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NUMERICAL STUDY OF UNDRAINED CYCLIC SHEAR AND RECONSOLIDATION BEHAVIORS OF
GRANULAR MATERIALS BY 3D DEM
ABSTRACT: Earthquakes are one of the most destructive natural disasters, posing serious threats to human society. In
addition to direct damage to building structures, the propagation of seismic waves may also affect the strength of the
ground soil through undrained cyclic shear, thereby causing indirect damage to buildings and infrastructures. Specifically,
when subjected to undrained cyclic loadings during an earthquake, saturated loose and medium-dense sand may gradually
lose strength and then liquefy.

The common method for studying the seismic response of soil is laboratory element tests. However, most studies
were conducted under unidirectional cyclic loading conditions, yet it had been recognized that the ground motion during
an earthquake is multidirectional. Surface waves, including Love waves and Rayleigh waves, may predominate the ground
surface motions during strong earthquakes and induce complicated multidirectional deformation. The relationship
between soil liquefaction and surface waves had been confirmed. Nevertheless, because of the limitation of the loading
pattern and observing method, the liquefaction behavior of granular materials under the propagation of surface waves has
not been well understood in previous studies based on the physical element experiment and continuum modeling scheme.
Besides the type of seismic waves, the strain level also has a significant influence on the seismic response of granular
materials. However, most relevant studies were performed within the 20% strain level due to the limitation of the
experimental apparatus. The response of granular materials subjected to undrained cyclic shear at a larger strain amplitude
is still unknown. Except for the reduction in soil strength during undrained cyclic loadings, the settlement of ground after
an earthquake may also cause severe damage to buildings and infrastructures. The volumetric strain during the
resedimentation process accounts for a large part of the total volumetric strain during post-liquefaction reconsolidation.
Whereas due to limitations on the accuracy of stress measurements near zero effective stress in physical testing, the
nonlinear relationship between the void ratio and effective stress during the reconsolidation process is yet to be clarified.

To circumvent the limitation of traditional laboratory element tests and continuum modeling schemes, the above
problems were qualitatively investigated using the three-dimensional discrete element method (DEM). In addition to not
being limited by loading conditions and measurement accuracy, DEM also provides a convenient way to observe the
response of granular assemblies from the particle scale. In this research, analysis from both macroscopic and microscopic
scales was conducted to reveal the mechanism behind the response of granular materials.

To elucidate the behavior of granular materials under surface-wave deformation modes, a series of numerical tests
were performed by 3D DEM under horizontally polarized shear- (SH-), Love-, and Rayleigh-wave strain conditions,
where the equations governing the strain—time relationships were derived from elastic wave theory under the assumption
of constant volume. The macroscopic and microscopic response of Ky-consolidated granular assemblies under Love- and
Rayleigh-wave strain conditions was compared with that under SH-wave strain conditions. The results show that at the
same strain level, the surface-wave strain condition, especially the Rayleigh-wave strain condition would generally make
granular materials more vulnerable to liquefaction. Specifically, Rayleigh-wave strain conditions are the combination of
pure shear mode and simple shear modes, while SH- and Love-wave strain conditions are simple shear modes and a
combination of simple shear modes, respectively. Because the elongation direction of the particle skeleton was vertical in
the Ko-consolidated specimen. The compression direction in pure shear mode was either consistent with or perpendicular

to the structure elongation direction, whereas the deformation direction in simple shear mode deviated from the structure



elongation direction by an angle that varies with time. The different deformation modes resulted in different responses.
The positive dilatancy behaviors under Rayleigh-wave strain conditions were more sensitive to the strain level than that
in the SH- and Love-wave strain conditions. In addition, the increase in fabric anisotropy during cyclic loadings was
especially significant under Rayleigh-wave strain conditions than under SH- and Love-wave strain conditions. The
magnitude of the fraction of sliding contacts and fluctuation of coordination number under Rayleigh-wave strain
conditions was also larger than that under other strain conditions. However, the initial liquefaction happened
instantaneously when the coordination number approached approximately 2, independent of the loading path.

The undrained cyclic shear behavior of liquefiable granular materials at extremely large shear strain amplitude (>
20%) was studied by performing a series of 3D DEM simulations. Specifically, the undrained monotonic simple shear
test with strain to 100% and undrained cyclic simple shear tests with strain amplitudes from 0.1% to 100% were conducted
on a Ky-consolidated granular assembly. The results suggest that in undrained cyclic shear with a small strain amplitude
(£ 1%), the medium-dense granular assembly gradually lost its stiffness and liquefied eventually. When the shear strain
amplitude became larger (< 10%), the shear stiffness recovered after the initial liquefaction as the shear strain application
was continued. However, the shear stiffness recovery vanished, and the granular assembly completely liquefied as the
undrained cyclic shear continued. Especially, the shear band formed in the granular assembly when the shear strain
exceeded a certain value (about 40% in this study) during both undrained monotonic simple shear and undrained cyclic
simple shear. The fluid-like state after initial liquefaction would only exist in a small shear strain range (about 20% in this
study) after the strain loading direction reversion. After the shear band was formed, the granular structure outside the
shear band become stable (the fraction of sliding contacts tended to be zero and the coordination number became constant),
and the granular assembly reached a stable state of stress. In addition, the stable state of stress in undrained monotonic
shear and undrained cyclic shear was different because of the different overall uniformities of the granular assembly.

The volumetric strain during the reconsolidation process that began at different residual effective stress states was
investigated based on 3D DEM simulations. A monodisperse specimen and a polydisperse specimen (with Toyoura size
distribution) were used in this study. The results indicated that the smaller the residual vertical effective stress, the larger
the change in void ratio during the reconsolidation process. Especially, the post-liquefaction reconsolidation could be
categorized into a liquefied and a solidified portion. In the liquefied portion, the void ratio decreased without a continuous
increase in the effective stress. Furthermore, the volumetric strain during the liquefied portion accounts for a large
proportion of the total volumetric strain during the reconsolidation process. In addition, the volumetric strain of the
polydisperse specimen was larger than that of the monodisperse specimen during the liquefied portion and similar to that
of the monodisperse specimen during the solidified portion. Finally, a larger change in pore uniformity was generally

associated with a larger volumetric strain during the reconsolidation process.
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CHAPTER 1 INTRODUCTION

CHAPTER1 INTRODUCTION

1.1. Background of the research

Earthquakes had brought immeasurable losses to human beings in the past and are
still one of the natural disasters that pose serious threats to human society. Besides the
direct damage to the building structure, the earthquake shaking may cause indirect

damage to buildings and infrastructures by affecting the strength of the ground soil.

During the undrained cyclic loading caused by the earthquake, saturated loose and
medium-dense sandy soil substantially loses strength and stiffness. The pore water
gradually withstands the external loads initially carried by the soil skeleton. It is embodied

in the decrease of effective stress and increase of excess pore water pressure on the

Fig. 1.1. Collapse of Showa Bridge due to liquefaction after the 1964 Niigata
earthquake (Photo: Photographs and motion picture of the Niigata city
immediately after the earthquake in 1964).
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macroscale. As the effective stress decrease to zero, the soil skeleton cannot bear any load
or deformation and behaves like a liquid, which is defined as soil liquefaction. The
dramatic loss of strength in saturated sandy soil may cause the collapse or subsidence of
buildings, the collapse of bridges (Fig. 1.1), lateral movement of the ground and road

surfaces, etc.

During the 1964 Niigata earthquake and the 1964 Alaska earthquake, soil
liquefaction occurred and caused severe and widespread damage, which attracted the
attention of engineers and researchers. In recent decades, soil liquefaction has remained
one of the most serious secondary disasters during earthquakes, including the 1995 Kobe
earthquake (Tokimatsu and Asaka, 1998), the 2010 Chile earthquake (Verdugo and
Gonzilez, 2015), the 2011 off the Pacific Coast of Tohoku Earthquake (Kazama and Noda,
2012), and the 2018 Palu earthquake (Jalil et al., 2021). In the early days, the main
concern of researchers was the prediction of sand liquefaction, that is, whether the site
could liquefy. In addition, the countermeasure against soil liquefaction was also one of
the main research directions. However, after the 1995 Kobe earthquake, it had been
recognized that the cost of liquefaction countermeasures might be huge in some situations,
and the concept of performance-based design (PBD) was put forward. In this approach,
damage to the structure is permitted as long as the required performance of the structure
is exhibited. Therefore, the evaluation of the ductility and the toughness of the soil to
resist liquefaction (Kazama et al., 2000) and the prediction of the response of soil after

liquefaction became important.

Most efforts to understand the seismic response of granular materials have been

made through laboratory element tests (Seed et al., 1975; Yamamuro and Covert, 2001;
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Yang and Sze, 2011; Chiaro et al., 2013; Kumar et al., 2020). Due to the limitation of
loading patterns, it was difficult to reproduce some of the complex stress—strain
conditions that may occur during real earthquakes. In the meantime, it is also difficult to
observe the inside of the specimen in laboratory elemental tests, which makes it hard to
reveal the intrinsic mechanism behind the experimental phenomenon. To overcome the
shortcomings of traditional laboratory element tests, the discrete element method (DEM)
proposed by Cundall and Strack (1979) has been widely used in the analysis of
geotechnical problems (Iwashita and Oda 1998; Nakase et al. 1999; Morimoto et al. 2001;
Sitharam and Dinesh 2003; Kazama et al. 2006; O'Sullivan et al. 2008; Katagiri et al.
2010; O'Sullivan 2011; Manne and Satyam 2015; Jiang et al. 2019). DEM provides a
convenient way to study the behavior of granular material from both macroscopic and
microscopic scales. It takes the materials as individual rigid bodies interacting through
contact laws governed by Newton’s laws of motion. Besides the ability to look inside the
material and obtain information on particle scale, DEM also provides an approach to
reproducing complex multidirectional stress—strain loading conditions, e.g., Shamy and
Zeghal (2006) evaluated the effects of multiple direction excitations on granular deposits
based on an input kinetic energy using the 3D DEM; Wei et al. (2020) investigated the
microstructure evolution of granular materials under multidirectional loading conditions

with unidirectional, oval, circular, and figure-8 loading paths using the 3D DEM.
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1.2. Statement of the problem

1.2.1. Surface waves

In the study of liquefaction, although it has long been recognized that the motion of
the ground surface in an earthquake is multidirectional, most laboratory element tests
were conducted under unidirectional cyclic loading conditions because of the difficulty
in developing the corresponding test apparatus. Pyke et al. (1975) were the first to
investigate problems associated with multidirectional loading conditions. They conducted
several series of shaking table tests of dry sand in one, two, and three dimensions. Their
results showed that the settlement might be significantly greater under multidirectional
shaking compared with under unidirectional shaking, which implied that saturated sands
under multidirectional loading conditions would be affected easily by liquefaction. Seed
et al. (1975) quantitatively analyzed the effect of multidirectional shaking on the shear
stress causing liquefaction by combining the results of the shaking table and cyclic simple
shear tests on dry sand. The results indicated that the shear stress amplitude causing
liquefaction under multidirectional shaking was less than that under unidirectional
shaking, and that the multidirectional shaking effect could be considered equivalent to a
10% reduction in the shear stress amplitude. In subsequent studies, it was discovered that
granular materials under multidirectional shearing were more vulnerable to liquefaction
than those under unidirectional shearing, and that the multidirectional shearing effect
varied by the loading path (Seed et al. 1978; Ishihara and Yamazaki 1980; Tokimatsu and
Yoshimi 1982; Su and Li 2008; Nhan et al. 2017). However, previous experimental or
DEM studies associated with multidirectional loading conditions still assumed that

liquefaction was caused by the upward propagation of shear waves, multidirectional
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Fig. 1.2. Illustration of motion due to surface waves: (a) Rayleigh wave and (b)
Love wave (after Bolt, 1993).
loadings were applied in the horizontal direction, and loading paths (e.g., alternate shear
(Ishihara and Yamazaki, 1980) and figure-8 loading paths (Wei et al., 2020)) did not

correspond to any realistic wave type.

Seismic waves can be divided into body waves and surface waves in terms of the
spatial concentration of energy (Novotny, 1999). Body waves can propagate in the interior
of a medium whereas surface waves are only concentrated along the surface of the
medium. Body waves include longitudinal waves (P waves) and transverse waves (S
waves), and surface waves can be further divided into Love waves and Rayleigh waves.
Rayleigh waves can propagate near the surface of a homogeneous half-space while Love
waves cannot. Love waves can only propagate near the surface of a medium where the S-
wave velocity generally increases with the distance from the surface (Novotny, 1999).

The ground subject to surface waves will produce a complex deformation, as shown in
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Fig. 1.2. Rayleigh waves are elliptically polarized in the vertical plane determined by the
surface normal and the direction of propagation. Particle motions in Love waves are

transverse and parallel to the surface (Novotny, 1999; Pujol, 2003).

Generally, the ground surface motion during an earthquake may be regarded as the
combined result of the propagation of body waves and surface waves (Hall et al. 1977).
Compared to body waves, surface waves usually have larger amplitudes and longer
periods (Novotny, 1999). In some cases, strong ground surface motions can be
predominated by surface waves (Trifunac, 1971; Hall et al., 1977). Some field and
theoretical evidence demonstrated that surface waves might be one of the causes of soil
liquefaction. Hall et al. (1977) used a shear wave model and a Rayleigh wave model to
predict the liquefaction potential of an idealized, homogeneous, undamped half-space.
They found that the liquefaction risk near the surface for the two models was the same,
but it decreased much more rapidly with depth for the Rayleigh wave model. The depth
range predicted by the Rayleigh wave model was more consistent with the observed
liquefaction cases than that predicted by the shear wave model. Gazetas and Yegian (1979)
compared the dynamic response of various soil deposits under the influence of Rayleigh
waves to that under the influence of vertical shear waves. They suggested that liquefaction
could occur under Rayleigh wave propagation, and its potential was different from that
under shear wave propagation, owing to the difference in the particle motions and
distributions of shear stress with depth. After analyzing aerial photographs of the 1976
Tangshan Earthquake liquefaction sites, Wang et al. (1983) suggested that some types of
liquefaction trajectories were induced by surface waves, e.g., a network pattern was
probably formed by the reflection of surface waves within a quasi-parabolic river bend.

Sugano and Yanagisawa (1992) used two experimental apparatuses to investigate the



CHAPTER 1 INTRODUCTION

cyclic undrained shear behavior of sands under the influence of surface waves. One is a
hollow cylinder torsional shear test apparatus for Rayleigh wave propagation condition,
and another is a newly developed bi-axial shear apparatus for Love wave propagation
condition. Their results indicated that Love wave propagations may contribute to
liquefaction. Cui et al. (2004) pointed out that Rayleigh waves should be an essential
cause of liquefaction in shallow saturated sandy deposits beyond the epicentral region
based on some field evidence and a preliminary theoretical analysis. They also analyzed
the effect of Rayleigh wave propagation on sand liquefaction by using single and two-
phase medium models and argued that currently used evaluation methods may
overestimate the safety to some degree. Holzer and Youd (2007) demonstrated that Love
waves contributed a significant portion of excess pore-water pressure to the liquefied
layer at the Wildlife Liquefaction Array in the 1987 Superstition Hills earthquake after
investigating the recording of the earthquake. Nakai et al. (2016) conducted a series of
2D elastoplastic effective stress analyses considering the effect of irregularly shaped
bedrock. They stated that in the 2011 earthquake off the Pacific Coast of Tohoku, surface
waves induced by inclined bedrock enhanced the liquefaction damage of Urayasu city
through the complex interference between the Rayleigh waves and body waves, which is
known as the “edge effect”. Staroszczyk (2016) used the finite element method to
simulate the liquefaction of saturated sands under the influence of Rayleigh waves within
the framework of a compaction theory, and analyzed the evolution of the characteristics

of Rayleigh waves during the liquefaction process.

In previous studies, direct links between the liquefaction problem and surface
waves were established. However, in these studies, surface waves were not extracted

individually, or true surface wave deformation modes were not used. In addition, they
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lack microscopic-scale observations. Therefore, the liquefaction behavior of granular

materials under surface wave propagations has not yet been well understood.

1.2.2. Extremely large shear strain amplitudes

Besides the loading path, it has been recognized that both the monotonic and cyclic
shear behavior of soils is highly dependent on the strain level. In monotonic shear, the
soil under a given effective confining stress will ultimately reach a critical state as the
shear strain increases. The critical state of soil was initially defined by Roscoe et al. (1958)
as the state that “soils continue to deform at constant stress and constant void ratio”. The

common definition of critical state was given based on the equation below:

q = Mp' (1.1)

v=T—-2In(p") (1.2)

where q is the deviator stress; M is a frictional constant; p’ is the mean effective
pressure; Vv 1is the specific volume defined as v =1 + e and e is void ratio; T is the
specific volume intercept at unit pressure; A are the compression index. The critical state
arrives when ¢q, p’, v keep constant. Under the undrained condition, the critical state is
reached when the pore pressure and the effective stress remain constant during continued
deformation (Schofield and Wroth 1968). Granular materials suffering from monotonic
shearing with a large shear strain had been widely studied under the framework of the

critical state (e.g., Li and Dafalias, 2012; Perez et al., 2016; Nguyen et al., 2021).

In cyclic shear, as the cyclic shear strain amplitude increases, the behaviors of soil
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change from elastic to elastoplastic (Vucetic, 1994; Ishihara, 1996). However, most of the
related studies were conducted within 20% strain level due to the limitation of laboratory
apparatus (Umar et al., 2019). Correspondingly, the response of liquefiable soils subjected

to undrained cyclic shear at an extremely larger strain amplitude is still unknown.

1.2.3. Volumetric strain during reconsolidation

Except for the reduction in soil strength during undrained cyclic loadings, the
settlement of ground after the undrained cyclic loading may also cause severe damage to
buildings and infrastructures. It is primarily attributed to soil volume change as a result
of the drainage of pore water (reconsolidation), accompanied by excess pore water
pressure dissipation. In terms of performance-based design, the amount of volumetric
strain during or after liquefaction must be accurately predicted such that necessary
countermeasures can be implemented. The volume contraction characteristics of saturated
sand have been investigated via various cyclic undrained tests, followed by drained
reconsolidation. Lee and Albaisa (1974) discovered that the volumetric strain during
reconsolidation was affected by the particle size, relative density, and excess pore water
pressure after cyclic shear. Nagase and Ishihara (1988) and Shamoto et al. (1996) reported
that the reconsolidation volumetric strain was significantly associated with the maximum
shear strain during cyclic shear. Tokimatsu and Seed (1987) as well as Ishihara and
Yoshimine (1992) proposed simplified prediction models for post-liquefaction settlement
based on experiment results. Sento et al. (2004) discovered that the reconsolidation
volumetric strain demonstrated a higher correlation with the accumulated shear strain

than the maximum shear strain generated during cyclic shear. Uzuoka et al. (2010)
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proposed a prediction model for liquefaction and post-liquefaction settlement based on
the minimum effective stress. Zhou et al. (2014) discovered that the compression index
during reconsolidation was 1.3—1.5 times as great as that during consolidation and
proposed a model for post-liquefaction settlement estimation based on an assumed initial

stress.

The reconsolidation process after liquefaction can be categorized into liquified and
solidified portions (Florin and Ivanov, 1961). The liquified portion is known as
resedimentation (Zhou et al., 2014). A consensus was achieved, i.e., the volume
contraction in the liquefied portion occupies a significant proportion of the total volume
change during post-liquefaction reconsolidation. Therefore, understanding the
resedimentation process is vital to the prediction of the total volume strain. However,
owing to the limited measurement range in experiments, typically 107'-10° kPa, the
nonlinear relationship between the void ratio and effective stress during the

reconsolidation process is yet to be clarified.

1.3. Objectives of this research

To clarify the three topics mentioned above, which are hard to be investigated by
the ordinary physical element test, three DEM studies were conducted in this research.

The objective of the research includes:

a) Clarify the undrained cyclic response of granular materials under surface-wave
strain conditions (the deformation mode of a wave): Compare the liquefaction

resistance and response of granular materials under surface-wave strain conditions

10
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to that under SH-wave strain conditions. Furthermore, analyze the mechanism
behind the macroscopic response of granular material under different strain

conditions from a microscopic scale.

b) Investigate the undrained cyclic shear behavior of granular material at extremely
large shear strain amplitude (up to 100%): Study the failure of medium-dense
granular material under the undrained condition (volume remains constant) in large
shear strain. Analyze the responses of the medium-dense granular assembly under
cyclic simple shear with large strain amplitudes and compared them to those under
the monotonic shear and cyclic shear with small strain amplitudes. Furthermore,

explain the phenomenon from the microscopic scale.

c) Elucidate the behavior of granular materials during the reconsolidation process,
especially during the resedimentation process: Investigate the evolution of void
ratio and corresponding microscopic parameters during the reconsolidation process

after undrained cyclic simple shear.

1.4. Layout of this dissertation

The outline of this research is given in Fig. 1.3. Following this Chapter, the
literature review was performed to learn the previous study on liquefaction issues and
methods for evaluating liquefaction resistance. The micromechanics of granular materials

was also introduced in the literature review.

In Chapter 3, a detailed introduction to the 3D DEM code used in this study was

11
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done, including the basic principle, contact model, boundary condition, timestep, macro

and micro quantities, constant volume method, and quasi-static condition.

In Chapter 4, equations governing the strain—time relationship of SH, Love, and
Rayleigh waves were derived from elastic wave theory under the assumption of constant
volume. Then, a series of undrained cyclic shear simulations under SH- and surface-wave
strain conditions was performed. The response and liquefaction resistance of granular
materials under surface-wave strain conditions were compared to that under SH-wave
strain conditions. Furthermore, the mechanism behind the macroscopic response of

granular material under different strain conditions was analyzed from a microscopic scale.

In Chapter 5, the undrained monotonic and cyclic simple shear simulations were
performed to investigate the undrained response of granular materials under large shear
strain amplitudes. The influence of shear strain amplitude and loading type on the failure

of granular was highlighted.

In Chapter 6, the simulation of reconsolidation began at different residual effective
stress levels was performed. Attention was paid to the change in the void ratio and

corresponding microscopic parameters of specimens during reconsolidation.

Chapter 7 presents a summary of conclusions drawn from this research, and

recommendations for future research are given afterward.

12
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CHAPTER 2 LITERATURE REVIEW

2.1. Undrained cyclic shear behavior of granular materials

Granular materials subjected to undrained cyclic shear may undergo liquefaction.
During the undrained cyclic loading, the mean effective stress decreases, and granular
materials lose stiffness gradually. This state was called the pre-liquefaction phase. When
the mean effective stress decreased to zero for the first time, the terminology—initial
liquefaction was used to describe the state of granular materials. Depending on the
behavior of granular material, liquefaction can be divided into flow liquefaction and cyclic
softening during undrained cyclic loading. The assessment of liquefaction resistance is an
indispensable part of engineering seismic design. Three general approaches, including the
stress-based approach, strain-based approach, and energy-based approach had been used

in evaluating the liquefaction resistance of soil in laboratory element tests.

2.1.1. Initial liquefaction and types of liquefaction failure

The oldest work on liquefaction was by Casagrande (1936). He pointed out that
dense sand expands, and very loose sand reduces its volume during shearing tests, as
shown in Fig. 2.1. In addition, the instability of saturated loose sand induced by a decrease
of the effective stress and the shear strength was linked to the cyclic loading during an

earthquake. He called the boundary between the case of volume decrease and increase the

14
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Fig. 2.1. Effects of shearing on the volume of soils.

critical density. If the density of sand is below the critical density and the voids in the
sands are filled with water which cannot escape as quickly as the deformation is produced,
the load on sand particles is transferred to the water during cyclic shear then the effective
stress between sand particles decreases which impairs the stability of the sand mass. The

description above was almost the same as the concept of liquefaction today.
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Fig. 2.2. Axial strain and pore water pressure build-up in the

undrained cyclic triaxial test (after Ishihara, 1996).
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Seed and Lee (1966) were the pioneers to summarize sand liquefaction
systematically. In their research, isotropically consolidated saturated sands were applied
repeated constant-amplitude cyclic deviatoric loads in a triaxial apparatus under
undrained conditions. A typical result was shown in Fig. 2.2. It was observed that the axial
strain and excess pore water pressure accumulated gradually during cyclic loading. Initial
liquefaction refers to the first time that the excess pore water pressure equals the initial
confining pressure. Based on experiment results, they summarized that the potential of
liquefaction of saturated sand is determined by the void ratio, confining pressure, and

magnitude of cyclic stress or strain.

Martin et al. (1975) developed a quantitative relationship between volume changes
occurring during drained cyclic tests and the progressive increase of pore water pressure
during undrained cyclic tests, which is schematically illustrated in Fig. 2.3. Point A is the

initial state of the saturated sand specimen. During the drained cyclic simple shear test,

A

Compression curve

Void ratio

Au

4—,: Rebound curve
|

/
vC )
Vertical effective stress

Fig. 2.3. Schematic diagram of the relationship between void ratio and vertical effective

stress during initial consolidation, undrained cyclic shear loading, and reconsolidation.
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since the vertical effective stress was kept constant, cyclic loading caused contraction of
volume and manifested as the reduction in void ratio. This process can be represented by
point A moving to point B in Fig. 2.3. During the undrained cyclic simple shear test, the
volume of the sand specimen was kept constant (no change in void ratio) and cyclic
loading caused an increase in the pore water pressure. This process can be represented by
point A moving to point C. The volumetric contraction during drained cyclic loading can
be counterbalanced by an elastic rebound of the soil skeleton due to a decrease in effective
stress during undrained cyclic loading, their relationship can be represented by point B
moving to point C. The use of this relationship enables the build-up of pore water pressure
during cyclic loading to be computed theoretically using basic effective stress parameters
of the sand. The initial liquefaction is the state where the effective stress reaches zero and

the excess pore water pressure equals the initial vertical effective stress.

