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1. Introduction

In the past few decades, fractional partial differential equations (FPDEs) have received extensive
attention in studies of nonlinear fields such as physics, science, biology, chemistry, mathematics,
electronics, viscoelasticity, signal processing and soft materials. Obtaining the exact solutions of
nonlinear FPDEs is one of the most significant goals of the research process for FPDEs. A large number
of papers have presented many effective methods for constructing explicit solutions of FPDEs, such
as Lie symmetry analysis [1–5], the Laplace transform [6], the Adomian decomposition method [7],
the variational iteration method [8], the homotopy analysis method [9], the separation of variables
method [10], the invariant subspace method [11], the extended direct algebraic method [12], Chebyshev
series method [13], etc.

Lie symmetry analysis is a very useful tool in constructing exact solutions for nonlinear partial
differential equations (PDEs). As a result of applying the Lie symmetry method, many kinds of
exact solutions for integer-order PDEs have been obtained, such as similarity solutions, fundamental
solutions and traveling wave solutions [14, 15]. Inspired by the Lie symmetry of integer-order PDEs,
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researchers have extended and applied the Lie symmetry method to investigate FPDEs and constructed
the group invariant solutions for numerous FPDEs. For example, Hu et al. [16] studied the exact
solutions for the time-fractional KdV-type equation. Leo et al. [17] provided a general theoretical
framework to extend the classical Lie theory for PDEs to the case of equations of fractional order. Wang
et al. [18] performed Lie symmetry analysis on the time-fractional Harry Dym equation and constructed
group invariant solutions. Lashkarian et al. [19] considered the Lie group analysis and obtained the
explicit solutions of the time-fractional cylindrical Burgers equation. In addition, Erdélyi-Kober (E-
K) fractional differential operators [17] can be used to establish the exact solutions for FPDEs; for
instance, Cheng and Wang [20] constructed the power-series solutions to (2+1)-dimensional time-
fractional Navier-Stokes equation by using an E-K fractional differential operator. In [21], Zhang
and Li achieved explicit solutions to the time-fractional b-family peakon equations, which contain the
mixed derivative that encompasses the time-fractional derivative and integer-order x-derivative.

Conservation laws play an important role in mathematical physics as a means to study some
properties of solutions to nonlinear PDEs, and they can describe the invariable properties of the
values of some physical models in nature, such as momentum, energy, mass, potential energy, electric
charge and so on. It is well-known that Noether’s theorem establishes a close connection between Lie
symmetries and the conservation laws of PDEs [22]. Ibragimov presented a new conservation theorem
in [23], and he obtained the conservation laws for PDEs without classical Lagrange equations. In recent
years, Lie symmetry analysis and the conservation laws for many PDEs have been discussed, such
as those for various wave equations [24], reaction-diffusion equations [25], the Rosenau-KdV-RLW
equation [26], time-fractional Cahn-Allen and Klein-Gordon equations [27] and the time-fractional
Caudrey-Dodd-Gibbon-Sawada-Kotera equation [28].

Nonlinear equations take the form∑
(i)

ai(u, ux, · · · )Di
tL[u] =

∑
( j)

b j(u, ux, · · · )D j
xL[u],

with arbitrary coefficients ai(·), b j(·) and annihilating operator L = I + d2

dx2 , and they are
called tautological PDEs [29], which are also referred to as multi-term time-fractional differential
equations. Motivated by [21], in this paper, we focus on the study of multi-term time-fractional
equations, particularly the time-fractional Benjamin-Bona-Mahony-Peregrine (BBMP) equation and
time-fractional Novikov equation, respectively. The BBMP equation first proposed by Peregrine [30]
was derived from the Korteweg-de Vries equation. The BBMP equation is commonly used to study
long waves in the shallow water of ocean beaches, drift waves in plasma and the Rossby waves in
rotating fluids [31]. The BBMP equation is also known as the regularized long-wave equation. This
paper focuses on the time-fractional BBMP equation, which has the following form:

