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1. Introduction

If we make the assumption that D represents an open unit disk in the entire complex plane, defined
as D = {z ∈ C : |z| < 1}, and if we consider A as a collection that contains functions denoted as f ,
which are holomorphic within D and satisfy the normalization forms f (0) = 0 = f ′(0) − 1, then we
can obtain the following representation:

f (z) = z +

∞∑
n=2

anzn, (z ∈ D). (1.1)

If f is a function inA that is defined by (1.1), then the Ruscheweyh derivative of order n (see [13])
can be defined by

Rn f (z) = z +

∞∑
k=2

σ(n, k)akzk, (z ∈ D)

such that n ∈ N0 := N ∪ {0} and

σ(n, k) :=
Γ(n + k)

Γ(k)Γ(n + 1)
.

Furthermore, let us suppose that S is the sub-collection for all functions inA that are univalent and
satisfy (1.1) in D, which converts S to be a subclass of A. Besides, let us assume that P denotes all
functions p(z) characterized by the property that within the domain D, p is holomorphic and its real
part is positive. These functions take the following form:

p(z) = 1 +

∞∑
n=1

pnzn, (z ∈ D). (1.2)

The most significant and major well-studied subclasses of functions belonging to class S are the
starlike functions S∗(ϑ) and convex functions K(ϑ) of order ϑ (0 ≤ ϑ < 1). So, we can find the
following for z ∈ D, by definition:

S∗(ϑ) =

{
f : f ∈ S and Re

{z f ′(z)
f (z)

}
> ϑ

}
,

and
K(ϑ) =

{
f : f ∈ S and Re

{
1 +

z f ′′(z)
f ′(z)

}
> ϑ

}
.

We note that
K(ϑ) ⊂ S∗(ϑ),

f (z) ∈ K(ϑ) ⇐⇒ z f ′(z) ∈ S∗(ϑ)

and

f (z) ∈ S∗(ϑ) ⇐⇒
∫ z

0

f (s)
s

ds = f (z) ∈ K(ϑ).
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Assume that f and g are two holomorphic functions which are defined in D. So, the function f is
considered to be subordinate to g, i.e.,

f (z) ≺ g(z) (z ∈ D),

when we can identify a Schwarz function, referred to as ω, that exhibits holomorphic properties within
the domain D, as follows:

ω (0) = 0 and |ω (z) | < 1,

and
f (z) = g(ω(z)).

Particularly, when g stands for a univalent function in D, the below equivalence is achieved (see
[12]):

f ≺ g ⇐⇒ f (0) = g(0) and f (D) ⊆ g(D).

Assuming that ϕ is a univalent function in D with a positive real part, ϕ (D) is symmetric for the
real axis, ϕ is a starlike function under the condition of ϕ(0) = 1 and ϕ′(0) > 0. The subclasses S∗(ϕ)
and K(ϕ) were introduced by Ma and Minda [11] and contain all functions f ∈ S which satisfy

z f ′(z)
f (z)

≺ ϕ(z)

and
1 +

z f ′′(z)
f ′(z)

≺ ϕ(z),

which, as special cases, consist of some various well-known subclasses, where all of the various
subclasses of starlike and convex functions are consistently represented. For instance, when

ϕ(z) =
1 + Az
1 + Bz

(−1 ≤ B < A ≤ 1) ,

the subclass S∗(ϕ) reduces to Janowski’s class S∗ [A,B] (see [9]). Let (0 ≤ η < 1); for

ϕ(z) =
1 + (1 − 2η) z

1 − z

the subclass

S∗η := S∗
(
1 + (1 − 2η) z

1 − z

)
represents the starlike function class of order η, and the subclass

Kη := K
(
1 + (1 − 2η) z

1 − z

)
represents the convex function class of order η. Further, the class

S∗ζ := S∗
(
1 + z
1 − z

)ζ
AIMS Mathematics Volume 8, Issue 12, 29975–29994.
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consists of the class of strongly starlike functions of order ζ (0 < ζ ≤ 1).
According to the Koebe 1/4 theorem (see [6]) the image of D, under each univalent function

comprises a disk with a radius of 1/4. As a consequence, any function f in S has the inverse
represented by f −1 such that

f −1( f (z)) = z (z ∈ D)

and

f ( f −1(w)) = w (|w| < r0( f ), r0( f ) ≥ 1/4) .

