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NUMERICAL STUDY OF UNDRAINED CYCLIC SHEAR AND RECONSOLIDATION BEHAVIORS OF 

GRANULAR MATERIALS BY 3D DEM 

ABSTRACT: Earthquakes are one of the most destructive natural disasters, posing serious threats to human society. In 

addition to direct damage to building structures, the propagation of seismic waves may also affect the strength of the 

ground soil through undrained cyclic shear, thereby causing indirect damage to buildings and infrastructures. Specifically, 

when subjected to undrained cyclic loadings during an earthquake, saturated loose and medium-dense sand may gradually 

lose strength and then liquefy. 

The common method for studying the seismic response of soil is laboratory element tests. However, most studies 

were conducted under unidirectional cyclic loading conditions, yet it had been recognized that the ground motion during 

an earthquake is multidirectional. Surface waves, including Love waves and Rayleigh waves, may predominate the ground 

surface motions during strong earthquakes and induce complicated multidirectional deformation. The relationship 

between soil liquefaction and surface waves had been confirmed. Nevertheless, because of the limitation of the loading 

pattern and observing method, the liquefaction behavior of granular materials under the propagation of surface waves has 

not been well understood in previous studies based on the physical element experiment and continuum modeling scheme. 

Besides the type of seismic waves, the strain level also has a significant influence on the seismic response of granular 

materials. However, most relevant studies were performed within the 20% strain level due to the limitation of the 

experimental apparatus. The response of granular materials subjected to undrained cyclic shear at a larger strain amplitude 

is still unknown. Except for the reduction in soil strength during undrained cyclic loadings, the settlement of ground after 

an earthquake may also cause severe damage to buildings and infrastructures. The volumetric strain during the 

resedimentation process accounts for a large part of the total volumetric strain during post-liquefaction reconsolidation. 

Whereas due to limitations on the accuracy of stress measurements near zero effective stress in physical testing, the 

nonlinear relationship between the void ratio and effective stress during the reconsolidation process is yet to be clarified.  

To circumvent the limitation of traditional laboratory element tests and continuum modeling schemes, the above 

problems were qualitatively investigated using the three-dimensional discrete element method (DEM). In addition to not 

being limited by loading conditions and measurement accuracy, DEM also provides a convenient way to observe the 

response of granular assemblies from the particle scale. In this research, analysis from both macroscopic and microscopic 

scales was conducted to reveal the mechanism behind the response of granular materials. 

To elucidate the behavior of granular materials under surface-wave deformation modes, a series of numerical tests 

were performed by 3D DEM under horizontally polarized shear- (SH-), Love-, and Rayleigh-wave strain conditions, 

where the equations governing the strain–time relationships were derived from elastic wave theory under the assumption 

of constant volume. The macroscopic and microscopic response of K0-consolidated granular assemblies under Love- and 

Rayleigh-wave strain conditions was compared with that under SH-wave strain conditions. The results show that at the 

same strain level, the surface-wave strain condition, especially the Rayleigh-wave strain condition would generally make 

granular materials more vulnerable to liquefaction. Specifically, Rayleigh-wave strain conditions are the combination of 

pure shear mode and simple shear modes, while SH- and Love-wave strain conditions are simple shear modes and a 

combination of simple shear modes, respectively. Because the elongation direction of the particle skeleton was vertical in 

the K0-consolidated specimen. The compression direction in pure shear mode was either consistent with or perpendicular 

to the structure elongation direction, whereas the deformation direction in simple shear mode deviated from the structure 
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elongation direction by an angle that varies with time. The different deformation modes resulted in different responses. 

The positive dilatancy behaviors under Rayleigh-wave strain conditions were more sensitive to the strain level than that 

in the SH- and Love-wave strain conditions. In addition, the increase in fabric anisotropy during cyclic loadings was 

especially significant under Rayleigh-wave strain conditions than under SH- and Love-wave strain conditions. The 

magnitude of the fraction of sliding contacts and fluctuation of coordination number under Rayleigh-wave strain 

conditions was also larger than that under other strain conditions. However, the initial liquefaction happened 

instantaneously when the coordination number approached approximately 2, independent of the loading path. 

The undrained cyclic shear behavior of liquefiable granular materials at extremely large shear strain amplitude (> 

20%) was studied by performing a series of 3D DEM simulations. Specifically, the undrained monotonic simple shear 

test with strain to 100% and undrained cyclic simple shear tests with strain amplitudes from 0.1% to 100% were conducted 

on a K0-consolidated granular assembly. The results suggest that in undrained cyclic shear with a small strain amplitude 

(≤ 1%), the medium-dense granular assembly gradually lost its stiffness and liquefied eventually. When the shear strain 

amplitude became larger (≤ 10%), the shear stiffness recovered after the initial liquefaction as the shear strain application 

was continued. However, the shear stiffness recovery vanished, and the granular assembly completely liquefied as the 

undrained cyclic shear continued. Especially, the shear band formed in the granular assembly when the shear strain 

exceeded a certain value (about 40% in this study) during both undrained monotonic simple shear and undrained cyclic 

simple shear. The fluid-like state after initial liquefaction would only exist in a small shear strain range (about 20% in this 

study) after the strain loading direction reversion. After the shear band was formed, the granular structure outside the 

shear band become stable (the fraction of sliding contacts tended to be zero and the coordination number became constant), 

and the granular assembly reached a stable state of stress. In addition, the stable state of stress in undrained monotonic 

shear and undrained cyclic shear was different because of the different overall uniformities of the granular assembly. 

The volumetric strain during the reconsolidation process that began at different residual effective stress states was 

investigated based on 3D DEM simulations. A monodisperse specimen and a polydisperse specimen (with Toyoura size 

distribution) were used in this study. The results indicated that the smaller the residual vertical effective stress, the larger 

the change in void ratio during the reconsolidation process. Especially, the post-liquefaction reconsolidation could be 

categorized into a liquefied and a solidified portion. In the liquefied portion, the void ratio decreased without a continuous 

increase in the effective stress. Furthermore, the volumetric strain during the liquefied portion accounts for a large 

proportion of the total volumetric strain during the reconsolidation process. In addition, the volumetric strain of the 

polydisperse specimen was larger than that of the monodisperse specimen during the liquefied portion and similar to that 

of the monodisperse specimen during the solidified portion. Finally, a larger change in pore uniformity was generally 

associated with a larger volumetric strain during the reconsolidation process. 
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CHAPTER 1 INTRODUCTION 

1.1. Background of the research 

Earthquakes had brought immeasurable losses to human beings in the past and are 

still one of the natural disasters that pose serious threats to human society. Besides the 

direct damage to the building structure, the earthquake shaking may cause indirect 

damage to buildings and infrastructures by affecting the strength of the ground soil. 

During the undrained cyclic loading caused by the earthquake, saturated loose and 

medium-dense sandy soil substantially loses strength and stiffness. The pore water 

gradually withstands the external loads initially carried by the soil skeleton. It is embodied 

in the decrease of effective stress and increase of excess pore water pressure on the 

Fig. 1.1. Collapse of Showa Bridge due to liquefaction after the 1964 Niigata 

earthquake (Photo: Photographs and motion picture of the Niigata city

immediately after the earthquake in 1964). 
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macroscale. As the effective stress decrease to zero, the soil skeleton cannot bear any load 

or deformation and behaves like a liquid, which is defined as soil liquefaction. The 

dramatic loss of strength in saturated sandy soil may cause the collapse or subsidence of 

buildings, the collapse of bridges (Fig. 1.1), lateral movement of the ground and road 

surfaces, etc. 

During the 1964 Niigata earthquake and the 1964 Alaska earthquake, soil 

liquefaction occurred and caused severe and widespread damage, which attracted the 

attention of engineers and researchers. In recent decades, soil liquefaction has remained 

one of the most serious secondary disasters during earthquakes, including the 1995 Kobe 

earthquake (Tokimatsu and Asaka, 1998), the 2010 Chile earthquake (Verdugo and 

González, 2015), the 2011 off the Pacific Coast of Tohoku Earthquake (Kazama and Noda, 

2012), and the 2018 Palu earthquake (Jalil et al., 2021). In the early days, the main 

concern of researchers was the prediction of sand liquefaction, that is, whether the site 

could liquefy. In addition, the countermeasure against soil liquefaction was also one of 

the main research directions. However, after the 1995 Kobe earthquake, it had been 

recognized that the cost of liquefaction countermeasures might be huge in some situations, 

and the concept of performance-based design (PBD) was put forward. In this approach, 

damage to the structure is permitted as long as the required performance of the structure 

is exhibited. Therefore, the evaluation of the ductility and the toughness of the soil to 

resist liquefaction (Kazama et al., 2000) and the prediction of the response of soil after 

liquefaction became important. 

Most efforts to understand the seismic response of granular materials have been 

made through laboratory element tests (Seed et al., 1975; Yamamuro and Covert, 2001; 
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Yang and Sze, 2011; Chiaro et al., 2013; Kumar et al., 2020). Due to the limitation of 

loading patterns, it was difficult to reproduce some of the complex stress–strain 

conditions that may occur during real earthquakes. In the meantime, it is also difficult to 

observe the inside of the specimen in laboratory elemental tests, which makes it hard to 

reveal the intrinsic mechanism behind the experimental phenomenon. To overcome the 

shortcomings of traditional laboratory element tests, the discrete element method (DEM) 

proposed by Cundall and Strack (1979) has been widely used in the analysis of 

geotechnical problems (Iwashita and Oda 1998; Nakase et al. 1999; Morimoto et al. 2001; 

Sitharam and Dinesh 2003; Kazama et al. 2006; O'Sullivan et al. 2008; Katagiri et al. 

2010; O'Sullivan 2011; Manne and Satyam 2015; Jiang et al. 2019). DEM provides a 

convenient way to study the behavior of granular material from both macroscopic and 

microscopic scales. It takes the materials as individual rigid bodies interacting through 

contact laws governed by Newton’s laws of motion. Besides the ability to look inside the 

material and obtain information on particle scale, DEM also provides an approach to 

reproducing complex multidirectional stress–strain loading conditions, e.g., Shamy and 

Zeghal (2006) evaluated the effects of multiple direction excitations on granular deposits 

based on an input kinetic energy using the 3D DEM; Wei et al. (2020) investigated the 

microstructure evolution of granular materials under multidirectional loading conditions 

with unidirectional, oval, circular, and figure-8 loading paths using the 3D DEM. 
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1.2. Statement of the problem 

1.2.1. Surface waves 

In the study of liquefaction, although it has long been recognized that the motion of 

the ground surface in an earthquake is multidirectional, most laboratory element tests 

were conducted under unidirectional cyclic loading conditions because of the difficulty 

in developing the corresponding test apparatus. Pyke et al. (1975) were the first to 

investigate problems associated with multidirectional loading conditions. They conducted 

several series of shaking table tests of dry sand in one, two, and three dimensions. Their 

results showed that the settlement might be significantly greater under multidirectional 

shaking compared with under unidirectional shaking, which implied that saturated sands 

under multidirectional loading conditions would be affected easily by liquefaction. Seed 

et al. (1975) quantitatively analyzed the effect of multidirectional shaking on the shear 

stress causing liquefaction by combining the results of the shaking table and cyclic simple 

shear tests on dry sand. The results indicated that the shear stress amplitude causing 

liquefaction under multidirectional shaking was less than that under unidirectional 

shaking, and that the multidirectional shaking effect could be considered equivalent to a 

10% reduction in the shear stress amplitude. In subsequent studies, it was discovered that 

granular materials under multidirectional shearing were more vulnerable to liquefaction 

than those under unidirectional shearing, and that the multidirectional shearing effect 

varied by the loading path (Seed et al. 1978; Ishihara and Yamazaki 1980; Tokimatsu and 

Yoshimi 1982; Su and Li 2008; Nhan et al. 2017). However, previous experimental or 

DEM studies associated with multidirectional loading conditions still assumed that 

liquefaction was caused by the upward propagation of shear waves, multidirectional 
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loadings were applied in the horizontal direction, and loading paths (e.g., alternate shear 

(Ishihara and Yamazaki, 1980) and figure-8 loading paths (Wei et al., 2020)) did not 

correspond to any realistic wave type. 

Seismic waves can be divided into body waves and surface waves in terms of the 

spatial concentration of energy (Novotny, 1999). Body waves can propagate in the interior 

of a medium whereas surface waves are only concentrated along the surface of the 

medium. Body waves include longitudinal waves (P waves) and transverse waves (S 

waves), and surface waves can be further divided into Love waves and Rayleigh waves. 

Rayleigh waves can propagate near the surface of a homogeneous half-space while Love 

waves cannot. Love waves can only propagate near the surface of a medium where the S-

wave velocity generally increases with the distance from the surface (Novotny, 1999). 

The ground subject to surface waves will produce a complex deformation, as shown in 

Fig. 1.2. Illustration of motion due to surface waves: (a) Rayleigh wave and (b) 

Love wave (after Bolt, 1993). 
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Fig. 1.2. Rayleigh waves are elliptically polarized in the vertical plane determined by the 

surface normal and the direction of propagation. Particle motions in Love waves are 

transverse and parallel to the surface (Novotny, 1999; Pujol, 2003).  

Generally, the ground surface motion during an earthquake may be regarded as the 

combined result of the propagation of body waves and surface waves (Hall et al. 1977). 

Compared to body waves, surface waves usually have larger amplitudes and longer 

periods (Novotny, 1999). In some cases, strong ground surface motions can be 

predominated by surface waves (Trifunac, 1971; Hall et al., 1977). Some field and 

theoretical evidence demonstrated that surface waves might be one of the causes of soil 

liquefaction. Hall et al. (1977) used a shear wave model and a Rayleigh wave model to 

predict the liquefaction potential of an idealized, homogeneous, undamped half-space. 

They found that the liquefaction risk near the surface for the two models was the same, 

but it decreased much more rapidly with depth for the Rayleigh wave model. The depth 

range predicted by the Rayleigh wave model was more consistent with the observed 

liquefaction cases than that predicted by the shear wave model. Gazetas and Yegian (1979) 

compared the dynamic response of various soil deposits under the influence of Rayleigh 

waves to that under the influence of vertical shear waves. They suggested that liquefaction 

could occur under Rayleigh wave propagation, and its potential was different from that 

under shear wave propagation, owing to the difference in the particle motions and 

distributions of shear stress with depth. After analyzing aerial photographs of the 1976 

Tangshan Earthquake liquefaction sites, Wang et al. (1983) suggested that some types of 

liquefaction trajectories were induced by surface waves, e.g., a network pattern was 

probably formed by the reflection of surface waves within a quasi-parabolic river bend. 

Sugano and Yanagisawa (1992) used two experimental apparatuses to investigate the 
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cyclic undrained shear behavior of sands under the influence of surface waves. One is a 

hollow cylinder torsional shear test apparatus for Rayleigh wave propagation condition, 

and another is a newly developed bi-axial shear apparatus for Love wave propagation 

condition. Their results indicated that Love wave propagations may contribute to 

liquefaction. Cui et al. (2004) pointed out that Rayleigh waves should be an essential 

cause of liquefaction in shallow saturated sandy deposits beyond the epicentral region 

based on some field evidence and a preliminary theoretical analysis. They also analyzed 

the effect of Rayleigh wave propagation on sand liquefaction by using single and two-

phase medium models and argued that currently used evaluation methods may 

overestimate the safety to some degree. Holzer and Youd (2007) demonstrated that Love 

waves contributed a significant portion of excess pore-water pressure to the liquefied 

layer at the Wildlife Liquefaction Array in the 1987 Superstition Hills earthquake after 

investigating the recording of the earthquake. Nakai et al. (2016) conducted a series of 

2D elastoplastic effective stress analyses considering the effect of irregularly shaped 

bedrock. They stated that in the 2011 earthquake off the Pacific Coast of Tohoku, surface 

waves induced by inclined bedrock enhanced the liquefaction damage of Urayasu city 

through the complex interference between the Rayleigh waves and body waves, which is 

known as the “edge effect”. Staroszczyk (2016) used the finite element method to 

simulate the liquefaction of saturated sands under the influence of Rayleigh waves within 

the framework of a compaction theory, and analyzed the evolution of the characteristics 

of Rayleigh waves during the liquefaction process. 

In previous studies, direct links between the liquefaction problem and surface 

waves were established. However, in these studies, surface waves were not extracted 

individually, or true surface wave deformation modes were not used. In addition, they 
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lack microscopic-scale observations. Therefore, the liquefaction behavior of granular 

materials under surface wave propagations has not yet been well understood. 

 

1.2.2. Extremely large shear strain amplitudes 

Besides the loading path, it has been recognized that both the monotonic and cyclic 

shear behavior of soils is highly dependent on the strain level. In monotonic shear, the 

soil under a given effective confining stress will ultimately reach a critical state as the 

shear strain increases. The critical state of soil was initially defined by Roscoe et al. (1958) 

as the state that “soils continue to deform at constant stress and constant void ratio”. The 

common definition of critical state was given based on the equation below: 

𝑞 ൌ 𝛭𝑝′ ሺ1.1ሻ 

𝜈 ൌ Γ െ 𝜆 lnሺ𝑝ᇱሻ ሺ1.2ሻ 

where 𝑞  is the deviator stress; 𝛭  is a frictional constant; 𝑝′  is the mean effective 

pressure; 𝜈 is the specific volume defined as 𝜈 ൌ 1 ൅ 𝑒 and 𝑒 is void ratio; Γ is the 

specific volume intercept at unit pressure; 𝜆 are the compression index. The critical state 

arrives when 𝑞, 𝑝′, 𝜈 keep constant. Under the undrained condition, the critical state is 

reached when the pore pressure and the effective stress remain constant during continued 

deformation (Schofield and Wroth 1968). Granular materials suffering from monotonic 

shearing with a large shear strain had been widely studied under the framework of the 

critical state (e.g., Li and Dafalias, 2012; Perez et al., 2016; Nguyen et al., 2021). 

In cyclic shear, as the cyclic shear strain amplitude increases, the behaviors of soil 
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change from elastic to elastoplastic (Vucetic, 1994; Ishihara, 1996). However, most of the 

related studies were conducted within 20% strain level due to the limitation of laboratory 

apparatus (Umar et al., 2019). Correspondingly, the response of liquefiable soils subjected 

to undrained cyclic shear at an extremely larger strain amplitude is still unknown. 

 

1.2.3. Volumetric strain during reconsolidation 

Except for the reduction in soil strength during undrained cyclic loadings, the 

settlement of ground after the undrained cyclic loading may also cause severe damage to 

buildings and infrastructures. It is primarily attributed to soil volume change as a result 

of the drainage of pore water (reconsolidation), accompanied by excess pore water 

pressure dissipation. In terms of performance-based design, the amount of volumetric 

strain during or after liquefaction must be accurately predicted such that necessary 

countermeasures can be implemented. The volume contraction characteristics of saturated 

sand have been investigated via various cyclic undrained tests, followed by drained 

reconsolidation. Lee and Albaisa (1974) discovered that the volumetric strain during 

reconsolidation was affected by the particle size, relative density, and excess pore water 

pressure after cyclic shear. Nagase and Ishihara (1988) and Shamoto et al. (1996) reported 

that the reconsolidation volumetric strain was significantly associated with the maximum 

shear strain during cyclic shear. Tokimatsu and Seed (1987) as well as Ishihara and 

Yoshimine (1992) proposed simplified prediction models for post-liquefaction settlement 

based on experiment results. Sento et al. (2004) discovered that the reconsolidation 

volumetric strain demonstrated a higher correlation with the accumulated shear strain 

than the maximum shear strain generated during cyclic shear. Uzuoka et al. (2010) 
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proposed a prediction model for liquefaction and post-liquefaction settlement based on 

the minimum effective stress. Zhou et al. (2014) discovered that the compression index 

during reconsolidation was 1.3–1.5 times as great as that during consolidation and 

proposed a model for post-liquefaction settlement estimation based on an assumed initial 

stress. 

The reconsolidation process after liquefaction can be categorized into liquified and 

solidified portions (Florin and Ivanov, 1961). The liquified portion is known as 

resedimentation (Zhou et al., 2014). A consensus was achieved, i.e., the volume 

contraction in the liquefied portion occupies a significant proportion of the total volume 

change during post-liquefaction reconsolidation. Therefore, understanding the 

resedimentation process is vital to the prediction of the total volume strain. However, 

owing to the limited measurement range in experiments, typically 10−1–100 kPa, the 

nonlinear relationship between the void ratio and effective stress during the 

reconsolidation process is yet to be clarified. 

 

1.3. Objectives of this research 

To clarify the three topics mentioned above, which are hard to be investigated by 

the ordinary physical element test, three DEM studies were conducted in this research. 

The objective of the research includes: 

a) Clarify the undrained cyclic response of granular materials under surface-wave 

strain conditions (the deformation mode of a wave): Compare the liquefaction 

resistance and response of granular materials under surface-wave strain conditions 
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to that under SH-wave strain conditions. Furthermore, analyze the mechanism 

behind the macroscopic response of granular material under different strain 

conditions from a microscopic scale. 

b) Investigate the undrained cyclic shear behavior of granular material at extremely 

large shear strain amplitude (up to 100%): Study the failure of medium-dense 

granular material under the undrained condition (volume remains constant) in large 

shear strain. Analyze the responses of the medium-dense granular assembly under 

cyclic simple shear with large strain amplitudes and compared them to those under 

the monotonic shear and cyclic shear with small strain amplitudes. Furthermore, 

explain the phenomenon from the microscopic scale.  

c) Elucidate the behavior of granular materials during the reconsolidation process, 

especially during the resedimentation process: Investigate the evolution of void 

ratio and corresponding microscopic parameters during the reconsolidation process 

after undrained cyclic simple shear. 

 

1.4. Layout of this dissertation 

The outline of this research is given in Fig. 1.3. Following this Chapter, the 

literature review was performed to learn the previous study on liquefaction issues and 

methods for evaluating liquefaction resistance. The micromechanics of granular materials 

was also introduced in the literature review. 

In Chapter 3, a detailed introduction to the 3D DEM code used in this study was 
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done, including the basic principle, contact model, boundary condition, timestep, macro 

and micro quantities, constant volume method, and quasi-static condition. 

In Chapter 4, equations governing the strain–time relationship of SH, Love, and 

Rayleigh waves were derived from elastic wave theory under the assumption of constant 

volume. Then, a series of undrained cyclic shear simulations under SH- and surface-wave 

strain conditions was performed. The response and liquefaction resistance of granular 

materials under surface-wave strain conditions were compared to that under SH-wave 

strain conditions. Furthermore, the mechanism behind the macroscopic response of 

granular material under different strain conditions was analyzed from a microscopic scale. 

In Chapter 5, the undrained monotonic and cyclic simple shear simulations were 

performed to investigate the undrained response of granular materials under large shear 

strain amplitudes. The influence of shear strain amplitude and loading type on the failure 

of granular was highlighted. 

In Chapter 6, the simulation of reconsolidation began at different residual effective 

stress levels was performed. Attention was paid to the change in the void ratio and 

corresponding microscopic parameters of specimens during reconsolidation. 

Chapter 7 presents a summary of conclusions drawn from this research, and 

recommendations for future research are given afterward. 
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Fig. 1.3 Layout of this dissertation. 
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CHAPTER 2 LITERATURE REVIEW 

2.1. Undrained cyclic shear behavior of granular materials 

Granular materials subjected to undrained cyclic shear may undergo liquefaction. 

During the undrained cyclic loading, the mean effective stress decreases, and granular 

materials lose stiffness gradually. This state was called the pre-liquefaction phase. When 

the mean effective stress decreased to zero for the first time, the terminology—initial 

liquefaction was used to describe the state of granular materials. Depending on the 

behavior of granular material, liquefaction can be divided into flow liquefaction and cyclic 

softening during undrained cyclic loading. The assessment of liquefaction resistance is an 

indispensable part of engineering seismic design. Three general approaches, including the 

stress-based approach, strain-based approach, and energy-based approach had been used 

in evaluating the liquefaction resistance of soil in laboratory element tests. 

 

2.1.1. Initial liquefaction and types of liquefaction failure 

The oldest work on liquefaction was by Casagrande (1936). He pointed out that 

dense sand expands, and very loose sand reduces its volume during shearing tests, as 

shown in Fig. 2.1. In addition, the instability of saturated loose sand induced by a decrease 

of the effective stress and the shear strength was linked to the cyclic loading during an 

earthquake. He called the boundary between the case of volume decrease and increase the 
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critical density. If the density of sand is below the critical density and the voids in the 

sands are filled with water which cannot escape as quickly as the deformation is produced, 

the load on sand particles is transferred to the water during cyclic shear then the effective 

stress between sand particles decreases which impairs the stability of the sand mass. The 

description above was almost the same as the concept of liquefaction today. 

Fig. 2.1. Effects of shearing on the volume of soils. 

Fig. 2.2. Axial strain and pore water pressure build-up in the 

undrained cyclic triaxial test (after Ishihara, 1996). 
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Seed and Lee (1966) were the pioneers to summarize sand liquefaction 

systematically. In their research, isotropically consolidated saturated sands were applied 

repeated constant-amplitude cyclic deviatoric loads in a triaxial apparatus under 

undrained conditions. A typical result was shown in Fig. 2.2. It was observed that the axial 

strain and excess pore water pressure accumulated gradually during cyclic loading. Initial 

liquefaction refers to the first time that the excess pore water pressure equals the initial 

confining pressure. Based on experiment results, they summarized that the potential of 

liquefaction of saturated sand is determined by the void ratio, confining pressure, and 

magnitude of cyclic stress or strain. 

Martin et al. (1975) developed a quantitative relationship between volume changes 

occurring during drained cyclic tests and the progressive increase of pore water pressure 

during undrained cyclic tests, which is schematically illustrated in Fig. 2.3. Point A is the 

initial state of the saturated sand specimen. During the drained cyclic simple shear test, 

Fig. 2.3. Schematic diagram of the relationship between void ratio and vertical effective 

stress during initial consolidation, undrained cyclic shear loading, and reconsolidation. 
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since the vertical effective stress was kept constant, cyclic loading caused contraction of 

volume and manifested as the reduction in void ratio. This process can be represented by 

point A moving to point B in Fig. 2.3. During the undrained cyclic simple shear test, the 

volume of the sand specimen was kept constant (no change in void ratio) and cyclic 

loading caused an increase in the pore water pressure. This process can be represented by 

point A moving to point C. The volumetric contraction during drained cyclic loading can 

be counterbalanced by an elastic rebound of the soil skeleton due to a decrease in effective 

stress during undrained cyclic loading, their relationship can be represented by point B 

moving to point C. The use of this relationship enables the build-up of pore water pressure 

during cyclic loading to be computed theoretically using basic effective stress parameters 

of the sand. The initial liquefaction is the state where the effective stress reaches zero and 

the excess pore water pressure equals the initial vertical effective stress. 

However, the effective stress near zero is hard to be controlled and measured in 

physical experiments. In some special conditions, e.g., multi-directional loading or uni-

directional loading with initial shear stress higher than the applied cyclic shear stress, the 

excess pore water pressure is always less than the initial confining pressure (Boulanger 

et al, 1991). In addition, because of the measurement limitation, the specimen is assumed 

to be saturated when the B-value (the degree of saturation) is above 0.95, while in the 

case of a perfectly saturated specimen, the B-value should theoretically be 1.0. The 

imperfect saturation condition may also be a reason for the excess pore water pressure 

being always less than the initial effective confining pressure during undrained cyclic 

loading. Therefore, the Japanese Geotechnical Society (2013) defined the initial 

liquefaction as the state when excess pore water pressure builds up to 95% of the initial 

effective confining pressure (the effective stress is 5% of that in the initial state). 
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For silty sands, although the effective stress never becomes zero, it becomes close 

to zero and is accompanied by gradually increasing strain. In this state, the soil skeleton 

is considered to be destroyed. In such cases, the initial liquefaction criterion based on 

effective stress or excess pore water pressure is not applicable. New liquefaction 

criterions based on axial strain amplitude were put forward, e.g., Ishihara and Yamazaki 

(1980) suggested that the specimen experiencing 3% single amplitude axial strain for the 

first time is identified as initial liquefaction; Ishihara (1993) proposed that an axial strain 

of about 5% in double amplitude refers to the initial liquefaction state. 

As stated above, liquefaction refers to the loss of strength in saturated, cohesionless 

soil or granular materials due to the build-up of pore water pressure during dynamic 

loadings (monotonic or cyclic). A definition of soil liquefaction is the transformation 

“from a solid state to a liquefied state as a consequence of increased pore pressure and 

reduced effective stress” (Definition of terms…, 1978). In other words, all the failure 

mechanisms of saturated soil resulting from the build-up of pore water pressure during 

undrained cyclic shear can be described by the term “liquefaction.” However, depending 

on site and loading conditions, liquefied soils may experience liquid-like flow or limited 

soil deformation during undrained cyclic shear. Different types of post-liquefaction 

behavior will result in different kinds of damage; therefore, liquefaction should be 

carefully classified. 

