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1. Introduction

Optimization is a useful technique for determining the optimal solution to a problem. In other
words, optimization is the problem of choosing suitable inputs under given circumstances in order to
get the best possible output. For instance, optimization can be used in production models to adjust
different inputs and make them more effective in order to get the best output for the production of a
particular industry [1]. In this scenario, once we have modeled a problem, it can be solved using the
available optimization techniques to find the optimal solution [2].

An optimization problem usually consists of three ingredients: an objective function, a
set of constraints and a number of decision variables. There are two types of optimization
problems: constrained optimization problems and unconstrained optimization problems. Constrained
optimization problems have restriction(s) on the objective function, while unconstrained optimization
problems have no restriction on the objective function [3, 4].

If at least one of the objective functions or the constraint function is nonlinear, then the problem
is known as a nonlinear optimization problem. There are many techniques that have been used
for the maximization or minimization of nonlinear optimization problems. Sometimes, a problem
cannot be modeled correctly using linear programming; therefore, one can use nonlinear programming
approaches [5,6] to model the problem. For the constrained optimization problem under consideration
in this paper, the objective function, known as the cost function, is linear while the constraint function,
known as the Cobb-Douglas (C-D) production function, is nonlinear. In the course of solution, the
constrained optimization problem is converted into an unconstrained optimization problem and then
solved by the Lagrange multiplier method using the ordinary least squares approach.

There have been many problems in literature in which the C-D production function has been used.
A mixed-integer linear programming (MILP) model was established for the optimization of production
scheduling [7]. A two-factor C-D production function is carried out with the aim of picking the
suitable C-D production model for calculating the production process of the selected manufacturing
industries in Bangladesh [8]. By combining the allometric scaling concept, which is used to estimate
the parameters of the C-D function, with the application in transportation problems in China, a novel
algorithm for creating geographical C-D models is developed [9].

For the improvement of different factors in the Polish metallurgical industry, the power regression
C-D function was used with the aim of developing a number of production factors, for instance,
net production, production sold and volume of steel production [10]. The proper management of
a country’s resources is an important issue for its economic development. Along similar lines, the
optimization of water management for three industries that rely on water demand prediction, subject to
a number of ambiguities, is handled by the use of the C-D production function [11]. A two-factor
production function was used to model sustainable economic development with the goal of labor
production in relation to the commodity production system’s capital-labor ratio [12]. An economic
model has been presented by the application of proper Inada conditions to the C-D production function,
which converges to or diverges from per capita product and the steady state of capital [13]. Moreover,
a two-factor C-D production function was presented in which the effects of labor force and capital
on agricultural heritage systems are carried out to maximize profit as well as the sustainability of
agricultural heritage through the application of a two-factor C-D production function in which they
examine the impacts of major factors on agricultural productivity [14]. An algorithmic or analytical
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procedure was conducted to handle the issue of optimal utilization of resources towards a feasible and
profitable model via the C-D production function [15]. An application of the C-D production function
model was used to find the role of land in urban economic growth [16]. A general oligopolistic market
equilibrium with nonlinear programming was considered, in which each firm’s factor contributes to the
system, and then solved by tensor variational inequality [17, 18].

It becomes necessary in a real-world optimization problem to adopt a set of nonlinear terms in a
mathematical model in order to get particular operational features of the decision-making problem. On
the other hand, when nonlinear terms exist in the course of a solution, they add to the computational
complexity of the problem. For this purpose, the researchers have developed proper transformation as
well as linearization methods for the optimization problems that consist of nonlinear terms.

In this paper, a special type of production function, which was founded by Cobb and
Douglas in 1928 and is known as the C-D production function, is under consideration. This function
is based on empirical studies that have been applied to the economy for optimal production [19]. This
function supplies a number of different inputs to the problem and, as a result, produces a unique output
for the problem. These inputs may be two or more than two in number, depending on the factors
of production used in the industry. Also, the function having more than two factors is known as the
generalized C-D production function [20,21]. There have been many results in literature in which two-
factor C-D function was presented for production. This work presents the optimal solution technique of
the C-D function for three factors of production using the Lagrange multiplier method and the ordinary
least squares method, with applications. Moreover, Nervole’s C-D production function with three
inputs using the ordinary least squares method has been presented in [22]. Furthermore, this work also
developed an environment to transform and linearize an optimization problem with nonlinear objectives
or nonlinear constraints by using existing techniques [23].

