12, 13], and started to be extended to computer vision tasks. Besides
ViT [7] for image classification, it was also applied to object detection, leading to
DETR [41], followed by several variants [42, 48, 49]. A recent study [50] applied the
framework of DETR to pretraining for various V&L tasks, where they did not use it
to obtain the region features.

Transformer has been applied to image captioning, where it is used as an encoder
for extracting and encoding visual features and a decoder for generating captions.
Specifically, Yang et al. [51] proposed to use the self-attention mechanism to encode
visual features. Li et al. [52] used Transformer for obtaining the region features in
combination with a semantic encoder that exploits knowledge from an external tagger.
Several following studies proposed several variants of Transformer tailored to image
captioning, such as Attention on Attention [53], X-Linear Attention [54], Memory-
augmented Attention [55], etc. Transformer is naturally employed also as a caption
decoder [39, 44, 56, 57].

26

Self-Attention

Cross-Attention

FFN

<s> a cat sitting on the ...

a cat sitting on the couch

MHA MHA

Add & Norm

followed by
Add & Norm

pretrained
in stage 1

~

OD Heads
Generator Head

unused
in stage 2

FFN

D
ef-A

ttn

Self-A
ttn

FFN

Self-A
ttn

Grid Feature Network

~ ~~~
~

embedding
vector

positional
embedding

gated
mechanism

Notation

Swin-B

Backbone Network

Object Detector

Caption Generator (Sec. 3.2)Feature Extractor (Sec. 3.1)

Figure 3.2: Overview of the architecture of GRIT

3.3 Proposed Method

This section describes the architecture of GRIT (Grid- and Region-based Image-
captioning Transformer). It consists of two parts, one for extracting the dual visual
features from an input image (Sec. 3.3.1) and the other for generating a caption
sentence from the extracted features (Sec. 3.3.2).

3.3.1 Extracting Visual Features from Images

Backbone Network for Extracting Initial Features

A lot of efforts have been made to apply the Transformer architecture to various
computer vision tasks since ViT [7] applied it to image classification. ViT divides an
input image into small patches and computes global attention over them. This is not
suitable for tasks requiring spatially dense prediction, e.g., object detection since the
computational complexity increases quadratically with the image resolution.

Swin Transformer [34] mitigates this issue to a great extent by incorporating
operations such as patch reduction and shifted windows that support local attention.
It is currently a de facto standard as a backbone network for various computer vision
tasks. We employ it to extract initial visual features from the input image in our
model.

We briefly summarize its structure, explaining how we extract features from the

27

input image and send them to the components following the backbone. Given an
input image of resolution H ×W , Swin Transformer computes and updates feature
maps through multiple stages; it uses the patch merging layer after every stage (but
the last stage) to downsample feature maps in their spatial dimension by the factor
of 2. We apply another patch merging layer to downsample the last layer’s feature
map. We then collect the feature maps from all the stages, obtaining four multi-scale
feature maps, i.e., {Vl}Lb

l=1 where Lb = 4, which have the resolution from H/8×W/8

to H/64 × W/64. These are inputted to the subsequent modules, i.e., the object
detector and the network for generating grid features.

Generating Region Features

As in previous image captioning methods, ours also rely on an object detector to
create region features. However, we employ a Transformer-based decoder framework,
i.e., DETR [41] instead of CNN-based detectors, such as Faster-RCNN, which is
widely employed by the SOTA image captioning models [38]. DETR formulates
object detection as a direct set prediction problem, which makes the model free of
the unideal computation for us, i.e., NMS and RoI alignment. This enables the end-
to-end training of the entire model from the input image to the final output, i.e., a
generated caption, and also leads to a significant reduction in computational time
while maintaining the model’s performance on image captioning compared with the
SOTA models.

Specifically, we employ Deformable DETR [42], a variant of DETR. Deformable
DETR extracts multi-scale features from an input image with its encoder part, which
are fed to the decoder part. We use only the decoder part, to which we input the multi-
scale features from the Swin Transformer backbone. This leads to further reduction
in computational time. We will refer this decoder part as “object detector’’in what
follows; see Fig. 3.2.

The object detector receives two inputs: the multi-scale feature maps generated
by the backbone, and N learnable object queries R0 = {ri}Ni=1, in which ri ∈ Rd.
Before forwarding them into the object detector, we apply linear transformation to
the multi-scale feature maps, mapping them into d-dimensional vectors as Vl ← W r

l Vl,
where {W r

l }
Lb
l=1 is a learnable projection matrix.

28

Receiving these two inputs, the object detector updates the object queries through
a stack of Lr deformable layers, yielding RLr ∈ RN×d from the last layer; see [42] for
details. We use RLr ∈ RN×d as our region features R. We forward this to the caption
generator.

Although we train it as a part of our entire model, we pretrain our “object detec-
tor” including the vision backbone on object detection before the training of image-
captioning. For the pretraining, we follow the procedure of Deformable DETR; plac-
ing a three-layer MLP and a linear layer on its top to predict box coordinates and
class category, respectively. We then minimize a set-based global loss that forces
unique predictions via bipartite matching.

Following [38, 58], we pretrain the model (i.e., our object detector including the
vision backbone) in two steps. We first train it on object detection following the
training method of Deformable DETR. We then fine-tune it on a joint task of object
detection and object attribute prediction, aiming to make it learn fine-grained visual
semantics with the following loss:

Lv(y, ŷ) =
N∑
i=1

[−logp̂σ̂(i)(ci) + 1ci ̸=∅Lbox(bi, b̂σ̂(i))︸ ︷︷ ︸
object detection

−logp̂σ̂(i)(ai)︸ ︷︷ ︸
attribute prediction

], (3.1)

where p̂σ̂(i)(ai) and p̂σ̂(i)(ci) are the attribute and class probabilities, Lbox(bi,b̂σ̂(i)) is
the loss for normalized bounding box regression for object i [42].

Grid Feature Network

This network receives the last one of the multi-scale feature maps from the Swin
Transformer backbone, i.e., VLb

∈ RM×dLb , where M = H/64 ×W/64. As with the
input to the object detector, we apply a linear transformation with a learnable matrix
W g ∈ Rd×dLb to VLb

, obtaining G0 = W gVLb
We employ the standard self-attention

Transformer having Lg layers. This network updates VLb
through these layers, yielding

our grid features G represented as a M × d matrix. We intend to extract contextual
information hidden in the input image by modeling the spatial interaction between
the grid features.

29

3.3.2 Caption Generation Using Dual Visual Features

Overall Design of Caption Generator

The caption generator receives the two types of visual features, the region features
R ∈ RN×d and the grid features G ∈ RM×d, as inputs. Apart from this, we employ
the basic design employed in previous studies [3,56] that is based on the Transformer
architecture. It generates a caption sentence in an autoregressive manner; receiving
the sequence of predicted words (rigorously their embeddings) at time t−1, it predicts
the next word at time t. We employ the sinusoidal positional embedding of time step
t [3]; we add it to the word embedding to obtain the input xt

0 ∈ Rd at t.
The caption generator consists of a stack of Lc identical layers. The initial layer

receives the sequence of predicted words and the output from the last layer is input
to a linear layer whose output dimension equals the vocabulary size to predict the
next word.

Each transformer layer has a sub-layer of masked self-attention over the sentence
words and a sub-layer(s) of cross-attention between them and the visual features in
this order, followed by a feedforward network (FFN) sub-layer. The masked self-
attention sub-layer at the l-th layer receives an input sequence {xi

l−1}ti=0 at time step
t, and computes and applies self-attention over the sequence to update the tokens with
the attention mask to prevent the interaction from the future words during training.

The cross-attention sub-layer in the layer l, located after the self-attention sub-
layer, fuses its output with the dual visual features by cross-attention between them,
yielding Al. We consider the three design choices shown in Fig. 3.3 and described
below. We examine their performance through experiments.

Cross-attention between Caption Word and Dual Visual Features

We show three designs of cross-attention between the caption word features and
the dual visual features (i.e., the region features R and the grid features G) as below.

Concatenated Cross-Attention The simplest approach is to concatenate the two
visual features and use the resultant features as keys and values in the standard multi-
head attention sub-layer, where the sentence words serve as queries; see Fig. 3.3(a).

30

MHA

Add & Norm

MHA

Add & Norm

MHA

Add & Norm

(a) Concatenated Cross-Attention

MHA MHA

Add & Norm

(b) Sequential Cross-Attention (c) Parallel Cross-Attention

Figure 3.3: Three designs of cross-attention mechanism to use dual visual features

Sequential Cross-Attention Another approach is to perform cross-attention com-
putation separately for the two visual features. The corresponding design is to place
two independent multi-head attention sub-layers in a sequential fashion, and uses one
for the grid features and the other for the region features (or the opposite combina-
tion); see Fig. 3.3(b). Note that their order could affect the performance.

Parallel Cross-Attention The third approach is to perform multi-head attention
computation on the two visual features in parallel. To do so, we use two multi-head
attention mechanisms with independent learnable parameters. The detailed design
is as follows. Let Xl−1 = {xl−1

i } be the word features inputted to the meta-layer l

containing this cross attention sub-layer. As shown in Fig. 3.2, they are first input
to the self-attention sub-layer, converted into X ′

l = {x′
i} (layer index l omitted for

brevity) and then input to this cross attention sub-layer. In this sub-layer, multi-
head attention (MHA) is computed with {x′

i} as queries and the region features
R as keys and values, yielding attended features {ari}. The same computation is
performed in parallel with the grid features G as keys and values, yielding {agi }.
Next, we concatenate them with x′

i as [ari ; x′
i] and [agi ; x

′
i], projecting them back to d-

dimensional vector using learnable affine projections. Normalizing them with sigmoid

31

into probabilities {cri} and {c
g
i }, respectively, we have

cgi = sigmoid(W g[agi ; x
′
i] + bg), (3.2)

cri = sigmoid(W r[ari ; x
′
i] + br). (3.3)

We then multiply them with {ari} and {agi }, add the resultant vectors to {x′
i}, and

finally feed to layer normalization, obtaining Al = {a(l)i } as follows:

a
(l)
i = LN(cgi ⊗ agi + cri ⊗ ari + x′

i). (3.4)

Caption Generator Losses

Following a standard practice of image captioning studies, we pre-train our model
with a cross-entropy loss (XE) and finetune it using the CIDEr-D optimization with
self-critical sequence training strategy [36]. Specifically, the model is first trained to
predict the next word x∗

t at t = 1..T , given the ground-truth sentence x∗
1:T . This is

equal to minimize the following XE loss with respect to the model’s parameter θ:

LXE(θ) = −
T∑
t=1

log
(
pθ

(
x∗
t | x∗

0:t−1

))
. (3.5)

We then finetune the model with the CIDEr-D optimization, where we use the CIDEr
score as the reward and the mean of the rewards as the reward baseline, following [55].
The loss for self-critical sequence training is given by

LRL(θ) = −
1

k

k∑
i=1

(r(wi)− b) log p(wi), (3.6)

where wi is the i-th sentence in the beam; r(·) is the reward function; and b is the
reward baseline; and k is the number of samples in the batch.

32

3.4 Experiments

3.4.1 Datasets

Object Detection

As mentioned earlier, we train our object detector (including the backbone) in two
steps. In the first step, we train it on object detection using either Visual Genome [59]
or a combination [58] of four datasets: COCO [43], Visual Genome, Open Images [60],
and Object365 [61], depending on what previous methods we experimentally compare.
In the second step, we train the model on object detection plus attribute prediction
using Visual Genome. Note that following the standard practice, we exclude the
duplicated samples appearing in the testing and validation splits of the COCO and
nocaps [62] datasets to remove data contamination. See the supplementary material
for more details.

When pretraining our model on the four datasets (i.e., Visual Genome (VG),
COCO, OpenImages, and Objects365), we follow [58] to build a unified training corpus
with the statistics shown in Table 3.1 except that we do not use the annotations from
COCO stuff [63]. The resultant corpus has 2.49M unique images with 1848 categories.

Table 3.1: Statistics of the pretraining datasets for object detection.

Source VG COCO Objects365 OpenImages

Images 97k 111k 609k 1.67M

Categories 1594 80 365 500

Sampling ×8 ×8 ×2 ×1

Image Captioning

We conduct our experiments on the COCO dataset, the standard for the research
of image captioning [43]. The dataset contains 123,287 images, each annotated with
five different captions. For offline evaluation, we follow the widely adopted Karpathy

33

split [64], where 113,287, 5,000, and 5,000 images are used for training, validation,
and testing respectively.

To test our method’s effectiveness on other image captioning datasets, we also
report the performances on the nocaps dataset and the Artemis dataset [65]. See the
supplementary material for more details.

3.4.2 Implementation Details

Evaluation Metrics

We employ the standard evaluation protocol for the evaluation of methods. Specif-
ically, we use the full set of captioning metrics: BLEU@N [66], METEOR [67],
ROUGE-L [68], CIDEr [69], and SPICE [70]. We will use the abbreviations, B@N,
M, R, C, and S, to denote BLEU@N, METEOR, ROUGE-L, CIDEr, and SPICE,
respectively.

Hyperparameters Settings

In our model, we set the dimension d of each layer to 512, the number of heads to
eight. We employ dropout with the dropout rate of 0.2 on the output of each MHA
and FFN sub-layer following [3].

For the object detector, we set the number of queries N = 150 and the hidden
dimension d = 512. The backbone network weights are intialized by the weights
of Swin-Base (384 × 384) pretrained on ImageNet21K [34]. Following [42], the loss
for normalized bounding box regression for object i, Lbox(bi,b̂σ̂(i)) is computed as the
weighted summation of a box distance Ll1 and a GIoU loss Liou:

Ll1(bi, b̂σ̂(i)) = ||bi − b̂σ̂(i)||1, (3.7)

Liou(bi, b̂σ̂(i)) = 1−
(|bi ∩ b̂σ(i)|
|bi ∪ b̂σ(i)|

−
|B(bi, b̂σ(i))\bi ∪ b̂σ(i)|
|B(bi, b̂σ(i))|

)
, (3.8)

Lbox(bi, b̂σ̂(i)) = αl1Ll1(bi, b̂σ̂(i)) + αiouLiou(bi, b̂σ̂(i)), (3.9)

where αl1 = 5, αiou = 2, and B outputs the largest box covering bi and b̂σ̂(i). We also
employ two training strategies, i.e., iterative bounding box refinement and auxiliary

34

losses; see [42] for details.
We set the number of layers as Lr = 6 for the object detector, as Lg = 3 for the

grid feature network, and as Lc = 3 for the caption generator. Following previous
studies, we convert all the captions to lower-case, remove punctuation characters,
and perform tokenization with the SpaCy toolkit [71]. We build the vocabularies,
excluding the words which appear less than five times in the training and validation
splits.

3.4.3 Training Details

First Stage In the first stage, we pretrain the object detector with the backbone.
We consider several existing region-based methods for comparison, which employ sim-
ilar pretraining of an object detector but use different datasets. For a fair comparison,
we consider two settings. One uses Visual Genome for training, following most pre-
vious methods. We train our detector for 150,000 iterations with a batch size of 32.
The other (results indicated with † in what follows) uses the four datasets mentioned
above, following [58]. We train the detector for 125,000 iterations with a batch size
of 256. In both settings, the input image is resized so that the maximum for the
shorter side is 800 and for the longer side is 1333. We use Adam optimizer [72] with
a learning rate of 10−4, decreased by 10 at iteration 120,000 and 100,000 in the first
and second settings, respectively. We follow [42] for other training procedures. After
this, we finetune the models on object detection plus attribute prediction using Vi-
sual Genome for additional five epochs with a learning rate of 10−5, following [38,58].
The supplementary material presents the details of implementation and experimental
results on object detection.

Second Stage We train the entire model for the image-captioning task in the
second stage. We employ the standard method for word representation, i.e., linear
projections of one-hot vectors to vectors of dimension d = 512. In this stage, we resize
all the input images so that the maximum dimensions for the shorter side and longer
side are 384 and 640, respectively. We train models, as explained earlier. Specifically,
we train models with the cross-entropy loss LXE for ten epochs, in which we warm up
the learning rates for the grid feature network and the caption generator from 10−5

35

to 10−4 in the first epoch, while we fix those for the backbone network and the object
detector at 10−5. Then, we finetune the model based on the CIDEr-D optimization
for ten epochs, where we set the fixed learning rate to 5× 10−6 for the entire model.
We use the Adam optimizer [72] with a batch size of 128. For the inference inside the
CIDEr-D optimization, we use beam search with a beam size of five and a maximum
length of 20.

3.4.4 Object Detection Results

Table 3.2: Performance of object detection on the COCO and Visual Genome
datasets. ‘4DS’ denotes the four object detection datasets.

Model Training Data mAP (COCO) mAP50 (VG)

BUTD [38] VG - 10.2

VinVL [58] 4DS 50.5 13.8

GRIT VG 33.6 14.2

GRIT† 4DS 50.8 15.1

Table 3.2 shows the performance on the COCO validation split and the Visual
Genome test split of our object detector compared with VinVL and BUTD [38]. It is
seen that the object detector of GRIT attains comparable or higher performance on
the two datasets as compared with BUTD and VinVL when pretrained on the similar
datasets.

3.4.5 Performance of Different Configurations

Our method has several design choices. We conduct experiments to examine which
configuration is the best. The results are shown in Table 3.3. We used an identical
configuration unless otherwise noted. Specifically, we use the feature extractor pre-
trained on the four datasets and parallel cross-attention for fusing the region and grid
features.

Effects of Object Detection Datasets The first block of Table 3.3(a) shows the
effects of different (pre)training strategies of the visual backbone on image-captioning

36

Table 3.3: Results of ablation tests on the COCO test split. All the models are
trained with the XE loss and finetuned by the CIDEr optimization

(a)

Factor Choice CIDEr B@4

(1) Backbone Network ImageNet 135.5 41.5

- Training data VG 142.3 41.9

4DS 144.2 42.4

(2) Region features 50 141.4 41.9

- Number of vectors 100 141.8 41.5

(trained on VG) 150 142.3 41.9

(3) Training strategy

- End-to-end training Yes 144.2 42.4

No 139.6 42.7

(b)

Cross Attention Choice CIDEr B@4

(1) Concatenated G 142.1 41.7

- Visual features R 142.9 41.9

[G ; R] 143.1 41.9

(2) Sequential

- Sequential order G → R 144.0 42.1

R → G 143.6 42.1

(3) Parallel

- Gated activation Sigmoid 144.2 42.4

Identity 143.9 41.6

performance. The ‘ImageNet’ column shows the result of the model using a Swin
Transformer backbone pretrained on ImageNet21K and the grid features alone; ‘VG’
and ‘4DS’ indicate the models with a detector pretrained on Visual Genome and
the four datasets, respectively. They show that using more datasets leads to better
performance.

Effects of Number of Region Features The second block of Table 3.3(a) shows
the effects of the number of object queries, or equivalently region features. The
performance increases as they vary as 50, 100, and 150. We also confirmed that the
performance is saturated for more region features, while the computational cost and
false detection increase.

Impact of End-to-end Training The third block shows the effect of the end-
to-end training of the entire model. ‘Yes’ indicates the end-to-end training of the
entire model and ‘No’ indicates training the model but the vision backbone. The
results show that the end-to-end training considerably improves CIDEr score (from
139.6 to 144.3) with little sacrifice of B@4. This validates our expectation about
the effectiveness of the end-to-end training; it arguably helps reduce the domain gap

37

between object detection and image captioning.

Effects of Fusion of Dual Visual Features The first block of Table 3.3(b) shows
the performances of the model employing the concatenated cross-attention and its two
variants using the grid features alone or the region features alone. They show that
the region features alone work better than the grid features alone, and their fusion
achieves the highest performance.

Effects of Cross-attention Architecture The three blocks of Table 3.3(b) show
the performances of the three cross-attention architectures explained in Sec. 3.3.2.
The second block shows the two variants of the sequential cross-attention, and the
third block shows the two variants of the parallel cross-attention with different gated
activation functions, i.e., sigmoid and identity. By identity activation, we mean set-
ting all the values of cgl and crl in Eq.(3.4) to one. These results show that the parallel
cross-attention with sigmoid activation function performs the best; the sequential
cross-attention in the order G → R attains the second best result.

3.4.6 Results on the COCO Dataset

We next show complete results on the COCO dataset by the offline and online
evaluations. We present example results in the supplementary material.

Offline Evaluation Table 3.4 shows the performances of our method and the
current state-of-the-art methods on the offline Karpathy test split. The compared
methods are as follows: grid-based methods [16, 36, 47, 75], region-based methods
[38,52,53,53–57,76–81], the methods employing both grid and region features [39,40],
and also the methods relying on large-scale pretraining on vision and language (V&L)
tasks using a large image-text corpus [58,73,74], including SimVLMhuge, a model pre-
trained on an extremely large dataset (i.e., 1.8 billion image-caption pairs) [44].