∂αt u − ∂αt (uxx) − uux = 0, (1.1)

where 0 < α < 1, u = u(x, t) is the unknown function, x ∈ R is a space variable and t > 0 is the
time variable. In particular, when α = 1, Eq (1.1) reduces to the classical BBMP equation, which
has a wide range of applications in the development of optical equipment, semiconductors [32], etc.
Khalique [33] utilized Lie group analysis to obtain the periodic solutions and soliton solutions and
derived the conservation laws for the classical BBMP equation.
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The Novikov equation is an extremely classical integrable evolution equation, which is thought to be
a generalization of the Camassa-Holm equation and originally discovered by Vladimir Novikov [34],
who has used it to describe fluid motion in shallow water environments. In [34], Novikov discovered
the first few symmetries and studied a scalar Lax pair of the equation. In this paper, we pay attention
to the time-fractional Novikov equation, which is given by

∂αt u − ∂αt (uxx) + 4u2ux − 3uuxuxx − u2uxxx = 0, (1.2)

where 0 < α < 1 and u = u(x, t) is the unknown function of space variable x and time variable t.
In view of the non-locality property of fractional derivatives, time-fractional PDEs can be used to

describe problems with memory effects and genetic characteristics in real life. Thus, there is practical
significance in a study of the time-fractional equations given by Eqs (1.1) and (1.2). To our knowledge,
equations containing a time fractional-order mixed derivative and spatial integer-order derivative have
rarely been studied, while Eqs (1.1) and (1.2) are such equations. Therefore, in this paper, we will
construct the exact solutions of Eqs (1.1) and (1.2) through the use of Lie symmetry analysis and
symmetry reduction. Moreover, in view of the difficulty in solving ordinary differential equations
(ODEs), we introduce the E-K fractional differential operator to transform Eqs (1.1) and (1.2) into
ODEs with only a single variable, and we obtain their power series solutions. In addition, the q-
homotopy analysis method and invariant subspace method may be used to discuss the exact solutions
of the time-fractional equations given by Eqs (1.1) and (1.2), while, in this paper, we take no account
of these methods.

This paper is organized as follows. In Section 2, we will give some basic knowledge and properties
of fractional calculus. Section 3 is fully dedicated to obtaining the Lie symmetry groups and exact
solutions of the time-fractional BBMP equation and time-fractional Novikov equation. First, we will
introduce the Lie symmetry method for general time-fractional PDEs with the Riemann-Liouville
derivative. Next, infinitesimal generators for Eqs (1.1) and (1.2) will be constructed, respectively.
Then, based on the obtained Lie algebras, we perform symmetry reduction and obtain the group-
invariant solutions of the equations under consideration. In addition, by using the E-K fractional
differential operator, the power-series solutions for Eqs (1.1) and (1.2) is also constructed. In Section 4,
conservation laws for the time-fractional BBMP equation are obtained. At last, we will show the
conclusion of this paper.

2. Preliminaries

The purpose of this section is to review some basic properties of the Riemann-Liouville fractional
integral and derivative [35], which will be used throughout this paper. Meanwhile, we will give the
definition of the E-K fractional differential operator [17].

Definition 2.1. [35] The αth-order Riemann-Liouville integral operator of v(t) is defined by

Iαt v(t) =
1

Γ(α)

∫ t

0
(t − s)α−1v(s)ds, (2.1)

where Γ(x) =
∫ ∞

0
e−zzx−1dz is the gamma function.

Definition 2.2. [35] The symbol ∂αt u represents the αth-order Riemann-Liouville derivative, denoted
as
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∂αt u =


∂nu
∂tn , α = n,

1
Γ(n − α)

∂n

∂tn

∫ t

0
(t − s)n−α−1u(x, s)ds, 0 < n − 1 < α < n,

(2.2)

where u = u(x, t) is the function of the space variable x and time variable t, and ∂n

∂tn is the nth-order
integer derivative. Moreover, the Riemann-Liouville derivative can be expressed as

∂αt u = Dn(In−α
t )u, (2.3)

where D is the differential operator and n = [α] + 1.