However, the effective stress near zero is hard to be controlled and measured in
physical experiments. In some special conditions, e.g., multi-directional loading or uni-
directional loading with initial shear stress higher than the applied cyclic shear stress, the
excess pore water pressure is always less than the initial confining pressure (Boulanger
et al, 1991). In addition, because of the measurement limitation, the specimen is assumed
to be saturated when the B-value (the degree of saturation) is above 0.95, while in the
case of a perfectly saturated specimen, the B-value should theoretically be 1.0. The
imperfect saturation condition may also be a reason for the excess pore water pressure
being always less than the initial effective confining pressure during undrained cyclic
loading. Therefore, the Japanese Geotechnical Society (2013) defined the initial
liquefaction as the state when excess pore water pressure builds up to 95% of the initial

effective confining pressure (the effective stress is 5% of that in the initial state).
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For silty sands, although the effective stress never becomes zero, it becomes close
to zero and is accompanied by gradually increasing strain. In this state, the soil skeleton
is considered to be destroyed. In such cases, the initial liquefaction criterion based on
effective stress or excess pore water pressure is not applicable. New liquefaction
criterions based on axial strain amplitude were put forward, e.g., Ishihara and Yamazaki
(1980) suggested that the specimen experiencing 3% single amplitude axial strain for the
first time is identified as initial liquefaction; Ishihara (1993) proposed that an axial strain

of about 5% in double amplitude refers to the initial liquefaction state.

As stated above, liquefaction refers to the loss of strength in saturated, cohesionless
soil or granular materials due to the build-up of pore water pressure during dynamic
loadings (monotonic or cyclic). A definition of soil liquefaction is the transformation
“from a solid state to a liquefied state as a consequence of increased pore pressure and
reduced effective stress” (Definition of terms..., 1978). In other words, all the failure
mechanisms of saturated soil resulting from the build-up of pore water pressure during
undrained cyclic shear can be described by the term “liquefaction.” However, depending
on site and loading conditions, liquefied soils may experience liquid-like flow or limited
soil deformation during undrained cyclic shear. Different types of post-liquefaction
behavior will result in different kinds of damage; therefore, liquefaction should be

carefully classified.

Liquefaction results from the volumetric contraction tendency of soil when
subjected to shear stress/strain. The soil behavior during shear loading is highly reliant on
the density of soil, as shown in Fig. 2.4. When loose, dry sands are sheared, the volume

of the specimen tends to decrease. Therefore, when the loose sands are subjected to
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Fig. 2.4. Schematic diagram of the direct shear test result in loose,

medium, and dense sands (after Das, 1983).

undrained cyclic shear, excess pore water pressure will built-up. When medium and dense,

dry sands are sheared, the volume of the specimen may first decrease and then increase

(sands first contract then dilate) as shear strain increases. Therefore, when the medium or

dense sands are subjected to undrained cyclic shear in small shear strain amplitude, excess

pore water pressure may be generated in each load cycle leading to softening of soil and

accumulation of deformation. In contrast, when the shear strain amplitude is large, the

dilation tendency of the soil skeleton will make the effective stress and shear resistance

increase.

Liquefaction can occur in sands with different densities, while their mechanisms

are different. Based on the mechanism of failure, a systematic description of liquefaction

was given by Robertson and Fear (1996) and can be summarized as:
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a)

b)

Flow liquefaction: When the static, driving shear stress exceeds the residual
shear resistance, the saturated, contractive soil (e.g., loose sand) develops
uncontrolled large deformation. The flow-type failure can be triggered by cyclic

or monotonic shear loading.

Cyclic softening: excess pore water pressure build-up in soils and shear
deformation accumulated during undrained cyclic shear. The shear deformation
is limited and does not continue after cyclic loading ceases due to stiffness
recovery. It can be further classified as cyclic liquefaction and cyclic mobility.
Cyclic liquefaction occurs when cyclic shear stress exceeds the initial, static
shear stress. A condition of zero effective stress may be achieved because of the
reversal of shear stress. On the contrary, zero effective stress condition is not

achieved in cyclic mobility because there is no shear stress reversal.

Flow liquefaction can only occur in loose soil while cyclic softening can occur in

all types of soil. The difference between flow liquefaction and cyclic mobility is
schematically illustrated in Fig. 2.5. It is noteworthy that in most cases, the distinction
between cyclic softening and cyclic mobility is not deliberately distinguished (Castro,
1975; Seed, 1979; Elgamal et al., 2002; Wang and Wei, 2016; Banerjee et al., 2022). In

this thesis, cyclic mobility and cyclic softening also refer to the same phenomenon.

The typical post-liquefaction phase of cyclic mobility is shown in Fig. 2.6. Shamoto

et al. (1997) divide the shear strain in post-liquefaction into the component that dependent
(non-zero effective stress) and independent (“zero” effective stress) of effective stress.
Wang and Wei (2016) defined the stage that shear strain develops at a “zero” effective

stress state as the “flow stage” and the stage that shear strain develops with the recovery
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Fig. 2.5. Response of (a) contractive and (b) dilative saturated sands to
undrained shear (after Rauch, 1997).
of effective stress as the “hardening stage”. The range of the “flow stage” enlarges with
an increasing number of loading cycles, while the stress-strain hysteresis curves in the
“hardening stage” are parallel to each other for loading or unloading. Therefore, the
development of post-liquefaction shear strain is governed by the “flow stage”. Because
of the stiffness recovery in the “hardening stage”, large shear strain usually does not occur

in cyclic mobility. In addition, complete liquefaction is said to have occurred if the soil
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Fig. 2.6. Two post-liquefaction shear strain components in

undrained cyclic torsional test (after Shamoto et al., 1997).

behaves like a liquid even subjected to a large shear strain (usually 20%) (Yoshida, 2020).

2.1.2. Assessment of liquefaction resistance

Assessment of liquefaction resistance (or liquefaction potential) is an indispensable
part of engineering seismic design. There are three general approaches for evaluating the
liquefaction resistance of soil in laboratory element tests: stress-based approach, strain-

based approach, and energy-based approach.
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Fig. 2.7. Example of cyclic strength curve of undisturbed
samples of sand (after Yoshimi et al., 1989).

The most widely used one is the stress-based approach. In the stress-based approach,
stress-controlled cyclic tests are routinely performed to produce an empirical relationship
between the applied uniform cyclic stress ratio (CSR) and the number of cycles required
to trigger liquefaction. CSR is the ratio of shear stress amplitude to the initial confining
stress. Achievement of a double amplitude of 5% shear strain is usually used as the failure
criterion (trigger of liquefaction); however, sometimes the condition when the excess pore
water pressure exceeds 95% or equals to 100% initial confining stress is taken as an
alternative failure criterion to the double amplitude of strain. CSR that triggers
liquefaction in a specified number of cycles (usually 20 cycles) is termed the cyclic
resistance ratio (CRR), which is usually used to evaluate the liquefaction resistance of the
soil. The relationship between CRR and the specific number of cycles is termed the cyclic
strength curve (Ishihara, 1996; Kramer, 1996) or the liquefaction resistance curve

(Towhata 2008). A typical cyclic strength curve is shown in Fig. 2.7.

Despite the popularity of stress-based procedures, multiple studies have shown that
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Fig. 2.8. Excess pore water pressure build-up vs. shear strain

amplitude in the 10" cycle (after Heshmati et al., 2015).
excess pore water pressure better correlates to cyclic strain than to cyclic stress (e.g.,
Martin et al., 1975; Dobry et al., 1982; Byrne, 1991). Dobry et al. (1982) suggested that
there is a threshold strain amplitude (yw) below which no excess pore water pressure will
generate in soils, regardless of the number of applied load cycles. They concluded that
the threshold strain amplitude can be used to assess the liquefaction resistance. A typical

curve of excess pore water pressure vs. shear strain amplitude is shown in Fig. 2.8.

However, in the engineering practice of liquefaction potential evaluation, both the
stress-based approach and strain-based approach require the liquefaction resistance index
to be compared with the shear stress/strain loading index (e.g., cyclic stress ratio, cyclic
shear strain). In the calculation of the stress/strain loading index, the random seismic load
should be converted to an equivalent number of uniform cycles. During this process, it is
necessary to consider the effects of various seismic motion parameters (maximum
amplitude, duration, waveform, ground dynamic response, ground depth, etc.) related to
earthquake magnitude, fault distance, and ground characteristics. Such a conversion

containing assumptions and approximations will decrease the evaluation accuracy of
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liquefaction potential, especially when multiple components of ground motion are
considered. Therefore, the energy-based approach regardless of the number of repetitions

and waveform of the seismic motion was put forward.

Nemat-Nasser and Shokooh (1979) found that the excess pore water pressure
developed in soil is directly related to the amount of dissipated energy during cyclic
loading. Davis et al. (1982) proposed an evaluation method based on the concept of
energy using seismic liquefaction survey data. This method considers the mechanism of
saturated sandy soil liquefaction and assumes that the increase or decrease of pore water
pressure is related to the energy dissipation in the soil during earthquakes. Towhata and
Ishihara (1985) conducted undrained cyclic hollow cylindrical torsional shear tests and
put a focus on the dissipated energy in soil specimens. They found a unique relationship
between the cumulative dissipated energy and excess pore water pressure which is
independent of loading history. Figueroa et al. (1994) performed a series of strain-
controlled torsional shear tests which demonstrated that the cumulative dissipated energy
per volume was closely connected to pore-pressure buildup. The cumulative dissipated
energy per volume was affected by the void ratio and confining stresses but independent
of shear strain amplitude (0.15-1.02%). Their relationship can be expressed by the

function below:

Log,,(8W) = 5.697 + 0.00477¢", — 4.339% (2.1)

where SW is the dissipated energy per unit volume; o, is the initial effective confining
pressure acting on the specimen; e is the void ratio. Kazama et al. (2000) carried out
constant-strain-controlled cyclic triaxial tests and focused on the relationship between

excess pore water pressure and energy-dissipation capacity obtained from stress-strain
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loops even after initial liquefaction. In addition, they used dissipation energy as a scalar
index to represent the degree of liquefaction and evaluated the ductility nature of soils
based on it. Kokusho (2013) reviewed a data set of stress-controlled cyclic triaxial
liquefaction test results by harmonic loading and found that the cumulative dissipated
energy is correlated well with not only pore-pressure buildup but also induced strain, and

with cumulative strain energy measured in the same test as well.
In the literature, the dissipated energy is usually calculated by the function below:
dW = oydey + 0y,dey, + 0,de, + Ty dyyy + Ty2dYy, + T AV (2.2)

where dW is the increment of dissipated energy per unit volume; ¢'x, 6'y, and ¢’ are the
effective stresses acting along the x-, y-, and z-directions, respectively; txy, 7y, and 7. are
the shear stresses acting on the planes with normal vectors in the x-, y-, and z-directions,
and parallel to the y-, z-, and x-axis, respectively. dex, dey, and de: are the normal strain
differences in the x-, y-, and z-directions, respectively; and dyxy, dyyz, and dy.x are the
engineering shear strain differences generated in the xy-, yz-, and zx-planes, respectively.

In the cyclic triaxial test, Eq. (2.2) can be simplified as:
dW = gjde, (2.3)

where ¢4 is the deviator stress and dea is the axial strain. The trapezoidal rule is usually

used in the calculation of accumulated dissipated energy:

n-—1

1 ! !
W =2 (Ghiss + 04 (deaiur + deg) 24
i=1
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Fig. 2.9. Calculation of the amount of dissipated energy per unit volume

using trapezoidal rule in cyclic triaxial tests (after Green et al., 2000).
where W is the accumulated dissipated energy; # is the number of applied load increments;
0’4 and o’4,+1 are the applied deviator stress at load increment 7 and i + 1, respectively;
and dea and dea,i+1 are the axial strain at load increment i and i + 1, respectively. Fig. 2.9
schematically illustrates the application of Eq. (2.4). In particular, the accumulated
dissipated energy during one loading cycle is equal to the area bounded by the stress—
strain hysteresis loop. In practice, the accumulated dissipated energy is commonly

normalized by the initial mean effective stress (e.g., Kazama et al., 2000; Polit et al.,

2013) or mean effective stress (e.g., Kokusho, 2013; Kokusho and Kaneko, 2018).

2.2. Micromechanics of granular materials

In geotechnical engineering, granular materials, including sands, are usually
described by continuum-based methods, such as stress—strain relationship. However,

granular materials are made up of distinct particles. The overall behavior of a granular
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material is closely related to its microstructure during the loading processes. Therefore,
from this perspective, the comprehension of microstructure evolution is a key concept for

the change in granular material on the macroscopic scale (Cambou et al., 2016).

2.2.1. Representative volume element

As defined by Cambou et al. (2016), the scale of the granular material can be
subdivided into the microscopic scale, the mesoscopic scale, the aggregate mesoscopic
scale, and the macroscopic scale. The microscopic scale is the scale of particles and
contacts between particles; the mesoscopic scale is the scale of local arrays defined as
closed loops of particles in contact; the aggregate mesoscopic scale is defined as sets of
local arrays sharing common texture characteristics (e.g., elongation degree and
orientation); the macroscopic scale is the scale can be described by the representative
volume element (REV), where continuum-based variables (e.g., stress tensor and strain
tensor) and phenomenological constitutive laws are considered. A typical REV for

granular assembly is shown in Fig. 2.10. The REV should satisfy: a) Large enough on the

Fig. 2.10. Representative volume element for a granular assembly (after Karapiperis
etal., 2021).
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microscopic scale to contain enough particles and pores for statistical homogenization; b)
Small enough on the macroscopic scale to be treated as a spatial point of the granular

assembly; c) the scale of RVE does not vary with time and space.

Granular materials can be regarded as a discrete medium at the microscopic scale
and a continuous medium at the macroscopic level. The key to the multi-scale analysis of
granular materials is to establish the link between macroscopic and microscopic
properties. The basic approach to determining the macro-micro connections of granular
materials is the homogenization method as illustrated in Fig. 2.11. The homogenization
process is based on three relations: localization operator (from macroscopic scale to
microscopic scale), local constitutive law (relation between contact force and local
displacements and rotations), and average operator (from microscopic scale to
macroscopic scale). The main purpose of applying the homogenization method to
granular materials is to “obtain a constitutive relation at the REV scale from information

on the material behavior at the micro-scale and from the microstructure” (Cambou et al.,

Static Kinematic
variables : o variables
R Macroscopic constitutive law e
Macroscopic X E
scale
Localization Average Localization Average
operator operator
Microscopic
scale F (w,w)

. Local constitutive law .
Contact ‘ ‘ Displacements

forces and rotations

Fig. 2.11. General homogenization operators considering a micro-scale

for granular materials (after Cambou et al. 2016).
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2.2.2. Compactness and coordination number

The behavior of granular materials on the macroscopic scale is highly affected by
their compactness. The compactness of a granular material is defined on the macroscopic

scale (at RVE) by porosity, n, or void ratio, e:
Ve 4
= and ~ 2.5
n 7 and e 7 (2.5)

where V,V,,and V are the total volume, the void volume, and the solid volume,

respectively. Especially, V =V, + 1.

On the microscopic scale, the compactness can be described by the coordination
number, Z, which is the mean number of neighbor particles in contact with each particle

in a given granular assembly. The coordination number Z is given by:

(2.6)

where N¢and N, are the total number of contact points and of particles in a given
granular assembly, respectively. Several empirical relationships had been proposed to
relate the variable defined on the macroscopic scale, porosity or void ratio, and the
variable defined on the microscopic scale, coordination number (Field, 1963; Athanasiou-
Grivas and Harr, 1980; Yanagisawa, 1983; Chang et al., 1990). Among these relationships,

the function proposed by Chang et al. (1990) is the most widely used:

Z =13.25—8e (2.7)

where e ranges from 0.35 to 0.85. The connectivity of a granular material, which refers
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to the set of force-bearing (active) contact, can also be described by the coordination
number. However, it should be noted that the connectivity is a scalar index and does not
reflect the difference in texture between two granular assemblies (Cambou, 2009). This
means that granular packings with the same coordination number may have different

textures. Therefore, higher-order indexes will be introduced hereinafter.

2.2.3. Contact normal and fabric

On the microscopic scale, the granular texture involves three vectors based on
which other local geometrical variables can be defined (Cambou et al., 2009) as shown
in Fig. 2.12: a) the branch vector ¢ joining the centers of two contacted particles; b) the
contact vector ¢ joining the center of each particle to the particle center; ¢) the contact
normal 7 defined as the unit vector normal to the contact plane 7 (tangential to the two
particles at the contact point a). Especially, the vectors defined above have the same

orientation when the particles are circular (2D space) or spherical (3D space).

Fig. 2.12. Local vectors at the contact a between two particles
(after Cambou et al., 2009).
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The granular textural information is usually described based on the distributions of
the vectors #,¢,and 7t (Cambou et al., 2009). In the lowest order, scalar parameters (e.g.,
coordination number) concern the connectivity of the contact network; in the higher order,
the spatial arrangement of particles and pore space distribution can be described by the

fabric tensor.

The fabric of a granular assembly refers to the arrangement of particles, particle
groups, and pore space distribution (Mitchell and Soga, 2005). The complex plastic
behavior of granular materials in quasi-static deformation such as shear strength and
dilatancy originates from the evolution of fabric (Arthur and Menzies, 1972; Cresswell
and Powrie, 2004; Ventouras and Coop 2009; Fonseca et al., 2012). The fabric tensor is a
tool to quantify the fabric of a granular assembly on the RVE scale, which is first proposed
by Satake (1982). Satake (1982) defined the fabric tensor @;; by the contact normal:

N

where N, is the total number of contacts; n¥ and n]’-c denote the component of the k-th

unit contact normal vector in the 7 and j direction, respectively. Chang and Gao (1996)

defined the fabric based on branch vectors:

Nc
1
@;; = —Z or ok (2.9)
Ne k=1 !

where £¥ and fjl-‘ denote the component of the k-th branch vector in the i and j direction,

respectively. For single-sized circular (2D) or spherical (3D) particles, Eq. (2.8) and Eq.
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(2.9) are equivalent. Although there are fabric tensors defined in higher orders (Kanatani,
1984; Chang and Misra, 1990), the second-order fabric tensor defined by Eq. (2.8) is the
most widely used for its simplicity. In addition, fabric tensors can be used to express the
anisotropy of fabric. Under 3D axisymmetric conditions, the anisotropy of fabric is
commonly described by deviator fabric @; — ®@; (Thornton and Sun, 1993; Cui and
O'Sullivan, 2006) or fabric ratio @,/®; (Bardet, 1994), where @,;and @; are the
maximum and minimum principal fabric, respectively; A more general definition of

deviator fabric @4 was proposed by Barreto et al. (2009):

®4 = (2.10)

J (@) — By)2 + (D — B2)? + (b5 — B;)?]
2

Kanatani (1984) pointed out that fabric tensors can be described in the form below:

The distribution density f(n) can be approximated by F(n):

1
4r
15 1

where D;; is the parameter to describe the distribution density of contact normal; &;; is
Kronecker delta. D;,D,,and D; represent the degree of anisotropy in the principal
direction of the fabric. When D; = D, = D5 = 0, the fabric is isotropic. The degree of
anisotropy of fabric is also usually described by the second invariant of D;; (Yang et al,,

2022):
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(2.14)

_ \/15[(‘151 — @,)% + (P, — D3)? + (93 — Dy)?]
4

The definition of a, is like the definition of equivalent stress. In addition, it can be found

that ap, and &, are equivalent.

Granular materials are porous mediums, and the pore between particles is also one
of the major components of granular fabrics. Compared with contact-based fabric, the
void-based fabric is less common. Among these limited studies, Oda et al. (1985)
qualified the void space for granular packing using the scanning line method. Stake (1992)
introduced a topological method to describe the granular packing based on contact points,
branch vectors, and loops. Kuhn (1999) defined the loops in Stake (1992) as “void cells”,
as shown in Fig. 2.13(a). The void cells are surrounded by branch vectors of contacting

particles. He modified the particle graph to include only those particles taking part in the

&Y &

(a) Particle graph (b) Non-participating particles
(disregarded)

Fig. 2.13. Modified graph of particle arrangement (after Kuhn, 1999).
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load-bearing framework of the granular assembly by disregarding the pendant, island,
peninsula, and isolated particles, along with the branch vectors (Fig. 2.13 (b)). The fabric

tensor F! of the i-th void cell is then defined as:
1
Fi= Ez P @ pii (2.15)
j=1

where the i-th void cell has m' branch vectors; €%/ is the j-th branch vector in the i-th

void cell. The height-to-width ratio of the i-th void cell is defined as a' = /F;’z JFL,

(2D). The average height-to-width ratio of all void cells, &, is used as an anisotropy
indicator. When & = 1, the void-based fabric is isotropic. Li and Li (2009) used a
modified Delaunay-Voronoi tessellation technique to construct a “solid/void cell system”
based on particle contact points. The fabric anisotropy of materials is defined on the

average void cell as

G = ongn rTmMn@®n (2.16)

where E, is the normalization factor equals to 2 and 4m in the 2D and 3D space,
respectively; v(n) is the average length of all the void vectors ‘v’ along the direction n.

v are the vectors connecting the void cell center and the contact points at the boundary.

However, those void-based fabrics rely on particle contacts. When granular
materials are in the “zero” effective stress state after liquefaction, particles lost most of
their contacts, and the construction of void cells based on contact points becomes

meaningless.
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Wang et al. (2016) proposed an index, mean neighborhood particle distance (MNPD)
which does not rely on particle contacts, to reflect the amount of rearrangement needed
for a liquefied granular assembly to reach a stable loading-bearing structure. In addition,

MNPD also measures the extent of contact loss. In 2D space, MNPD is given by:

N
VNPD — 1 Z D1* + D2k + D3* (2.17)
- N & 3 '

where N is the total number of particles in the granular assembly; D1%, D2%,and D3
are the distance between the particle k and its three closest neighbor particles, as shown
in Fig. 2.14. The reason why three closet neighbor particles are considered is that the
coordination number should be equal to or larger than 3 for a particle to be mechanically
stable in 2D space. The limitation of this index is that it is a scalar and cannot give

information on void distribution (Bokkisa, 2019).

Fig. 2.14. Conceptual illustration of the surface-to-surface distance between a 2D
particle and its three closest neighboring particles (after Wang et al., 2016).
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Wang and Wei (2016) suggested that a particle is bound to the void space around it,
to which the movement of the particle is only restricted during the deformation of granular
assembly. The void space around the particle was determined from the Voronoi cell
construction, as shown in Fig. 2.15. The void space around the particle ‘i’, is given by a
convex polygon C; — C, — C3 — C4 — Cs. A new fabric index termed centroid distance

D., was proposed to characterize the whole particle-void distribution:

Np

1 . .
D =—z D! and D% = (2.18)
c Np - c c Rso

i Oi

where vector P’ and 0! are the mass center of the Voronoi cell and the mass center of
the particle, respectively; Rs, is the mean particle radius of the granular packing. D’
is centroid difference associated with particle i and defined to quantify the geometrical
arrangement between the particle and its surrounding void. D, can be used to

quantitatively evaluate the uniformity of pore distribution.

Fig. 2.15. Schematic illustration of the centroid distance (after Wang and Wei, 2016).
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2.2.4. Force chain and stress tensor

Forces in a granular assembly are transmitted via force chains, and these force
chains are interconnected to form a network. As illustrated in Fig. 2.16, on the one hand,
the contact force networks are not uniformly distributed in the granular assembly; on the
other hand, the forces transmitted in the network are also uneven. A contact force network
comprising strong force chains bear the majority of the load. In some literature, the term
“force chain” only refers to strong force chains (Radjai et al., 1998; Tordesillas et al.,
2011). The number of strong force chains is small, and the weak force chains are
distributed around and connected with the strong chains, which has an auxiliary effect on

the stability of the strong force chains (Sun and Wang, 2009).

The direction of force chains is basically parallel to the direction of the external
load. In weak force chains, the deformation of particles in contact points is extremely
small. They have little resistance to tangential forces. In strong force chains, the

deformation of particles in contact points is large because they bear a large portion of the

;.‘-"‘3. 5 ]
T, ‘j fa gt s

~
Fig. 2.16. Sample image of force chains in a quasi-2D granular material composed
of photoelastic disks. Dark particles carry little force, and bright particles carry
more (after Daniels, 2017).
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external load. Therefore, strong force chains can withstand a certain amount of tangential
forces. Obviously, the greater the friction coefficient of the particle surface and the contact
force transmitted through the force chain, the greater tangential forces that the force chain
can bear, which indicated that the force chain is more stable. In contrast, when the surface
of particles is frictionless, the force chain cannot withstand any tangential force (Sun and
Wang, 2009). Radjai et al. (1996) divided the contact force network into strong force and
weak force networks based on the mean contact force. They found that the number of
normal and tangential forces lower (higher) than their respective mean value decays as a
power (exponential) law. Cambou et al. (2009) pointed out that in the quasi-static biaxial
compressive test, the deviatoric stress component of the stress tensor originates from the
strong contact force network while the weak contact force network only constitutes the
spherical stress component. This foundation was verified by Thornton and Antony (1998)
based on the triaxial compression DEM simulations. Thornton and Zhang (2010) pointed
out that the amplitude of deviatoric stress also originates from the strong contact force

network in a more general stress state.