For fair comparison with the region-based methods, we report the results of two
variants of our model, one with the object detector pretrained on Visual Genome
alone and the other (marked with †) with the object detector pretrained on the four
datasets, as explained earlier. It is seen from Table 3.4 that our models, regardless

38

Table 3.4: Offline results evaluated on the COCO Karpathy test split. ‘V. E. type’
indicates the type of visual features; ‘# VL Data’ is the number of image-text pairs
used for vision-language pretraining.

Method
V. E. # VL Performance Metrics

Type Data B@1 B@4 M R C S

w/ VL pretraining

UVLP [73] R 3.0M - 39.5 29.3 - 129.3 23.2

Oscarbase [74] R 6.5M - 40.5 29.7 - 137.6 22.8

VinVL†
large [58] R 8.9M - 41.0 31.1 - 140.9 25.2

SimVLMhuge [44] G 1.8B - 40.6 33.7 - 143.3 25.4

w/o VL pretraining

SAT [16] G - - 31.9 25.5 54.3 106.3 -

SCST [36] G - - 34.2 26.7 55.7 114.0 -

LSTM-A [75] G - 78.6 35.5 27.3 56.8 118.3 22.0

RSTNet [47] G - 81.8 40.1 29.8 59.5 135.6 23.0

Up-Down [38] R - 79.8 36.3 27.7 56.9 120.1 21.4

RFNet [76] R - 79.1 36.5 27.7 57.3 121.9 21.2

GCN-LSTM [77] R - 80.5 38.2 28.5 58.3 127.6 22.0

LBPF [78] R - 80.5 38.3 28.5 58.4 127.6 22.0

SGAE [79] R - 80.8 38.4 28.4 58.6 127.8 22.1

AoA [53] R - 80.2 38.9 29.2 58.8 129.8 22.4

GET [80] R - 81.5 39.5 29.3 58.9 131.6 22.8

ORT [56] R - 80.5 38.6 28.7 58.4 128.3 22.6

ETA [52] R - 81.5 39.3 28.8 58.9 126.6 22.6

M2 Transformer [55] R - 80.8 39.1 29.2 58.6 131.2 22.6

X-LAN [54] R - 80.8 39.5 29.5 59.2 132.0 23.4

TCIC [81] R - 81.8 40.8 29.5 59.2 135.4 22.5

Dual Global [40] R+G - 81.3 40.3 29.2 59.4 132.4 23.3

DLCT [39] R+G - 81.4 39.8 29.5 59.1 133.8 23.0

GRIT R+G - 83.5 41.9 30.5 60.5 142.2 24.2

GRIT† R+G - 84.2 42.4 30.6 60.7 144.2 24.3

39

Table 3.5: Online evaluation results on the COCO image captioning dataset.

Method Ensemble
B-1 B-2 B-3 B-4 M R C

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

w/ VL pretraining

VinVLlarge [58] 7 81.9 96.9 66.9 92.4 52.6 84.7 40.4 74.9 30.6 40.8 60.4 76.8 134.7 138.7

w/o VL pretraining

SCST [36] ✓ 78.1 93.7 61.9 86.0 47.0 75.9 35.2 64.5 27.0 35.5 56.3 70.7 114.7 116.7

Up-Down [38] ✓ 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5

HAN [82] ✓ 80.4 94.5 63.8 87.7 48.8 78.0 36.5 66.8 27.4 36.1 57.3 71.9 115.2 118.2

GCN-LSTM [77] ✓ 80.8 95.2 65.5 89.3 50.8 80.3 38.7 69.7 28.5 37.6 58.5 73.4 125.3 126.5

SGAE [79] ✓ 81.0 95.3 65.6 89.5 50.7 80.4 38.5 69.7 28.2 37.2 58.6 73.6 123.8 126.5

AoA [53] ✓ 81.0 95.0 65.8 89.6 51.4 81.3 39.4 71.2 29.1 38.5 58.9 74.5 126.9 129.6

M2Trans. [55] ✓ 81.6 96.0 66.4 90.8 51.8 82.7 39.7 72.8 29.4 39.0 59.2 74.8 129.3 132.1

X-LAN [54] ✓ 81.9 95.7 66.9 90.5 52.4 82.5 40.3 72.4 29.6 39.2 59.5 75.0 131.1 133.5

DLCT [39] ✓ 82.4 96.6 67.4 91.7 52.8 83.8 40.6 74.0 29.8 39.6 59.8 75.3 133.3 135.4

GRIT† 7 83.7 97.4 68.5 92.8 53.9 85.3 41.5 75.6 30.3 40.2 60.2 75.9 138.3 141.8

GRIT† ✓ 84.1 97.6 69.4 93.5 54.9 86.3 42.5 76.8 30.9 41.0 61.2 77.1 141.3 143.8

of the datasets used for the detector’s pretraining, outperform all the methods that
do not use large-scale pretraining of vision and language tasks (i.e., the methods
in the second block entitled ‘w/o VL pretraining’). Moreover, our model with the
detector pretrained solely on Visual Genome (i.e., ‘GRIT’) performs better than those
relying on large-scale V&L pretraining but SimVLMhuge. Finally, our model with
the pretrained detector on multiple datasets (i.e., ‘GRIT†’) outperforms SimVLMhuge

leveraging large-scale V&L pretraining in CIDEr score (i.e., 144.2 vs 143.3).

Online Evaluation We also evaluate our models (i.e., a single model and an en-
semble of six models) on the 40K testing images by submitting their results on the
official evaluation server. Table 3.5 shows the results and those of all the published
methods on the leaderboard. Table 3.5 presents the metric scores based on five (c5)
and 40 reference captions (c40) per image. We can see that our method achieves the
best scores for all the metrics. Note that even our single model outperforms all the
published methods that use ensembles.

40

Table 3.6: Performance on the ArtEmis and nocaps datasets.
a) Performance on the ArtEmis test split

Method
V. E. Performance Metrics

Type B@1 B@2 B@3 B@4 M R

NN [65] H 36.4 13.9 5.4 2.2 10.2 21.0

ANP [65] G 39.6 13.4 4.2 1.4 8.8 20.2

SAT [65] G 53.6 29.0 15.5 8.7 14.2 29.7

M2Trans. [65] R 50.7 28.2 15.9 9.5 13.7 28.0

GRIT† R+G 70.1 40.1 20.9 11.3 16.8 33.3

b) Performance on the nocaps validation split

Method
V.E In-Domain Out-Domain Overall

Type C S C S C S

NBT [62] R 62.7 10.1 54.0 8.6 53.9 9.2

Up-down [62] R 78.1 11.6 31.3 8.3 55.3 10.1

Trans. [55] R 78.0 11.0 29.7 7.8 54.7 9.8

M2Trans. [55] R 85.7 12.1 38.9 8.9 64.5 11.1

GRIT† R+G 105.9 13.6 72.6 11.1 90.2 12.8

3.4.7 Results on the ArtEmis and nocaps Datasets

As explained above, we evaluate our method on the ArtEmis and nocaps datasets.
For ArtEmis, we train the model in the same way as COCO except for the number
of training epochs, precisely, five epochs each for the training with the XE loss and
that with the CIDEr-D optimization. For nocaps, we evaluate zero-shot inference
performance, i.e., the performance of the model trained on COCO.

Table 3.6(a) shows the results of our method on the test split of ArtEmis [65]. It
also show the results of existing methods reported in [65], which are grid-based [16,83],
region-based [55], and a nearest neighbor method using a holistic vector to encode
images (denoted asH). Our method outperforms all these methods by a large margin.

Table 3.6(b) shows the results on the nocaps dataset, including the baseline meth-
ods reported in [55,62]. All the models are trained on the training split of the COCO
datasets and tested on the validation split of nocaps, which consists of images with
novel objects and captions with unseen vocabularies. Our method surpasses all the
other methods including region-based methods [38, 55, 84] in both in-domain and
out-of-domain images.

In brief, our model achieves the best performance across all the metrics in the
both datasets among the compared methods. These results confirm the effectiveness
of our method on datasets in different domains. See the supplementary material for
the full results.

41

3.4.8 Computational Efficiency

Technical Measurement Details We measured the inference time of GRIT and
two representative region-based methods, VinVL [58] andM2 Transformer [55]. It is
the computational time per image from image input to caption generation. Specifi-
cally, we measured the time to generate a caption of length 20 with a beam size of
five on a V100 GPU and averaged it over 1K times. The input image resolution was
set to 800 × 1333 for VinVL and M2 Transformer as reported in [38, 58]. We set it
to 384× 640 for GRIT since it already achieves higher accuracy.

We measured the inference time of GRIT and two representative region-based
methods, VinVL [58] andM2 Transformer [55], on the same machine having a Tesla
V100-SXM2 of 16GB memory with CUDA version 10.0 and Driver version 410.104.
It has Intel(R) Xeon(R) Gold 6148 CPU. The comparison was conducted following
[46, 85]. Specifically, we excluded the time of preprocessing the image and loading
it to the GPU device. Also, the images are rescaled to the resolutions such that all
the compared methods achieve its highest performance for image captioning. For the
compared methods, we used the official implementations of M2 Transformer1 and
VinVL2. Regarding feature extraction, we extracted the region features from Faster
R-CNN using the original implementation3 used by M2 Transformer and another
implementation4 used by VinVL.

Inference Time Comparison Figure 3.1 shows the breakdown of the inference
time for the three methods. GRIT reduces the time for feature extraction by a factor
of 10 and more compared with the others. Similar to M2 Transformer, GRIT
has a lightweight caption generator and thus spends much less time than VinVL for
generating a caption after receiving the visual features. GRIT can run with minibatch
size up to 64 on a single V100 GPU, while others cannot afford large minibatch. With
minibatch size ≥ 32, the per-image inference time decreases to about 32ms.

It is seen that VinVL and M2 Transformer spend considerable time on feature
extraction due to the forward pass through the CNN backbone with high resolution

1https://github.com/aimagelab/meshed-memory-transformer
2https://github.com/pzzhang/VinVL
3https://github.com/peteanderson80/bottom-up-attention
4https://github.com/microsoft/scene_graph_benchmark

42

https://github.com/aimagelab/meshed-memory-transformer
https://github.com/pzzhang/VinVL
https://github.com/peteanderson80/bottom-up-attention
https://github.com/microsoft/scene_graph_benchmark

inputs and the computationally expensive regional operations. It is also noted that
VinVL introduced class-agnostic NMS operations, which reduce a great amount of
time consumed by class-aware NMS operations in the standard Faster R-CNN. On
the other hand, we employ a Deformable DETR-based detector to extract region
features without using all such operations. Table 3.7 shows the comparison on feature
extraction.

Table 3.7: The inference time on feature extraction of different methods.

Method Backbone Detector Regional Operations Inference Time

VinVLlarge [58] ResNeXt-152 Faster R-CNN Class-Agnostic NMS 304 ms

RoI Align, etc

M2 Trans. [55] ResNet-101 Faster R-CNN Class-Aware NMS 736 ms

RoI Align, etc

GRIT Swin-Base DETR-based - 31 ms

Regarding caption generation, all the methods use beam search as the decoding
strategy, with beam size of 5 and the maximum caption length of 20. Both M2

Transformer and GRIT employ a lightweight caption generator (caption decoder)
having only 3 transformer layers with hidden dimension of 512 while VinVLlarge has
24 transformer layers with hidden dimension of 1024; see Table 3.8. Thus, with
the visual features as inputs, M2 Transformer and GRIT spend less inference time
generating words than VinVLlarge in the autoregressive manner.

Table 3.8: The inference time on caption generation of different methods.

Method No. of Layers Hidden Dim. Inference Time

VinVLlarge [58] 24 1024 542 ms

M2 Transformer [55] 3 512 174 ms

GRIT 3 512 138 ms

43

3.4.9 Qualitative Results

Figure 3.4, 3.5, 3.6, and 3.7 show some examples of the captions generated by
our proposed method (GRIT) and another region-based method (M2 Transformer)
given the same input images from the COCO test split. It is observed that the
generated captions from GRIT are qualitatively better than those generated by the
baseline method in terms of detecting and counting objects as well as describing
their relationships in the given images. The inaccuracy of the captions generated by
the baseline method might be due to the drawbacks of the region features extracted
by a frozen pretrained object detector which produces wrong detection and lacks of
contextual information.

3.5 Summary and Conclusion

In this chapter, we have proposed a Transformer-based architecture for image
captioning named GRIT. It integrates the region features and the grid features ex-
tracted from an input image to extract richer visual information from input images.
Previous SOTA methods employ a CNN-based detector to extract region features,
which prevents the end-to-end training of the entire model and makes to high com-
putational costs. Using the Swin Transformer for a backbone extracting the initial
visual feature, GRIT resolves these two issues by employing a DETR-based detector.
Furthermore, GRIT obtains grid features by updating the feature from the same back-
bone using a self-attention Transformer, aiming to extract richer context information
complementing the region feature. These two features are fed to the caption genera-
tor equipped with a unique cross-attention mechanism, which computes and applies
attention from the dual features on the generated caption sentence. The integration
of all these components led to significant performance improvement. The experi-
mental results validated our approach, showing that GRIT outperforms all published
methods by a large margin in inference accuracy and speed.

44

GT-1: a child is brushing her
hair in the mirror
GT-2: a little girl is brushing
her hair in a bathroom
M2: a young girl holding a
baseball bat in a
GRIT: a little girl brushing her
hair with a brush

GT-1: an elephant walking not
to far from a rhino in a forest
GT-2: an elephant and a rhino
share a field with a pond
M2: a group of elephants grazing
in a field
GRIT: an elephant and a rhino
standing in a field

GT-1: a bike is parked alongside
the lake shore
GT-2: a bike is parked on the
grass in front of the lake
M2: a bicycle leaning against a
bridge over the water
GRIT: a bike parked next to a
bridge on the water

GT-1: 2 female tennis players
standing with their rackets
GT-2: a pair of young women
hold tennis balls and rackets
M2: a woman hitting a tennis
ball with a tennis racket
GRIT: 2 people hold tennis
rackets and balls on a court

GT-1: a cat holding a
toothbrush in its mouth
GT-2: a cat chewing on a
packaged pink toothbrush
M2: a cat laying on top of a
pair of scissors
GRIT: a cat with a toothbrush
in its mouth on

GT-1: the boy is playing video
games in his bedroom
GT-2: a young man is sitting in
a chair playing a video game
M2: a young man sitting in a
chair holding a wii remote
GRIT: a man sitting in a chair
playing a video game

GT-1: a woman is taking a
turkey out of the oven
GT-2: a woman is taking the
cooked turkey out of the oven.
M2: a woman taking a pizza
out of an oven with a
GRIT: a woman taking a
turkey out of an oven with

GT-1: bowls on a table with
meat and vegetables.
GT-2: four plates of different
kind of food sitting on a table
M2: three plates of food on a
wooden table with a
GRIT: four bowls of food and
a spoon on a table

GT-1: a giraffe standing outside
of a building next to a tree.
GT-2: a giraffe standing in a
small piece of shade.
M2: two giraffes are standing in
a zoo enclosure
GRIT: a giraffe standing in the
dirt next to a building

Figure 3.4: Qualitative examples from our method (GRIT) and a region-based method
(M2 Transformer) on the COCO test images. Zoom in for better view.

45

GT-1: a white cat is laying on
a black skateboard
GT-2: A cat is sleeping on a
skateboard.
M2: a kitten laying on the floor
next to a skateboard
GRIT: a cat laying on a
skateboard on the floor

GT-1: A baby elephant looking
at a white duck
GT-2: A small elephant
standing next to a white bird
M2: an elephant in a field with
two birds in the
GRIT: a baby elephant
walking in a field of grass

GT-1: Two children wrapped
in blankets reading on a bed.
GT-2: Two children reading
while lying in their bed
M2: two people laying in a bed
with a
GRIT: two young boys sitting
on a bed reading a book

GT-1: a kitchen with a
refrigerator next to a sink.
GT-2: a red bucket sits in a sink
next to an open refrigerator
M2: an open refrigerator with the
door open in a kitchen
GRIT: a kitchen with a sink and
an open refrigerator

GT-1: a woman pulling her
luggage past an fire hydrant.
GT-2: a woman pulls a wheeled
suitcase past a fire hydrant
M2: a person riding a skateboard
down a street with a
GRIT: a person pulling a
suitcase next to a fire hydrant

GT-1: two zebras in an animal
park behind a wire fence
GT-2: two zebras in a zoo,
behind a wire fence
M2: a zebra standing next to a
fence in a
GRIT: two zebras standing
behind a fence in a zoo

GT-1: a small teddy bear is
wedged into an opening in a car
dashboard
GT-2: little teddy bear attached
to the dashboard of the car
M2: a stuffed teddy bear sitting
in the back of a car
GRIT: a teddy bear sitting on
the dashboard of a car

GT-1: two birds going up the
back of a giraffe.
GT-2: two birds sitting on the
the back of a giraffe.
M2: a bird on the neck of a
giraffe with a
GRIT: two birds sitting on the
back of a giraffe

GT-1: horses racing on a race
track with jockeys
GT-2: a group of jockeys ride
horses on a track
M2: a group of people riding
horses in a
GRIT: a group of jockeys riding
horses on a track

Figure 3.5: Qualitative examples from our method (GRIT) and a region-based method
(M2 Transformer) on the COCO test images. Zoom in for better view.

46

GT-1: An elderly man looks at
a cell phone.
GT-2: An old man holding up
a cell phone to his face.
M2: a man is taking a picture
of himself on a motorcycle
GRIT: a man sitting in a chair
holding a cell phone

GT-1: A bagel sandwich with
scrambled egg and bacon.
GT-2: A poppy seed bagel
sandwich with eggs and meat.
M2: a stack of pancakes on a
white plate with a
GRIT: a bagel sandwich with
meat and egg on a plate

GT-1: An ostrich and zebra
fenced in with each other.
GT-2: An ostrich standing in a
zoo pin near some zebras.
M2: a group of chickens and a
fence in a field
GRIT: two zebras and an
ostrich standing in a zoo

GT-1: a table top with some
plates of food on it
GT-2: Two plates of breakfast
foods on a restaurant table.
M2: a plate of food with eggs and
meat on a table
GRIT: two plates of food on a
table with a fork

GT-1: there are many people in
the beach playing volley ball
GT-2: some males on some sand
are playing volleyball
M2: a group of people playing
soccer on the beach
GRIT: a group of men playing
volleyball on the beach

GT-1: A polar bear playing with
a ball in a small pond area.
GT-2: A bear is playing with a
ball in the zoo
M2: a group of ducks swimming
in the water with a
GRIT: two polar bears playing
with a ball in the water

GT-1: A woman is paddle
boarding down the river.
GT-2: A woman on a paddle
board with people in the
background.
M2: a woman standing on a boat
in the water
GRIT: a woman standing on a
paddle board in the water

GT-1: an image of a woman
sitting down on a couch with
laptop
GT-2: A lady sitting on a
couch with a laptop
M2: a woman laying on a bed
with a
GRIT: a woman sitting on a
couch with a laptop computer

GT-1: A wet brown dog in a
bath tub.
GT-2: A wet dog in the tub
getting a bath
M2: two dogs standing in the
water with a
GRIT: a group of jockeys riding
horses on a track

Figure 3.6: Qualitative examples from our method (GRIT) and a region-based method
(M2 Transformer) on the COCO test images. Zoom in for better view.

47

GT-1: A dried black flower in
a long, tall black & white vase.
GT-2: Thin black and white
vase with black flowers.
M2: two white vases with a
flower in them on a
GRIT: a black and white vase
with a flower in it

GT-1: The bushels of bananas
on display are purple
GT-2: A pile of black bananas
and other fruit
M2: a bunch of fruits and
vegetables in a basket
GRIT: a pile of bananas and
other fruit on display

GT-1: A doll sitting at a table
with fake food
GT-2: The doll is posed at the
table eating a meal
M2: a young child sitting at a
table with a plate of food
GRIT: a doll sitting at a table
with a plate of food

GT-1: A woman throwing a
frisbee outside at a park
GT-2: a woman is throwing a
disk outside in the sun
M2: a woman holding a blue
umbrella in the street
GRIT: a woman is throwing a
frisbee in the street

GT-1: Two frisbees laying on
the ground next to a sports water
bottle.
GT-2: Two flying disks on the
ground next to a water bottle
M2: a knife and a knife on a
table with a
GRIT: two frisbees laying on
the ground next to a bottle

GT-1: Two knives are lying on a
dark red surface.
GT-2: Two knives placed on a
dining table
M2: a close up of a red tie with a
GRIT: two knives are on a red
table with

GT-1: A woman laying in bed
reading a book while wearing
purple socks
GT-2: A woman is laying in bed
reading a book
M2: a dog is looking at a person
on a bed
GRIT: a woman laying on a bed
with a book

GT-1: A person is standing near
a ski-lift with a view of
mountains
GT-2: A man stands beside a ski
lift on a mountain
M2: a person riding a snowboard
down a snow covered slope
GRIT: a person on a ski lift on a
snowy mountain

GT-1: A zombee walking down
a street covered in blood
GT-2: A man dressed like a
zombie with other zombies
around him.
M2: a man in a suit and tie
walking with a group of people
GRIT: a man dressed as
zombies walking down a street

Figure 3.7: Qualitative examples from our method (GRIT) and a region-based method
(M2 Transformer) on the COCO test images. Zoom in for better view.