We note that the inverse of the function f , i.e., g = f −1, has the following known form:

g(w) = w − a2w2 + (2a2
2 − a3)w3 − (5a3

2 − 5a2a3 + a4)w4 + · · · . (1.3)

If the function f ∈ A and its inverse are both univalent within the disk D, then we say that f is a
bi-univalent function inA. In this article, the collective set of bi-univalent functions within the domain
D is denoted as Σ. The following presents some examples of functions in the class Σ:

z
1 − z

, − log(1 − z) and
1
2

log
(
1 + z
1 − z

)
,

with the corresponding inverse functions:

ew − 1
ew ,

w
1 + w

and
e2w − 1
e2w + 1

,

respectively.
The functions class Σ were the focus of many recent studies, whose aim was to identify sharp

coefficient bounds of the initial Taylor-Maclaurin coefficients of f in Σ, i.e., |a2| and |a3|. For an
initial history, as well as further significant instances in the class Σ refer to [18]. The recent ground-
breaking work by Srivastava et al. [18], which has been extensively cited, promoted the analysis of
univalent and bi-univalent functions to a specialized level and led to further studies about the topic
(see, for example, [1, 2, 5, 10]). Brannan and Clunie’s conjecture [4] was further investigated [16],
and subordination properties were also obtained for certain subclasses of bi-univalent functions [15].
However, the bound of |an| (n ∈ N\{2, 3}), known as the coefficient estimation problem, has not been
settled yet. In some works, and under certain conditions, the bounds of the higher-order coefficients
are determined by applying the Faber polynomial method (see, for instance, [3, 7]).

The primary aim of this article is to introduce a novel subclass, denoted as ΥΣ(δ, ρ, τ, n;ϕ), within
the broader universal class Σ, to and provide estimations for the upper bounds of the coefficients a2

and a3 for all functions contained in this subclass. Here, we introduce this subclass by using a linear
combination of functions:

f (z)
z
, f ′(z) and z f ′′(z).

Our findings serve to generalize and improve several previous findings. Furthermore, if we
specialize the parameters, several repercussions of this generic class will be properly obtained.

In fact, we have successfully estimated the bound for the first two coefficients of the functions
contained in this new subclass by using a Ruscheweyh operator. The findings given in this paper are
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more accurate than some related works by other researchers, and we have improved them. In addition,
several repercussions of this general subclass are correctly noted as a consequence of parameter
specialization.

2. The subclass ΥΣ(δ, ρ, τ, n;ϕ)

In the current section, we use the concept of subordination to define a new general class
ΥΣ(δ, ρ, τ, n;ϕ) that contains the functions that are bi-univalent in D. This is done to obtain results that
are more accurate than those of previous works and to improve upon outcomes obtained by other
researchers.

Assume that ϕ is a holomorphic function with Re(ϕ) > 0 in D, ϕ(0) = 1, ϕ′(0) > 0 and ϕ(D)
is symmetric with respect to the real axis. A function of this form has the following power series
expansion:

ϕ(z) = 1 + J1z + J2z2 + J3z3 + · · · (2.1)(
J1 > 0 and J2,J3 is any real number

)
.

Furthermore, let us assume that in this section, f and g are defined by expansions (1.1) and (1.3),
respectively, with z and w belonging to D.

Definition 2.1. A function f , which belongs to Σ, is considered to be a member of the class
ΥΣ(δ, ρ, τ, n;ϕ) if it meets the following criteria:

1 +
1
δ

[
(1 − ρ)(1 − τ)

Rn f (z)
z

+ (ρτ + ρ + τ)(Rn f (z))′ + ρτ
(
z(Rn f (z))′′ − 2

)
− 1

]
≺ ϕ(z), (2.2)

and

1 +
1
δ

[
(1 − ρ)(1 − τ)

Rng(w)
w

+ (ρτ + ρ + τ)(Rng(w))′ + ρτ
(
w(Rng(w))′′ − 2

)
− 1

]
≺ ϕ(w), (2.3)

where δ ∈ C\{0}, ρ ≥ 0, 0 ≤ τ ≤ 1, n ∈ N0 and the function ϕ is given by (2.1).

There are many options for ϕ and the parameters δ, ρ, τ, n that would provide and generate
interesting subclasses of the class ΥΣ(δ, ρ, τ, n;ϕ). Let us present some examples.

Example 2.1. By putting

ϕ(z) =
1 + Az
1 + Bz

= 1 + (A − B) z − B (A − B) z2 + · · · (−1 ≤ B < A ≤ 1) ,

the class
ΥΣ(δ, ρ, τ, n;ϕ)

reduces to
ΥΣ(δ, ρ, τ, n; A,B),

which is defined by assuming that f ∈ Σ,

1 +
1
δ

[
(1 − ρ)(1 − τ)

Rn f (z)
z

+ (ρτ + ρ + τ)(Rn f (z))′ + ρτ
(
z(Rn f (z))′′ − 2

)
− 1

]
≺

1 + Az
1 + Bz

AIMS Mathematics Volume 8, Issue 12, 29975–29994.
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and

1 +
1
δ

[
(1 − ρ)(1 − τ)

Rng(w)
w

+ (ρτ + ρ + τ)(Rng(w))′ + ρτ
(
w(Rng(w))′′ − 2

)
− 1

]
≺

1 + Aw
1 + Bw

.