The proposed work is summarized as follows:

(1) To develop a model in order to transform as well as linearize the nonlinear terms.
(2) To choose a suitable model [1] as an optimization problem and to solve it using a novel

methodology known as C-D production function using the Lagrange multiplier method with the
ordinary least squares method.

(3) To find whether the best possible solution to the problem is obtained or not [2].
(4) To apply the C-D production function using the Lagrange multiplier method with the ordinary

least squares method for the solution of the two-factor C-D production function as well as for the
three-factor C-D production function.

(5) To apply the case study to industrial optimization in order to minimize costs more efficiently.

First we solved the two-factor C-D production function [24] using the Lagrange multiplier method
with the ordinary least squares method. Second we used three factors of the C-D production function
with the same technique. The obtained results show that cost minimization in cases of three factors of
production is more efficient as compared to cost minimization in cases of two factors of production.

2. Cost minimization

The problem under consideration depends on three basic factors:

• Cost of the company for manufacturing production.

AIMS Mathematics Volume 8, Issue 12, 29956–29974.



29959

• Quantity of production.
• Income from the sales of production according to market prices.

For instance, the role of the water industry is to filter water in different purifying tanks, then add
chemicals, pack them properly, and then sell them in the market. In this task, the main objective of the
industry is to minimize costs or maximize production. There have been many approaches in literature
in which the total cost of an industry is presented as a linear function [24, 25].

K =

n∑
i=1

qixi + Rs = qT x + Rs (2.1)

where n represents production factors.

x =



x1

x2

.

.

.

xn


is a vector of production factors.
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q1

q2

.

.

.

qn


is the vector of prices of production factors.

The following relationships present the production volume [26]:

y = p(x) = p(x1, x2...xn). (2.2)

The income of the company from production sales is given by:

S (y) = bT y (2.3)

where,
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is a vector of the quantity of produced goods.

b =



b1

b2

.

.

.

bn


is the vector prices of produced goods.

The profit of the company is the difference between its income and its cost of production.

Z(x, y) = S (y) − K(x). (2.4)

The main focus of this paper is to minimize the cost at a specific level of production and, consequently,
to maximize production with more factors of production.

The optimization problem originating from our data analysis consists of a linear function and a
nonlinear function. We have used the linear function as a cost function, while the nonlinear C-D
production function is used as production output. Let us consider a linear cost function as an objective
function and the nonlinear C-D production function as a constrained function. Then, this becomes a
constrained optimization problem with an equality constraint. For the sake of simplicity, we convert
this constrained optimization problem to an unconstrained optimization problem by using the Lagrange
multiplier method, and then we solve this constrained optimization problem for stationary points. Let
us start with a function Z of two independent variables that is subject to an equality constraint function
g. The objective and constraint function are given as follows:

min z(x, y).

Subject to:
g(x, y) = 0.

We have, using the Lagrange multiplier,

L(x, y, λ) = z(x, y) + λg(x, y). (2.5)

In order to solve the problem, we must first determine the values of x, y, and λ. Note that we consider
the cost function to be an objective function and the C-D production function as a constraint function,
and solve it for different factors of production. Furthermore, we extend this work as an application to
optimize production factors in a specific industry.

The production function for three inputs is as follows:

P = AXa1Ya2Za3 . (2.6)

After linearizing, we get
ln P = ln A + a1 ln X + a2 ln Y + a3 ln Z. (2.7)
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After this, we will use least squares linear regression to find out the structural parameters, which are
A, a1, a2, a3. The corresponding cost functions is given by

C(X,Y,Z) = α1 + α2X + α3Y + α4Z. (2.8)

Along similar lines as Eq (2.5), we can get the corresponding Lagrange function for three-factor C-D
production function.

In other words, the overall methodology can also be summarized as follows:

(1) First, model an objective and constraint function using two inputs for the given industry.
(2) Transform a constrained optimization problem into an unconstrained optimization problem.
(3) Solve the unconstrained problem using the Lagrange multiplier method with ordinary least

squares.
(4) Repeat the above procedure for three factors of production for the given industry.
(5) Compare the outcomes in both cases.