48

Chapter 4

LTMI: Lightweight Transformer for
Many Inputs in Visual Dialog

4.1 Introduction

Recently, an increasing amount of attention has been paid to problems lying at the
intersection of the vision and language domains. Many pilot tasks in this intersecting
region have been designed and introduced to the research community, together with
datasets. Visual dialog has been developed aiming at a higher level of vision-language
interactions [18], as compared with VQA (visual question answering) [17] and VCR
(visual commonsense reasoning). It extends VQA to multiple rounds; given an image
and a history of question-answer pairs about the image, an agent is required to answer
a new question. For example, to answer the question ‘What color are they?’, the agent
needs to understand the context from a dialog history to know what ‘they’ refers to
and look at the relevant image region to find out a color.

In recent studies of vision-language tasks, a primary concern has been to design
an attention mechanism that can effectively deal with interactions between the two
modalities. In the case of visual dialog, it becomes further necessary to consider in-
teractions between an image, a question, and a dialog history or additionally multiple
question-answer pairs in the history. Thus, the key to success will be how to deal
with such interactions between three and more entities. Following a recent study [86],
we will use the term utility to represent each of these input entities for clarity, since

49

the term modality is inconvenient to distinguish between the question and the dialog
history.

Existing studies have considered attention from one utility to another based on
different hypotheses, such as “question → history → image” path in [87, 88], and
“question → image → history → question” path in [89, 90], etc. These methods
cannot take all the interactions between utilities into account, although the missing
interactions could be crucial. Motivated by this, a recent study tries to capture all the
possible interactions by using a factor graph [86]. However, building the factor graph
is computationally inefficient, which seemingly hinders the method from unleashing
the full potential of modeling all the interactions, especially when the dialog history
grows long.

The Transformer [3] has become a standard neural architecture for various tasks
in the field of natural language processing, especially since the huge success of its
pre-trained model, BERT [12]. Its basic mechanism has recently been extended to
the bi-modal problems of vision and language, yielding promising results [91–95].
Then, it appears to be natural to extend it further to deal with many-to-many utility
interactions. However, it is not easy due to several reasons. As its basic structure
is designed to be deal with self-attention, even in the simplest case of bi-modality,
letting X and Y be the two utilities, there are four patterns of attention, X → Y ,
Y → X, X → X, and Y → Y ; we need an independent Transformer block for each of
these four. When extending this to deal with many-to-many utility interactions, the
number of the blocks and thus of their total parameters increases proportionally with
the square of the number of utilities, making it computationally expensive. Moreover,
it is not apparent how to aggregate the results from all the interactions.

To cope with this, we propose a neural architecture named Lightweight Trans-
former for Many Inputs (LTMI) that can deal with all the interactions between many
utilities. While it has a block structure similar to the Transformer and shares the core
design of attention computation, it differs in the following two aspects. One is the
difference in the implementation of multi-head attention. Multi-head attention in the
Transformer projects the input feature space linearly to multiple lower-dimensional
spaces, enabling to handle multiple attention maps, where the linear mappings are
represented with learnable parameters. In the proposed model, we instead split the

50

input feature space to subspaces mechanically according to its indexes, removing all
the learnable parameters from the attention computation.

The other difference from the Transformer is that LTMI is designed to receive
multiple utilities and compute all the interactions to one utility from all the others
including itself. This yields the same number of attended features as the input utili-
ties, which are then concatenated in the direction of the feature space dimensions and
then linearly projected back to the original feature space. We treat the parameters
of the last linear projection as only learnable parameters in LTMI. This design makes
it possible to retain sufficient representational power with a much fewer number of
parameters, as compared with a natural extension of the Transformer block to many
utilities. By using the same number of blocks in parallel as the number of utilities, we
can deal with all the interactions between the utilities; see Fig. 4.2 for example. As-
suming three utilities and the feature space dimensionality of 512, a layer consisting
of LTMI has 2.38M parameters, whereas its counterpart based on naive Transformer
extension has 28.4M parameters.

4.2 Related Work

4.2.1 Attention Mechanisms for Vision-Language Tasks

Attention mechanisms are currently indispensable to build neural architectures
for vision-language tasks, such as VQA [96–103] and visual grounding [104–106],
etc. Inspired by the recent success of the Transformer for language tasks [3, 12],
several studies have proposed its extensions to bi-modal vision-language tasks [91–
95, 107]. Specifically, for VQA, it is proposed to use intra-modal and inter-modal
attention blocks and stack them alternately to fuse question and image features [92];
it is also proposed to use a cascade of modular co-attention layers that compute
the self-attention and guided-attention of question and image features [95]. The
method of pre-training a Transformer model used in BERT [12] is employed along with
Transformer extension to bi-modal tasks for several vision-language tasks [91,93,94].
They first pre-train the models on external datasets, such as COCO Captions [108] or
Conceptual Captions dataset [109], and then fine-tune them on several target tasks.

51

4.2.2 Visual Dialog

The task of visual dialog has recently been proposed by two groups of researchers
concurrently [18,110]. De Vries et al. introduced the GuessWhat?! dataset, which is
built upon goal-oriented dialogs held by two agents to identify unknown objects in an
image through a set of yes/no questions [110]. Das et al. released the VisDial dataset,
which is built upon dialogs consisting of pairs of a question and an answer about an
image that are provided in the form of natural language texts [18]. Kottur et al.
recently introduced CLEVR-Dialog as the diagnostic dataset for visual dialog [111].

Most of the existing approaches employ an encoder-decoder architecture [112].
They can be categorized into the following three groups by the design of the encoder:
i) fusion-based methods, e.g., LF [18] and HRE [18], which fuses the inputs by their
concatenation followed by the application of a feed-forward or recurrent network,
and Synergistic [113], which fuses the inputs at multiple stages; ii) attention-based
methods that compute attended features of the input image, question, and history
utilities, e.g., MN [18], CoAtt [90], HCIAE [88], Synergistic [113], ReDAN [89], FGA
[86], and CDF [114]; ReDAN compute the attention over several reasoning steps, FGA
models all the interactions over many utilities via a factor graph; iii) methods that
attempt to resolve visual co-reference, e.g., RvA [115] and CorefNMN [116], which use
neural modules to form an attention mechanism, DAN [87], which employs a network
having two attention modules, and AMEM [117], which utilizes a memory mechanism
for attention. As for the decoder, there are two designs: i) discriminative decoders
that rank the candidate answers using the cross-entropy loss [18] or the n-pair loss [88];
and ii) generative decoders that yield an answer by using a MLE loss [18], weighted
likelihood estimation [118], or a combination with adversarial learning [88,90], which
trains a discriminator on both positive and negative answers, then transferring it to
the generator with auxiliary adversarial learning.

Other approaches include GNN [119], which models relations in a dialog by an
unknown graph structure; the employment of reinforcement learning [120, 121]; and
HACAN [122] which adopts policy gradient to learn the impact of history by inten-
tionally imposing the wrong answer into dialog history. In [123, 124], pre-trained
vision-language models are adopted, which consist of many Transformer blocks with
hundreds of millions parameters, leading to some performance gain. Qi et al. [125]

52

present model-agnostic principles for visual dialog to maximize performance.

4.3 Lightweight Transformer for Many Utilities

4.3.1 Attention Mechanism of Transformer

As mentioned earlier, the Transformer has been applied to several bi-modal vision-
language tasks, yielding promising results. The Transformer computes and uses atten-
tion from three types of inputs, Q (query), K (key), and V (value). Its computation
is given by

A(Q,K, V) = softmax
(
QK⊤
√
d

)
V, (4.1)

where Q, K, and V are all collection of features, each of which is represented by a
d-dimensional vector. To be specific, Q = [q1, . . . , qM]⊤ ∈ RM×d is a collection of M
features; similarly, K and V are each a collection of N features, i.e., K,V ∈ RN×d.
In Eq.(4.1), V is attended with the weights computed from the similarity between Q

and K.
The above computation is usually multi-plexed in the way called multi-head at-

tention. It enables to use a number of attention distributions in parallel, aiming at
an increase in representational power. The outputs of H ‘heads’ are concatenated,
followed by linear transformation with learnable weights WO ∈ Rd×d as

AM(Q,K, V) =

[
head1, · · · , headH

]
WO. (4.2)

Each head is computed as follows:

headh = A(QWQ
h , KWK

h , V W V
h), h = 1, . . . , H, (4.3)

where WQ
h , WK

h , W V
h ∈ Rd×dH each are learnable weights inducing a linear projection

from the feature space of d-dimensions to a lower space of dH(= d/H)-dimensions.
Thus, one attentional block AM(Q,K, V) has the following learnable weights:

(WQ
1 ,WK

1 ,W V
1), · · · , (WQ

H ,WK
H ,W V

H) and WO. (4.4)

53

T T T T

Y1 Y2 YU-1X

MH-Attn MH-Attn
ST

MH-Attn
ST

MH-Attn
ST

Concatenate

Feed Forward

AddNorm

T T TT

X

T
…

YX

Multi-Head
Attention

ST

Feed Forward

AddNorm

X

AddNorm

(a) (b)

~ ~

Figure 4.1: (a) Source-to-target attention for bi-modal problems implemented by the
standard Transformer block; the source Y is attended by weights computed from the
similarity between the target X and Y . (b) The proposed block that can deal with
many utilities; the source features {Y1, . . . , YU−1} are attended by weights computed
between them and the target X. Shaded boxes have learnable weights

4.3.2 Application to Bi-Modal Tasks

While Q, K, and V in NLP tasks are of the same modality (i.e., language), the
above mechanism has been extended to bi-modality and applied to vision-language
tasks in recent studies [91–95,107]. They follow the original idea of the Transformer,
considering attention from source features Y to target features X as

AY (X) = AM(X,Y, Y). (4.5)

In MCAN [95], language feature is treated as the source and visual feature is as
the target. In [93] and others [91,92,94,107], co-attention, i.e., attention in the both
directions, is considered. Self-attention, i.e., the attention from features to themselves,
is given as a special case by

AX(X) = AM(X,X,X). (4.6)

54

In the above studies, the Transformer block with the source-to-target attention and
that with the self-attention are independently treated and are stacked, e.g., alternately
or sequentially.

4.3.3 Lightweight Transformer for Many Inputs

Now suppose we wish to extend the above attention mechanism to a greater
number of utilities1; we denote the number by U . If we consider every possible
source-target pairs, there are U(U − 1) cases in total, as there are U targets, for
each of which U − 1 sources exist. Then we need to consider attention computation
AY (X) over U−1 sources Y ’s for each target X. Thus, the straightforward extension
of the above attention mechanism to U utilities needs U(U − 1) times the number of
parameters listed in Eq.(4.4). If we stack the blocks, the total number of parameters
further increases proportionally.

To cope with this, we remove all the weights from Eq.(4.5). To be specific, for
each head h(= 1, . . . , H), we choose and freeze (WQ

h ,WK
h ,W V

h) as

WQ
h = WK

h = W V
h = [OdH , · · · , OdH︸ ︷︷ ︸

(h−1)dH

, IdH , OdH , · · · , OdH︸ ︷︷ ︸
(H−h)dH

]⊤, (4.7)

where OdH is a dH×dH zero matrix and IdH is a dH×dH identity matrix. In short, the
subspace for each head is determined to be one of H subspaces obtained by splitting
the d-dimensional feature space with its axis indexes. Besides, we set WO = I, which
is the linear mapping applied to the concatenation of the heads’ outputs. Let ĀY (X)

denote this simplified attention mechanism.
Now let the utilities be denoted by {X,Y1, . . . , YU−1}, where X ∈ RM×d is the

chosen target and others Yi ∈ RNi×d are the sources. Then, we compute all the
source-to-target attention as ĀY1(X), · · · , ĀYU−1

(X). In the standard Transformer
block (or rigorously its natural extensions to bi-modal problems), the attended fea-
tures are simply added to the target as X + AY (X), followed by normalization and
subsequent computations. To recover some of the loss in representational power due
to the simplification yielding ĀY (X), we propose a different approach to aggregate

1As we stated in Introduction, we use the term utility here to mean a collection of features.

55

S1 S2 SU-1T

Y1 Y2 YU-1X

T

X

… S1 S2T S1 S2T S1 S2T

Vl-1 Ql-1 Rl-1

Vl Ql Rl

T T T

(b)(a)

~

Figure 4.2: (a) Simplified symbol of the proposed block shown in Fig. 4.1(b). (b) Its
application to Visual Dialog

ĀY1(X), · · · , ĀYU−1
(X) and X. Specifically, we concatenate all the source-to-target

attention plus the self-attention ĀX(X) from X to X as

Xconcat = [ĀX(X), ĀY1(X), · · · , ĀYU−1
(X)], (4.8)

where Xconcat ∈ RM×Ud. We then apply linear transformation to it given by W ∈
RUd×d and b ∈ Rd with a single fully-connected layer, followed by the addition of the
original X and layer normalization as

X̃ = LayerNorm(ReLU(XconcatW + 1M · b⊤) +X), (4.9)

where 1M is M -vector with all ones. With this method, we aim at recovery of rep-
resentational power as well as the effective aggregation of information from all the
utilities.

Memory features When computing ĀY (X), we perform the following form of
computation

A(Q,K, V) = softmax
(
QK⊤
√
d

)
V,

where we compute a matrix product QK⊤ as above. In the computation of ĀX(Y),
we need another matrix product, but it is merely the transposed matrix KQ⊤ due
to the symmetry between X and Y . For the computational efficiency, we perform
computation of ĀY (X) and ĀX(Y) simultaneously; see MultiHeadAttention(X,Y)

56

in our code. Further, following [100], we also pad X and Y with two d-dimensional
vectors that are randomly initialized with He normal initialization. This implements
“no-where-to-attend” features as memory features in the computation of ĀY (X) and
ĀX(Y).

4.3.4 Interactions between All Utilities

We have designed a basic block as shown in Fig. 4.1(b) that deals with attention
from many sources to a single target. We wish to consider all possible interactions
between all the utilities, not a single utility being the only target. To do this, we use
U basic blocks to consider all the source-to-target attention. Using the basic block
as a building block, we show how an architecture is designed for visual dialog having
three utilities, visual features V , question features Q, and dialog history features R,
in Fig. 4.2(b).

4.4 Implementation Details for Visual Dialog

4.4.1 Problem Definition

The problem of Visual Dialog is stated as follows. An agent is given the image
of a scene and a dialog history containing T entities, which consists of a caption
and question-answer pairs at T − 1 rounds. Then, the agent is further given a new
question at round T along with 100 candidate answers for it and requested to answer
the question by choosing one or scoring each of the candidate answers.

4.4.2 Representation of Utilities

We first extract features from an input image, a dialog history, and a new question
at round T to obtain their representations. For this, we follow the standard method
employed in many recent studies. For the image utility, we use the bottom-up mech-
anism [38], which extracts region-level image features using the Faster R-CNN [8]
pre-trained on the Visual Genome dataset [126]. For each region (i.e., a bounding
box = an object), we combine its CNN feature and geometry to get a d-dimensional
vector vi (i = 1, . . . , K), where K is the predefined number of regions. We then

57

define V = [v1, v2, · · · , vK]⊤ ∈ RK×d. For the question utility, after embedding
each word using an embedding layer initialized by pre-trained GloVe vectors, we use
two-layer Bi-LSTM to transform them to qi (i = 1, . . . , N), where N is the num-
ber of words in the question. We optionally use the positional embedding widely
used in NLP studies. We examine its effects in an ablation test. We then define
Q = [q1, . . . , qN]

⊤ ∈ RN×d. For the dialog history utility, we choose to represent it
as a single utility here. Thus, each of its entities represents the initial caption or the
question-answer pair at one round. As with the question utility, we use the same
embedding layer and a two-layer Bi-LSTM together with the positional embeddings
for the order of dialog rounds to encode them with a slight difference in formation of
an entity vector ri (i = 1, . . . , T), where T is the number of Q&A plus the caption.
We then define R = [r1, . . . , rT]

⊤ ∈ RT×d.

Image Utility The image utility is represented by the standard method employed
in many recent studies. It is based on the bottom-up mechanism [38], which extracts
region-level image features using the Faster R-CNN pre-trained on the Visual Genome
dataset [126]. For each input image, we select the top K objects, and represent each
of them by a visual feature vri ∈ R2048 and a bounding box expressed by (xi,1, xi,2)

and (xi,3, xi,4) (the coordinates of the upper-left and lower-right corners.)
The feature vector vri is then converted into another vector vfi ∈ Rd as follows.

We introduce the following notation to express a single FC layer with ReLU, to which
dropout regularization is applied:

MLP
k→d

(x) ≡ Dropout(ReLU(W⊤x+ b)), (4.10)

where x ∈ Rk is the input and W ∈ Rk×d and b ∈ Rd are the weights and biases.
Then, vfi is obtained by

vfi = LayerNorm(MLP
2048→d

(vri)), (4.11)

where LayerNorm is the layer normalization [127] applied to the output.
The bounding box geometry is converted into vbi ∈ Rd in the following way. First,

the image is resized to 600×600 pixels and the bounding box geometry is transformed

58

accordingly. Then, representing each of the four coordinates by a one-hot vector of
size 600, we convert them into the embedding vectors x̂i,1, . . . , x̂i,4(∈ Rd) using four
different embedding layers. Then, we obtain vbi as below

vbi =
4∑

j=1

LayerNorm(MLP
d→d

(x̂i,j)). (4.12)

Finally, vfi encoding the visual feature and vbi encoding the spatial feature are
aggregated by adding and normalizing as

vi = LayerNorm(vfi + vbi). (4.13)

The resulting vi’s for the K objects (i = 1, . . . , K) comprise a matrix V =

[v1, v2, · · · , vK]⊤ ∈ RK×d, which gives the representation of the visual utility.

Optional Image Feature Enrichment. In the experiment of comparing ensem-
bles on the test split of Visdial v1.0, we enrich the image features for further im-
provement. To be specific, for each object, we also obtain a class label with highest
probability (e.g. ‘cat’, ‘hair’, and ‘car’) and the top 20 attributes for each class label
(e.g., ‘curly’, ‘blond’, ‘long’, and so on, for the label ‘hair’). These can be extracted
from the Faster R-CNN along with the above CNN features and bounding box ge-
ometry. We incorporate these into the image utility representation in the following
way.

The class label for the i-th object is first encoded into an embedding vector eci ∈
R300 using the same embedding layer as the question. Then, we convert eci into a
d-dimensional vector vci by

vci = LayerNorm(MLP
300→d

(eci)). (4.14)

Similarly, for the top 20 attributes of each object i, we encode them into embedding
vectors of size 300, i.e. eai,1, . . . , eai,20, and then convert them further into vai ∈ Rd as

vai =
20∑
j=1

LayerNorm(MLP
300→d

(eai,j)w
a
i,j, (4.15)

59

where wa
i,j is the confidence score extracted from the Faster R-CNN for attribute

j of the i-th object. Then, the visual feature vfi , the spatial feature vbi , the class
feature vci , and the attribute feature vai are aggregated by their addition followed by
normalization as

vi = LayerNorm(vfi + vbi + vci + vai). (4.16)

We then use these vectors to form the matrix V instead of Eq.(4.13).

Question Utility The question utility is also obtained by the standard method but
with one exception, the employment of positional embedding used in NLP studies.
Note that we examine its effects in an ablation test shown in the main paper. A given
question sentence is first fit into a sequence of N words; zero-padding is applied if
necessary. Each word wi (i = 1, . . . , N) is embedded into a vector ei of a fixed size
using an embedding layer initialized with pre-trained GloVe vectors [128]. They are
then inputted into two-layer Bi-LSTM, obtaining two d-dimensional vectors −→hi and
←−
hi as their higher-layer hidden state:

−→
hi = LSTM(ei,

−−→
hi−1),

←−
hi = LSTM(ei,

←−−
hi+1).

(4.17)

Their concatenation, hi = [
−→
hi

⊤,
←−
hi

⊤]⊤, is then projected back to a d-dimensional
space using a linear transformation, yielding a vector qfi . Positional embedding qpi

from the paper [3] is added to get the final representation qi ∈ Rd of wi as

qi = LayerNorm(qfi + qpi). (4.18)

The representation of the question utility is given as Q = [q1, . . . , qN]
⊤ ∈ RN×d.