Liquefaction results from the volumetric contraction tendency of soil when 

subjected to shear stress/strain. The soil behavior during shear loading is highly reliant on 

the density of soil, as shown in Fig. 2.4. When loose, dry sands are sheared, the volume 

of the specimen tends to decrease. Therefore, when the loose sands are subjected to 
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undrained cyclic shear, excess pore water pressure will built-up. When medium and dense, 

dry sands are sheared, the volume of the specimen may first decrease and then increase 

(sands first contract then dilate) as shear strain increases. Therefore, when the medium or 

dense sands are subjected to undrained cyclic shear in small shear strain amplitude, excess 

pore water pressure may be generated in each load cycle leading to softening of soil and 

accumulation of deformation. In contrast, when the shear strain amplitude is large, the 

dilation tendency of the soil skeleton will make the effective stress and shear resistance 

increase. 

Liquefaction can occur in sands with different densities, while their mechanisms 

are different. Based on the mechanism of failure, a systematic description of liquefaction 

was given by Robertson and Fear (1996) and can be summarized as: 

Fig. 2.4. Schematic diagram of the direct shear test result in loose,

medium, and dense sands (after Das, 1983). 
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a) Flow liquefaction: When the static, driving shear stress exceeds the residual 

shear resistance, the saturated, contractive soil (e.g., loose sand) develops 

uncontrolled large deformation. The flow-type failure can be triggered by cyclic 

or monotonic shear loading. 

b) Cyclic softening: excess pore water pressure build-up in soils and shear 

deformation accumulated during undrained cyclic shear. The shear deformation 

is limited and does not continue after cyclic loading ceases due to stiffness 

recovery. It can be further classified as cyclic liquefaction and cyclic mobility. 

Cyclic liquefaction occurs when cyclic shear stress exceeds the initial, static 

shear stress. A condition of zero effective stress may be achieved because of the 

reversal of shear stress. On the contrary, zero effective stress condition is not 

achieved in cyclic mobility because there is no shear stress reversal. 

Flow liquefaction can only occur in loose soil while cyclic softening can occur in 

all types of soil. The difference between flow liquefaction and cyclic mobility is 

schematically illustrated in Fig. 2.5. It is noteworthy that in most cases, the distinction 

between cyclic softening and cyclic mobility is not deliberately distinguished (Castro, 

1975; Seed, 1979; Elgamal et al., 2002; Wang and Wei, 2016; Banerjee et al., 2022). In 

this thesis, cyclic mobility and cyclic softening also refer to the same phenomenon.  

The typical post-liquefaction phase of cyclic mobility is shown in Fig. 2.6. Shamoto 

et al. (1997) divide the shear strain in post-liquefaction into the component that dependent 

(non-zero effective stress) and independent (“zero” effective stress) of effective stress. 

Wang and Wei (2016) defined the stage that shear strain develops at a “zero” effective 

stress state as the “flow stage” and the stage that shear strain develops with the recovery 
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of effective stress as the “hardening stage”. The range of the “flow stage” enlarges with 

an increasing number of loading cycles, while the stress-strain hysteresis curves in the 

“hardening stage” are parallel to each other for loading or unloading. Therefore, the 

development of post-liquefaction shear strain is governed by the “flow stage”. Because 

of the stiffness recovery in the “hardening stage”, large shear strain usually does not occur 

in cyclic mobility. In addition, complete liquefaction is said to have occurred if the soil 

Fig. 2.5. Response of (a) contractive and (b) dilative saturated sands to

undrained shear (after Rauch, 1997). 
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behaves like a liquid even subjected to a large shear strain (usually 20%) (Yoshida, 2020). 

 

2.1.2. Assessment of liquefaction resistance  

Assessment of liquefaction resistance (or liquefaction potential) is an indispensable 

part of engineering seismic design. There are three general approaches for evaluating the 

liquefaction resistance of soil in laboratory element tests: stress-based approach, strain-

based approach, and energy-based approach. 

Fig. 2.6. Two post-liquefaction shear strain components in 

undrained cyclic torsional test (after Shamoto et al., 1997). 
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The most widely used one is the stress-based approach. In the stress-based approach, 

stress-controlled cyclic tests are routinely performed to produce an empirical relationship 

between the applied uniform cyclic stress ratio (CSR) and the number of cycles required 

to trigger liquefaction. CSR is the ratio of shear stress amplitude to the initial confining 

stress. Achievement of a double amplitude of 5% shear strain is usually used as the failure 

criterion (trigger of liquefaction); however, sometimes the condition when the excess pore 

water pressure exceeds 95% or equals to 100% initial confining stress is taken as an 

alternative failure criterion to the double amplitude of strain. CSR that triggers 

liquefaction in a specified number of cycles (usually 20 cycles) is termed the cyclic 

resistance ratio (CRR), which is usually used to evaluate the liquefaction resistance of the 

soil. The relationship between CRR and the specific number of cycles is termed the cyclic 

strength curve (Ishihara, 1996; Kramer, 1996) or the liquefaction resistance curve 

(Towhata 2008). A typical cyclic strength curve is shown in Fig. 2.7. 

Despite the popularity of stress-based procedures, multiple studies have shown that 

Fig. 2.7. Example of cyclic strength curve of undisturbed 

samples of sand (after Yoshimi et al., 1989). 
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excess pore water pressure better correlates to cyclic strain than to cyclic stress (e.g., 

Martin et al., 1975; Dobry et al., 1982; Byrne, 1991). Dobry et al. (1982) suggested that 

there is a threshold strain amplitude (γtv) below which no excess pore water pressure will 

generate in soils, regardless of the number of applied load cycles. They concluded that 

the threshold strain amplitude can be used to assess the liquefaction resistance. A typical 

curve of excess pore water pressure vs. shear strain amplitude is shown in Fig. 2.8. 

However, in the engineering practice of liquefaction potential evaluation, both the 

stress-based approach and strain-based approach require the liquefaction resistance index 

to be compared with the shear stress/strain loading index (e.g., cyclic stress ratio, cyclic 

shear strain). In the calculation of the stress/strain loading index, the random seismic load 

should be converted to an equivalent number of uniform cycles. During this process, it is 

necessary to consider the effects of various seismic motion parameters (maximum 

amplitude, duration, waveform, ground dynamic response, ground depth, etc.) related to 

earthquake magnitude, fault distance, and ground characteristics. Such a conversion 

containing assumptions and approximations will decrease the evaluation accuracy of 

Fig. 2.8. Excess pore water pressure build-up vs. shear strain 

amplitude in the 10th cycle (after Heshmati et al., 2015). 
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liquefaction potential, especially when multiple components of ground motion are 

considered. Therefore, the energy-based approach regardless of the number of repetitions 

and waveform of the seismic motion was put forward. 

 Nemat-Nasser and Shokooh (1979) found that the excess pore water pressure 

developed in soil is directly related to the amount of dissipated energy during cyclic 

loading. Davis et al. (1982) proposed an evaluation method based on the concept of 

energy using seismic liquefaction survey data. This method considers the mechanism of 

saturated sandy soil liquefaction and assumes that the increase or decrease of pore water 

pressure is related to the energy dissipation in the soil during earthquakes. Towhata and 

Ishihara (1985) conducted undrained cyclic hollow cylindrical torsional shear tests and 

put a focus on the dissipated energy in soil specimens. They found a unique relationship 

between the cumulative dissipated energy and excess pore water pressure which is 

independent of loading history. Figueroa et al. (1994) performed a series of strain-

controlled torsional shear tests which demonstrated that the cumulative dissipated energy 

per volume was closely connected to pore-pressure buildup. The cumulative dissipated 

energy per volume was affected by the void ratio and confining stresses but independent 

of shear strain amplitude (0.15–1.02%). Their relationship can be expressed by the 

function below: 

Logଵ଴ሺδWሻ ൌ 5.697 ൅ 0.00477σ′ୡ െ 4.339e ሺ2.1ሻ 

where 𝛿𝑊 is the dissipated energy per unit volume; 𝜎௖ᇱ is the initial effective confining 

pressure acting on the specimen; 𝑒 is the void ratio. Kazama et al. (2000) carried out 

constant-strain-controlled cyclic triaxial tests and focused on the relationship between 

excess pore water pressure and energy-dissipation capacity obtained from stress-strain 
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loops even after initial liquefaction. In addition, they used dissipation energy as a scalar 

index to represent the degree of liquefaction and evaluated the ductility nature of soils 

based on it. Kokusho (2013) reviewed a data set of stress-controlled cyclic triaxial 

liquefaction test results by harmonic loading and found that the cumulative dissipated 

energy is correlated well with not only pore-pressure buildup but also induced strain, and 

with cumulative strain energy measured in the same test as well.  

In the literature, the dissipated energy is usually calculated by the function below: 

d𝑊 ൌ 𝜎௫ᇱd𝜀௫ ൅ 𝜎௬ᇱd𝜀௬ ൅ 𝜎௭ᇱd𝜀௭ ൅ 𝜏௫௬d𝛾௫௬ ൅ 𝜏௬௭d𝛾௬௭ ൅ 𝜏௭௫d𝛾௭௫ ሺ2.2ሻ 

where dW is the increment of dissipated energy per unit volume; σ´x, σ´y, and σ´z are the 

effective stresses acting along the x-, y-, and z-directions, respectively; τxy, τyz, and τzx are 

the shear stresses acting on the planes with normal vectors in the x-, y-, and z-directions, 

and parallel to the y-, z-, and x-axis, respectively. dεx, dεy, and dεz are the normal strain 

differences in the x-, y-, and z-directions, respectively; and dγxy, dγyz, and dγzx are the 

engineering shear strain differences generated in the xy-, yz-, and zx-planes, respectively. 

In the cyclic triaxial test, Eq. (2.2) can be simplified as: 

d𝑊 ൌ 𝜎ୢ
ᇱd𝜀ୟ ሺ2.3ሻ 

where σ´d is the deviator stress and dεa is the axial strain. The trapezoidal rule is usually 

used in the calculation of accumulated dissipated energy: 

𝑊 ൌ
1
2
෍ሺ𝜎ୢ,௜ାଵ

ᇱ ൅ 𝜎ୢ,௜
ᇱ ሻሺd𝜀ୟ,௜ାଵ ൅ d𝜀ୟ,௜ሻ

௡ିଵ

௜ୀଵ

ሺ2.4ሻ 
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where W is the accumulated dissipated energy; n is the number of applied load increments; 

σ´d,i and σ´d,i+1 are the applied deviator stress at load increment i and i + 1, respectively; 

and dεa and dεa,i+1 are the axial strain at load increment i and i + 1, respectively. Fig. 2.9 

schematically illustrates the application of Eq. (2.4). In particular, the accumulated 

dissipated energy during one loading cycle is equal to the area bounded by the stress–

strain hysteresis loop. In practice, the accumulated dissipated energy is commonly 

normalized by the initial mean effective stress (e.g., Kazama et al., 2000; Polit et al., 

2013) or mean effective stress (e.g., Kokusho, 2013; Kokusho and Kaneko, 2018). 

 

2.2. Micromechanics of granular materials 

In geotechnical engineering, granular materials, including sands, are usually 

described by continuum-based methods, such as stress–strain relationship. However, 

granular materials are made up of distinct particles. The overall behavior of a granular 

Fig. 2.9. Calculation of the amount of dissipated energy per unit volume 

using trapezoidal rule in cyclic triaxial tests (after Green et al., 2000). 
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material is closely related to its microstructure during the loading processes. Therefore, 

from this perspective, the comprehension of microstructure evolution is a key concept for 

the change in granular material on the macroscopic scale (Cambou et al., 2016).  

 

2.2.1. Representative volume element 

As defined by Cambou et al. (2016), the scale of the granular material can be 

subdivided into the microscopic scale, the mesoscopic scale, the aggregate mesoscopic 

scale, and the macroscopic scale. The microscopic scale is the scale of particles and 

contacts between particles; the mesoscopic scale is the scale of local arrays defined as 

closed loops of particles in contact; the aggregate mesoscopic scale is defined as sets of 

local arrays sharing common texture characteristics (e.g., elongation degree and 

orientation); the macroscopic scale is the scale can be described by the representative 

volume element (REV), where continuum-based variables (e.g., stress tensor and strain 

tensor) and phenomenological constitutive laws are considered. A typical REV for 

granular assembly is shown in Fig. 2.10. The REV should satisfy: a) Large enough on the 

Fig. 2.10. Representative volume element for a granular assembly (after Karapiperis

et al., 2021). 
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microscopic scale to contain enough particles and pores for statistical homogenization; b) 

Small enough on the macroscopic scale to be treated as a spatial point of the granular 

assembly; c) the scale of RVE does not vary with time and space.  

Granular materials can be regarded as a discrete medium at the microscopic scale 

and a continuous medium at the macroscopic level. The key to the multi-scale analysis of 

granular materials is to establish the link between macroscopic and microscopic 

properties. The basic approach to determining the macro-micro connections of granular 

materials is the homogenization method as illustrated in Fig. 2.11. The homogenization 

process is based on three relations: localization operator (from macroscopic scale to 

microscopic scale), local constitutive law (relation between contact force and local 

displacements and rotations), and average operator (from microscopic scale to 

macroscopic scale). The main purpose of applying the homogenization method to 

granular materials is to “obtain a constitutive relation at the REV scale from information 

on the material behavior at the micro-scale and from the microstructure” (Cambou et al., 

2016). 

Fig. 2.11. General homogenization operators considering a micro-scale 

for granular materials (after Cambou et al. 2016). 
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2.2.2. Compactness and coordination number 

The behavior of granular materials on the macroscopic scale is highly affected by 

their compactness. The compactness of a granular material is defined on the macroscopic 

scale (at RVE) by porosity, n, or void ratio, e: 

𝑛 ൌ
𝑉୴
𝑉

 and 𝑒 ൌ
𝑉୴
𝑉ୱ

ሺ2.5ሻ 

where 𝑉,𝑉୴, and 𝑉ୱ  are the total volume, the void volume, and the solid volume, 

respectively. Especially, 𝑉 ൌ 𝑉୴ ൅ 𝑉ୱ.  

On the microscopic scale, the compactness can be described by the coordination 

number, Z, which is the mean number of neighbor particles in contact with each particle 

in a given granular assembly. The coordination number 𝑍 is given by: 

𝑍 ൌ
2𝑁ୡ
𝑁୮

ሺ2.6ሻ 

where 𝑁ୡ and 𝑁୮  are the total number of contact points and of particles in a given 

granular assembly, respectively. Several empirical relationships had been proposed to 

relate the variable defined on the macroscopic scale, porosity or void ratio, and the 

variable defined on the microscopic scale, coordination number (Field, 1963; Athanasiou-

Grivas and Harr, 1980; Yanagisawa, 1983; Chang et al., 1990). Among these relationships, 

the function proposed by Chang et al. (1990) is the most widely used: 

𝑍 ൌ 13.25 െ 8𝑒 ሺ2.7ሻ 

where e ranges from 0.35 to 0.85. The connectivity of a granular material, which refers 
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to the set of force-bearing (active) contact, can also be described by the coordination 

number. However, it should be noted that the connectivity is a scalar index and does not 

reflect the difference in texture between two granular assemblies (Cambou, 2009). This 

means that granular packings with the same coordination number may have different 

textures. Therefore, higher-order indexes will be introduced hereinafter. 

 

2.2.3. Contact normal and fabric 

On the microscopic scale, the granular texture involves three vectors based on 

which other local geometrical variables can be defined (Cambou et al., 2009) as shown 

in Fig. 2.12: a) the branch vector ℓሬ⃗  joining the centers of two contacted particles; b) the 

contact vector 𝑐 joining the center of each particle to the particle center; c) the contact 

normal 𝑛ሬ⃗  defined as the unit vector normal to the contact plane 𝜋 (tangential to the two 

particles at the contact point α). Especially, the vectors defined above have the same 

orientation when the particles are circular (2D space) or spherical (3D space). 

Fig. 2.12. Local vectors at the contact α between two particles

(after Cambou et al., 2009). 
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The granular textural information is usually described based on the distributions of 

the vectors ℓሬ⃗ , 𝑐, and 𝑛ሬ⃗  (Cambou et al., 2009). In the lowest order, scalar parameters (e.g., 

coordination number) concern the connectivity of the contact network; in the higher order, 

the spatial arrangement of particles and pore space distribution can be described by the 

fabric tensor.  

The fabric of a granular assembly refers to the arrangement of particles, particle 

groups, and pore space distribution (Mitchell and Soga, 2005). The complex plastic 

behavior of granular materials in quasi-static deformation such as shear strength and 

dilatancy originates from the evolution of fabric (Arthur and Menzies, 1972; Cresswell 

and Powrie, 2004; Ventouras and Coop 2009; Fonseca et al., 2012). The fabric tensor is a 

tool to quantify the fabric of a granular assembly on the RVE scale, which is first proposed 

by Satake (1982). Satake (1982) defined the fabric tensor 𝛷௜௝ by the contact normal: 

𝛷௜௝ ൌ
1
𝑁ୡ
෍𝑛௜

௞𝑛௝
௞ 

ேౙ

௞ୀଵ

ሺ2.8ሻ 

where Nc is the total number of contacts; 𝑛௜
௞ and 𝑛௝

௞ denote the component of the k-th 

unit contact normal vector in the i and j direction, respectively. Chang and Gao (1996) 

defined the fabric based on branch vectors: 

𝛷௜௝ ൌ
1
𝑁ୡ
෍ℓ௜

௞ℓ௝
௞ 

ேౙ

௞ୀଵ

ሺ2.9ሻ 

where ℓ௜
௞ and ℓ௝

௞ denote the component of the k-th branch vector in the i and j direction, 

respectively. For single-sized circular (2D) or spherical (3D) particles, Eq. (2.8) and Eq. 
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(2.9) are equivalent. Although there are fabric tensors defined in higher orders (Kanatani, 

1984; Chang and Misra, 1990), the second-order fabric tensor defined by Eq. (2.8) is the 

most widely used for its simplicity. In addition, fabric tensors can be used to express the 

anisotropy of fabric. Under 3D axisymmetric conditions, the anisotropy of fabric is 

commonly described by deviator fabric 𝛷ଵ െ 𝛷ଷ  (Thornton and Sun, 1993; Cui and 

O'Sullivan, 2006) or fabric ratio 𝛷ଵ/𝛷ଷ  (Bardet, 1994), where 𝛷ଵand 𝛷ଷ  are the 

maximum and minimum principal fabric, respectively; A more general definition of 

deviator fabric 𝛷ୢ was proposed by Barreto et al. (2009): 

𝛷ୢ ൌ ඨ
ሾሺ𝛷ଵ െ 𝛷ଶሻଶ ൅ ሺ𝛷ଶ െ 𝛷ଷሻଶ ൅ ሺ𝛷ଷ െ 𝛷ଵሻଶሿ

2
ሺ2.10ሻ 

Kanatani (1984) pointed out that fabric tensors can be described in the form below: 

𝛷௜௝ ൌ න𝑓ሺ𝒏ሻ𝑛௜𝑛௝d𝒏 ሺ2.11ሻ 

The distribution density 𝑓ሺ𝒏ሻ can be approximated by 𝐹ሺ𝒏ሻ: 

𝐹ሺ𝒏ሻ ൌ
1

4𝜋
൫1 ൅ 𝐷௜௝𝑛௜𝑛௝൯ ሺ2.12ሻ 

𝐷௜௝ ൌ
15
2
൬𝛷௜௝ െ

1
3
𝛿௜௝൰ ሺ2.13ሻ 

where 𝐷௜௝ is the parameter to describe the distribution density of contact normal; 𝛿௜௝ is 

Kronecker delta. 𝐷ଵ,𝐷ଶ, and 𝐷ଷ  represent the degree of anisotropy in the principal 

direction of the fabric. When 𝐷ଵ ൌ 𝐷ଶ ൌ  𝐷ଷ ൌ 0, the fabric is isotropic. The degree of 

anisotropy of fabric is also usually described by the second invariant of 𝐷௜௝ (Yang et al., 

2022): 
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𝑎஽ ൌ ඥ3𝐽ଶ 

ൌ ඨ
3
2
𝐷௜௝𝐷௝௜ 

ൌ ඨ
15ሾሺ𝛷ଵ െ 𝛷ଶሻଶ ൅ ሺ𝛷ଶ െ 𝛷ଷሻଶ ൅ ሺ𝛷ଷ െ 𝛷ଵሻଶሿ

4
 ሺ2.14ሻ 

The definition of 𝑎஽ is like the definition of equivalent stress. In addition, it can be found 

that 𝑎஽ and 𝛷ௗ are equivalent. 

Granular materials are porous mediums, and the pore between particles is also one 

of the major components of granular fabrics. Compared with contact-based fabric, the 

void-based fabric is less common. Among these limited studies, Oda et al. (1985) 

qualified the void space for granular packing using the scanning line method. Stake (1992) 

introduced a topological method to describe the granular packing based on contact points, 

branch vectors, and loops. Kuhn (1999) defined the loops in Stake (1992) as “void cells”, 

as shown in Fig. 2.13(a). The void cells are surrounded by branch vectors of contacting 

particles. He modified the particle graph to include only those particles taking part in the 

Fig. 2.13. Modified graph of particle arrangement (after Kuhn, 1999). 
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load-bearing framework of the granular assembly by disregarding the pendant, island, 

peninsula, and isolated particles, along with the branch vectors (Fig. 2.13 (b)). The fabric 

tensor 𝑭௜ of the i-th void cell is then defined as: 

 𝑭௜ ൌ
1
2
෍𝓵௜,௝ ⊗ 𝓵௜,௝
௠೔

௝ୀଵ

ሺ2.15ሻ 

where the i-th void cell has 𝑚௜ branch vectors; 𝓵௜,௝ is the j-th branch vector in the i-th 

void cell. The height-to-width ratio of the i-th void cell is defined as 𝛼௜ ൌ ට𝐹ଶଶ
௜ /𝐹ଵଵ

௜  

(2D). The average height-to-width ratio of all void cells, 𝛼ො,  is used as an anisotropy 

indicator. When  𝛼ො ൌ 1 , the void-based fabric is isotropic. Li and Li (2009) used a 

modified Delaunay-Voronoi tessellation technique to construct a “solid/void cell system” 

based on particle contact points. The fabric anisotropy of materials is defined on the 

average void cell as 

𝑮 ൌ 𝐸଴ ර 𝑣̅
ஐ

ሺ𝒏ሻ𝒏⊗ 𝒏 ሺ2.16ሻ 

where 𝐸଴  is the normalization factor equals to 2𝜋 and 4𝜋 in the 2D and 3D space, 

respectively; 𝑣̅(𝒏) is the average length of all the void vectors ‘𝒗’ along the direction 𝒏. 

𝒗 are the vectors connecting the void cell center and the contact points at the boundary. 

However, those void-based fabrics rely on particle contacts. When granular 

materials are in the “zero” effective stress state after liquefaction, particles lost most of 

their contacts, and the construction of void cells based on contact points becomes 

meaningless.  
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Wang et al. (2016) proposed an index, mean neighborhood particle distance (MNPD) 

which does not rely on particle contacts, to reflect the amount of rearrangement needed 

for a liquefied granular assembly to reach a stable loading-bearing structure. In addition, 

MNPD also measures the extent of contact loss. In 2D space, MNPD is given by: 

𝑀𝑁𝑃𝐷 ൌ
1
𝑁
෍

𝐷1௞ ൅ 𝐷2௞ ൅ 𝐷3௞

3

ே

௞ୀଵ

ሺ2.17ሻ 

where N is the total number of particles in the granular assembly; 𝐷1௞,𝐷2௞, and 𝐷3௞ 

are the distance between the particle k and its three closest neighbor particles, as shown 

in Fig. 2.14. The reason why three closet neighbor particles are considered is that the 

coordination number should be equal to or larger than 3 for a particle to be mechanically 

stable in 2D space. The limitation of this index is that it is a scalar and cannot give 

information on void distribution (Bokkisa, 2019). 

Fig. 2.14. Conceptual illustration of the surface-to-surface distance between a 2D 

particle and its three closest neighboring particles (after Wang et al., 2016). 
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Wang and Wei (2016) suggested that a particle is bound to the void space around it, 

to which the movement of the particle is only restricted during the deformation of granular 

assembly. The void space around the particle was determined from the Voronoi cell 

construction, as shown in Fig. 2.15. The void space around the particle ‘i’, is given by a 

convex polygon 𝐶ଵ െ 𝐶ଶ െ 𝐶ଷ െ 𝐶ସ െ 𝐶ହ. A new fabric index termed centroid distance 

𝐷௖, was proposed to characterize the whole particle-void distribution: 

𝐷௖ ൌ
1
𝑁௣

෍𝐷௖௜
ே೛

௜ୀଵ

 and 𝑫௖
௜ ൌ

𝑷௜ െ 𝑶௜

𝑅ହ଴
ሺ2.18ሻ 

where vector 𝑷௜ and 𝑶௜ are the mass center of the Voronoi cell and the mass center of 

the particle, respectively; 𝑅ହ଴ is the mean particle radius of the granular packing. 𝑫௖
௜   

is centroid difference associated with particle i and defined to quantify the geometrical 

arrangement between the particle and its surrounding void. 𝐷௖  can be used to 

quantitatively evaluate the uniformity of pore distribution. 

Fig. 2.15. Schematic illustration of the centroid distance (after Wang and Wei, 2016).
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2.2.4. Force chain and stress tensor 

Forces in a granular assembly are transmitted via force chains, and these force 

chains are interconnected to form a network. As illustrated in Fig. 2.16, on the one hand, 

the contact force networks are not uniformly distributed in the granular assembly; on the 

other hand, the forces transmitted in the network are also uneven. A contact force network 

comprising strong force chains bear the majority of the load. In some literature, the term 

“force chain” only refers to strong force chains (Radjai et al., 1998; Tordesillas et al., 

2011). The number of strong force chains is small, and the weak force chains are 

distributed around and connected with the strong chains, which has an auxiliary effect on 

the stability of the strong force chains (Sun and Wang, 2009). 

The direction of force chains is basically parallel to the direction of the external 

load. In weak force chains, the deformation of particles in contact points is extremely 

small. They have little resistance to tangential forces. In strong force chains, the 

deformation of particles in contact points is large because they bear a large portion of the 

Fig. 2.16. Sample image of force chains in a quasi-2D granular material composed 

of photoelastic disks. Dark particles carry little force, and bright particles carry 

more (after Daniels, 2017). 
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external load. Therefore, strong force chains can withstand a certain amount of tangential 

forces. Obviously, the greater the friction coefficient of the particle surface and the contact 

force transmitted through the force chain, the greater tangential forces that the force chain 

can bear, which indicated that the force chain is more stable. In contrast, when the surface 

of particles is frictionless, the force chain cannot withstand any tangential force (Sun and 

Wang, 2009). Radjai et al. (1996) divided the contact force network into strong force and 

weak force networks based on the mean contact force. They found that the number of 

normal and tangential forces lower (higher) than their respective mean value decays as a 

power (exponential) law. Cambou et al. (2009) pointed out that in the quasi-static biaxial 

compressive test, the deviatoric stress component of the stress tensor originates from the 

strong contact force network while the weak contact force network only constitutes the 

spherical stress component. This foundation was verified by Thornton and Antony (1998) 

based on the triaxial compression DEM simulations. Thornton and Zhang (2010) pointed 

out that the amplitude of deviatoric stress also originates from the strong contact force 

network in a more general stress state. 

Anisotropy exists in the force chain. Especially in the process of shearing, the 

phenomenon of non-uniform distribution of contact force is particularly significant. The 

direction of large contact forces will gradually tend to the direction of major principal 

stress, and a columnar structure will appear under certain conditions (Oda, 1972; Oda and 

Iwashita, 2000; Thornton and Zhang, 2010). The force chains are sensitive to the external 

load and geometric features of particle systems, and the force chain network varies widely. 

It should be noted that the quantified description of the force chain is still difficult (Sun 

and Wang, 2009; Tordesillas et al., 2011).  
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The discrete and heterogeneous features of granular material make the concept of 

the “stress tensor” defined in continuum material not directly applicable to granular 

materials. The definition of the stress tensor in granular material is closely related to the 

RVE. The general approach is to use the average operator (refer to Fig. 2.11) to derive the 

stress tensor from the contact force outside the RVE or the contact force in the RVE. The 

expression form of the average stress constructed according to the external contact force 

is based on the concept of the Cauchy stress tensor in continuum mechanics (Fortin et al., 

2002, 2003; de Saxcé et al., 2004; Nicot et al., 2013). The most widely used definition of 

stress tensor in granular material is based on the contact force in the RVE. Christoffersen 

et al. (1981) gave the stress tensor defined by the contact force between particles by 

analyzing the contact force between particles in the granular material system and the 

equilibrium conditions of each particle, applying the principle of virtual work: 

𝜎௜௝ ൌ
1
𝑉
෍𝑓௜

௖ℓ௝
௖

ே೎

௖ୀଵ

ሺ2.19ሻ 

where V is the volume of the RVE; 𝑁௖ is the total number of contacts in the RVE; 𝑓௜
௖ is 

the component of the contact force in the i direction at contact point c; ℓ௝
௖  is the 

component of the branch vector in the j direction at contact point c. Equivalent results 

have been consistently reported in the literature (Love, 1927; Kanatani, 1981; Kruyt and 

Rothenburg, 1996; Bagi, 1996). 