3. Production function and its structural parameters

Given input prices, a cost function shows how much it costs to produce various output levels. In the
course of solving such problems, one or both productions and factors of production may be stated by
using their values. It is good practice to present the products of an industry in proper units that have
a number of production components. In a similar way, human labor can be calculated when needed.
When the availability of aggregated data is smaller, it can be measured with headcount or work time.
When a higher level of aggregation is available, then the value of human labor seems more suitable.
The most challenging task is the quantitative description of the capital used in the industry. In the
majority of analyses, it becomes challenging due to the use of a number of factors of production. The
greater a company’s asset base, the less it is associated with high productivity [27]. In the following,
we analyzed a local water industry with a two-factor C-D production function and a three-factor C-D
production function using the Lagrange multiplier method with the ordinary least squares method and
compared their results.

3.1. Cost minimization in the water industry using the two-factor C-D production function

For this problem, the data is taken from a local water industry Abysin Water Industry, which is one
of the local registered branches of Chemtronics Water Services in Lahore, Pakistan. First, the problem
is solved for two factors, and then it is generalized. In this case, the cost function consists of two
factors (labor and capital) of production, which is given by:

C(X,Y) = α1 + α2X+α3Y (3.1)

where,
C(X,Y) represents the cost of the industry in rupees,
α1 represents the fixed cost of the industry,
α2 represents the unit price of labor per hour,
α3 represents the unit price of capital per kg,
X represents the number of labor hours,
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Y represents the amount of capital in kg.
All the prices in the industry are in Pakistani currency (the rupee). The raw materials used as capital

are taken in kilograms, i.e., the unit for capital is kg.
Here,

α1 = 75000, α2 = 1400, α3 = 100.

Putting these values in Eq (3.1), we get,

C(X,Y) = 75000 + 1400X + 100Y. (3.2)

For production, we use the C-D production function, which is given by:

P = AXaYb (3.3)

where
P represents the amount of production in liters.
After Eq (3.3) we have,

ln P = ln A + a ln X + b ln Y. (3.4)

The analyzed data for the water industry with two inputs, i.e., human labor and capital, and production
as an output for the year 2022 is given in Table 1.

We have used ordinary least squares regression in order to find the structural parameters of the given
C-D production function. The data analysis has been done using Microsoft Excel, which is given in
Regressions 1 and 2 for two and three inputs, respectively.

Structural parameters for two inputs are as follow:

A = 3212.468,
a = 0.3568,
b = 0.0542,

L(X,Y, λ) = C(X,Y) + λH(X,Y), (3.5)

where,

H(X,Y) = 36000 − 3212.468X0.3568Y0.0542.

Using Eq (3.2) and H(x, y) in Eq (3.5), we have,

L = 75000 + 1400X + 100Y + λ(36000 − 3212.468X0.3568Y0.0542). (3.6)
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Table 1. Inputs and output values of the water industry with two inputs.

Months Production(P) Labors(X) Capital(Y) Ln(P) Ln(X) Ln(Y)
in litres in hours in kg

Jan. 36,000 300 900 10.49127 5.703782 6.802395
Feb. 34,000 272 833 10.43412 5.605802 6.725034
March 36,700 315 924 10.51053 5.752573 6.828712
April 37,000 330 942 10.51867 5.799093 6.848005
May 35,700 278.5 874 10.48291 5.629418 6.77308
June 36,400 321 922 10.50232 5.771441 6.826545
July 33,600 269 860 10.42228 5.594711 6.756932
Aug. 35,500 308 950 10.47729 5.7301 6.856462
Sep. 36,875 338 957 10.51529 5.823046 6.863803
Oct. 37,000 321 914 10.51867 5.771441 6.817831
Nov. 33,600 266 875 10.42228 5.583496 6.774224
Dec. 36,500 336 890 10.50507 5.817111 6.791221

Regression 1. Linear regression for two inputs.
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Regression 2. Linear regression for three inputs.

Now taking partial derivatives of L with respect to X,Y and λ respectively and equating to zero, i.e.,

∂L
∂X

= 0,

we get,
1400 − 1146.2085λX−0.6432Y0.0542 = 0,

which implies that

λ =
1.2214

X−0.6432Y0.0542 . (3.7)

Now, when
∂L
∂Y

= 0,

we get
100 − 174.1157λX0.3568Y−0.9458 = 0,

which implies

λ =
100

X0.3568Y−0.9458 . (3.8)

Similarly, when
∂L
∂λ

= 0,
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we get,
36000 − 3212.468X0.3568Y0.0542 = 0. (3.9)

Comparing (3.7) and (3.8),
1.2214

X−0.6432Y0.0542 =
100

X0.3568Y−0.9458 ,

we get
Y = 2.1266X. (3.10)

Putting Eq (3.10) in Eq (3.9), we have

36000 − 3212.468X0.3568(2.1266X)0.0542 = 0.