Anisotropy exists in the force chain. Especially in the process of shearing, the
phenomenon of non-uniform distribution of contact force is particularly significant. The
direction of large contact forces will gradually tend to the direction of major principal
stress, and a columnar structure will appear under certain conditions (Oda, 1972; Oda and
Iwashita, 2000; Thornton and Zhang, 2010). The force chains are sensitive to the external
load and geometric features of particle systems, and the force chain network varies widely.
It should be noted that the quantified description of the force chain is still difficult (Sun

and Wang, 2009; Tordesillas et al., 2011).
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The discrete and heterogeneous features of granular material make the concept of
the “stress tensor” defined in continuum material not directly applicable to granular
materials. The definition of the stress tensor in granular material is closely related to the
RVE. The general approach is to use the average operator (refer to Fig. 2.11) to derive the
stress tensor from the contact force outside the RVE or the contact force in the RVE. The
expression form of the average stress constructed according to the external contact force
is based on the concept of the Cauchy stress tensor in continuum mechanics (Fortin et al.,
2002, 2003; de Saxcé et al., 2004; Nicot et al., 2013). The most widely used definition of
stress tensor in granular material is based on the contact force in the RVE. Christoffersen
et al. (1981) gave the stress tensor defined by the contact force between particles by
analyzing the contact force between particles in the granular material system and the

equilibrium conditions of each particle, applying the principle of virtual work:

Nc¢
1
o, = VZ feee (2.19)
c=1

where Vis the volume of the RVE; N, is the total number of contacts in the RVE; f° is
the component of the contact force in the i direction at contact point ¢; £j is the
component of the branch vector in the j direction at contact point c. Equivalent results
have been consistently reported in the literature (Love, 1927; Kanatani, 1981; Kruyt and

Rothenburg, 1996; Bagi, 1996).

It should be noted that the definitions of force chain and stress tensor for granular

materials are in the quasi-static state (Cambou et al., 2009, 2016).
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CHAPTER 3 DISCRETE ELEMENT METHOD

In geotechnical engineering, the continuum modeling scheme, including the Finite
Element method (FEM), is the most widely used numerical method in both practical
design and research. The continuum modeling scheme mainly reflects the deformation
characteristics of the geological material system from a macro perspective and tries to
circumvent geometric complexity by using specific constitutive laws with equivalent
material properties. Although the continuum modeling scheme has high computation
efficiency and can be used for large-scale industrial applications, it cannot adequately

consider the discrete nature of granular materials.

DEM is a discrete modeling scheme that was first proposed by Cundall and Strack
(1979) to simulate the behavior of discrete materials, e.g., rock, and granular materials.
DEM is essentially a first principle physics method that takes the materials as individual
rigid bodies. Each particle is represented through a representative shape (usually circle or
sphere) and size that interact with other particles or geometries. In the macroscopic scale,
because the behavior of materials is governed by Newton’s laws of motion, the
constitutive model used in the continuum modeling scheme is not needed in DEM. The
constitutive model in DEM, termed as “contact model”, is defined in the particle or
contact level, which indicates that DEM can capture the mechanical response features of
granular material from the particle scale. In addition, DEM can reproduce the complex

stress—strain loading condition which is difficult to achieve by laboratory element tests.

In this thesis, the business code, Rocky (ESSS., 2020), was used to conduct the

numerical simulations.
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3.1. Basic principle of discrete element method

In DEM, the sequence of calculations in one timestep can be summarized in Fig.
3.1. The DEM simulation generally starts with placing the particles and geometries
(including boundary conditions) in the system. The material properties are input not only
by directly defined inherent properties, including density, Young’s modulus, and
Poisson’s ratio but also by specifying the contact model parameters, including friction

coefficient and restitution coefficient. After the initial conditions (e.g., load or

t=0: Input

Define system geometry
and
contact model

time t: Calculate

Identify contacting particles
+

Calculate contact forces

[ ]

time t: Calculate

Calculate resultant force acting
on each particle,
include body forces,
external forces

L
time t: Calculate

Calculate particle accelerations
and
Integrate to determine velocities

v
time t: Calculate

Move forward one step (At) in time
Revise boundary positions as required

Calculate particle displacements
and rotations

— in current time increment

+

Update particle positions

Fig. 3.1. Schematic diagram of sequence of calculations
in a DEM simulation (after O'Sullivan, 2011).
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deformation) are defined by the user, the simulation progresses for a specified number of
time increments (timestep). At each timestep, contacts are detected to determine whether
the individual particles interact with each other in the current time step. After contact
detection was completed, the interparticle forces and moments related to the distance
between contacting particles are identified by contact models. Having calculated those
interparticle forces and moments, the resultant force and moment or torque applied to
each particle, including body forces and external forces, can be determined. The
translational motion and rotational motion (except when particle rotation is inhibited) of
an individual particle in DEM are governed by Newton’s second law of motion as shown

below:

miill- = Fi (31)

Iiéi S Mi (32)

where m; and u; are the mass inertia and translational acceleration of particle i,
respectively; F; is the resultant force applied to particle i; I; and @; are the moment of
inertia and angular acceleration of particle i; M; is the resultant moment applied to
particle i. The displacement and rotation of the particles over the current timestep then

can be found through central-difference-type integration through time:

ul™A — 2ut + ultAt

il = A2 3.3)

Substituting Eq. (3.3) into Eq. (3.1), we can get
uftA = AL2mp (FEAY — myAe=2ul ™2 + 2mAc—2ul) (3.4)
where u!™2%, uf,and uf*2¢ are the translational displacement of particle i at time t —
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At,t,and t + At, respectively; F f+At is the resultant force of particle i at time t + At;
At is the timestep in the DEM simulation. Similarly, the angle of rotation of particle i at

time t + At is
gLrat = Atzli—l(MiHAt — [At™201A 4 zjiAt—Zaf) (3.5)

where @72 and 8¢ are the angle of rotational of particle i at time t— Atandt,

M{+AL s the resultant force of particle 7 at time t + At. Using Eq. (3.4)

respectively;
and (3.5), the particle position and orientation are updated. In the next timestep, the

contact forces and moments are calculated using this updated information, and the series

of calculations are repeated.

3.2. Contact model in DEM

The contact forces in any DEM algorism (including Rocky used in this thesis)
consist of normal and tangential components. For spherical particles in 3D space, the
contact plane is perpendicular to the line that connects the centers of two spheres. In the
case of particle-to-boundary contact, the line connects the center of a sphere and the
closest point of a triangle making up a boundary. The normal contact force is
perpendicular to the contact plane while the tangential contact force is in the contact plane.
The most widely used contact model includes Hertz-Mindlin nonlinear contact model and
the linear spring dashpot-Coulomb limit model. However, using a nonlinear contact is

computationally burdensome and it was pointed out that no significant improvement in
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' Normal

|
ni force model
|

a Tangential
}_force model

k.1 Rolling
[resistance model

Fig. 3.2. Schematic of the interaction models (after Jiang et al., 2021).

assembly behavior when using the Hertz—Mindlin model to replace the linear-elastic
contact model (Renzo and Maio, 2004). Therefore, the linear spring dashpot-Coulomb
limit model was used in this thesis for its computational efficiency. In addition, rolling
resistance was also usually used to restrict the rotation of spherical particles in DEM and
is typically incorporated to represent the effect of non-sphericity (Iwashita and Oda, 1998;
Aietal., 2011; Coetzee, 2017; Gu et al., 2020). The contact models used in this thesis are
schematically illustrated in Fig. 3.2. The normal force model, tangential force model, and

rolling resistance model in Rocky are introduced as follows (ESSS., 2020):

3.2.1. Normal force model

The linear spring-dashpot model, which can be idealized as the parallel connection
of a linear spring and a viscous dashpot, was first proposed in the seminal paper of
Cundall and Strack (1979). The normal contact force in this model is composed of a linear

elastic repulsive force and a damping force, that is

F, = kysp + ¢Sy (3.6)
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where k,, is the normal contact stiffness; c, is the normal damping coefficient; s, is
the contact normal overlap; s, is the time derivative of the contact normal overlap. The
normal contact stiffnesses are defined by the particle size and the bulk Young’s modulus
of contacting materials. For the contact of two particles, or of a particle with a boundary,

the equivalent stiffnesses are defined as:

1 1
( + for particle — particle contact
1 kanl kn'p2
—=11" (3.7)
n + for particle — boundary contact

where subscripts p; and p, identify the two contacting particles; subscripts p and b
identify the contacting particle and boundary. The individual stiffnesses associated with

a particle and with a boundary are computed, respectively, as:

knp = EpL (3.8)

kn,b == EbL (39)

where E,, and Ej, are Young’s modulus of particle and boundary materials, respectively;
L is the particle size. The value of the normal damping coefficient ¢, can be determined
in a way that the viscous energy dissipation matches the energy dissipation of an inelastic
collision, determined in turn by the value of the coefficient of restitution. In order to do

this, the damping coefficient is defined in Rocky as follows:

Cp = 2Ny m*k, (3.10)

where 7 is the damping ratio, a dimensionless parameter whose value is related to the

restitution coefficient; m* is the effective or equivalent mass for the contact, defined as:
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1 1
1w,
m* 1

m

for particle — particle contact
(3.11)

for particle — boundary contact

where m; and m, are the masses of the contacting particles, whereas m is the mass

of the particle in contact with a boundary. The functional relationship between the

damping ratio 1 and the coefficient of restitution ¢ is:

(] 201 —1n? 1
exp - 7T—arctanu ifo<n<—
J1—1n? 1-2n? V2
2n41 —n? 1
£ =1exp 1 arctanu if—=<n<1 (3.12)
1—n? 2n* -1 V2
Ui 77+V77 - :
exp |— ifn>1
S VL n -1

As can be seen in Fig. 3.3, Eq. (3.12) defines the restitution coefficient £ as a monotonic

function of the damping ratio 7.

0.25+

e e e e e L s e

1.5 2 2.5 3

U

Fig. 3.3. Graph of the relationship between the damping ratio n and the
restitution coefficient &, given by Eq. (2.31) (after ESSS., 2020).
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3.2.2. Tangential force model

The tangential force in the linear spring Coulomb limit model is elastic-frictional,
which can be idealized as the series connection of a linear spring and a slider. Before
reaching Coulomb’s limit, the tangential force was considered purely elastic. Its value at

time ¢, F%,, would be given by:
Fi, = FL At — k. As, (3.13)

where FLAtis the value of the tangential force at the previous time; As, is the tangential
relative displacement of the particles during the timestep; k. is the tangential stiffness

defined as:
k. =nrky (3.14)

where k,, is normal stiffness defined in Eq. (3.7); 7 is the tangential stiffness ratio. In
this model, however, the tangential force cannot exceed Coulomb’s limit. Therefore, the

complete expression for the tangential force is:

F. = min(|F$}e|,ant)

(3.15)

t
Fre
t

T,e

|Frel
where E! is the contact normal force at time #; p is the friction coefficient, defined as:

[ = {,us if no sliding takes place at the contact (3.16)

uq if sliding does take place at the contact

where p, and p,; are the static and dynamic friction coefficients, respectively. The
sliding is considered to be taking place on the contact the first time the magnitude of the

tangential force F%. exceeds the limit of pK!. Once that force falls below the value of
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uE!, the contact is considered non-sliding again.

3.2.3. Rolling resistance

The linear spring rolling limit model is an elastic-plastic model reproducing the
effects of rolling resistance, which be simplified as a series connection involving a

rotation spring and a rotation slider. The rolling stiffness k, is defined as:

k. = R2k, (3.17)

where k. is the tangential stiftness, defined in Eq. (3.14); R, is the rolling radius, given

by:
! + ! fi ticl ticl tact
— 4+ — for particle — particle contac
1)l Tl P b 5.18)
R 1 '
r i for particle — boundary contact

where r; and 7, are the rolling radii of the contacting particles, while r is the rolling
radius of a particle in contact with the boundary. The rolling radius vector is defined as
the vector joining the centroid of the particle and the contact point at a given time. If the
rolling resistance were purely elastic, the rolling resistance moment M{. would be

updated incrementally in the following way:
Mi, = M4 — kLo At (3.19)

where M{2t is the rolling resistance moment vector at the previous time; k. is the

tangential stiffness defined in Eq. (3.17); w.e is the relative angular velocity vector,
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which is defined as the difference between the angular velocities of two contacting
particles or the angular velocity of a particle on a boundary, as the case may be. At isthe
simulation timestep. However, the updated rolling resistance moment defined in Eq. (3.19)
is not used directly in the motion equation for the particles. The magnitude of the rolling
resistance moment is limited by the value which is achieved at a full mobilization rolling

angle. The limiting value is:
Mrjim = UrReFy (3.20)

where p, is the rolling resistance coefficient; R, is the rolling radius defined in Eq.
(3.18); F, is the contact normal force. The final expression for the rolling resistance

moment in the Linear spring rolling limit model is:

Mt
M¢ = min(|ME,|, M‘"’“m)ﬁ (3.21)
re

3.3. Boundary condition

In continuum numerical modeling, the boundary condition is either displacement-
restricted (or specified) or stress-specified. Similarly, displacement boundary and force
boundary conditions in a DEM simulation can be achieved by fixing or specifying the
coordinates of selected particles and by applying a specified force to selected particles.
However, those displacement and force boundaries cannot easily be directly used with
the discrete system including thousands of particles. Therefore, the analyst must apply
those conditions to selected boundary particles as the system deforms (O'Sullivan, 2011).

Here rigid walls and periodic boundary conditions were considered in this thesis.
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3.3.1. Rigid boundary

The rigid boundary is the most widely used boundary type. Rigid boundaries are
simply analytically described surfaces or geometries and can be used to simulate
inclusions or machinery interacting with particles (O'Sullivan, 2011). These boundaries
themselves do not have inertia and are only used to update the coordinates of particles,
which to some extent is similar to the displacement boundary conditions in FEM. In
addition, the motion of rigid walls is not affected by the external force acting on them. In
typical DEM codes, including Rocky, there is no contact between rigid walls that intersect
or touch. In other words, they do not interact with each other. In Rocky, the rigid wall is
defined by triangular meshes in 3D space. The distance D between a particle

centroid (xP, yP,zP) and the wall ax + by + cz +d = 0 is given by:

D_axp+byp+czp+d

V@ E e (3.22)

3.3.2. Periodic boundary

The DEM simulation of very large assemblies of particles can be simplified by
using periodic boundaries, where only a selected subdomain, termed periodic cell, should
be considered. The periodic cell surrounded by periodic boundary is usually a
parallelogram in 2D and a parallelepiped in 3D spaces. There is a connection between the
two boundaries in opposite directions, so that particles in the periodic cell are allowed to
contact across periodic boundaries and move through the boundaries. Therefore, the
periodic cell is surrounded by identical copies of itself, as shown in Fig. 3.4. Then, the

granular material responds as if the periodic cell repeats itself infinitely in the directions
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Repeated
Structure

Cell
Analysed

Fig. 3.4. Periodic boundaries (after O'Sullivan, 2011).

normal to each periodic cell face. Periodic boundaries are usually used to eliminate
boundary effects and ensure homogenous deformation (each periodic cell is an RVE)

(Cundall, 1988; Huang et al., 2014).

3.4. Timestep for the linear spring-dashpot model

Timestep is an important parameter concerning the numerical stability of DEM
simulations. In the linear spring-dashpot model of Rocky, the calculation of timestep can

be summarized into the following expression:

T m*

At =
2Nk, | kn

(3.23)

where m* is the effective mass defined in Eq. (3.11); k,, is the normal stiffness defined

in Eq. (3.7); N}, is the minimum number of timesteps per loading cycle, which is set as
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v Lo

Fig. 3.5. Measurement cube in a granular assembly.

15 in this thesis (N, should be larger than 4).

3.5. Micro and macro quantities in DEM simulations

The micro and macro quantities, e.g., void ratio and stress tensor, in DEM code are
generally measured by a measurement sphere or cube. In Rocky, the measuring cube is
used, as shown in Fig. 3.5. A measurement cube can be further divided into several sub-

cubes (bins).

3.5.1. Void ratio

The volume fraction, ¢;, of the bin i in the measurement cube is given by:

bi=v ) —— (3.24)
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where V; is the volume of the bin 7 in the measurement region; N; is the number of
particles in the bin i;; mP is the mass of the particle p; pP is the density of the particle
p- The volume fraction in Rocky DEM represents the volume of the block occupied by
particles. Since it takes into account the sum of the volume of all particles that have nodes
(mass centroid) located inside the corresponding block, it can return a value above 1 in
cases where the ratio between particle size and the block volume is small. The void

fraction, or porosity of bin 7, n;, is given by:
n; = 1-— d)i (325)
the void ratio of bin 7, e;, is given by:

e = — (3.26)

3.5.2. Stress tensor

The stress tensor of a particle p, 05-, is given by:

C
Np

1
ol = 72 x{ff (3.27)
Pe=1

(o

where 1, is the volume of particle p; x; is the contact location of pair ij; f;° is the

p
contact force of pair ij; Ny is the number of contacts of particle p. The average stress

tensor for the bin & is computed as:
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A (3.28)

where Vj is the volume of bin &; V, is the volume of particle p; Ny is the number of

particles in the bin ; 05- is the stress tensor of particle p defined in Eq. (3.27).

3.5.3. Coordination number

The coordination number of particles in bin i, Z;, is given by:

_2N¢

Ny

(3.29)

i

where N! and Nf; are the total number of contacts and particles in contacts in bin i,
respectively. Since it considers only contacts located inside the corresponding block,
some contacts (outside bin 7) of particles that intersect the bin i boundary are not taken

into account. Therefore, Z; is smaller than the real coordination number Z defined in

Eq. (2.6).

3.5.4. Fabric tensor

The contact-based fabric tensor in bin # is given by:

1
o = WZ nlknnk (3.30)
c
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where NZ' is the total number of contacts in bin 7; n?'k and n]n’k denote the component

of the k-th unit contact normal vector (inside bin #) in the i and j direction, respectively.

3.6. Constant volume method in DEM simulations

During the undrained cyclic loading, the pore fluid is generally assumed to be
incompressible so that the granular assembly deforms without volume change. In DEM
simulations, the volume of a granular packing is usually maintained constant during
deformation to model an undrained condition. Then, the undrained response of a particle-
fluid coupling system can be simulated without explicit consideration of the fluid phase.
Because there is no real fluid phase in the constant volume (CV) method, the excess pore
water pressure in an isotropically consolidated triaxial specimen is usually taken to be
Au = 04 — oy, where o0, and oy, are the initial confining pressure and horizontal stress,

respectively.

The CV method had been verified effective in laboratory element tests (Dyvik et
al., 1987). However, a key assumption in this approach used in DEM is that the bulk
modulus of the soil skeleton is much smaller than that of either the soil particle or the
pore fluid (Yimsiri and Soga, 2010). The comparison of DEM simulations using the CV
method to physical laboratory tests was conducted by some researchers, e.g., Ng and
Dobry (1994) used the CV approach in a periodic cell during cyclic shear and find the
result was qualitatively agreed with previously documented laboratory tests; Sitharam et
al. (2009) conducted cyclic undrained triaxial compression simulation using the CV

method and found that it is similar to the phenomenon in physical cyclic undrained
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laboratory experiments. Recently, the CV method has been widely used in DEM
simulation under undrained conditions (e.g., Sitharam et al., 2002, Shafipour and Soroush,
2008; Yimsiri and Soga, 2010; Asadzadeh and Soroush, 2017; Nguyen et al., 2021; Yang

et al., 2022).

3.7. Quasi-static response in DEM simulations

In DEM simulation, the premise of the definition of stress tensor and force chain is
that the granular assembly is in a quasi-static state. This means that this particle system is
not flowing or close to a state of equilibrium (O'Sullivan, 2011). Stress waves will
propagate through the particle system if the deformation of it is too fast, e.g., rapid particle
flow. Under this condition, the equilibrium stress level is less than the stress measured

instantaneously, and the assumption of RVE fails.

An index—inertial number, was pointed out by researchers, eg., da Cruz et al. (2005)
and Radjai (2009), that can be used to judge whether the granular system is in a quasi-
static state. The inertia number is the ratio of time in the microscopic scale ticro to time

in the macroscopic scale tyacro- tmicro refers to the duration of a particle of density pq

and of diameter d pass through a plane under pressure P. As m~p.d3, a~ Zd , and

micro

F~Pd?, substitute into Newton’s law of motion defined in Eq. (3.1) yields

d

tmicro = ———
VP/ps

(3.31)

where m is particle mass; a is particle acceleration; F is the total force acting on the

57



CHAPTER 3 DISCRETE ELEMENT METHOD

particle. tpacro 1S the reciprocal of the strain rate y. Therefore, the inertial number 1, is

expressed as

tmi 7|d
[ — —micro _ V4 (3.32)

tmacro \/ P/pS

or

I'= IJ'/I\/:% (3.33)

A small inertial number (I < 1) indicates that the macroscopic deformation of the
granular system is significantly slower than the microscopic rearrangement of particles
(Fei et al., 2020). In other words, the inertia forces acting on particles are much lower
than the interparticle contact forces (O'Sullivan, 2011). In general, I < 1073 is widely
used as the criteria to assess whether the granular material is in a quasi-static state (e.g.,

Soroush and Ferdowsi, 2011; Martin et al., 2020; Yang et al., 2022).
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CHAPTER 4 LIQUEFACTION UNDER SURFACE-WAVE

STRAIN CONDITIONS

4.1. Introduction

Strong ground surface motions may be predominated by surface waves, which will
cause or aggravate liquefaction. To clarify the liquefaction behavior of granular materials
under the influence of surface waves, a series of numerical tests based on the 3D DEM
was performed for granular packing subject to SH-, Love-, and Rayleigh-wave strain
conditions, that is, the strain paths generated by these waves without considering their
natural characteristics (e.g., period and wavelength). Firstly, under the assumption of
constant volume (undrained condition), the equation governing the strain—time
relationships of SH, Love, and Rayleigh waves was derived from elastic wave theory.
Subsequently, the undrained cyclic shear responses of Ko-consolidated specimens under
different strain conditions (loading paths) were simulated using the 3D DEM. Finally, the
liquefaction characteristics of specimens under different strain conditions were analyzed

at both the macroscopic and microscopic scales.

4.2. SH- and Surface-wave strain conditions

4.2.1. SH-wave strain conditions

SH waves are shear waves with particle motion in the horizontal plane. As shown

in Fig. 4.1, in a 3D Cartesian coordination system, assuming that SH waves propagate in
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the zx-plane and its particle motion is along the y-direction, the displacement equation of

SH waves in unbounded media can be expressed as follows (Pujol, 2003):

usy = Aayexp {ifwt — k(Ix + mz)[} (4.1)

where usH is the displacement vector of a particle during the propagation of SH waves; 4
is the scalar factor determined by the boundary condition and propagation medium; a, is
the unit vector along the y-direction; i is the imaginary unit; @ is the angular frequency; ¢
is the time; k is the wavenumber. Assuming f is the unit vector of the velocity of SH
waves, [ is the length of the vector component of £ in the x-direction, and m is the length
of the vector component of # in the z-direction. The strain can be derived from its

corresponding displacement field as follows:

ou, ou, ou,
B T kY T gy T oy (4.2)
ou, aJu, du, OJu, _ Ou, Ou, '

"=~ %x Tz~ 3y Tax T a2 Ty

>

Particle

I

Fig. 4.1. Propagation of SH waves.
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where &y, €&y, and &, are the normal strains in the x-, y-, and z-directions,
respectively; V,x, Vxy,and vy, denote the engineering shear strains in the zx-, xy-, and
yz-planes, respectively; ux, uy, and u: represent the components of the displacement field
in the x-, y-, and z-directions, respectively. Therefore, the strain components of the SH

wave are as follows:

ou, ,
Yxy = == = Aklsin[wt — k(Ix + mz)]
Ox (4.3)

ou, ,
Vyz =5 = Akmsin[wt — k(lx + mz)]

As shown in Eq. (4.3), the engineering shear strain of SH waves, which is based on a sine
function, can be decomposed into two components (horizontal component ¥,, and
vertical component y,,,). In addition, the shear strain amplitude of each component is
determined by the propagation direction of the SH waves. Although it is often assumed
that liquefaction is due to the upward propagation of shear waves, in this study, two types
of SH-wave strain conditions were considered: SH waves propagating horizontally and

vertically upward. The former case is defined as the SHH-wave strain condition, in which

@z % b z %

Fig. 4.2. Deformation of soil elements under (a) SHH-wave strain condition and (b)

SHV-wave strain condition.
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shear strain was applied in the xy-plane. The latter case is defined as the SHV-wave strain
condition, in which shear strain was applied in the yz-plane. In natural ground (Ko-
consolidated soil), the deformation of soil elements under SHH- and SHV-wave strain
conditions are shown in Fig. 4.2. Because the normal stress in the vertical direction (oz)
was much larger than that in the horizontal direction (ox and oy), the two conditions were

not equivalent for different magnitudes of shear stress.