It should be noted that the definitions of force chain and stress tensor for granular 

materials are in the quasi-static state (Cambou et al., 2009, 2016). 
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CHAPTER 3 DISCRETE ELEMENT METHOD 

In geotechnical engineering, the continuum modeling scheme, including the Finite 

Element method (FEM), is the most widely used numerical method in both practical 

design and research. The continuum modeling scheme mainly reflects the deformation 

characteristics of the geological material system from a macro perspective and tries to 

circumvent geometric complexity by using specific constitutive laws with equivalent 

material properties. Although the continuum modeling scheme has high computation 

efficiency and can be used for large-scale industrial applications, it cannot adequately 

consider the discrete nature of granular materials.  

DEM is a discrete modeling scheme that was first proposed by Cundall and Strack 

(1979) to simulate the behavior of discrete materials, e.g., rock, and granular materials. 

DEM is essentially a first principle physics method that takes the materials as individual 

rigid bodies. Each particle is represented through a representative shape (usually circle or 

sphere) and size that interact with other particles or geometries. In the macroscopic scale, 

because the behavior of materials is governed by Newton’s laws of motion, the 

constitutive model used in the continuum modeling scheme is not needed in DEM. The 

constitutive model in DEM, termed as “contact model”, is defined in the particle or 

contact level, which indicates that DEM can capture the mechanical response features of 

granular material from the particle scale. In addition, DEM can reproduce the complex 

stress–strain loading condition which is difficult to achieve by laboratory element tests. 

In this thesis, the business code, Rocky (ESSS., 2020), was used to conduct the 

numerical simulations.  
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3.1. Basic principle of discrete element method 

In DEM, the sequence of calculations in one timestep can be summarized in Fig. 

3.1. The DEM simulation generally starts with placing the particles and geometries 

(including boundary conditions) in the system. The material properties are input not only 

by directly defined inherent properties, including density, Young’s modulus, and 

Poisson’s ratio but also by specifying the contact model parameters, including friction 

coefficient and restitution coefficient. After the initial conditions (e.g., load or 

Fig. 3.1. Schematic diagram of sequence of calculations

in a DEM simulation (after O'Sullivan, 2011). 
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deformation) are defined by the user, the simulation progresses for a specified number of 

time increments (timestep). At each timestep, contacts are detected to determine whether 

the individual particles interact with each other in the current time step. After contact 

detection was completed, the interparticle forces and moments related to the distance 

between contacting particles are identified by contact models. Having calculated those 

interparticle forces and moments, the resultant force and moment or torque applied to 

each particle, including body forces and external forces, can be determined. The 

translational motion and rotational motion (except when particle rotation is inhibited) of 

an individual particle in DEM are governed by Newton’s second law of motion as shown 

below: 

𝑚௜𝒖ሷ ௜ ൌ 𝑭௜ ሺ3.1ሻ 

𝐼௜𝜽ሷ ௜ ൌ 𝐌௜ ሺ3.2ሻ 

where 𝑚௜  and 𝒖ሷ ௜  are the mass inertia and translational acceleration of particle i, 

respectively; 𝑭௜ is the resultant force applied to particle i; 𝐼௜ and 𝜽ሷ ௜ are the moment of 

inertia and angular acceleration of particle i; 𝐌௜  is the resultant moment applied to 

particle i. The displacement and rotation of the particles over the current timestep then 

can be found through central-difference-type integration through time: 

𝒖ሷ ௜
௧ ൌ

𝒖௜
௧ି୼௧ െ 2𝒖௜

௧ ൅ 𝒖௜
௧ା୼௧

Δ𝑡ଶ
ሺ3.3ሻ 

Substituting Eq. (3.3) into Eq. (3.1), we can get 

𝒖௜
௧ା୼௧ ൌ Δ𝑡ଶ𝑚௜

ିଵ൫𝑭௜
௧ା୼௧ െ 𝑚௜Δ𝑡ିଶ𝒖௜

௧ି୼௧ ൅ 2𝑚௜Δ𝑡ିଶ𝒖௜
௧൯ ሺ3.4ሻ 

where 𝒖௜
௧ି୼௧ ,𝒖௜

௧ , and 𝒖௜
௧ା୼௧ are the translational displacement of particle i at time 𝑡 െ
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Δ𝑡, 𝑡, and 𝑡 ൅ Δ𝑡, respectively; 𝑭௜
௧ା୼௧ is the resultant force of particle i at time 𝑡 ൅ Δ𝑡; 

Δ𝑡 is the timestep in the DEM simulation. Similarly, the angle of rotation of particle i at 

time 𝑡 ൅ Δ𝑡 is 

𝜽௜
௧ା୼௧ ൌ Δ𝑡ଶ𝐼௜

ିଵ൫𝐌௜
௧ା୼௧ െ 𝐼௜Δ𝑡ିଶ𝜽௜

௧ି୼௧ ൅ 2𝐼௜Δ𝑡ିଶ𝜽௜
௧൯ ሺ3.5ሻ 

where 𝜽௜
௧ି୼௧ and 𝜽௜

௧  are the angle of rotational of particle i at time 𝑡 െ Δ𝑡 and 𝑡 , 

respectively; 𝐌௜
௧ା୼௧ is the resultant force of particle i at time 𝑡 ൅ Δ𝑡. Using Eq. (3.4) 

and (3.5), the particle position and orientation are updated. In the next timestep, the 

contact forces and moments are calculated using this updated information, and the series 

of calculations are repeated. 

 

3.2. Contact model in DEM 

The contact forces in any DEM algorism (including Rocky used in this thesis) 

consist of normal and tangential components. For spherical particles in 3D space, the 

contact plane is perpendicular to the line that connects the centers of two spheres. In the 

case of particle-to-boundary contact, the line connects the center of a sphere and the 

closest point of a triangle making up a boundary. The normal contact force is 

perpendicular to the contact plane while the tangential contact force is in the contact plane. 

The most widely used contact model includes Hertz-Mindlin nonlinear contact model and 

the linear spring dashpot-Coulomb limit model. However, using a nonlinear contact is 

computationally burdensome and it was pointed out that no significant improvement in 
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assembly behavior when using the Hertz–Mindlin model to replace the linear-elastic 

contact model (Renzo and Maio, 2004). Therefore, the linear spring dashpot-Coulomb 

limit model was used in this thesis for its computational efficiency. In addition, rolling 

resistance was also usually used to restrict the rotation of spherical particles in DEM and 

is typically incorporated to represent the effect of non-sphericity (Iwashita and Oda, 1998; 

Ai et al., 2011; Coetzee, 2017; Gu et al., 2020). The contact models used in this thesis are 

schematically illustrated in Fig. 3.2. The normal force model, tangential force model, and 

rolling resistance model in Rocky are introduced as follows (ESSS., 2020): 

 

3.2.1. Normal force model 

The linear spring-dashpot model, which can be idealized as the parallel connection 

of a linear spring and a viscous dashpot, was first proposed in the seminal paper of 

Cundall and Strack (1979). The normal contact force in this model is composed of a linear 

elastic repulsive force and a damping force, that is 

𝐹୬ ൌ 𝑘୬𝑠୬ ൅ 𝑐୬𝑠ሶ୬ ሺ3.6ሻ 

Fig. 3.2. Schematic of the interaction models (after Jiang et al., 2021). 
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where 𝑘୬ is the normal contact stiffness; 𝑐୬ is the normal damping coefficient; 𝑠୬ is 

the contact normal overlap; 𝑠ሶ୬ is the time derivative of the contact normal overlap. The 

normal contact stiffnesses are defined by the particle size and the bulk Young’s modulus 

of contacting materials. For the contact of two particles, or of a particle with a boundary, 

the equivalent stiffnesses are defined as: 

1
𝑘୬

ൌ

⎩
⎪
⎨

⎪
⎧ 1
𝑘୬,୮భ

൅
1

𝑘୬,୮మ
       for particle െ particle contact

1
𝑘୬,୮

൅
1
𝑘୬,ୠ

       for particle െ boundary contact
 ሺ3.7ሻ 

where subscripts pଵ  and pଶ  identify the two contacting particles; subscripts p and b 

identify the contacting particle and boundary. The individual stiffnesses associated with 

a particle and with a boundary are computed, respectively, as: 

𝑘୬,୮ ൌ 𝐸୮𝐿 ሺ3.8ሻ 

𝑘୬,ୠ ൌ 𝐸ୠ𝐿 ሺ3.9ሻ 

where 𝐸୮ and 𝐸ୠ are Young’s modulus of particle and boundary materials, respectively; 

𝐿 is the particle size. The value of the normal damping coefficient 𝑐୬ can be determined 

in a way that the viscous energy dissipation matches the energy dissipation of an inelastic 

collision, determined in turn by the value of the coefficient of restitution. In order to do 

this, the damping coefficient is defined in Rocky as follows: 

𝑐௡ ൌ 2𝜂ඥ𝑚∗𝑘୬ ሺ3.10ሻ 

where 𝜂 is the damping ratio, a dimensionless parameter whose value is related to the 

restitution coefficient; 𝑚∗ is the effective or equivalent mass for the contact, defined as: 
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1
𝑚∗ ൌ

⎩
⎨

⎧
1
𝑚ଵ

൅
1
𝑚ଶ

        for particle െ particle contact

1
𝑚

                  for particle െ boundary contact
ሺ3.11ሻ 

where 𝑚ଵ and 𝑚ଶ are the masses of the contacting particles, whereas 𝑚 is the mass 

of the particle in contact with a boundary. The functional relationship between the 

damping ratio 𝜂 and the coefficient of restitution 𝜀 is: 

𝜀 ൌ

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧exp ൥െ

𝜂

ඥ1 െ 𝜂ଶ
൭𝜋 െ arctan

2𝜂ඥ1 െ 𝜂ଶ

1 െ 2𝜂ଶ
൱൩     if 0 ൑ 𝜂 ൏

1

√2

exp൭െ
𝜂

ඥ1 െ 𝜂ଶ
arctan

2𝜂ඥ1 െ 𝜂ଶ

2𝜂ଶ െ 1
൱                 if 

1

√2
൑ 𝜂 ൑ 1

exp ൥െ
𝜂

ඥ𝜂ଶ െ 1
ln
𝜂 ൅ ඥ𝜂ଶ െ 1

𝜂 െ ඥ𝜂ଶ െ 1
൩                        if η ൐ 1

ሺ3.12ሻ 

As can be seen in Fig. 3.3, Eq. (3.12) defines the restitution coefficient 𝜀 as a monotonic 

function of the damping ratio 𝜂.  

Fig. 3.3. Graph of the relationship between the damping ratio 𝜂 and the

restitution coefficient 𝜀, given by Eq. (2.31) (after ESSS., 2020). 
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3.2.2. Tangential force model 

The tangential force in the linear spring Coulomb limit model is elastic-frictional, 

which can be idealized as the series connection of a linear spring and a slider. Before 

reaching Coulomb’s limit, the tangential force was considered purely elastic. Its value at 

time t, 𝑭த,ୣ
௧ , would be given by: 

𝑭த,ୣ
௧ ൌ 𝑭த,ୣ

௧ି୼௧ െ 𝑘தΔ𝒔த ሺ3.13ሻ 

where 𝑭த,ୣ
௧ି୼௧is the value of the tangential force at the previous time; Δ𝒔த is the tangential 

relative displacement of the particles during the timestep; 𝑘த is the tangential stiffness 

defined as: 

𝑘த ൌ 𝑟௞𝑘୬ ሺ3.14ሻ 

where 𝑘୬ is normal stiffness defined in Eq. (3.7); 𝑟௞ is the tangential stiffness ratio. In 

this model, however, the tangential force cannot exceed Coulomb’s limit. Therefore, the 

complete expression for the tangential force is: 

𝑭த௧ ൌ min൫ห𝑭த,ୣ
௧ ห, 𝜇𝐹୬௧൯

𝑭த,ୣ
௧

ห𝑭த,ୣ
௧ ห

ሺ3.15ሻ 

where 𝐹୬௧ is the contact normal force at time t; 𝜇 is the friction coefficient, defined as: 

𝜇 ൌ ൜
𝜇௦     if no sliding takes place at the contact
𝜇ௗ      if sliding does take place at the contact

ሺ3.16ሻ 

where 𝜇௦  and 𝜇ௗ  are the static and dynamic friction coefficients, respectively. The 

sliding is considered to be taking place on the contact the first time the magnitude of the 

tangential force 𝑭த,ୣ
௧  exceeds the limit of 𝜇𝐹୬௧. Once that force falls below the value of 
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𝜇𝐹୬௧, the contact is considered non-sliding again. 

 

3.2.3. Rolling resistance 

The linear spring rolling limit model is an elastic-plastic model reproducing the 

effects of rolling resistance, which be simplified as a series connection involving a 

rotation spring and a rotation slider. The rolling stiffness 𝑘୰ is defined as: 

𝑘୰ ൌ 𝑅୰ଶ𝑘த ሺ3.17ሻ 

where 𝑘த is the tangential stiffness, defined in Eq. (3.14); 𝑅୰ is the rolling radius, given 

by: 

1
𝑅୰

ൌ

⎩
⎨

⎧
1

|𝑟ଵ|
൅

1
|𝑟ଶ|

     for particle െ particle contact

1
|𝑟|

                   for particle െ boundary contact
ሺ3.18ሻ 

where 𝑟ଵ and 𝑟ଶ are the rolling radii of the contacting particles, while 𝑟 is the rolling 

radius of a particle in contact with the boundary. The rolling radius vector is defined as 

the vector joining the centroid of the particle and the contact point at a given time. If the 

rolling resistance were purely elastic, the rolling resistance moment 𝐌୰,ୣ
௧   would be 

updated incrementally in the following way: 

𝐌୰,ୣ
௧ ൌ 𝐌୰

௧ି∆௧ െ 𝑘୰𝝎୰ୣ୪∆𝑡 ሺ3.19ሻ 

where 𝐌୰
௧ି∆௧  is the rolling resistance moment vector at the previous time; 𝑘த  is the 

tangential stiffness defined in Eq. (3.17); 𝝎୰ୣ୪ is the relative angular velocity vector, 
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which is defined as the difference between the angular velocities of two contacting 

particles or the angular velocity of a particle on a boundary, as the case may be. ∆𝑡 is the 

simulation timestep. However, the updated rolling resistance moment defined in Eq. (3.19) 

is not used directly in the motion equation for the particles. The magnitude of the rolling 

resistance moment is limited by the value which is achieved at a full mobilization rolling 

angle. The limiting value is: 

M୰,୪୧୫ ൌ 𝜇୰𝑅୰𝐹୬ ሺ3.20ሻ 

where 𝜇୰  is the rolling resistance coefficient; 𝑅୰  is the rolling radius defined in Eq. 

(3.18); 𝐹୬  is the contact normal force. The final expression for the rolling resistance 

moment in the Linear spring rolling limit model is: 

𝐌୰
௧ ൌ min൫ห𝐌୰,ୣ

௧ ห, M୰,୪୧୫൯
𝐌୰,ୣ

௧

ห𝐌୰,ୣ
௧ ห

ሺ3.21ሻ 

 

3.3. Boundary condition 

In continuum numerical modeling, the boundary condition is either displacement-

restricted (or specified) or stress-specified. Similarly, displacement boundary and force 

boundary conditions in a DEM simulation can be achieved by fixing or specifying the 

coordinates of selected particles and by applying a specified force to selected particles. 

However, those displacement and force boundaries cannot easily be directly used with 

the discrete system including thousands of particles. Therefore, the analyst must apply 

those conditions to selected boundary particles as the system deforms (O'Sullivan, 2011). 

Here rigid walls and periodic boundary conditions were considered in this thesis. 
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3.3.1. Rigid boundary 

The rigid boundary is the most widely used boundary type. Rigid boundaries are 

simply analytically described surfaces or geometries and can be used to simulate 

inclusions or machinery interacting with particles (O'Sullivan, 2011). These boundaries 

themselves do not have inertia and are only used to update the coordinates of particles, 

which to some extent is similar to the displacement boundary conditions in FEM. In 

addition, the motion of rigid walls is not affected by the external force acting on them. In 

typical DEM codes, including Rocky, there is no contact between rigid walls that intersect 

or touch. In other words, they do not interact with each other. In Rocky, the rigid wall is 

defined by triangular meshes in 3D space. The distance 𝐷  between a particle 

centroid ሺ𝑥୮,𝑦୮, 𝑧୮ሻ and the wall 𝑎𝑥 ൅ 𝑏𝑦 ൅ 𝑐𝑧 ൅ 𝑑 ൌ 0 is given by: 

𝐷 ൌ
𝑎𝑥୮ ൅ 𝑏𝑦୮ ൅ 𝑐𝑧୮ ൅ 𝑑

√𝑎ଶ ൅ 𝑏ଶ ൅ 𝑐ଶ
ሺ3.22ሻ 

 

3.3.2. Periodic boundary 

The DEM simulation of very large assemblies of particles can be simplified by 

using periodic boundaries, where only a selected subdomain, termed periodic cell, should 

be considered. The periodic cell surrounded by periodic boundary is usually a 

parallelogram in 2D and a parallelepiped in 3D spaces. There is a connection between the 

two boundaries in opposite directions, so that particles in the periodic cell are allowed to 

contact across periodic boundaries and move through the boundaries. Therefore, the 

periodic cell is surrounded by identical copies of itself, as shown in Fig. 3.4. Then, the 

granular material responds as if the periodic cell repeats itself infinitely in the directions 
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normal to each periodic cell face. Periodic boundaries are usually used to eliminate 

boundary effects and ensure homogenous deformation (each periodic cell is an RVE) 

(Cundall, 1988; Huang et al., 2014). 

 

3.4. Timestep for the linear spring-dashpot model 

Timestep is an important parameter concerning the numerical stability of DEM 

simulations. In the linear spring-dashpot model of Rocky, the calculation of timestep can 

be summarized into the following expression: 

Δ𝑡 ൌ
𝜋

2𝑁୼௧
௟ ඨ

𝑚∗

𝑘୬
ሺ3.23ሻ 

where 𝑚∗ is the effective mass defined in Eq. (3.11); 𝑘୬ is the normal stiffness defined 

in Eq. (3.7); 𝑁୼௧
௟  is the minimum number of timesteps per loading cycle, which is set as 

Fig. 3.4. Periodic boundaries (after O'Sullivan, 2011). 
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15 in this thesis (𝑁୼௧
௟  should be larger than 4). 

 

3.5. Micro and macro quantities in DEM simulations 

The micro and macro quantities, e.g., void ratio and stress tensor, in DEM code are 

generally measured by a measurement sphere or cube. In Rocky, the measuring cube is 

used, as shown in Fig. 3.5. A measurement cube can be further divided into several sub-

cubes (bins). 

 

3.5.1. Void ratio 

The volume fraction, 𝜙௜, of the bin i in the measurement cube is given by: 

𝜙௜ ൌ
1
𝑉௜
෍െ

ே೔

௣ୀଵ

𝑚௣

𝜌௣
ሺ3.24ሻ 

Fig. 3.5. Measurement cube in a granular assembly. 
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where 𝑉௜ is the volume of the bin i in the measurement region; 𝑁௜ is the number of 

particles in the bin i; 𝑚௣ is the mass of the particle p; 𝜌௣ is the density of the particle 

p. The volume fraction in Rocky DEM represents the volume of the block occupied by 

particles. Since it takes into account the sum of the volume of all particles that have nodes 

(mass centroid) located inside the corresponding block, it can return a value above 1 in 

cases where the ratio between particle size and the block volume is small. The void 

fraction, or porosity of bin i, 𝑛௜, is given by: 

𝑛௜ ൌ 1 െ 𝜙௜ ሺ3.25ሻ 

the void ratio of bin i, 𝑒௜, is given by: 

𝑒௜ ൌ
𝑛௜
𝜙௜

ሺ3.26ሻ 

 

3.5.2. Stress tensor 

The stress tensor of a particle p, 𝜎௜௝
௣, is given by: 

𝜎௜௝
௣ ൌ

1
𝑉௣
෍𝑥௜

௖𝑓௝
௖

ே೛
೎

௖ୀଵ

ሺ3.27ሻ 

where 𝑉௣ is the volume of particle p; 𝑥௜
௖ is the contact location of pair ij; 𝑓௝

௖ is the 

contact force of pair ij; 𝑁௣௖ is the number of contacts of particle p. The average stress 

tensor for the bin k is computed as: 
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𝜎௜௝
௞ ൌ

1
𝑉௞
෍𝜎௜௝

௣𝑉௣

ேೖ

௣ୀଵ

ሺ3.28ሻ 

where 𝑉௞ is the volume of bin k; 𝑉௣ is the volume of particle p; 𝑁௞ is the number of 

particles in the bin k; 𝜎௜௝
௣ is the stress tensor of particle p defined in Eq. (3.27). 

 

3.5.3. Coordination number 

The coordination number of particles in bin i, 𝑍௜, is given by: 

𝑍௜ ൌ
2𝑁ୡ௜

𝑁୮௜
ሺ3.29ሻ 

where 𝑁ୡ௜ and 𝑁୮௜  are the total number of contacts and particles in contacts in bin i, 

respectively. Since it considers only contacts located inside the corresponding block, 

some contacts (outside bin i) of particles that intersect the bin i boundary are not taken 

into account. Therefore, 𝑍௜ is smaller than the real coordination number 𝑍 defined in 

Eq. (2.6).  

 

3.5.4. Fabric tensor 

The contact-based fabric tensor in bin n is given by: 

𝛷௜௝
௡ ൌ

1
𝑁ୡ௡

෍𝑛௜
௡,௞𝑛௝

௡,௞ 

ேౙ
೙

௞ୀଵ

ሺ3.30ሻ 
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where 𝑁ୡ௡ is the total number of contacts in bin n; 𝑛௜
௡,௞ and 𝑛௝

௡,௞ denote the component 

of the k-th unit contact normal vector (inside bin n) in the i and j direction, respectively. 

 

3.6. Constant volume method in DEM simulations 

During the undrained cyclic loading, the pore fluid is generally assumed to be 

incompressible so that the granular assembly deforms without volume change. In DEM 

simulations, the volume of a granular packing is usually maintained constant during 

deformation to model an undrained condition. Then, the undrained response of a particle-

fluid coupling system can be simulated without explicit consideration of the fluid phase. 

Because there is no real fluid phase in the constant volume (CV) method, the excess pore 

water pressure in an isotropically consolidated triaxial specimen is usually taken to be 

Δ𝑢 ൌ 𝜎଴ െ 𝜎୦, where 𝜎଴ and 𝜎୦ are the initial confining pressure and horizontal stress, 

respectively. 

The CV method had been verified effective in laboratory element tests (Dyvik et 

al., 1987). However, a key assumption in this approach used in DEM is that the bulk 

modulus of the soil skeleton is much smaller than that of either the soil particle or the 

pore fluid (Yimsiri and Soga, 2010). The comparison of DEM simulations using the CV 

method to physical laboratory tests was conducted by some researchers, e.g., Ng and 

Dobry (1994) used the CV approach in a periodic cell during cyclic shear and find the 

result was qualitatively agreed with previously documented laboratory tests; Sitharam et 

al. (2009) conducted cyclic undrained triaxial compression simulation using the CV 

method and found that it is similar to the phenomenon in physical cyclic undrained 
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laboratory experiments. Recently, the CV method has been widely used in DEM 

simulation under undrained conditions (e.g., Sitharam et al., 2002, Shafipour and Soroush, 

2008; Yimsiri and Soga, 2010; Asadzadeh and Soroush, 2017; Nguyen et al., 2021; Yang 

et al., 2022).  

 

3.7. Quasi-static response in DEM simulations 

In DEM simulation, the premise of the definition of stress tensor and force chain is 

that the granular assembly is in a quasi-static state. This means that this particle system is 

not flowing or close to a state of equilibrium (O'Sullivan, 2011). Stress waves will 

propagate through the particle system if the deformation of it is too fast, e.g., rapid particle 

flow. Under this condition, the equilibrium stress level is less than the stress measured 

instantaneously, and the assumption of RVE fails. 

An index—inertial number, was pointed out by researchers, eg., da Cruz et al. (2005) 

and Radjai (2009), that can be used to judge whether the granular system is in a quasi-

static state. The inertia number is the ratio of time in the microscopic scale 𝑡୫୧ୡ୰୭ to time 

in the macroscopic scale 𝑡୫ୟୡ୰୭. 𝑡୫୧ୡ୰୭ refers to the duration of a particle of density 𝜌௦ 

and of diameter 𝑑 pass through a plane under pressure 𝑃. As 𝑚~𝜌௦𝑑ଷ,𝑎~ ௗ

௧ౣ౟ౙ౨౥
మ , and 

𝐹~𝑃𝑑ଶ, substitute into Newton’s law of motion defined in Eq. (3.1) yields 

𝑡୫୧ୡ୰୭ ൌ
𝑑

ඥ𝑃/𝜌௦
ሺ3.31ሻ 

where 𝑚 is particle mass; 𝑎 is particle acceleration; 𝐹 is the total force acting on the 
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particle. 𝑡୫ୟୡ୰୭ is the reciprocal of the strain rate 𝛾ሶ . Therefore, the inertial number 𝐼, is 

expressed as 

𝐼 ൌ
𝑡୫୧ୡ୰୭
𝑡୫ୟୡ୰୭

ൌ
|𝛾ሶ |𝑑

ඥ𝑃/𝜌௦
ሺ3.32ሻ 

or 

𝐼 ൌ |𝛾ሶ |ට
𝑚
𝑃𝑑

ሺ3.33ሻ 

A small inertial number (𝐼 ≪ 1 ) indicates that the macroscopic deformation of the 

granular system is significantly slower than the microscopic rearrangement of particles 

(Fei et al., 2020). In other words, the inertia forces acting on particles are much lower 

than the interparticle contact forces (O'Sullivan, 2011). In general, 𝐼 ൏ 10ିଷ is widely 

used as the criteria to assess whether the granular material is in a quasi-static state (e.g., 

Soroush and Ferdowsi, 2011; Martin et al., 2020; Yang et al., 2022).  
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CHAPTER 4 LIQUEFACTION UNDER SURFACE-WAVE 

STRAIN CONDITIONS 

4.1. Introduction 

Strong ground surface motions may be predominated by surface waves, which will 

cause or aggravate liquefaction. To clarify the liquefaction behavior of granular materials 

under the influence of surface waves, a series of numerical tests based on the 3D DEM 

was performed for granular packing subject to SH-, Love-, and Rayleigh-wave strain 

conditions, that is, the strain paths generated by these waves without considering their 

natural characteristics (e.g., period and wavelength). Firstly, under the assumption of 

constant volume (undrained condition), the equation governing the strain–time 

relationships of SH, Love, and Rayleigh waves was derived from elastic wave theory. 

Subsequently, the undrained cyclic shear responses of K0-consolidated specimens under 

different strain conditions (loading paths) were simulated using the 3D DEM. Finally, the 

liquefaction characteristics of specimens under different strain conditions were analyzed 

at both the macroscopic and microscopic scales. 