Example 2.2. By putting

ϕ(z) =

(
1 + z
1 − z

)ζ
= 1 + 2ζz + 2ζ2z + · · · (0 < ζ ≤ 1) ,

the class
ΥΣ(δ, ρ, τ, n;ϕ)

reduces to
QΣ1(δ, ρ, τ, n; ζ),

which is defined by assuming that f ∈ Σ,

∣∣∣∣∣ arg
(
1 +

1
δ

[
(1 − ρ)(1 − τ)

Rn f (z)
z

+ (ρτ + ρ + τ) (Rn f (z))′ + ρτ
(
z (Rn f (z))′′ − 2

)
− 1

])∣∣∣∣∣ < ζπ

2

and∣∣∣∣∣ arg
(
1 +

1
δ

[
(1 − ρ)(1 − τ)

Rng(w)
w

+ (ρτ + ρ + τ) (Rng(w))′ + ρτ
(
w (Rng(w))′′ − 2

)
− 1

])∣∣∣∣∣ < ζπ

2
.

The above example ensures that

QΣ1(δ, ρ, τ, n; ζ) ⊂ ΥΣ(δ, ρ, τ, n;ϕ),

and that the class ΥΣ(δ, ρ, τ, n;ϕ) is not empty.

Example 2.3. Upon setting

ϕ(z) =
1 + (1 − 2η)z

1 − z
= 1 + 2(1 − η)z + 2(1 − η)z2 + · · · (0 ≤ η < 1) ,

the class
ΥΣ(δ, ρ, τ, n;ϕ)

reduces to
ΘΣ1(δ, ρ, τ, n; η),

which is defined by assuming that f ∈ Σ,

Re
{
1 +

1
δ

[
(1 − ρ)(1 − τ)

Rn f (z)
z

+ (ρτ + ρ + τ) (Rn f (z))′ + ρτ
(
z (Rn f (z))′′ − 2

)
− 1

]}
> η

and

Re
{
1 +

1
δ

[
(1 − ρ)(1 − τ)

Rng(w)
w

+ (ρτ + ρ + τ) (Rng(w))′ + ρτ
(
w (Rng(w))′′ − 2

)
− 1

]}
> η.

This example ensures that
ΘΣ1(δ, ρ, τ, n; η) ⊂ ΥΣ(δ, ρ, τ, n;ϕ).
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The subclasses QΣ1(δ, ρ, τ, n; ζ) and ΘΣ1(δ, ρ, τ, n; η) have been researched recently by Sabir [14].

Example 2.4. If we take n = 0 and

ϕ(z) =

(
1 + z
1 − z

)ζ
,

then the class
ΥΣ(δ, ρ, τ, n;ϕ)

reduces to
WSΣ(δ, ρ, τ; ζ),

which is defined by assuming that f ∈ Σ,∣∣∣∣∣ arg
(
1 +

1
δ

[
(1 − ρ)(1 − τ)

f (z)
z

+ (ρτ + ρ + τ) f ′(z) + ρτ
(
z f ′′(z) − 2

)
− 1

])∣∣∣∣∣ < ζπ

2

and

∣∣∣∣∣ arg
(
1 +

1
δ

[
(1 − ρ)(1 − τ)

g(w)
w

+ (ρτ + ρ + τ)g′(w) + ρτ
(
wg′′(w) − 2

)
− 1

])∣∣∣∣∣ < ζπ

2
.

Example 2.5. If we let n = 0 and

ϕ(z) =
1 + (1 − 2η)z

1 − z
,

then the class
ΥΣ(δ, ρ, τ, n;ϕ)

reduces to
WS ∗Σ(δ, ρ, τ; η),

which is defined by assuming that f ∈ Σ,

Re
{

1 +
1
δ

[
(1 − ρ)(1 − τ)

f (z)
z

+ (ρτ + ρ + τ) f ′(z) + ρτ
(
z f ′′(z) − 2

)
− 1

]}
> η

and

Re
{

1 +
1
δ

[
(1 − ρ)(1 − τ)

g(w)
w

+ (ρτ + ρ + τ)g′(w) + ρτ
(
wg′′(w) − 2

)
− 1

]}
> η.

The subclassesWSΣ(δ, ρ, τ; ζ) andWS ∗
Σ
(δ, ρ, τ; η) have been investigated by Srivastava and Wanas

[19].
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Example 2.6. If we put n = 0, τ = 0 and

ϕ(z) =

(
1 + z
1 − z

)ζ
,

then the class
ΥΣ(δ, ρ, τ, n;ϕ)

reduces to
BΣ1(δ, ρ; ζ),

which is defined by assuming that f ∈ Σ,∣∣∣∣∣∣arg
(
1 +

1
δ

[
(1 − ρ)

f (z)
z

+ ρ f ′(z) − 1
])∣∣∣∣∣∣ < ζπ

2

and ∣∣∣∣∣∣arg
(
1 +

1
δ

[
(1 − ρ)

g(w)
w

+ ρg′(w) − 1
])∣∣∣∣∣∣ < ζπ

2
,

Example 2.7. If we set n = 0, τ = 0 and

ϕ(z) =
1 + (1 − 2η)z

1 − z
,

then the class
ΥΣ(δ, ρ, τ, n;ϕ)

reduces to
BΣ1(δ, ρ; η),

which is defined by assuming that f ∈ Σ,

Re
(
1 +

1
δ

[
(1 − ρ)

f (z)
z

+ ρ f ′(z) − 1
])
> η

and

Re
(
1 +

1
δ

[
(1 − ρ)

g(w)
w

+ ρg′(w) − 1
])
> η.