Solving for X, we have
X = 323.7554. (3.11)

From (3.10), we have
Y = 688.4982, (3.12)

and using the values of X and Y in Eq (3.2), we have,

C(X,Y) = 597107. (3.13)

Table 2 compares the actual cost with the estimated cost.

Table 2. Actual and estimated cost values for water industry using two inputs.

Months Estimated cost Actual cost Error (R) Square of the error (R2)
in rupees in rupees

Jan. 585,000 608,000 23000 529000000
Feb. 539,100 570,000 30900 954810000
March 608,400 588,000 -20400 416160000
April 631,200 608,000 -23200 538240000
May 552,300 598,000 45700 2088490000
June 616,600 621,000 4400 19360000
July 537,600 574,000 36400 1324960000
Aug. 601,200 564,000 -37200 1383840000
Sep. 643,900 622,000 -21900 479610000
Oct. 615,800 598,000 -17800 316840000
Nov. 534,900 582,000 47100 2218410000
Dec. 634,400 632,000 -2400 5760000∑

R2 10275480000
Mean square error 856290000

Figure 1 represents the actual and theoretical costs of the industry. For example, in January 2022,
we can see that the actual cost was greater than the estimated cost, but from the data analysis, our
calculated cost is less than both the actual and estimated cost. Similarly, if we compare the cost from
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the table with our calculations, we can see the difference. It means that there is a sufficient difference
in both costs, meaning that costs are minimized to a great extent.

Figure 1. Estimated cost versus actual cost of the industry using two inputs.

3.2. Cost minimization in the water industry using the three-factor C-D function

In this case, the cost function consists of three factors: capital, chemicals, and labor. The cost
function is given by:

C(X,Y,Z) = α1 + α2X + α3Y + α4Z (3.14)

where
α1 represents the fixed cost of the industry,
α2 represents the unit price of labor per hour,
α3 represents the unit price of chemicals per kg,
α4 represents the unit price of capital per kg,
X represents the number of labor hours,
Y represents the amount of chemicals in kg,
Z represents the amount of capitals in kg,

where
α1 = 75000, α2 = 1250, α3 = 2000, α4 = 100.

Putting the above values in Eq (3.14), we get

C(X,Y,Z) = 75000 + 1250X + 2000Y + 100Z. (3.15)

Now, the production function, as in [26], is given by

P = AXa1Ya2Za3 (3.16)
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where
P represents amount of production in liters.
After linearizing, we get

ln P = ln A + a1 ln X + a3 ln Y + a3 ln Z. (3.17)

A data analysis of the water industry consisting of three inputs for the year 2022 is given in Table 3.
The three inputs are human labor, capital, and chemicals, respectively.

Table 3. Inputs and output values of the water industry with three inputs.

Months Labors(X) Chemicals(Y) Capitals(Z) Production(P) Ln(X) Ln(Y) Ln(Z) Ln(P)
in hours in kg in kg in litres

Jan. 240 60 900 36,000 5.4806 4.0943 6.8023 10.4912
Feb. 220 52 833 34,000 5.3936 3.9512 6.7250 10.4341
March 252 63 924 36,700 5.5294 4.1431 6.8287 10.5105
April 264 66 942 37,000 5.5759 4.1896 6.8480 10.5186
May 222 56.5 874 35,700 5.4026 4.0342 6.773 10.4829
June 260 61 922 36,400 5.5606 4.1108 6.8265 10.5023
July 215 54 860 33,600 5.3706 3.9889 6.7569 10.4222
Aug. 250 58 950 35,500 5.5214 4.0604 6.8564 10.4772
Sep. 268 70 957 36,875 5.5909 4.2484 6.8638 10.5152
Oct. 256 65 914 37,000 5.5451 4.1743 6.8178 10.5186
Nov. 212 54 875 33,600 5.3565 3.9889 6.7742 10.4222
Dec. 262 74 890 36,500 5.5683 4.3040 6.7912 10.5050

This data is collected from the water industry for the year 2022, and all results are calculated on a
monthly basis.

From these analyses, we have,

A = 3938.188, a1 = 0.2944, a2 = 0.0673, a3 = 0.0457.