4.2.2. Love-wave strain conditions

In elastodynamics, Love waves occur owing to the interference of SH waves. In
this study, Love waves were assumed to propagate through an isotropic elastic layer over
a half-space, as shown in Fig. 4.3, where f is the shear wave velocity, p is the density, G
is the shear modulus, and H is the interface depth. The subscripts 1 and 2 indicate the
surface water-saturated sand layer and the bedrock half-space, respectively. G, p, and S

satisfy:

B= |- (4.4)

Assuming that the Love waves propagate along the x-direction, the displacement equation
of Love waves in the isotropic elastic surface layer can be described as follows (Pujol,

2003):

u;, = Ba,cos(n,kz)exp [ik(ct —x)]; 0<z<H
c? (4.5)

m= |5z~ 1
T B
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0 ¥
Water-saturated
granular material
H B 1 Gy
B P Gy
Bedrock (half-space)
v
A

Fig. 4.3. Medium model for Love wave propagation.

where uL is the displacement vector of a particle during the propagation of Love waves,
B is the coefficient determined by the boundary condition and propagation medium, and
c 1s the velocity of Love waves, which is between 1 and /2. Therefore, the strains of Love

waves are expressed as follows:

= Bkcos(n,kz)sin(wt — kx
{yxy (771 ) ( ) (46)

Yyz = —M1Bksin(nkz)cos(wt — kx)
As shown in Eq. (4.6), the engineering shear strain of Love waves can be decomposed
into two components (horizontal component y,, and vertical component y,,,). However,
a phase difference of /2 exists between the two components. Therefore, as shown in Fig.
4.4, in the natural ground, the soil element under the Love-wave strain condition is subject
to shear strains in the vertical plane (yz-plane) and horizontal plane (xy-plane)
simultaneously. The aspect ratio (AR) can be defined as the ratio of shear strain amplitude
of two components in a specified depth zo; hence, the AR of Love waves is expressed as

follows:
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Fig. 4.4. Deformation of soil elements under Love-wave strain condition

_ Max(yyz)

AR=—""—=
Max(yxy)

= nytan(n 1 kz,) (4.7)

Theoretically, the AR can be from 0 to infinity (). In fact, Love waves exhibit dispersion.
This means that the velocity of the Love waves varies with the frequency. As a result, at
a specified depth zo, the shear strain amplitudes and AR of Love waves will be affected

by their frequency.

Except for the dispersion features, Love waves typically have larger amplitudes and
lower predominant frequencies than SH waves (Novotny, 1999). In this study, to simplify
the problem, only the differences in the deformation mode, including the strain
component, phase difference, and AR, were considered. Therefore, the deformations of
the granular packings under different Love-wave strain conditions were assumed to be at

the same frequency and strain level.
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4.2.3. Rayleigh-wave strain condition

A Rayleigh wave is a surface wave including both longitudinal and transverse
motions. However, due to its high non-linearity, an accurate mathematical formulation
for Rayleigh waves in the real ground is very difficult to determine. In addition, the
characteristics of Rayleigh waves change during the progressive weakening of the soil.
Therefore, this paper does not attempt to seek the response of saturated soil during the
propagation of real Rayleigh waves but aims to investigate the influence of the
deformation modes resulting from Rayleigh waves on the liquefaction characteristics of
granular materials, which is more practical in geotechnical engineering. Hence, in the
following analyses, a relatively simple medium model was used, and the emphasis was
placed on obtaining the possible deformation mode of the soil element under Rayleigh
wave propagations, which was hereinafter referred to as the Rayleigh-wave strain

conditions.

For simplification, it was assumed that Rayleigh waves propagate along the surface
of a homogeneous, isotropic, and elastic solid half-space. As illustrated in Fig. 4.5(a), if
the xy-plane coincides with the surface of the half-space, the scalar form of the
displacement governing equation of Rayleigh waves traveling in the x-direction can be

expressed as follows (Pujol 2003):

2
U, = Q [exp(—yakz) - <1 — 20?> exp(—yﬂkz)] sin(wt — kx) = QU(z)sin(wt — kx)

2

-1
tuz = QV, [— exp(—y kz) + <1 - C—) exp(—yﬁkz)] cos(wt — kx) = Qy,W (2)cos(wt — kx)

2B?

where uxand u- denote the displacement components of a particle in Rayleigh waves along
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the x- and z-directions, respectively, O is a constant, k is the wavenumber, c is the velocity
of the Rayleigh waves, w is the angular frequency, ¢ is the time, and y» and ys are defined

as:

Vo =1 c2/a?yg = 1— c?/B? (4.9)

where o and f represent the velocities of P and SV waves, respectively, which are larger
than c. As the stress vector across the medium surface is zero, Rayleigh waves should

satisfy the following period equation:
(2= c?/B*)? = 4yayp =0 (4.10)

From Eq. (4.8), it can also be determined that the motion of a particle in Rayleigh waves
is elliptical on the zx-plane, as illustrated in Fig. 4.5. If & is constant, angle 6 can be

expressed as (Pujol 2003):

u U
tand = — = ()
Uy W(Z)Va'

tan(wt — kx) (4.11)

Since P waves travel faster than SV or Rayleigh waves, W(z) and y« are positive. U(z) is
initially positive and becomes negative as z increases. Therefore, § increases with ¢ near
the half-space surface, whereas it decreases with ¢+ when z exceeds zo, where zo can be
determined from U(zo) = 0. This means that the particle motion is retrograde near the half-

space surface and is prograde below threshold depth zo, as illustrated in Fig. 4.5.

The strain components of a soil element caused by Rayleigh waves are given by:
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where &x and ¢: are the normal strains generated along the x- and z-directions, respectively,
and y:x is the engineering shear strain occurring in the zx-plane. As illustrated in Fig. 4.5(b),
the strain resulting from Rayleigh waves is planar. It consists of one shear strain and two
normal strain components, and there is a phase difference of n/2 between the shear and
normal strain components. Specifically, strain conditions with the above characteristics

are called the Rayleigh-wave strain conditions in this thesis.

In the study of liquefaction, soils are generally assumed to be undrained, and the
volume of the soil element remains constant during cyclic loading. Therefore, Rayleigh-
wave strain conditions were hereinafter specified to be under a constant volume situation.

Under this assumption, the bulk modulus K of the medium is considered to approach +oo.

As a =./[K + (4/3)ul/p, where u is the shear modulus and p is the density of the
medium, the velocity of the P waves, a also approaches +oo. Thus, &x and &: are equal in
absolute value and opposite in sign. The ratio of the shear strain amplitude to the normal
strain amplitude (RSN) under Rayleigh-wave strain conditions can be expressed as

follows:
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( Ouy
& = By
c?
= —Qk [exp(—yakz) — (1 — 2—Bz> exp(—yﬁkz)] cos(wt — kx)
_ Ou,
2= 9,
. c2\7?
= Qky, !ya exp(—vekz) — v <1 — 2—'32> exp(—yﬁkz)] cos(wt — kx)
du, OJdu,
=5, Tk
c? 2\’
= Qk {—Zya exp(—vekz) + |y <1 — ﬁ) + Vs <1 - 2—Bz> ] exp(—yﬁkz)} sin(wt — kx)

(4.12)
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c? 2\
Vamp 2Ya®Xp(—Yakz) — lyg (1 - 2—,32) tVa (1 - 2_ﬁ2> l exp(—ypkz)

2
€amp exp(—yq.kz) — (1 — ZC_BZ> exp(—vypkz)

RSN = (4.13)

where yamp is the amplitude of y-xr, and eamp is the amplitude of &x and &:. Because ¢, =

-1

2 2
—&,, it can be derived from Eq. (4.12) that (1 - ZC?) = YaVp (1 - ZC?) . Therefore,

Eq. (4.13) can be simplified as:

2
v +1 c? |
B}/ﬁ (1 — Zﬂz) exp(—yﬁkz)

exp(—y kz) — (1 — ;—;2) exp(—yﬁkz)

|
2Yq exp(—yqkz) —
RSN =

(4.14)

From Eq. (4.10), it can be derived that (1 + yﬁ)z = 4Y,Yp. Therefore, Eq. (4.14) can be

simplified as:

I 2 c? I

exp(—yakz) — — 1 (1 - 2ﬁ2> exp(—yﬁkz)
Vg

RSN = 2y,

(4.15)
exp(—yq,kz) — (1 — ZC_,BZZ) exp(—yﬁkz)

2 2
Because (1 — ZC?) = yﬁTﬂ, Eq. (4.15) can be simplified as:

1-— exp(ya — yﬁkz)
2
1- (1 - ZC_,BZ) exp(ya - y[;kz)

exp(—v,kz) — exp(—yzkz
RSN = 27, p(—yokz) — exp(—ygkz)

=2V, (4.16)

exp(—y.kz) — (1 - ZC—;Z) exp(—y[gkz)

Because lirP Y. =1, it can be derived from Eq. (4.10) that lirP ¥p = 0.296.
a—+0oo a—+0oo

Therefore, Eq. (4.16) can be simplified as:
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RSN = 2 | xp(0.704kz) — 1 € [0, + (4.17)
= (0] .
1= 0.544exp(0.704kz)|" % € 10 F)

As k= 2mn/ir, where Ar is the wavelength of the Rayleigh waves, RSN is a function of the
relative depth, z/Ar. It can be easily proved that RSN varies in the non-negative real
number field (i.e., 0 ~ +o0). As illustrated in Fig. 4.6, RSN increases rapidly from 0 to +oo
within relative threshold depth zo/Ar, then decreases rapidly with relative depth, and
finally converges to 3.68. Specifically, zo/Ar = 0.138. However, it should be noted that,
although RSN depends on the Ar in the Rayleigh waves, RSN in Rayleigh-wave strain
conditions is not related to the real depth. RSN is only related to the shape of the strain
path under Rayleigh-wave strain conditions. When RSN = 0, there is no shear strain
component and the deformation of the soil element is in the pure shear mode; when RSN
— o0, there is no normal strain component and the deformation of the soil element is in

the simple shear mode; and when RSN € (0, +0), the deformation of the soil element is

RSN
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0.0 | T

Zo/ 2Rl

<o
w
I
|

0.6 - =

0.9 —

Relative depth, z/43

1.2 —

1.5 ' ' '

Fig. 4.6. Variation in RSN with relative depth.
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Fig. 4.7. Difference between simple shear and pure shear.

in the superposition mode of pure shear and simple shear. By the way, the difference
between pure shear and simple shear is shown in Fig. 4.7. In the simple shear mode,
parallel planes in a soil element remain parallel and maintain a constant distance, while
being translated relative to each other. In the pure shear mode, the soil element is
elongated in one direction while being shortened perpendicularly, and involve no

principal strain rotation as in the simple shear mode.

4.3. DEM simulations

In this study, simulations were performed using the commercial code—Rocky
(ESSS., 2020). Only spherical particles were used to improve the computation efficiency.
The interaction model comprised a normal force, a tangential force, and a rolling
resistance model, as introduced in Section 3.2. They were the linear spring dashpot model,

linear spring Coulomb limit model, and linear spring rolling limit model, respectively.
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4.3.1. Angle of repose test

The angle of repose (AoR) was used as the calibration criterion. The bulk response
of the granular materials is simultaneously affected by the multiple microscopic
properties. This means that the same AoR of the granular materials in the 3D DEM
simulations can be achieved by different combinations of parameter values. According to
Derakhshani et al. (2015), the coefficients of rolling and sliding friction are the two main
parameters affecting the macroscopic properties. In other words, the friction coefficient
w and the rolling resistance coefficient ur have a direct influence on the reliability of the
simulation results. Therefore, in this study, the values for some of the parameters were
predetermined based on values in the literature. The friction coefficient 4 = 0.5 was
usually used in DEM simulations for granular materials (e.g., Sitharam and Dinesh, 2003;
Soroush and Ferdowsi, 2011; Guo and Zhao, 2013; Wei et al., 2020), then only the rolling
resistance coefficient required determination. A series of AoR tests were conducted
numerically using the hollow cylinder method (Al-Hashemi and Al-Amoudi, 2018) to
determine the rolling resistance coefficient. The hollow cylinder method was usually
applied to determine the static angle of repose of a cohesionless material (Al-Hashemi
and Al-Amoudi, 2018). The parameters used in the hollow cylinder method are shown in

Table 4.1.
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Table 4.1. Parameters used in the hollow cylinder method

Particles

Diameter (mm) 0.4

Density (g/cm?) 2.667

Young’s modulus (N/m?) 1.0x108

Poisson's ratio 0.3
Hollow cylinder (rigid wall)

Young’s modulus (N/m?) 1.0x10°

Diameter (mm) 10.8

Height (mm) 33.0
Base (rigid wall)

Elastic modulus (N/m?) 1.0x10°

Length (mm) 60.0
Interactions between particles

Static friction coefficient 0.5

Dynamic friction coefficient 0.5

Coefficient of restitution 0.3

Tangential stiffness ratio 1.0
Interactions between particles and rigid walls

Static friction coefficient 0.5

Dynamic friction coefficient 0.5

Coefficient of restitution 0.3

Tangential stiffness ratio 1.0
Computational parameters

Gravity (m/s?) 9.81

Timestep (s) 1.56x107
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Fig. 4.8. Granular material in a hollow cylinder.

Firstly, the granular material was placed into a hollow cylinder which was on the
base, as shown in Fig. 4.8. The friction coefficient between the particle and the boundary
was the same as the friction coefficient between particles. Secondly, the hollow cylinder
was subsequently pulled off of the base at speed of 5 mm/s. After particles stopped
moving, the angle of repose could be obtained in post-processing. In the direction of the
radius, a measurement cube was set up. The measurement cube was divided into 30 sub-
cubes in the radial direction, as shown in Fig. 4.9. In each sub-cube, the maximum height
of particles was counted. Furthermore, ignoring the maximum and minimum heights of
the particles, the angle of repose of the particle material could be calculated by the least-
squares method. Fig. 4.10 shows the relationship between the angle of repose and the
rolling resistance coefficient when the static and dynamic friction coefficient equaled 0.5.
Finally, the rolling resistance coefficient was set as 0.35, which resulted in a combination

of parameter values corresponding to an AoR of 30.9°.
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Fig. 4.9. Post-processing in Hollow cylinder method.
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Fig. 4.10. Effect of rolling resistance coefficient on the angle of repose.

4.3.2. Specimen generation

After determining the parameters, the numerical specimens for the simulation tests
were generated. Except for the friction coefficient between particles and rigid walls, the
parameters concerning the particle, boundary, and interaction models were kept the same
as that in the angle of repose tests. Each specimen was generated by following the
procedure below: First, a rectangular cuboid volume element measuring 10 mm % 10 mm

x 20 mm was formed by six frictionless boundary walls. Second, particles from an inlet
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Void ratio Particle number
0.79 16672
0.75 17053

10 mm

Ty 7F 10 mm

Fig. 4.11. A generated numerical specimen.

below the upper boundary wall were dispersed uniformly into the bottom of the space.
During this process, the gravitational acceleration was set to 0.1 m/s? such that the
particles would rebound slightly and a homogenous specimen would be obtained. Third,
the volume element was compacted into a cube by moving the upper boundary wall
downward at a constant speed of 0.2 mm/s. In this step, the rolling resistance coefficient
was adjusted iteratively before compaction to ensure that the specimen reached a mean
effective stress state of 100 kPa. Finally, the rolling resistance coefficient was set to 0.35
again. The generated specimen (granular packing) is shown in Fig. 4.11 and it was in the
Ko-consolidation state. Specimens with void ratios of 0.79 (loose) and 0.75 (medium
dense) were generated to represent soil elements of different bulk densities containing
16,672 and 17,053 particles, respectively. The Ko-values of the specimens with void ratios
0f 0.79 and 0.75 were 0.54 and 0.60, respectively. Specifically, Ko = (ox + 0y)/20z, where

ox, 0y, and o> are the normal stresses acting in the x-, y-, and z-directions, respectively.
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4.3.3. Simulation conditions

Nine types of cyclic strain were applied to the specimens to cover the strain features
of SHH-wave strain condition, SHV-wave strain condition, Love-wave strain conditions
with AR =0.25, 1, and 4, and Rayleigh-wave strain conditions with RSN =0, 0.25, 1, and
4, respectively. Especially, the Rayleigh-wave strain condition with an RSN = +oo, the
Love-wave strain condition with an AR = +oo, and the SHV-wave strain condition are
equivalent; the Love-wave strain condition with an AR = 0 equals the SHH-wave strain
condition. The deformation of the specimens was achieved by moving the boundary walls.
During cyclic loading, the specimen volume was kept constant to avoid the computational
complexity of the fluid-coupled model (CV method). Furthermore, no gravity was applied

to the sample to reproduce the particle suspension phenomenon in the liquefied state.

The accumulated equivalent strain, & eqv (Jiang et al., 2021), was adopted to evaluate
the level of cumulative change in strains under different Rayleigh-wave strain conditions.

It is defined as

. 4
Eeqv = Z §]2A£

2 1
— Z 5 [(Aex —Ae,) + (de, — Ag,)” + (Ac, — Agx)z] +5 (A3, + &vE, + A7) (4.18)

where J2a: is the second invariant of the deviatoric strain increment tensor, Aex, Agy, and
Ag: are the normal strain increments in the x-, y-, and z-directions, respectively, and Ayyy,
Ayy=, and Ay« are the engineering shear strain increments generated in the xy-, yz-, and zx-

planes, respectively. The maximum shear strain amplitudes under the SHH- and SHV-
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wave strain conditions were set to be 1.00%. The maximum strain amplitudes under other
strain conditions were determined by making the increment in &"eqv per loading cycle the
same as that under the SHH- and SHV- wave strain conditions; they are summarized in

Table 4.2.

Table 4.2. Maximum strain amplitudes under each strain condition

Maximum Maximum Maximum Maximum

Condition
&x Of &2 Vay Vyz Vax

SHH 0.00% 1.00% 0.00% 0.00%
SHV 0.00% 0.00% 1.00% 0.00%
Love, AR =0.25 0.00% 0.23% 0.93% 0.00%
Love, AR =1 0.00% 0.64% 0.64% 0.00%
Love, AR =4 0.00% 0.93% 0.23% 0.00%
Rayleigh, RSN =0 0.50% 0.00% 0.00% 0.00%
Rayleigh, RSN = 0.25 0.49% 0.00% 0.00% 0.12%
Rayleigh, RSN =1 0.41% 0.00% 0.00% 0.41%
Rayleigh, RSN =4 0.83% 0.00% 0.00% 0.21 %

Fig. 4.12 illustrates the loading paths under each strain condition, in which y is the
shear strain, ¢ is the normal strain, including ex and &: (ex = — &z, and the direction of ¢ axis
is consistent with &:). The strain amplitudes gradually increased from 0 to their maximum
value within 10 cycles, and then remained constant. This loading method caused the
applied strain to cover a wide range of amplitudes (El Shamy and Denissen, 2012),
facilitating the elimination of the influence of different initial states under different ARs
and RSN on the controlled trials as well (the initial phases of y,- under Love-wave strain
conditions with AR =0.25 and 1, the initial phases of yxy under Love-wave strain condition
with AR = 4) and y.r under Rayleigh-wave conditions are n/2). Since there was only one

shear strain component or only normal strain components, the strain paths are vertical or
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Fig. 4.12. loading paths under different strain conditions defined in this study (y is the
— & and the direction of

shear strain, and ¢ is the normal strain including &x and &z; &x

the ¢ axis is consistent with &:).
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horizontal lines under SH-wave strain conditions (Fig. 4.12(a)) and the Rayleigh-wave
strain condition with RSN = 0 (Fig. 4.12(e)), respectively. In contrast, the strain paths are
ellipses or circles under other strain conditions because two shear strain components
(Love-wave strain conditions), or shear and normal strain components (Rayleigh-wave
strain conditions with RSN = 0.25, 1, and 4) exist simultaneously and they are out of

phase by m/2.

The simulations were run under quasi-static conditions, where the inertial effects
were ignorable and there was no strain-rate dependency. In this study, the cyclic loadings
were all applied at a frequency of 5 Hz. The strain rate applied on specimens at this
frequency satisfies the [ = édJTp’PT < 2.5%x 1073 criterion (Perez et al., 2016),
where [/ is the inertial number, € is the strain rate, d is the diameter of the particles, p is

the solid density, and p'pr is the mean effective stress at the phase transformation.

4.4. Simulation results

4.4.1. Macroscopic scale

4.4.1.1. Stress—strain relationship

A measurement cube with a size of 9 mm X 9 mm % 9 mm was generated in the
center of the specimen to measure the stress tensor. Fig. 4.13 shows the 3D shear stress
relationship with the mean effective stress of the granular packings under each strain
condition. The label of the x-axis represents mean effective stress. For SH- and Love-
wave strain conditions, labels of the y-axis and of the z-axis are 7y and 7yz, respectively

(Fig. 4.13(a)—(j)); for Rayleigh-wave strain conditions (SHV-wave strain condition can
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be regarded as the Rayleigh-wave strain condition with RSN = +00), labels of the y-axis
and of the z-axis are 7 (except for 7z in the SHV-wave strain condition) and ov — on,
respectively (Fig. 4.13(k)—(t)), where o, = g,, and oy, = (0yx + 0y,)/2 . The change
in the color of the paths from red to purple corresponds to a decrease in the mean effective
stress from 100 kPa to approximately 0 kPa. Initially, because of the gradual application
of shear strain, the shear stress (including stress ov — on) amplitudes increased gradually
with a slow decrease in the mean effective stress until the maximum shear stress
amplitudes were attained. Subsequently, as the cyclic loading continued, the shear stress
amplitudes and the mean effective stress decreased until initial liquefaction occurred. In
this study, the initial liquefaction was defined by the mean effective stress being less than
107% kPa the first time. Generally, the larger the amplitude of the strain in one direction
or plane, the larger the shear stress amplitude in this direction or plane, which results in
the different shapes of stress paths under different strain conditions. The dilatancy
behavior appeared during cyclic loadings under SH-, Love-, and Rayleigh-wave strain
conditions. Especially, the dilatancy behaviors are more obvious under SH-and Rayleigh-
wave strain conditions than under Love-wave strain conditions. Significantly, no obvious
phase transformation was observed during cyclic loadings under the Love-wave strain

condition with AR = 1, as shown in Fig. 4.13(g) and (h).
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Fig. 4.13. Shear stress relationship with mean effective stress of granular packings under

SH-, Love, and Rayleigh-wave strain conditions in 3D space.
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The effective stress reduction ratio (ESRR) evolution with the accumulated
equivalent strain during the cyclic loadings is illustrated in Fig. 4.14, in which the ESRR

is defined by:

0,
ESRR =1 — —" (4.19)
Um,O

where o'm denotes the mean effective stress, and o'm,0 is the initial mean effective stress.
In this study, instead of the excess pore water pressure ratio, ESRR was used to express
the extent of effective stress reduction. Because in the Ko-consolidated specimen, the
amount of decrease in mean effective stress does not equal the amount of increase in

excess pore water pressure. Furthermore, the CV method was used in simulations, in
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Fig. 4.14. Effective stress reduction ratio vs. accumulated equivalent strain.
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which the fluid phase was not taken into consideration. Therefore, ESRR is a better choice

than the excess pore water pressure ratio in this study.

SH- and Love-wave strain conditions are simple shear modes or a combination of
simple shear modes. Under these strain conditions, regardless of the specimen density,
when the ESRR was less than 0.4, the loading paths did not have a significant effect on
the increase in the ESRR in terms of speed (accumulated equivalent strain). However,
when beyond 0.4, the ESRR under Love-wave strain conditions increased more rapidly
than that under SH-wave strain conditions. The liquefaction rate in terms of the
accumulated equivalent strain under Love-wave strain conditions was highly influenced
by AR. When AR = 1, which meant that the shear strain amplitudes in two planes are the
same, the specimens liquefied the fastest. When AR was farther from 1 (being closer to 0
or +oo), which meant that the larger the difference between shear strain amplitudes in two
planes, the specimens liquefied at a slower rate. The Rayleigh-wave strain condition is a
combination of simple shear mode and pure shear mode. Under Rayleigh-wave strain
conditions, the evolution of the ESRR was significantly affected by the RSN. In general,
the smaller the RSN, which meant the larger the amplitude of normal strains, the faster
the liquefaction rate of specimens. However, when RSN < 1, the specimen under different
Rayleigh-wave strain conditions liquefied at a similar rate. Generally, the order of
liquefaction rate in terms of the accumulated equivalent strain was Rayleigh-wave strain

conditions > Love-wave strain conditions > SH-wave strain conditions.