 

4.2. SH- and Surface-wave strain conditions 

4.2.1. SH-wave strain conditions 

SH waves are shear waves with particle motion in the horizontal plane. As shown 

in Fig. 4.1, in a 3D Cartesian coordination system, assuming that SH waves propagate in 
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the zx-plane and its particle motion is along the y-direction, the displacement equation of 

SH waves in unbounded media can be expressed as follows (Pujol, 2003): 

𝒖ୗୌ ൌ 𝐴𝒂௬exp ሼiሾ𝜔𝑡 െ 𝑘ሺ𝑙𝑥 ൅ 𝑚𝑧ሻሿሽ ሺ4.1ሻ 

where uSH is the displacement vector of a particle during the propagation of SH waves; A 

is the scalar factor determined by the boundary condition and propagation medium; ay is 

the unit vector along the y-direction; i is the imaginary unit; ω is the angular frequency; t 

is the time; k is the wavenumber. Assuming β is the unit vector of the velocity of SH 

waves, l is the length of the vector component of β in the x-direction, and m is the length 

of the vector component of β in the z-direction. The strain can be derived from its 

corresponding displacement field as follows: 

⎩
⎪
⎨

⎪
⎧𝜀௫௫ ൌ

∂𝒖௫
∂𝑥

, 𝜀௬௬ ൌ  
∂𝒖௬
∂𝑦

, 𝜀௭௭ ൌ  
∂𝒖௭
∂𝑧

𝛾௭௫ ൌ  
∂𝒖௭
∂𝑥

൅
∂𝒖௫
∂𝑧

, 𝛾௫௬ ൌ  
∂𝒖௫
∂𝑦

൅
∂𝒖௬
∂𝑥

, 𝛾௬௭ ൌ  
∂𝒖௬
∂𝑧

൅
∂𝒖௭
∂𝑦

 
ሺ4.2ሻ 

Fig. 4.1. Propagation of SH waves. 
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where 𝜀௫௫ , 𝜀௬௬ , and 𝜀௭௭  are the normal strains in the x-, y-, and z-directions, 

respectively; 𝛾௭௫, 𝛾௫௬, and  𝛾௬௭ denote the engineering shear strains in the zx-, xy-, and 

yz-planes, respectively; ux, uy, and uz represent the components of the displacement field 

in the x-, y-, and z-directions, respectively. Therefore, the strain components of the SH 

wave are as follows: 

൞
𝛾௫௬ ൌ

∂𝒖௬
∂𝑥

ൌ 𝐴𝑘𝑙sinሾ𝜔𝑡 െ 𝑘ሺ𝑙𝑥 ൅ 𝑚𝑧ሻሿ

𝛾௬௭ ൌ
∂𝒖௬
∂𝑧

ൌ 𝐴𝑘𝑚sinሾ𝜔𝑡 െ 𝑘ሺ𝑙𝑥 ൅ 𝑚𝑧ሻሿ
ሺ4.3ሻ

As shown in Eq. (4.3), the engineering shear strain of SH waves, which is based on a sine 

function, can be decomposed into two components (horizontal component 𝛾௫௬  and 

vertical component 𝛾௬௭). In addition, the shear strain amplitude of each component is 

determined by the propagation direction of the SH waves. Although it is often assumed 

that liquefaction is due to the upward propagation of shear waves, in this study, two types 

of SH-wave strain conditions were considered: SH waves propagating horizontally and 

vertically upward. The former case is defined as the SHH-wave strain condition, in which 

Fig. 4.2. Deformation of soil elements under (a) SHH-wave strain condition and (b)

SHV-wave strain condition. 
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shear strain was applied in the xy-plane. The latter case is defined as the SHV-wave strain 

condition, in which shear strain was applied in the yz-plane. In natural ground (K0-

consolidated soil), the deformation of soil elements under SHH- and SHV-wave strain 

conditions are shown in Fig. 4.2. Because the normal stress in the vertical direction (σz) 

was much larger than that in the horizontal direction (σx and σy), the two conditions were 

not equivalent for different magnitudes of shear stress.  

 

4.2.2. Love-wave strain conditions 

In elastodynamics, Love waves occur owing to the interference of SH waves. In 

this study, Love waves were assumed to propagate through an isotropic elastic layer over 

a half-space, as shown in Fig. 4.3, where β is the shear wave velocity, ρ is the density, G 

is the shear modulus, and H is the interface depth. The subscripts 1 and 2 indicate the 

surface water-saturated sand layer and the bedrock half-space, respectively. G, ρ, and β 

satisfy: 

𝛽 ൌ ඨ
𝐺
𝜌

ሺ4.4ሻ 

Assuming that the Love waves propagate along the x-direction, the displacement equation 

of Love waves in the isotropic elastic surface layer can be described as follows (Pujol, 

2003):  

⎩
⎨

⎧
𝒖୐ ൌ 𝐵𝒂௬cosሺ𝜂ଵ𝑘𝑧ሻexp ሾi𝑘ሺ𝑐𝑡 െ 𝑥ሻሿ;  0 ൏ 𝑧 ൏ 𝐻

𝜂ଵ ൌ ඨ
𝑐ଶ

𝛽ଵ
ଶ െ 1 

ሺ4.5ሻ 
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where uL is the displacement vector of a particle during the propagation of Love waves, 

B is the coefficient determined by the boundary condition and propagation medium, and 

c is the velocity of Love waves, which is between β1 and β2. Therefore, the strains of Love 

waves are expressed as follows: 

ቊ
𝛾௫௬ ൌ 𝐵𝑘cosሺ𝜂ଵ𝑘𝑧ሻsinሺ𝜔𝑡 െ 𝑘𝑥ሻ
𝛾௬௭ ൌ െ𝜂ଵ𝐵𝑘sinሺ𝜂ଵ𝑘𝑧ሻcosሺ𝜔𝑡 െ 𝑘𝑥ሻ

ሺ4.6ሻ 

As shown in Eq. (4.6), the engineering shear strain of Love waves can be decomposed 

into two components (horizontal component 𝛾௫௬ and vertical component 𝛾௬௭). However, 

a phase difference of π/2 exists between the two components. Therefore, as shown in Fig. 

4.4, in the natural ground, the soil element under the Love-wave strain condition is subject 

to shear strains in the vertical plane (yz-plane) and horizontal plane (xy-plane) 

simultaneously. The aspect ratio (AR) can be defined as the ratio of shear strain amplitude 

of two components in a specified depth z0; hence, the AR of Love waves is expressed as 

follows: 

Fig. 4.3. Medium model for Love wave propagation. 
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AR ൌ
Max൫𝛾௬௭൯

Max൫𝛾௫௬൯
ൌ 𝜂ଵtanሺ𝜂ଵ𝑘𝑧଴ሻ ሺ4.7ሻ 

Theoretically, the AR can be from 0 to infinity (∞). In fact, Love waves exhibit dispersion. 

This means that the velocity of the Love waves varies with the frequency. As a result, at 

a specified depth z0, the shear strain amplitudes and AR of Love waves will be affected 

by their frequency. 

Except for the dispersion features, Love waves typically have larger amplitudes and 

lower predominant frequencies than SH waves (Novotny, 1999). In this study, to simplify 

the problem, only the differences in the deformation mode, including the strain 

component, phase difference, and AR, were considered. Therefore, the deformations of 

the granular packings under different Love-wave strain conditions were assumed to be at 

the same frequency and strain level. 

 

Fig. 4.4. Deformation of soil elements under Love-wave strain condition
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4.2.3. Rayleigh-wave strain condition 

A Rayleigh wave is a surface wave including both longitudinal and transverse 

motions. However, due to its high non-linearity, an accurate mathematical formulation 

for Rayleigh waves in the real ground is very difficult to determine. In addition, the 

characteristics of Rayleigh waves change during the progressive weakening of the soil. 

Therefore, this paper does not attempt to seek the response of saturated soil during the 

propagation of real Rayleigh waves but aims to investigate the influence of the 

deformation modes resulting from Rayleigh waves on the liquefaction characteristics of 

granular materials, which is more practical in geotechnical engineering. Hence, in the 

following analyses, a relatively simple medium model was used, and the emphasis was 

placed on obtaining the possible deformation mode of the soil element under Rayleigh 

wave propagations, which was hereinafter referred to as the Rayleigh-wave strain 

conditions. 

For simplification, it was assumed that Rayleigh waves propagate along the surface 

of a homogeneous, isotropic, and elastic solid half-space. As illustrated in Fig. 4.5(a), if 

the xy-plane coincides with the surface of the half-space, the scalar form of the 

displacement governing equation of Rayleigh waves traveling in the x-direction can be 

expressed as follows (Pujol 2003): 

⎩
⎪
⎨

⎪
⎧𝑢௫ ൌ 𝑄 ቈexpሺെ𝛾ఈ𝑘𝑧ሻ െ ቆ1 െ

𝑐ଶ

2𝛽ଶ
ቇ exp൫െ𝛾ఉ𝑘𝑧൯቉ sinሺ𝜔𝑡 െ 𝑘𝑥ሻ ≡ 𝑄𝑈ሺ𝑧ሻsinሺ𝜔𝑡 െ 𝑘𝑥ሻ

𝑢௭ ൌ 𝑄𝛾ఈ ൥െ expሺെ𝛾ఈ𝑘𝑧ሻ ൅ ቆ1 െ
𝑐ଶ

2𝛽ଶ
ቇ
ିଵ

exp൫െ𝛾ఉ𝑘𝑧൯൩ cosሺ𝜔𝑡 െ 𝑘𝑥ሻ ≡ 𝑄𝛾ఈ𝑊ሺ𝑧ሻcosሺ𝜔𝑡 െ 𝑘𝑥ሻ

ሺ4.8ሻ 

where ux and uz denote the displacement components of a particle in Rayleigh waves along  
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the x- and z-directions, respectively, Q is a constant, k is the wavenumber, c is the velocity 

of the Rayleigh waves, ω is the angular frequency, t is the time, and γα and γβ are defined 

as: 

𝛾ఈ ൌ ඥ1 െ 𝑐ଶ/𝛼ଶ, 𝛾ఉ ൌ ඥ1 െ 𝑐ଶ/𝛽ଶ ሺ4.9ሻ 

where α and β represent the velocities of P and SV waves, respectively, which are larger 

than c. As the stress vector across the medium surface is zero, Rayleigh waves should 

satisfy the following period equation: 

ሺ2 െ 𝑐ଶ/𝛽ଶሻଶ െ 4𝛾ఈ𝛾ఉ ൌ 0 ሺ4.10ሻ 

From Eq. (4.8), it can also be determined that the motion of a particle in Rayleigh waves 

is elliptical on the zx-plane, as illustrated in Fig. 4.5. If k is constant, angle θ can be 

expressed as (Pujol 2003): 

tan𝜃 ൌ
𝑢௫ 
𝑢௭

ൌ
𝑈ሺ𝑧ሻ
𝑊ሺ𝑧ሻ𝛾ఈ

tanሺ𝜔𝑡 െ 𝑘𝑥ሻ ሺ4.11ሻ 

Since P waves travel faster than SV or Rayleigh waves, W(z) and γα are positive. U(z) is 

initially positive and becomes negative as z increases. Therefore, θ increases with t near 

the half-space surface, whereas it decreases with t when z exceeds z0, where z0 can be 

determined from U(z0) = 0. This means that the particle motion is retrograde near the half-

space surface and is prograde below threshold depth z0, as illustrated in Fig. 4.5. 

The strain components of a soil element caused by Rayleigh waves are given by: 
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⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧𝜀௫ ൌ

∂𝑢௫
𝜕𝑥

     ൌ െ𝑄𝑘 ቈexpሺെ𝛾ఈ𝑘𝑧ሻ െ ቆ1 െ
𝑐ଶ

2𝛽ଶ
ቇ exp൫െ𝛾ఉ𝑘𝑧൯቉ cosሺ𝜔𝑡 െ 𝑘𝑥ሻ

𝜀௭ ൌ
∂𝑢௭
𝜕𝑧

     ൌ 𝑄𝑘𝛾ఈ ൥𝛾ఈ expሺെ𝛾ఈ𝑘𝑧ሻ െ 𝛾ఉ ቆ1 െ
𝑐ଶ

2𝛽ଶ
ቇ
ିଵ

exp൫െ𝛾ఉ𝑘𝑧൯൩ cosሺ𝜔𝑡 െ 𝑘𝑥ሻ 

𝛾௭௫ ൌ
∂𝑢௫
∂𝑧

൅
∂𝑢௭
∂𝑥

       ൌ 𝑄𝑘 ൝െ2𝛾ఈ expሺെ𝛾ఈ𝑘𝑧ሻ ൅ ൥𝛾ఉ ቆ1 െ
𝑐ଶ

2𝛽ଶ
ቇ ൅ 𝛾ఈ ቆ1 െ

𝑐ଶ

2𝛽ଶ
ቇ
ିଵ

൩ exp൫െ𝛾ఉ𝑘𝑧൯ൡ sinሺ𝜔𝑡 െ 𝑘𝑥ሻ

ሺ4.12ሻ 

where εx and εz are the normal strains generated along the x- and z-directions, respectively, 

and γzx is the engineering shear strain occurring in the zx-plane. As illustrated in Fig. 4.5(b), 

the strain resulting from Rayleigh waves is planar. It consists of one shear strain and two 

normal strain components, and there is a phase difference of π/2 between the shear and 

normal strain components. Specifically, strain conditions with the above characteristics 

are called the Rayleigh-wave strain conditions in this thesis. 

In the study of liquefaction, soils are generally assumed to be undrained, and the 

volume of the soil element remains constant during cyclic loading. Therefore, Rayleigh-

wave strain conditions were hereinafter specified to be under a constant volume situation. 

Under this assumption, the bulk modulus K of the medium is considered to approach +∞. 

As 𝛼 ൌ ඥሾ𝐾 ൅ ሺ4/3ሻ𝜇ሿ/𝜌 , where μ is the shear modulus and ρ is the density of the 

medium, the velocity of the P waves, 𝛼 also approaches +∞. Thus, εx and εz are equal in 

absolute value and opposite in sign. The ratio of the shear strain amplitude to the normal 

strain amplitude (RSN) under Rayleigh-wave strain conditions can be expressed as 

follows: 
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RSN ൌ
𝛾ୟ୫୮
𝜀ୟ୫୮

ൌ ተ
ተ
2𝛾ఈexpሺെ𝛾ఈ𝑘𝑧ሻ െ ቈ𝛾ఉ ൬1 െ

𝑐ଶ

2𝛽ଶ൰ ൅ 𝛾ఈ ൬1 െ
𝑐ଶ

2𝛽ଶ൰
ିଵ

቉ expሺെ𝛾ఉ𝑘𝑧ሻ

expሺെ𝛾ఈ𝑘𝑧ሻ െ ൬1 െ 𝑐ଶ
2𝛽ଶ൰ expሺെ𝛾ఉ𝑘𝑧ሻ

ተ
ተ ሺ4.13ሻ 

where γamp is the amplitude of γzx, and εamp is the amplitude of εx and εz. Because 𝜀௫ ൌ

െ𝜀௭, it can be derived from Eq. (4.12) that ቀ1 െ ௖మ

ଶఉమ
ቁ ൌ 𝛾ఈ𝛾ఉ ቀ1 െ ௖మ

ଶఉమ
ቁ
ିଵ

. Therefore, 

Eq. (4.13) can be simplified as: 

RSN ൌ ተ
ተ
2𝛾ఈ expሺെ𝛾ఈ𝑘𝑧ሻ െ

𝛾ఉ
ଶ ൅ 1
𝛾ఉ

൬1 െ 𝑐ଶ

2𝛽ଶ൰ exp൫െ𝛾ఉ𝑘𝑧൯

expሺെ𝛾ఈ𝑘𝑧ሻ െ ൬1 െ 𝑐ଶ
2𝛽ଶ൰ exp൫െ𝛾ఉ𝑘𝑧൯

ተ
ተ ሺ4.14ሻ 

From Eq. (4.10), it can be derived that ൫1 ൅ 𝛾ఉ
ଶ൯

ଶ
ൌ 4𝛾ఈ𝛾ఉ. Therefore, Eq. (4.14) can be 

simplified as: 

RSN ൌ 2𝛾ఈ ተተ
expሺെ𝛾ఈ𝑘𝑧ሻ െ

2
𝛾ఉ
ଶ ൅ 1

൬1 െ 𝑐ଶ

2𝛽ଶ൰ exp൫െ𝛾ఉ𝑘𝑧൯

expሺെ𝛾ఈ𝑘𝑧ሻ െ ൬1 െ 𝑐ଶ
2𝛽ଶ൰ exp൫െ𝛾ఉ𝑘𝑧൯

ተተ ሺ4.15ሻ 

Because ቀ1 െ ௖మ

ଶఉమ
ቁ ൌ

ఊഁ
మାଵ

ଶ
, Eq. (4.15) can be simplified as: 

RSN ൌ 2𝛾ఈ ተ
expሺെ𝛾ఈ𝑘𝑧ሻ െ exp൫െ𝛾ఉ𝑘𝑧൯

expሺെ𝛾ఈ𝑘𝑧ሻ െ ൬1 െ 𝑐ଶ
2𝛽ଶ൰ exp൫െ𝛾ఉ𝑘𝑧൯

ተ ൌ 2𝛾ఈ ተ
1 െ exp൫𝛾ఈ െ 𝛾ఉ𝑘𝑧൯

1 െ ൬1 െ 𝑐ଶ
2𝛽ଶ൰ exp൫𝛾ఈ െ 𝛾ఉ𝑘𝑧൯

ተ ሺ4.16ሻ 

Because lim
ఈ→ାஶ

𝛾ఈ ൌ 1 , it can be derived from Eq. (4.10) that lim
ఈ→ାஶ

𝛾ఉ ൌ 0.296 . 

Therefore, Eq. (4.16) can be simplified as: 
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RSN ൌ 2 ቤ
expሺ0.704𝑘𝑧ሻ െ 1

1 െ 0.544expሺ0.704𝑘𝑧ሻ
ቤ , 𝑧 ∈ ሾ0,൅∞ሻ ሺ4.17ሻ 

As k = 2π/λR, where λR is the wavelength of the Rayleigh waves, RSN is a function of the 

relative depth, z/λR. It can be easily proved that RSN varies in the non-negative real 

number field (i.e., 0 ~ +∞). As illustrated in Fig. 4.6, RSN increases rapidly from 0 to +∞ 

within relative threshold depth z0/λR, then decreases rapidly with relative depth, and 

finally converges to 3.68. Specifically, z0/λR = 0.138. However, it should be noted that, 

although RSN depends on the λR in the Rayleigh waves, RSN in Rayleigh-wave strain 

conditions is not related to the real depth. RSN is only related to the shape of the strain 

path under Rayleigh-wave strain conditions. When RSN = 0, there is no shear strain 

component and the deformation of the soil element is in the pure shear mode; when RSN 

→ +∞, there is no normal strain component and the deformation of the soil element is in 

the simple shear mode; and when RSN ∈ ሺ0,൅∞ሻ, the deformation of the soil element is 

Fig. 4.6. Variation in RSN with relative depth. 
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in the superposition mode of pure shear and simple shear. By the way, the difference 

between pure shear and simple shear is shown in Fig. 4.7. In the simple shear mode, 

parallel planes in a soil element remain parallel and maintain a constant distance, while 

being translated relative to each other. In the pure shear mode, the soil element is 

elongated in one direction while being shortened perpendicularly, and involve no 

principal strain rotation as in the simple shear mode. 

 

4.3. DEM simulations 

In this study, simulations were performed using the commercial code—Rocky 

(ESSS., 2020). Only spherical particles were used to improve the computation efficiency. 

The interaction model comprised a normal force, a tangential force, and a rolling 

resistance model, as introduced in Section 3.2. They were the linear spring dashpot model, 

linear spring Coulomb limit model, and linear spring rolling limit model, respectively.  

Fig. 4.7. Difference between simple shear and pure shear. 



CHAPTER 4  LIQUEFACTION UNDER SURFACE-WAVE STRAIN CONDITIONS 

72 

 

4.3.1. Angle of repose test 

The angle of repose (AoR) was used as the calibration criterion. The bulk response 

of the granular materials is simultaneously affected by the multiple microscopic 

properties. This means that the same AoR of the granular materials in the 3D DEM 

simulations can be achieved by different combinations of parameter values. According to 

Derakhshani et al. (2015), the coefficients of rolling and sliding friction are the two main 

parameters affecting the macroscopic properties. In other words, the friction coefficient 

μ and the rolling resistance coefficient μr have a direct influence on the reliability of the 

simulation results. Therefore, in this study, the values for some of the parameters were 

predetermined based on values in the literature. The friction coefficient μ = 0.5 was 

usually used in DEM simulations for granular materials (e.g., Sitharam and Dinesh, 2003; 

Soroush and Ferdowsi, 2011; Guo and Zhao, 2013; Wei et al., 2020), then only the rolling 

resistance coefficient required determination. A series of AoR tests were conducted 

numerically using the hollow cylinder method (Al-Hashemi and Al-Amoudi, 2018) to 

determine the rolling resistance coefficient. The hollow cylinder method was usually 

applied to determine the static angle of repose of a cohesionless material (Al-Hashemi 

and Al-Amoudi, 2018). The parameters used in the hollow cylinder method are shown in 

Table 4.1.  
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Table 4.1. Parameters used in the hollow cylinder method 

Particles 

Diameter (mm) 

Density (g/cm3) 

Young’s modulus (N/m2) 

Poisson's ratio 

 

0.4 

2.667 

1.0×108 

0.3 

Hollow cylinder (rigid wall) 

Young’s modulus (N/m2) 

Diameter (mm) 

Height (mm) 

 

1.0×109 

10.8 

33.0 

Base (rigid wall) 

Elastic modulus (N/m2) 

  Length (mm) 

 

1.0×109 

60.0 

Interactions between particles 

  Static friction coefficient 

  Dynamic friction coefficient 

Coefficient of restitution 

Tangential stiffness ratio 

 

0.5 

0.5 

0.3 

1.0 

Interactions between particles and rigid walls 

  Static friction coefficient 

Dynamic friction coefficient 

Coefficient of restitution 

Tangential stiffness ratio 

 

0.5 

0.5 

0.3 

1.0 

Computational parameters 

  Gravity (m/s2) 

  Timestep (s) 

 

9.81 

1.56×10-7 
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Firstly, the granular material was placed into a hollow cylinder which was on the 

base, as shown in Fig. 4.8. The friction coefficient between the particle and the boundary 

was the same as the friction coefficient between particles. Secondly, the hollow cylinder 

was subsequently pulled off of the base at speed of 5 mm/s. After particles stopped 

moving, the angle of repose could be obtained in post-processing. In the direction of the 

radius, a measurement cube was set up. The measurement cube was divided into 30 sub-

cubes in the radial direction, as shown in Fig. 4.9. In each sub-cube, the maximum height 

of particles was counted. Furthermore, ignoring the maximum and minimum heights of 

the particles, the angle of repose of the particle material could be calculated by the least-

squares method. Fig. 4.10 shows the relationship between the angle of repose and the 

rolling resistance coefficient when the static and dynamic friction coefficient equaled 0.5. 

Finally, the rolling resistance coefficient was set as 0.35, which resulted in a combination 

of parameter values corresponding to an AoR of 30.9°.  

Fig. 4.8. Granular material in a hollow cylinder. 
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4.3.2. Specimen generation  

 After determining the parameters, the numerical specimens for the simulation tests 

were generated. Except for the friction coefficient between particles and rigid walls, the 

parameters concerning the particle, boundary, and interaction models were kept the same 

as that in the angle of repose tests. Each specimen was generated by following the 

procedure below: First, a rectangular cuboid volume element measuring 10 mm × 10 mm 

× 20 mm was formed by six frictionless boundary walls. Second, particles from an inlet 

Fig. 4.10. Effect of rolling resistance coefficient on the angle of repose. 

Fig. 4.9. Post-processing in Hollow cylinder method. 
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below the upper boundary wall were dispersed uniformly into the bottom of the space. 

During this process, the gravitational acceleration was set to 0.1 m/s2 such that the 

particles would rebound slightly and a homogenous specimen would be obtained. Third, 

the volume element was compacted into a cube by moving the upper boundary wall 

downward at a constant speed of 0.2 mm/s. In this step, the rolling resistance coefficient 

was adjusted iteratively before compaction to ensure that the specimen reached a mean 

effective stress state of 100 kPa. Finally, the rolling resistance coefficient was set to 0.35 

again. The generated specimen (granular packing) is shown in Fig. 4.11 and it was in the 

K0-consolidation state. Specimens with void ratios of 0.79 (loose) and 0.75 (medium 

dense) were generated to represent soil elements of different bulk densities containing 

16,672 and 17,053 particles, respectively. The K0-values of the specimens with void ratios 

of 0.79 and 0.75 were 0.54 and 0.60, respectively. Specifically, K0 = (σx + σy)/2σz, where 

σx, σy, and σz are the normal stresses acting in the x-, y-, and z-directions, respectively.  

Fig. 4.11. A generated numerical specimen. 



CHAPTER 4  LIQUEFACTION UNDER SURFACE-WAVE STRAIN CONDITIONS 

77 

 

4.3.3. Simulation conditions 

Nine types of cyclic strain were applied to the specimens to cover the strain features 

of SHH-wave strain condition, SHV-wave strain condition, Love-wave strain conditions 

with AR = 0.25, 1, and 4, and Rayleigh-wave strain conditions with RSN = 0, 0.25, 1, and 

4, respectively. Especially, the Rayleigh-wave strain condition with an RSN = +∞, the 

Love-wave strain condition with an AR = +∞, and the SHV-wave strain condition are 

equivalent; the Love-wave strain condition with an AR = 0 equals the SHH-wave strain 

condition. The deformation of the specimens was achieved by moving the boundary walls. 

During cyclic loading, the specimen volume was kept constant to avoid the computational 

complexity of the fluid-coupled model (CV method). Furthermore, no gravity was applied 

to the sample to reproduce the particle suspension phenomenon in the liquefied state. 

The accumulated equivalent strain, ε*
eqv (Jiang et al., 2021), was adopted to evaluate 

the level of cumulative change in strains under different Rayleigh-wave strain conditions. 

It is defined as 

𝜀ୣ୯୴∗ ൌ෍ඨ
4
3
𝐽ଶ∆ఌ 

ൌ෍ඨ
2
9
ቂ൫∆𝜀௫ െ ∆𝜀௬൯

ଶ
൅ ൫∆𝜀௬ െ ∆𝜀௭൯

ଶ
൅ ሺ∆𝜀௭ െ ∆𝜀௫ሻଶቃ ൅

1
3
൫∆𝛾௫௬ଶ ൅ ∆𝛾௬௭ଶ ൅ ∆𝛾௭௫ଶ ൯ ሺ4.18ሻ 

where J2Δε is the second invariant of the deviatoric strain increment tensor, Δεx, Δεy, and 

Δεz are the normal strain increments in the x-, y-, and z-directions, respectively, and Δγxy, 

Δγyz, and Δγzx are the engineering shear strain increments generated in the xy-, yz-, and zx-

planes, respectively. The maximum shear strain amplitudes under the SHH- and SHV-
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wave strain conditions were set to be 1.00%. The maximum strain amplitudes under other 

strain conditions were determined by making the increment in ε*
eqv per loading cycle the 

same as that under the SHH- and SHV- wave strain conditions; they are summarized in 

Table 4.2. 

Table 4.2. Maximum strain amplitudes under each strain condition 

Condition 
Maximum 

εx or εz 

Maximum 

γxy 

Maximum 

γyz  

Maximum 

γzx 

SHH 

SHV 

Love, AR = 0.25 

Love, AR = 1 

Love, AR = 4 

Rayleigh, RSN = 0 

Rayleigh, RSN = 0.25 

Rayleigh, RSN = 1 

Rayleigh, RSN = 4 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

0.50% 

0.49% 

0.41% 

0.83% 

1.00% 

0.00% 

0.23% 

0.64% 

0.93% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

1.00% 

0.93% 

0.64% 

0.23% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

0.12% 

0.41% 

0.21 % 

Fig. 4.12 illustrates the loading paths under each strain condition, in which γ is the 

shear strain, ε is the normal strain, including εx and εz (εx = ‒ εz, and the direction of ε axis 

is consistent with εz). The strain amplitudes gradually increased from 0 to their maximum 

value within 10 cycles, and then remained constant. This loading method caused the 

applied strain to cover a wide range of amplitudes (El Shamy and Denissen, 2012), 

facilitating the elimination of the influence of different initial states under different ARs 

and RSNs on the controlled trials as well (the initial phases of γyz under Love-wave strain 

conditions with AR = 0.25 and 1, the initial phases of γxy under Love-wave strain condition 

with AR = 4) and γzx under Rayleigh-wave conditions are π/2). Since there was only one 

shear strain component or only normal strain components, the strain paths are vertical or 
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Fig. 4.12. loading paths under different strain conditions defined in this study (γ is the 

shear strain, and ε is the normal strain including εx and εz; εx = − εz and the direction of 

the ε axis is consistent with εz). 
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horizontal lines under SH-wave strain conditions (Fig. 4.12(a)) and the Rayleigh-wave 

strain condition with RSN = 0 (Fig. 4.12(e)), respectively. In contrast, the strain paths are 

ellipses or circles under other strain conditions because two shear strain components 

(Love-wave strain conditions), or shear and normal strain components (Rayleigh-wave 

strain conditions with RSN = 0.25, 1, and 4) exist simultaneously and they are out of 

phase by π/2.  

The simulations were run under quasi-static conditions, where the inertial effects 

were ignorable and there was no strain-rate dependency. In this study, the cyclic loadings 

were all applied at a frequency of 5 Hz. The strain rate applied on specimens at this 

frequency satisfies the 𝐼 ൌ 𝜀ሶ𝑑ඥ𝜌/𝑝୔୘
ᇱ ൏ 2.5 ൈ 10ିଷ  criterion (Perez et al., 2016), 

where I is the inertial number, 𝜀ሶ is the strain rate, d is the diameter of the particles, ρ is 

the solid density, and pʹPT is the mean effective stress at the phase transformation.  