Two subclasses BΣ1(δ, ρ; ζ) and BΣ1(δ, ρ; η) have been considered by Srivastava et al. [17].

Example 2.8. By putting n = 0, τ = 0, δ = 1 and

ϕ(z) =

(
1 + z
1 − z

)ζ
,

the class
ΥΣ(δ, ρ, τ, n;ϕ)

AIMS Mathematics Volume 8, Issue 12, 29975–29994.
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reduces to
BΣ(ζ, ρ),

which is defined by assuming that f ∈ Σ,∣∣∣∣∣∣arg
(
(1 − ρ)

f (z)
z

+ ρ f ′(z)
)∣∣∣∣∣∣ < ζπ

2

and ∣∣∣∣∣∣arg
(
(1 − ρ)

g(w)
w

+ ρg′(w)
)∣∣∣∣∣∣ < ζπ

2
.

Example 2.9. If we set n = 0, τ = 0, δ = 1 and

ϕ(z) =
1 + (1 − 2η)z

1 − z
,

then the class
ΥΣ(δ, ρ, τ, n;ϕ)

reduces to
BΣ(η, ρ),

which is defined by assuming that f ∈ Σ,

Re
{

(1 − ρ)
f (z)
z

+ ρ f ′(z)
}
> η

and

Re
{

(1 − ρ)
g(w)

w
+ ρg′(w)

}
> η.

The subclasses BΣ(ζ, ρ) and BΣ(η, ρ) have been introduced and investigated by Frasin and Aouf [8].

Example 2.10. If we set n = 0, τ = 0, δ = 1, ρ = 1 and

ϕ(z) =

(
1 + z
1 − z

)ζ
,

then the class
ΥΣ(δ, ρ, τ, n;ϕ)

reduces to
HΣ(ζ),

which is defined by assuming that f ∈ Σ, ∣∣∣arg
(
f ′(z)

)∣∣∣ < ζπ

2
and ∣∣∣arg

(
g′(w)

)∣∣∣ < ζπ

2
.
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Example 2.11. If we set n = 0, τ = 0, δ = 1, ρ = 1 and

ϕ(z) =
1 + (1 − 2η)z

1 − z
,

then the class
ΥΣ(δ, ρ, τ, n;ϕ)

reduces to
HΣ(η),

which is defined by assuming that f ∈ Σ,

Re { f ′(z)} > η

and

Re {g′(w)} > η.

The subclassesHΣ(ζ) andHΣ(η) have been defined and studied by Srivastava et al. [18].

3. Coefficient estimates for the class ΥΣ(δ, ρ, τ, n;ϕ)

To obtain the key results of this study, we must first recall the following lemma.

Lemma 3.1. (see [6]) If p belongs to P, with p(z) given by (1.2), then |pn| ≤ 2 for any n ∈ N.

Theorem 3.1. Let f (z) ∈ ΥΣ(δ, ρ, τ, n;ϕ) be of the form (1.1). Then,

|a2| ≤ min
[

|δ|J1

(1 + ρ + τ + 5ρτ)(n + 1)
,

√
2|δ|(J1 + |J1 − J2|)

(1 + 2ρ + 2τ + 10ρτ)(n + 1)(n + 2)
,

|δ|J1
√

2J1√
|2(J1 − J2)(1 + ρ + τ + 5ρτ)2(n + 1)2 + δJ2

1(1 + 2ρ + 2τ + 10ρτ)(n + 1)(n + 2)|

]

and

|a3| ≤ min
[ |δ|2J2

1

(1 + ρ + τ + 5ρτ)2(n + 1)2 +
2|δ|J1

(1 + 2ρ + 2τ + 10ρτ)(n + 1)(n + 2)
,

2|δ|(J1 + |J1 − J2|)
(1 + 2ρ + 2τ + 10ρτ)(n + 1)(n + 2)

]
,

where the coefficients J1 and J2 are as in (2.1).