Putting these values in (3.16), we get

P = 3938.188X0.2944Y0.0673Z0.0457. (3.18)

Using the Lagrange multipliers method, we have,

L(X,Y,Z, λ) = C(X,Y,Z) + λH(X,Y,Z), (3.19)

where
H(X,Y,Z) = 36000 − 3938.188X0.2944Y0.0673Z0.0457. (3.20)

Putting Eqs (3.15) and (3.20) in Eq (3.19), we obtain

L = 75000 + 1250X + 2000Y + 100Z + λ(36000 − 3938.188X0.2944Y0.0673Z0.0457). (3.21)
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Now, taking partial derivatives of L with respect to X, Y , Z and λ and setting all partial derivatives
equal to zero, we have,

∂L
∂X

= 0.

we then get
1250 − 1159.4925λX−0.7056Y0.0673Z0.0457 = 0.

Solving the above equation for λ, we get

λ =
1250

1159.4925X−0.7056Y0.0673Z0.0457 . (3.22)

also setting
∂L
∂Y

= 0,

we get
2000 − 265.04λX0.2944Y−0.9327Z0.0457 = 0.

Solving above equation for λ, we get

λ =
7.5460

X0.2944Y−0.9327Z0.0457 . (3.23)

Finally setting
∂L
∂Z

= 0,

we get
100 − 179.9751λX0.2944Y0.0673Z−0.9543 = 0.

Solving above equation for λ, we get

λ =
100

179.9751X0.2944Y0.0673Z−0.9543 . (3.24)

Similarly, when
∂L
∂λ

= 0,

we get
36000 − 3938.188X0.2944Y0.0673Z0.0457 = 0. (3.25)

Comparing (3.22) and (3.23), we get

1250
1159.4925X−0.7056Y0.0673Z0.0457 =

7.5460
X0.2944Y−0.9327Z0.0457

which implies
X = 6.9996Y. (3.26)

Now, comparing (3.23) and (3.24), we get

7.5460
X0.2944Y−0.9327Z0.0457 =

100
179.9751X0.2944Y0.0673Z−0.9543 ,
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which implies
Z = 13.5809Y. (3.27)

Using (3.25) and (3.26) in (3.27)

(6.9996Y)0.2944Y0.0673(13.5809Y)0.0457 = 9.1412,

yields,
Y0.4074 = 4.5755.

Thus,
Y = 41.7932. (3.28)

Putting (3.28) in (3.26) and (3.27) respectively, we get

X = 292.5356,
Z = 567.5892,

(3.29)

and using the values of X, Y and Z in Eq (3.15), we have

C(X,Y,Z) = 581014. (3.30)

Table 4 presents actual and estimated costs on a monthly basis for the water industry for the year 2022.

Table 4. Actual and estimated cost values for the water industry using three inputs.

Months Estimated cost Actual cost Error (R) Square of the error (R2)
in rupees in rupees

Jan. 585,000 608,000 23000 529000000
Feb. 537,300 570,000 32700 1069290000
March 608,400 588,000 -20400 416160000
April 631,200 608,000 -23200 538240000
May 552,900 598,000 45100 2034010000
June 614,200 621,000 6800 46240000
July 537,750 574,000 36250 1314062500
Aug. 598,500 564,000 -34500 1190250000
Sep. 645,700 622,000 -23700 561690000
Oct. 616,400 598,000 -18400 338560000
Nov. 535,500 582,000 46500 2162250000
Dec. 639,500 632,000 -7500 56250000∑

R2 10256002500
Mean square error 854666875

Figure 2 represents the actual and estimated cost of the industry for the three-factors C-D production
function.
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Figure 2. Estimated cost versus actual cost for the industry for three inputs.

4. Results and comparative analysis

We have solved the C-D production function with two and three factors of production using the
Lagrange multiplier method with the ordinary least squares method. Moreover, this is an optimal
solution approach for the C-D production function with three factors of production using the Lagrange
multiplier method with the ordinary least squares method. Despite the fact that the proposed approach
is a different solution technique as compared to the existing solution techniques in the literature, we
still compared the general features of the proposed methodology for the water industry with different
factors to Nervole’s approach. In the following, we compared the presented solution approach with
Nervole’s approach [22]. In Table 5, we have differentiated Nerlove’s C-D function and the C-D
production function with the Lagrange multiplier method.

Table 5. Comparative analysis between Nerlove’s C-D function and the C-D production
function with the Lagrange multiplier method.