In addition, fluctuations in the ESRR were observed during the cyclic loadings
except for the Love-wave strain condition with AR = 1. This phenomenon concerning

Love-wave strain conditions was consistent with the findings of Matsuda et al. (2011),
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who concluded that the fluctuation in the effective stress (i.e., ESRR) was dominated by
the change in the resultant shear strain /" during cyclic loadings. In their experiments,

shear strains in the vertical plane (yx- and y,-) were applied, and /" is defined as

r= /V§Z+Vyzz (4.20)

which shows the radial distance from the origin in the shear strain path of the vertical
components. A larger amplitude of /" will result in a larger fluctuation in the ESRR. In
particular, in the case of multidirectional shear with two equal horizontal shear strain
components and a phase difference of /2, where /" is a constant, the decrease in the
effective stress ratio is smooth. In this study, although one of the shear strain components
under the Love-wave strain condition was in the horizontal plane (yx), the ESRR
increased relatively smoothly when AR = 1. In addition, the fluctuation of the ESRR
under the Love-wave strain condition with AR = 0.25 and 4 was larger than that under
the Love-wave strain condition with AR = 1 but was similar to that under SH-wave strain
conditions. Therefore, if replace yx: in Eq. (4.20) with yyy, it is reasonable to conclude that
the fluctuation in the ESRR during cyclic loadings under the Love-wave strain condition

was also affected by the amplitude of 7.

The fluctuations in the ESRR under Rayleigh-wave strain conditions were much
greater than those under Love- and SH-wave strain conditions. Uthayakumar and Vaid
(1998) pointed out that the undrained response of loose sand strongly depends on the
inclination of the major principal stress direction to the deposition direction. Similarly,
under Rayleigh-wave strain conditions, the normal strain component & was consistent

with the deposition direction. A larger amplitude of normal strain components and a
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Fig. 4.15. Effective stress reduction ratio versus accumulated

equivalent strain (a) e = 0.79 and (b) e = 0.75 in small strain

amplitude range (enlarged part of Fig. 4.14).
smaller amplitude of the shear strain component would make the principal strain
increment closer to the deposition direction, which will be discussed in Section 4.4.2.1
Therefore, compared to the SHV-wave strain condition (equal to the Rayleigh-wave strain
condition with RSN = +o0) without pure shear mode, the Rayleigh-wave strain conditions
containing a pure shear mode had a larger fluctuation in the ESRR during cyclic loadings.
This phenomenon was prominent in a small strain amplitude range, as illustrated in Fig.
4.15, which is the enlargement of a part of Fig. 4.14. These findings suggested that the
positive dilatancy behavior of Ko-consolidated soils in the pure shear mode was more

sensitive to the strain level than that in the simple shear mode.
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Fig. 4.16 illustrates the relationship between the von Mises stress and the mean

effective stress under different strain conditions. The von Mises stress, avm, is given by:

1
owm = |5 [(Ux - Uy)2+(ay - UZ)Z + (0, = 0:)* + 6(y + 75, + Tgx)] (4.21)

As the specimens were in the Ko-consolidation state, the von Mises stress was not
initially zero. In addition, the amplitude and average value of the von Mises stress during
each cycle initially increased and then decreased with the gradual application of shear
strain. An exception is that specimens with e = 0.79 under the SHH-wave strain condition
and the Love-wave strain condition with AR = 0.25, as shown in Fig. 4.16(a), the average
value of the von Mises stress of the granular packing with a void ratio of 0.79 during each
cycle decreased from the first cycle. In addition, as shown in Fig. 4.16(a) and (b), the
average values of the von Mises stress during each cycle under both the SHH-wave strain
condition and the Love-wave strain condition with AR =0.25 were smaller than those
under either the SHV-wave strain condition or the Love-wave strain condition with
AR =4 when the mean effective stresses were approximately identical. These phenomena
suggested that the proportion of the amplitude of the horizontal shear strain component
(yw) to the amplitude of the vertical shear strain component (},.) affects the value of the
von Mises stress. A higher proportion of the amplitude of the horizontal shear strain
component would cause the granular packings to be subjected to smaller von Mises
stresses in the Ko-consolidation state when the granular packings were in the same mean

effective stress state.
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As shown in Fig. 4.16(a) and (b), the fluctuation in the von Mises stress under the
Love-wave strain condition with AR = 1 was much smaller than that under the other
conditions. In addition, the fluctuations in the von Mises stress under the Love-wave
strain conditions with AR = 0.25 and 4 were smaller than those under the SHH- and SHV-
wave strain conditions, respectively. This phenomenon was consistent with the fact that
the fluctuations in /" under the Love-wave strain conditions with ARs = 0.25 and 4 were
smaller than those under the SH-wave strain conditions but much larger than that under
the Love-wave strain condition with AR = 1. Because of the anisotropy originating from
the Ko-consolidation, fluctuations in the von Mises stress were not zero in under the Love-
wave strain condition with AR = 1. It was reasonable to conclude that the fluctuation in

the von Mises stress under cyclic loading was affected by the fluctuation in 7".

The specimens under Rayleigh-wave strain conditions containing a pure shear
mode (RSN =0, 0.25, 1, and 4) generally experienced a significantly larger magnitude of
von Mises stress than those under the SHV-wave strain containing (equals Rayleigh-wave
strain condition with RSN = +o0) only simple shear model. In a certain mean effective
stress state, the maximum von Mises stress that the specimens endured increased with a

decrease in the RSN. In particular, the difference disappeared when RSN < 1.

4.4.1.2. Liquefaction resistance

Fig. 4.17 illustrates the evolution of the ESRR with NDE at the end of each loading
cycle until the initial liquefaction. In this study, the normalized accumulated dissipation
energy (NDE), defined as the accumulated dissipation energy normalized by the initial
mean effective stress, was used to evaluate the resistance of granular materials to

liquefaction under different loading conditions. The ESRR increased with the NDE,
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Fig. 4.17. Effective stress reduction ratio versus normalized accumulated

dissipation energy up to initial liquefaction: (a) e = 0.79 and (b) e = 0.75.
which was similar to those shown in Fig. 4.14. When the ESRR was less than 0.4, the
paths coincided under SH- and Love-wave strain conditions; when beyond 0.4, the ESRR
increased more rapidly under the Love-wave strain conditions. Consequently, the granular
packing under the Rayleigh-wave strain conditions and Love-wave strain conditions
indicated a lower NDE when initial liquefaction occurred. Therefore, it can be concluded
that granular materials under the surface-wave strain conditions were more vulnerable to
liquefaction than those under the SH-wave strain conditions. In particular, the rate of
decrease in the resistance to liquefaction under the Rayleigh- and Love-wave strain

conditions was affected by the RSN and AR respectively.
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To quantitatively evaluate the degree to which surface-wave strain conditions may
affect the liquefaction resistance of granular materials, the NDEs at the initial liquefaction
under Love- and Rayleigh-wave strain conditions were compared with those under SH-
wave strain conditions, as shown in Fig. 4.18. The relative normalized accumulated
dissipation energy (RNDE) was defined as the ratio of the NDE under each loading
condition to that under the SHV-wave strain condition. Firstly, the histogram part of Fig.
4.18 shows that the looser specimen was more vulnerable to liquefaction under all strain
conditions. Secondly, the degree of decrease in the liquefaction resistance was affected
by the void ratio of the granular packings. Compared with the granular packing with a
void ratio of 0.79, the granular packing with a void ratio of 0.75 had a larger reduction in
the RNDE under the Love-wave strain conditions and Rayleigh-wave strain conditions.

Therefore, it could be concluded that the decrease in liquefaction resistance was more

75, NDE {F+ e¢=0.75, RNDE
79, NDE —O— ¢ =0.79, RNDE

NDE

HANY

(SHH) AT (SHV) RSN
| l |

Love Rayleigh

Fig. 4.18. Relationship of NDE and RNDE to AR/RSN at the initial liquefaction state.
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remarkable for the denser specimen transitioning from under the SHV-wave strain
condition to under the surface-wave strain conditions, especially to under Rayleigh-wave
strain conditions. Lastly, as shown in the left part of Fig. 4.18, with an increase in the AR,
the RNDE in the initial liquefaction firstly decreased and subsequently increased
regardless of the void ratio. It reached the lowest value at AR = 1. In addition, the
liquefaction resistance of granular materials under the SHH-wave strain condition was
similar to that under the SHV-wave strain condition. In the right part of Fig. 4.18, as the
RSN decreased from +oo to 0, the RNDE dropped rapidly and then increased slightly. The
specimen was most vulnerable to liquefaction when RSN = 1, where specimens suffered
a loss in liquefaction resistance of more than 50%. However, the difference in liquefaction

resistance was negligible when RSN < 1.

The liquefaction resistance of granular materials under Love-wave strain conditions
was 80-100% of that under SH-wave strain conditions, whereas the liquefaction
resistance of granular materials under Rayleigh-wave strain conditions might be lower
than 50% of that under SH-wave strain conditions. Therefore, at the same strain level, it
could be concluded that the Rayleigh-wave strain condition with a low RSN value would
make granular materials more vulnerable to liquefaction than Love-wave strain
conditions, and granular materials under Love-wave strain conditions were more likely

to liquefy than under SH-wave strain conditions.
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4.4.2. Microscopic scale

4.4.2.1. Normal contact force

The normal contact force-chain network, through which the external load is
transferred, is an important aspect of granular assembly. It is fundamental in controlling
the macroscopic behavior of granular materials. Generally, liquefaction is associated with
the progressive degradation of the major force transmission network (Huang et al., 2019).
Fig. 4.19 and Fig. 4.20 show the evolution of the normal contact force-chain network in
the granular packing with a void ratio of 0.79 under both the SHV-wave strain condition
and the Love-wave strain condition with AR = 1, respectively. The color indicates the
maximum normal force borne by a particle. The chains formed by the particles that sustain
a much larger maximum normal force than the surrounding particles can be regarded as
the backbone force-chain, which transmits the majority of the load. As shown in Fig. 4.19,
at points 0, 1, 3, 5, 7, and 9, when the shear strain was zero, the backbone force-chains
were generally randomly orientated. However, owing to the effect of the Ko-consolidation,
the force-chains in the z-direction were stronger than those in the horizontal direction (x-
and y-directions). At points 2, 4, 6, and 8, when the shear strain was maximum (minimum),
the normal force-chains were concentrated and aligned in the shorter diagonal direction
in the yz-plane. This suggests that, with the development of shear strain, the dominant
direction of the backbone force-chains rotated in the yz-plane and was consistent with the
direction of the principal strain rotation. This rule was applicable to the Love-wave strain
conditions, as shown in Fig. 4.20. In contrast, the dominant direction of the backbone

force-chains under the Love-wave strain conditions rotated spatially.

96



CHAPTER 4 LIQUEFACTION UNDER SURFACE-WAVE STRAIN CONDITIONS

Normal
force (N)

X 0.1
50 -/ 0.075
2 0.05
L ]

.un:s
0

254

Normal
\ \ \ force (N)

| o 0.1

=251
4 \ 0.075

0.05

'50— 50 0.025
25 -
025 50 75 1005025 © (@) -

Mean effective stress O (kPa) et Qress Txy L

Shear stress 7y, (kPa)
S

Normal 8 . . Normal . Normal
force (N) 2 % %' force (N) ey G o force (N)
0.1 w01 ‘ . 0.1

0.075 0.075 " ! > 0.075

0.05 0.05 v 0.05

\ " <
.00:5 3 » 0.025 . .n 025
‘o % ey 0
<

Normal Normal

force (N) force (N)

0.1 0.1
0.075 0.075
0.05 0.05

.u 025
0

. 0.025
0

Normal Normal Normal

force (N) force (N) force (N)

0.1 0! 0.1
0.075 0075 0075
0.05 0.05 0.05

.0,0:5 lo 025
0 0
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Fig. 4.21. Evolution of the distribution of normal contact forces from 2.0 s to 2.2 s under
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strain condition (e = 0.75, perspective projection).
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Fig. 4.21 illustrates the evolution of the distribution of normal contact forces from
2.0 s to 2.2 s (the 11th cycle) under Rayleigh-wave strain condition with RSN = 0 (simple
shear mode) and 1(simple shear mode + pure shear mode), and SHV-wave strain condition
(pure shear mode). In the effective stress path plot, points 0, 1, 2, 3, and 4 divide the
loading cycle into four equal parts according to the time interval. In the distribution map
of normal contact forces, the color and size of the arrow indicate the magnitude of the
normal contact forces. The magnitude and direction of the normal contact forces were not
uniform in space and were altered during the cyclic loading process. Under the Rayleigh-
wave condition with RSN = 0 (Fig. 4.21(a)), from points 0 to 1, with the compression in
the z-direction and the extension in the x-direction, the strong normal contact forces were
aligned in the vertical direction, corresponding to the positive dilatancy behaviors of the
specimen. From points 2 to 3, with the extension in the z-direction and the compression
in the x-direction, the orientation of the strong normal contact forces was horizontal,
corresponding to a transition from negative to positive dilatancy behaviors of the
specimens. Under the SHV-wave strain condition (Fig. 4.21(c)), from points 0 to 1 and
points 2 to 3, strong normal contact forces were inclined diagonally with the shear strain
application, corresponding to the positive dilatancy behavior of the specimen. Under
other Rayleigh-wave strain conditions, the evolution of the force transmission network
was affected by both the normal and shear strains. For example, under the Rayleigh-wave
strain condition with RSN = 1 (Fig. 4.21(b)), strong normal contact forces were inclined
or aligned with the principal strain directions, depending on the relative magnitude of

normal strain and shear strain.

To quantitatively describe the magnitude and orientation of the contact forces

during cyclic loading, the mean magnitude and proportion of the projection of contact
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Fig. 4.22. Rose diagrams of contact normal forces and major principal stress direction

under SHV-wave strain condition (e = 0.75).
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forces on xy-,yz-,and zx-planes in a given direction are counted. The evolution of the
magnitude and distribution of normal contact forces in the measurement cube of the

specimen with e = 0.75 in the 1% and 11®

cycle are illustrated and shown in Appendix 1.
The radial lines represent the contact force directions, and each concentric circle indicates
the proportion of contact forces aligned in a particular direction range (10° per interval).
The color of sector areas indicates the mean value of the projection of contact forces in

each direction range on a given plane. The orange arrow illustrates the direction of the

projection of major principal stress on each plane. The results suggested that:

a) At the initial state (0.00s), the distribution of contact forces was more inclined to
the vertical direction, especially the strong normal contact forces. e.g., as shown in Fig.
4.22, in the 0.00s, the projections of contact forces on the xy-plane (horizontal plane) were
almost uniformly distributed, while on the yz- and zx-plane (vertical plane), they mainly
concentrated on the range between 300°-60° and 120°-240°. In addition, the mean
contact forces in the range between 330°-30° and 150°-210° were greater than the
average contact force in the other ranges. The major principal stress was almost in the

vertical direction, which was consistent with the consolidation (compression) direction.

b) When the strain amplitude was small, the distribution of normal contact forces
almost did not change or the distribution of the normal contact force recovered after the
strain returned to the initial value, e.g., as shown in Fig. 4.22, under SHV-wave strain
condition, from 0.00s (0.00 cycle, the shear strain is 0%) to 0.05s (0.25 cycle, the shear
strain is 0.025%), the distribution of normal contact forces almost did not change. In the
0.15s (0.75 cycle, the shear strain is 0.075%), the distribution of normal contact forces

changed little but recovered in the 0.20s (1.00 cycle, the shear strain is 0%). This explains
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Fig. 4.23. Rose diagrams of contact normal forces and major principal stress direction of
the specimen suffers from the largest shear strain under SHH- and SHV-wave strain
conditions (e = 0.75).

the reason why the fluctuation in the ESRR was greater under Rayleigh-wave strain

conditions than under other strain conditions, especially in a small strain amplitude range,

as mentioned in section 4.4.1.1. Because the normal contact force tends to align in the
vertical direction in the Ko-consolidation state, a given strain in the vertical direction will

result in a larger increment of total contact forces if a contact point is assumed to be a

spring.

¢) The major principal stress direction was consistent with the direction of the
principal strain rotation. In addition, strong normal contact forces were concentrated near
the direction of major principal stress and tend to be distributed symmetrically along the

direction of major principal stress, e.g., the distribution of normal contact forces of the
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Fig. 4.24. Rose diagrams of contact normal forces and major principal stress direction of
the specimen suffers from the largest shear strain in the vertical and horizontal planes
under Love-wave strain condition with AR =1 (e = 0.75).

specimen suffered from the largest shear strain under SHH- and SHV-wave strain

conditions as shown in Fig. 4.23;

d) In the Ko-consolidation state, the shear strain in the vertical plane would result
in a greater magnitude of the projection of normal contact forces on the same plane than
the shear strain in the horizontal plane, e.g., suffered from the same shear strain amplitude,
the magnitude of normal contact forces in the vertical plane under SHV-wave strain
condition was greater than that in the horizontal plane under SHH-wave strain condition,
as shown in Fig. 4.23. Also, under the Love-wave strain condition with AR = 1, the same
phenomenon could be observed although the amplitudes of yx, and y,- were the same, as
shown in Fig. 4.24. This explains the phenomenon that the proportion of the amplitude of

the horizontal shear strain component (yxy) to the amplitude of the vertical shear strain
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Fig. 4.25. Rose diagrams of contact normal forces and major principal stress direction at
the start of 1% and 11 cycle under Rayleigh-wave strain condition with RSN = 0 (e =
0.75).

component (yy:) affected the value of the von Mises stress as mentioned in section 4.4.1.1.

e) The deformation-induced anisotropy became greater during cyclic loadings, e.g.,
the distribution of contact force under Rayleigh-wave strain condition with RSN = 0 was
more concentrated in the vertical direction (normal strain is applied in zx-plane) in the
11" cycle than in the 1% cycle when the strain is zero, as shown in Fig. 4.25. What’s more,

the projections of contact forces on the xy-plane were more concentrated in the y-direction.

4.4.2.2. Fabric anisotropy
To quantitatively evaluate the anisotropy of the granular fabric during cyclic
loadings, the fabric tensor @;; proposed by Satake (1982) and deviator fabric @4

defined by Barreto et al. (2009) was used. As shown in Fig. 4.26(a) and (b), the amplitude
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Fig. 4.26. Evaluation of fabric anisotropy during cyclic loadings (dashed line indicates
the initial deviatoric fabric): (a) e=0.79; (b) e=0.75; (c) e=0.79, every 0.5 cycle starting
from 0.00s (zero normal strain positions for pure shear and zero shear strain positions for
simple shear); (d) e = 0.75, every 0.5 cycle starting from 0.00s; (e) e = 0.79, every 0.5
cycle starting from one quarter of the 1% cycle (extrema normal strain positions for pure
shear and extrema shear strain positions for simple shear); (f) e = 0.75, every 0.5 cycle
starting from one quarter of the 1% cycle.

1th

of the deviator fabric increased quickly before the 11™ cycle, which suggested that the

deformation-induced anisotropy was influenced by the strain amplitude. As the strain
amplitude increased, the amplitude of fluctuation of anisotropy also became greater
during cyclic loading. Especially for specimens under Rayleigh-wave strain conditions,

the increase of anisotropy fluctuation was more significant than that under other strain
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conditions. After the 10" cycle, the strain amplitude was constant under each strain
condition. However, the maximum values of the deviator fabric under all loading
conditions continued to increase until liquefaction, while the evolutions of the minimum

values of the deviator fabric under different loading conditions were different.

Fig. 4.26(c) and (d) show the deviator fabric of specimens every 0.5 cycle starting
from 0.00s. Under Rayleigh-wave strain conditions, they indicate the degree of fabric
anisotropy in the zero normal strains (ex and &) and extrema (maximum and minimum)
shear strain (yzx) positions (zero-strain positions for Rayleigh-wave strain condition with
RSN = 0, i.e., pure shear). At the start of each cycle (loading in the z-direction and
unloading in the x-direction), the fabric anisotropy of specimens became greater and
greater; in the middle of each cycle (unloading in the z-direction and loading in the x-
direction), the fabric anisotropy decreased at first then increased. Under the SHV-wave
strain condition and Love-wave strain condition with AR = 4 (. = 0), the fabric
anisotropy decreased at first and then increased before liquefaction. Under the SHH-wave
strain condition and Love-wave strain condition with AR = 0.25 (yx = 0), the fabric
anisotropy almost kept constant at first and then increased before liquefaction. Under the
Love-wave strain condition with AR =1 (yx = 0 and y)- is extrema), the fabric anisotropy

increased at a very slow rate and then increased faster and faster before liquefaction.

Fig. 4.26(e) and (f) show the deviator fabric of specimens every 0.5 cycles starting
from 0.05s (one-quarter of the 1% cycle). Under Rayleigh-wave strain conditions, they
indicate the degree of fabric anisotropy in the extrema normal strain (ex and &:) and zero
shear strain (y.x) positions. At one-quarter of each cycle (& is maximum and &y is minimum

in a cycle), the fabric anisotropy of specimens became greater and greater; At three-
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quarters of each cycle (ex is maximum and &: is minimum in a cycle), the fabric anisotropy
decreased at first then increased. Under the SH- and Love-wave strain conditions, because
the shear strain component with the larger amplitude was at the extremes (shear strain yy:
= (0 and shear strain yx, was extrema for Love-wave strain condition with AR = 1), the
fabric anisotropy at one-quarter and three-quarters of each cycle increases during cyclic

loading.

In total, the strain-induced fabric anisotropy increased with cyclic loadings. The
results above also indicated that the evolution of fabric anisotropy of a Ko-consolidated
specimen was influenced by the strain amplitude and loading path. Specifically, the
amplitude of the fluctuation of fabric anisotropy became greater as the strain amplitudes
increased during cyclic loadings. The fabric anisotropy also relied on the direction of
loaded strain. For pure shear (Rayleigh-wave strain condition with RSN = 0), the
compression in the z-direction (vertical direction) would increase the fabric anisotropy
while the compression in the x-direction (horizontal direction) would first reduce the
fabric anisotropy; For simple shear (SH-wave strain conditions), the loading of shear
strain would increase the fabric anisotropy. However, if the shear strain was applied on

the xy-plane (horizontal plane), the loading history would first barely affect the fabric
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Fig. 4.27. Evolution of fabric anisotropy with ESRR in zero-strain positions (compression

in horizontal direction for Rayleigh-wave strain condition): (a) e = 0.79; e = 0.75.
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anisotropy when the shear strain was unloaded; if the shear strain was applied on the yz-
plane (vertical plane), the loading history would first decrease the fabric anisotropy when
the shear strain was unloaded. When the ESRR exceeds a threshold value located near
0.6, the fabric anisotropy in the zero-strain position which originally decreased with
loading, then shifted to increase, as shown in Fig. 4.27. The common denominator for the
decrease of fabric anisotropy in the zero-strain position was the non-coaxial nature of the

strain application direction and initial major principal fabric direction, @;.

The major strain application direction can be described by the principal eigenvector

of the strain increment, (Ag),. The strain increment Ag;; = (si j)n — (si j)n—l’ where

(si j)n and (si j)n—l are the strain tensor at the time t,, and t,_;. In this research, the

compression normal strain increment is positive in sign. The direction of (Ag), in the
simple shear mode and the pure shear mode are shown in Fig. 4.28. In the simple shear,
the angle between the direction of (Ag); and the direction of particle velocity is 45°; In

the pure shear, the direction of (Ag); is consistent with the compression direction.

NixExyl
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ag all
Ly =
—— _’-r’ _________ < I
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N, IR
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}

Simple shear Pure shear

Fig. 4.28. Directions of (Ag); in simple and pure shear modes
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Fig. 4.29. Direction of the projection of (Ag); on the xz-plane limited to between —90°

and 90°.
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Fig. 4.30. Angle between: (a) (Ag); and (A®),; (b) (Acg); and (AP),.

The direction of the projection of a vector (e.g., (Ag),) on a plane was limited to

between —90° and 90° for convenience, as shown in Fig. 4.29. On the xz- or yz-plane, 0°

indicated the vertical direction, while —90° and 90°indicated the horizontal direction.

Because of the Ko-consolidation, the direction of the projection of initial structure

elongation, or the major principal fabric, @;, equaled —1.8° on the zx-plane and equaled

2.3° on the yz-plane, which was almost vertical. The direction of the projection of initial

major principal stress, o7, equaled 0.9° on the yz-plane and equals —0.7° on the zx-plane,

which was also almost vertical.

As shown in Fig. 4.30, during cyclic loading, the angles between (A¢); and

(A®); and the angle between (Ao); and (A®); during cyclic loading maintained low

values. It indicated that the direction of @; was influenced by (A¢); and (Ac); and
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tend to be consistent with them. Fig. 4.31-Fig. 4.33 shows the direction of the projection
of the direction of (A¢);, (Ac); and @; under Rayleigh-wave strain condition with
RSN = 0, SHH-wave strain condition, and SHV-wave strain condition on their strain
application planes in different cycles. The directions of (Ag); and (Ao); were almost
identical during cyclic loadings. The direction of @; was initially vertically and (Ag),
on the horizontally plane had a limited influence on it. However, as the ESRR increased,
the influence of (A¢); and (Ao); became stronger and the direction of @; tend to be
the same as their directions. The effect of the direction of (Ag); gave an explanation for

the phenomenon in Fig. 4.27.