Proof. For f ∈ ΥΣ(δ, ρ, τ, n;ϕ), there exist Schwarz functions ω1, ω2 : D −→ D that are holomorphic
in D, i.e.,

ω1(0) = 0 = ω2(0) and max {|ω1(z)|, |ω2(w)|} < 1,

and satisfying

AIMS Mathematics Volume 8, Issue 12, 29975–29994.
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1 +
1
δ

[
(1 − ρ)(1 − τ)

Rn f (z)
z

+ (ρτ + ρ + τ)(Rn f (z))′ + ρτ
(
z(Rn f (z))′′ − 2

)
− 1

]
= ϕ(ω1(z)) (3.1)

and

1 +
1
δ

[
(1 − ρ)(1 − τ)

Rn f (w)
w

+ (ρτ + ρ + τ)(Rn f (w))′ + ρτ
(
w(Rn f (w))′′ − 2

)
− 1

]
= ϕ(ω2(w)). (3.2)

The main part of the proof depends on the definitions of two functions q1(z) and q2(w), which are
respectively defined by

q1(z) =
1 + ω1(z)
1 − ω1(z)

= 1 + b1z + b2z2 + · · · (3.3)

and
q2(w) =

1 + ω2(w)
1 − ω2(w)

= 1 + c1w + c2w2 + · · · . (3.4)

Or, in other words,

ω1(z) =
q1(z) − 1
q1(z) + 1

=
1
2

(
b1z +

(
b2 −

b2
1

2

)
z2 + · · ·

)
, (3.5)

and

ω2(w) =
q2(w) − 1
q2(w) + 1

=
1
2

(
c1w +

(
c2 −

c2
1

2

)
w2 + · · ·

)
. (3.6)

Subsequently, q1 and q2 are holomorphic functions within the domain D, characterized by positive
real parts, and both q1(0) and q2(0) equal to 1. Therefore, applying Lemma 3.1, we have that |bn| ≤ 2
and |cn| ≤ 2 for all n ∈ N. Now, since

Rn f (z)
z

= 1 + σ(n, 2)a2z + σ(n, 3)a3z2 + · · · , (3.7)

(Rn f (z))′ = 1 + 2σ(n, 2)a2z + 3σ(n, 3)a3z2 + · · · , (3.8)

z(Rn f (z))′′ = 2σ(n, 2)a2z + 6σ(n, 3)a3z2 + · · · , (3.9)

Rng(w)
w

= 1 − σ(n, 2)a2w + σ(n, 3)(2a2
2 − a3)w2 − · · · , (3.10)

(Rng(w))′ = 1 − 2σ(n, 2)a2w + 3σ(n, 3)(2a2
2 − a3)w2 − · · · (3.11)
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and

w(Rng(w))′′ = −2σ(n, 2)a2w + 6σ(n, 3)(2a2
2 − a3)w2 + · · · , (3.12)

clearly, we get

1 +
1
δ

[
(1 − ρ)(1 − τ)

Rn f (z)
z

+ (ρτ + ρ + τ)(Rn f (z))′ + ρτ
(
z(Rn f (z))′′ − 2

)
− 1

]
= 1 +

(1 + ρ + τ + 5ρτ)
δ

σ(n, 2)a2z +
(1 + 2ρ + 2τ + 10ρτ)

δ
σ(n, 3)a3z2 + · · ·

(3.13)

and

1 +
1
δ

[
(1 − ρ)(1 − τ)

Rn f (w)
w

+ (ρτ + ρ + τ)(Rn f (w))′ + ρτ
(
w(Rn f (w))′′ − 2

)
− 1

]
= 1 −

(1 + ρ + τ + 5ρτ)
δ

σ(n, 2)a2w +
(1 + 2ρ + 2τ + 10ρτ)

δ
σ(n, 3)(2a2

2 − a3)w2 − · · · .

(3.14)

We also find that

ϕ (ω1(z)) = ϕ

(
q1(z) − 1
q1(z) + 1

)
= 1 +

1
2

J1b1z +

(
1
2

J1

(
b2 −

b2
1

2

)
+

1
4

J2b2
1

)
z2 + · · · (3.15)

and

ϕ (ω2(w)) = ϕ

(
q2(w) − 1
q2(w) + 1

)
= 1 +

1
2

J1c1w +

(
1
2

J1

(
c2 −

c2
1

2

)
+

1
4

J2c2
1

)
w2 + · · · . (3.16)

Now, by equating the coefficients in (3.13), (3.14), (3.15) and (3.16), we get

(1 + ρ + τ + 5ρτ)
δ

σ(n, 2)a2 =
1
2
J1b1, (3.17)

(1 + 2ρ + 2τ + 10ρτ)
δ

σ(n, 3)a3 =
1
2
J1

(
b2 −

b2
1

2

)
+

1
4
J2b2

1, (3.18)

−
(1 + ρ + τ + 5ρτ)

δ
σ(n, 2)a2 =

1
2
J1c1 (3.19)

and

(1 + 2ρ + 2τ + 10ρτ)
δ

σ(n, 3)(2a2
2 − a3) =

1
2
J1

(
c2 −

c2
1

2

)
+

1
4
J2c2

1. (3.20)
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From (3.17) and (3.19), it follows that

b1 = −c1 (3.21)

and

2(1 + ρ + τ + 5ρτ)2

δ2 (σ(n, 2))2a2
2 =

1
4
J

2
1(b2

1 + c2
1). (3.22)