Dialog History Utility In this study, we choose to represent the dialog history as
a single utility. Each of its entities represents the question-answer pair at one round.
As with previous studies, the caption is treated as the first round of 2N -word which
is padded or truncated if necessary. For each round t > 1, the word sequences of
the question and the answer at the round is concatenated into 2N -word sequence
with zero padding if necessary. As with the question utility, after embedding each

60

Input utilities

S
1

S
2

T
S

1
S

2
T

S
1

S
2

T
T

T
T

S
1

S
2

T
S

1
S

2
T

S
1

S
2

T
T

T
T

S
1

S
2

T
S

1
S

2
T

S
1

S
2

T
T

T
T

…

…

…

L stacks of attention blocks Updated utilities Decoders

Generative
decoder

Discrim
inative

decoder

…

LSTM LSTM LSTM…

<SOS>

she is

walking

<EOS>

she

100 candidate answers

Ranking
V0

Q0

R0

VL

QL

RL

Figure 4.3: The entire network built upon the proposed LTMI for Visual Dialog

word into a GloVe vector, the resulting sequence of 2N embedded vectors is inputted
to two-layer Bi-LSTM, from which only their last (higher-layer) hidden states are
extracted to construct 2d-dimensional vector [−→h0

⊤,
←−−
h2N

⊤]⊤. We then project it with a
linear transform to a d-dimensional space, yielding rft ∈ Rd. For the linear projection,
we use different learnable weights from the question utility. As in Eq.(4.18), we add
positional embedding, which represents the order of rounds, and then apply layer
normalization, yielding a feature vector of the round t question-answer pair. The
history utility is then given by R = [r1, . . . , rT]

⊤ ∈ RT×d.

4.4.3 Overall Network Design

Figure 4.3 shows the entire network. It consists of an encoder and a decoder. The
encoder consists of L stacks of the proposed attention blocks; a single stack has U

blocks in parallel, as shown in Fig. 4.2(b). We set V0 = V , Q0 = Q, and R0 = R as
the inputs of the first stack. After the l-th stack, the representations of the image,
question, and dialog history utilities are updated as Vl, Ql, and Rl, respectively. In
the experiments, we apply dropout with the rate of 0.1 to the linear layer inside every
block. There is a decoder(s) on top of the encoder. We consider a discriminative
decoder and a generative decoder, as in previous studies. Their design is explained
below.

61

4.4.4 Design of Decoders

Decoders receive the updated utility representations, VL, QL, and RL at their
inputs. We convert them independently into d-dimensional vectors cV , cQ, and cR,
respectively. This conversion is performed by a simple self-attention computation.
We take cV as an example here. First, attention weights over the entities of VL are
computed by a two-layer network as

aV = softmax(ReLU(VLW1 + 1Kb
⊤
1)W2 + 1Kb2), (4.19)

where W1 ∈ Rd×d, W2 ∈ Rd×1, b1 ∈ Rd, b2 ∈ R1, and 1K is K-vector with all ones.
Then, cV is given by

cV =
K∑
i=1

v⊤L,iaV,i, (4.20)

where vL,i is the i-th row vector of VL and aV,i is the i-th attention weight (a scalar).
The others, i.e., cQ and cR, can be obtained similarly.

These vectors are integrated and used by the decoders. In our implementation
for visual dialog, we found that cR does not contribute to better results; thus we use
only cV and cQ. Note that this does not mean the dialog utility R is not necessary;
it is interacted with other utilities inside the attention computation, contributing to
the final prediction. The two d-vectors cV and cQ are concatenated as [c⊤V , c⊤Q]⊤, and
this is projected to d-dimensional space, yielding a context vector c ∈ Rd.

We design the discriminative and generative decoders following the previous stud-
ies. Receiving c and the candidate answers, the two decoders compute the score of
each candidate answer in different ways.

Discriminative Decoder A discriminative decoder outputs the likelihood score
for each of 100 candidate answers for the current question at round T in the following
way. We use a similar architecture to the one used to extract question features in
Sec. 4.4.2 to convert each candidate answer (indexed by i(= 1, . . . , 100)) to a feature
vector ai ∈ Rd. Specifically, it is two-layer Bi-LSTM receiving a candidate answer
at its input, on top of which there is a linear projection layer followed by layer
normalization. Using the resulting vectors, the score pi for i-th candidate answer is

62

computed by
pi = logsoftmaxi(a⊤1 c, . . . , a⊤100c). (4.21)

In the test phase, we sort the candidate answers using these scores. In the training
phase, the cross-entropy loss LD between p = [p1, . . . , p100]

⊤ and the ground truth
label encoded by a one-hot vector y is minimized:

LD = −
100∑
i=1

yipi. (4.22)

When relevance scores s = [s1, . . . , s100]
⊤ over the answer candidates are available

(called dense annotation in the VisDial dataset) rather than a single ground truth
answer, we can use them by setting yi = si for all i’s and minimize the above loss.
We employ dropout with rate of 0.1 for the LSTM.

Generative Decoder Following [18], we also consider a generative decoder to score
the candidate answers using the log-likelihood scores. The generative decoder consists
of a two-layer LSTM to generate an answer using the context vector c as the initial
hidden state. In the training phase, we predict the next token based on the current
token from the ground truth answer. In details, we first append the special token
“SOS” at the beginning of the ground truth answer, then embedding all the sentence
into the embedding vectors agt = [w0, w1, . . . , wN] where w0 is the embedding vector
of “SOS” token. The hidden state hn ∈ Rd at the n-th timestep (extracted from the
higher-layer LSTM) is computed given wn−1 and hn−1 as follows:

hn = LSTM(wn−1, hn−1), (4.23)

where h0 is initialized by c. Thus, we compute pn, the log-likelihood of n-th word as

pn = logsoftmaxj(W⊤
n hn + bn), (4.24)

where Wn ∈ Rd×|V | and pn ∈ R|V |, where |V | is the vocabulary size; and j is the index
of n-th word in the vocabulary.

In the training phase, we minimize LG, the summation of the negative log-

63

likelihood defined by

LG = −
N∑

n=1

pn. (4.25)

In the validation and test phase, for each candidate answer AT,i, we compute si =∑N
n=1 p

(AT,i)
n where p(AT,i)

n is the log-likelihood of the n-th word in the candidate answer
AT,i which is computed similarly as in Eq.(4.24). Then, the rankings of the candidate
answers are derived as softmaxi(s1, . . . , s100). We employ dropout with rate of 0.1 for
the LSTM.

4.4.5 Multi-Task Learning

We observe in our experiments that accuracy is improved by training the entire
network using the two decoders simultaneously. This is simply done by minimizing
the sum of the losses, LD for the discriminative one and LG for the generative one
(we do not use weights on the losses):

L = LD + LG. (4.26)

The increase in performance may be attributable to the synergy of learning two tasks
while sharing the same encoder. Details will be given in Sec. 4.5.3.

4.5 Experiments on Visual Dialog

4.5.1 Experimental Setup

Dataset We use the VisDial v1.0 dataset in our experiments which consists of
the train 1.0 split (123,287 images), the val 1.0 split (2,064 images), and test v1.0
split (8,000 images). Each image has a dialog composed of 10 question-answer pairs
along with a caption. For each question-answer pair, 100 candidate answers are given.
The val v1.0 split and 2,000 images of the train v1.0 split are provided with dense
annotations (i.e., relevance scores) for all candidate answers. Although the test v1.0
split was also densely annotated, the information about the ground truth answers
and the dense annotations are not publicly available.

64

Evaluation metrics From the visual dialog challenge 2018, normalized discounted
cumulative gain (NDCG) has been used as the principal metric to evaluate methods
on the VisDial v1.0 dataset. Unlike other classical retrieval metrics such as R@1,
R@5, R@10, mean reciprocal rank (MRR), and mean rank, which are only based on
a single ground truth answer, NDCG is computed based on the relevance scores of all
candidate answers for each question, which can properly handle the case where each
question has more than one correct answer, such as ‘yes it is’ and ‘yes’; such cases
do occur frequently.

Other configurations We employ the standard method used by many recent
studies for the determination of hyper-parameters etc. For the visual features, we
detect K = 100 objects from each image. For the question and history features, we
first build the vocabulary composed of 11,322 words that appear at least five times
in the training split. The captions, questions, and answers are truncated or padded
to 40, 20, and 20 words, respectively. Thus, N = 20 for the question utility Q. T for
the history utilities varies depending on the number of dialogs. We use pre-trained
300-dimensional GloVe vectors [128] to initialize the embedding layer, which is shared
for all the captions, questions, and answers.

For the attention blocks, we set the dimension of the feature space to d = 512 and
the number of heads H in each attention block to 4. We mainly use models having
two stacks of the proposed attention block. We train our models on the VisDial v0.9
and VisDial v1.0 dataset using the Adam optimizer [27] with 5 epochs and 15 epochs
respectively. The learning rate is warmed up from 1 × 10−5 to 1 × 10−3 in the first
epoch, then halved every 2 epochs. The batch size is set to 32 for the both datasets.

Table 4.1 shows the hyper-parameters used in our experiments, which are selected
following the previous studies. We perform all the experiments on a GPU server that
has four Tesla V100-SXM2 of 16GB memory with CUDA version 10.0 and Driver
version 410.104. It has Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz of 80 cores with
the RAM of 376GB memory. We use Pytorch version 1.2 [129] as the deep learning
framework.

65

Table 4.1: Hyper-paramters used in the training procedure.

Hyper-parameter Value

Warm-up learning rate 1e−5

Warm-up factor 0.2

Initial learning rate after the 1st epoch 1e−3

β1 in Adam 0.9

β2 in Adam 0.997

ϵ in Adam 1e−9

Weight decay 1e−5

Number of workers 8

Batch size 32

Table 4.2: Comparison of the performances of different methods on the validation set
of VisDial v1.0 with discriminative and generative decoders.

Model
Discriminative Generative

NDCG↑ MRR↑ R@1↑ R@5↑ R@10↑ Mean↓ NDCG↑ MRR↑ R@1↑ R@5↑ R@10↑ Mean↓

MN [18] 55.13 60.42 46.09 78.14 88.05 4.63 56.99 47.83 38.01 57.49 64.08 18.76

CoAtt [90] 57.72 62.91 48.86 80.41 89.83 4.21 59.24 49.64 40.09 59.37 65.92 17.86

HCIAE [88] 57.75 62.96 48.94 80.5 89.66 4.24 59.70 49.07 39.72 58.23 64.73 18.43

ReDAN [89] 59.32 64.21 50.6 81.39 90.26 4.05 60.47 50.02 40.27 59.93 66.78 17.4

LTMI 62.72 62.32 48.94 78.65 87.88 4.86 63.58 50.74 40.44 61.61 69.71 14.93

4.5.2 Comparison with State-of-the-art Methods

Compared methods We compare our method with previously published methods
on the VisDial v0.9 and VisDial v1.0 datasets, including LF, HRE, MN [18], LF-Att,
MN-Att (with attention) [18], SAN [101], AMEM [117], SF [130], HCIAE [88] and
Sequential CoAttention model (CoAtt) [90], Synergistic [113], FGA [86], GNN [119],
RvA [115], CorefNMN [116], DAN [87], and ReDAN [89], all of which were trained
without using external datasets or data imposition. Unless noted otherwise, the
results of our models are obtained from the output of discriminative decoders.

Results on the val v1.0 split We first compare single-model performance on the val
v1.0 split. We select here MN, CoAtt, HCIAE, and ReDAN for comparison, as their
performances from the both decoders in all metrics are available in the literature. To

66

be specific, we use the accuracy values reported in [89] for a fair comparison, in which
these methods are reimplemented using the bottom-up-attention features. Similar to
ours, all these methods employ the standard design of discriminative and generative
decoders as in [18]. Table 4.2 shows the results. It is seen that our method outperforms
all the compared methods on the NDCG metric with large margins regardless of the
decoder type. Specifically, as compared with ReDAN, the current state-of-the-art on
the VisDial v1.0 dataset, our model has improved NDCG from 59.32 to 62.72 and
from 60.47 to 63.58 with discriminative and generative decoders, respectively.

Results on the test-standard v1.0 split We next consider performance on the
test-standard v1.0 split. In our experiments, we encountered a phenomenon that
accuracy values measured by NDCG and other metrics show a trade-off relation (see
the supplementary material for details), depending much on the choice of metrics
(i.e., NDCG or others) for judging convergence at the training time. This is observed
in the results reported in [89] and is attributable to the inconsistency between the
two types of metrics. Thus, we show two results here, the one obtained using NDCG
for judging convergence and the one using MRR for it; the latter is equivalent to
performing early stopping.

Table 4.3 shows single-model performances on the blind test-standard v1.0 split.
With the outputs from the discriminative decoder, our model gains improvement of
3.33pp in NDCG from the best model. When employing the aforementioned early
stopping, our model achieves at least comparable or better performance in other
metrics as well.

Many previous studies report the performance of an ensemble of multiple models.
To make a comparison, we create an ensemble of 16 models with some differences,
from initialization with different random seeds to whether to use sharing weights
across attention blocks or not, the number of attention blocks (i.e. L = 2, 3), and
the number of objects in the image (i.e. K = 50, 100). Aiming at achieving the best
performance, we also enrich the image features by incorporating the class label and
attributes of each object in an image, which are also obtained from the pre-trained
Faster R-CNN model. Details are given in the supplementary material. We take the
average of the outputs (probability distributions) from the discriminative decoders of
these models to rank the candidate answers. Furthermore, we also test fine-tuning

67

Table 4.3: Comparison in terms of single-model performance on the blind test-
standard v1.0 split of the VisDial v1.0 dataset. The result obtained by early stopping
on MRR metric is denoted by ⋆ and those with fine-tuning on dense annotations are
denoted by †.

Model NDCG ↑ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ Mean ↓

LF [18] 45.31 55.42 40.95 72.45 82.83 5.95

HRE [18] 45.46 54.16 39.93 70.45 81.50 6.41

MN [18] 47.50 55.49 40.98 72.30 83.30 5.92

MN-Att [18] 49.58 56.90 42.42 74.00 84.35 5.59

LF-Att [18] 49.76 57.07 42.08 74.82 85.05 5.41

FGA [86] 52.10 63.70 49.58 80.97 88.55 4.51

GNN [119] 52.82 61.37 47.33 77.98 87.83 4.57

CorefNMN [116] 54.70 61.50 47.55 78.10 88.80 4.40

RvA [115] 55.59 63.03 49.03 80.40 89.83 4.18

Synergistic [113] 57.32 62.20 47.90 80.43 89.95 4.17

DAN [87] 57.59 63.20 49.63 79.75 89.35 4.30

LTMI⋆ 59.03 64.08 50.20 80.68 90.35 4.05

LTMI 60.92 60.65 47.00 77.03 87.75 4.90

each model with its discriminative decoder on the available dense annotations from
the train v1.0 and val v1.0, where the cross-entropy loss with soft labels (i.e. relevance
scores) is minimized for two epochs. Table 4.4 shows the results. It is observed that
our ensemble model (w/o the fine-tuning) achieves the best NDCG = 66.53 in all the
ensemble models.

With optional fine-tuning, our ensemble model further gains a large improvement
in NDCG, resulting in the third place in the leaderboard. The gap in NDCG to the
first place (VD-BERT) is only 0.25pp, while our model yields performance that is
better in all the other metrics, i.e, by 2.14pp, 5.67pp, and 3.37pp in MRR, R@5, and
R@10, respectively, and 5.36% reduction in Mean.

Table 4.5 shows the number of parameters of the multi-modal attention mechanism
employed in the recent methods along with their NDCG scores on the VisDial v1.0
test-standard set. We exclude the parameters of the networks computing the input

68

Table 4.4: Comparison in terms of ensemble-model performance on the blind test-
standard v1.0 split of the VisDial v1.0 dataset. The result obtained by early stopping
on MRR metric is denoted by ⋆ and those with fine-tuning on dense annotations are
denoted by †.

Model NDCG ↑ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ Mean ↓

FGA [86] 52.10 67.30 53.40 85.28 92.70 3.54

Synergistic [113] 57.88 63.42 49.30 80.77 90.68 3.97

DAN [87] 59.36 64.92 51.28 81.60 90.88 3.92

ReDAN [89] 64.47 53.73 42.45 64.68 75.68 6.63

LTMI 66.53 63.19 49.18 80.45 89.75 4.14

P1_P2 [125]† 74.91 49.13 36.68 62.98 78.55 7.03

VD-BERT [123]† 75.13 50.00 38.28 60.93 77.28 6.90

LTMI† 74.88 52.14 38.93 66.60 80.65 6.53

utilities and the decoders, as they are basically shared among these methods. ‘Naive
Transformer’ consists of two stacks of transformer blocks with simple extension to
three utilities as mentioned in Sec. 4.1. The efficiency of our models can be observed.
Note also that the gap between (Q, V) and (Q, V, R) is small, contrary to the
argument in [125].

4.5.3 Ablation Study

To evaluate the effect of each of the components of our method, we perform the
ablation study on the val v1.0 split of VisDial dataset. We evaluate here the accuracy
of the discriminative decoder and the generative decoder separately. We denote the
former by D-NDCG and the latter by G-NDCG, and the accuracy of their averaged
model by A-NDCG (i.e., averaging the probability distributions over the candidate
answers obtained by the discriminative and generative decoders). The results are
shown in Table 4.6 and Table 4.7.

The first block of Table 4.6 shows the effect of the number of stacks of the pro-
posed attention blocks. We observe that the use of two to three stacks achieves good
performance on all three measures. More stacks did not bring further improvement,
and thus are omitted in the table.

69

Table 4.5: Comparison in terms of the number of parameters of the attention mech-
anism. The result obtained by early stopping on MRR metric is denoted by ⋆ and
those with fine-tuning on dense annotations are denoted by †.

Model # params MRR↑ NDCG↑

DAN [87] 12.6M 63.20 57.59

RvA [115] 11.9M 63.03 55.59

Naive Transformer 56.8M 62.09 55.10

LTMI* (MRR-based) 4.8M 64.08 59.92

LTMI (Q, V) 4.8M 60.65 60.92

LTMI (Q, V, R) 4.8M 60.76 61.12

The second block of Table 4.6 shows the effect of self-attention, which computes
the interaction within a utility, i.e., ĀX(X). We examine this because it can be
removed from the attention computation. It is seen that self-attention does contribute
to good performance. The third block shows the effects of how to aggregate the
attended features. It is seen that their concatenation yields better performance than
their simple addition. The fourth block shows the impact of sharing the weights
across the stacks of the attention blocks. If the weights can be shared as in [131],
it contributes a further decrease in the number of parameters. We observe that the
performance does drop if weight sharing is employed, but the drop is not very large.

The first block of Table 4.7 shows the effect of how to aggregate the context
features cV , cQ, and cR in the decoder(s), which are obtained from the outputs of
our encoder. As mentioned above, the context vector cR of the dialog history does
not contribute to the performance. However, the context vector cv of the image is
important for achieving the best performance. The second block of Table 4.7 shows
the effects of simultaneously training the both decoders (with the entire model). It
is seen that this contributes greatly to the performance; this indicates the synergy
of learning two tasks while sharing the encoder, resulting better generalization as
compared with those trained with a single decoder.

We have also confirmed that the use of fewer objects leads to worse results. Be-
sides, the positional embedding for representing the question and history utilities as

70

Table 4.6: Ablation study on the components of our method on the val v1.0 split of
VisDial dataset. ↑ indicates the higher the better.

(a)

Component Details A-NDCG ↑ D-NDCG ↑ G-NDCG ↑

Number of 1 65.37 62.06 62.95

attention blocks 2 65.75 62.72 63.58

3 65.42 62.48 63.22

Self-Attention No 65.38 61.76 63.31

Yes 65.75 62.72 63.58

Attended features Add 64.12 60.28 61.49

aggregation Concat 65.75 62.72 63.58

Shared Attention No 65.75 62.72 63.58

weights Yes 65.57 62.50 63.24

well as the spatial embedding (i.e., the bounding box geometry of objects) for image
utility representation have a certain amount of contribution.

4.5.4 Qualitative Results

Visualization of Generated Attention Figure 4.4 shows attention weights gen-
erated in our model on two rounds of Q&A on two images. We show here two types
of attention. One is the self-attention weights used to compute the context vectors
cV and cQ. For cV , the attention weights aV are generated over image regions (i.e.,
bounding boxes), as in Eq.(4.19). Similarly, for cQ, the attention weights are gen-
erated over question words. These two sets of attention weights are displayed by
brightness of the image bounding-boxes and darkness of question words, respectively,
in the center and the rightmost columns. It can be observed from these that the
relevant regions and words are properly highlighted at each Q&A round.

The other attention we visualize is the source-to-target attention computed inside
the proposed block. We choose here the image-to-question attention ĀV (Q) and
the history-to-question attention ĀR(Q). For each, we compute the average of the

71

Table 4.7: Ablation study on the components of our method on the val v1.0 split of
VisDial dataset. ↑ indicates the higher the better.