As shown in Fig. 4.34(a), under the Rayleigh wave strain condition with RSN = 0,
the direction of @; was almost vertical in the middle of each cycle when the ESRR was
smaller than a threshold value located near 0.6. It indicated that at this time, the skeleton
of specimen was still stable and capable to withstand a compressive deformation
perpendicular to the direction of @; and extensional deformation along the direction of
®,. When the ESRR became larger than the threshold value, the direction of @; was
almost horizontal in the middle of each cycle. This means that the direction of @,
became consistent with the compression direction and perpendicular to the extension
direction. Correspondingly, the fabric anisotropy in the middle of each cycle decreased
when the ESRR was smaller than the threshold value because the initial fabric originated
from Ko-consolidation was being destroyed, which was manifested as the decrease of @,
and increase of @, and @3 as shown in Fig. 4.34(b); when the ESRR was larger than
the threshold value, the fabric anisotropy in the middle of each cycle increased because
@, turned into the horizontal direction and increased, while @5 in the vertical direction

decreased.
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Under the SHH-wave strain condition, because the shear strain application plane
was horizontal, @, in the vertical direction was barely affected by the loading history at
zero shear strain positions as shown in Fig. 4.35. When the ESRR was smaller than a
threshold value located near 0.6, the change of @, and ®; was also small, therefore,
the fabric anisotropy at zero shear strain positions almost did not change; when the ESRR
was larger than the threshold value, the increase of @, and decrease of @5 caused the
increase of fabric anisotropy at zero shear strain positions. Under the SHV wave strain
condition, the shear strain application plane was vertical. As shown in Fig. 4.36 when the
ESRR was smaller than a threshold value located near 0.6, the initial fabric was being
destroyed as the decrease of @; at zero shear strain positions; when the ESRR was larger
than the threshold value, the direction of @; became near to the direction of (Ag); and
the magnitude of @; also increased with the decrease of @;. Therefore, the fabric

anisotropy at zero shear strain positions first decreased and then increased.

With the increase of fabric anisotropy and the direction of @; became closer to the
directions of (Ag); and (Ag); during the loading of strain, the direction of @; also
became closer to the directions of &; and g, as shown in Appendix II. Fig. 4.37 shows
the angles between & and &@; and between o; and &, immediately before initial
liquefaction under different strain conditions. Under Rayleigh-wave strain conditions, the
angle between &; and @; and between g, and @; tended to be zero except when the
direction of (Ag); and (Ae),; were reversed. The smaller the shear strain amplitude, the
smaller the angle, therefore, the strain-induced anisotropy under Rayleigh-wave strain
conditions was higher than other conditions. Under SHH-wave strain conditions, the
angle between &; and @; and between ¢; and @; also tended to be zero except when

the direction of (Ag); and (Ag); were reversed; however, under SHV-wave strain
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conditions, the angles were kept around 5° except when the direction of (Ag); and
(Ag); were reversed; Under Love-wave strain conditions, although the direction of

(Ag), was changing all the time, overall the angles also became close to zero.
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Fig. 4.31. Evolution of the projections of the directions of (A¢),, (Ao),,and @; onthe
zx-plane (e = 0.75), and their relationship with ESRR under Rayleigh-wave strain
condition with RSN = 0 during: (a) 2—4 cycle; (b) 12—14 cycle.
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Fig. 4.32. Evolution of the projections of the directions of (A¢),, (Ao),,and ®; onthe
xy-plane (e = 0.75), and their relationship with ESRR under SHH-wave strain condition
(e =0.75) during: (a) 10-12 cycle; (b) 7678 cycle.
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Fig. 4.33. Evolution of the projections of the directions of (A¢),, (Ao),,and @; onthe
xy-plane (e = 0.75), and their relationship with ESRR under SHH-wave strain condition
(e =0.75) during: (a) 10-12 cycle; (b) 7678 cycle.
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Fig. 4.34. (a) Projection of the direction of @; on the zx-plane and (b) magnitude of
principal fabrics in the middle of each cycle under Rayleigh-wave strain condition with
RSN =0 (e=0.75).
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Fig. 4.35. (a) Projection of the direction of @; on the yz-plane and (b) magnitude of

principal fabrics in zero-strain positions under SHH-wave strain condition (e = 0.75).
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Fig. 4.36. (a) Projection of the direction of @; on the yz-plane and (b) magnitude of

principal fabrics in zero-strain positions under SHV-wave strain condition (e = 0.75).
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Fig. 4.37. Angles between & and @; and between o; and @; immediately before

initial liquefaction under different strain conditions (e = 0.75).
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4.4.2.3. Structure stability

During the liquefaction process, with an increase in excess pore water pressure, the
external load borne by the granular skeleton decreases, which is associated with the
degradation of the major force transmission network (Huang et al., 2019). One
characteristic manifestation of the structure losing stability is the failure of force chains.
According to the tangential force model used in this study, when the static friction
between particles cannot resist the tangential force, the particles in contact begin to slide.
The force chain loses its stability if sliding occurs between particles in which it is involved.
Therefore, the fraction of contacts that are sliding has an important influence on the

stability of the granular structure.
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Fig. 4.38. Evolution of fraction of sliding contacts during cyclic loadings: (a) e = 0.79
and (b) e =0.75.
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Fig. 4.38 shows the evolution of the fraction of sliding contacts (FS) during cyclic
loadings in each loading condition. Overall, FS increased during cyclic loadings,

especially before the 11

cycle when the strain amplitude was increasing. When initial
liquefaction happens, the FS dramatically increased to a high value. The maximum value
of FS under Rayleigh-wave strain conditions was much larger than SH- and Love-wave
strain conditions, which indicated that a higher proportion of slippage happens under
Rayleigh-wave strain conditions during cyclic loadings. The decrease of FS within
several cycles before liquefaction might be due to the low number of particle contacts as
mentioned later and the higher proportion of surviving strong chains. Under SH- and
Love-wave strain conditions, the fluctuation of FS during cyclic loadings was influenced

by the resultant shear strain 7". The fluctuation of FS under the Love-wave strain condition

with AR = 1 was very small while that under SH-wave strain conditions was much larger.

In structural mechanics, when the number of unknown force or torque components
equals the number of force balance equations, the structure system is isostatic; when the
number of unknown force or torque components exceeds the number of force balance
equations, the structure system is hyperstatic. The structure system can only maintain its
stability when it is isostatic or hyperstatic. When accessing the stability of the granular
system, the approach from a structural mechanics point of view, as mentioned above, is
often drawn upon (e.g., Zhang and Makes, 2005; Huang et al., 2019). The load-bearing
network of particles can only be maintained when the skeleton structure of the granular
materials is relatively stable, which requires sufficient mechanically stable particles. The

coordination number Z is widely used to assess the stability of a granular system. It is

defined in sections 2.2.2 and 3.5.3 as Z = 2N_/N,

b, Where N. and N, are the total

contact and particle numbers in the measurement cube, respectively.
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A contact without sliding and rolling can provide five constraints (three
translational and two rotational). If the fraction of sliding contacts is f;, the fraction of
the rolling moment exceeding the rolling resistance moment is f,., the total unknown
force components in the granular system is (5 — 2f; — 2f,.)N... As one particle has three
translational and three rotational degrees of freedom, there are 6N, force balance
equations in the granular systems. A granular system maintaining stability (isostatic or
hyperstatic) requires (5 — 2f; — 2f, )N, = 6N,,. Therefore, the corresponding minimum
coordination number is Zi, = 12/(5 —2f; —2f,). If f; =0 and f, =0, Z,, =
2.4;if f, =1 and f, = 0, the moment balance equation can be ignored and Z,;, = 6.

As aresult, Z,;, ofa granular system range from 2.4 to 6.

Thornton (2000) suggested that the particle without contact or only one contact with
neighbor particles does not contribute to the stability of the granular system. herein, he
proposed the mechanical coordination number Z,, to describe the connectivity of the
granular system. the mechanical coordination number is defined as:

_ (2N.—Np)

—— <P (4.22)
m
N, — N} — N?

where NI} and NS are the number of particles with only one or no contacts, respectively.
The relationship between the mechanical coordination number Z,,, and coordination

number Z is:

1 0
Z=Zm—(Zm—1)N—p—ZmN—p (4.23)
Np Np

Because Z,,;, of a granular system range from 2.4 to 6, Z is smaller than Z,, when

the granular system is isostatic or hyperstatic.

118



CHAPTER 4 LIQUEFACTION UNDER SURFACE-WAVE STRAIN CONDITIONS

~
<]

N’

N

) ) S
’»

Coordination number, Z

0

(b) .

Coordination number, Z

Fig. 4.39. Evolution of coordination number during cyclic loadings: (a) e = 0.79 and (b)
e=0.75.

However, the granular system is a collection of particles. When Z or Z,, is larger
than its critical value, at which the granular system is isostatic, the granular system is
stable. However, a larger Z or Z, does not necessarily mean a more stable structure.
The structural stability of the specimen with given a Z or Z,, is influenced on f;, f,,
and its texture. Therefore, for the convenience of calculation, Z was used to reflect the
overall degradation of a granular system during undrained cyclic loadings. As contacting
particles disengage from each other, manifesting as a decrease in Z, the connectivity of
the skeleton structure decreases, and the granular system gradually loses its stability until

liquefaction.
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Fig. 4.39 shows the evolution of Z under each loading condition. The initial value
of Z was dependent on the void ratio of the granular packings, where a denser granular
packing was associated with a larger initial value of Z. Under SH- and Love-wave strain
conditions, before Z decreased to a value of approximately 4, the different loading
conditions were similar in terms of decreasing speed. Below the critical value, Z
decreased more rapidly under the Love-wave strain conditions than under the SH-wave

strain conditions. This phenomenon was consistent with the ESRR results shown in Fig.

4.14.

In addition, after the ESRR exceeded the threshold (different for each strain
condition) located near 0.6, Z decreased faster and faster, which was accompanied by a
quick increase of fabric anisotropy at zero strain positions (zero normal strain positions
for Rayleigh-wave strain conditions; zero shear strain position for SH-wave strain
conditions; the position where the shear strain with large amplitude becomes zero under
Love-wave strain conditions) as shown in Fig. 4.26(c) and (d). Iwashita and Oda (2020)
determined that the increase in structural anisotropy accelerates the liquefaction of
granular materials because the structure becomes extremely unstable when the major
stress is rotated and deviates from the structure elongation direction under cyclic pure
shear tests. Similarly, in strain-controlled tests, the direction of major strain application,
(Ag),, deviating from the structure elongation direction had a significant influence on the
stability of the granular structure. The structure elongation direction could be represented
by the direction of the major principal fabric @;. As shown in Fig. 4.40, in both pure
shear (Rayleigh-wave strain condition with RSN = 0) and simple shear (SHH- and SHV-

wave strain condition), Z decreased when the direction of (Ag); deviated from the
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Fig. 4.40. Evolution of coordination number with change in directions of (Ag); and @,
under: (a) Rayleigh-wave strain condition; (b) SHH-wave strain condition; (¢) SHV-wave
strain condition; (d) Love-wave strain condition with AR = 1.
direction of @;. Especially, under Love-wave strain condition with AR = 1, the direction
of (Ag), always deviated from the direction of @,; therefore, Z almost decreased

monotonically.

Compared to under SH- and Love-wave strain conditions, both the rate of decline
and the amplitude of fluctuation of Z were larger under the Rayleigh-wave strain
condition with RSN = 0. It indicated that the pure shear mode had a larger impact on the
stability of a granular system than the simple shear mode or the combination of simple
shear modes. When RSN < 1, the response of a granular system was governed by the
pure shear mode; therefore, the evolutions of Z under Rayleigh-wave strain conditions
with RSN =0, 0.25, and 1 were similar. Under SH- and Love-wave strain conditions, the
evolution of Z was also affected by the resultant shear strain. The fluctuation of Z was

smaller under the strain condition with a smaller change in resultant shear strain. However,
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regardless of the loading condition, when approaching approximately 2, Z decreased

sharply, and the granular packing reached the initial liquefaction state.
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Fig. 4.41. Coordination number versus mean effective stress during cyclic loadings.
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As shown in Fig. 4.41, Z was highly related to the mean effective stress. The gradual
decrease in Z was accompanied by a decrease in mean effective stress. Especially, the
mean effective stress decreased faster as Z became lower, suggesting that the skeleton
structure’s degradation accelerated the liquefaction of the specimens. As indicated in the
enlarged part of the plot, regardless of the loading path, there was a sudden drop in the
mean effective stress from approximately 10! to 107> kPa as Z fell below 2. As the time
interval of the data output was 0.002 s, this process can be assumed to happen
instantaneously. It is worth noting that the “zero mean effective state” was not reached

after liquefaction because the interparticle contact had not completely disappeared.

4.5. Summary

To clarify the liquefaction behavior of granular materials under surface-wave strain
conditions, the response of granular assemblies under Love- and Rayleigh-wave strain
conditions was compared with that under SH-wave strain conditions by performing a
series of 3D DEM numerical tests, where SH-, Love-, and Rayleigh-wave strain
conditions are the deformation mode of SH, Love, and Rayleigh waves, respectively.
Before conducting numerical tests, the equation governing the strain—time relationships
of SH, Love, and Rayleigh waves was derived from elastic wave theory under the
assumption of constant volume (undrained condition). Nine loading paths were applied
to the specimens to cover the strain features of SHH-wave strain condition, SHV-wave
strain condition, Love-wave strain conditions with AR = 0.25, 1, and 4, and Rayleigh-
wave strain conditions with RSN = 0, 0.25, 1, and 4, respectively. The cyclic loadings

were applied to the Ko-consolidated specimen until initial liquefaction. The main
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conclusions are summarized as follows:

1. The deformation under SH-wave strain conditions is a simple shear mode; it
under Love-wave strain conditions is a combination of simple shear modes; it under
Rayleigh-wave strain conditions is a combination of simple shear mode and pure shear
mode. The undrained response of a granular assembly is significantly affected by the
loading paths. The fluctuation of ESRR and the magnitude of von Mises stress under
Rayleigh-wave strain conditions is larger than that under SH- and Love-wave strain
conditions. In addition, the resultant shear strain under Love-wave strain conditions has

a significant influence on the fluctuation of ESRR and the magnitude of von Mises stress.

2. The liquefaction rate and resistance were evaluated by the accumulated
equivalent strain and the NDE, respectively. Generally, at the same strain level, the
Rayleigh-wave strain condition with a low RSN value would make granular materials
more vulnerable to liquefaction than Love-wave strain conditions, and granular materials
under Love-wave strain conditions are more likely to liquefy than under SH-wave strain

conditions.

3. Ko-consolidation resulted in a structure whose normal contact forces, especially
the strong normal contact forces, are more inclined to the vertical direction. As a result,
vertical compression in the pure shear mode caused the magnitude and proportion of
normal contact forces in the vertical direction to be much larger than in other directions.
This means that, at the microscale, the positive dilatancy behavior in the pure shear mode

was more sensitive to the strain level than that in the simple shear mode.

4. The fabric anisotropy increases during cyclic loadings. Especially, the increase
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of fabric anisotropy is more significant under Rayleigh-wave strain conditions than that
under other strain conditions. The evolution of fabric anisotropy under SH- and Love-
wave strain condition highly relies on the plane in which shear strain is applied. With the
degradation of the granular structure, the loading path has a larger influence on the
evolution of structural anisotropy and rotation of structure elongation direction. The angle

between & and @; and between o; and @; tended to be a value near zero.

5. The increase in structural anisotropy and the degradation of the skeleton structure
accelerated the liquefaction of granular materials. The fraction of sliding contacts
increased, and the coordination number decreased during cyclic loadings. The magnitude
of the fraction of sliding contacts and fluctuation of coordination number under Rayleigh-
wave strain conditions is larger than that under SH- and Love-wave strain conditions. The
evolution of the fraction of sliding contacts and fluctuation of coordination number under
SH- and Love-wave strain conditions relies on the change in resultant shear strain during
cyclic loading. However, regardless of the loading path, the initial liquefaction happened
instantaneously when the coordination number approached approximately 2; It is
noteworthy that the “zero mean effective states” was not reached in the initial liquefaction

state.
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CHAPTER S UNDRAINED SHEAR BEHAVIOR WITH

LARGE SHEAR STRAIN AMPLITUDE

5.1. Introduction

The undrained cyclic shear behavior of granular material is highly dependent on the
strain amplitude. However, the behavior of liquefiable granular materials under the
undrained cyclic shear at extremely large shear strain amplitude (> 20%) had not been

well understood because it is hard to achieve by actual physical element tests.

Generally, there are two states of shear deformation: pure shear and simple shear.
As discussed in Chapter 4, the cyclic undrained responses of a granular assembly in pure
shear mode and simple shear mode are quite different. As the simple shear mode is more
suitable for the deformation of free-field horizontally layered ground during seismic
events (Kammerer et al. 2001; Jefferies and Been, 2006), studies based on the simple
shear mode are more representative. Therefore, the direct simple shear test was usually
used to study the simple shear response of granular materials. The general method for
determining the critical state requires information on all the stress components. However,
on the one hand, the DSS tests, including the Royal Swedish Geotechnical Institute test
type, Cambridge test type, and Norwegian Geotechnical Institute test type, are hard to
measure the normal stress component in the horizontal direction; on the other hand, the
critical state cannot be obtained before large shear deformation localization appears

within shear bands (Fu and Dafalias, 2011), which may be hard to achieve in DSS tests.

To qualitatively evaluate the effect of very large shear strain (to 100%) on the cyclic
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shear behavior of liquefiable granular materials, a series of undrained cyclic simple shear
simulations was conducted in different cyclic shear strain levels by 3D DEM. It was found
that the cyclic shear behavior of the specimens is highly affected by the cyclic shear strain
amplitude. When the cyclic shear strain exceeds a certain amplitude, the shear band will

be formed during both monotonic and cyclic loadings.

5.2. DEM simulations

5.2.1. Specimen generation

The simulations were also performed by Rocky as used in Chapter 4. Only spherical
particles were used. The interaction model between particles comprises a normal force, a
tangential force, and a rolling resistance model, as introduced in Section 3.2. A cubical

assembly of spherical particles was generated from an inlet within a volume confined by

Rigid boundary
¥ Void ratio 0.73
Particle number 12422
K, value 0.49

41 mm

-
- cection
= ghear W€
C‘JC\‘C S

Fig. 5.1. Generated numerical specimen and boundary conditions.
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periodic boundaries in the horizontal direction and rigid walls in the vertical direction,
and then gradually compressed in the vertical direction to a Ko-stress state. The
consolidated specimen is shown in Fig. 5.1 and the parameters used in the consolidation
process are summarized in Table 5.1. The combination of the rolling resistance coefficient
and friction coefficient in this simulation corresponded to an AoR of 30.43°. After
consolidation, the gravity was set to zero and the mean effective stress of the granular
assembly was 100 kPa. The measurement cube was located in the center of the specimen

with a side length of 20 mm.

Table 5.1. Parameters used in the consolidation process

Particles
Diameter (mm) 1.8
Density (g/cm?) 2.65
Young’s modulus (N/m?) 1.0x10°
Rolling resistance coefficient 0.3
Poisson's ratio 0.3
Rigid walls
Young’s modulus (N/m?) 1.0x10!"
Interactions between particles
Static friction coefficient 0.5
Dynamic friction coefficient 0.5
Coefficient of restitution 0.3
Tangential stiffness ratio 1.0

Interactions between particles and rigid walls

Static friction coefficient 0.0

Dynamic friction coefficient 0.0

Coefficient of restitution 0.3

Tangential stiffness ratio 1.0
Computational parameters

Gravity (m/s?) 9.81

Timestep (s) 2.22x107
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5.2.2. Simulation conditions

Monotonic and cyclic undrained shear tests were conducted in this study. During
undrained shear, the deformation of the specimen was achieved by moving the bottom
rigid wall horizontally, and the volume of the specimen remained constant to simulate the
undrained condition (CV method). In particular, the rotation and sliding between particle
and rigid walls were forbidden to guarantee the application of shear strain. According to
the I = éd\/p/ppr < 2.5 X 1073 criterion (Perez et al., 2016), when ppy = 100 kPa,
the strain rate should satisfy &€ < 8.5s™! to make the specimen under the quasi-static
condition. Since no monotonic and cyclic undrained shear with single amplitude up to
100% had been conducted, to guarantee the quasi-static response of the granular assembly,
a series of control tests with different strain rates were conducted to ensure that the strain
rate used was suitable. It should be noted that the shear strain in this study was defined as
y = Al/H, where Al is the displacement of the bottom rigid wall and H is the height of

the specimen.

5.2.2.1. Monotonic shear
The results of monotonic shear are shown in Fig. 5.2. Both shear stress and the

mean effective stress increased with increasing shear strain, then decreased and arrived at

(a) 5000 T T T T T T T T T (b) 8000 T T T T T T T T T
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Fig. 5.2. (a) shear stress vs. shear strain; (b) mean effective stress vs. shear strain.
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Fig. 5.3. Effective stress path during undrained monotonic loading: (a) simulation in this
study; (b) laboratory test using large strain hollow cylindrical torsional shear apparatus
(Umar et al., 2019).

a stable state of stress when the shear strain was around 60% (the shear stress and mean
effective stress tend to be constant during continued deformation). In addition, the shear
strain rate used in this study did not affect the response of the specimen. The stresses are
extremely high during simulation, however, the maximum average overlap during loading
was about 1.5%, which was less than 5% as suggested by Hanley et al. (2013). The
volume change of the solid component of the specimen was ignorable. As shown in Fig.
5.3, except for the stress level, the results were analogous to those of a modified torsional
shear test with applying shear strain up to 100% (Umar et al., 2019). It is noteworthy that

the simulation with a shear strain rate of 0.1 s' would be used in subsequent analyses.

5.2.2.2. Cyclic shear

Cyclic shear strain with single amplitudes of 0.1%, 0.5%, 1%, 5%, 10%, 50%, and
100% was applied to the specimen, respectively. The responses of the specimen at
different frequencies are shown in Fig. 5.4. The response of the specimen subjected to
cyclic shear with amplitudes from 0.1% to 10% was not affected by the frequency used
in this study due to the relatively low strain rate. The different responses in a low effective

stress state arose from the unstable deformation, which is an intrinsic feature of cyclic
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Fig. 5.4. Evolution of shear stress and mean effective stress during cyclic loading at

different frequencies and amplitudes.

liquefaction and is not influenced by the loading rate (Yang and Taiebat, 2021).

The responses of the specimen subjected to cyclic shear strain with amplitudes of
50% and 100% at frequencies of 2 and 5 Hz were different from those at frequencies of
10 Hz and 50 Hz. The specimen finally liquefied at frequencies of 10 Hz and 50 Hz
because of the relatively high strain rate. Therefore, the simulations with a frequency of

2 Hz were used in subsequent analyses after comprehensive consideration.

5.3. Simulation results

5.3.1. Monotonic shear

As shown in Fig. 5.5, the granular assembly was contractive when the shear strain
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Fig. 5.5. Evolution of (a) shear stress and (b) mean effective stress during monotonic
shear.

was in the range of 0-0.2%, and then turned into dilation behavior when the shear strain
was large than 0.2%. The peak shear stress and mean effective stress were reached when
the shear strain was about 40%. Subsequently, the shear stress and mean effective stress
decreased and the granular assembly reached a stable state of stress when the shear strain

was about 60%.

If divide the space between the top and bottom rigid walls into 20 equal layers, the
mean velocity in the x-direction of each layer can be calculated by averaging the x-
direction velocity of particles in that layer. Fig. 5.6(a) shows the mean velocity in the x-

direction per layer for shear strains from 0% to 100%, where dy, is the vertical distance
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Fig. 5.6. (a) Mean velocity and (b) mean normalized displacement in the x-direction

of particles per layer during monotonic shear.

from the midpoint of each layer to the top rigid wall, and H is the distance between the
two rigid walls. As the bottom rigid wall was moving and the top rigid wall remained
static, the velocity of particles contacting the bottom rigid wall was larger than those
contacting the top rigid walls. When the shear strain was less than 30%, the distribution

of particle velocity was like Planar Couette flow, in which the velocity field can be
expressed by u(dy) =U CL—V, where U is the velocity of the bottom rigid wall. When the

shear strain was larger than 20%, the distribution of particle velocity became uneven. The
velocity gradient became larger near the top rigid wall and smaller in other parts of the

specimen. Fig. 5.6(b) shows the distribution of the mean normalized displacement, which
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is the mean displacement of particles in a layer normalized by the distance between the
two rigid walls, in the x-direction. When the shear strain was larger than 30%, the mean
normalized displacement in the x-direction below dy/H = 0.2 are parallel at different
strains, which indicated that the local shear strain concentrated near the top rigid wall and
the shear band was formed. The phenomenon above was consistent with the observation

of Lei et al. (2018) in the plane shear test.

The magnitudes and distributions of projections of normal contact forces on the xz
in the measurement when the shear strain equals 0%, 10%, 50%, and 100% are illustrated

in Fig. 5.7 (the magnitudes and distributions of projection of normal contact forces on the
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Fig. 5.7. Rose diagrams of projections of contact normal forces and major principal stress
direction on the zx-plane during undrained monotonic shear.
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zx-plane at 10% shear strain intervals are illustrated and shown in Appendix III). It should
be noted that the measurement cube did not overlap the shear band during monotonic
loading. The radial lines represent the contact force directions, and each concentric circle
indicates the proportion of contact forces aligned in a particular direction range (10° per
interval). The color of sector areas indicates the mean value of the projection of contact
forces in each direction range on the zx-plane. The orange arrow illustrates the direction

of the projection of major principal stress on the zx-plane.