 

4.4. Simulation results 

4.4.1. Macroscopic scale 

4.4.1.1. Stress–strain relationship 

A measurement cube with a size of 9 mm × 9 mm × 9 mm was generated in the 

center of the specimen to measure the stress tensor. Fig. 4.13 shows the 3D shear stress 

relationship with the mean effective stress of the granular packings under each strain 

condition. The label of the x-axis represents mean effective stress. For SH- and Love-

wave strain conditions, labels of the y-axis and of the z-axis are τxy and τyz, respectively 

(Fig. 4.13(a)–(j)); for Rayleigh-wave strain conditions (SHV-wave strain condition can 
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be regarded as the Rayleigh-wave strain condition with RSN = +∞), labels of the y-axis 

and of the z-axis are τzx (except for τyz in the SHV-wave strain condition) and σv − σh, 

respectively (Fig. 4.13(k)–(t)), where 𝜎୴ ൌ 𝜎௭௭ and 𝜎୦ ൌ ሺ𝜎௫௫ ൅ 𝜎௬௬ሻ/2 . The change 

in the color of the paths from red to purple corresponds to a decrease in the mean effective 

stress from 100 kPa to approximately 0 kPa. Initially, because of the gradual application 

of shear strain, the shear stress (including stress σv − σh) amplitudes increased gradually 

with a slow decrease in the mean effective stress until the maximum shear stress 

amplitudes were attained. Subsequently, as the cyclic loading continued, the shear stress 

amplitudes and the mean effective stress decreased until initial liquefaction occurred. In 

this study, the initial liquefaction was defined by the mean effective stress being less than 

10−3 kPa the first time. Generally, the larger the amplitude of the strain in one direction 

or plane, the larger the shear stress amplitude in this direction or plane, which results in 

the different shapes of stress paths under different strain conditions. The dilatancy 

behavior appeared during cyclic loadings under SH-, Love-, and Rayleigh-wave strain 

conditions. Especially, the dilatancy behaviors are more obvious under SH-and Rayleigh-

wave strain conditions than under Love-wave strain conditions. Significantly, no obvious 

phase transformation was observed during cyclic loadings under the Love-wave strain 

condition with AR = 1, as shown in Fig. 4.13(g) and (h). 
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Fig. 4.13. Shear stress relationship with mean effective stress of granular packings under

SH-, Love, and Rayleigh-wave strain conditions in 3D space. 
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The effective stress reduction ratio (ESRR) evolution with the accumulated 

equivalent strain during the cyclic loadings is illustrated in Fig. 4.14, in which the ESRR 

is defined by: 

ESRR ൌ 1 െ
𝜎୫ᇱ

𝜎୫,଴
ᇱ ሺ4.19ሻ 

where σ´m denotes the mean effective stress, and σ´m,0 is the initial mean effective stress. 

In this study, instead of the excess pore water pressure ratio, ESRR was used to express 

the extent of effective stress reduction. Because in the K0-consolidated specimen, the 

amount of decrease in mean effective stress does not equal the amount of increase in 

excess pore water pressure. Furthermore, the CV method was used in simulations, in 

Fig. 4.14. Effective stress reduction ratio vs. accumulated equivalent strain. 



CHAPTER 4  LIQUEFACTION UNDER SURFACE-WAVE STRAIN CONDITIONS 

87 

 

which the fluid phase was not taken into consideration. Therefore, ESRR is a better choice 

than the excess pore water pressure ratio in this study. 

SH- and Love-wave strain conditions are simple shear modes or a combination of 

simple shear modes. Under these strain conditions, regardless of the specimen density, 

when the ESRR was less than 0.4, the loading paths did not have a significant effect on 

the increase in the ESRR in terms of speed (accumulated equivalent strain). However, 

when beyond 0.4, the ESRR under Love-wave strain conditions increased more rapidly 

than that under SH-wave strain conditions. The liquefaction rate in terms of the 

accumulated equivalent strain under Love-wave strain conditions was highly influenced 

by AR. When AR = 1, which meant that the shear strain amplitudes in two planes are the 

same, the specimens liquefied the fastest. When AR was farther from 1 (being closer to 0 

or +∞), which meant that the larger the difference between shear strain amplitudes in two 

planes, the specimens liquefied at a slower rate. The Rayleigh-wave strain condition is a 

combination of simple shear mode and pure shear mode. Under Rayleigh-wave strain 

conditions, the evolution of the ESRR was significantly affected by the RSN. In general, 

the smaller the RSN, which meant the larger the amplitude of normal strains, the faster 

the liquefaction rate of specimens. However, when RSN ≤ 1, the specimen under different 

Rayleigh-wave strain conditions liquefied at a similar rate. Generally, the order of 

liquefaction rate in terms of the accumulated equivalent strain was Rayleigh-wave strain 

conditions > Love-wave strain conditions > SH-wave strain conditions. 

In addition, fluctuations in the ESRR were observed during the cyclic loadings 

except for the Love-wave strain condition with AR = 1. This phenomenon concerning 

Love-wave strain conditions was consistent with the findings of Matsuda et al. (2011), 
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who concluded that the fluctuation in the effective stress (i.e., ESRR) was dominated by 

the change in the resultant shear strain Γ during cyclic loadings. In their experiments, 

shear strains in the vertical plane (γxz and γyz) were applied, and Γ is defined as 

𝛤 ൌ ට𝛾௫௭ଶ ൅ 𝛾௬௭ଶ ሺ4.20ሻ 

which shows the radial distance from the origin in the shear strain path of the vertical 

components. A larger amplitude of Γ will result in a larger fluctuation in the ESRR. In 

particular, in the case of multidirectional shear with two equal horizontal shear strain 

components and a phase difference of π/2, where Γ is a constant, the decrease in the 

effective stress ratio is smooth. In this study, although one of the shear strain components 

under the Love-wave strain condition was in the horizontal plane (γxy), the ESRR 

increased relatively smoothly when AR = 1. In addition, the fluctuation of the ESRR 

under the Love-wave strain condition with AR = 0.25 and 4 was larger than that under 

the Love-wave strain condition with AR = 1 but was similar to that under SH-wave strain 

conditions. Therefore, if replace γxz in Eq. (4.20) with γxy, it is reasonable to conclude that 

the fluctuation in the ESRR during cyclic loadings under the Love-wave strain condition 

was also affected by the amplitude of Γ.  

The fluctuations in the ESRR under Rayleigh-wave strain conditions were much 

greater than those under Love- and SH-wave strain conditions. Uthayakumar and Vaid 

(1998) pointed out that the undrained response of loose sand strongly depends on the 

inclination of the major principal stress direction to the deposition direction. Similarly, 

under Rayleigh-wave strain conditions, the normal strain component εz was consistent 

with the deposition direction. A larger amplitude of normal strain components and a 
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smaller amplitude of the shear strain component would make the principal strain 

increment closer to the deposition direction, which will be discussed in Section 4.4.2.1 

Therefore, compared to the SHV-wave strain condition (equal to the Rayleigh-wave strain 

condition with RSN = +∞) without pure shear mode, the Rayleigh-wave strain conditions 

containing a pure shear mode had a larger fluctuation in the ESRR during cyclic loadings. 

This phenomenon was prominent in a small strain amplitude range, as illustrated in Fig. 

4.15, which is the enlargement of a part of Fig. 4.14. These findings suggested that the 

positive dilatancy behavior of K0-consolidated soils in the pure shear mode was more 

sensitive to the strain level than that in the simple shear mode. 

Fig. 4.15. Effective stress reduction ratio versus accumulated 

equivalent strain (a) e = 0.79 and (b) e = 0.75 in small strain 

amplitude range (enlarged part of Fig. 4.14). 
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Fig. 4.16 illustrates the relationship between the von Mises stress and the mean 

effective stress under different strain conditions. The von Mises stress, σvM, is given by: 

𝜎୴୑ ൌ ඨ
1
2
ቂ൫𝜎௫ െ 𝜎௬൯

ଶ
൅൫𝜎௬ െ 𝜎௭൯

ଶ
൅ ሺ𝜎௭ െ 𝜎௫ሻଶ ൅ 6൫𝜏௫௬ଶ ൅ 𝜏௬௭ଶ ൅ 𝜏௭௫ଶ ൯ቃ ሺ4.21ሻ 

As the specimens were in the K0-consolidation state, the von Mises stress was not 

initially zero. In addition, the amplitude and average value of the von Mises stress during 

each cycle initially increased and then decreased with the gradual application of shear 

strain. An exception is that specimens with e = 0.79 under the SHH-wave strain condition 

and the Love-wave strain condition with AR = 0.25, as shown in Fig. 4.16(a), the average 

value of the von Mises stress of the granular packing with a void ratio of 0.79 during each 

cycle decreased from the first cycle. In addition, as shown in Fig. 4.16(a) and (b), the 

average values of the von Mises stress during each cycle under both the SHH-wave strain 

condition and the Love-wave strain condition with AR = 0.25 were smaller than those 

under either the SHV-wave strain condition or the Love-wave strain condition with 

AR = 4 when the mean effective stresses were approximately identical. These phenomena 

suggested that the proportion of the amplitude of the horizontal shear strain component 

(γxy) to the amplitude of the vertical shear strain component (γyz) affects the value of the 

von Mises stress. A higher proportion of the amplitude of the horizontal shear strain 

component would cause the granular packings to be subjected to smaller von Mises 

stresses in the K0-consolidation state when the granular packings were in the same mean 

effective stress state. 
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As shown in Fig. 4.16(a) and (b), the fluctuation in the von Mises stress under the 

Love-wave strain condition with AR = 1 was much smaller than that under the other 

conditions. In addition, the fluctuations in the von Mises stress under the Love-wave 

strain conditions with AR = 0.25 and 4 were smaller than those under the SHH- and SHV-

wave strain conditions, respectively. This phenomenon was consistent with the fact that 

the fluctuations in Γ under the Love-wave strain conditions with ARs = 0.25 and 4 were 

smaller than those under the SH-wave strain conditions but much larger than that under 

the Love-wave strain condition with AR = 1. Because of the anisotropy originating from 

the K0-consolidation, fluctuations in the von Mises stress were not zero in under the Love-

wave strain condition with AR = 1. It was reasonable to conclude that the fluctuation in 

the von Mises stress under cyclic loading was affected by the fluctuation in Γ. 

The specimens under Rayleigh-wave strain conditions containing a pure shear 

mode (RSN = 0, 0.25, 1, and 4) generally experienced a significantly larger magnitude of 

von Mises stress than those under the SHV-wave strain containing (equals Rayleigh-wave 

strain condition with RSN = +∞) only simple shear model. In a certain mean effective 

stress state, the maximum von Mises stress that the specimens endured increased with a 

decrease in the RSN. In particular, the difference disappeared when RSN ≤ 1. 

4.4.1.2. Liquefaction resistance 

Fig. 4.17 illustrates the evolution of the ESRR with NDE at the end of each loading 

cycle until the initial liquefaction. In this study, the normalized accumulated dissipation 

energy (NDE), defined as the accumulated dissipation energy normalized by the initial 

mean effective stress, was used to evaluate the resistance of granular materials to 

liquefaction under different loading conditions. The ESRR increased with the NDE, 
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which was similar to those shown in Fig. 4.14. When the ESRR was less than 0.4, the 

paths coincided under SH- and Love-wave strain conditions; when beyond 0.4, the ESRR 

increased more rapidly under the Love-wave strain conditions. Consequently, the granular 

packing under the Rayleigh-wave strain conditions and Love-wave strain conditions 

indicated a lower NDE when initial liquefaction occurred. Therefore, it can be concluded 

that granular materials under the surface-wave strain conditions were more vulnerable to 

liquefaction than those under the SH-wave strain conditions. In particular, the rate of 

decrease in the resistance to liquefaction under the Rayleigh- and Love-wave strain 

conditions was affected by the RSN and AR respectively. 

Fig. 4.17. Effective stress reduction ratio versus normalized accumulated

dissipation energy up to initial liquefaction: (a) e = 0.79 and (b) e = 0.75. 
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To quantitatively evaluate the degree to which surface-wave strain conditions may 

affect the liquefaction resistance of granular materials, the NDEs at the initial liquefaction 

under Love- and Rayleigh-wave strain conditions were compared with those under SH-

wave strain conditions, as shown in Fig. 4.18. The relative normalized accumulated 

dissipation energy (RNDE) was defined as the ratio of the NDE under each loading 

condition to that under the SHV-wave strain condition. Firstly, the histogram part of Fig. 

4.18 shows that the looser specimen was more vulnerable to liquefaction under all strain 

conditions. Secondly, the degree of decrease in the liquefaction resistance was affected 

by the void ratio of the granular packings. Compared with the granular packing with a 

void ratio of 0.79, the granular packing with a void ratio of 0.75 had a larger reduction in 

the RNDE under the Love-wave strain conditions and Rayleigh-wave strain conditions. 

Therefore, it could be concluded that the decrease in liquefaction resistance was more 

Fig. 4.18. Relationship of NDE and RNDE to AR/RSN at the initial liquefaction state. 
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remarkable for the denser specimen transitioning from under the SHV-wave strain 

condition to under the surface-wave strain conditions, especially to under Rayleigh-wave 

strain conditions. Lastly, as shown in the left part of Fig. 4.18, with an increase in the AR, 

the RNDE in the initial liquefaction firstly decreased and subsequently increased 

regardless of the void ratio. It reached the lowest value at AR = 1. In addition, the 

liquefaction resistance of granular materials under the SHH-wave strain condition was 

similar to that under the SHV-wave strain condition. In the right part of Fig. 4.18, as the 

RSN decreased from +∞ to 0, the RNDE dropped rapidly and then increased slightly. The 

specimen was most vulnerable to liquefaction when RSN = 1, where specimens suffered 

a loss in liquefaction resistance of more than 50%. However, the difference in liquefaction 

resistance was negligible when RSN ≤ 1.  

The liquefaction resistance of granular materials under Love-wave strain conditions 

was 80–100% of that under SH-wave strain conditions, whereas the liquefaction 

resistance of granular materials under Rayleigh-wave strain conditions might be lower 

than 50% of that under SH-wave strain conditions. Therefore, at the same strain level, it 

could be concluded that the Rayleigh-wave strain condition with a low RSN value would 

make granular materials more vulnerable to liquefaction than Love-wave strain 

conditions, and granular materials under Love-wave strain conditions were more likely 

to liquefy than under SH-wave strain conditions. 
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4.4.2. Microscopic scale 

4.4.2.1. Normal contact force 

The normal contact force-chain network, through which the external load is 

transferred, is an important aspect of granular assembly. It is fundamental in controlling 

the macroscopic behavior of granular materials. Generally, liquefaction is associated with 

the progressive degradation of the major force transmission network (Huang et al., 2019). 

Fig. 4.19 and Fig. 4.20 show the evolution of the normal contact force-chain network in 

the granular packing with a void ratio of 0.79 under both the SHV-wave strain condition 

and the Love-wave strain condition with AR = 1, respectively. The color indicates the 

maximum normal force borne by a particle. The chains formed by the particles that sustain 

a much larger maximum normal force than the surrounding particles can be regarded as 

the backbone force-chain, which transmits the majority of the load. As shown in Fig. 4.19, 

at points 0, 1, 3, 5, 7, and 9, when the shear strain was zero, the backbone force-chains 

were generally randomly orientated. However, owing to the effect of the K0-consolidation, 

the force-chains in the z-direction were stronger than those in the horizontal direction (x- 

and y-directions). At points 2, 4, 6, and 8, when the shear strain was maximum (minimum), 

the normal force-chains were concentrated and aligned in the shorter diagonal direction 

in the yz-plane. This suggests that, with the development of shear strain, the dominant 

direction of the backbone force-chains rotated in the yz-plane and was consistent with the 

direction of the principal strain rotation. This rule was applicable to the Love-wave strain 

conditions, as shown in Fig. 4.20. In contrast, the dominant direction of the backbone 

force-chains under the Love-wave strain conditions rotated spatially.  
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Fig. 4.19. Evolution of normal contact force-chain network under SHV-wave strain 

condition (e = 0.79). 
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Fig. 4.20. Evolution of normal contact force-chain network under Love-wave strain 

condition with AR = 1 (e = 0.79). 
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Fig. 4.21. Evolution of the distribution of normal contact forces from 2.0 s to 2.2 s under 

the Rayleigh-wave strain condition with (a) RSN = 0 and (b) RSN = 1, and (c) SHV-wave 

strain condition (e = 0.75, perspective projection). 
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Fig. 4.21 illustrates the evolution of the distribution of normal contact forces from 

2.0 s to 2.2 s (the 11th cycle) under Rayleigh-wave strain condition with RSN = 0 (simple 

shear mode) and 1(simple shear mode + pure shear mode), and SHV-wave strain condition 

(pure shear mode). In the effective stress path plot, points 0, 1, 2, 3, and 4 divide the 

loading cycle into four equal parts according to the time interval. In the distribution map 

of normal contact forces, the color and size of the arrow indicate the magnitude of the 

normal contact forces. The magnitude and direction of the normal contact forces were not 

uniform in space and were altered during the cyclic loading process. Under the Rayleigh-

wave condition with RSN = 0 (Fig. 4.21(a)), from points 0 to 1, with the compression in 

the z-direction and the extension in the x-direction, the strong normal contact forces were 

aligned in the vertical direction, corresponding to the positive dilatancy behaviors of the 

specimen. From points 2 to 3, with the extension in the z-direction and the compression 

in the x-direction, the orientation of the strong normal contact forces was horizontal, 

corresponding to a transition from negative to positive dilatancy behaviors of the 

specimens. Under the SHV-wave strain condition (Fig. 4.21(c)), from points 0 to 1 and 

points 2 to 3, strong normal contact forces were inclined diagonally with the shear strain 

application, corresponding to the positive dilatancy behavior of the specimen. Under 

other Rayleigh-wave strain conditions, the evolution of the force transmission network 

was affected by both the normal and shear strains. For example, under the Rayleigh-wave 

strain condition with RSN = 1 (Fig. 4.21(b)), strong normal contact forces were inclined 

or aligned with the principal strain directions, depending on the relative magnitude of 

normal strain and shear strain. 

To quantitatively describe the magnitude and orientation of the contact forces 

during cyclic loading, the mean magnitude and proportion of the projection of contact  
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Fig. 4.22. Rose diagrams of contact normal forces and major principal stress direction

under SHV-wave strain condition (e = 0.75). 
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forces on xy-,yz-,and zx-planes in a given direction are counted. The evolution of the 

magnitude and distribution of normal contact forces in the measurement cube of the 

specimen with e = 0.75 in the 1st and 11th cycle are illustrated and shown in Appendix Ⅰ. 

The radial lines represent the contact force directions, and each concentric circle indicates 

the proportion of contact forces aligned in a particular direction range (10° per interval). 

The color of sector areas indicates the mean value of the projection of contact forces in 

each direction range on a given plane. The orange arrow illustrates the direction of the 

projection of major principal stress on each plane. The results suggested that: 

a) At the initial state (0.00s), the distribution of contact forces was more inclined to 

the vertical direction, especially the strong normal contact forces. e.g., as shown in Fig. 

4.22, in the 0.00s, the projections of contact forces on the xy-plane (horizontal plane) were 

almost uniformly distributed, while on the yz- and zx-plane (vertical plane), they mainly 

concentrated on the range between 300°–60° and 120°–240°. In addition, the mean 

contact forces in the range between 330°–30° and 150°–210° were greater than the 

average contact force in the other ranges. The major principal stress was almost in the 

vertical direction, which was consistent with the consolidation (compression) direction. 

b) When the strain amplitude was small, the distribution of normal contact forces 

almost did not change or the distribution of the normal contact force recovered after the 

strain returned to the initial value, e.g., as shown in Fig. 4.22, under SHV-wave strain 

condition, from 0.00s (0.00 cycle, the shear strain is 0%) to 0.05s (0.25 cycle, the shear 

strain is 0.025%), the distribution of normal contact forces almost did not change. In the 

0.15s (0.75 cycle, the shear strain is 0.075%), the distribution of normal contact forces 

changed little but recovered in the 0.20s (1.00 cycle, the shear strain is 0%). This explains 
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the reason why the fluctuation in the ESRR was greater under Rayleigh-wave strain 

conditions than under other strain conditions, especially in a small strain amplitude range, 

as mentioned in section 4.4.1.1. Because the normal contact force tends to align in the 

vertical direction in the K0-consolidation state, a given strain in the vertical direction will 

result in a larger increment of total contact forces if a contact point is assumed to be a 

spring.  

c) The major principal stress direction was consistent with the direction of the 

principal strain rotation. In addition, strong normal contact forces were concentrated near 

the direction of major principal stress and tend to be distributed symmetrically along the 

direction of major principal stress, e.g., the distribution of normal contact forces of the 

Fig. 4.23. Rose diagrams of contact normal forces and major principal stress direction of 

the specimen suffers from the largest shear strain under SHH- and SHV-wave strain 

conditions (e = 0.75).  
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specimen suffered from the largest shear strain under SHH- and SHV-wave strain 

conditions as shown in Fig. 4.23; 

d) In the K0-consolidation state, the shear strain in the vertical plane would result 

in a greater magnitude of the projection of normal contact forces on the same plane than 

the shear strain in the horizontal plane, e.g., suffered from the same shear strain amplitude, 

the magnitude of normal contact forces in the vertical plane under SHV-wave strain 

condition was greater than that in the horizontal plane under SHH-wave strain condition, 

as shown in Fig. 4.23. Also, under the Love-wave strain condition with AR = 1, the same 

phenomenon could be observed although the amplitudes of γxy and γyz were the same, as 

shown in Fig. 4.24. This explains the phenomenon that the proportion of the amplitude of 

the horizontal shear strain component (γxy) to the amplitude of the vertical shear strain 

Fig. 4.24. Rose diagrams of contact normal forces and major principal stress direction of 

the specimen suffers from the largest shear strain in the vertical and horizontal planes

under Love-wave strain condition with AR = 1 (e = 0.75). 
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component (γyz) affected the value of the von Mises stress as mentioned in section 4.4.1.1. 

e) The deformation-induced anisotropy became greater during cyclic loadings, e.g., 

the distribution of contact force under Rayleigh-wave strain condition with RSN = 0 was 

more concentrated in the vertical direction (normal strain is applied in zx-plane) in the 

11th cycle than in the 1st cycle when the strain is zero, as shown in Fig. 4.25. What’s more, 

the projections of contact forces on the xy-plane were more concentrated in the y-direction. 

4.4.2.2. Fabric anisotropy 

To quantitatively evaluate the anisotropy of the granular fabric during cyclic 

loadings, the fabric tensor 𝛷௜௝  proposed by Satake (1982) and deviator fabric 𝛷ୢ 

defined by Barreto et al. (2009) was used. As shown in Fig. 4.26(a) and (b), the amplitude 

Fig. 4.25. Rose diagrams of contact normal forces and major principal stress direction at 

the start of 1st and 11th cycle under Rayleigh-wave strain condition with RSN = 0 (e = 

0.75). 
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of the deviator fabric increased quickly before the 11th cycle, which suggested that the 

deformation-induced anisotropy was influenced by the strain amplitude. As the strain 

amplitude increased, the amplitude of fluctuation of anisotropy also became greater 

during cyclic loading. Especially for specimens under Rayleigh-wave strain conditions, 

the increase of anisotropy fluctuation was more significant than that under other strain 

Fig. 4.26. Evaluation of fabric anisotropy during cyclic loadings (dashed line indicates

the initial deviatoric fabric): (a) e = 0.79; (b) e = 0.75; (c) e = 0.79, every 0.5 cycle starting

from 0.00s (zero normal strain positions for pure shear and zero shear strain positions for

simple shear); (d) e = 0.75, every 0.5 cycle starting from 0.00s; (e) e = 0.79, every 0.5

cycle starting from one quarter of the 1st cycle (extrema normal strain positions for pure

shear and extrema shear strain positions for simple shear); (f) e = 0.75, every 0.5 cycle

starting from one quarter of the 1st cycle. 
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conditions. After the 10th cycle, the strain amplitude was constant under each strain 

condition. However, the maximum values of the deviator fabric under all loading 

conditions continued to increase until liquefaction, while the evolutions of the minimum 

values of the deviator fabric under different loading conditions were different.  

Fig. 4.26(c) and (d) show the deviator fabric of specimens every 0.5 cycle starting 

from 0.00s. Under Rayleigh-wave strain conditions, they indicate the degree of fabric 

anisotropy in the zero normal strains (εx and εz) and extrema (maximum and minimum) 

shear strain (γzx) positions (zero-strain positions for Rayleigh-wave strain condition with 

RSN = 0, i.e., pure shear). At the start of each cycle (loading in the z-direction and 

unloading in the x-direction), the fabric anisotropy of specimens became greater and 

greater; in the middle of each cycle (unloading in the z-direction and loading in the x-

direction), the fabric anisotropy decreased at first then increased. Under the SHV-wave 

strain condition and Love-wave strain condition with AR = 4 (γyz = 0), the fabric 

anisotropy decreased at first and then increased before liquefaction. Under the SHH-wave 

strain condition and Love-wave strain condition with AR = 0.25 (γxy = 0), the fabric 

anisotropy almost kept constant at first and then increased before liquefaction. Under the 

Love-wave strain condition with AR = 1 (γxy = 0 and γyz is extrema), the fabric anisotropy 

increased at a very slow rate and then increased faster and faster before liquefaction.  

Fig. 4.26(e) and (f) show the deviator fabric of specimens every 0.5 cycles starting 

from 0.05s (one-quarter of the 1st cycle). Under Rayleigh-wave strain conditions, they 

indicate the degree of fabric anisotropy in the extrema normal strain (εx and εz) and zero 

shear strain (γzx) positions. At one-quarter of each cycle (εz is maximum and εx is minimum 

in a cycle), the fabric anisotropy of specimens became greater and greater; At three-
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quarters of each cycle (εx is maximum and εz is minimum in a cycle), the fabric anisotropy 

decreased at first then increased. Under the SH- and Love-wave strain conditions, because 

the shear strain component with the larger amplitude was at the extremes (shear strain γyz 

= 0 and shear strain γxy was extrema for Love-wave strain condition with AR = 1), the 

fabric anisotropy at one-quarter and three-quarters of each cycle increases during cyclic 

loading. 

In total, the strain-induced fabric anisotropy increased with cyclic loadings. The 

results above also indicated that the evolution of fabric anisotropy of a K0-consolidated 

specimen was influenced by the strain amplitude and loading path. Specifically, the 

amplitude of the fluctuation of fabric anisotropy became greater as the strain amplitudes 

increased during cyclic loadings. The fabric anisotropy also relied on the direction of 

loaded strain. For pure shear (Rayleigh-wave strain condition with RSN = 0), the 

compression in the z-direction (vertical direction) would increase the fabric anisotropy 

while the compression in the x-direction (horizontal direction) would first reduce the 

fabric anisotropy; For simple shear (SH-wave strain conditions), the loading of shear 

strain would increase the fabric anisotropy. However, if the shear strain was applied on 

the xy-plane (horizontal plane), the loading history would first barely affect the fabric 

Fig. 4.27. Evolution of fabric anisotropy with ESRR in zero-strain positions (compression 

in horizontal direction for Rayleigh-wave strain condition): (a) e = 0.79; e = 0.75. 
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anisotropy when the shear strain was unloaded; if the shear strain was applied on the yz-

plane (vertical plane), the loading history would first decrease the fabric anisotropy when 

the shear strain was unloaded. When the ESRR exceeds a threshold value located near 

0.6, the fabric anisotropy in the zero-strain position which originally decreased with 

loading, then shifted to increase, as shown in Fig. 4.27. The common denominator for the 

decrease of fabric anisotropy in the zero-strain position was the non-coaxial nature of the 

strain application direction and initial major principal fabric direction, 𝛷ଵ. 

The major strain application direction can be described by the principal eigenvector 

of the strain increment, ሺΔ𝜀ሻଵ . The strain increment Δ𝜀௜௝ ൌ ൫𝜀௜௝൯௡ െ ൫𝜀௜௝൯௡ିଵ , where 

൫𝜀௜௝൯௡ and ൫𝜀௜௝൯௡ିଵ are the strain tensor at the time 𝑡௡ and 𝑡௡ିଵ. In this research, the 

compression normal strain increment is positive in sign. The direction of ሺΔ𝜀ሻଵ in the 

simple shear mode and the pure shear mode are shown in Fig. 4.28. In the simple shear, 

the angle between the direction of ሺΔ𝜀ሻଵ and the direction of particle velocity is 45°; In 

the pure shear, the direction of ሺΔ𝜀ሻଵ is consistent with the compression direction.  

Fig. 4.28. Directions of ሺΔ𝜀ሻଵ in simple and pure shear modes 
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The direction of the projection of a vector (e.g., ሺΔ𝜀ሻଵ) on a plane was limited to 

between −90° and 90° for convenience, as shown in Fig. 4.29. On the xz- or yz-plane, 0° 

indicated the vertical direction, while −90° and 90°indicated the horizontal direction. 

Because of the K0-consolidation, the direction of the projection of initial structure 

elongation, or the major principal fabric, 𝛷ଵ, equaled −1.8° on the zx-plane and equaled 

2.3° on the yz-plane, which was almost vertical. The direction of the projection of initial 

major principal stress, 𝜎ଵ, equaled 0.9° on the yz-plane and equals −0.7° on the zx-plane, 

which was also almost vertical. 