(b)

Component Details A-NDCG ↑ D-NDCG ↑ G-NDCG ↑

Context feature [Q] 65.12 61.50 63.19

aggregation [Q, V] 65.75 62.72 63.58

[Q, V, R] 65.53 62.37 63.38

Decoder Type Gen - - 62.35

Disc - 61.80 -

Both 65.75 62.72 63.58

The number of 36 65.25 62.40 63.08

objects in an image 50 65.24 62.29 63.12

100 65.75 62.72 63.58

Positional and No 65.18 61.84 62.96

spatial embeddings Yes 65.75 62.72 63.58

attention weights over all the heads computed inside the block belonging to the upper
stack. In Fig. 4.4, the former is displayed by the red boxes connected between an
image region and a question word; only the region with the largest weight is shown
for the target word; the word with the largest self-attention weight is chosen for the
target. The history-to-question attention is displayed by the Q&As highlighted in
blue color connected to a selected question word that is semantically ambiguous, e.g.,
‘its’, ‘he’, and ‘his’. It is seen that the model performs proper visual grounding for
the important words, ‘hair’, ‘shorts’, and ’tusks’. It is also observed that the model
properly resolves the co-reference for the words, ‘he’ and ‘its’.

We provide additional examples of the results obtained by our method in Figs. 4.5-
4.8. They are divided into two groups, results for which the top-1 prediction coincides
with the ground truth answer (Figs. 4.5-4.6) and those for which they do not coincide
(Figs. 4.7-4.8). For each result, we show the attention maps created on the input
image and question, respectively.

72

The young boy is playing tennis at the court

Is the young boy a toddler? No

What color is his hair? It 's black

Is

he

wearing

shorts

?

The young boy is playing tennis at the court

Is the young boy a toddler? No

What

his

hair

?

is

Q: What color is his hair?
GT answer: It’s black
Prediction: Black

Q: Is he wearing shorts?
GT answer: Yes
Prediction: Yes

Q2: What color is his hair?
(It’s black)
Q3: Is he wearing shorts?
(Yes)

Does

have

saddle

?

a

he

An elephant walks through the greenery of the jungle

Is there people ? No

Cans you see its tusks ? Yes

Is the elephant an adult ? Yes

Q: Does he have a saddle?
GT answer: No
Prediction: No

Can
you

tusks

?

see

its

An elephant walks through the greenery of the jungle

Is there people ? No

Is the elephant an adult ? Yes

Q: Can you see its tusks?
GT answer: Yes
Prediction: Yes

H0: The young boy is playing
tennis at the court
H1: Is the young boy a toddler? No

Dialog history

H0: An elephant walks through the
greenery of the jungle
H1: Is there people ? No
H2: Is the elephant an adult ? Yes

Dialog history

Q3: Can you see its tusks
(Yes)
Q4: Does he have a saddle?
(No)

Figure 4.4: Examples of visualization for the attention weights generated in our model
at two Q&A rounds on two images. See Sec. 4.5.4 for details.

Table 4.8: Comparison of response generation evaluation results with objective mea-
sures.

Model Video Feat. CIDEr BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE_L

Baseline [132] VGG 0.618 0.231 0.141 0.095 0.067 0.102 0.259

Ours VGG 0.841 0.266 0.172 0.118 0.086 0.117 0.296

Baseline [132] I3D 0.727 0.256 0.161 0.109 0.078 0.113 0.277

Ours I3D 0.851 0.277 0.178 0.122 0.088 0.119 0.302

4.6 Experiments on Audio Visual Scene-aware Di-
alog

To test the generality of the proposed method on other tasks as well as its perfor-
mance on a greater number of utilities, we additionally apply it to the Audio Visual
Scene-aware Dialog (AVSD) task [132]. This task requires a system to generate an an-
swer to a question about events seen in a video given with a previous dialog. AVSD
provides more utilities than Visual Dialog, i.e., audio features and video features,
such as VGG or I3D features (I3D RGB sequence and I3D flow sequence). We build
a network by simply replacing the multi-modal attention mechanism in the baseline
model of [132] with a simple extension of the proposed attention mechanism. Details
are given below.

73

4.6.1 Network Design

Following the baselines [132], we extract the question utility Q using a two-layer
LSTM. We separate the caption from the dialog history and feed it into another
two-layer LSTM to obtain the caption utility C. Similar to [132], the dialog history
consisting of previous question-answer pairs is inputted into a hierarchical LSTM
network; specifically, we encode each question-answer pair with one LSTM and sum-
marize the obtained encodings with another LSTM, yielding a final vector represen-
tation cr. All LSTMs used for language encoding have d units. We convert words
into vectors with a shared embedding layer initialized with GLoVe vectors.

The video provides two sources of features, i.e., video features and audio features.
We use the audio features extracted from the pre-trained VGGish model [132], which
are fed to a projection layer, providing the audio utility A; it is represented as a
collection of d-dimensional vectors. For video processing, following [132], we consider
two models with different features: i) VGG features extracted from four uniformly
sampled frames in the video, giving the video utility V , and ii) I3D features extracted
by the I3D network pre-trained on an action recognition task, which are forwarded
to projection layers to obtain an I3D-rgb utility and an I3D-flow utility denoted by
V and F .

To compute the multi-modal attention between U utilities, we add a stack of U
proposed attention blocks; U = 4 for the model (i) and U = 5 for (ii). To make the
designs of two models (i) and (ii) similar, we use only A utility to attend language
utilities; and only Q and C are allowed to attend audio and video utilities. After
obtaining the updated representations of all utilities, we summarize each utility into
a single vector by the self-attention mechanism, in which the summarized vector of
question utility is denoted by cq. We concatenate all these vectors together with cr,
projecting it into a d-dimensional vector of context representation c.

The decoder architecture is similar to the generative decoder described in Sec.
4.4.4 except that the input of the decoder at the i-th step is the concatenation of
wi−1, cq, and cr. At the time of inference, we use the beam search technique to
efficiently find the most likely hypothesis generated by the decoder.

74

4.6.2 Experimental Setup

Following [132], we perform the experiment on the AVSD prototype which is split
into training, validation, and test sets with 6172, 732, and 733 videos, respectively.
Each video is collected from the Charades dataset, annotated with a caption and 10
dialog rounds. The hidden size d is set to 512; the GLoVe vectors are 300-dimensional.
We train the models in 15 epochs using the Adam optimizer with initial learning rate
1×10−3 in all the experiments. The dropout with rate of 0.2 is applied for the LSTMs.

4.6.3 Experimental Results

Table 4.8 shows the results, which include evaluation on a number of metrics to
measure the quality of generated answers, i.e. CIDEr, BLEU, METEOR, ROUGE_L.
It is seen that our models outperform the baselines presented in [132] over all the
metrics; specifically, it improves the CIDEr score by 22.3% (from 0.618 to 0.841) with
VGG features and by 12.4% (from 0.727 to 0.851) with I3D features.

4.7 Summary and Conclusion

In this chapter, we have proposed LTMI (Lightweight Transformer for Many In-
puts) that can deal with all the interactions between multiple input utilities in an
efficient way. As compared with other methods, the proposed architecture is much
simpler in terms of the number of parameters as well as the way of handling inputs
(i.e., their equal treatment), and nevertheless surpasses the previous methods in ac-
curacy; it achieves the new state-of-the-art results on the VisDial datasets, e.g., high
NDCG scores on the VisDial v1.0 dataset. Thus, we believe our method can be used
as a simple yet strong baseline.

75

Q&A at a round Q&A at another round

Figure 4.5: Examples of results for which the top-1 prediction is the same as the
ground truth answer on the validation split of Visdial v1.0. Each row shows selected
two rounds of Q&A for one image.

76

Q&A at a round Q&A at another round

Figure 4.6: Examples of results for which the top-1 prediction is the same as the
ground truth answer on the validation split of Visdial v1.0. Each row shows selected
two rounds of Q&A for one image.

77

Figure 4.7: Examples of results for which the top-1 prediction is different from the
ground truth answer on the validation split of Visdial v1.0.

78

Figure 4.8: Examples of results for which the top-1 prediction is different from the
ground truth answer on the validation split of Visdial v1.0.

79

Chapter 5

LWIT: Improving Performance on
Instruction Following Tasks

5.1 Introduction

There is a growing interest in the community in making an embodied AI agent
perform a complicated task following natural language directives. Recent studies
of vision-language navigation tasks (VLN) have made significant progress [19–21].
However, these studies consider navigation in static environments, where the action
space is simplified, and there is no interaction with objects in the environment.

To consider more complex tasks, a benchmark named ALFRED was developed
recently [1]. It requires an agent to accomplish a household task in interactive en-
vironments following given language directives. Compared with VLN, ALFRED is
more challenging as the agent needs to (1) reason over a greater number of instruc-
tions and (2) predict actions from larger action space to perform a task in longer
action horizons. The agent also needs to (3) localize the objects to manipulate by
predicting the pixel-wise masks. Previous studies (e.g., [1]) employ a Seq2Seq model,
which performs well on the VLN tasks [23]. However, it works poorly on ALFRED.
Overall, existing methods only show limited performance; there is a huge gap with
human performance.

In this chapter, we propose a new method that leads to significant performance
improvements. It is based on several ideas. Firstly, we propose to choose a single

81

instruction to process at each timestep from the given series of instructions. This ap-
proach contrasts with previous methods that encode them into a single long sequence
of word features and use soft attention to specify which instruction to consider at
each timestep implicitly [1,133,134]. Our method chooses individual instructions ex-
plicitly by learning to predict when the agent completes an instruction. This makes
it possible to utilize constraints on parsing instructions, leading to a more accurate
alignment of instructions and action prediction. Secondly, we propose a two-stage ap-
proach to the interpretation of the selected instruction. In its first stage, the method
interprets the instruction without using visual inputs from the environment, yielding
a tentative prediction of an action-object sequence. In the second stage, the predic-
tion is integrated with the visual inputs to predict the action to do and the object to
manipulate. The tentative interpretation makes it clear to interact with what class
of objects, contributing to an accurate selection of objects to interact with.

Moreover, we acquire multiple agent egocentric views of a scene as visual inputs
and integrate them using a hierarchical attention mechanism. This allows the agent
to have a wider field of views, leading to more accurate navigation. To be specific,
converting each view into an object-centric representation, we integrate those for the
multiple views into a single feature vector using hierarchical attention conditioned on
the current instruction.

Besides, we propose a module for predicting precise pixel-wise masks of objects
to interact with, referred to as the mask decoder. It employs the object-centric
representation of the center view, i.e., multiple object masks detected by the object
detector. The module selects one of these candidate masks to specify the object to
interact with. In the selection, self-attention is applied to the candidate masks to
weight them; they are multiplied with the tentative prediction of the pairs of action
and an object class and the detector’s confidence scores for the candidate masks.

The experimental results show that the proposed method outperforms all the ex-
isting methods by a large margin and ranks first in the challenge leaderboard as of
the time of submission. A preliminary version of the method won an international
competition held last year. The present version further improved the task success
rate in unseen and seen environments to 8.37% and 29.16%, respectively, which are
significantly higher than the previously published SOTA (0.39% and 3.98%, respec-

82

tively) [1].

5.2 Related Work

5.2.1 Embodied Vision-Language Tasks

Many studies have been recently conducted on the problem of making an embodied
AI agent follow natural language directives and accomplish the specified tasks in a
three-dimensional environment while properly interacting with it. Vision-language
navigation (VLN) tasks have been the most extensively studied, which require an
agent to follow navigation directions in an environment.

Several frameworks and datasets for simulating real-world environments have been
developed to study the VLN tasks. The early ones lack photo-realism and/or natural
language directions [135–137]. Recent studies consider perceptually-rich simulated
environments and natural language navigation directions [19,138,139]. In particular,
since the release of the Room-to-Room (R2R) dataset [19] that is based on real
imagery [140], VLN has attracted increasing attention, leading to the development of
many methods [20, 23, 141–143].

Several variants of VLN tasks have been proposed. A study [144] allows the agent
to communicate with an adviser using natural language to accomplish a given goal. In
a study [145], the agent placed in an environment attempts to find a specified object
by communicating with a human by natural language dialog. A recent study [146]
proposes the interactive environments where users can collaborate with an agent by
not only instructing it to complete tasks, but also acting alongside it. Another study
[147] introduces a continuous environment based on the R2R dataset that enables
an agent to take more fine-grained navigation actions. A number of other embodied
vision-language tasks have been proposed such as visual semantic planning [148,149]
and embodied question answering [150–153].

5.2.2 Existing Methods for ALFRED

As mentioned earlier, ALFRED was developed to consider more complicated inter-
actions with environments, which are missing in the above tasks, such as manipulat-

83

ing objects. Several methods for it have been proposed so far. A baseline method [1]
employs a Seq2Seq model with an attention mechanism and a progress monitor [23],
which is prior art for the VLN tasks. In [134], a pre-trained Mask R-CNN is employed
to generate object masks. It is proposed in [133] to train the agent to follow instruc-
tions and reconstruct them. In [154], a modular architecture is proposed to exploit
the compositionality of instructions. These methods have brought about only modest
performance improvements over the baseline. A concurrent study [155] proposes a
modular architecture design in which the prediction of actions and object masks are
treated separately, as with ours. Although it achieves notable performance improve-
ments, the study’s ablation test indicates that the separation of the two is not the
primary source of the improvements. Closely related to ALFRED, ALFWorld [156]
has been recently proposed to combine TextWorld [157] and ALFRED for creating
aligned environments, which enable transferring high-level policies learned in the text
world to the embodied world.

5.3 Proposed Method

The proposed model consists of three decoders (i.e., instruction, mask, and ac-
tion decoders) with the modules extracting features from the inputs, i.e., the visual
observations of the environment and the language directives. We first summarize
ALFRED and then explain the components one by one.

5.3.1 Summary of ALFRED

ALFRED is built upon AI2Thor [136], a simulation environment for embodied AI.
An agent performs seven types of tasks in 120 indoor scenes that require interaction
with 84 classes of objects, including 26 receptacle object classes. For each object class,
there are multiple visual instances with different shapes, textures, and colors.

The dataset contains 8,055 expert demonstration episodes of task instances. They
are sequences of actions, whose average length is 50, and they are used as a ground
truth action sequence at training time. For each of them, language directives anno-
tated by AMT workers are provided, which consist of a goal statement G and a set
of step-by-step instructions, S1, . . . , SL. The alignment between each instruction and

84

1 Walk to the kitchen bar...
2 Pick up a dirty mug from t
3 Turn around, walk to the s
4 Wash the mug in the sink..
5 Pick up the mug to the cof
6 Put it in the coffee maker

D
etector

Instruction
Encoder

Soft-Attn
Soft-Attn

in
st

ru
ct

io
ns

m
ul

tip
le

 v
ie

w
s

ce
nt

er
 v

ie
w

Env

Gated-Attn RNN FC

Env

Soft-Attn

Selecting
Instr.

Mug

N
ext step

Previous step

(Goal statement)

D
etector

Instruction
Decoder

Self-Attn

Pickup

General
Product

...

...

C

C

C

C

Assign
Mask

C Concatenate

Action Decoder

Stage 2

Stage 2

Stage 1

Mask Decoder

Sigmoid Hierarchical Attention

....
Figure 5.1: Architecture overview of the proposed model. It consists of the modules
encoding the visual inputs and the language directives (Sec. 5.3.2), the instruction
decoder with an instruction selector (Sec. 5.3.3), the action decoder (Sec. 5.3.4), and
the mask decoder (Sec. 5.3.5).

a segment of the action sequence is known. As multiple AMT workers annotate the
same demonstrations, there are 25,743 language directives in total.

We wish to predict the sequence of agent’s actions, given G and S1, . . . , SL of a
task instance. There are two types of actions, navigation actions and manipulation
actions. There are five navigation actions (e.g., MoveAhead and RotateRight) and
seven manipulation actions (e.g., Pickup and ToggleOn). The manipulation actions
accompany an object. The agent specifies it using a pixel-wise mask in the egocentric
input image. Thus, the outputs are a sequence of actions with, if necessary, the object
masks.

5.3.2 Feature Representations

Object-centric Visual Representations

Unlike previous studies [1,133,134], we employ the object-centric representations
of a scene [158], which are extracted from a pre-trained object detector (i.e., Mask
R-CNN [9]). It provides richer spatial information about the scene at a more fine-
grained level and thus allows the agent to localize the target objects better. Moreover,
we make the agent look wider by capturing the images of its surroundings, aiming to
enhance its navigation ability.

Specifically, at timestep t, the agent obtains visual observations from K egocentric

85

views. For each view k, we encode the visual observation by a bag ofN object features,
which are extracted the object detector. Every detected object is associated with a
visual feature, a mask, and its confidence score. We project the visual feature into
Rd with a linear layer, followed by a ReLU activation and dropout regularization
[159] to obtain a single vector; thus, we get a set of N object features for view k,
V k
t = (vkt,1, . . . , v

k
t,N). We obtain V 1

t , . . . , V
K
t for all the views.

Language Representations

We encode the language directives as follows. We use an embedding layer initial-
ized with pre-trained GloVe [128] vectors to embed each word of the L step-by-step
instructions and the goal statement. For each instruction i(= 1, . . . , L), the embed-
ded feature sequence is inputted to a two-layer LSTM [33], and its last hidden state
is used as the feature si ∈ Rd of the instruction. We use the same LSTM for all
the instructions with dropout regularization. We encode the goal statement G in the
same manner using an LSTM with the same architecture different weights, obtaining
hG ∈ Rd.

5.3.3 Instruction Decoder

Selecting Instructions

Previous studies [1, 133, 134] employ a Seq2Seq model in which all the language
directives are represented as a single sequence of word features, and soft attention
is generated over it to specify the portion to deal with at each timestep. We think
this method could fail to correctly segment instructions with time, even with the
employment of progress monitoring [23]. This method does not use a few constraints
on parsing the step-by-step instructions that they should be processed in the given
order and when dealing with one of them, the other instructions, especially the future
ones, will be of little importance.

We propose a simple method that can take the above constraints into account,
which explicitly represents which instruction to consider at the current timestep t.
The method introduces an integer variable mt(∈ [1, L]) storing the index of the in-
struction to deal with at t.

86

To update mt properly, we introduce a virtual action representing the completion
of a single instruction, which we treat equally to the original twelve actions defined
in ALFRED. Defining a new token COMPLETE to represent this virtual action, we
augment each instruction’s action sequence provided in the expert demonstrations
always end with COMPLETE. At training time, we train the action decoder to predict
the augmented sequences. At test time, the same decoder predicts an action at each
timestep; if it predicts COMPLETE, this means completing the current instruction. The
instruction index mt is updated as follows:

mt =

mt−1 + 1, if argmax(pa
t−1) = COMPLETE

mt−1, otherwise,
(5.1)

where pa
t−1 is the predicted probability distribution over all the actions at time t −

1, which will be explained in Sec. 5.3.4. The encoded feature smt of the selected
instruction is used in all the subsequent components, as shown in Fig. 5.1.

Decoder Design

LSTM LSTM LSTM

<Start> Put Turn On

Put Turn On Turn Off

LSTM

Turn Off

Complete

LSTM LSTM LSTM

<Start> Mug Faucet

Sink Faucet Faucet

LSTM

Faucet

<None>

(a) For tentative action predictions (b) For tentative object predictions

Figure 5.2: An example illustrates how we reinitialize the hidden states of the two
LSTMs in the instruction encoder by smt when mt = mt−1 + 1 (mt = 4).

As explained earlier, our method employs a two-stage approach for interpreting
the instructions. The instruction decoder (see Fig. 5.1) runs the first stage, where it
interprets the instruction encoded as smt without any visual input. To be specific, it
transforms smt into the sequence of action-object pairs without additional input. In

87

this stage, objects mean the classes of objects.

As it is not based on visual inputs, the predicted action-object sequence has to be
tentative. The downstream components in the model (i.e., the mask decoder and the
action decoder) interpret smt again, yielding the final prediction of an action-object
sequence, which are grounded on the visual inputs. Our intention of this two-stage
approach is to increase prediction accuracy; we expect that using a prior prediction
of (action, object class) pairs helps more accurate grounding.

In fact, many instructions in the dataset, particularly those about interactions
with objects, are sufficiently specific so that they are uniquely translated into (action,
object class) sequences with a perfect accuracy, even without visual inputs. For
instance, “Wash the mug in the sink” can be translated into (Put, Sink), (TurnOn,
Faucet), (TurnOff, Faucet), (PickUp, Mug). However, this is not the case with
navigation instructions. For instance, “Go straight to the sink” may be translated into
a variable number of repetition of MoveAhead; it is also hard to translate “Walk into
the drawers” when it requires to navigate to the left/right. Therefore, we separately
deal with the manipulation actions and the navigation actions. In what follows, we
first explain the common part and then the different parts.

Given the encoded feature smt of the selected instruction, the instruction decoder
predicts the action and the object class to choose at t. To be precise, it outputs the
probability distributions pia

t (∈ RNa) and pio
t (∈ RNo) over all the actions and the object

classes, respectively; Na and No are the numbers of the actions and the object classes.