Definition 2.3. [35] The adjoint operator (∂αt )∗ of the Riemann-Liouville fractional differential
operator ∂αt is given by

(∂αt )∗ f (t) = (−1)nIn−α dn

dtn f (t) =
(−1)n

Γ(n − α)

∫ t

0
(t − s)n−α−1 dn

dsn f (s)ds, (2.4)

where In−α denotes the Riemann-Liouville integral operator.

Definition 2.4. [17] The E-K fractional differential operator Pτ,αβ of order α is defined by

(Pτ,αβ F)(ξ) =

m−1∏
j=0

(
τ + j −

1
β
ξ

d
dξ

)
(K τ+α,m−α

β F)(ξ), (2.5)

where

m =

[α] + 1, α < N,

α, α ∈ N,

and

(K τ,α
β F)(ξ) =


1

Γ(α)

∫ ∞

1
(v − 1)α−1v−(τ+α)F(ξv

1
β )dv, α > 0,

F(ξ), α = 0.
(2.6)

Lemma 2.1. [36] Let 0 < γ ≤ 1 and k1 ∈ R. The solution of the fractional ODE

∂
γ
t g(t) = 0

is given by
g(t) = k1tγ−1.

3. Lie symmetry and group-invariant solutions

3.1. Lie symmetry for time-fractional PDEs

Consider the symmetry group for a time-fractional PDE of the following form:

F(∂αt u, ∂αt (uxx), t, x, u, ux, uxx, · · · ) = 0, 0 < α < 1, (3.1)
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where u = u(x, t) denotes the unknown function of the space variable x and time variable t. Suppose
that Eq (3.1) remains invariant under the one-parameter Lie group of infinitesimal transformations
given by 

x∗ = x + εξ(x, t, u) + o(ε2),
t∗ = t + ετ(x, t, u) + o(ε2),
u∗ = u + εη(x, t, u) + o(ε2),

where ε � 1 is the group parameter and ξ, τ and η are smooth functions called infinitesimal generators.
The admitted one-parameter Lie group of infinitesimal transformation has the following form:

V = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
. (3.2)

The Lie invariance criterion for time-fractional PDE (3.1) is

Pr(α,n)V(∆)|∆=0 = 0, (3.3)

where ∆ = F(∂αt u, ∂αt (uxx), t, x, u, ux, uxx, · · · ) and n is a nonnegative integer.
The operator Pr(α,n)V denotes the prolongation of field vector V, and it is defined by

Pr(α,n)V = V + ηα,t
∂

∂(∂αt u)
+ ηα,xx ∂

∂(∂αt uxx)
+ ηx ∂

∂ux
+ ηxx ∂

∂uxx
+ · · · , (3.4)

where
ηα,t = Dα

t (η) + ξDα
t (ux) − Dα

t (ξux) + Dα
t (u(Dtτ)) − Dα+1

t (τu) + τDα+1
t (u),

ηα,xx = Dα
t (D2

x(η − ξux − τut)) + ξ∂αt (uxxx) + τ∂αt (utxx),
ηx = Dx(η − ξux − τut) + ξuxx + τutx,

ηxx = Dxx(η − ξux − τut) + ξuxxx + τutxx,

...

(3.5)

In Eq (3.5), Dt and Dx represent the total derivatives, respectively given by

Dt =
∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut
+ uxt

∂

∂ux
+ · · · ,

Dx =
∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ utx

∂

∂ut
+ · · · .