No. Nerlove’s C-D cost function C-D production function
1 Nerlove used the C-D cost model We used the C-D production function
2 Nerlove used the function to estimate the cost We used the given function as an output
3 Nerlove approach needs much algebra for evaluation It has a simple implementation
4 Computational complexity is too much Having less computational complexity
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In addition, the paired t-test is used to determine if there is a significant difference between the
means of two related data sets as well as to find the mean square error from the findings of both the
two- and three-factor C-D production functions. In the case of the findings of the two-factor C-D
function, the outcomes of a paired t-test on two data sets result in a P-value of 0.547 and degrees of
freedom (df) of 11. The paired t-test compares the means of the two variables to determine if there
is a significant difference between them. The null hypothesis is that there is no significant difference
between the means of the two variables. This means that there is no significant difference between the
means of the two variables at the 5% level of significance. This showed that the P-value is greater than
the critical value of 0.05, indicating that we cannot reject the null hypothesis.

In the case of the findings from the three-factor C-D function, the findings of a paired t-test result
in a P-value of 0.559 and degrees of freedom (df) of 11. Moreover, the findings from the three-factor
C-D using a paired t-test were also conducted, which also showed that there is no significant difference
between the means of the two variables with the same 5% level of significance.

Based on the findings of the paired t-test, we conclude that there is no significant difference between
the means of the two related variables from the findings of two and three factors in the C-D production
functions. This shows that the C-D production function plays a key role in the production problem
when using the Lagrange multiplier method with the ordinary least squares method. Furthermore, we
have worked on the cost comparison of two and three factors in the C-D production function. In the
case of two factors of production, the cost value is 597107 per unit, while in the case of three factors of
production, the cost value is 581014 per unit. In both cases, our calculated cost is less than the actual
cost of the industry. Besides, the cost calculation for the three-factor C-D production function is less
than that of the two-factor C-D production function. Clearly, we can see the differences in Tables 6–9.

Table 6. Data set for the two-factor C-D production function.

Paired samples statistics (Pair 1)
Mean N Std. deviation Std. error mean

Estimated cost 591700.0000 12 40670.96351 11740.69586
Actual cost 597083.3333 12 21997.76159 6350.20679

Paired samples correlations (Pair 1)
N Correlation Sig.

Estimated cost and Actual cost 12 0.690 0.013

Table 7. Paired sample test.

Paird differences

Mean Std. derivation Std. eror mean
95s% confidence interval
of the difference

Lower Upper
t df S ig. (2-tailed)

Pair1 estimated
cost-actual cost

5383.33333 30041.96560 8672.36846 -24471.08762 13704.42096 −0.621 11 0.547
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Table 8. Data set for the three-factor C-D production function.

Paired samples statistics (Pair 1)
Mean N Std. deviation Std. error mean

Estimated cost 591862.5000 12 41320.23016 11928.12300
Actual cost 597083.3333 12 21997.76159 6350.20679

Paired samples correlations (Pair 1)
N Correlation Sig.

Estimated cost and Actual cost 12 0.709 0.010

Table 9. Paired sample test.

Paird differences

Mean Std. derivation Std. error mean
95s% Confidence interval
of the difference

Lower Upper
t df S ig. (2-tailed)

Pair1 estimated
cost-Actual cost

5220.83333 30043.78213 8672.89265 -24309.74179 13866.07513 −0.602 11 0.559

5. Conclusions

In this paper, the optimal solution developed by C-D is carried out with different production factors.
From these analyses, we concluded that the C-D production function plays a key role in the production
problem when using the Lagrange multiplier method with the ordinary least squares method. Moreover,
we solved the constrained optimization problem with a two-factor and three-factor C-D production
function using the Lagrange multiplier with the ordinary least squares method. In the case of two
factors of production, the cost value is 597107 per unit, while in the case of three factors of production,
the cost value is 581014 per unit. This showed that, with more production factors in the C-D production
function, the cost value is minimized to a high extent. This validates that the C-D production function
with more factors using the Lagrange multiplier is more effective than previous approaches in literature.
Moreover, the presented solution methodology is compared to Nervole’s C-D production function.
This means that the individual expression of each factor as an input has a key role in obtaining the best
optimized results. Moreover, we optimized the overall cost of the water industry using the three-factor
C-D production function as an application of C-D production using the Lagrange multiplier method
with the ordinary least squares method.
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