As shown in Fig. 4.30, during cyclic loading, the angles between ሺΔ𝜀ሻଵ  and 

ሺΔ𝛷ሻଵ and the angle between ሺΔ𝜎ሻଵ and ሺΔ𝛷ሻଵ during cyclic loading maintained low 

values. It indicated that the direction of 𝛷ଵ was influenced by ሺΔ𝜀ሻଵ and ሺΔ𝜎ሻଵ and 

Fig. 4.29. Direction of the projection of ሺΔ𝜀ሻଵ on the xz-plane limited to between −90° 
and 90°. 

Fig. 4.30. Angle between: (a) ሺΔ𝜀ሻଵ and ሺΔ𝛷ሻଵ; (b) ሺΔ𝜎ሻଵ and ሺΔ𝛷ሻଵ. 
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tend to be consistent with them. Fig. 4.31‒Fig. 4.33 shows the direction of the projection 

of the direction of ሺΔ𝜀ሻଵ,  ሺΔ𝜎ሻଵ and 𝛷ଵ under Rayleigh-wave strain condition with 

RSN = 0, SHH-wave strain condition, and SHV-wave strain condition on their strain 

application planes in different cycles. The directions of ሺΔ𝜀ሻଵ and  ሺΔ𝜎ሻଵ were almost 

identical during cyclic loadings. The direction of 𝛷ଵ was initially vertically and ሺΔ𝜀ሻଵ 

on the horizontally plane had a limited influence on it. However, as the ESRR increased, 

the influence of ሺΔ𝜀ሻଵ and  ሺΔ𝜎ሻଵ became stronger and the direction of 𝛷ଵ tend to be 

the same as their directions. The effect of the direction of ሺΔ𝜀ሻଵ gave an explanation for 

the phenomenon in Fig. 4.27.  

As shown in Fig. 4.34(a), under the Rayleigh wave strain condition with RSN = 0, 

the direction of 𝛷ଵ was almost vertical in the middle of each cycle when the ESRR was 

smaller than a threshold value located near 0.6. It indicated that at this time, the skeleton 

of specimen was still stable and capable to withstand a compressive deformation 

perpendicular to the direction of 𝛷ଵ and extensional deformation along the direction of 

𝛷ଵ. When the ESRR became larger than the threshold value, the direction of 𝛷ଵ was 

almost horizontal in the middle of each cycle. This means that the direction of 𝛷ଵ 

became consistent with the compression direction and perpendicular to the extension 

direction. Correspondingly, the fabric anisotropy in the middle of each cycle decreased 

when the ESRR was smaller than the threshold value because the initial fabric originated 

from K0-consolidation was being destroyed, which was manifested as the decrease of 𝛷ଵ 

and increase of 𝛷ଶ and 𝛷ଷ as shown in Fig. 4.34(b); when the ESRR was larger than 

the threshold value, the fabric anisotropy in the middle of each cycle increased because 

𝛷ଵ turned into the horizontal direction and increased, while 𝛷ଷ in the vertical direction 

decreased. 
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Under the SHH-wave strain condition, because the shear strain application plane 

was horizontal, 𝛷ଵ in the vertical direction was barely affected by the loading history at 

zero shear strain positions as shown in Fig. 4.35. When the ESRR was smaller than a 

threshold value located near 0.6, the change of 𝛷ଶ and 𝛷ଷ was also small, therefore, 

the fabric anisotropy at zero shear strain positions almost did not change; when the ESRR 

was larger than the threshold value, the increase of 𝛷ଶ and decrease of 𝛷ଷ caused the 

increase of fabric anisotropy at zero shear strain positions. Under the SHV wave strain 

condition, the shear strain application plane was vertical. As shown in Fig. 4.36 when the 

ESRR was smaller than a threshold value located near 0.6, the initial fabric was being 

destroyed as the decrease of 𝛷ଵ at zero shear strain positions; when the ESRR was larger 

than the threshold value, the direction of 𝛷ଵ became near to the direction of ሺΔ𝜀ሻଵ and 

the magnitude of 𝛷ଵ  also increased with the decrease of 𝛷ଷ . Therefore, the fabric 

anisotropy at zero shear strain positions first decreased and then increased. 

With the increase of fabric anisotropy and the direction of 𝛷ଵ became closer to the 

directions of ሺΔ𝜀ሻଵ  and ሺΔ𝜀ሻଵ  during the loading of strain, the direction of 𝛷ଵ  also 

became closer to the directions of 𝜀ଵ and 𝜎ଵ, as shown in Appendix Ⅱ. Fig. 4.37 shows 

the angles between 𝜀ଵ  and 𝛷ଵ  and between 𝜎ଵ  and 𝛷ଵ immediately before initial 

liquefaction under different strain conditions. Under Rayleigh-wave strain conditions, the 

angle between 𝜀ଵ and 𝛷ଵ and between 𝜎ଵ and 𝛷ଵ tended to be zero except when the 

direction of ሺΔ𝜀ሻଵ and ሺΔ𝜀ሻଵ were reversed. The smaller the shear strain amplitude, the 

smaller the angle, therefore, the strain-induced anisotropy under Rayleigh-wave strain 

conditions was higher than other conditions. Under SHH-wave strain conditions, the 

angle between 𝜀ଵ and 𝛷ଵ and between 𝜎ଵ and 𝛷ଵ also tended to be zero except when 

the direction of ሺΔ𝜀ሻଵ  and ሺΔ𝜀ሻଵ  were reversed; however, under SHV-wave strain 
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conditions, the angles were kept around 5° except when the direction of ሺΔ𝜀ሻଵ  and 

ሺΔ𝜀ሻଵ  were reversed; Under Love-wave strain conditions, although the direction of 

ሺΔ𝜀ሻଵ was changing all the time, overall the angles also became close to zero. 

Fig. 4.31. Evolution of the projections of the directions of  ሺΔ𝜀ሻଵ,  ሺΔ𝜎ሻଵ, and 𝛷ଵ on the

zx-plane (e = 0.75), and their relationship with ESRR under Rayleigh-wave strain 

condition with RSN = 0 during: (a) 2–4 cycle; (b) 12–14 cycle. 

Fig. 4.32. Evolution of the projections of the directions of  ሺΔ𝜀ሻଵ,  ሺΔ𝜎ሻଵ, and 𝛷ଵ on the 

xy-plane (e = 0.75), and their relationship with ESRR under SHH-wave strain condition

(e = 0.75) during: (a) 10–12 cycle; (b) 76–78 cycle. 

Fig. 4.33. Evolution of the projections of the directions of  ሺΔ𝜀ሻଵ,  ሺΔ𝜎ሻଵ, and 𝛷ଵ on the 

xy-plane (e = 0.75), and their relationship with ESRR under SHH-wave strain condition 

(e = 0.75) during: (a) 10–12 cycle; (b) 76–78 cycle. 
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Fig. 4.34. (a) Projection of the direction of 𝛷ଵ  on the zx-plane and (b) magnitude of 

principal fabrics in the middle of each cycle under Rayleigh-wave strain condition with

RSN = 0 (e = 0.75). 

Fig. 4.35. (a) Projection of the direction of 𝛷ଵ on the yz-plane and (b) magnitude of

principal fabrics in zero-strain positions under SHH-wave strain condition (e = 0.75). 

Fig. 4.36. (a) Projection of the direction of 𝛷ଵ on the yz-plane and (b) magnitude of

principal fabrics in zero-strain positions under SHV-wave strain condition (e = 0.75). 



CHAPTER 4  LIQUEFACTION UNDER SURFACE-WAVE STRAIN CONDITIONS 

115 

 

Fig. 4.37. Angles between 𝜀ଵ  and 𝛷ଵ  and between 𝜎ଵ  and 𝛷ଵ immediately before

initial liquefaction under different strain conditions (e = 0.75). 
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4.4.2.3. Structure stability 

During the liquefaction process, with an increase in excess pore water pressure, the 

external load borne by the granular skeleton decreases, which is associated with the 

degradation of the major force transmission network (Huang et al., 2019). One 

characteristic manifestation of the structure losing stability is the failure of force chains. 

According to the tangential force model used in this study, when the static friction 

between particles cannot resist the tangential force, the particles in contact begin to slide. 

The force chain loses its stability if sliding occurs between particles in which it is involved. 

Therefore, the fraction of contacts that are sliding has an important influence on the 

stability of the granular structure.  

Fig. 4.38. Evolution of fraction of sliding contacts during cyclic loadings: (a) e = 0.79 

and (b) e = 0.75. 
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Fig. 4.38 shows the evolution of the fraction of sliding contacts (FS) during cyclic 

loadings in each loading condition. Overall, FS increased during cyclic loadings, 

especially before the 11th cycle when the strain amplitude was increasing. When initial 

liquefaction happens, the FS dramatically increased to a high value. The maximum value 

of FS under Rayleigh-wave strain conditions was much larger than SH- and Love-wave 

strain conditions, which indicated that a higher proportion of slippage happens under 

Rayleigh-wave strain conditions during cyclic loadings. The decrease of FS within 

several cycles before liquefaction might be due to the low number of particle contacts as 

mentioned later and the higher proportion of surviving strong chains. Under SH- and 

Love-wave strain conditions, the fluctuation of FS during cyclic loadings was influenced 

by the resultant shear strain Γ. The fluctuation of FS under the Love-wave strain condition 

with AR = 1 was very small while that under SH-wave strain conditions was much larger.  

In structural mechanics, when the number of unknown force or torque components 

equals the number of force balance equations, the structure system is isostatic; when the 

number of unknown force or torque components exceeds the number of force balance 

equations, the structure system is hyperstatic. The structure system can only maintain its 

stability when it is isostatic or hyperstatic. When accessing the stability of the granular 

system, the approach from a structural mechanics point of view, as mentioned above, is 

often drawn upon (e.g., Zhang and Makes, 2005; Huang et al., 2019). The load-bearing 

network of particles can only be maintained when the skeleton structure of the granular 

materials is relatively stable, which requires sufficient mechanically stable particles. The 

coordination number Z is widely used to assess the stability of a granular system. It is 

defined in sections 2.2.2 and 3.5.3 as 𝑍 ൌ 2𝑁ୡ/𝑁୮ , where 𝑁ୡ  and 𝑁୮  are the total 

contact and particle numbers in the measurement cube, respectively.  
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A contact without sliding and rolling can provide five constraints (three 

translational and two rotational). If the fraction of sliding contacts is 𝑓௦, the fraction of 

the rolling moment exceeding the rolling resistance moment is 𝑓௥ , the total unknown 

force components in the granular system is ሺ5 െ 2𝑓௦ െ 2𝑓௥ሻ𝑁ୡ. As one particle has three 

translational and three rotational degrees of freedom, there are 6𝑁୮  force balance 

equations in the granular systems. A granular system maintaining stability (isostatic or 

hyperstatic) requires ሺ5 െ 2𝑓௦ െ 2𝑓௥ሻ𝑁ୡ ൒ 6𝑁୮. Therefore, the corresponding minimum 

coordination number is 𝑍୫୧୬ ൌ 12/ሺ5 െ 2𝑓௦ െ 2𝑓௥ሻ . If 𝑓௦ ൌ 0  and 𝑓௥ ൌ 0 , 𝑍୫୧୬ ൌ

2.4; if 𝑓௦ ൌ 1 and 𝑓௥ ൌ 0, the moment balance equation can be ignored and 𝑍୫୧୬ ൌ 6. 

As a result, 𝑍୫୧୬ of a granular system range from 2.4 to 6. 

Thornton (2000) suggested that the particle without contact or only one contact with 

neighbor particles does not contribute to the stability of the granular system. herein, he 

proposed the mechanical coordination number 𝑍୫ to describe the connectivity of the 

granular system. the mechanical coordination number is defined as: 

𝑍୫ ൌ
൫2𝑁ୡ െ 𝑁୮ଵ൯

𝑁୮ െ 𝑁୮ଵ െ 𝑁୮଴
ሺ4.22ሻ 

where 𝑁୮ଵ and 𝑁୮଴ are the number of particles with only one or no contacts, respectively. 

The relationship between the mechanical coordination number 𝑍୫  and coordination 

number Z is: 

𝑍 ൌ 𝑍୫ െ ሺ𝑍୫ െ 1ሻ
𝑁୮ଵ

𝑁୮
െ 𝑍୫

𝑁୮଴

𝑁௣
ሺ4.23ሻ 

Because 𝑍୫୧୬ of a granular system range from 2.4 to 6, 𝑍 is smaller than 𝑍୫ when 

the granular system is isostatic or hyperstatic.  
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However, the granular system is a collection of particles. When 𝑍 or 𝑍୫ is larger 

than its critical value, at which the granular system is isostatic, the granular system is 

stable. However, a larger 𝑍 or 𝑍୫ does not necessarily mean a more stable structure. 

The structural stability of the specimen with given a 𝑍 or 𝑍୫ is influenced on 𝑓௦, 𝑓௥, 

and its texture. Therefore, for the convenience of calculation, 𝑍 was used to reflect the 

overall degradation of a granular system during undrained cyclic loadings. As contacting 

particles disengage from each other, manifesting as a decrease in 𝑍, the connectivity of 

the skeleton structure decreases, and the granular system gradually loses its stability until 

liquefaction.  

Fig. 4.39. Evolution of coordination number during cyclic loadings: (a) e = 0.79 and (b) 

e = 0.75. 
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Fig. 4.39 shows the evolution of Z under each loading condition. The initial value 

of Z was dependent on the void ratio of the granular packings, where a denser granular 

packing was associated with a larger initial value of Z. Under SH- and Love-wave strain 

conditions, before Z decreased to a value of approximately 4, the different loading 

conditions were similar in terms of decreasing speed. Below the critical value, Z 

decreased more rapidly under the Love-wave strain conditions than under the SH-wave 

strain conditions. This phenomenon was consistent with the ESRR results shown in Fig. 

4.14.  

In addition, after the ESRR exceeded the threshold (different for each strain 

condition) located near 0.6, Z decreased faster and faster, which was accompanied by a 

quick increase of fabric anisotropy at zero strain positions (zero normal strain positions 

for Rayleigh-wave strain conditions; zero shear strain position for SH-wave strain 

conditions; the position where the shear strain with large amplitude becomes zero under 

Love-wave strain conditions) as shown in Fig. 4.26(c) and (d). Iwashita and Oda (2020) 

determined that the increase in structural anisotropy accelerates the liquefaction of 

granular materials because the structure becomes extremely unstable when the major 

stress is rotated and deviates from the structure elongation direction under cyclic pure 

shear tests. Similarly, in strain-controlled tests, the direction of major strain application, 

ሺΔ𝜀ሻଵ, deviating from the structure elongation direction had a significant influence on the 

stability of the granular structure. The structure elongation direction could be represented 

by the direction of the major principal fabric 𝛷ଵ. As shown in Fig. 4.40, in both pure 

shear (Rayleigh-wave strain condition with RSN = 0) and simple shear (SHH- and SHV-

wave strain condition), Z decreased when the direction of ሺΔ𝜀ሻଵ  deviated from the 
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direction of 𝛷ଵ. Especially, under Love-wave strain condition with AR = 1, the direction 

of ሺΔ𝜀ሻଵ  always deviated from the direction of 𝛷ଵ ; therefore, Z almost decreased 

monotonically. 

Compared to under SH- and Love-wave strain conditions, both the rate of decline 

and the amplitude of fluctuation of Z were larger under the Rayleigh-wave strain 

condition with RSN = 0. It indicated that the pure shear mode had a larger impact on the 

stability of a granular system than the simple shear mode or the combination of simple 

shear modes. When RSN ൑ 1, the response of a granular system was governed by the 

pure shear mode; therefore, the evolutions of Z under Rayleigh-wave strain conditions 

with RSN = 0, 0.25, and 1 were similar. Under SH- and Love-wave strain conditions, the 

evolution of Z was also affected by the resultant shear strain. The fluctuation of Z was 

smaller under the strain condition with a smaller change in resultant shear strain. However, 

Fig. 4.40. Evolution of coordination number with change in directions of ሺΔ𝜀ሻଵ and 𝛷ଵ 

under: (a) Rayleigh-wave strain condition; (b) SHH-wave strain condition; (c) SHV-wave 

strain condition; (d) Love-wave strain condition with AR = 1.  
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regardless of the loading condition, when approaching approximately 2, Z decreased 

sharply, and the granular packing reached the initial liquefaction state.  

Fig. 4.41. Coordination number versus mean effective stress during cyclic loadings. 
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As shown in Fig. 4.41, Z was highly related to the mean effective stress. The gradual 

decrease in Z was accompanied by a decrease in mean effective stress. Especially, the 

mean effective stress decreased faster as Z became lower, suggesting that the skeleton 

structure’s degradation accelerated the liquefaction of the specimens. As indicated in the 

enlarged part of the plot, regardless of the loading path, there was a sudden drop in the 

mean effective stress from approximately 10−1 to 10−5 kPa as Z fell below 2. As the time 

interval of the data output was 0.002 s, this process can be assumed to happen 

instantaneously. It is worth noting that the “zero mean effective state” was not reached 

after liquefaction because the interparticle contact had not completely disappeared.  

 

4.5. Summary 

To clarify the liquefaction behavior of granular materials under surface-wave strain 

conditions, the response of granular assemblies under Love- and Rayleigh-wave strain 

conditions was compared with that under SH-wave strain conditions by performing a 

series of 3D DEM numerical tests, where SH-, Love-, and Rayleigh-wave strain 

conditions are the deformation mode of SH, Love, and Rayleigh waves, respectively. 

Before conducting numerical tests, the equation governing the strain–time relationships 

of SH, Love, and Rayleigh waves was derived from elastic wave theory under the 

assumption of constant volume (undrained condition). Nine loading paths were applied 

to the specimens to cover the strain features of SHH-wave strain condition, SHV-wave 

strain condition, Love-wave strain conditions with AR = 0.25, 1, and 4, and Rayleigh-

wave strain conditions with RSN = 0, 0.25, 1, and 4, respectively. The cyclic loadings 

were applied to the K0-consolidated specimen until initial liquefaction. The main 
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conclusions are summarized as follows: 

1. The deformation under SH-wave strain conditions is a simple shear mode; it 

under Love-wave strain conditions is a combination of simple shear modes; it under 

Rayleigh-wave strain conditions is a combination of simple shear mode and pure shear 

mode. The undrained response of a granular assembly is significantly affected by the 

loading paths. The fluctuation of ESRR and the magnitude of von Mises stress under 

Rayleigh-wave strain conditions is larger than that under SH- and Love-wave strain 

conditions. In addition, the resultant shear strain under Love-wave strain conditions has 

a significant influence on the fluctuation of ESRR and the magnitude of von Mises stress. 

2. The liquefaction rate and resistance were evaluated by the accumulated 

equivalent strain and the NDE, respectively. Generally, at the same strain level, the 

Rayleigh-wave strain condition with a low RSN value would make granular materials 

more vulnerable to liquefaction than Love-wave strain conditions, and granular materials 

under Love-wave strain conditions are more likely to liquefy than under SH-wave strain 

conditions. 

3. K0-consolidation resulted in a structure whose normal contact forces, especially 

the strong normal contact forces, are more inclined to the vertical direction. As a result, 

vertical compression in the pure shear mode caused the magnitude and proportion of 

normal contact forces in the vertical direction to be much larger than in other directions. 

This means that, at the microscale, the positive dilatancy behavior in the pure shear mode 

was more sensitive to the strain level than that in the simple shear mode. 

4. The fabric anisotropy increases during cyclic loadings. Especially, the increase 
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of fabric anisotropy is more significant under Rayleigh-wave strain conditions than that 

under other strain conditions. The evolution of fabric anisotropy under SH- and Love-

wave strain condition highly relies on the plane in which shear strain is applied. With the 

degradation of the granular structure, the loading path has a larger influence on the 

evolution of structural anisotropy and rotation of structure elongation direction. The angle 

between 𝜀ଵ and 𝛷ଵ and between 𝜎ଵ and 𝛷ଵ tended to be a value near zero. 

5. The increase in structural anisotropy and the degradation of the skeleton structure 

accelerated the liquefaction of granular materials. The fraction of sliding contacts 

increased, and the coordination number decreased during cyclic loadings. The magnitude 

of the fraction of sliding contacts and fluctuation of coordination number under Rayleigh-

wave strain conditions is larger than that under SH- and Love-wave strain conditions. The 

evolution of the fraction of sliding contacts and fluctuation of coordination number under 

SH- and Love-wave strain conditions relies on the change in resultant shear strain during 

cyclic loading. However, regardless of the loading path, the initial liquefaction happened 

instantaneously when the coordination number approached approximately 2; It is 

noteworthy that the “zero mean effective states” was not reached in the initial liquefaction 

state. 
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CHAPTER 5 UNDRAINED SHEAR BEHAVIOR WITH 

LARGE SHEAR STRAIN AMPLITUDE 

5.1.  Introduction 

The undrained cyclic shear behavior of granular material is highly dependent on the 

strain amplitude. However, the behavior of liquefiable granular materials under the 

undrained cyclic shear at extremely large shear strain amplitude (> 20%) had not been 

well understood because it is hard to achieve by actual physical element tests. 

Generally, there are two states of shear deformation: pure shear and simple shear. 

As discussed in Chapter 4, the cyclic undrained responses of a granular assembly in pure 

shear mode and simple shear mode are quite different. As the simple shear mode is more 

suitable for the deformation of free-field horizontally layered ground during seismic 

events (Kammerer et al. 2001; Jefferies and Been, 2006), studies based on the simple 

shear mode are more representative. Therefore, the direct simple shear test was usually 

used to study the simple shear response of granular materials. The general method for 

determining the critical state requires information on all the stress components. However, 

on the one hand, the DSS tests, including the Royal Swedish Geotechnical Institute test 

type, Cambridge test type, and Norwegian Geotechnical Institute test type, are hard to 

measure the normal stress component in the horizontal direction; on the other hand, the 

critical state cannot be obtained before large shear deformation localization appears 

within shear bands (Fu and Dafalias, 2011), which may be hard to achieve in DSS tests.  

To qualitatively evaluate the effect of very large shear strain (to 100%) on the cyclic 
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shear behavior of liquefiable granular materials, a series of undrained cyclic simple shear 

simulations was conducted in different cyclic shear strain levels by 3D DEM. It was found 

that the cyclic shear behavior of the specimens is highly affected by the cyclic shear strain 

amplitude. When the cyclic shear strain exceeds a certain amplitude, the shear band will 

be formed during both monotonic and cyclic loadings. 

 

5.2. DEM simulations 

5.2.1. Specimen generation 

The simulations were also performed by Rocky as used in Chapter 4. Only spherical 

particles were used. The interaction model between particles comprises a normal force, a 

tangential force, and a rolling resistance model, as introduced in Section 3.2. A cubical 

assembly of spherical particles was generated from an inlet within a volume confined by 

Fig. 5.1. Generated numerical specimen and boundary conditions. 
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periodic boundaries in the horizontal direction and rigid walls in the vertical direction, 

and then gradually compressed in the vertical direction to a K0-stress state. The 

consolidated specimen is shown in Fig. 5.1 and the parameters used in the consolidation 

process are summarized in Table 5.1. The combination of the rolling resistance coefficient 

and friction coefficient in this simulation corresponded to an AoR of 30.43°. After 

consolidation, the gravity was set to zero and the mean effective stress of the granular 

assembly was 100 kPa. The measurement cube was located in the center of the specimen 

with a side length of 20 mm. 

Table 5.1. Parameters used in the consolidation process 

Particles 

Diameter (mm) 

Density (g/cm3) 

Young’s modulus (N/m2) 

Rolling resistance coefficient 

Poisson's ratio 

 

1.8 

2.65 

1.0×109 

0.3 

0.3 

Rigid walls 

Young’s modulus (N/m2) 

 

1.0×1011 

Interactions between particles 

  Static friction coefficient 

  Dynamic friction coefficient 

Coefficient of restitution 

Tangential stiffness ratio 

 

0.5 

0.5 

0.3 

1.0 

Interactions between particles and rigid walls 

  Static friction coefficient 

Dynamic friction coefficient 

Coefficient of restitution 

Tangential stiffness ratio 

 

0.0 

0.0 

0.3 

1.0 

Computational parameters 

  Gravity (m/s2) 

  Timestep (s) 

 

9.81 

2.22×10-7 
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5.2.2. Simulation conditions 

Monotonic and cyclic undrained shear tests were conducted in this study. During 

undrained shear, the deformation of the specimen was achieved by moving the bottom 

rigid wall horizontally, and the volume of the specimen remained constant to simulate the 

undrained condition (CV method). In particular, the rotation and sliding between particle 

and rigid walls were forbidden to guarantee the application of shear strain. According to 

the 𝐼 ൌ 𝜀ሶ𝑑ඥ𝜌/𝑝୔୘
ᇱ ൏ 2.5 ൈ 10ିଷ criterion (Perez et al., 2016), when 𝑝୔୘

ᇱ ൌ 100 kPa, 

the strain rate should satisfy 𝜀ሶ ൏ 8.5 sିଵ to make the specimen under the quasi-static 

condition. Since no monotonic and cyclic undrained shear with single amplitude up to 

100% had been conducted, to guarantee the quasi-static response of the granular assembly, 

a series of control tests with different strain rates were conducted to ensure that the strain 

rate used was suitable. It should be noted that the shear strain in this study was defined as 

𝛾 ൌ Δ𝑙/𝐻, where Δ𝑙 is the displacement of the bottom rigid wall and 𝐻 is the height of 

the specimen. 

5.2.2.1. Monotonic shear 

The results of monotonic shear are shown in Fig. 5.2. Both shear stress and the 

mean effective stress increased with increasing shear strain, then decreased and arrived at 

Fig. 5.2. (a) shear stress vs. shear strain; (b) mean effective stress vs. shear strain. 
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a stable state of stress when the shear strain was around 60% (the shear stress and mean 

effective stress tend to be constant during continued deformation). In addition, the shear 

strain rate used in this study did not affect the response of the specimen. The stresses are 

extremely high during simulation, however, the maximum average overlap during loading 

was about 1.5%, which was less than 5% as suggested by Hanley et al. (2013). The 

volume change of the solid component of the specimen was ignorable. As shown in Fig. 

5.3, except for the stress level, the results were analogous to those of a modified torsional 

shear test with applying shear strain up to 100% (Umar et al., 2019). It is noteworthy that 

the simulation with a shear strain rate of 0.1 s-1 would be used in subsequent analyses. 

5.2.2.2. Cyclic shear 

Cyclic shear strain with single amplitudes of 0.1%, 0.5%, 1%, 5%, 10%, 50%, and 

100% was applied to the specimen, respectively. The responses of the specimen at 

different frequencies are shown in Fig. 5.4. The response of the specimen subjected to 

cyclic shear with amplitudes from 0.1% to 10% was not affected by the frequency used 

in this study due to the relatively low strain rate. The different responses in a low effective 

stress state arose from the unstable deformation, which is an intrinsic feature of cyclic  

Fig. 5.3. Effective stress path during undrained monotonic loading: (a) simulation in this

study; (b) laboratory test using large strain hollow cylindrical torsional shear apparatus

(Umar et al., 2019). 
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liquefaction and is not influenced by the loading rate (Yang and Taiebat, 2021). 

The responses of the specimen subjected to cyclic shear strain with amplitudes of 

50% and 100% at frequencies of 2 and 5 Hz were different from those at frequencies of 

10 Hz and 50 Hz. The specimen finally liquefied at frequencies of 10 Hz and 50 Hz 

because of the relatively high strain rate. Therefore, the simulations with a frequency of 

2 Hz were used in subsequent analyses after comprehensive consideration. 

 

5.3. Simulation results 

5.3.1. Monotonic shear 

As shown in Fig. 5.5, the granular assembly was contractive when the shear strain 

Fig. 5.4. Evolution of shear stress and mean effective stress during cyclic loading at

different frequencies and amplitudes. 
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was in the range of 0–0.2%, and then turned into dilation behavior when the shear strain 

was large than 0.2%. The peak shear stress and mean effective stress were reached when 

the shear strain was about 40%. Subsequently, the shear stress and mean effective stress 

decreased and the granular assembly reached a stable state of stress when the shear strain 

was about 60%.  