(3.6)

The αth-order extended infinitesimal ηα,t given by Eq (3.5) can be expressed as follows [37]:

ηα,t =∂αt η + (ηu − αDt(τ))∂αt u − u∂αt ηu −

∞∑
n=1

(
α

n

)
Dn

t (ξ)Dα−n
t (ux)

+

∞∑
n=1

((
α

n

)
∂αt ηu −

(
α

n + 1

)
Dn+1

t (τ)
)

Dα−n
t (u) + µα,

(3.7)

where

µα =

∞∑
n=2

n∑
m=2

m∑
k=2

k−1∑
r=0

(
α

n

) (
n
m

) (
k
r

)
1
k!

tn−α

Γ(n + 1 − α)
(−u)r ×

∂m

∂tm (uk−r)
∂n−m+kη

∂tn−m∂uk
(3.8)
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and (
n
k

)
=

n(n − 1) · · · (n − k + 1)
k!

.

Similarly, the expression of ηα,xx is defined by [21]

ηα,xx =∂αt (ηxx + (2ηux − ξxx)ux − τxxut + (ηuu − 2ξux)u2
x − ξuuu3

x − 2τuxuxut

− τuuu2
xut) + ∂αt (uxx)(ηu − αDt(τ) − 2ξx − τuut − 3ξuux)

+

∞∑
n=1

((
α

n

)
Dn

t (ηu − 2ξx − τuut − 3ξuux) −
(
α

n + 1

)
Dn+1

t (τ)
)
∂α−n

t (uxx)

− 2
∞∑

n=0

(
α

n

)
Dn

t Dx(τ)∂α−n
t (uxt) −

∞∑
n=1

(
α

n

)
Dn

t (ξ)∂α−n
t (uxx).

(3.9)

3.1.1. Time-fractional BBMP equation

In this subsection, through the Lie symmetry analysis given in Section 3.1, we obtain the Lie
symmetry group and infinitesimal generators of the time-fractional BBMP equation given by Eq (1.1).

Theorem 3.1. The Lie point symmetries admitted by Eq (1.1) are

V1 =
∂

∂x
, V2 = t

∂

∂t
− αu

∂

∂u
. (3.10)

Proof. In view of the Lie symmetry analysis given in Section 3.1, the Lie invariance criterion for
Eq (1.1) is

(ηα,t − ηα,xx − uηx − uxη)|(1.1) = 0. (3.11)

Inserting Eqs (3.5), (3.7) and (3.9) into the invariance condition given by Eq (3.11) and equating the
coefficients of the partial derivatives ut, ux, uxx, · · · , fractional derivatives ∂α−n

t u, ∂α−n
t ux, ∂αt uxx · · ·

and powers of u, we can obtain the following over determined equations:

ξx = ξt = ξu = τx = τu = 0,(
α

n

)
∂n

t ηu −

(
α

n + 1

)
Dn+1

t τ = 0, ∀n ∈ N,

η + αuDtτ = 0,
∂αt η − u∂αt ηu − uηx = 0.

(3.12)

Solving Eq (3.12), the infinitesimal generators can be expressed as follows:

ξ = C1, τ = C2t + C3, η = −αuC2, (3.13)

where Ci (i = 1, 2, 3) are arbitrary constants. Moreover, noticing that the initial condition

τ(t, x, u)|t=0 = 0 (3.14)

holds for all time-fractional PDEs, the vector fields of Eq (1.1) can be expressed in the form of
Eq (3.10). �

AIMS Mathematics Volume 8, Issue 12, 30038–30058.



30044

3.1.2. Time-fractional Novikov equation

This subsection is devoted to the investigation of Lie point symmetry of the time-fractional Novikov
equation given by Eq (1.2).