These probabilities pia
t and pio

t are predicted separately by two LSTMs in an au-
toregressive fashion. The two LSTMs are initialized whenever a new instruction is
selected; to be precise, we reset their internal states as hia

t−1 = hio
t−1 = smt for t when

we increment mt as mt = mt−1 + 1 (see the example in Fig. 5.2). Then, pia
t and pio

t

are predicted as follows:

pia
t = softmax(WiaLSTM(Ea(p

ia
t−1), h

ia
t−1) + bia), (5.2a)

pio
t = softmax(WioLSTM(Eo(p

io
t−1), h

io
t−1) + bio), (5.2b)

where Wia ∈ RNa×d, bia ∈ RNa , Wio ∈ RNo×d, and bio ∈ RNo are learnable parameters;
Ea maps the most likely action into the respective vectors according to the last pre-

88

dictions pia
t−1 using a dictionary with Na × d learnable parameters; Eo does the same

for the object classes. The predicted pia
t and pio

t are transferred to the input of these
LSTMs at the next timestep and also inputted to the downstream components, the
mask decoder and the action decoder.

Now, as they do not need visual inputs, we can train the two LSTMs in a su-
pervised fashion using the pairs of instructions and the corresponding ground truth
action-object sequences. We denote this supervised loss, i.e., the sum of the losses for
the two LSTMs, by Laux. Although it is independent of the environment and we can
train the LSTMs offline, we simultaneously train them along with other components
in the model by adding Laux to the overall loss. We think this contributes to better
learning of instruction representation smt , which is also used by the mask decoder
and the action decoder.

As mentioned above, we treat the navigation actions differently from the manipu-
lation actions. There are three differences. First, we simplify the ground truth action
sequence for the navigation actions if necessary. For instance, suppose an instruction
“Turn left, go ahead to the counter and turn right” with a ground truth action se-
quence “RotateLeft, MoveAhead, MoveAhead, MoveAhead, MoveAhead, RotateRight”.
The repetition of MoveAhead reflects the environment and cannot be predicted with-
out visual inputs. Thus, by eliminating the repeated actions, we convert the sequence
into the minimum-length one, “RotateLeft, MoveAhead, RotateRight”, and regard
it as the ground truth sequence, training the instruction decoder. Second, as there
is no accompanied object for the navigation actions, we use the object-class sequence
“None, None, None” as the ground truth. Third, in the case of navigation actions,
we do not transfer the outputs pia

t and pio
t to the mask decoder and the action decoder

and instead feed constant (but learnable) vectors pia
nav ∈ RNa and pio

nav ∈ RNo to them.
As the instruction decoder learns to predict the minimum-length action sequences as
above, providing such predictions will be harmful for the action decoder. We avoid
this by feeding pia

nav and pio
nav.

5.3.4 Action Decoder

The action decoder receives four inputs and predicts the action at t. The inputs
are as follows: the encoded instruction smt , the output pia

t and pio
t of the instruction

89

decoder1 and aggregated feature vt of visual inputs, which will be described below.

Hierarchical Attention over Visual Features

As explained in Sec. 5.3.2, we use the multi-view object-centric representation of
visual inputs. To be specific, we aggregate N × K outputs of Mask R-CNN from
K ego-centric images, obtaining a single vector vt. The Mask R-CNN outputs for
view k(= 1, . . . , K) are the visual features (vkt,1, . . . , v

k
t,N) and the confidence scores

(ρkt,1, . . . , ρ
k
t,N) of N detected objects.

To do this feature aggregation, we employ a hierarchical approach, where we first
search for the objects relevant to the current instruction in each view and then merge
the features over the views to a single feature vector. In the first step, we compute
and apply soft-attentions over N objects for each view. To be specific, we compute
attention weights αk

s ∈ RN across vkt,1, . . . , vkt,N guided by smt as

αk
s,n = softmax((vkt,n)⊤W k

s smt), (5.3)

where W k
s ∈ Rd×d is a learnable matrix, for k = 1, . . . , K. We then apply the weights

to the N visual features multiplied with their confidence scores for this view, yielding
a single d-dimensional vector as

vkt =
N∑

n=1

αk
s,nv

k
t,nρ

k
t,n, (5.4)

where ρkt,n is the confidence score associated with vkt,n.

In the second step, we merge the above features v1t , . . . , vKt using gated-attention.
We compute the weight αk

g(∈ R) of view k(= 1, . . . , K) guided by smt as

αk
g = sigmoid((vkt)⊤Wgsmt), (5.5)

where Wg ∈ Rd×d is a learnable matrix. Finally, we apply the weights to {vkt }k=1,...,K

1These are replaced with pia
nav and pia

nav if argmax(pia
t) is not a manipulation action, as mention

above.

90

to have the visual feature vt ∈ Rd as

vt =
K∑
k=1

αk
gv

k
t . (5.6)

As shown in the ablation test in the supplementary, the performance drops signif-
icantly when replacing the above gated-attention by soft-attention, indicating the
necessity for merging observations of different views, not selecting one of them.

Decoder Design

The decoder predicts the action at t from vt, smt , pia
t and pio

t . We employ an
LSTM, which outputs the hidden state ha

t ∈ Rd at t from the previous state ha
t−1

along with the above four inputs as

ha
t = LSTM([vt; smt ; p

ia
t ; p

io
t], h

a
t−1), (5.7)

where [;] denotes concatenation operation. We initialize the LSTM by setting the
initial hidden state ha

0 to hG, the encoded feature of the goal statement; see Sec. 5.3.2.
The updated state ha

t is fed into a fully-connected layer to yield the probabilities over
the Na + 1 actions including COMPLETE as follows:

pa
t = softmax(Wah

a
t + ba), (5.8)

where Wa ∈ R(Na+1)×d and ba ∈ RNa+1. We choose the action with the maximum
probability for the predicted action. In the training of the model, we use cross entropy
loss Laction computed between pa

t and the one-hot representation of the true action.

5.3.5 Mask Decoder

To predict the mask specifying an object to interact with, we utilize the object-
centric representations V c

t = (vct,1, . . . , v
c
t,N) of the visual inputs of the central view

(k = c). Namely, we have only to select one of the N detected objects. This enables
more accurate specification of an object mask than predicting a class-agnostic binary
mask as in the prior work [1].

91

To do this, we first apply simple self-attention to the visual features V c
t , aiming at

capturing the relation between objects in the central view. We employ the attention
mechanism inside the light-weight Transformer with a single head proposed in [160]
for this purpose, obtaining ĀV c

t
(V c

t) ∈ RN×d. We then apply linear transformation
to ĀV c

t
(V c

t) using a single fully-connected layer having weight W ∈ RN×d and bias
b ∈ Rd, with a residual connection as

V̂ c
t = ReLU(W ĀV c

t
(V c

t) + 1K · b⊤) + V c
t , (5.9)

where 1K is K-vector with all ones.
We then compute the probability pm

t,n of selecting n-th object from the N candi-
dates using the above self-attended object features along with other inputs smt , pia

t ,
and pio

t . We concatenate the latter three inputs into a vector gm
t = [smt ; p

ia
t ; p

io
t] and

then compute the probability as

pm
t,n = sigmoid((gm

t)
⊤Wmv̂

c
t,n), (5.10)

where Wm ∈ Rd+Na+No×d is a learnable matrix. We select the object mask with the
highest probability (i.e., argmaxn=1,...,N(p

m
t,n)) at inference time. At training time, we

first match the ground truth object mask with the object mask having the highest
IoU. Then, we calculate the BCE loss Lmask between the two.

5.4 Experiments

5.4.1 Experimental Configuration

Dataset. We follow the standard procedure of ALFRED; 25,743 language directives
over 8,055 expert demonstration episodes are split into the training, validation, and
test sets. The latter two are further divided into two splits, called seen and unseen,
depending on whether the scenes are included in the training set.

Evaluation metrics. Following [1], we report the standard metrics, i.e., the scores
of Task Success Rate, denoted by Task and Goal Condition Success Rate, denoted by

92

Table 5.1: Task and Goal-Condition Success Rate. For each metric, the corresponding
path weighted metrics are given in (parentheses). The highest values per fold and
metric are shown in bold.

Model
Validation Test

Seen Unseen Seen Unseen

Task Goal-Cond Task Goal-Cond Task Goal-Cond Task Goal-Cond

Shridhar et al. [1] 3.70 (2.10) 10.00 (7.00) 0.00 (0.00) 6.90 (5.10) 3.98 (2.02) 9.42 (6.27) 0.39 (0.80) 7.03 (4.26)

Legg et al. [133] - - - - 3.85 (1.50) 8.87 (5.52) 0.85 (0.36) 7.68 (4.31)

Singh et al. [134] 4.50 (2.20) 12.20 (8.10) 0.70 (0.30) 9.50 (6.10) 5.41 (2.51) 12.32 (8.27) 1.50 (0.7) 8.08 (5.20)

MOCA [155] 19.15 (13.60) 28.50 (22.30) 3.78 (2.00) 13.40 (8.30) 22.05 (15.10) 28.29 (22.05) 5.30 (2.72) 14.28 (9.99)

Ours (single view) 18.90 (13.90) 26.80 (21.90) 3.90 (2.50) 15.30 (10.90) 15.20 (11.79) 23.95 (20.27) 4.45 (2.37) 14.71 (10.88)

Ours (multiple views) 33.70 (28.40) 43.10 (38.00) 9.70 (7.30) 23.10 (18.10) 29.16 (24.67) 38.82 (34.85) 8.37 (5.06) 19.13 (14.81)

Ours (winning entry)⋄ 14.30 (10.80) 22.40 (19.60) 4.60 (2.80) 11.40 (8.70) 12.39 (8.20) 20.68 (18.79) 4.45 (2.24) 12.34 (9.44)

Human - - - - - - 91.00 (85.80) 94.50 (87.60)

Goal-Cond. The Goal-Cond score is the ratio of goal conditions being completed at
the end of an episode. The Task score is defined to be one if all the goal conditions are
completed, and otherwise 0. Besides, each metric is accompanied by a path-length-
weighted (PLW) score [161], which measures the agent’s efficiency by penalizing scores
with the length of the action sequence.

Implementation details. We use K = 5 views: the center view, up and down
views with the elevation degrees of ±15◦, and left and right views with the angles of
±90◦. We employ a Mask R-CNN model with ResNet-50 backbone that receives a
300×300 image and outputsN = 32 object candidates. We train it before training the
proposed model with 800K frames and corresponding instance segmentation masks
collected by replaying the expert demonstrations of the training set. We set the
feature dimensionality d = 512. We train the model using imitation learning on the
expert demonstrations by minimizing the following loss:

L = Lmask + Laction + Laux. (5.11)

We use the Adam optimizer with an initial learning rate of 10−3, which is halved at
epoch 5, 8, and 10, and a batch size of 32 for 15 epochs in total. We use a dropout with
the dropout probability 0.2 for the both visual features and LSTM decoder hidden
states.

93

Table 5.2: Sub-goal success rate. All values are in percentage. The agent is evaluated
on the Validation set. Highest values per fold are indicated in bold.

Sub-goal
[1] [155] Ours

Seen Unseen Seen Unseen Seen Unseen

Goto 51 22 54 32 59 39

Pickup 32 21 53 44 84 79

Put 81 46 62 39 82 66

Slice 25 12 51 55 89 85

Cool 88 92 87 38 92 94

Heat 85 89 84 86 99 95

Clean 81 57 79 71 94 68

Toggle 100 32 93 11 99 66

Average 68 46 70 47 87 74

5.4.2 Experimental Results

Table 5.1 shows the results. It is seen that our method shows significant improve-
ment over the previous methods [1, 133, 134, 155] on all metrics. Our method also
achieves better PLW (path length weighted) scores in all the metrics (indicated in
the parentheses), showing its efficiency. Notably, our method attains 8.96% success
rate on the unseen test split, improving approximately 20 times compared with the
published result in [1]. The higher success rate in the unseen scenes indicates its
ability to generalize in novel environments. Detailed results for each of the seven task
types are shown in the supplementary.

The preliminary version of our method won an international competition, whose
performance is lower than the present version. It differs in that (pia

t , p
io
t) are not

forwarded to the mask decoder and the action decoder and the number of Mask R-
CNN’s outputs is set to N = 20. It is noted that even with a single view (i.e., K = 1),
our model still outperforms [1, 133, 134] in all the metrics.

Sub-goal success rate. Following [1], we evaluate the performance on individual
sub-goals. Table 5.2 shows the results. It is seen that our method shows higher

94

success rates in almost all of the sub-goal categories.

Performance by Task Type Table 5.3 shows the success rates across the 7 task
types achieved by the existing methods including ours on the validation set of AL-
FRED. It is seen that our method outperforms others by a large margin in both seen
and unseen environments.

Task-Type
[1] [155] Ours

Seen Unseen Seen Unseen Seen Unseen

Pick & Place 7.0 0.0 29.5 5.0 40.1 13.0

Stack & Place 0.9 0.0 5.2 1.8 17.4 11.9

Pick Two 0.8 0.0 11.2 1.1 21.8 1.1

Clean & Place 1.8 0.0 22.3 2.4 40.2 15.0

Heat & Place 1.9 0.0 15.8 2.7 41.2 9.6

Cool & Place 4.0 0.0 26.1 0.7 40.0 13.8

Examine 9.6 0.0 20.2 13.2 34.4 12.9

Average 3.7 0.0 18.6 3.8 33.6 11.0

Table 5.3: Success rate across 7 task types. All values are in percentages. The agent
is evaluated on the validation set. Highest values per split are indicated in bold.

5.4.3 Ablation Study

We conduct an ablation test to validate the effectiveness of the components by
incrementally adding each component to the proposed model. The results are shown
in Table 5.4.

The model variants 1-4 use a single-view input (K = 1); they do not use multi-
view inputs and the hierarchical attention method. Model 1 further discards the
instruction decoder by replacing it with the soft-attention-based approach [1], which
yields a different language feature satt at each timestep. Accordingly, pio

t and pia
t are

not fed to the mask/action decoders; we use gm
t = [satt;h

a
t]. These changes will make

the method almost unworkable. Model 2 retains only the instruction selection module,
yielding smt . It performs much better than Model 1. Model 3 has the instruction

95

Table 5.4: Ablation study for the components of the proposed model. We report
the success rate (Task score) on the validation seen and unseen splits. The 7 mark
denotes that a corresponding component is removed from the proposed model.

Model
Components Validation

Instruction Two-stage Multi-view Mask
Seen / Unseen

Selection Interpretation Hier. Attn Decoder

1 7 7 7 3 2.8 / 0.5

2 3 7 7 3 12.9 / 2.9

3 3 3 7 3 18.9 / 3.9

4 3 3 7 7 3.8 / 0.7

5 3 3 3 3 33.7 / 9.7

decoder, which feeds pio
t and pia

t to the subsequent decoders. It performs better than
Model 2 by a large margin, showing the effectiveness of the two-stage method.

Model 4 replaces the mask decoder with the counterpart of the baseline method
[1], which upsamples a concatenated vector [gmt ; vt] by deconvolution layers. This
change results in inaccurate mask prediction, yielding a considerable performance
drop. Model 5 is the full model. The difference from Model 3 is the use of multi-
view inputs with the hierarchical attention mechanism. It contributes to a notable
performance improvement, validating its effectiveness.

Table 5.5 shows the full results of the ablation test reported in the main paper.
We also provide additional results in Table 5.6 with different activation functions (i.e.
sigmoid or softmax) in the second step of the proposed hierarchical attention mech-
anism, and with different K’s; K is selected from 1 (only ‘center’ view), 3 (‘center’,
‘left’, and ‘right’ views), or 5 (‘center’, ‘left’, ‘right’, ‘up’, and ‘down’ views)). The
results show that the use of gated-attention in Eq.(5) (of the main paper) is essential.
We also confirm the number of views also affect the success rate.

96

Components Validation-Seen Validation-Unseen

Instruction Two-stage Multi-view Mask
Task Goal-Cond. Task Goal-Cond.

Selection Interpretation Hier. Attn Decoder

7 7 7 3 2.8 (1.3) 9.7 (6.5) 0.5 (0.2) 9.2 (5.4)

3 7 7 3 12.9 (9.4) 21.6 (17.3) 2.9 (1.6) 13.1 (9.4)

3 3 7 3 18.9 (13.9) 26.8 (21.9) 3.9 (2.5) 15.3 (10.9)

3 3 3 7 3.8 (2.4) 14.9 (11.2) 0.7 (0.3) 10.4 (6.9)

3 3 3 3 33.7 (28.4) 43.1 (38.0) 9.7 (7.3) 23.1 (18.1)

Table 5.5: Results of an ablation test for examining the effectiveness of each compo-
nent of the proposed model. The path weighted scores are reported in the parentheses.

Configurations
Validation-Seen Validation-Unseen

Task Goal-Cond. Task Goal-Cond.

Activation Function
Softmax 11.9 (9.3) 20.8 (17.3) 4.1 (2.2) 14.0 (10.2)

Sigmoid 33.7 (28.4) 43.1 (38.0) 9.7 (7.3) 23.1 (18.1)

center 18.9 (13.9) 26.8 (21.9) 3.9 (2.5) 15.3 (10.9)

Ego-centric views center, left, right 25.9 (21.2) 34.4 (30.0) 6.2 (3.8) 17.0 (12.3)

center, left, right, up, down 33.7 (28.4) 43.1 (38.0) 9.7 (7.3) 23.1 (18.1)

Table 5.6: Results of experiments comparing activation functions in the module for
aggregating and encoding multi-view visual inputs. The path weighted scores are
reported in the parentheses.

5.4.4 Qualitative Results

Entire Task Completion

Figures 5.3-5.6 show the visualization of how the agent completes one of the seven
types of tasks. These are the results for the unseen environment of the validation set.
Each panel shows the agent’s center view with the predicted action and object mask
(if existing) at different time-steps.

Mask Prediction for Sub-goal Completion

Figure 5.8 shows an example of the mask prediction by the baseline [1] and the
proposed method. It shows our method can predict a more accurate object mask

97

Turn to the right and walk to
the white couch across the
room

1

Pick up the empty white box
that is to the left of the cell
phone.

2

Turn to the right and walk to
the white couch across the
room

1

Look up and to the left of
the white couch.

3
Look up and to the left of
the white couch.

3
Turn on the lamp to the left
of the couch.

4

Figure 5.3: Our agent completes an Examine task “Examine an empty box by the
light of a floor lamp” in an unseen environment.

Turn left, walk to the sink
1

Grab the green bottle in
between sinks

2

Turn right, walk to the toilet
3

Put the green bottle on the
toilet, near the wall

4

Turn left, walk to the sink
1

Turn right, walk to the toilet
3

Figure 5.4: Our agent completes a Pick & Place task “Place the green bottle on the
toilet basin” in an unseen environment.

when performing Slice sub-goal. More examples are shown in the supplementary
material. Overall, our method shows better results, especially for difficult sub-goals
like Pickup, Put, and Clean, for which a target object needs to be chosen from a
wide range of candidates.

We also provide seven video clips as independent files, which contain several ex-
amples of the agent’s entire task completion for seven above task instances in unseen
environments.

98

Walk over to the counter in the
middle of the sinks.

1
Move further back from the
counter.

3

Pick up the bar of soap in
the back of the counter.

2

Open cabinet door, place
the bar of soap in the
cabinet to the right of the
rag, and close the door.

4
Pick up the bar of soap from
the counter.

6 Open the cabinet door, put
the soap inside the cabinet
to the left of the other soap,
and close the door.

8

Move closer to the counter
in between the two sinks.

5

Open cabinet door, place
the bar of soap in the
cabinet to the right of the
rag, and close the door.

4

Move further back from the
counter.

7

Walk over to the counter in the
middle of the sinks.

1

Figure 5.5: Our agent completes a Pick Two & Place task “To move two bars of
soap to the cabinet” in an unseen environment.

Turn right, go to the fridge, turn
right, go to face the lettuce on
the counter, past the sink on the
right

1
Turn right, bring the lettuce
to the fridge on the right.

3Pick up the lettuce on the
counter.

2

Chill the lettuce in the fridge
4

Take the chilled lettuce to
the counter, right of the
fridge

5 Put the chilled lettuce on the
counter

6

Chill the lettuce in the fridge
4

1 1

Chill the lettuce in the fridge
4

Chill the lettuce in the fridge
4

Figure 5.6: Our agent completes a Cool & Place task “Put chilled lettuce on the
counter” in an unseen environment.

5.5 Analyses of Failure Cases

We analyze the failure cases of our method using the results on the validation
splits. We categorize them into navigation failures and manipulation failures.

5.5.1 Navigation Failures

It is seen from the sub-goal results of Table 2 in the main paper that the Goto
sub-goal is the most challenging. Failures with it tend to make it hard to complete
the entire goal, since they will inevitably affect the subsequent actions to take. We
think there are three major cases for the navigation failures.