If divide the space between the top and bottom rigid walls into 20 equal layers, the 

mean velocity in the x-direction of each layer can be calculated by averaging the x-

direction velocity of particles in that layer. Fig. 5.6(a) shows the mean velocity in the x-

direction per layer for shear strains from 0% to 100%, where 𝑑୚ is the vertical distance 

Fig. 5.5. Evolution of (a) shear stress and (b) mean effective stress during monotonic 

shear. 
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from the midpoint of each layer to the top rigid wall, and H is the distance between the 

two rigid walls. As the bottom rigid wall was moving and the top rigid wall remained 

static, the velocity of particles contacting the bottom rigid wall was larger than those 

contacting the top rigid walls. When the shear strain was less than 30%, the distribution 

of particle velocity was like Planar Couette flow, in which the velocity field can be 

expressed by 𝑢ሺ𝑑୚ሻ ൌ 𝑈 ௗ౒
ு

, where U is the velocity of the bottom rigid wall. When the 

shear strain was larger than 20%, the distribution of particle velocity became uneven. The 

velocity gradient became larger near the top rigid wall and smaller in other parts of the 

specimen. Fig. 5.6(b) shows the distribution of the mean normalized displacement, which 

Fig. 5.6. (a)  Mean velocity and (b) mean normalized displacement in the x-direction 

of particles per layer during monotonic shear. 
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is the mean displacement of particles in a layer normalized by the distance between the 

two rigid walls, in the x-direction. When the shear strain was larger than 30%, the mean 

normalized displacement in the x-direction below 𝑑୚/𝐻 ൌ 0.2 are parallel at different 

strains, which indicated that the local shear strain concentrated near the top rigid wall and 

the shear band was formed. The phenomenon above was consistent with the observation 

of Lei et al. (2018) in the plane shear test. 

The magnitudes and distributions of projections of normal contact forces on the xz 

in the measurement when the shear strain equals 0%, 10%, 50%, and 100% are illustrated 

in Fig. 5.7 (the magnitudes and distributions of projection of normal contact forces on the 

Fig. 5.7. Rose diagrams of projections of contact normal forces and major principal stress

direction on the zx-plane during undrained monotonic shear. 
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zx-plane at 10% shear strain intervals are illustrated and shown in Appendix Ⅲ). It should 

be noted that the measurement cube did not overlap the shear band during monotonic 

loading. The radial lines represent the contact force directions, and each concentric circle 

indicates the proportion of contact forces aligned in a particular direction range (10° per 

interval). The color of sector areas indicates the mean value of the projection of contact 

forces in each direction range on the zx-plane. The orange arrow illustrates the direction 

of the projection of major principal stress on the zx-plane.  

 Before shear strain was applied, the strong normal contact forces tended to align 

vertically because of K0-consolidation. When the shear strain was applied, strong contact 

forces tended to rotate, and the magnitude of normal contact forces increased rapidly 

before the peak shear stress and peak mean effective stress were reached. The major 

principal stress direction rotated during monotonic shear and tended to be stable after the 

shear strain was greater than 10%. The normal contact forces tended to distribute 

symmetrically along the major principal stress in the stable state of stress. In addition, the 

normal contact forces became more concentrated near the major principal stress direction 

after reaching the stable state of stress. In addition, the magnitude of contact force near 

the major principal stress also became more uniform after entering the stable state. 

Fig. 5.8 shows the evolution of some microscopic index, including the deviator 

fabric, the angle between the principal eigenvector of the deviatoric strain increment and 

the major principal fabric, the fraction of sliding contacts, and the coordination number 

during the undrained monotonic shear. It is noteworthy that the coordination number 

referred to the average coordination number of all the particles in the specimen, while the 

other microscopic indices were obtained from the range of the measurement cube. The 



CHAPTER 5  UNDRAINED SHEAR BEHAVIOR WITH LARGE SHEAR STRAIN AMPLITUDE 

137 

 

deviator fabric increased quickly and reached a peak when the shear strain was about 10%. 

Then it decreased and be stable after the specimen arrived at the stable state of stress. The 

angle between ሺΔ𝜀ሻଵ  and 𝛷ଵ  and between 𝜎ଵ  and 𝛷ଵ  decreased to the minimum 

value when the shear strain was about 10% and tended to be stable when the deformation 

was continued. The value for the angle between ሺΔ𝜀ሻଵ and 𝛷ଵ was smaller than 10° 

and the value for the angle between 𝜎ଵ  and 𝛷ଵ  was about 0°. It indicated that the 

structure elongation direction of the granular assembly became close to the direction of 

ሺΔ𝜀ሻଵ  and co-axial with 𝜎ଵ  during 0–10% shear strain and tended to maintain the 

direction after 10% shear strain. The fraction of sliding contacts (FS) maintained a 

relatively high value when the shear strain was less than 20%, then decreased to about 0 

during 20–40% shear strain. Finally, FS was maintained at about zero after 40% shear 

strain. The evolution trend of the FS was consistent with that of the deviator fabric. It 

Fig. 5.8. Evolution of microscopic index during undrained monotonic shear: (a) deviator 

fabric vs. shear strain; (b) the angle between ሺΔ𝜀ሻଵ and 𝛷ଵ and between 𝜎ଵ and 𝛷ଵ
vs. shear strain; (c) fraction of sliding contacts; (d) coordination number vs. shear strain. 
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suggested that the granular fabric evolved rapidly in the range of 0–20% shear strain, and 

the evolution rate decreased in the range of 20%–40% shear strain. The granular fabric 

seemed to be stable after a 40% shear strain when the shear band was formed. The 

evolution trend of the coordination number was consistent with that of effective stress. 

The coordination number decreased initially because of the contractive behavior and then 

increased with the increase of mean effective stress. After the granular assembly reached 

a stable state of stress, the coordination number tended to remain constant. This 

phenomenon matched the point of view of Rothenburg and Kruyt (2004), who argued that 

the critical state is reached when rates of contact breakage and creation become equal (the 

critical state was reached in the shear band in this study).  

 

5.3.2. Cyclic shear 

The macroscopic responses of the granular assembly under undrained cyclic shear 

with different shear strain amplitude are shown in Fig. 5.9. As found in Section 5.3.1, 

under undrained monotonic shear, the behavior of granular aggregates was contractive 

for shear strains less than 0.2% and dilative for shear strains greater than 0.2%. 

Correspondingly, under undrained cyclic shear with an amplitude of 0.1%, the mean 

effective stress and shear stiffness decreased gradually, and the granular assembly 

eventually liquefied; under undrained cyclic shear with amplitudes of 0.5% and 1%, the 

mean effective stress initially deceased and then increased with shear strain as the 

behavior of the granular assembly changed from contraction to dilation at the phase 

transformation state. The mean effective stress and shear stress decreased as shear strain 

reversed, and the granular assembly eventually liquefied; under undrained cyclic shear  
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with amplitudes of 5% and 10%, the dilative behavior of the granular assembly became 

stronger. Especially, the shear stiffness recovered after the initial liquefaction when the 

shear strain application was continued. However, the magnitude of shear stiffness that 

recovered after initial liquefaction also decreased gradually. Finally, the granular 

assembly was completely liquefied (shear stiffness no longer recovered); under undrained 

cyclic shear with amplitudes of 50% and 100%, the initial liquefaction occurred. However, 

the fluid-like state only existed within 20% shear strain after the reversal of shear strain 

during cyclic loading, and the shear stress recovered and maintained constant as shear 

strain continued. Especially, the magnitude of this unchanged shear stress was almost the 

same despite the shear strain amplitude and much lower than that under undrained 

monotonic shear, as shown in Fig. 5.10. If the displacement of the particles was set to 

zero at the beginning of the 11th cycle, the mean normalized displacements in the x-

Fig. 5.9. shear stress vs. shear strain and effective stress path: (a) γamp = 0.1%; (b) γamp =

0.5%; (c) γamp = 1%; (d) γamp = 5%; (e) γamp = 10%; (f) γamp = 50%; (g) γamp = 100%. 
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direction of particles per layer in the first quarter of the 11th cycle are shown in Fig. 5.11(a)  

 

 

Fig. 5.10. Shear stress vs. shear strain under undrained cyclic shears with amplitudes of

50% and 100% during the 11th cycle. 

Fig. 5.11. Mean normalized displacement in the x-direction of particles per layer under

undrained cyclic shear with amplitude of (a) 50% and (b)100% in the first quarter of the

11th cycle. 
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and (b). The shear band also formed near the top boundary during the cyclic loading, as 

the gradient of mean normalized displacement in the x-direction of particles was large 

near the top rigid boundary but almost zero in other parts of the specimen. This “strain 

localization” phenomenon during undrained cyclic shear was also observed in the hollow 

cylinder torsional shear test in which the double shear strain amplitude was loaded up to 

100% (Kiyota et al., 2008).  

The evolution of deviator fabric, the angle between ሺΔ𝜀ሻଵ and 𝛷ଵ and between 

𝜎ଵ and 𝛷ଵ, FS, and coordination number during undrained cyclic shear are shown in Fig. 

5.12–Fig. 5.15, respectively. The deviator fabric increased during the loading process and 

decreased during the unloading process before initial liquefaction. As shown in Fig. 

5.12(a), (b), and (c), after entering the flow-like state, the fabric tensor based on particle 

contacts became invalid and the deviator fabric oscillated violently with continued 

application of shear strains. When the shear stiffness recovered after initial liquefaction 

during cyclic loadings, as shown in Fig. 5.12(e), (f), and (g), the deviator fabric became 

stable. Especially, these stable deviator fabrics in Fig. 5.12(f) and (g) are almost the 

same—about 0.15. As shown in Fig. 5.13, the angle between ሺΔ𝜀ሻଵ and ሺΔ𝜀ሻଵ  and 

between 𝜎ଵ and 𝛷ଵ deceased during the application of shear strain. When the direction 

of ሺΔ𝜀ሻଵ  and 𝜎ଵ  were reversed, the angles increased sharply. This phenomenon was 

consistent with the observation in the SHV-wave strain condition in Chapter 4. Especially, 

as shown in Fig. 5.13(e), (f), and (g), when the shear stiffness recovered after initial 

liquefaction, the angle between ሺΔ𝜀ሻଵ  and 𝛷ଵ  and between 𝜎ଵ  and 𝛷ଵ  dramatically 

became about 5° and about 2°, respectively. It indicated that the elongation direction of 

granular fabric formed during the shear stiffness recovery process after liquefaction was 

almost consistent with the ሺΔ𝜀ሻଵ and 𝜎ଵ. 
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Fig. 5.12. Evolution of deviator fabric during undrained cyclic loadings: (a) γamp = 0.1%;

(b) γamp = 0.5%; (c) γamp = 1%; (d) γamp = 5%; (e) γamp = 10%; (f) γamp = 50%; (g) γamp =

100%. 
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Fig. 5.13. Evolution of the angle between ሺΔ𝜀ሻଵ  and 𝛷ଵ  and between 𝜎ଵ  and 𝛷ଵ
during undrained cyclic loadings: (a) γamp = 0.1%; (b) γamp = 0.5%; (c) γamp = 1%; (d) γamp

= 5%; (e) γamp = 10%; (f) γamp = 50%; (g) γamp = 100%. 
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Fig. 5.14. Evolution of fraction of sliding contacts during undrained cyclic loadings: (a)

γamp = 0.1%; (b) γamp = 0.5%; (c) γamp = 1%; (d) γamp = 5%; (e) γamp = 10%; (f) γamp = 50%;

(g) γamp = 100%. 
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Fig. 5.15. Evolution of coordination number during undrained cyclic loadings: (a) γamp =

0.1%; (b) γamp = 0.5%; (c) γamp = 1%; (d) γamp = 5%; (e) γamp = 10%; (f) γamp = 50%; (g)

γamp = 100%. 
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As shown in Fig. 5.14, FS increased during the application of shear strain and 

decreased sharply when the direction of shear strain application reversed. Especially, 

when initial liquefaction occurred, FS dramatically increased to a high value. In the flow-

like state after initial liquefaction, as shown in Fig. 5.14(a), (b), and (c), FS maintained 

high values as most of the particle contacts are unstable collisions. When shear stiffness 

recovered after initial liquefaction, as shown in Fig. 5.14(d) and (e), FS decreased to a 

relatively low value. When the shear band formed after shear stiffness was recovered, as 

shown in Fig. 5.14(f) and (g), FS decreased to a value close to 0. It indicated that the 

particle contacts within the measurement cube, which was outside the shear band, were 

stable. 

As shown in Fig. 5.15, the coordination number decreased gradually during cyclic 

loading. When the cyclic shear strain amplitude was smaller than 1%, as shown in Fig. 

5.15(a), (b), and (c), the specimen liquefied with the coordination number dramatically 

decreasing from about 2 to a value near 0, which was consistent with the phenomenon 

observed in Chapter 4. However, under undrained cyclic shear with relatively large shear 

strain amplitude, as shown in Fig. 5.15(d), (e), (f), and (g), the coordination number 

dramatically decreases from a value larger than 2, even 3, to a value near 0. In the flow-

like state after initially initial liquefaction, as shown in Fig. 5.15(a), (b), and (c), the 

coordination number remained below 2 although shear strain was applied. When shear 

stiffness recovered after initial liquefaction, as shown in Fig. 5.15(d), (e), (f), and (g), the 

coordination number also increased and then became stable and larger than 2, which 

suggested that when the shear stiffness recovered, a stable structure would form outside 

the shear band and the critical state would be reached in the shear band.  
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Undrained cyclic shear will result in the degradation of the granular skeleton, which 

is accompanied by the dissipation of a large void, and the granular assembly became more 

uniform (Wang and Wei, 2016; Wei et al., 2019). The centroid distance, Dc, which is based 

on “particle-void cells” and was proposed by Wang and Wei (2016), was used in this study 

to evaluate the uniformity of the specimen. The “particle-void cell” was computed using 

Voronoi tessellation by an open-source software library, Voro++ (Rycroft 2009). Fig. 5.16 

Shows the Voronoi tessellation on the granular assembly. The whole space can be divided 

into polyhedral regions composed of convex planes, which are called Voronoi cells. The 

centroid difference associated with a particle is defined by 𝑫௖
௜ ൌ ሺ𝑷௜ െ 𝑶௜ሻ/𝑅ହ଴, where 

𝑷௜, 𝑶௜ are the position vector of the mass centroids of the particle and the Voronoi cell 

surrounding it; 𝑅ହ଴ is the mean radius of the granular assembly. The centroid distance, 

Dc, is the average magnitude of the centroid difference. Generally, a large value of Dc 

indicates that the void spaces are distributed inhomogeneously or relatively large local 

pores existed in the specimen (Wang and Wei, 2016). 

Fig. 5.16. Voronoi tessellation on the granular assembly. 
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Fig. 5.17. Evolution of centroid distance during undrained shear (every 10% shear strain 

or 1 cycle). 
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As shown in Fig. 5.17(a), during undrained monotonic shear, 𝐷ୡ increased with 

shear strain application initially and then remained almost constant after the shear strain 

was larger than 50%. According to the evolution of effective stress during undrained 

monotonic shear shown in Fig. 5.5, the evolution of 𝐷ୡ  suggested that the granular 

assembly became more inhomogeneous when the effective stress increased. As the 

effective stress became constant after the shear band formed, the uniformity of the 

granular assembly also remained constant. 

As shown in Fig. 5.17(b)–(f), during undrained cyclic shear, 𝐷ୡ decreased during 

cyclic loading initially and then increased. By comparing with Fig. 5.4, it could be 

concluded that the granular assembly became more homogenous as the effective stress 

decreased. However, in the fluid-like state after initial liquefaction, the granular assembly 

became inhomogeneous because of the continued application of shear strain. Especially, 

the larger the shear strain applied, the more inhomogeneous the granular assembly during 

the fluid-like state after initial liquefaction. 

As shown in Fig. 5.17(g) and (h), because the effective stress at the end of each 

cycle was larger than that at the initial state, 𝐷ୡ at the end of each cycle was also larger 

than that at the initial state (at the end of each cycle, the shear band was formed). 

Especially, 𝐷ୡ tended to be constant after initial liquefaction; however, it was lower than 

that under the undrained monotonic shear when the shear band formed. It indicated that 

when the shear band was formed, the granular assembly, on the whole, was more 

homogeneous under undrained cyclic shear after initial liquefaction than that under 

undrained monotonic shear. As mentioned in Fig. 5.10, the stable states of stress during 

undrained monotonic shear and undrained cyclic shear are different. This phenomenon 
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originated from the different granular fabrics when the shear band was formed. Although 

the void ratio of the granular specimen was constant, the void ratios within the shear band 

and out of the shear band were different because the granular fabrics were different during 

cyclic shear and monotonic shear. As the granular assembly was more homogeneous 

during undrained cyclic shear than during undrained monotonic shear when the shear 

band was formed, the granular particle in the narrow shear band can move more easily. 

Therefore, the effective stress in the stable state during undrained cyclic shear was lower 

than that during undrained monotonic shear. 

It should be noted that the liquefaction phenomenon and occurrence of shear band 

in undrained cyclic simple shears with extremely large amplitude are predicated on the 

Fig. 5.18. Evolution of volume fraction in the specimen confined by rigid walls during

undrained cyclic shear with amplitude of (a) 3% in zero-strain position; (b) 3% in

maximum-strain position; (c) 100% in zero-strain position; (d) 100% in maximum-strain

position (Jiang et al., 2020). 
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ideal boundary condition achieved by the periodic boundary, which means that there is 

no influence from the boundary, e.g., membrane, rigid boundary. Jiang et al. (2020) 

performed a series of 3D DEM undrained cyclic simple shear simulations with large shear 

amplitude using rigid boundaries. In their research, when the shear amplitude exceeded 

45%, all the specimens did not liquefy, and the shear band also did not appear. In contrast, 

because the shortest distance between the lateral boundaries was shortened, the specimen 

became inhomogeneous and was subjected to excessive mean effective stress, which was 

far from the experimental results using actual soil particles. As shown in Fig. 5.18, when 

the shear strain amplitude was 3%, the granular assembly was relatively homogeneous 

during cyclic shear, while when the shear strain amplitude was 100%, the granular 

assembly was extremely inhomogeneous. In this research, as shown in Fig. 5.19, since 

there is no boundary effect (because of the presence of periodic boundaries) in lateral 

directions, the granular assembly was more homogeneous than in the case of using rigid 

boundaries in Fig. 5.18, and the shear band was formed near the top boundary (the volume 

fraction of the shear band was lower than that of the nearby area). The stress–strain 

relationship of the specimen depended on the characteristics of the shear band.                       

Fig. 5.19. Evolution of volume fraction in zx-plane in the specimen using periodic 

boundary during undrained cyclic shear with amplitude of 100% at (a) initial state and 

(b) the end of cycle 10. 
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5.4. Summary 

A series of 3D DEM simulations under undrained monotonic and cyclic simple 

shears was performed until 100% shear strain amplitudes. The granular assembly was K0-

consolidated, and the periodical boundary was used to eliminate the influence of boundary 

effects in the large deformation. The main conclusions are summarized as follows: 

1. During both undrained monotonic simple shear and undrained cyclic simple shear, 

when the shear strain exceeds a certain value and there is no influence of boundary effects, 

the uniform shear deformation in the element will disappear and the shear band will be 

formed. After the shear band was formed, the granular structure outside the shear band 

become stable, and the granular assembly reached a stable state of stress. 

2. When the cyclic shear strain amplitude is small (≤ 1%), the medium-dense 

granular assembly will gradually lose shear stiffness, accompanied by the gradual 

decrease of effective stress, and liquefy at last. When the shear strain amplitude becomes 

larger (≤ 10%), the shear stiffness will recover after the initial liquefaction as the shear 

strain application is continued. However, the recovered shear stiffness also decrease 

gradually until the granular assembly was completely liquefied. When the shear strain 

amplitude exceeds a certain value (about 50%), the fluid-like state after initial liquefaction 

only exists in a small shear strain range (about 20%) after the direction of shear strain 

application is reversed. The shear stiffness will recover as the shear strain application is 

continued, and the granular assembly reaches a stable state of stress as the shear band was 

formed during cyclic loadings. 

3. The fabric anisotropy increases during the loading process and decreases during 
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the unloading process. When the shear strain exceeds a certain value, the fabric anisotropy 

tends to be constant. The major principal fabric direction (𝛷ଵ) tends to be close to the 

direction of shear strain application (principal eigenvector of the strain increment, ሺΔ𝜀ሻଵ) 

and major principal stress (𝜎ଵ) during the loading process and became constant when the 

shear strain exceeds a certain value. FS increases during the application of shear strain 

and decreases dramatically when the direction of shear strain application reverses. When 

the stable state of stress arrived, FS outside the shear band tends to be zero. The 

coordination number increases with the increase of effective stress and decreases with the 

decrease of effective stress. The coordination number will decrease dramatically from a 

value larger than 2 to a value near zero when the initial liquefaction occurs. In the flow-

like state after initial liquefaction, the coordination number was below 2; however, when 

shear stiffness recovered, the coordination number will recover and become larger than 2. 

4. The granular assembly became inhomogeneous during undrained monotonic 

shear when the effective stress increased. During undrained cyclic shear, the granular 

assembly becomes homogeneous as the effective stress decrease. After initial liquefaction, 

because the granular structure was destroyed, the granular assembly becomes 

inhomogeneous at flow-like when shear strain application is continued. When the shear 

band was formed, the whole granular assembly become more inhomogeneous than the 

initial state. However, compared to under the undrained monotonic shear, the granular 

assembly under the undrained cyclic shear is more homogenous when the shear band was 

formed. This explained the different stable states of stress between undrained monotonic 

shear and cyclic shear as the void ratios in the narrow shear band are different. 
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CHAPTER 6 VOLUMETRIC STRAINS DURING 

RECONSOLIDATION 

6.1. Introduction 

The reconsolidation of ground after undrained cyclic shear during an earthquake 

may also cause severe damage to buildings and infrastructures. However, the nonlinear 

relationship between the void ratio and effective stress during reconsolidation, especially 

the resedimentation process, was not well investigated due to the limitation of laboratory 

tests. A series of 3D DEM simulations was conducted to investigate the reconsolidation 

characteristics of granular materials after undrained cyclic shear, and the results were 

analyzed based on the macroscopic and microscopic responses. 

Fig. 6.1. Granular assembly composed of multi-sized particles and its corresponding PSD

curve. 
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6.2. DEM simulations 

6.2.1. DEM models 

In this study, both single-sized particles and multi-sized particles were used. The 

specimen composed of single-sized particles is the same as what was used in Chapter 5. 

The specimen composed of multi-sized particles and its corresponding particle size 

distribution (PSD) curve are shown in Fig. 6.1. The particle sizes are 10 times that of 

Toyoura sands and it was called Toyoura size distribution. Especially, particles with a 

diameter lower than 0.106 mm are deleted in this study to improve the computation 

efficiency. The particle number in a given particle size range in the specimen with 

Toyoura size distribution is shown in Fig. 6.2. The average particle size of both the Single 

size distribution and the Toyoura size distribution is 1.8 mm. In particular, the two 

specimens are generated using the same method as introduced in Chapter 5. The 

Fig. 6.2. Histogram of particle size in the specimen with Toyoura size distribution. 
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parameters in the two specimens are the same except for the particle size, particle number, 

void ratio, and K0 value. The AoR corresponding to the Toyoura size distribution is 31.38°, 

which is a little higher than that corresponding to the Single size distribution (30.43°). 

 

6.2.2. Undrained cyclic shear 

The undrained cyclic shear was strain-controlled by moving the bottom rigid wall. 

The shear strain amplitude was 0.1%. As mentioned in Chapter 5, the responses of the 

granular assembly during undrained cyclic shear with a shear strain amplitude of 0.1% 

are the same at frequencies of 2 Hz and 5 Hz. Therefore, to save computation time, the 

undrained cyclic shears were conducted at the frequency of 5Hz.  

Fig. 6.3. Shear stress vs. shear strain and effective stress during cyclic loadings: (a)

specimen with Single size distribution; (b) specimen with Toyoura size distribution. 
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The macroscopic responses of two specimens during undrained cyclic loading are 

shown in Fig. 6.3, which was consistent with the pattern obtained from laboratory element 

tests. The shear stiffness and effective stress decreased during undrained cyclic shear and 

the two specimens liquefied ultimately. In addition, there is no shear stiffness recovery 

after initial liquefaction after shear strain application was continued. 

 

6.2.3. Reconsolidation  

The reconsolidations were conducted from the end of each cycle, which was 

achieved by moving the top rigid wall downward. The reconsolidation was completed 

when the vertical effective stress 𝜎୴ᇱ recovered to the initial value 𝜎୴଴
ᇱ , which was 151.3 

kPa in the monodisperse specimen and 170.2 kPa in the polydisperse specimen. To clarify 

the effect of strain rate on the volumetric strain during reconsolidation, a series of 

reconsolidation tests using the monodisperse specimen, both before initial liquefaction 

and after initial liquefaction, was conducted with different strain rates. 

As shown in Fig. 6.4(a), the evolutions of the void ratio during reconsolidation 

Fig. 6.4. Evolution of void ratio during reconsolidation: (a) reconsolidation before initial

liquefaction; (b) reconsolidation after initial liquefaction 
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started before initial liquefaction at different strain rates were identical. However, during 

the reconsolidation started after initial liquefaction, the changes in void ratio during the 

very small effective stress state were different, although the slope of the 𝑒 െ log𝜎୴ᇱ are 

almost identical after 𝜎୴ᇱ was larger than 10-1 kPa. It indicates the strain rate only used 

in this study only affects the reconsolidation during a very small effective stress range. 

Considering the computation efficiency, a strain rate of 0.05% was used in this study. 

As shown in Fig. 6.5, during undrained cyclic shear, 𝜎୴ᇱ decreased gradually. As 

𝜎୴ᇱ the first time below 1 × 10-3 kPa, the granular assembly was assumed to be initially 

liquefied. The reconsolidation started from the end of each cycle, and the corresponding 

value of 𝜎୴ᇱ  are shown in Fig. 6.5 and marked by red dots. The red dots did not 

completely coincide with the curve because the curve corresponds to the undrained cyclic 

shear until initial liquefaction occurred (corresponding to the reconsolidation that began 

at the end of the 6th cycle in the specimen with Single size distribution and at the end of 

5th cycle in the specimen with Toyoura size distribution), while the reconsolidations 

initiated at other effective stress states were different simulations performed from the state 

prior to undrained cyclic shearing. 

Fig. 6.5. Reconsolidation beginning at different cycles: (a) specimen with Single size

distribution; (b) specimen with Toyoura size distribution. 
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6.3. Simulation results 

Fig. 6.6 and Fig. 6.7 show the evolution of mechanical coordination number and 

void ratio during undrained cyclic shear and reconsolidation processes in the 

monodisperse specimen and polydisperse specimen, respectively. The mechanical 

coordination number (Thornton, 2000) was introduced in Section 4.4.2.3, which rules out 

the influence of particles that have no or only one contact with other particles. Before 

cyclic loading, the mechanical coordination number of the monodisperse specimen was 

4.3; the mechanical coordination number of the polydisperse specimen was 4.1. For the 

monodisperse specimen, the initial liquefaction happened when the mechanical 

coordination number became less than a threshold value located near 3.2; Similarly, for 

the polydisperse specimen, the threshold mechanical coordination number was also about 

3.2. In addition, during the undrained cyclic shear, there was no change in void ratio 

because the volume of the specimen remained constant during simulations. 

During the reconsolidation process, interparticle contacts that vanished during 

undrained cyclic shear were restored, which manifested as an increase in the mechanical 

coordination number; however, the mechanical coordination number remained lower than 

before undrained cyclic loading. One of the reasons is that the K0 value after 

Fig. 6.8. K0 value at the initial state and after reconsolidation that began at the end of each

cycle in the specimens with (a) Single size distribution and (b) Toyoura size distribution.
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reconsolidations was different. As shown in Fig. 6.8, The K0 value after reconsolidation 

became lower when the reconsolidation process began at a lower residual effective stress 

state before initial liquefaction. Because the vertical effective stress was equal after 

reconsolidation, a lower K0 value implied a smaller mean effective stress.  

In the liquefied cases (The 6th cycle in the monodisperse specimen and the 5th cycle 

in the polydisperse specimen), when the mechanical coordination number was less than 

the threshold value located near 3, the vertical effective stress did not increase as the void 

ratio decreased. It was regarded as the liquefied portion of reconsolidation in this study, 

which indicates that the contact between particles was primarily in the form of impact, 

and a stable structure had not been formed. In the solidified portion, both the mechanical 

coordination number and the vertical effective stress increased as the void ratio decreased, 

and a stable structure was gradually formed. In addition, owing to the measurement 

limitations, the boundary between the liquefied and solidified portion observed in 

previous laboratory tests (Uzuoka et al., 2010; Zhou et al., 2014) was larger than that 

observed in this study (less than 1 kPa), and the phenomenon that the void ratio decreased 

extremely slowly when the magnitude of vertical effective stress less than 100 kPa in the 

solidified portion of reconsolidation had not been observed. 

The change in void ratio during reconsolidation depended on the residual effective 

stress. In both specimens, the lower the residual vertical effective stress, the larger the 

change in void ratio during the reconsolidation process. The change of void ratio during 

the reconsolidation process that began at the end of each cycle before initial liquefaction 

and the corresponding recompression indices are listed in Table 6.1 and Table 6.2. The 

recompression index 𝐶௥ ൌ ሺ𝑒଴ െ 𝑒ሻ/logଵ଴ ሺ𝜎୴଴
ᇱ /𝜎୴ᇱሻ, where 𝑒଴ is the void ratio at the 
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start of reconsolidation, 𝑒  is the void ratio after reconsolidation, 𝜎୴଴
ᇱ   is the vertical 

effective stress after reconsolidation, and 𝜎୴ᇱ is the vertical effective stress at the start of 

reconsolidation. Although the recompression index was affected by the residual effective 

stress (usually the larger the residual effective stress, the larger the recompression index), 

this affection was very small. In addition, for reconsolidations starting before initial 

liquefaction, the recompression indices of the monodisperse specimen are similar to that 

of the polydisperse specimen. 