Theorem 3.2. Lie algebras admitted by the fractional Novikov equation expressed as Eq (1.2) are
spanned by the following vector fields:

V1 =
∂

∂x
, V2 = 2t

∂

∂t
− αu

∂

∂u
. (3.15)

Proof. The invariance criterion given by Eq (3.3) of Eq (1.2) can be represented in the following form:

(ηα,t − ηα,xx + (4u2 − 3uuxx)ηx − 3uuxη
xx − u2ηxxx + (8uux − 3uxuxx − 2uuxxx)η)|(1.2) = 0, (3.16)

where ηα,t, ηα,xx, ηx, ηxx and ηxxx are defined by Eqs (3.5), (3.7) and (3.9).
Equating the coefficients of fractional derivatives, partial derivatives and various powers of u to be

zero, the over determined equations can be constructed as follows:

ξx = ξt = ξu = τx = τu = 0,(
α

n

)
∂n

t ηu −

(
α

n + 1

)
Dn+1

t τ = 0, ∀n ∈ N,

∂αt η − u∂αt ηu + 4u2ηx − u2ηxxx = 0,
αuτt + 2η = 0.

(3.17)

Solving the above over determined equation given by Eq (3.17), we can deduce that

ξ = C1, τ = 2tC2 + C3, η = −αuC2, (3.18)

where C1, C2 and C3 are arbitrary parameters.
In view of the initial condition τ(t, x, u)|t=0 = 0, the infinitesimal generators of Eq (1.2) are given by

Eq (3.15). �

3.2. Symmetry reductions and group-invariant solutions

In the previous section, we obtained the infinitesimal generators for the time-fractional BBMP
equation and Novikov equation. In this section, we are ready to perform symmetry reductions and
construct their exact solutions. Moreover, the power-series solutions are also obtained through the use
of the E-K fractional differential operator.

3.2.1. Similarity reduction and exact solutions of Eq (1.1)

In this subsection, we perform the similarity reduction of the time-fractional BBMP equation given
by Eq (1.1), and then the exact solutions are calculated correspondingly.

Case 1. V1 = ∂
∂x . According to the characteristic equation of Eq (1.1), i.e.,

dt
0

=
dx
1

=
du
0
,
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we deduce two independent similarity variables t and u. Thus we get the group-invariant solution of
Eq (1.1) with the form u(x, t) = g(t), where g(t) satisfies the fractional ODE

∂αt g(t) = 0.

By virtue of Lemma 2.1, we obtain
g(t) = k1tα−1. (3.19)

Therefore, the group-invariant solution of Eq (1.1) is

u(x, t) = k1tα−1. (3.20)

Case 2. V2 = t ∂
∂t − αu ∂

∂u . Considering the characteristic equation

dt
t

=
dx
0

=
du
−αu

,

the similarity variables x and tαu are obtained. Thus the group-invariant solution of Eq (1.1) is

u(x, t) = t−αg(x), (3.21)

where g(x) satisfies the equation
gg′

g − g′′
=

Γ(1 − α)
Γ(1 − 2α)

.

Solving the above equation, we find that

g(x) = C +
Γ(1 − α)
Γ(1 − 2α)

x (3.22)

and C is an arbitrary constant.
Plugging Eq (3.22) into Eq (3.21) yields the following exact solution of Eq (1.1):

u(x, t) = Ct−α +
Γ(1 − α)
Γ(1 − 2α)

t−αx. (3.23)

Case 3. V3 = ρV1+V2 = ρ ∂
∂x +t ∂

∂t−αu ∂
∂u , where ρ is a nonzero constant. In this case, we consider the

power-series solution with the help of E-K fractional operators for Eq (1.1). Solving the characteristic
equation

dt
t

=
dx
ρ

=
du
−αu

leads to the similarity variables
ξ = ext−ρ, u = t−αg(ξ), (3.24)

where g is an undetermined function with a new independent variable ξ = ext−ρ. Thus, one can obtain
the following theorem.