Before shear strain was applied, the strong normal contact forces tended to align
vertically because of Ko-consolidation. When the shear strain was applied, strong contact
forces tended to rotate, and the magnitude of normal contact forces increased rapidly
before the peak shear stress and peak mean effective stress were reached. The major
principal stress direction rotated during monotonic shear and tended to be stable after the
shear strain was greater than 10%. The normal contact forces tended to distribute
symmetrically along the major principal stress in the stable state of stress. In addition, the
normal contact forces became more concentrated near the major principal stress direction
after reaching the stable state of stress. In addition, the magnitude of contact force near

the major principal stress also became more uniform after entering the stable state.

Fig. 5.8 shows the evolution of some microscopic index, including the deviator
fabric, the angle between the principal eigenvector of the deviatoric strain increment and
the major principal fabric, the fraction of sliding contacts, and the coordination number
during the undrained monotonic shear. It is noteworthy that the coordination number
referred to the average coordination number of all the particles in the specimen, while the

other microscopic indices were obtained from the range of the measurement cube. The
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deviator fabric increased quickly and reached a peak when the shear strain was about 10%.
Then it decreased and be stable after the specimen arrived at the stable state of stress. The
angle between (Ag); and @; and between o; and @; decreased to the minimum
value when the shear strain was about 10% and tended to be stable when the deformation
was continued. The value for the angle between (Ag); and &; was smaller than 10°
and the value for the angle between o; and @; was about 0°. It indicated that the
structure elongation direction of the granular assembly became close to the direction of
(Ag), and co-axial with o; during 0-10% shear strain and tended to maintain the
direction after 10% shear strain. The fraction of sliding contacts (FS) maintained a
relatively high value when the shear strain was less than 20%, then decreased to about 0

during 20—40% shear strain. Finally, FS was maintained at about zero after 40% shear

strain. The evolution trend of the FS was consistent with that of the deviator fabric. It
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suggested that the granular fabric evolved rapidly in the range of 0-20% shear strain, and
the evolution rate decreased in the range of 20%—40% shear strain. The granular fabric
seemed to be stable after a 40% shear strain when the shear band was formed. The
evolution trend of the coordination number was consistent with that of effective stress.
The coordination number decreased initially because of the contractive behavior and then
increased with the increase of mean effective stress. After the granular assembly reached
a stable state of stress, the coordination number tended to remain constant. This
phenomenon matched the point of view of Rothenburg and Kruyt (2004), who argued that
the critical state is reached when rates of contact breakage and creation become equal (the

critical state was reached in the shear band in this study).

5.3.2. Cyclic shear

The macroscopic responses of the granular assembly under undrained cyclic shear
with different shear strain amplitude are shown in Fig. 5.9. As found in Section 5.3.1,
under undrained monotonic shear, the behavior of granular aggregates was contractive
for shear strains less than 0.2% and dilative for shear strains greater than 0.2%.
Correspondingly, under undrained cyclic shear with an amplitude of 0.1%, the mean
effective stress and shear stiffness decreased gradually, and the granular assembly
eventually liquefied; under undrained cyclic shear with amplitudes of 0.5% and 1%, the
mean effective stress initially deceased and then increased with shear strain as the
behavior of the granular assembly changed from contraction to dilation at the phase
transformation state. The mean effective stress and shear stress decreased as shear strain

reversed, and the granular assembly eventually liquefied; under undrained cyclic shear
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Fig. 5.9. shear stress vs. shear strain and effective stress path: (a) yamp = 0.1%; (b) yamp =
0.5%; (c) yamp = 1%; (d) yamp = 5%; (€) yamp = 10%; (f) yamp = 50%; (g) yamp = 100%.

with amplitudes of 5% and 10%, the dilative behavior of the granular assembly became
stronger. Especially, the shear stiffness recovered after the initial liquefaction when the
shear strain application was continued. However, the magnitude of shear stiffness that
recovered after initial liquefaction also decreased gradually. Finally, the granular
assembly was completely liquefied (shear stiffness no longer recovered); under undrained
cyclic shear with amplitudes of 50% and 100%, the initial liquefaction occurred. However,
the fluid-like state only existed within 20% shear strain after the reversal of shear strain
during cyclic loading, and the shear stress recovered and maintained constant as shear
strain continued. Especially, the magnitude of this unchanged shear stress was almost the
same despite the shear strain amplitude and much lower than that under undrained
monotonic shear, as shown in Fig. 5.10. If the displacement of the particles was set to

zero at the beginning of the 11" cycle, the mean normalized displacements in the x-
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direction of particles per layer in the first quarter of the 11" cycle are shown in Fig. 5.11(a)

2000 —— T T T |
1500 — Vamp = 50%
A = 100%
= 1000 d —
(o
2 500 |- ///7./%/\’\/\/) _
v
[72]
o 0
7
5 -500 [ -
2
7 -1000 [ —
-1500 _
22000 | | ] | |
-100 -50 0 50 100

Shear strain (%)

Fig. 5.10. Shear stress vs. shear strain under undrained cyclic shears with amplitudes of
50% and 100% during the 11" cycle.
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Fig. 5.11. Mean normalized displacement in the x-direction of particles per layer under
undrained cyclic shear with amplitude of (a) 50% and (b)100% in the first quarter of the
11" cycle.
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and (b). The shear band also formed near the top boundary during the cyclic loading, as
the gradient of mean normalized displacement in the x-direction of particles was large
near the top rigid boundary but almost zero in other parts of the specimen. This “strain
localization” phenomenon during undrained cyclic shear was also observed in the hollow
cylinder torsional shear test in which the double shear strain amplitude was loaded up to

100% (Kiyota et al., 2008).

The evolution of deviator fabric, the angle between (Ag); and @; and between
o; and @4, FS, and coordination number during undrained cyclic shear are shown in Fig.
5.12-Fig. 5.15, respectively. The deviator fabric increased during the loading process and
decreased during the unloading process before initial liquefaction. As shown in Fig.
5.12(a), (b), and (c), after entering the flow-like state, the fabric tensor based on particle
contacts became invalid and the deviator fabric oscillated violently with continued
application of shear strains. When the shear stiffness recovered after initial liquefaction
during cyclic loadings, as shown in Fig. 5.12(e), (f), and (g), the deviator fabric became
stable. Especially, these stable deviator fabrics in Fig. 5.12(f) and (g) are almost the
same—about 0.15. As shown in Fig. 5.13, the angle between (A¢); and (Ag); and
between o; and @, deceased during the application of shear strain. When the direction
of (A¢); and o; were reversed, the angles increased sharply. This phenomenon was
consistent with the observation in the SHV-wave strain condition in Chapter 4. Especially,
as shown in Fig. 5.13(e), (f), and (g), when the shear stiffness recovered after initial
liquefaction, the angle between (Ae); and &; and between o; and @; dramatically
became about 5° and about 2°, respectively. It indicated that the elongation direction of
granular fabric formed during the shear stiffness recovery process after liquefaction was

almost consistent with the (Ag); and .
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As shown in Fig. 5.14, FS increased during the application of shear strain and
decreased sharply when the direction of shear strain application reversed. Especially,
when initial liquefaction occurred, FS dramatically increased to a high value. In the flow-
like state after initial liquefaction, as shown in Fig. 5.14(a), (b), and (c), FS maintained
high values as most of the particle contacts are unstable collisions. When shear stiffness
recovered after initial liquefaction, as shown in Fig. 5.14(d) and (e), FS decreased to a
relatively low value. When the shear band formed after shear stiffness was recovered, as
shown in Fig. 5.14(f) and (g), FS decreased to a value close to 0. It indicated that the
particle contacts within the measurement cube, which was outside the shear band, were

stable.

As shown in Fig. 5.15, the coordination number decreased gradually during cyclic
loading. When the cyclic shear strain amplitude was smaller than 1%, as shown in Fig.
5.15(a), (b), and (c), the specimen liquefied with the coordination number dramatically
decreasing from about 2 to a value near 0, which was consistent with the phenomenon
observed in Chapter 4. However, under undrained cyclic shear with relatively large shear
strain amplitude, as shown in Fig. 5.15(d), (e), (f), and (g), the coordination number
dramatically decreases from a value larger than 2, even 3, to a value near 0. In the flow-
like state after initially initial liquefaction, as shown in Fig. 5.15(a), (b), and (c), the
coordination number remained below 2 although shear strain was applied. When shear
stiffness recovered after initial liquefaction, as shown in Fig. 5.15(d), (e), (f), and (g), the
coordination number also increased and then became stable and larger than 2, which
suggested that when the shear stiffness recovered, a stable structure would form outside

the shear band and the critical state would be reached in the shear band.

147



CHAPTER 5 UNDRAINED SHEAR BEHAVIOR WITH LARGE SHEAR STRAIN AMPLITUDE

40 mm
P P e T S

Fig. 5.16. Voronoi tessellation on the granular assembly.

Undrained cyclic shear will result in the degradation of the granular skeleton, which
is accompanied by the dissipation of a large void, and the granular assembly became more
uniform (Wang and Wei, 2016; Wei et al., 2019). The centroid distance, D¢, which is based
on “particle-void cells” and was proposed by Wang and Wei (2016), was used in this study
to evaluate the uniformity of the specimen. The “particle-void cell” was computed using
Voronoi tessellation by an open-source software library, Voro++ (Rycroft 2009). Fig. 5.16
Shows the Voronoi tessellation on the granular assembly. The whole space can be divided
into polyhedral regions composed of convex planes, which are called Voronoi cells. The
centroid difference associated with a particle is defined by D% = (P* — 0Y)/Rs,, where
P!, O are the position vector of the mass centroids of the particle and the Voronoi cell
surrounding it; Ry, is the mean radius of the granular assembly. The centroid distance,
Dc, is the average magnitude of the centroid difference. Generally, a large value of D.
indicates that the void spaces are distributed inhomogeneously or relatively large local

pores existed in the specimen (Wang and Wei, 2016).
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Fig. 5.17. Evolution of centroid distance during undrained shear (every 10% shear strain

or 1 cycle).
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As shown in Fig. 5.17(a), during undrained monotonic shear, D, increased with
shear strain application initially and then remained almost constant after the shear strain
was larger than 50%. According to the evolution of effective stress during undrained
monotonic shear shown in Fig. 5.5, the evolution of D, suggested that the granular
assembly became more inhomogeneous when the effective stress increased. As the
effective stress became constant after the shear band formed, the uniformity of the

granular assembly also remained constant.

As shown in Fig. 5.17(b)—(f), during undrained cyclic shear, D, decreased during
cyclic loading initially and then increased. By comparing with Fig. 5.4, it could be
concluded that the granular assembly became more homogenous as the effective stress
decreased. However, in the fluid-like state after initial liquefaction, the granular assembly
became inhomogeneous because of the continued application of shear strain. Especially,
the larger the shear strain applied, the more inhomogeneous the granular assembly during

the fluid-like state after initial liquefaction.

As shown in Fig. 5.17(g) and (h), because the effective stress at the end of each
cycle was larger than that at the initial state, D. at the end of each cycle was also larger
than that at the initial state (at the end of each cycle, the shear band was formed).
Especially, D, tended to be constant after initial liquefaction; however, it was lower than
that under the undrained monotonic shear when the shear band formed. It indicated that
when the shear band was formed, the granular assembly, on the whole, was more
homogeneous under undrained cyclic shear after initial liquefaction than that under
undrained monotonic shear. As mentioned in Fig. 5.10, the stable states of stress during

undrained monotonic shear and undrained cyclic shear are different. This phenomenon
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originated from the different granular fabrics when the shear band was formed. Although
the void ratio of the granular specimen was constant, the void ratios within the shear band
and out of the shear band were different because the granular fabrics were different during
cyclic shear and monotonic shear. As the granular assembly was more homogeneous
during undrained cyclic shear than during undrained monotonic shear when the shear
band was formed, the granular particle in the narrow shear band can move more easily.
Therefore, the effective stress in the stable state during undrained cyclic shear was lower

than that during undrained monotonic shear.

It should be noted that the liquefaction phenomenon and occurrence of shear band

in undrained cyclic simple shears with extremely large amplitude are predicated on the
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Fig. 5.18. Evolution of volume fraction in the specimen confined by rigid walls during
undrained cyclic shear with amplitude of (a) 3% in zero-strain position; (b) 3% in
maximum-strain position; (c) 100% in zero-strain position; (d) 100% in maximum-strain

position (Jiang et al., 2020).
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ideal boundary condition achieved by the periodic boundary, which means that there is
no influence from the boundary, e.g., membrane, rigid boundary. Jiang et al. (2020)
performed a series of 3D DEM undrained cyclic simple shear simulations with large shear
amplitude using rigid boundaries. In their research, when the shear amplitude exceeded
45%, all the specimens did not liquefy, and the shear band also did not appear. In contrast,
because the shortest distance between the lateral boundaries was shortened, the specimen
became inhomogeneous and was subjected to excessive mean effective stress, which was
far from the experimental results using actual soil particles. As shown in Fig. 5.18, when
the shear strain amplitude was 3%, the granular assembly was relatively homogeneous
during cyclic shear, while when the shear strain amplitude was 100%, the granular
assembly was extremely inhomogeneous. In this research, as shown in Fig. 5.19, since
there is no boundary effect (because of the presence of periodic boundaries) in lateral
directions, the granular assembly was more homogeneous than in the case of using rigid
boundaries in Fig. 5.18, and the shear band was formed near the top boundary (the volume
fraction of the shear band was lower than that of the nearby area). The stress—strain

relationship of the specimen depended on the characteristics of the shear band.

Volume Fraction Volume Fraction
08 . 08

0.625 0.625

0.275 . 0.275
. 0.1 0.1

(a) Initial state (b) End of cycle 10

Fig. 5.19. Evolution of volume fraction in zx-plane in the specimen using periodic
boundary during undrained cyclic shear with amplitude of 100% at (a) initial state and
(b) the end of cycle 10.
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5.4. Summary

A series of 3D DEM simulations under undrained monotonic and cyclic simple
shears was performed until 100% shear strain amplitudes. The granular assembly was Ko-
consolidated, and the periodical boundary was used to eliminate the influence of boundary

effects in the large deformation. The main conclusions are summarized as follows:

1. During both undrained monotonic simple shear and undrained cyclic simple shear,
when the shear strain exceeds a certain value and there is no influence of boundary effects,
the uniform shear deformation in the element will disappear and the shear band will be
formed. After the shear band was formed, the granular structure outside the shear band

become stable, and the granular assembly reached a stable state of stress.

2. When the cyclic shear strain amplitude is small (< 1%), the medium-dense
granular assembly will gradually lose shear stiffness, accompanied by the gradual
decrease of effective stress, and liquefy at last. When the shear strain amplitude becomes
larger (< 10%), the shear stiffness will recover after the initial liquefaction as the shear
strain application is continued. However, the recovered shear stiffness also decrease
gradually until the granular assembly was completely liquefied. When the shear strain
amplitude exceeds a certain value (about 50%), the fluid-like state after initial liquefaction
only exists in a small shear strain range (about 20%) after the direction of shear strain
application is reversed. The shear stiffness will recover as the shear strain application is
continued, and the granular assembly reaches a stable state of stress as the shear band was

formed during cyclic loadings.

3. The fabric anisotropy increases during the loading process and decreases during
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the unloading process. When the shear strain exceeds a certain value, the fabric anisotropy
tends to be constant. The major principal fabric direction (@;) tends to be close to the
direction of shear strain application (principal eigenvector of the strain increment, (Ag),)
and major principal stress (g;) during the loading process and became constant when the
shear strain exceeds a certain value. FS increases during the application of shear strain
and decreases dramatically when the direction of shear strain application reverses. When
the stable state of stress arrived, FS outside the shear band tends to be zero. The
coordination number increases with the increase of effective stress and decreases with the
decrease of effective stress. The coordination number will decrease dramatically from a
value larger than 2 to a value near zero when the initial liquefaction occurs. In the flow-
like state after initial liquefaction, the coordination number was below 2; however, when

shear stiffness recovered, the coordination number will recover and become larger than 2.

4. The granular assembly became inhomogeneous during undrained monotonic
shear when the effective stress increased. During undrained cyclic shear, the granular
assembly becomes homogeneous as the effective stress decrease. After initial liquefaction,
because the granular structure was destroyed, the granular assembly becomes
inhomogeneous at flow-like when shear strain application is continued. When the shear
band was formed, the whole granular assembly become more inhomogeneous than the
initial state. However, compared to under the undrained monotonic shear, the granular
assembly under the undrained cyclic shear is more homogenous when the shear band was
formed. This explained the different stable states of stress between undrained monotonic

shear and cyclic shear as the void ratios in the narrow shear band are different.
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CHAPTER 6 VOLUMETRIC STRAINS DURING

RECONSOLIDATION

6.1. Introduction

The reconsolidation of ground after undrained cyclic shear during an earthquake
may also cause severe damage to buildings and infrastructures. However, the nonlinear
relationship between the void ratio and effective stress during reconsolidation, especially
the resedimentation process, was not well investigated due to the limitation of laboratory
tests. A series of 3D DEM simulations was conducted to investigate the reconsolidation
characteristics of granular materials after undrained cyclic shear, and the results were

analyzed based on the macroscopic and microscopic responses.

Void ratio 0.616
Rigid boundary Particle number 12699
v : K, value 0.38

100 ——rrrr——rrrer

41 mm

Percent finer by weight (%)

Fig. 6.1. Granular assembly composed of multi-sized particles and its corresponding PSD
curve.
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Fig. 6.2. Histogram of particle size in the specimen with Toyoura size distribution.

6.2. DEM simulations

6.2.1. DEM models

In this study, both single-sized particles and multi-sized particles were used. The
specimen composed of single-sized particles is the same as what was used in Chapter 5.
The specimen composed of multi-sized particles and its corresponding particle size
distribution (PSD) curve are shown in Fig. 6.1. The particle sizes are 10 times that of
Toyoura sands and it was called Toyoura size distribution. Especially, particles with a
diameter lower than 0.106 mm are deleted in this study to improve the computation
efficiency. The particle number in a given particle size range in the specimen with
Toyoura size distribution is shown in Fig. 6.2. The average particle size of both the Single
size distribution and the Toyoura size distribution is 1.8 mm. In particular, the two

specimens are generated using the same method as introduced in Chapter 5. The
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parameters in the two specimens are the same except for the particle size, particle number,
void ratio, and Ko value. The AoR corresponding to the Toyoura size distribution is 31.38°,

which is a little higher than that corresponding to the Single size distribution (30.43°).

6.2.2. Undrained cyclic shear

The undrained cyclic shear was strain-controlled by moving the bottom rigid wall.
The shear strain amplitude was 0.1%. As mentioned in Chapter 5, the responses of the
granular assembly during undrained cyclic shear with a shear strain amplitude of 0.1%
are the same at frequencies of 2 Hz and 5 Hz. Therefore, to save computation time, the

undrained cyclic shears were conducted at the frequency of SHz.
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Fig. 6.3. Shear stress vs. shear strain and effective stress during cyclic loadings: (a)

specimen with Single size distribution; (b) specimen with Toyoura size distribution.
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The macroscopic responses of two specimens during undrained cyclic loading are
shown in Fig. 6.3, which was consistent with the pattern obtained from laboratory element
tests. The shear stiffness and effective stress decreased during undrained cyclic shear and
the two specimens liquefied ultimately. In addition, there is no shear stiffness recovery

after initial liquefaction after shear strain application was continued.

6.2.3. Reconsolidation

The reconsolidations were conducted from the end of each cycle, which was
achieved by moving the top rigid wall downward. The reconsolidation was completed
when the vertical effective stress oy, recovered to the initial value ay,, which was 151.3
kPa in the monodisperse specimen and 170.2 kPa in the polydisperse specimen. To clarify
the effect of strain rate on the volumetric strain during reconsolidation, a series of
reconsolidation tests using the monodisperse specimen, both before initial liquefaction

and after initial liquefaction, was conducted with different strain rates.

As shown in Fig. 6.4(a), the evolutions of the void ratio during reconsolidation
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Fig. 6.4. Evolution of void ratio during reconsolidation: (a) reconsolidation before initial

liquefaction; (b) reconsolidation after initial liquefaction
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started before initial liquefaction at different strain rates were identical. However, during
the reconsolidation started after initial liquefaction, the changes in void ratio during the
very small effective stress state were different, although the slope of the e — logay are
almost identical after o, was larger than 107! kPa. It indicates the strain rate only used
in this study only affects the reconsolidation during a very small effective stress range.

Considering the computation efficiency, a strain rate of 0.05% was used in this study.

As shown in Fig. 6.5, during undrained cyclic shear, o, decreased gradually. As
o, the first time below 1 x 107 kPa, the granular assembly was assumed to be initially
liquefied. The reconsolidation started from the end of each cycle, and the corresponding
value of o, are shown in Fig. 6.5 and marked by red dots. The red dots did not
completely coincide with the curve because the curve corresponds to the undrained cyclic
shear until initial liquefaction occurred (corresponding to the reconsolidation that began
at the end of the 6™ cycle in the specimen with Single size distribution and at the end of
5! cycle in the specimen with Toyoura size distribution), while the reconsolidations
initiated at other effective stress states were different simulations performed from the state

prior to undrained cyclic shearing.
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Fig. 6.5. Reconsolidation beginning at different cycles: (a) specimen with Single size
distribution; (b) specimen with Toyoura size distribution.
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6.3. Simulation results

Fig. 6.6 and Fig. 6.7 show the evolution of mechanical coordination number and
void ratio during undrained cyclic shear and reconsolidation processes in the
monodisperse specimen and polydisperse specimen, respectively. The mechanical
coordination number (Thornton, 2000) was introduced in Section 4.4.2.3, which rules out
the influence of particles that have no or only one contact with other particles. Before
cyclic loading, the mechanical coordination number of the monodisperse specimen was
4.3; the mechanical coordination number of the polydisperse specimen was 4.1. For the
monodisperse specimen, the initial liquefaction happened when the mechanical
coordination number became less than a threshold value located near 3.2; Similarly, for
the polydisperse specimen, the threshold mechanical coordination number was also about
3.2. In addition, during the undrained cyclic shear, there was no change in void ratio

because the volume of the specimen remained constant during simulations.

During the reconsolidation process, interparticle contacts that vanished during
undrained cyclic shear were restored, which manifested as an increase in the mechanical
coordination number; however, the mechanical coordination number remained lower than

before undrained cyclic loading. One of the reasons is that the Ko value after
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Fig. 6.8. Ko value at the initial state and after reconsolidation that began at the end of each

cycle in the specimens with (a) Single size distribution and (b) Toyoura size distribution.
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reconsolidations was different. As shown in Fig. 6.8, The Ko value after reconsolidation
became lower when the reconsolidation process began at a lower residual effective stress
state before initial liquefaction. Because the vertical effective stress was equal after

reconsolidation, a lower Ko value implied a smaller mean effective stress.

In the liquefied cases (The 6 cycle in the monodisperse specimen and the 5" cycle
in the polydisperse specimen), when the mechanical coordination number was less than
the threshold value located near 3, the vertical effective stress did not increase as the void
ratio decreased. It was regarded as the liquefied portion of reconsolidation in this study,
which indicates that the contact between particles was primarily in the form of impact,
and a stable structure had not been formed. In the solidified portion, both the mechanical
coordination number and the vertical effective stress increased as the void ratio decreased,
and a stable structure was gradually formed. In addition, owing to the measurement
limitations, the boundary between the liquefied and solidified portion observed in
previous laboratory tests (Uzuoka et al., 2010; Zhou et al., 2014) was larger than that
observed in this study (less than 1 kPa), and the phenomenon that the void ratio decreased
extremely slowly when the magnitude of vertical effective stress less than 10° kPa in the

solidified portion of reconsolidation had not been observed.

The change in void ratio during reconsolidation depended on the residual effective
stress. In both specimens, the lower the residual vertical effective stress, the larger the
change in void ratio during the reconsolidation process. The change of void ratio during
the reconsolidation process that began at the end of each cycle before initial liquefaction
and the corresponding recompression indices are listed in Table 6.1 and Table 6.2. The

recompression index C, = (ey — e)/logqo (0y0/0v), Where e, is the void ratio at the
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start of reconsolidation, e is the void ratio after reconsolidation, oy, is the vertical
effective stress after reconsolidation, and oy, is the vertical effective stress at the start of
reconsolidation. Although the recompression index was affected by the residual effective
stress (usually the larger the residual effective stress, the larger the recompression index),
this affection was very small. In addition, for reconsolidations starting before initial
liquefaction, the recompression indices of the monodisperse specimen are similar to that

of the polydisperse specimen.

Table 6.1. Recompression indices of the monodisperse specimen

Reconsolidation after ey — e log10(0y0/0v) C,
1 cycle 0.00018 0.091 0.0020
2 cycles 0.00035 0.175 0.0020
3 cycles 0.00053 0.278 0.0019
4 cycles 0.00080 0.433 0.0019
5 cycles 0.00114 0.715 0.0016

Table 6.2. Recompression indices of the polydisperse specimen

Reconsolidation after ey —e log10(0v0/0v) C,
1 cycle 0.00012 0.055 0.0022
2 cycles 0.00027 0.125 0.0022
3 cycles 0.00048 0.225 0.0022
4 cycles 0.00120 0.560 0.0021

In the liquefied cases, the change in void ratio during the liquefied portion accounts
for a large proportion of the total change in void ratio during reconsolidation. Especially,
the change in void ratio during the liquefied portion was affected by the particle size

distribution. In the specimen with Single size distribution, the change in void ratio was
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0.0038 during the liquefied portion and 0.0019 during the solidified portion of the
reconsolidation process began at the end of the 6" cycle; In the specimen with Toyoura
size distribution, the change in void ratio was 0.0089 during the liquefied portion and
0.0021 during the solidified portion of the reconsolidation process began at the end of the
5 cycle. The change in void ratio during the liquefied portion was larger in the specimen
with Toyoura size distribution than in the specimen with Single size distribution. However,
the change in void ratio during the solidified portion was similar between the Toyoura
size distribution specimen and the Single size distribution specimen. It indicated that
volumetric strain during the solidified portion was much less affected by the particle size
distribution than that during the liquefied portion. Of course, as mentioned in Section

6.2.3, the void ratio change in the liquefied portion would be also affected by the strain
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Fig. 6.9. Evolution of compression modulus during the solidified portion of

reconsolidation process in the (a) monodisperse specimen and (b) polydisperse specimen.
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rate of reconsolidation, which was ignored in this study.