Table 6.1. Recompression indices of the monodisperse specimen 

Reconsolidation after 𝑒଴ െ 𝑒 logଵ଴ሺ𝜎୴଴
ᇱ /𝜎୴ᇱሻ 𝐶௥ 

1 cycle 

2 cycles 

3 cycles 

4 cycles 

5 cycles 

0.00018 

0.00035 

0.00053 

0.00080 

0.00114 

0.091 

0.175 

0.278 

0.433 

0.715 

0.0020 

0.0020 

0.0019 

0.0019 

0.0016 

 

Table 6.2. Recompression indices of the polydisperse specimen 

Reconsolidation after 𝑒଴ െ 𝑒 logଵ଴ሺ𝜎୴଴
ᇱ /𝜎୴ᇱሻ 𝐶௥ 

1 cycle 

2 cycles 

3 cycles 

4 cycles 

0.00012 

0.00027 

0.00048 

0.00120 

0.055 

0.125 

0.225 

0.560 

0.0022 

0.0022 

0.0022 

0.0021 

 

In the liquefied cases, the change in void ratio during the liquefied portion accounts 

for a large proportion of the total change in void ratio during reconsolidation. Especially, 

the change in void ratio during the liquefied portion was affected by the particle size 

distribution. In the specimen with Single size distribution, the change in void ratio was 
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0.0038 during the liquefied portion and 0.0019 during the solidified portion of the 

reconsolidation process began at the end of the 6th cycle; In the specimen with Toyoura 

size distribution, the change in void ratio was 0.0089 during the liquefied portion and 

0.0021 during the solidified portion of the reconsolidation process began at the end of the 

5th cycle. The change in void ratio during the liquefied portion was larger in the specimen 

with Toyoura size distribution than in the specimen with Single size distribution. However, 

the change in void ratio during the solidified portion was similar between the Toyoura 

size distribution specimen and the Single size distribution specimen. It indicated that 

volumetric strain during the solidified portion was much less affected by the particle size 

distribution than that during the liquefied portion. Of course, as mentioned in Section 

6.2.3, the void ratio change in the liquefied portion would be also affected by the strain 

Fig. 6.9. Evolution of compression modulus during the solidified portion of

reconsolidation process in the (a) monodisperse specimen and (b) polydisperse specimen.



CHAPTER 6  VOLUMETRIC STRAINS DURING RECONSOLIDATION 

166 

 

rate of reconsolidation, which was ignored in this study. 

Based on the principle of effective stress, the stiffness and strength of soil depend 

on the effective stress. The elastic modulus was usually expressed as proportional to the 

power of the effective stress (Yoshida, 2020). Fig. 6.9 shows the relationship between 

vertical effective stress and compression modulus 𝐸௦ during the solidified portion of the 

reconsolidation process, where 𝐸௦ ൌ d𝜎୴ᇱ/d𝜀௩ ,  and 𝜀௩  is the volumetric strain. The 

compression modulus 𝐸௦  was proportional to the power of 0.2 the vertical effective 

stress. The relationship between d𝜎୴ᇱ and d𝜀௩ could be expressed by: 

d𝜎୴ᇱ ൌ 𝐸௦௖𝜎୴ᇱ
௠d𝜀௩ ሺ6.1ሻ 

where 𝐸௦௖ is a constant depending on the specimen and 𝑚 is about 0.2. Integrating Eq. 

(6.1), the volumetric strain during the solidified portion of the reconsolidation process, 

𝜀௩௦, could be expressed by: 

𝜀௩௦ ൌ
1

𝐸௦௖ሺ1 െ𝑚ሻ
൫𝜎୴ᇱ

ଵି௠ െ 𝜎୴଴
ᇱ ଵି௠൯ ሺ6.2ሻ 

where 𝜎୴଴
ᇱ   is the vertical effective stress when entering the solidified portion. In this 

study, 𝜎୴଴
ᇱ  was about 0.42 kPa. Fig. 6.10 shows that the fitted curve closely follows the 

pattern of the original data points. 

The proportion of particles that have no contact or only one contact with other 

particles was called unstable particle proportion in this study. As shown in Fig. 6.11, the 

unstable particle proportion in the polydisperse specimen was generally higher than that 

in the monodisperse specimen. Correspondingly, as shown in Fig. 6.12, the coordination 

number in the polydisperse specimen was generally lower than that in the monodisperse 
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specimen. In both specimens, the unstable particle proportion increased sharply when 

liquefaction occurs; during the reconsolidation process, the unstable particle proportion 

did not decrease with the decrease of void ratio in the liquefied portion; when the 

specimens achieved the solidified portion, the unstable particle proportion was almost the 

same as when it reached liquefaction. It suggested that the formation of a stable granular 

skeleton requires a certain proportion of mechanically stable particles, and the proportion 

is higher in the monodisperse specimen than in the polydisperse specimen. In the 

solidified portion, the unstable particle proportion decreased with the decrease of void 

ratio and the increase of effective stress; however, the unstable particle proportion after 

reconsolidation was still higher than that before undrained cyclic shear.  

Fig. 6.10. Relationship between the vertical effective stress and volumetric strain during

the solidified portion of reconsolidation process in the (a) monodisperse specimen and

(b) polydisperse specimen. 
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In the specimen with Toyoura size distribution, as shown in Fig. 6.13, particles with 

different sizes had different coordination number levels. Generally, a larger particle size 

implied a larger coordination number level during both undrained cyclic shear and 

reconsolidation processes. Especially, as shown in Fig. 6.13(a), the coordination number 

of the particles with sizes from 1.06 to 1.38 mm was lower than the overall coordination 

number of the specimen as shown in Fig. 6.12(b). Considering that about half of the 

particles were in this size range, the results indicated that the suspended particles are 

mainly of small sizes. These small, suspended particles move more flexibly and they are 

more difficult to participate in the construction of the force transmission network 

compared with larger size particles. This phenomenon should be the reason why the 

volume strain of the Toyoura size distribution specimen in the liquefied portion is greater 

than that of the Single size distribution specimen.  

  

Fig. 6.12. Evolution of coordination number of the specimen with (a) Single size

distribution and (b) Toyoura size distribution. 
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Fig. 6.13. Evolution of coordination number of particles with different sizes in the

specimen with Toyoura size distribution. 
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Wei et al. (2019) indicated that the degree of pore uniformity was closely associated 

with the volume contraction characteristics of sands. The centroid distance, 𝐷ୡ  as 

mentioned in Chapter 5, was used to evaluate the degree of pore uniformity. A low value 

of 𝐷ୡ generally indicates that the void spaces are distributed homogeneously, and no 

relatively large local pores existed in the specimen (Wang and Wei, 2016). The open-

source software library, Voro++ (Rycroft 2009) was used to obtain the “particle-void cell” 

in the same way as in Chapter 5. Especially, Voronoi radical tessellation was used to 

handle the polydisperse specimen, as shown in Fig. 6.14.  

The results of centroid distance are shown in Fig. 6.15. On the whole, the centroid 

distance decreased as the cycle increased. It indicated that in both the monodisperse 

specimen and polydisperse specimen, the granular assembly became more homogeneous 

during undrained cyclic shear. In the monodisperse specimen, during the reconsolidation 

process, the centroid distance increased. Particularly, the lower the residual effective 

Fig. 6.14. Voronoi radical tessellation on the specimen with Toyoura size distribution. 
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stress when the reconsolidation began (large cycle number), the larger the increase in the 

centroid distance during the reconsolidation process. In the liquefied case, the centroid 

distance at the vertical effective stress of 1.0 × 10-3 kPa closest to the solidified portion 

was recorded. The result suggested that most of the increase in inhomogeneity occurred 

during the liquefied portion, which was consistent with the change in void ratio. In the 

polydisperse specimen, the granular assembly would become either homogeneous or 

inhomogeneous. Especially in the liquefied case, most of the increase in homogeneity 

occurs during the liquefied portion, which is consistent with the change in void ratio. The 

different evolutions of centroid distance during reconsolidation in the monodisperse 

Fig. 6.15. Evolution of centroid distance during undrained cyclic shear and after

reconsolidations in the specimen with: (a) Single size distribution and (b) Toyoura size

distribution. 
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specimen and polydisperse specimen probably due to different proportions of unstable 

particle. As the unstable particle proportion of the polydisperse specimen was much 

higher than that of the monodisperse specimen. the random motion of the mechanically 

unstable particles during reconsolidation would affect the uniformity of the specimen. 

Therefore, the centroid distance might increase or decrease during cyclic shear. In 

addition, the initial inhomogeneity of the polydisperse specimen was larger than that of 

the monodisperse specimen, this may be one of the reasons that the monodisperse 

specimen became inhomogeneous and the polydisperse specimen became homogeneous 

during the reconsolidation after initial liquefaction.  

 

6.4. Summary 

To avoid the measuring limitation of laboratory tests, a series of 3D DEM 

simulations was performed to investigate the reconsolidation characteristics of K0-

consolidated granular materials. Both monodisperse and polydisperse specimens were 

used in this study. The drainage rate effect was disregarded by applying volumetric strain 

at a constant and low rate without gravity. The main conclusions are as follows: 

1. The post-liquefaction reconsolidation process can be categorized into a liquefied 

and a solidified portion. In the liquefied portion, the void ratio decreased without an 

increase in the effective stress. In the solidified portion, the void ratio decreased as the 

effective stress increased; however, the void ratio decreased extremely slowly at a stress 

level of less than 100 kPa. 
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2. The residual effective stress significantly affected the volumetric strain during 

reconsolidation after an undrained cyclic shear. The smaller the residual vertical effective 

stress, the larger the change in void ratio during the reconsolidation process. Especially, 

the volumetric strain during the liquefied portion accounts for a large proportion of the 

total volumetric strain during the reconsolidation process. The particle size distribution 

has a great influence on the volumetric strain during the liquefied portion of the 

reconsolidated process, whereas has little effect on the volumetric strain during the 

solidified portion of the reconsolidation process. During the liquefied portion of the 

reconsolidation process, the volumetric strain of the polydisperse specimen is greater than 

that of the monodisperse specimen. 

3. The mechanical coordination number decreased gradually during undrained 

cyclic shear and increased during the reconsolidation process. However, the mechanical 

coordination number after the reconsolidation was lower than that in the initial state. In 

particular, the specimen with Toyoura size distribution generally has a higher unstable 

particle proportion than the specimen with Single size distribution. Moreover, the 

evolution of unstable particle proportion is opposite to that of the mechanical coordination 

number. 

4. The pore uniformity increased during undrained cyclic shear in both 

monodisperse and polydisperse specimens. During the reconsolidation process, the pore 

uniformity in the monodisperse increased, whereas the polydisperse granular assembly 

may be either homogenous or inhomogeneous. In addition, despite the sign, a larger 

change in centroid distance is generally associated with a larger volumetric strain during 

the reconsolidation process. 
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CHAPTER 7 CONCLUSION 

7.1. Summary 

Earthquakes are one of the natural disasters that pose severe threats to human 

society. One of the ways earthquakes cause damage is the undrained shearing of soil under 

the propagation of seismic waves. 

In traditional laboratory element tests, it is hard to reproduce some of the complex 

stress–strain conditions that occur during real earthquakes, and the microscopic behavior 

and corresponding parameters of a granular assembly during cyclic loadings are difficult 

to observe and measure. In addition, the continuum modeling scheme is unable to capture 

the discrete nature of granular materials. Therefore, 3D DEM was used in this research, 

which helps to reveal the intrinsic essence mechanism behind the failure phenomenon of 

granular materials. 

This research aimed to conduct a qualitative study on the failure and reconsolidation 

behavior of granular material due to undrained shear, and analysis was performed from 

both macroscopic and microscopic scales to reveal the mechanism behind the response 

of granular materials. 

In Chapter 4, the responses of granular assemblies under surface-wave strain 

conditions and SH-wave strain conditions were studied. The equations governing the 

strain–time relationships of SHH, SHV, Love, and Rayleigh waves were derived from the 

elastic wave theory. And the undrained deformation mode of a soil element under the 

propagation of SHH, SHV, Love, and Rayleigh waves are called SHH-, SHV-, Love-, and 
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Rayleigh-wave strain conditions in this study. Nine different loading paths were applied 

to the K0-consolidated specimens to cover the strain characteristics under different strain 

conditions. The accumulated equivalent strain was used to ensure the strain level at 

different loading conditions are identical. The volume of granular assembly remained 

constant during cyclic loadings to model the undrained condition, and cyclic loadings 

were applied until the initial liquefaction occurred. 

In Chapter 5, both undrained monotonic simple shear and the undrained cyclic 

simple shear tests were conducted on a K0-consolidated granular assembly using 3D DEM. 

A relatively slow strain rate was used to ensure the quasi-static responses of the granular 

assembly. During the undrained monotonic simple shear, the shear strain was applied until 

100%. During the undrained cyclic shear, cyclic loadings with a shear strain amplitude of 

0.1%, 0.5%, 1%, 5%, 10%, 50%, and 100% were applied to the granular assembly. 

Periodical boundaries were used in this study to eliminate the boundary effects that 

originate from large shear strain conditions. 

In Chapter 6, the volumetric strain during the reconsolidation process that began at 

different residual effective stress states and with no residual shear strain was studied. A 

K0-consolidated monodisperse specimen and a K0-consolidated polydisperse specimen 

were used in this study. Both the undrained cyclic shear and reconsolidation were 

conducted under zero-gravity conditions. The strain rate during reconsolidation was 

controlled at a low value to reduce the effect of the reconsolidation rate on the volumetric 

strain. 
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7.2. Conclusions 

7.2.1. Study on the response of granular material under surface-wave 

strain conditions 

The liquefaction behavior of granular material under the propagation of surface 

waves had not been clarified due to their complex deformation mode. In this study, the 

macroscopic and microscopic response of K0-consolidated granular assemblies under 

Love- and Rayleigh-wave strain conditions was compared with that under SH-wave strain 

conditions by performing a series of 3D DEM numerical tests. Nine loading paths, which 

correspond to the SHH-wave strain condition, SHV-wave strain condition, Love-wave 

strain conditions with AR = 0.25, 1, and 4, and Rayleigh-wave strain conditions with RSN 

= 0, 0.25, 1, and 4, respectively, were applied to the granular assemblies. The cyclic 

loadings were applied until initial liquefaction. The following main conclusions were 

achieved from the 3D DEM study: 

1. The undrained response of a granular assembly is significantly affected by the 

loading paths. The fluctuation of ESRR and the magnitude of von Mises stress under 

Rayleigh-wave strain conditions is larger than that under SH- and Love-wave strain 

conditions. In addition, the resultant shear strain under Love-wave strain conditions has 

a significant influence on the fluctuation of ESRR and the magnitude of von Mises stress. 

2. Generally, at the same strain level, the Rayleigh-wave strain condition with a low 

RSN value would make granular materials more vulnerable to liquefaction than Love-

wave strain conditions, and granular materials under Love-wave strain conditions are 

more likely to liquefy than under SH-wave strain conditions. 
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3. K0-consolidation resulted in a structure whose elongation direction is vertical. As 

a result, the positive dilatancy behavior in the pure shear mode was more sensitive to the 

strain level than that in the simple shear mode. 

4. The fabric anisotropy increases during cyclic loadings, which is especially 

significant under Rayleigh-wave strain conditions than under other strain conditions. As 

the granular structure degraded, the loading path has a larger influence on the evolution 

of structural anisotropy and rotation of structure elongation direction. The angle between 

𝜀ଵ and 𝛷ଵ and between 𝜎ଵ and 𝛷ଵ tended to be a value near zero 

5. The increase in structural anisotropy and the degradation of the skeleton structure 

accelerated the liquefaction of granular materials. The magnitude of the fraction of sliding 

contacts and fluctuation of coordination number under Rayleigh-wave strain conditions 

is larger than that under SH- and Love-wave strain conditions. The evolution of the 

fraction of sliding contacts and fluctuation of coordination number under SH- and Love-

wave strain conditions relies on the change in resultant shear strain during cyclic loading. 

6. Regardless of the loading path, the initial liquefaction happened instantaneously 

when the coordination number approached approximately 2; It is noteworthy that the 

“zero mean effective states” was not reached in the initial liquefaction state. 

 

7.2.2. Study on the undrained behavior of granular materials with 

different shear strain amplitude 

Due to the limitation of laboratory apparatus, the behavior of liquefiable granular 
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material under undrained cyclic shear with very large shear strain amplitudes is still 

unknown. To clarify the shear strain amplitude on the undrained behavior of granular 

materials without the influence of boundary effects, a series of 3D DEM simulations 

under undrained monotonic and cyclic simple shears was performed until 100% shear 

strain amplitudes using periodic boundaries in lateral directions. The main results of this 

study can be summarized as follows: 

1. During both undrained monotonic simple shear and undrained cyclic simple shear, 

the shear band was formed when the shear strain exceeds a certain value. After the shear 

band was formed, the granular structure outside the shear band become stable, and the 

granular assembly reached a stable state of stress. 

2. Under the cyclic shear with a small strain amplitude (≤ 1%), the medium-dense 

granular assembly will gradually lose its shear stiffness and liquefy eventually. When the 

shear strain amplitude becomes larger (≤ 10%), the shear stiffness will recover after the 

initial liquefaction as the shear strain application is continued. However, the shear 

stiffness recovery will vanish as the undrained cyclic shear continued. When the shear 

strain amplitude exceeds a certain value (about 50%), the fluid-like state after initial 

liquefaction will only exist in a small shear strain range (about 20%) after the strain 

loading direction reversion. The shear stiffness will recover as the shear strain application 

is continued, and the granular assembly reaches a stable state of stress as the shear band 

was formed during cyclic loadings. 

3. The fabric anisotropy increases during the loading process and decreases during 

the unloading process. When the shear strain exceeds a certain value, the fabric anisotropy 

tends to be constant, and the major principal fabric direction tends to be close to the 
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direction of shear strain application and the direction of major principal stress. When the 

stable state of stress arrived, the skeleton of the part of the granular assembly outside the 

shear band became stable, as FS outside the shear band tended to be zero and the 

coordination number outside the shear band became constant. The coordination number 

will decrease dramatically from a value larger than 2 to a value near zero when the initial 

liquefaction occurs. In the flow-like state after initial liquefaction, the coordination 

number was below 2; however, after shear stiffness recovered, the coordination number 

will become larger than 2. 

4. The granular assembly became inhomogeneous during undrained monotonic 

shear when the effective stress increased. During undrained cyclic shear, the granular 

assembly becomes homogeneous as the effective stress decrease. The stable states of 

stress during undrained monotonic shear and undrained cyclic shear with large strain 

amplitudes are different. This is because the overall uniformities of the granular assembly 

in the two stable states are different. Therefore, the void ratios in the narrow shear bands 

are not identical. 

 

7.2.3. Study on the reconsolidation after undrained cyclic shear 

In laboratory tests, the effective stress near zero is hard to be measured exactly, and 

the behavior of granular materials during reconsolidation is difficult to observe from the 

particle scale. To overcome these limitations, a series of 3D DEM simulations was 

performed. The reconsolidation characteristics of K0-consolidated monodisperse and 

polydisperse granular materials were investigated in this study. The drainage rate effect 
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was disregarded by applying volumetric strain at a constant and low rate without gravity. 

The main conclusions are as follows: 

1. The post-liquefaction reconsolidation process can be categorized into a liquefied 

and a solidified portion. In the liquefied portion, the void ratio decreased without an 

increase in the effective stress. In the solidified portion, the void ratio initially decreased 

extremely slowly at a stress level less than 100 kPa, then the void ratio decrement become 

quicker and eventually stable as the effective stress increased.  

2. The residual effective stress significantly affected the volumetric strain during 

reconsolidation after an undrained cyclic shear. The smaller the residual vertical effective 

stress, the larger the change in void ratio during the reconsolidation process. Especially, 

the volumetric strain during the liquefied portion accounts for a large proportion of the 

total volumetric strain during the reconsolidation process. During the liquefied portion of 

the reconsolidation process, the volumetric strain of the polydispersed specimen is greater 

than that of the monodisperse specimen. However, the particle size distribution has little 

effect on the volumetric strain during the solidified portion of the reconsolidation process. 

3. The monodisperse specimen had a greater coordination number than the 

polydisperse specimen (with Toyoura size distribution). The coordination number 

decreased gradually during undrained cyclic shear and increased during the 

reconsolidation process. In particular, the polydisperse specimen generally has a higher 

unstable particle proportion than the monodisperse specimen. Moreover, the evolution of 

unstable particle proportion is opposite to that of the mechanical coordination number. 

. 
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4. The pore uniformity increased during undrained cyclic shear in both 

monodisperse and polydisperse specimens. During the reconsolidation process, the pore 

uniformity in the monodisperse increased, whereas the polydisperse granular assembly 

may be either homogenous or inhomogeneous. In addition, despite the sign, a larger 

change in centroid distance is generally associated with a larger volumetric strain during 

the reconsolidation process. 

 

7.3. Suggestions for future works 

The studies in this thesis are qualitative. Some conditions were not considered or 

cannot be fulfilled by the commercial code used in this research. Therefore, the following 

recommendations are suggested for future study: 

1. All the numerical specimens used in this were K0-consolidated, and the K0 value 

cannot be controlled. To evaluate the initial anisotropy on the simulation results, future 

studies on the specimen with different K0 values are recommended. 

2. The rolling resistance model cannot completely replace the role of particle shape. 

As the particle shape plays an important role in the dilatancy behavior, it is recommended 

to consider the effect of particle shape on the basis of this paper, e.g., compared with SH-

wave strain conditions, the relative liquefaction resistance of granular materials with 

different particle shapes may be different under surface-wave strain conditions. 

3. In the study about reconsolidation, the reconsolidation was assumed to happen 

on level ground, and the reconsolidation began at the end of each cycle. As a result, the 
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effect of initial static shear, which corresponds to sloping ground, was not considered. In 

addition, the shear stresses at the end of each cycle are not necessarily 0, which deviated 

from the assumption of level ground. The stress-controlled test is recommended for future 

study. 
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APPENDIX Ⅰ 

The evolution of the magnitude and distribution of normal contact forces in the 

measurement cube of the specimen with e = 0.75 in the 1st and 11th cycle are illustrated 

here. The radial lines represent the contact force directions, and each concentric circle 

indicates the proportion of contact forces aligned in a particular direction range (10° per 

interval). The color of sector areas indicates the mean value of the projection of contact 

forces in each direction range on a given plane. The orange arrow illustrates the direction 

of the projection of major principal stress on each plane. 
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Fig. A. 1. Rose diagram under Love-wave strain condition with AR = 0.25 (the 1st cycle).
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Fig. A. 2. Rose diagram under Love-wave strain condition with AR = 0.25 (the 11st cycle).
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Fig. A. 3. Rose diagram under Love-wave strain condition with AR = 1 (the 1st cycle). 
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Fig. A. 4. Rose diagram under Love-wave strain condition with AR = 1 (the 11st cycle). 
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Fig. A. 5. Rose diagram under Love-wave strain condition with AR = 4 (the 1st cycle). 



APPENDIX Ⅰ 

209 

 

 

Fig. A. 6. Rose diagram under Love-wave strain condition with AR = 4 (the 11st cycle). 



APPENDIX Ⅰ 

210 

 

  

Fig. A. 7. Rose diagram under Rayleigh-wave strain condition with RSN = 0 (the 1st cycle).
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Fig. A. 8. Rose diagram under Rayleigh-wave strain condition with RSN = 0 (the 11st cycle).
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Fig. A. 9. Rose diagram under Rayleigh-wave strain condition with RSN = 0.25 (the 1st cycle).



APPENDIX Ⅰ 

213 

 

 

Fig. A. 10. Rose diagram under Rayleigh-wave strain condition with RSN = 0.25 (the 11st cycle).
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Fig. A. 11. Rose diagram under Rayleigh-wave strain condition with RSN = 1 (the 1st cycle).
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Fig. A. 12. Rose diagram under Rayleigh-wave strain condition with RSN = 1 (the 11st cycle).
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Fig. A. 13. Rose diagram under Rayleigh-wave strain condition with RSN = 4 (the 1st cycle). 
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Fig. A. 14. Rose diagram under Rayleigh-wave strain condition with RSN = 4 (the 11st cycle).
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Fig. A. 15. Rose diagram under SHH-wave strain condition (the 1st cycle). 
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Fig. A. 16. Rose diagram under SHH-wave strain condition (the 11st cycle). 
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Fig. A. 17. Rose diagram under SHV-wave strain condition (the 1st cycle). 
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Fig. A. 18. Rose diagram under SHV-wave strain condition (the 11st cycle). 
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APPENDIX Ⅱ 

The evolution of the projections of the directions of  𝜀ଵ,  𝜎ଵ, and 𝛷ଵ on the strain 

application plane (e = 0.75), and their relationship with ESRR during cyclic loading are 

illustrated here. 

 

Fig. A. 19. Evolution of the projections of the directions of  𝜀ଵ,  𝜎ଵ, and 𝛷ଵ on the zx-

plane (e = 0.75), and their relationship with ESRR under Rayleigh-wave strain condition

with RSN = 0 during: (a) 2–4 cycle; (b) 12–14 cycle. 

Fig. A. 20. Evolution of the projections of the directions of  𝜀ଵ,  𝜎ଵ, and 𝛷ଵ on the zx-

plane (e = 0.75), and their relationship with ESRR under Rayleigh-wave strain condition

with RSN = 0.25 during: (a) 2–4 cycle; (b) 12–14 cycle. 
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Fig. A. 21. Evolution of the projections of the directions of  𝜀ଵ,  𝜎ଵ, and 𝛷ଵ on the zx-

plane (e = 0.75), and their relationship with ESRR under Rayleigh-wave strain condition

with RSN = 1 during: (a) 2–4 cycle; (b) 12–14 cycle. 

Fig. A. 22. Evolution of the projections of the directions of  𝜀ଵ,  𝜎ଵ, and 𝛷ଵ on the zx-

plane (e = 0.75), and their relationship with ESRR under Rayleigh-wave strain condition

with RSN = 4 during: (a) 2–4 cycle; (b) 19–21 cycle. 
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Fig. A. 23. Evolution of the directions of  𝜀ଵ,  𝜎ଵ, and 𝛷ଵ, and their relationship with

ESRR under Love-wave strain condition with AR = 0.25 (e = 0.75): (a) projection on the

xy-plane during 10–12 cycle; (b) projection on the xy-plane during 71–73 cycle; (c)

projection on the yz-plane during 10–12 cycle; (d) projection on the yz-plane during 71–

73 cycle. 

Fig. A. 24. Evolution of the directions of  𝜀ଵ,  𝜎ଵ, and 𝛷ଵ, and their relationship with

ESRR under Love-wave strain condition with AR = 1 (e = 0.75): (a) projection on the xy-

plane during 10–12 cycle; (b) projection on the xy-plane during 60–62 cycle; (c) 

projection on the yz-plane during 10–12 cycle; (d) projection on the yz-plane during 60–

62 cycle. 
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Fig. A. 25. Evolution of the directions of  𝜀ଵ,  𝜎ଵ, and 𝛷ଵ, and their relationship with

ESRR under Love-wave strain condition with AR = 4 (e = 0.75): (a) projection on the xy-

plane during 10–12 cycle; (b) projection on the xy-plane during 65–67 cycle; (c) 

projection on the yz-plane during 10–12 cycle; (d) projection on the yz-plane during 65–

67 cycle. 

Fig. A. 26. Evolution of the directions of  𝜀ଵ,  𝜎ଵ, and 𝛷ଵ, and their relationship with

ESRR under SHH-wave strain condition (e = 0.75): (a) projection on the xy-plane during

10–12 cycle; (b) projection on the xy-plane during 76–78 cycle; (c) projection on the yz-

plane during 10–12 cycle; (d) projection on the yz-plane during 76–78 cycle. 
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Fig. A. 27. Evolution of the directions of  𝜀ଵ,  𝜎ଵ, and 𝛷ଵ, and their relationship with

ESRR under SHV-wave strain condition (e = 0.75): (a) projection on the xy-plane during

10–12 cycle; (b) projection on the xy-plane during 71–73 cycle; (c) projection on the yz-

plane during 10–12 cycle; (d) projection on the yz-plane during 71–73 cycle. 
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APPENDIX Ⅲ 

The evolution of the magnitude and distribution of projection of normal contact 

forces on the zx-plane in the measurement cube of the specimen in undrained monotonic 

shear is illustrated here.  

Fig. A. 28. Magnitudes and distributions of projection of normal contact forces on the zx-plane.