The first case, which occurs most frequently, is that the agent follows a navigation

99

Chill the lettuce in the fridge
4

4 Turn left and head to the
refrigerator

5

Chill the lettuce in the fridge
4

Chill the lettuce in the fridge
4

Pick up the apple next to the
drain

Turn right and face the sink
1

Turn around and face
microwave above the stove

3Turn around and face
microwave above the stove

3

Open the microwave and place
the apple on the plate to the
right of the egg. Turn on the
microwave for a few seconds,
then open the door and remove
the heated apple.

4

1

2

4 4 4 Open the refrigerator door
and place the apple on the
middle shelf to the right of
the lettuce. Close the
refrigerator door.

5

Figure 5.7: Our agent completes a Heat & Place task “Put a heated apple next to
the lettuce on the middle shelf in the refrigerator” in an unseen environment.

Pred: Toaster

Slice the lettuce in front of you

(a) Shridhar et al. [1]

Slice the lettuce in front of you

Pred: Lettuce

(b) Ours

Figure 5.8: The prediction masks generated by Shridhar et al.and our method where
the agents are moved to the same location to accomplish Slice sub-goal.

instruction and reaches a position that should be fine as far as the instruction goes;
nevertheless, it is not the right position for the next manipulation action to take.
For instance, following the instruction “Go to the table,” the agent goes to the table.
The next instruction is “ Pickup the remote control at the table,” but the remote lies
on the other side of the table. This is counted as a failure of completing the Goto
sub-goal.

The second case is when the instructions are either abstract or misleading. An
example is that when the agent has to take several left and right turns together
with multiple MoveAhead steps to reach the destination, e.g., a drawer, the provided

100

instruction is simply“Go to the drawer.”
The third case, which occurs less frequently, is that while there is an obstacle in

front of the agent, e.g., wall, it attempts to take the MoveAhead action. This occurs
because of the lack of proper visual inputs. This is demonstrated by the fact that
when we reduce the number of views, the task success rate drops significantly, as
shown in the second block of Table 5.6.

5.5.2 Manipulation Failures

As shown in Table 2, after it has moved to the ideal position right before per-
forming any interaction sub-goals (i.e., all the sub-goals but Goto), the agent can
manipulates objects with high success rates of 91% and 69% in the seen and un-
seen environments, respectively. However, the success rates for completing the Goto
sub-goal in the seen and unseen environments are only 59% and 39%, respectively.
Therefore, the primary cause of the manipulation failures is that the agent cannot
find the target object because it fails to reach the right destination due to a navigation
failure.

Even if the agent has successfully navigated to the right destination, it can fail to
detect the target object. This seem to happen mostly because the object is either too
small or indistinguishable from the surroundings. The agent tends to fail to detect,
for example, a small knife placed on the steel/metal-made sink of the same color.

The agent also fails to detect an object that has not seen in the training. This is
confirmed by the fact that the performance drops considerably in unseen environments
for some interaction sub-goals (including Put, Clean, and Toggle). There are also
a small number of cases where failures are attributable to bad instructions, e.g.,
incorrect statement of objects.

5.6 Summary and Conclusion

This chapter has presented a new method for interactive instruction following
tasks and applied it to ALFRED. The method is built upon several new ideas, includ-
ing the explicit selection of one of the provided instructions, the two-stage approach
to the interpretation of each instruction (i.e., the instruction decoder), the employ-

101

ment of the object-centric representation of visual inputs obtained by hierarchical
attention from multiple surrounding views (i.e., the action decoder), and the precise
specification of objects to interact with based on the object-centric representation
(i.e., the mask decoder). The experimental results have shown that the proposed
method achieves superior performances in both seen and unseen environments com-
pared with all the existing methods. We believe this study provides a useful baseline
framework for future studies.

102

Chapter 6

Conclusion

In this chapter, we summarize the contributions of our work and discuss some
remaining problems as well as the future directions.

Over the past decades, we have experienced unprecedented progress in Artifi-
cial Intelligence, especially in Computer Vision and Natural Language Processing.
Recently, there has been an increasing interest in solving problems that integrate
visual and linguistic learning to unlock many practical applications potentially. In
this dissertation, we have developed the models to understand visual and linguistic
information and interact with humans and physical environments.

Concretely, in Chapter 3, we proposed a better and faster image captioning model.
It is arguably believed that extracting good visual representations from the input
image plays a crucial role in generating captions. We then pointed out that region-
based features extracted by an object detector, such as Faster R-CNN, employed by
previous methods, have some limitations: 1) lack of contextual information, 2) the risk
of false detection, and 3) the high computational cost. We observed that grid-based
features could alleviate the first two issues, while DETR-based detectors could help
overcome the third issue. Thus, we introduced GRIT, which effectively utilizes the
two visual features to generate better captions. Under the same training condition,
we found that our proposed method outperforms previous methods significantly in
terms of accuracy and speed.

We believe that integrating the two visual features would also benefit other tasks in
which the contextual information provides further clues for more accurate predictions.

103

The tasks include but are not limited to several vision-language tasks (e.g., image-
text retrieval, VQA, multi-modal verification, visual dialog, etc.), referring expression,
scene graph generation, etc. Although this method may produce promising results
for image captioning and maybe other tasks without vision-language pre-training, it
is unclear how to utilize these two features in pre-training large models on large-
scale datasets. First, using these two elements simultaneously complicates the model
design. Second, the datasets with object detection annotations appearing marginal
mitigate the advantage of region features compared to pre-training simple grid-based
models on large-scale datasets of image-text pairs. We hope future research will
leverage the two visual features for pre-training on large-scale datasets and fine-tuning
on downstream tasks.

In Chapter 4, we studied the visual dialog task, which requires agents to answer
multiple questions in the form of dialog with humans. Previous methods considered
attention from one input to another based on different hypotheses, such as “question
→ history→ image” path in [87,88], and “question→ image→ history→ question”
path in [89, 90], etc. These methods cannot take all the interactions between inputs
into account. We argued that a plausible approach to solving the problem is effectively
modeling all the interactions between inputs. Therefore, we proposed LTMI, a neural
architecture that can efficiently deal with all the interactions between multiple such
inputs in visual dialog. It treats all the utilities equally and simultaneously computes
all their interactions. It has a design structure similar to Transformers, yet is much
light-weight with less than one-tenth of the number of parameters. We found that
the models built upon the proposed LTMI block achieve considerable performance
improvement in Visual Dialog and Audio Visual Scene-aware Dialog with more inputs.

It is worth mentioning that recent state-of-the-art methods [123, 124] for Visual
Dialog employ pre-trained vision-language transformers. Specifically, these methods
concatenate the dialog history and the question into a unified text before forwarding
them into the pre-trained transformers and fine-tuning for the task. We expect that
placing additional LTMI layers on the top of transformer outputs may disentangle the
inputs and capture their interactions for better prediction. Since the LTMI layer is
light-weight, its introduction adds only minimal computation. We leave it for future
research.

104

In Chapter 5, we tackled the ALFRED, an interactive instruction-following bench-
mark that requires performing household tasks by following human instructions. We
pointed out that the previous methods that perform well on related tasks, Vision
Language Navigation (VLN), fail to achieve good performance on ALFRED due to
a number of challenging problems in ALFRED compared with VLN. We proposed
LWIT to overcome the shortcomings of previous methods, which outperforms them
by a large margin. We found several ideas that contribute to better performance: 1)
selecting explicitly one instruction from a sequence of given instructions to accomplish
at a time; 2) interpreting each instruction in two steps which refine the initial predic-
tions; 3) employing region-based features obtained from multiple surrounding views
and specifying objects to interact with rather than generating pixel-wise predictions.

Despite significantly improving the ALFRED tasks, our method performs much
worse than humans. However, the method serves as a strong baseline for ALFRED for
further development. We strongly believe that several ideas, such as selecting masks
instead of pixel-wise predictions and two-stage interpretation, are still applicable to
future research to improve the accuracy. It is also noted that in this work, we assume
that agents perform low-level actions (i.e., navigation and interaction actions with
objects and environments) with perfect accuracy, which is beyond our research scope.
We suspect that building a complete intelligent robot that works in real environments
is much more complicated than simulation. Research on simulation-to-real embodied
agents is still active and attracting attention from the community [162–164].

105

Bibliography

[1] M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi, L. Zettle-
moyer, and D. Fox. Alfred: A benchmark for interpreting grounded instructions
for everyday tasks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2020.

[2] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-
based learning applied to document recognition. In Proceedings of the IEEE,
1998.

[3] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Advances in Neural Information Processing Systems, pages 5998–6008,
2017.

[4] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in Neural Information
Processing Systems, volume 25, 2012.

[5] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. In arXiv preprint arXiv:1409.1556, 2014.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 770–778, 2016.

[7] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg

107

Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for
image recognition at scale. In arXiv:2010.11929, 2020.

[8] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In Advances in Neural
Information Processing Systems, pages 91–99, 2015.

[9] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask R-
CNN. In Proceedings of the IEEE International Conference on Computer Vision,
pages 2980–2988. IEEE Computer Society, 2017.

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In Proceedings of the Conference on
Computer Vision and Pattern Recognition, 2009.

[11] Longlong Jing and Yingli Tian. Self-supervised visual feature learning with
deep neural networks: A survey. In CoRR, volume abs/1902.06162, 2019.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding. In
arXiv preprint arXiv:1810.04805, 2018.

[13] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Im-
proving language understanding by generative pre-training. In Technical report.
OpenAI, 2018.

[14] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, et al. Language models are few-shot learners. In arXiv preprint
arXiv:2005.14165, 2020.

[15] Andrej Karpathy, Armand Joulin, and Li F Fei-Fei. Deep fragment embeddings
for bidirectional image sentence mapping. In Advances in Neural Information
Processing Systems, volume 27, 2014.

108

[16] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and
tell: A neural image caption generator. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3156–3164, 2015.

[17] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Ba-
tra, C Lawrence Zitnick, and Devi Parikh. Vqa: Visual question answering. In
Proceedings of the IEEE International Conference on Computer Vision, pages
2425–2433, 2015.

[18] Abhishek Das, Satwik Kottur, Khushi Gupta, Avi Singh, Deshraj Yadav,
José MF Moura, Devi Parikh, and Dhruv Batra. Visual dialog. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 326–335, 2017.

[19] P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Sünderhauf, I. Reid,
S. Gould, and A. van den Hengel. Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real environments. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.

[20] D. Fried, R. Hu, V. Cirik, A. Rohrbach, J. Andreas, L.-P. Morency, T. Berg-
Kirkpatrick, K. Saenko, D. Klein, and T. Darrell. Speaker-follower models for
vision-and-language navigation. In Advances in Neural Information Processing
Systems, 2018.

[21] F. Zhu, Y. Zhu, X. Chang, and X. Liang. Vision-language navigation with self-
supervised auxiliary reasoning tasks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2020.

[22] Aditya Mogadala. Polylingual multimodal learning. In ECML PKDD Doctoral
Consortium, page 155. Citeseer, 2015.

[23] C.-Y. Ma, J. Lu, Z. Wu, G. AlRegib, Z. Kira, R. Socher, and C. Xiong. Self-
monitoring navigation agent via auxiliary progress estimation. In Proceedings
of International Conference on Learning Representations, 2019.

[24] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep
learning, volume 1. MIT Press, 2016.

109

[25] Boris T Polyak. Some methods of speeding up the convergence of iteration
methods. In Ussr computational mathematics and mathematical physics, vol-
ume 4, pages 1–17. Elsevier, 1964.

[26] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the
importance of initialization and momentum in deep learning. In Proceedings of
International Conference on Machine Learning, pages 1139–1147. PMLR, 2013.

[27] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. In arXiv preprint arXiv:1412.6980, 2014.

[28] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. In Journal of machine learning
research, volume 12, 2011.

[29] Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algo-
rithm for deep belief nets. Neural Computation, 18:1527–1554, 2006.

[30] Frank Rosenblatt. The perceptron: a probabilistic model for information stor-
age and organization in the brain. Psychological review, 65(6):386, 1958.

[31] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
internal representations by error propagation. Technical report, California Univ
San Diego La Jolla Inst for Cognitive Science, 1985.

[32] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning
representations by back-propagating errors. In Cognitive modeling, volume 5,
page 1, 1988.

[33] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. In Neural
computation, volume 9, pages 1735–1780, 1997.

[34] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen
Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer us-
ing shifted windows. In Proceedings of the IEEE International Conference on
Computer Vision, pages 10012–10022, 2021.

110

[35] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural
image caption generation with visual attention. In Proceedings of International
Conference on Machine Learning, pages 2048–2057, 2015.

[36] Steven J Rennie, Etienne Marcheret, Youssef Mroueh, Jerret Ross, and Vaib-
hava Goel. Self-critical sequence training for image captioning. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
7008–7024, 2017.

[37] Jiasen Lu, Caiming Xiong, Devi Parikh, and Richard Socher. Knowing when
to look: Adaptive attention via a visual sentinel for image captioning. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 375–383, 2017.

[38] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson,
Stephen Gould, and Lei Zhang. Bottom-up and top-down attention for image
captioning and visual question answering. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 6077–6086, 2018.

[39] Yunpeng Luo, Jiayi Ji, Xiaoshuai Sun, Liujuan Cao, Yongjian Wu, Feiyue
Huang, Chia-Wen Lin, and Rongrong Ji. Dual-level collaborative transformer
for image captioning. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 2286–2293, 2021.

[40] Tiantao Xian, Zhixin Li, Canlong Zhang, and Huifang Ma. Dual global en-
hanced transformer for image captioning. In Neural Networks, volume 148,
pages 129–141, 2022.

[41] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander
Kirillov, and Sergey Zagoruyko. End-to-end object detection with transformers.
In Proceedings of the European Conference on Computer Vision, pages 213–229,
2020.

[42] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai.

111

Deformable detr: Deformable transformers for end-to-end object detection. In
Proceedings of International Conference of Learning Representations, 2021.

[43] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common
objects in context. In Proceedings of the European Conference on Computer
Vision, pages 740–755. Springer, 2014.

[44] Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yulia Tsvetkov, and Yuan
Cao. Simvlm: Simple visual language model pretraining with weak supervision.
In arXiv:2108.10904, 2021.

[45] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating
image descriptions. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3128–3137, 2015.

[46] Huaizu Jiang, Ishan Misra, Marcus Rohrbach, Erik Learned-Miller, and Xinlei
Chen. In defense of grid features for visual question answering. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
10267–10276, 2020.

[47] Xuying Zhang, Xiaoshuai Sun, Yunpeng Luo, Jiayi Ji, Yiyi Zhou, Yongjian Wu,
Feiyue Huang, and Rongrong Ji. Rstnet: Captioning with adaptive attention
on visual and non-visual words. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 15465–15474, 2021.

[48] Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu,
Jianwei Niu, and Wenyu Liu. You only look at one sequence: Rethinking trans-
former in vision through object detection. In Advances in Neural Information
Processing Systems, 2021.

[49] Hwanjun Song, Deqing Sun, Sanghyuk Chun, Varun Jampani, Dongyoon Han,
Byeongho Heo, Wonjae Kim, and Ming-Hsuan Yang. Vidt: An efficient and
effective fully transformer-based object detector. In arXiv:2110.03921, 2021.

112

[50] Haiyang Xu, Ming Yan, Chenliang Li, Bin Bi, Songfang Huang, Wenming Xiao,
and Fei Huang. E2e-vlp: End-to-end vision-language pre-training enhanced by
visual learning. In arXiv:2106.01804, 2021.

[51] Xu Yang, Hanwang Zhang, and Jianfei Cai. Learning to collocate neural mod-
ules for image captioning. In Proceedings of the IEEE International Conference
on Computer Vision, pages 4250–4260, 2019.

[52] Guang Li, Linchao Zhu, Ping Liu, and Yi Yang. Entangled transformer for
image captioning. In Proceedings of the IEEE International Conference on
Computer Vision, pages 8928–8937, 2019.

[53] Lun Huang, Wenmin Wang, Jie Chen, and Xiao-Yong Wei. Attention on atten-
tion for image captioning. In Proceedings of the IEEE International Conference
on Computer Vision, pages 4634–4643, 2019.

[54] Yingwei Pan, Ting Yao, Yehao Li, and Tao Mei. X-linear attention networks
for image captioning. In Proceedings of the IEEE International Conference on
Computer Vision, pages 10971–10980, 2020.

[55] Marcella Cornia, Matteo Stefanini, Lorenzo Baraldi, and Rita Cucchiara.
Meshed-memory transformer for image captioning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 10578–10587,
2020.

[56] Simao Herdade, Armin Kappeler, Kofi Boakye, and Joao Soares. Image cap-
tioning: Transforming objects into words. In Advances in Neural Information
Processing Systems, 2019.

[57] Longteng Guo, Jing Liu, Xinxin Zhu, Peng Yao, Shichen Lu, and Hanqing
Lu. Normalized and geometry-aware self-attention network for image caption-
ing. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 10327–10336, 2020.

[58] Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei Yang, Lei Zhang, Lijuan
Wang, Yejin Choi, and Jianfeng Gao. Vinvl: Revisiting visual representations

113

in vision-language models. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5579–5588, 2021.

[59] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua
Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma,
Michael Bernstein, and Li Fei-Fei. Visual Genome: Connecting Language and
Vision Using Crowdsourced Dense Image Annotations. In International Journal
of Computer Vision, volume 123, pages 32–73, 2017.

[60] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin,
Jordi Pont-Tuset, Shahab Kamali, Stefan Popov, Matteo Malloci, Alexander
Kolesnikov, Tom Duerig, and Vittorio Ferrari. The open images dataset v4:
Unified image classification, object detection, and visual relationship detection
at scale. In International Journal of Computer Vision, volume 128, pages 1956–
1981, 2020.

[61] Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang Yu, Xiangyu Zhang,
Jing Li, and Jian Sun. Objects365: A large-scale, high-quality dataset for object
detection. In Proceedings of the IEEE International Conference on Computer
Vision, pages 8430–8439, 2019.

[62] Harsh Agrawal, Karan Desai, Yufei Wang, Xinlei Chen, Rishabh Jain, Mark
Johnson, Dhruv Batra, Devi Parikh, Stefan Lee, and Peter Anderson. nocaps:
novel object captioning at scale. In Proceedings of the IEEE International
Conference on Computer Vision, pages 8948–8957, 2019.

[63] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-stuff: Thing and
stuff classes in context. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, 2018.

[64] Karpathy. Karpathy/neuraltalk: Neuraltalk is a python+numpy project for
learning multimodal recurrent neural networks that describe images with sen-
tences.

[65] Panos Achlioptas, Maks Ovsjanikov, Kilichbek Haydarov, Mohamed Elhoseiny,
and Leonidas J Guibas. Artemis: Affective language for visual art. In Pro-

114

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 11569–11579, 2021.

[66] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a
method for automatic evaluation of machine translation. In Proceedings of
the Annual Meeting of the Association for Computational Linguistics, pages
311–318, 2002.

[67] Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt eval-
uation with improved correlation with human judgments. In Proceedings of the
ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine
Translation and/or Summarization, pages 65–72, 2005.

[68] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In
Text Summarization Branches Out, pages 74–81, 2004.

[69] Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. Cider:
Consensus-based image description evaluation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 4566–4575,
2015.

[70] Peter Anderson, Basura Fernando, Mark Johnson, and Stephen Gould. Spice:
Semantic propositional image caption evaluation. In Proceedings of the Euro-
pean Conference on Computer Vision, pages 382–398, 2016.

[71] Matthew Honnibal and Ines Montani. spaCy 2: Natural language understand-
ing with Bloom embeddings, convolutional neural networks and incremental
parsing. To appear, 2017.

[72] Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimiza-
tion. In Proceedings of International Conference on Representation Learning,
2015.

[73] Luowei Zhou, Hamid Palangi, Lei Zhang, Houdong Hu, Jason Corso, and Jian-
feng Gao. Unified vision-language pre-training for image captioning and vqa.
In Proceedings of the AAAI Conference on Artificial Intelligence, pages 13041–
13049, 2020.

115

[74] Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xiaowei Hu, Lei Zhang,
Lijuan Wang, Houdong Hu, Li Dong, Furu Wei, et al. Oscar: Object-semantics
aligned pre-training for vision-language tasks. In Proceedings of the European
Conference on Computer Vision, pages 121–137, 2020.

[75] Ting Yao, Yingwei Pan, Yehao Li, Zhaofan Qiu, and Tao Mei. Boosting image
captioning with attributes. In Proceedings of the IEEE International Conference
on Computer Vision, pages 4894–4902, 2017.

[76] Lei Ke, Wenjie Pei, Ruiyu Li, Xiaoyong Shen, and Yu-Wing Tai. Reflective de-
coding network for image captioning. In Proceedings of the IEEE International
Conference on Computer Vision, pages 8888–8897, 2019.