In this step, we take the absolute value of (3.22) and apply Lemma 3.1 for b1 and c1 to deduce that

|a2| ≤
|δ|J1

(1 + ρ + τ + 5ρτ)(n + 1)
. (3.23)

By adding (3.18) and (3.20), we have

2(1 + 2ρ + 2τ + 10ρτ)
δ

σ(n, 3)a2
2 =

1
2
J1(b2 + c2) −

1
4
J1(b2

1 + c2
1) +

1
4
J2(b2

1 + c2
1) (3.24)

Through further computations on (3.24), and by using Lemma 3.1 for the coefficients b1, b2, c1 and
c2, we get that

|a2| ≤

√
2|δ|(J1 + |J1 − J2|)

(1 + 2ρ + 2τ + 10ρτ)(n + 1)(n + 2)
. (3.25)

On the other hand, by applying (3.22) in (3.24) we obtain

2(1 + 2ρ + 2τ + 10ρτ)
δ

σ(n, 3)a2
2 =

1
2
J1(b2 + c2) −

2(J1 − J2)((1 + ρ + τ + 5ρτ)2(σ(n, 2))2a2
2

J2
1δ

2
,

or, equivalently,

a2
2 =

2J3
1δ

2(b2 + c2)

[2(J1 − J2)(1 + ρ + τ + 5ρτ)2(n + 1)2 + δJ2
1(1 + 2ρ + 2τ + 10ρτ)(n + 1)(n + 2)]

. (3.26)

Next, we take the absolute value of (3.26) and, once again, utilize Lemma 3.1 for the coefficients b2

and c2 to derive

|a2| ≤
|δ|J1

√
2J1√

|2(J1 − J2)(1 + ρ + τ + 5ρτ)2(n + 1)2 + δJ2
1(1 + 2ρ + 2τ + 10ρτ)(n + 1)(n + 2)|

. (3.27)

Now from (3.23), (3.25) and (3.27), we can find the bound for |a2|.

We now need to determine an upper bound for |a3|. To do this, we subtract equation (3.20) from
equation (3.18) and apply equation (3.21), resulting in

2(1 + 2ρ + 2τ + 10ρτ)
δ

σ(n, 3)a3 −
2(1 + 2ρ + 2τ + 10ρτ)

δ
σ(n, 3)a2

2 =
1
2
J1(b2 − c2) (3.28)
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Now, we substitute the value of a2
2 from (3.22) into (3.28), to get

a3 =
J2

1δ
2(b2

1 + c2
1)

8(1 + ρ + τ + 5ρτ)2(n + 1)2 +
J1δ(b2 − c2)

4(1 + 2ρ + 2τ + 10ρτ)(n + 1)(n + 2)
, (3.29)

Once more, we calculate the absolute value of (3.29) and utilize Lemma 3.1 for the coefficients b1,
b2, c1, and c2 to deduce that

|a3| ≤
|δ|2J2

1

(1 + ρ + τ + 5ρτ)2(n + 1)2 +
2|δ|J1

(1 + 2ρ + 2τ + 10ρτ)(n + 1)(n + 2)
. (3.30)

Similarly, if we use (3.24) in (3.28), we obtain

2(1 + 2ρ + 2τ + 10ρτ)
δ

σ(n, 3)a3 =
1
2
J1(b2 + c2) −

1
4
J1(b2

1 + c2
1)

+
1
4
J2(b2

1 + c2
1) +

1
2
J1(b2 − c2).

(3.31)

Further computation on (3.31) yields that

a3 =
δ[2J1(b2 + b2) − J1(b2

1 + c2
1) + J2(b2

1 + c2
1)]

8(1 + 2ρ + 2τ + 10ρτ)(n + 1)(n + 2)
. (3.32)

Finally, by taking the absolute value of (3.32) and employing Lemma 3.1 once more for the
coefficients b1, b2 and c1, we can firmly establish that

|a3| ≤
2|δ|[J1 + |J1 − J2|]

(1 + 2ρ + 2τ + 10ρτ)(n + 1)(n + 2)
. (3.33)

Now, from (3.30) and (3.33), we can find the bound for |a3|. �

4. Corollaries and consequences

In this section, we consider some Ma-Minda type functions, ϕ(z), which provide several corollaries
for the scenario that 0 ≤ J2 ≤ J1.

If we put

ϕ(z) =
1 + Az
1 + Bz

in Theorem 3.1, then Corollary 4.1 can be obtained.