Theorem 3.3. The similarity transformations given by Eq (3.24) reduce the BBMP equation given by
Eq (1.1) to the following form:(

P
1−2α,α
1
ρ

g
)

(ξ) − ξ
(
P

1−2α−ρ,α
1
ρ

g′
)

(ξ) − ξ2
(
P

1−2α−2ρ,α
1
ρ

g′′
)

(ξ) − ξgg′ = 0. (3.25)
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Proof. Based on the definition of the Riemann-Liouville derivative given by Eq (2.2), we have

∂αt u =
1

Γ(1 − α)
∂

∂t

∫ t

0
(t − s)−αs−αg(exs−ρ)ds. (3.26)

Setting v = t
s , and due to Eqs (2.5) and (2.6), Eq (3.26) can be written as

∂αt u =
∂

∂t

[
t1−2α 1

Γ(1 − α)

∫ ∞

1
(v − 1)−αv2α−2g(ξvρ)dξ

]
=
∂

∂t

[
t1−2α

(
K

1−α, 1−α
1
ρ

g
)

(ξ)
]

= t−2α
(
1 − 2α − ρξ

d
dξ

) (
K

1−α, 1−α
1
ρ

g
)

(ξ)

= t−2α
(
P

1−2α, α
1
ρ

g
)

(ξ).

(3.27)

As for ∂αt (uxx), we have
∂αt uxx = ∂αt (t−αξg′(ξ)) + ∂αt (t−αξ2g′′(ξ)). (3.28)

On one hand, similar to Eqs (3.26) and (3.27), one obtains

∂αt (t−αξg′(ξ)) =
∂

∂t

[
ex

Γ(1 − α)

∫ t

0
(t − s)−αs−α−ρg′(exs−ρ)ds

]
=
∂

∂t

[
1

Γ(1 − α)
t1−2αξ

∫ ∞

1
(v − 1)−αv2α+ρ−2g′(ξvρ)dv

]
=
∂

∂t

[
t1−2αξ

(
K

1−α−ρ, 1−α
1
ρ

g′
)

(ξ)
]

= t−2αξ

(
1 − 2α − ρ − ρξ

d
dξ

) (
K

1−α−ρ, 1−α
1
ρ

g′
)

(ξ)

= t−2αξ
(
P

1−2α−ρ, α
1
ρ

g′
)

(ξ).

(3.29)

On the other hand, we obtain

∂αt (t−αξ2g′′(ξ)) =
∂

∂t

[
e2x

Γ(1 − α)

∫ t

0
(t − s)−αs−α−2ρg′′(exs−ρ)ds

]
=
∂

∂t

[
1

Γ(1 − α)
t1−2αξ2

∫ ∞

1
(v − 1)−αv2α+2ρ−2g′′(ξvρ)dv

]
=
∂

∂t

[
t1−2αξ2

(
K

1−α−2ρ, 1−α
1
ρ

g′′
)

(ξ)
]

= t−2αξ2
(
1 − 2α − 2ρ − ρξ

d
dξ

) (
K

1−α−2ρ, 1−α
1
ρ

g′′
)

(ξ)

= t−2αξ2
(
P

1−2α−2ρ, α
1
ρ

g′′
)

(ξ).

(3.30)

Therefore, combine Eqs (3.28) and (3.29) with Eq (3.30) to get

∂αt uxx = t−2αξ
(
P

1−2α−ρ, α
1
ρ

g′
)

(ξ) + t−2αξ2
(
P

1−2α−2ρ, α
1
ρ

g′′
)

(ξ). (3.31)

Substituting Eqs (3.27) and (3.31) into Eq (1.1) yields that Eq (3.25) holds to be true. �

AIMS Mathematics Volume 8, Issue 12, 30038–30058.



30047

In what follows, we intend to use the power-series method to construct the exact solutions for
Eq (3.25). Suppose that Eq (3.25) admits the power-series solution

g(ξ) =

∞∑
n=0

anξ
n, (3.32)

where an (n = 0, 1, 2, · · · ) are constants which will be determined later. Then, we have

g′(ξ) =

∞∑
n=1

nanξ
n−1, g′′(ξ) =

∞∑
n=2

(n − 1)nanξ
n−2. (3.33)

Next, with the help of Eq (3.33), we consider the following E-K fractional differential operator:(
P

1−2α, α
1
ρ

g
)

(ξ) =(1 − 2α − ρξ
d
dξ

)
(
K

1−α, 1−α
1
ρ

g
)

(ξ)

=(1 − 2α − ρξ
d
dξ

)
1

Γ(1 − α)

∫ ∞

1
(v − 1)−αv2α−2

∞∑
n=0

an(ξvρ)ndv

=

∞∑
n=0

Γ(1 − α − ρn)
Γ(1 − 2α − ρn)

anξ
n.