Based on the principle of effective stress, the stiffness and strength of soil depend
on the effective stress. The elastic modulus was usually expressed as proportional to the
power of the effective stress (Yoshida, 2020). Fig. 6.9 shows the relationship between
vertical effective stress and compression modulus E; during the solidified portion of the
reconsolidation process, where E; = doy/de,, and ¢, is the volumetric strain. The
compression modulus E; was proportional to the power of 0.2 the vertical effective

stress. The relationship between do, and de, could be expressed by:
do, = E.0,"'de, (6.1)

where Eg. is a constant depending on the specimen and m is about 0.2. Integrating Eq.
(6.1), the volumetric strain during the solidified portion of the reconsolidation process,
&ys, could be expressed by:

1 L
81/"5 = m(a‘;l m Vol m (6.2)

where gy, is the vertical effective stress when entering the solidified portion. In this
study, gy, was about 0.42 kPa. Fig. 6.10 shows that the fitted curve closely follows the

pattern of the original data points.

The proportion of particles that have no contact or only one contact with other
particles was called unstable particle proportion in this study. As shown in Fig. 6.11, the
unstable particle proportion in the polydisperse specimen was generally higher than that
in the monodisperse specimen. Correspondingly, as shown in Fig. 6.12, the coordination

number in the polydisperse specimen was generally lower than that in the monodisperse
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Fig. 6.10. Relationship between the vertical effective stress and volumetric strain during
the solidified portion of reconsolidation process in the (a) monodisperse specimen and
(b) polydisperse specimen.

specimen. In both specimens, the unstable particle proportion increased sharply when
liquefaction occurs; during the reconsolidation process, the unstable particle proportion
did not decrease with the decrease of void ratio in the liquefied portion; when the
specimens achieved the solidified portion, the unstable particle proportion was almost the
same as when it reached liquefaction. It suggested that the formation of a stable granular
skeleton requires a certain proportion of mechanically stable particles, and the proportion
is higher in the monodisperse specimen than in the polydisperse specimen. In the
solidified portion, the unstable particle proportion decreased with the decrease of void
ratio and the increase of effective stress; however, the unstable particle proportion after

reconsolidation was still higher than that before undrained cyclic shear.
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Fig. 6.12. Evolution of coordination number of the specimen with (a) Single size

distribution and (b) Toyoura size distribution.

In the specimen with Toyoura size distribution, as shown in Fig. 6.13, particles with
different sizes had different coordination number levels. Generally, a larger particle size
implied a larger coordination number level during both undrained cyclic shear and
reconsolidation processes. Especially, as shown in Fig. 6.13(a), the coordination number
of the particles with sizes from 1.06 to 1.38 mm was lower than the overall coordination
number of the specimen as shown in Fig. 6.12(b). Considering that about half of the
particles were in this size range, the results indicated that the suspended particles are
mainly of small sizes. These small, suspended particles move more flexibly and they are
more difficult to participate in the construction of the force transmission network
compared with larger size particles. This phenomenon should be the reason why the
volume strain of the Toyoura size distribution specimen in the liquefied portion is greater

than that of the Single size distribution specimen.
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Fig. 6.13. Evolution of coordination number of particles with different sizes in the

specimen with Toyoura size distribution.
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40 mm

Fig. 6.14. Voronoi radical tessellation on the specimen with Toyoura size distribution.

Wei et al. (2019) indicated that the degree of pore uniformity was closely associated
with the volume contraction characteristics of sands. The centroid distance, D. as
mentioned in Chapter 5, was used to evaluate the degree of pore uniformity. A low value
of D. generally indicates that the void spaces are distributed homogeneously, and no
relatively large local pores existed in the specimen (Wang and Wei, 2016). The open-
source software library, Voro++ (Rycroft 2009) was used to obtain the “particle-void cell”
in the same way as in Chapter 5. Especially, Voronoi radical tessellation was used to

handle the polydisperse specimen, as shown in Fig. 6.14.

The results of centroid distance are shown in Fig. 6.15. On the whole, the centroid
distance decreased as the cycle increased. It indicated that in both the monodisperse
specimen and polydisperse specimen, the granular assembly became more homogeneous
during undrained cyclic shear. In the monodisperse specimen, during the reconsolidation

process, the centroid distance increased. Particularly, the lower the residual effective
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stress when the reconsolidation began (large cycle number), the larger the increase in the
centroid distance during the reconsolidation process. In the liquefied case, the centroid
distance at the vertical effective stress of 1.0 x 10 kPa closest to the solidified portion
was recorded. The result suggested that most of the increase in inhomogeneity occurred
during the liquefied portion, which was consistent with the change in void ratio. In the
polydisperse specimen, the granular assembly would become either homogeneous or
inhomogeneous. Especially in the liquefied case, most of the increase in homogeneity
occurs during the liquefied portion, which is consistent with the change in void ratio. The

different evolutions of centroid distance during reconsolidation in the monodisperse
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Fig. 6.15. Evolution of centroid distance during undrained cyclic shear and after
reconsolidations in the specimen with: (a) Single size distribution and (b) Toyoura size

distribution.
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specimen and polydisperse specimen probably due to different proportions of unstable
particle. As the unstable particle proportion of the polydisperse specimen was much
higher than that of the monodisperse specimen. the random motion of the mechanically
unstable particles during reconsolidation would affect the uniformity of the specimen.
Therefore, the centroid distance might increase or decrease during cyclic shear. In
addition, the initial inhomogeneity of the polydisperse specimen was larger than that of
the monodisperse specimen, this may be one of the reasons that the monodisperse
specimen became inhomogeneous and the polydisperse specimen became homogeneous

during the reconsolidation after initial liquefaction.

6.4. Summary

To avoid the measuring limitation of laboratory tests, a series of 3D DEM
simulations was performed to investigate the reconsolidation characteristics of Ko-
consolidated granular materials. Both monodisperse and polydisperse specimens were
used in this study. The drainage rate effect was disregarded by applying volumetric strain

at a constant and low rate without gravity. The main conclusions are as follows:

1. The post-liquefaction reconsolidation process can be categorized into a liquefied
and a solidified portion. In the liquefied portion, the void ratio decreased without an
increase in the effective stress. In the solidified portion, the void ratio decreased as the
effective stress increased; however, the void ratio decreased extremely slowly at a stress

level of less than 10° kPa.
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2. The residual effective stress significantly affected the volumetric strain during
reconsolidation after an undrained cyclic shear. The smaller the residual vertical effective
stress, the larger the change in void ratio during the reconsolidation process. Especially,
the volumetric strain during the liquefied portion accounts for a large proportion of the
total volumetric strain during the reconsolidation process. The particle size distribution
has a great influence on the volumetric strain during the liquefied portion of the
reconsolidated process, whereas has little effect on the volumetric strain during the
solidified portion of the reconsolidation process. During the liquefied portion of the
reconsolidation process, the volumetric strain of the polydisperse specimen is greater than

that of the monodisperse specimen.

3. The mechanical coordination number decreased gradually during undrained
cyclic shear and increased during the reconsolidation process. However, the mechanical
coordination number after the reconsolidation was lower than that in the initial state. In
particular, the specimen with Toyoura size distribution generally has a higher unstable
particle proportion than the specimen with Single size distribution. Moreover, the
evolution of unstable particle proportion is opposite to that of the mechanical coordination

number.

4. The pore uniformity increased during undrained cyclic shear in both
monodisperse and polydisperse specimens. During the reconsolidation process, the pore
uniformity in the monodisperse increased, whereas the polydisperse granular assembly
may be either homogenous or inhomogeneous. In addition, despite the sign, a larger
change in centroid distance is generally associated with a larger volumetric strain during

the reconsolidation process.
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CHAPTER 7 CONCLUSION

7.1. Summary

Earthquakes are one of the natural disasters that pose severe threats to human
society. One of the ways earthquakes cause damage is the undrained shearing of soil under

the propagation of seismic waves.

In traditional laboratory element tests, it is hard to reproduce some of the complex
stress—strain conditions that occur during real earthquakes, and the microscopic behavior
and corresponding parameters of a granular assembly during cyclic loadings are difficult
to observe and measure. In addition, the continuum modeling scheme is unable to capture
the discrete nature of granular materials. Therefore, 3D DEM was used in this research,
which helps to reveal the intrinsic essence mechanism behind the failure phenomenon of

granular materials.

This research aimed to conduct a qualitative study on the failure and reconsolidation
behavior of granular material due to undrained shear, and analysis was performed from
both macroscopic and microscopic scales to reveal the mechanism behind the response

of granular materials.

In Chapter 4, the responses of granular assemblies under surface-wave strain
conditions and SH-wave strain conditions were studied. The equations governing the
strain—time relationships of SHH, SHV, Love, and Rayleigh waves were derived from the
elastic wave theory. And the undrained deformation mode of a soil element under the

propagation of SHH, SHV, Love, and Rayleigh waves are called SHH-, SHV-, Love-, and
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Rayleigh-wave strain conditions in this study. Nine different loading paths were applied
to the Ko-consolidated specimens to cover the strain characteristics under different strain
conditions. The accumulated equivalent strain was used to ensure the strain level at
different loading conditions are identical. The volume of granular assembly remained
constant during cyclic loadings to model the undrained condition, and cyclic loadings

were applied until the initial liquefaction occurred.

In Chapter 5, both undrained monotonic simple shear and the undrained cyclic
simple shear tests were conducted on a Ko-consolidated granular assembly using 3D DEM.
A relatively slow strain rate was used to ensure the quasi-static responses of the granular
assembly. During the undrained monotonic simple shear, the shear strain was applied until
100%. During the undrained cyclic shear, cyclic loadings with a shear strain amplitude of
0.1%, 0.5%, 1%, 5%, 10%, 50%, and 100% were applied to the granular assembly.
Periodical boundaries were used in this study to eliminate the boundary effects that

originate from large shear strain conditions.

In Chapter 6, the volumetric strain during the reconsolidation process that began at
different residual effective stress states and with no residual shear strain was studied. A
Ko-consolidated monodisperse specimen and a Ko-consolidated polydisperse specimen
were used in this study. Both the undrained cyclic shear and reconsolidation were
conducted under zero-gravity conditions. The strain rate during reconsolidation was
controlled at a low value to reduce the effect of the reconsolidation rate on the volumetric

strain.
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7.2. Conclusions

7.2.1. Study on the response of granular material under surface-wave

strain conditions

The liquefaction behavior of granular material under the propagation of surface
waves had not been clarified due to their complex deformation mode. In this study, the
macroscopic and microscopic response of Ko-consolidated granular assemblies under
Love- and Rayleigh-wave strain conditions was compared with that under SH-wave strain
conditions by performing a series of 3D DEM numerical tests. Nine loading paths, which
correspond to the SHH-wave strain condition, SHV-wave strain condition, Love-wave
strain conditions with AR =0.25, 1, and 4, and Rayleigh-wave strain conditions with RSN
=0, 0.25, 1, and 4, respectively, were applied to the granular assemblies. The cyclic
loadings were applied until initial liquefaction. The following main conclusions were

achieved from the 3D DEM study:

1. The undrained response of a granular assembly is significantly affected by the
loading paths. The fluctuation of ESRR and the magnitude of von Mises stress under
Rayleigh-wave strain conditions is larger than that under SH- and Love-wave strain
conditions. In addition, the resultant shear strain under Love-wave strain conditions has

a significant influence on the fluctuation of ESRR and the magnitude of von Mises stress.

2. Generally, at the same strain level, the Rayleigh-wave strain condition with a low
RSN value would make granular materials more vulnerable to liquefaction than Love-
wave strain conditions, and granular materials under Love-wave strain conditions are

more likely to liquefy than under SH-wave strain conditions.
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3. Ko-consolidation resulted in a structure whose elongation direction is vertical. As
a result, the positive dilatancy behavior in the pure shear mode was more sensitive to the

strain level than that in the simple shear mode.

4. The fabric anisotropy increases during cyclic loadings, which is especially
significant under Rayleigh-wave strain conditions than under other strain conditions. As
the granular structure degraded, the loading path has a larger influence on the evolution
of structural anisotropy and rotation of structure elongation direction. The angle between

e; and @, and between og; and @, tended to be a value near zero

5. The increase in structural anisotropy and the degradation of the skeleton structure
accelerated the liquefaction of granular materials. The magnitude of the fraction of sliding
contacts and fluctuation of coordination number under Rayleigh-wave strain conditions
is larger than that under SH- and Love-wave strain conditions. The evolution of the
fraction of sliding contacts and fluctuation of coordination number under SH- and Love-

wave strain conditions relies on the change in resultant shear strain during cyclic loading.

6. Regardless of the loading path, the initial liquefaction happened instantaneously
when the coordination number approached approximately 2; It is noteworthy that the

“zero mean effective states” was not reached in the initial liquefaction state.

7.2.2. Study on the undrained behavior of granular materials with

different shear strain amplitude

Due to the limitation of laboratory apparatus, the behavior of liquefiable granular
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material under undrained cyclic shear with very large shear strain amplitudes is still
unknown. To clarify the shear strain amplitude on the undrained behavior of granular
materials without the influence of boundary effects, a series of 3D DEM simulations
under undrained monotonic and cyclic simple shears was performed until 100% shear
strain amplitudes using periodic boundaries in lateral directions. The main results of this

study can be summarized as follows:

1. During both undrained monotonic simple shear and undrained cyclic simple shear,
the shear band was formed when the shear strain exceeds a certain value. After the shear
band was formed, the granular structure outside the shear band become stable, and the

granular assembly reached a stable state of stress.

2. Under the cyclic shear with a small strain amplitude (< 1%), the medium-dense
granular assembly will gradually lose its shear stiffness and liquefy eventually. When the
shear strain amplitude becomes larger (< 10%), the shear stiffness will recover after the
initial liquefaction as the shear strain application is continued. However, the shear
stiftness recovery will vanish as the undrained cyclic shear continued. When the shear
strain amplitude exceeds a certain value (about 50%), the fluid-like state after initial
liquefaction will only exist in a small shear strain range (about 20%) after the strain
loading direction reversion. The shear stiffness will recover as the shear strain application
is continued, and the granular assembly reaches a stable state of stress as the shear band

was formed during cyclic loadings.

3. The fabric anisotropy increases during the loading process and decreases during
the unloading process. When the shear strain exceeds a certain value, the fabric anisotropy

tends to be constant, and the major principal fabric direction tends to be close to the
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direction of shear strain application and the direction of major principal stress. When the
stable state of stress arrived, the skeleton of the part of the granular assembly outside the
shear band became stable, as FS outside the shear band tended to be zero and the
coordination number outside the shear band became constant. The coordination number
will decrease dramatically from a value larger than 2 to a value near zero when the initial
liquefaction occurs. In the flow-like state after initial liquefaction, the coordination
number was below 2; however, after shear stiffness recovered, the coordination number

will become larger than 2.

4. The granular assembly became inhomogeneous during undrained monotonic
shear when the effective stress increased. During undrained cyclic shear, the granular
assembly becomes homogeneous as the effective stress decrease. The stable states of
stress during undrained monotonic shear and undrained cyclic shear with large strain
amplitudes are different. This is because the overall uniformities of the granular assembly
in the two stable states are different. Therefore, the void ratios in the narrow shear bands

are not identical.

7.2.3. Study on the reconsolidation after undrained cyclic shear

In laboratory tests, the effective stress near zero is hard to be measured exactly, and
the behavior of granular materials during reconsolidation is difficult to observe from the
particle scale. To overcome these limitations, a series of 3D DEM simulations was
performed. The reconsolidation characteristics of Ko-consolidated monodisperse and

polydisperse granular materials were investigated in this study. The drainage rate effect
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was disregarded by applying volumetric strain at a constant and low rate without gravity.

The main conclusions are as follows:

1. The post-liquefaction reconsolidation process can be categorized into a liquefied
and a solidified portion. In the liquefied portion, the void ratio decreased without an
increase in the effective stress. In the solidified portion, the void ratio initially decreased
extremely slowly at a stress level less than 10° kPa, then the void ratio decrement become

quicker and eventually stable as the effective stress increased.

2. The residual effective stress significantly affected the volumetric strain during
reconsolidation after an undrained cyclic shear. The smaller the residual vertical effective
stress, the larger the change in void ratio during the reconsolidation process. Especially,
the volumetric strain during the liquefied portion accounts for a large proportion of the
total volumetric strain during the reconsolidation process. During the liquefied portion of
the reconsolidation process, the volumetric strain of the polydispersed specimen is greater
than that of the monodisperse specimen. However, the particle size distribution has little

effect on the volumetric strain during the solidified portion of the reconsolidation process.

3. The monodisperse specimen had a greater coordination number than the
polydisperse specimen (with Toyoura size distribution). The coordination number
decreased gradually during undrained cyclic shear and increased during the
reconsolidation process. In particular, the polydisperse specimen generally has a higher
unstable particle proportion than the monodisperse specimen. Moreover, the evolution of

unstable particle proportion is opposite to that of the mechanical coordination number.
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4. The pore uniformity increased during undrained cyclic shear in both
monodisperse and polydisperse specimens. During the reconsolidation process, the pore
uniformity in the monodisperse increased, whereas the polydisperse granular assembly
may be either homogenous or inhomogeneous. In addition, despite the sign, a larger
change in centroid distance is generally associated with a larger volumetric strain during

the reconsolidation process.

7.3. Suggestions for future works

The studies in this thesis are qualitative. Some conditions were not considered or
cannot be fulfilled by the commercial code used in this research. Therefore, the following

recommendations are suggested for future study:

1. All the numerical specimens used in this were Ko-consolidated, and the Ko value
cannot be controlled. To evaluate the initial anisotropy on the simulation results, future

studies on the specimen with different Ko values are recommended.

2. The rolling resistance model cannot completely replace the role of particle shape.
As the particle shape plays an important role in the dilatancy behavior, it is recommended
to consider the effect of particle shape on the basis of this paper, e.g., compared with SH-
wave strain conditions, the relative liquefaction resistance of granular materials with

different particle shapes may be different under surface-wave strain conditions.

3. In the study about reconsolidation, the reconsolidation was assumed to happen

on level ground, and the reconsolidation began at the end of each cycle. As a result, the
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effect of initial static shear, which corresponds to sloping ground, was not considered. In
addition, the shear stresses at the end of each cycle are not necessarily 0, which deviated
from the assumption of level ground. The stress-controlled test is recommended for future

study.
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APPENDIX I

APPENDIX 1

The evolution of the magnitude and distribution of normal contact forces in the
measurement cube of the specimen with e = 0.75 in the 1% and 11" cycle are illustrated
here. The radial lines represent the contact force directions, and each concentric circle
indicates the proportion of contact forces aligned in a particular direction range (10° per
interval). The color of sector areas indicates the mean value of the projection of contact
forces in each direction range on a given plane. The orange arrow illustrates the direction

of the projection of major principal stress on each plane.
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Fig. A. 13. Rose diagram under Rayleigh-wave strain condition with RSN =4 (the 1* cycle).
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Fig. A. 14. Rose diagram under Rayleigh-wave strain condition with RSN =4 (the 11% cycle).
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Fig. A. 15. Rose diagram under SHH-wave strain condition (the 1* cycle).
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Fig. A. 16. Rose diagram under SHH-wave strain condition (the 11* cycle).

219



APPENDIX I

0
4 0.020
60° 300° 60° 0018 _
&
bt
0016 5_
%0°  270° 90° 3
0014 §
120° 240° 120° ooz =
z
210° 210° 150° 0010
zl—x 180° xl— y 180°
0.00 s (0.00 cycle)
0
4 0.020
0018 _
(3
Pt
0016 E
270° 270° g
0014 §
0012 =
¥
210° 150° 210° 150° 0010
z x 180° 180°
0.05 s (0.25 cycle)
0.020
0018 _
Z
Pt
0016 ,_E
270° 3
0014 §
120° 240° 0012 =
150° 210° 0010
180°
0.10 s (0.50 cycle)
0.020
0018 _
(3
0016 E_
270° E
0014 §
120° 0012 2
0.010
180°
0.15 s (0.75 cycle)
0.020
0018 _
3
Pt
0016 5
%0°  270° Z
0014 §
120° 40° 0012 =
210° 210° 0010

180°

0.20 s (1.00 cycle)

Fig. A. 17. Rose diagram under SHV-wave strain condition (the 1% cycle).
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Fig. A. 18. Rose diagram under SHV-wave strain condition (the 11 cycle).
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The evolution of the projections of the directions of &;, gy, and @; on the strain

application plane (e = 0.75), and their relationship with ESRR during cyclic loading are

illustrated here.
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Fig. A. 19. Evolution of the projections of the directions of &;, 0y, and ®; on the zx-
plane (e = 0.75), and their relationship with ESRR under Rayleigh-wave strain condition
with RSN = 0 during: (a) 2—4 cycle; (b) 12—-14 cycle.
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Fig. A. 20. Evolution of the projections of the directions of &;, o0y, and ®; on the zx-

plane (e = 0.75), and their relationship with ESRR under Rayleigh-wave strain condition
with RSN = 0.25 during: (a) 2—4 cycle; (b) 12—14 cycle.
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Fig. A. 21. Evolution of the projections of the directions of &;, o0y, and ®; on the zx-
plane (e = 0.75), and their relationship with ESRR under Rayleigh-wave strain condition
with RSN = 1 during: (a) 2—4 cycle; (b) 12—14 cycle.

(a) 90 . T r T T 1.0 (b) 90 - r 1.0

—~ Ea. e R

e - e

s 60 o, 08 s (0] - 08

L | e ESRR =

5 30 4 06 5 30 4 06

§ Olugpep T e et _— LR N S | S - S—— %

& 04 = 5 —H 04 =

i; =30+ ol i; -30 e,

% zx-plane 0.2 B -0 02

£ 60t RSN =4 £ .60 zx-plane ,

RSN=4  |ow e | o

-90 L -90 L L Il 1 1 fl g
200 225 250 275 3.00 19.00 19.25 19.50 19.75 20.00 2025 20.50 20.75 21.00

Cycle - Cycle
Fig. A. 22. Evolution of the projections of the directions of &, oy, and ®; on the zx-
plane (e = 0.75), and their relationship with ESRR under Rayleigh-wave strain condition
with RSN = 4 during: (a) 2—4 cycle; (b) 19-21 cycle.
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Fig. A. 23. Evolution of the directions of &;, 0y, and @;, and their relationship with
ESRR under Love-wave strain condition with AR = 0.25 (e = 0.75): (a) projection on the
xy-plane during 10-12 cycle; (b) projection on the xy-plane during 71-73 cycle; (c)
projection on the yz-plane during 10—-12 cycle; (d) projection on the yz-plane during 71—
73 cycle.
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Fig. A. 24. Evolution of the directions of &;, 07, and @;, and their relationship with
ESRR under Love-wave strain condition with AR =1 (e = 0.75): (a) projection on the xy-
plane during 10-12 cycle; (b) projection on the xy-plane during 60-62 cycle; (c)

projection on the yz-plane during 10-12 cycle; (d) projection on the yz-plane during 60—
62 cycle.
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Fig. A. 25. Evolution of the directions of &;, 07, and @;, and their relationship with
ESRR under Love-wave strain condition with AR =4 (e = 0.75): (a) projection on the xy-
plane during 10-12 cycle; (b) projection on the xy-plane during 65-67 cycle; (c)

projection on the yz-plane during 10-12 cycle; (d) projection on the yz-plane during 65—
67 cycle.
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Fig. A. 26. Evolution of the directions of &;, 0y, and @;, and their relationship with
ESRR under SHH-wave strain condition (e = 0.75): (a) projection on the xy-plane during
10-12 cycle; (b) projection on the xy-plane during 7678 cycle; (c) projection on the yz-
plane during 10-12 cycle; (d) projection on the yz-plane during 76-78 cycle.
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Fig. A. 27. Evolution of the directions of &;, 0, and @,, and their relationship with

ESRR under SHV-wave strain condition (e = 0.75): (a) projection on the xy-plane during
10-12 cycle; (b) projection on the xy-plane during 71-73 cycle; (c) projection on the yz-
plane during 10—-12 cycle; (d) projection on the yz-plane during 71-73 cycle.
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The evolution of the magnitude and distribution of projection of normal contact
forces on the zx-plane in the measurement cube of the specimen in undrained monotonic

shear is illustrated here.
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Fig. A. 28. Magnitudes and distributions of projection of normal contact forces on the zx-plane.
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