Corollary 4.1. If f (z) ∈ ΥΣ(δ, ρ, τ, n; A,B) is given by (1.1), then

|a2| ≤ min
[

|δ|(A − B)
(1 + ρ + τ + 5ρτ)(n + 1)

,

√
2|δ|(2 + B)(A − B)

(1 + 2ρ + 2τ + 10ρτ)(n + 1)(n + 2)
,

√
2|δ|(A − B)√

|2(1 + B)(1 + ρ + τ + 5ρτ)2(n + 1)2 + δ(A − B)(1 + 2ρ + 2τ + 10ρτ)(n + 1)(n + 2)|

]
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and

|a3| ≤ min
[

|δ|2(A − B)2

(1 + ρ + τ + 5ρτ)2(n + 1)2 +
2|δ|(A − B)

(1 + 2ρ + 2τ + 10ρτ)(n + 1)(n + 2)
,

2|δ|(2 + B)(A − B)
(1 + 2ρ + 2τ + 10ρτ)(n + 1)(n + 2)

]
.

If we set

ϕ(z) =

(
1 + z
1 − z

)ζ
in Theorem 3.1, then Corollary 4.2 can be obtained.

Corollary 4.2. If f (z) ∈ QΣ1(δ, ρ, τ, n; ζ) is given by (1.1), then

|a2| ≤ min
[ 2|δ|ζ
(1 + ρ + τ + 5ρτ)(n + 1)

,

√
4|δ|ζ(2 − ζ)

(1 + 2ρ + 2τ + 10ρτ)(n + 1)(n + 2)
,

2|δ|ζ√
|(1 − ζ)(1 + ρ + τ + 5ρτ)2(n + 1)2 + δζ(1 + 2ρ + 2τ + 10ρτ)(n + 1)(n + 2)|

]
and

|a3| ≤ min
[ 4|δ|2ζ2

(1 + ρ + τ + 5ρτ)2(n + 1)2 +
4|δ|ζ

(1 + 2ρ + 2τ + 10ρτ)(n + 1)(n + 2)
,

4|δ|ζ(2 − ζ)
(1 + 2ρ + 2τ + 10ρτ)(n + 1)(n + 2)

]
.

Remark 4.1. The bounds for |a2| and |a3| obtained in Corollary 4.2 are improvements of the results
that are given in [14, Corollary 5].

If we put

ϕ(z) =
1 + (1 − 2η)z

1 − z
in Theorem 3.1, then Corollary 4.3 can be obtained.

Corollary 4.3. If f (z) ∈ ΘΣ1(δ, ρ, τ, n; η) is given by (1.1), then

|a2| ≤ min
[ 2|δ|(1 − η)
(1 + ρ + τ + 5ρτ)(n + 1)

,

√
4|δ|(1 − η)

(1 + 2ρ + 2τ + 10ρτ)(n + 1)(n + 2)

]
and

|a3| ≤
4|δ|(1 − η)

(1 + 2ρ + 2τ + 10ρτ)(n + 1)(n + 2)
.

By setting n = 0 and

ϕ(z) =

(
1 + z
1 − z

)ζ
in Theorem 3.1, Corollary 4.4 can be obtained.
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Corollary 4.4. If f (z) ∈ WSΣ(δ, ρ, τ; ζ) is given by (1.1), then

|a2| ≤ min
[ 2|δ|ζ
1 + ρ + τ + 5ρτ

,

√
2|δ|ζ(2 − ζ)

1 + 2ρ + 2τ + 10ρτ
,

2|δ|ζ√
|(1 − ζ)(1 + ρ + τ + 5ρτ)2 + 2δζ(1 + 2ρ + 2τ + 10ρτ)|

]
and

|a3| ≤ min
[ 4|δ|2ζ2

(1 + ρ + τ + 5ρτ)2 +
2|δ|ζ

1 + 2ρ + 2τ + 10ρτ
,

2|δ|ζ(2 − ζ)
1 + 2ρ + 2τ + 10ρτ

]
.

Remark 4.2. The upper bounds for |a2| and |a3| that are obtained in Corollary 4.4 are improvements
of the results that are given in [19, Corollary 2.1].

If we set n = 0 and
ϕ(z) =

1 + (1 − 2η)z
1 − z

in Theorem 3.1, Corollary 4.5 can be obtained.

Corollary 4.5. If f (z) ∈ WS ∗
Σ
(δ, ρ, τ; η) is given by (1.1), then

|a2| ≤ min
[ 2|δ|(1 − η)
1 + ρ + τ + 5ρτ

,

√
2|δ|(1 − η)

1 + 2ρ + 2τ + 10ρτ

]
and

|a3| ≤
2|δ|(1 − η)

1 + 2ρ + 2τ + 10ρτ
.

Remark 4.3. The bound for |a2| obtained in Corollary 4.5 is smaller than the bound obtained in [19,
Corollary 3.1] because

2|δ|(1 − η)
1 + ρ + τ + 5ρτ

≤

√
2|δ|(1 − η)

1 + 2ρ + 2τ + 10ρτ
; η ≥

(1 + ρ + τ + 5ρτ)2

2|δ|(1 + 2ρ + 2τ + 10ρτ)
.