(3.34)

Similar to Eq (3.34), we can also obtain(
P

1−2α−ρ, α
1
ρ

g′
)

(ξ) =(1 − 2α − ρ − ρξ
d
dξ

)
(
K

1−α−ρ, 1−α
1
ρ

g′
)

(ξ)

=

∞∑
n=0

Γ(1 − α − ρn)
Γ(1 − 2α − ρn)

nanξ
n−1

(3.35)

and (
P

1−2α−2ρ, α
1
ρ

g′′
)

(ξ) =(1 − 2α − 2ρ − ρξ
d
dξ

)
(
K

1−α−2ρ, 1−α
1
ρ

g′′
)

(ξ)

=

∞∑
n=0

Γ(1 − α − ρn)
Γ(1 − 2α − ρn)

n(n − 1)anξ
n−2.

(3.36)

Therefore, inserting Eqs (3.32)–(3.36) into Eq (3.25) yields that

∞∑
n=0

Γ(1 − α − ρn)
Γ(1 − 2α − ρn)

(1 − n2)anξ
n −

∞∑
n=1

n∑
m=1

maman−mξ
n = 0. (3.37)

When n = 1, by comparing coefficients of ξ, we obtain

a0 = 0, a1 is an arbitrary constant. (3.38)

When n ≥ 2, we have

an =
1

1 − n2

Γ(1 − 2α − ρn)
Γ(1 − α − ρn)

n∑
m=1

maman−m. (3.39)
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Consequently, the power series solution for Eq (3.25) can be derived as follows:

g(ξ) = a1ξ +

∞∑
n=2

1
1 − n2

Γ(1 − 2α − ρn)
Γ(1 − α − ρn)

n∑
m=1

maman−mξ
n, n = 2, 3, 4, · · · (3.40)

Substituting Eq (3.40) into Eq (3.24) leads to the exact solution of the BBMP equation given by
Eq (1.1):

u(x, t) = a1ext−α−ρ +

∞∑
n=2

1
1 − n2

Γ(1 − 2α − ρn)
Γ(1 − α − ρn)

n∑
m=1

maman−menxt−α−ρn. (3.41)

3.2.2. Similarity reduction and exact solution of Eq (1.2)

This subsection derives the similarity variables and their reduction equations and presents the exact
solutions of the time-fractional equation given by Eq (1.2).

Case 1. V1 = ∂
∂x . We find that the group-invariant solution of Eq (1.2) is u(x, t) = g(t), where g(t) is

given by ∂αt g(t) = 0. Then we observe that the exact solution to Eq (1.2) is the same as that presented
as Eq (3.20).

Case 2. V2 = 2t ∂
∂t − αu ∂

∂u . The similarity variables of this infinitesimal generator are x and t
α
2 u.

Substituting u(x, t) = t−
α
2 g(x) into Eq (1.2) yields the following reduction equation:

Γ(1 − α
2 )

Γ(1 − 3
2α)

g −
Γ(1 − α

2 )

Γ(1 − 3
2α)

g′′ + 4g2g′ − 3gg′g′′ − g2g′′′ = 0.

Case 3. V3 = λV1 + V2 = λ ∂
∂x + 2t ∂

∂t − αu ∂
∂u , where λ is a nonzero constant. We can also obtain the

following reduced equation for the field vector V3.