[77] Ting Yao, Yingwei Pan, Yehao Li, and Tao Mei. Exploring visual relationship
for image captioning. In Proceedings of the European Conference on Computer
Vision, pages 684–699, 2018.

[78] Yu Qin, Jiajun Du, Yonghua Zhang, and Hongtao Lu. Look back and pre-
dict forward in image captioning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 8367–8375, 2019.

[79] Xu Yang, Kaihua Tang, Hanwang Zhang, and Jianfei Cai. Auto-encoding scene
graphs for image captioning. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 10685–10694, 2019.

[80] Jiayi Ji, Yunpeng Luo, Xiaoshuai Sun, Fuhai Chen, Gen Luo, Yongjian Wu,
Yue Gao, and Rongrong Ji. Improving image captioning by leveraging intra-
and inter-layer global representation in transformer network. In Proceedings of
the AAAI Conference on Artificial Intelligence, pages 1655–1663, 2021.

[81] Zhihao Fan, Zhongyu Wei, Siyuan Wang, Ruize Wang, Zejun Li, Haijun Shan,
and Xuanjing Huang. Tcic: Theme concepts learning cross language and vision
for image captioning. In arXiv:2106.10936, 2021.

[82] Weixuan Wang, Zhihong Chen, and Haifeng Hu. Hierarchical attention network
for image captioning. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 8957–8964, 2019.

116

[83] Alexander Mathews, Lexing Xie, and Xuming He. Senticap: Generating image
descriptions with sentiments. In Proceedings of the AAAI conference on artificial
intelligence, pages 3574––3580, 2016.

[84] Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. Neural baby talk. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 7219–7228, 2018.

[85] Wonjae Kim, Son Bokyung, Kim Ildoo, and Wonjae Kim. Vilt: Vision-and-
language transformer without convolution or region supervision. In Proceedings
of International Conference on Machine Learning, 2021.

[86] Idan Schwartz, Seunghak Yu, Tamir Hazan, and Alexander G Schwing. Factor
graph attention. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2039–2048, 2019.

[87] Gi-Cheon Kang, Jaeseo Lim, and Byoung-Tak Zhang. Dual attention networks
for visual reference resolution in visual dialog. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing, pages 2024–2033, 2019.

[88] Jiasen Lu, Anitha Kannan, Jianwei Yang, Devi Parikh, and Dhruv Batra. Best
of both worlds: Transferring knowledge from discriminative learning to a gen-
erative visual dialog model. In Advances in Neural Information Processing
Systems, pages 314–324, 2017.

[89] Zhe Gan, Yu Cheng, Ahmed El Kholy, Linjie Li, Jingjing Liu, and Jianfeng
Gao. Multi-step reasoning via recurrent dual attention for visual dialog. In
Proceedings of the Conference of the Association for Computational Linguistics,
pages 6463–6474, 2019.

[90] Qi Wu, Peng Wang, Chunhua Shen, Ian Reid, and Anton van den Hengel.
Are you talking to me? reasoned visual dialog generation through adversarial
learning. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6106–6115, 2018.

117

[91] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe
Gan, Yu Cheng, and Jingjing Liu. Uniter: Learning universal image-text rep-
resentations. In arXiv preprint arXiv:1909.11740, 2019.

[92] Peng Gao, Zhengkai Jiang, Haoxuan You, Pan Lu, Steven CH Hoi, Xiaogang
Wang, and Hongsheng Li. Dynamic fusion with intra-and inter-modality atten-
tion flow for visual question answering. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 6639–6648, 2019.

[93] Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei Chang.
Visualbert: A simple and performant baseline for vision and language. In arXiv
preprint arXiv:1908.03557, 2019.

[94] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining
task-agnostic visiolinguistic representations for vision-and-language tasks. In
arXiv preprint arXiv:1908.02265, 2019.

[95] Zhou Yu, Jun Yu, Yuhao Cui, Dacheng Tao, and Qi Tian. Deep modular co-
attention networks for visual question answering. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 6281–6290,
2019.

[96] Kan Chen, Jiang Wang, Liang-Chieh Chen, Haoyuan Gao, Wei Xu, and Ram
Nevatia. Abc-cnn: An attention based convolutional neural network for visual
question answering. In arXiv preprint arXiv:1511.05960, 2015.

[97] Ilija Ilievski, Shuicheng Yan, and Jiashi Feng. A focused dynamic attention
model for visual question answering. In arXiv preprint arXiv:1604.01485, 2016.

[98] Jin-Hwa Kim, Jaehyun Jun, and Byoung-Tak Zhang. Bilinear attention net-
works. In Advances in Neural Information Processing Systems, pages 1564–1574,
2018.

[99] Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. Hierarchical question-
image co-attention for visual question answering. In Advances in Neural Infor-
mation Processing Systems, pages 289–297, 2016.

118

[100] Duy-Kien Nguyen and Takayuki Okatani. Improved fusion of visual and lan-
guage representations by dense symmetric co-attention for visual question an-
swering. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6087–6096, 2018.

[101] Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alex Smola. Stacked
attention networks for image question answering. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 21–29, 2016.

[102] Zhou Yu, Jun Yu, Jianping Fan, and Dacheng Tao. Multi-modal factorized
bilinear pooling with co-attention learning for visual question answering. In
Proceedings of the IEEE International Conference on Computer Vision, pages
1821–1830, 2017.

[103] Zhou Yu, Jun Yu, Chenchao Xiang, Jianping Fan, and Dacheng Tao. Beyond bi-
linear: Generalized multimodal factorized high-order pooling for visual question
answering. In IEEE Transactions on Neural Networks and Learning Systems,
volume 29, pages 5947–5959. IEEE, 2018.

[104] Chaorui Deng, Qi Wu, Qingyao Wu, Fuyuan Hu, Fan Lyu, and Mingkui Tan.
Visual grounding via accumulated attention. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 7746–7755, 2018.

[105] Licheng Yu, Zhe Lin, Xiaohui Shen, Jimei Yang, Xin Lu, Mohit Bansal, and
Tamara L Berg. Mattnet: Modular attention network for referring expression
comprehension. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1307–1315, 2018.

[106] Bohan Zhuang, Qi Wu, Chunhua Shen, Ian Reid, and Anton van den Hengel.
Parallel attention: A unified framework for visual object discovery through
dialogs and queries. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4252–4261, 2018.

[107] Hao Tan and Mohit Bansal. Lxmert: Learning cross-modality encoder repre-
sentations from transformers. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, 2019.

119

[108] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta,
Piotr Dollár, and C Lawrence Zitnick. Microsoft coco captions: Data collection
and evaluation server. In arXiv preprint arXiv:1504.00325, 2015.

[109] Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Concep-
tual captions: A cleaned, hypernymed, image alt-text dataset for automatic
image captioning. In Proceedings of the Annual Meeting of the Association for
Computational Linguistics, pages 2556–2565, 2018.

[110] Harm De Vries, Florian Strub, Sarath Chandar, Olivier Pietquin, Hugo
Larochelle, and Aaron Courville. Guesswhat?! visual object discovery through
multi-modal dialogue. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5503–5512, 2017.

[111] Satwik Kottur, José MF Moura, Devi Parikh, Dhruv Batra, and Marcus
Rohrbach. Clevr-dialog: A diagnostic dataset for multi-round reasoning in
visual dialog. In arXiv preprint arXiv:1903.03166, 2019.

[112] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning
with neural networks. In Advances in Neural Information Processing Systems,
pages 3104–3112, 2014.

[113] Dalu Guo, Chang Xu, and Dacheng Tao. Image-question-answer synergistic
network for visual dialog. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 10434–10443, 2019.

[114] Hyounghun Kim, Hao Tan, and Mohit Bansal. Modality-balanced models for
visual dialogue. In arXiv preprint arXiv:2001.06354, 2020.

[115] Yulei Niu, Hanwang Zhang, Manli Zhang, Jianhong Zhang, Zhiwu Lu, and Ji-
Rong Wen. Recursive visual attention in visual dialog. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 6679–
6688, 2019.

[116] Satwik Kottur, José MF Moura, Devi Parikh, Dhruv Batra, and Marcus
Rohrbach. Visual coreference resolution in visual dialog using neural mod-

120

ule networks. In Proceedings of the European Conference on Computer Vision,
pages 153–169, 2018.

[117] Paul Hongsuck Seo, Andreas Lehrmann, Bohyung Han, and Leonid Sigal. Visual
reference resolution using attention memory for visual dialog. In Advances in
Neural Information Processing Systems, pages 3719–3729, 2017.

[118] Heming Zhang, Shalini Ghosh, Larry Heck, Stephen Walsh, Junting Zhang,
Jie Zhang, and C-C Jay Kuo. Generative visual dialogue system via weighted
likelihood estimation. In Proceedings of the International Joint Conference on
Artificial Intelligence, pages 1025–1031, 2019.

[119] Zilong Zheng, Wenguan Wang, Siyuan Qi, and Song-Chun Zhu. Reasoning
visual dialogs with structural and partial observations. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 6669–
6678, 2019.

[120] Prithvijit Chattopadhyay, Deshraj Yadav, Viraj Prabhu, Arjun Chan-
drasekaran, Abhishek Das, Stefan Lee, Dhruv Batra, and Devi Parikh. Evaluat-
ing visual conversational agents via cooperative human-ai games. In Proceedings
of AAAI Conference on Human Computation and Crowdsourcing, 2017.

[121] Abhishek Das, Satwik Kottur, José MF Moura, Stefan Lee, and Dhruv Batra.
Learning cooperative visual dialog agents with deep reinforcement learning. In
Proceedings of the IEEE International Conference on Computer Vision, pages
2951–2960, 2017.

[122] Tianhao Yang, Zheng-Jun Zha, and Hanwang Zhang. Making history matter:
History-advantage sequence training for visual dialog. In Proceedings of the
IEEE International Conference on Computer Vision, pages 2561–2569, 2019.

[123] Yue Wang, Shafiq Joty, Michael R Lyu, Irwin King, Caiming Xiong, and
Steven CH Hoi. Vd-bert: A unified vision and dialog transformer with bert. In
arXiv preprint arXiv:2004.13278, 2020.

121

[124] Vishvak Murahari, Dhruv Batra, Devi Parikh, and Abhishek Das. Large-
scale pretraining for visual dialog: A simple state-of-the-art baseline. In arXiv
preprint arXiv:1912.02379, 2019.

[125] Jiaxin Qi, Yulei Niu, Jianqiang Huang, and Hanwang Zhang. Two causal prin-
ciples for improving visual dialog. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 10860–10869, 2020.

[126] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua
Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al.
Visual genome: Connecting language and vision using crowdsourced dense im-
age annotations. In International Journal of Computer Vision, volume 123,
pages 32–73. Springer, 2017.

[127] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.
In arXiv preprint arXiv:1607.06450, 2016.

[128] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global
vectors for word representation. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, pages 1532–1543, 2014.

[129] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in pytorch. In https://pytorch.org, 2017.

[130] Unnat Jain, Svetlana Lazebnik, and Alexander G Schwing. Two can play this
game: visual dialog with discriminative question generation and answering. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 5754–5763, 2018.

[131] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. Albert: A lite bert for self-supervised learning of
language representations. In arXiv preprint arXiv:1909.11942, 2019.

[132] Chiori Hori, Huda Alamri, Jue Wang, Gordon Wichern, Takaaki Hori, Anoop
Cherian, Tim K Marks, Vincent Cartillier, Raphael Gontijo Lopes, Abhishek

122

Das, et al. End-to-end audio visual scene-aware dialog using multimodal
attention-based video features. In Proceedings of the IEEE International Con-
ference on Acoustics, Speech and Signal Processing, pages 2352–2356, 2019.

[133] L. Yeung, Y. Bisk, and O. Polozov. Alfred speaks: Automatic instruction
generation for egocentric skill learning. In https://askforalfred.com/EVAL, 2020.

[134] K. P. Singh, S. Bhambri, B. Kim, , and J. Choi. Improving mask prediction for
long horizon instruction following. In https://askforalfred.com/EVAL, 2020.

[135] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaśkowski. Vizdoom:
A doom-based ai research platform for visual reinforcement learning. In Pro-
ceedings of the IEEE Conference on Computational Intelligence and Games,
2016.

[136] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti, D. Gor-
don, Y. Zhu, A. Gupta, and A. Farhadi. AI2-THOR: An Interactive 3D Envi-
ronment for Visual AI. In arXiv:1712.05474, 2017.

[137] Yi Wu, Yuxin Wu, Georgia Gkioxari, and Yuandong Tian. Building gener-
alizable agents with a realistic and rich 3d environment. In Proceedings of
International Conference on Learning Representations, 2018.

[138] H. Chen, A. Suhr, D. Misra, N. Snavely, and Y. Artzi. Touchdown: Natural
language navigation and spatial reasoning in visual street environments. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2019.

[139] K. M. Hermann, M. Malinowski, P. Mirowski, A. Banki-Horvath, K. Anderson,
and R. Hadsell. Learning to follow directions in street view. In Proceedings of
the AAAI Conference on Artificial Intelligence, 2020.

[140] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva, S. Song,
A. Zeng, and Y. Zhang. Matterport3d: Learning from rgb-d data in indoor
environments. In Proceedings of International Conference on 3D Vision, 2017.

123

[141] X. Wang, Q. Huang, A. Celikyilmaz, J. Gao, D. Shen, Y.-F. Wang, W. Y. Wang,
and L. Zhang. Reinforced cross-modal matching and self-supervised imitation
learning for vision-language navigation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019.

[142] H. Tan, L. Yu, and M. Bansal. Learning to navigate unseen environments:
Back translation with environmental dropout. In Proceedings of Conference of
the North American Chapter of the Association for Computational Linguistics,
2019.

[143] A. Majumdar, A. Shrivastava, S. Lee, P. Anderson, D. Parikh, and D. Batra.
Improving vision-and-language navigation with image-text pairs from the web.
In Proceedings of the European Conference on Computer Vision, 2020.

[144] K. Nguyen, D. Dey, C. Brockett, and B. Dolan. Vision-based navigation with
language-based assistance via imitation learning with indirect intervention. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2019.

[145] J. Thomason, M. Murray, M. Cakmak, and L. Zettlemoyer. Vision-and-dialog
navigation. In Proceedings of Conference on Robot Learning, 2020.

[146] Alane Suhr, Claudia Yan, Jacob Schluger, Stanley Yu, Hadi Khader, Marwa
Mouallem, Iris Zhang, and Yoav Artzi. Executing instructions in situated col-
laborative interactions. arXiv preprint arXiv:1910.03655, 2019.

[147] J. Krantz, E. Wijmans, A. Majumdar, D. Batra, and S. Lee. Beyond the
nav-graph: Vision-and-language navigation in continuous environments. In
Proceedings of the European Conference on Computer Vision, 2020.

[148] Y. Zhu, D. Gordon, E. Kolve, D. Fox, L. Fei-Fei, A. Gupta, R. Mottaghi, and
A. Farhadi. Visual semantic planning using deep successor representations. In
Proceedings of the IEEE International Conference on Computer Vision, 2017.

[149] D. Gordon, D. Fox, and A. Farhadi. What should i do now? marrying rein-
forcement learning and symbolic planning. In arXiv:1901.01492, 2019.

124

[150] A. Das, S. Datta, G. Gkioxari, S. Lee, D. Parikh, and D. Batra. Embodied
Question Answering. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018.

[151] D. Gordon, A. Kembhavi, M. Rastegari, J. Redmon, D. Fox, and A. Farhadi.
Iqa: Visual question answering in interactive environments. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2018.

[152] E. Wijmans, S. Datta, O. Maksymets, A. Das, G. Gkioxari, S. Lee, I. Essa,
D. Parikh, and D. Batra. Embodied question answering in photorealistic envi-
ronments with point cloud perception. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019.

[153] X. Puig, K. Ra, M. Boben, J. Li, T. Wang, S. Fidler, and A. Torralba. Vir-
tualhome: Simulating household activities via programs. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018.

[154] R. Corona, D. Fried, C. Devin, D. Klein, and T. Darrell. Modularity improves
out-of-domain instruction following. In arXiv:2010.12764, 2020.

[155] K. P. Singh, S. Bhambri, B. Kim, R. Mottaghi, and J. Choi. Moca: A
modular object-centric approach for interactive instruction following. In
arXiv:2012.03208, 2020.

[156] Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Cote, Yonatan Bisk, Adam
Trischler, and Matthew Hausknecht. {ALFW}orld: Aligning text and em-
bodied environments for interactive learning. In Proceedings of International
Conference on Learning Representations, 2021.

[157] Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes,
Emery Fine, James Moore, Ruo Yu Tao, Matthew Hausknecht, Layla El Asri,
Mahmoud Adada, Wendy Tay, and Adam Trischler. Textworld: A learning
environment for text-based games. In CoRR, volume abs/1806.11532, 2018.

[158] C. Devin, P. Abbeel, T. Darrell, and S. Levine. Deep object-centric represen-
tations for generalizable robot learning. In IEEE International Conference on
Robotics and Automation, 2018.

125

[159] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. In The
journal of machine learning research, volume 15, pages 1929–1958, 2014.

[160] V. Q. Nguyen, M. Suganuma, and T. Okatani. Efficient attention mechanism
for visual dialog that can handle all the interactions between multiple inputs.
In Proceedings of the European Conference on Computer Vision, 2020.

[161] P. Anderson, A. X. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta, V. Koltun,
J. Kosecka, J. Malik, R. Mottaghi, M. Savva, and A. R. Zamir. On evaluation
of embodied navigation agents. In arXiv:1807.06757, 2018.

[162] Matt Deitke, Winson Han, Alvaro Herrasti, Aniruddha Kembhavi, Eric Kolve,
Roozbeh Mottaghi, Jordi Salvador, Dustin Schwenk, Eli VanderBilt, Matthew
Wallingford, et al. Robothor: An open simulation-to-real embodied ai platform.
In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 3164–3174, 2020.

[163] Homanga Bharadhwaj, Zihan Wang, Yoshua Bengio, and Liam Paull. A data-
efficient framework for training and sim-to-real transfer of navigation policies.
In 2019 International Conference on Robotics and Automation (ICRA), pages
782–788. IEEE, 2019.

[164] Peter Anderson, Ayush Shrivastava, Joanne Truong, Arjun Majumdar, Devi
Parikh, Dhruv Batra, and Stefan Lee. Sim-to-real transfer for vision-and-
language navigation. In Conference on Robot Learning, pages 671–681. PMLR,
2021.

126

Acknowledgments

I owe a debt of gratitude to many people for making my years as a Ph.D. student
meaningful and memorable. This journey would not have been so memorable, and
I would not have completed this dissertation without them. First and foremost, I
must express my gratitude to my supervisor, Professor Takayuki Okatani. We have
discussed numerous meetings and emails over the last three years. He has patiently
listened to all of my progress reports, regardless of whether they were a mixture
of messed-up text, invalid results, or inferior ideas. He has constantly given me
comments and asked important questions about my research. Professor Okatani spent
days and weeks carefully reading my manuscripts during the submission deadline
period, and I can recall it vividly. He then distilled the essence, articulated and
contextualized ideas, and transformed all manuscripts into greater ones. I admire his
pursuit of excellence and clarity and acknowledge his support for students like myself.
It must be said that, as of now, I have achieved many fruitful results thanks to his
constant support. I am grateful to him for serving as my advisor.

During my preliminary and final defenses, other jury members on my disserta-
tion committee, Professor Koichi Hashimoto, Professor Kentaro Inui, and Associate
Professor Shingo Kagami, provided insightful comments and suggestions.

In addition, I’d like to thank Assistant Professor Masanori Suganuma. He has
been an outstanding collaborator and communicator and has assisted me with my
research on numerous occasions. He has also offered me a lot of advice on research,
career, and everyday life. Mrs. Sakane Akemi, the laboratory secretary, has helped
assist other students and me with our paperwork requirements. With her assistance,
things have become simpler. I have had the good fortune to meet and become friends
with numerous others. All my labmates, including Dang Anh Chuong, Kang Jun
Liu, Earth, Kitto, and Luo, have shared joy and happiness with me during our time
together. I value all my university and non-university friends, and I cherish the time
we spent together in Sendai, where I studied for the past five years.

I would like to thank the Japanese government and Tohoku University for selecting
me as a MEXT scholarship recipient during my five years at Tohoku University.

Dinh Thu Hien, my sweetheart, deserves my heartfelt gratitude. She has made
this long journey more enjoyable and meaningful by providing companionship and

127

encouragement. Furthermore, I want to express my enduring gratitude to my parents
and siblings for their unconditional love and support throughout the writing of this
thesis and my life in general. They have been my inspiration and motivation for every
step I have taken.

Finally, I dedicate this work to myself, who has previously studied and worked
tirelessly through ups and downs. Any errors or deficiencies in my dissertation that
may still exist are entirely my fault and responsibility.

128