Also, the upper bound on |a3| given in Corollary 4.5 is smaller than the upper bound given in [19,
Corollary 3.1] because

2|δ|(1 − η)
1 + 2ρ + 2τ + 10ρτ

≤
2|δ|(1 − η)

1 + 2ρ + 2τ + 10ρτ
+

4|δ|2(1 − η)2

1 + ρ + τ + 5ρτ
.

By setting n = 0, τ = 0, δ = 1 and

ϕ(z) =

(
1 + z
1 − z

)ζ
in Theorem 3.1, Corollary 4.6 can be obtained.
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Corollary 4.6. If f (z) ∈ BΣ(ζ, ρ) is given by (1.1), then

|a2| ≤ min
[ 2ζ
1 + ρ

,

√
2ζ(2 − ζ)

1 + 2ρ
,

2ζ√
(1 − ζ)(1 + ρ)2 + 2ζ(1 + 2ρ)

]
and

|a3| ≤ min
[ 4ζ2

(1 + ρ)2 +
2ζ

1 + 2ρ
,

2ζ(2 − ζ)
1 + 2ρ

]
.

Remark 4.4. The upper bounds for |a2| and |a3| obtained in Corollary 4.6 are improvements of the
results that are given in [8, Theorem 2.2].

By setting n = 0, τ = 0, δ = 1 and

ϕ(z) =
1 + (1 − 2η)z

1 − z

in Theorem 3.1, Corollary 4.7 can be obtained.

Corollary 4.7. If f (z) ∈ BΣ(η, ρ) is given by (1.1), then

|a2| ≤ min
[2(1 − η)

1 + ρ
,

√
2(1 − η)
1 + 2ρ

]
and

|a3| ≤
2(1 − η)
1 + 2ρ

.

Remark 4.5. The upper bound for |a2| obtained in Corollary 4.7 is more accurate than the upper bound
obtained in [8, Theorem 3.2] since

2(1 − η)
1 + ρ

≤

√
2(1 − η)
1 + 2ρ

; η ≥ 1 −
(1 + ρ)2

1 + 2ρ
.

Also, the upper bound of |a3| obtained in Corollary 4.7 is smaller than the upper bound obtained
in [8, Theorem 3.2], since

2(1 − η)
1 + 2ρ

≤
2(1 − η)
1 + 2ρ

+
4(1 − η)2

(1 + ρ)2 .

By setting n = 0, τ = 0, ρ = 1, δ = 1 and

ϕ(z) =

(
1 + z
1 − z

)ζ
in Theorem 3.1, Corollary 4.8 can be obtained.
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Corollary 4.8. Let f (z) ∈ HΣ(ζ) be given by (1.1); then,

|a2| ≤ min
[
ζ,

√
2
3
ζ(2 − ζ),

2ζ√
4 + 2ζ

]
and

|a3| ≤ min
[
ζ

(
2
3

+ ζ

)
,

2
3
ζ (2 − ζ)

]
.

Remark 4.6. The upper bounds for |a2| and |a3| obtained in Corollary 4.8 are improvements of the
upper bounds obtained in [18, Theorem 1].

If we set n = 0, τ = 0, ρ = 1, δ = 1 and

ϕ(z) =
1 + (1 − 2η)z

1 − z
in the Theorem 3.1, Corollary 4.9 can be obtained.

Corollary 4.9. If f (z) ∈ HΣ(η) is given by (1.1), then

|a2| ≤ min
[
1 − η,

√
2
3

(1 − η)
]

and

|a3| ≤
2
3

(1 − η).

Remark 4.7. The upper bound for |a2| obtained in Corollary 4.9 is more accurate than the upper bound
obtained in [18, Theorem 2] since

1 − η ≤

√
2
3

(1 − η); η ≥
1
3
.

Also, the upper bound on |a3| given in Corollary 4.9 is smaller than the upper bound given in [18,
Theorem 2] because

2
3

(1 − η) ≤
(1 − η)(5 − 3η)

3
.

5. Conclusions

In the present paper, we have successfully established estimates for the Taylor-Maclaurin
coefficients of functions within a novel general subclass, denoted as ΥΣ(δ, ρ, τ, n;ϕ), which pertains to
bi-univalent functions within the open unit disk. Notably, our results exhibit superior accuracy
compared to prior research efforts, and they serve to both generalize and enhance the outcomes
achieved by previous researchers. It is worth noting that, under specific conditions, the derived bounds
are even more stringent than those put forth in earlier studies. Moreover, the article sheds light on the
significant implications that emerge when specific parameterizations are applied within this subclass.

In conclusion, the field of normalized analytic and bi-univalent functions, revived by Srivastava et al.
[18], continues to expand in various directions, including q-analysis and q-theory. We support q-results
and their potential extensions to the defined class. Our investigation also encourages further research,
aligning with recent developments for our function class that were focused on finding the upper bounds
of Hankel and Toeplitz determinants, as well as works related to the Fekete-Szegö functional.
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