Theorem 3.4. Induced by the general infinitesimal generator V3 = λV1 + V2, Eq (1.2) can be reduced
to the following form: (

P
1− 3

2α,α
2
λ

g
)

(z) − z
(
P

1− 3
2α−

λ
2 ,α

2
λ

g′
)

(z) − z2
(
P

1− 3
2α−λ,α

2
λ

g′′
)

(z)

+ z(3g2g′ − 3zg(g′)2 − 3z2gg′g′′ − 3zg2g′′ − z2g2g′′′) = 0,
(3.42)

where z = ext−
λ
2 , g = ut

α
2 and 0 < α < 1.

Proof. For the infinitesimal generator V3 = λV1 + V2 = λ ∂
∂x + 2t ∂

∂t −αu ∂
∂u , the characteristic equation is

given by
dx
λ

=
dt
2t

=
du
−αu

.

Solving the above equation yields the corresponding similarity variables ext−
λ
2 and t

α
2 u; then, we obtain

the similarity transformation
u = t−

α
2 g(z), (3.43)

where z = ext−
λ
2 and g is the function of z to be determined later. Thus, we get

ux = t−
α
2 zg′(z),

uxx = t−
α
2 (zg′(z) + z2g′′(z)),

uxxx = t−
α
2 (zg′(z) + 3z2g′′(z) + z3g′′′(z)).

(3.44)
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In the sequel, we consider the time-fractional derivatives ∂αt u and ∂αt (uxx) in Eq (1.2) with 0 < α < 1,
respectively. According to the definition of the Riemann-Liouville fractional derivative, one can obtain

∂αt u =
1

Γ(1 − α)
∂

∂t

∫ t

0
(t − s)−αs−

α
2 g(exs−

λ
2 )ds. (3.45)

Letting v = t
s , and in view of Eq (2.6), Eq (3.45) can be converted to the following form:

∂αt u =
∂

∂t

[
t1− 3

2α
1

Γ(1 − α)

∫ ∞

1
(v − 1)−αv

3
2α−2g(zv

λ
2 )dv

]
=
∂

∂t

[
t1− 3

2α
(
K

1− α2 , 1−α
2
λ

g
)

(z)
]

= t−
3
2α

(
1 −

3
2
α −

λ

2
z

d
dz

) (
K

1− α2 , 1−α
2
λ

g
)

(z).

(3.46)

Then, utilizing the E-K fractional differential operator given by Eq (2.5), we obtain

∂αt u = t−
3
2α

(
P

1− 3
2α, α

2
λ

g
)

(z). (3.47)

As for ∂αt (uxx), similar to Eqs (3.28), (3.29) and (3.30) in the last section, one obtains

∂αt uxx = ∂αt (t−
α
2 zg′(z)) + ∂αt (t−

α
2 z2g′′(z))

= t−
3
2αz

(
1 −

3
2
α −

λ

2
−
λ

2
z

d
dz

) (
K

1− α2−
λ
2 , 1−α

2
λ

g′
)

(z)

+ t−
3
2αz2

(
1 −

3
2
α − λ −

λ

2
z

d
dz

) (
K

1− α2−λ, 1−α
2
λ

g′′
)

(z)

= t−
3
2α

[
z
(
P

1− 3
2α−

λ
2 , α

2
λ

g′
)

(z) + z2
(
P

1− 3
2α−λ, α

2
λ

g′′
)

(z)
]
.

(3.48)

Therefore, inserting Eqs (3.44), (3.47) and (3.48) into Eq (1.2), we verify Eq (3.42). �

In what follows, we are ready to obtain the explicit analytic solution for Eq (3.42) by using the
power-series method. We first assume that Eq (3.42) has the power-series solution

g(z) =
1
z

a0 +

∞∑
n=1

anzn, (3.49)

where an (n = 1, 2, 3, · · · ) are constants which will be determined later.
Then, we have

g′(z) = −
1
z2 a0 +

∞∑
n=1

nanzn−1,

g′′(z) =
2
z3 a0 +

∞∑
n=2

(n − 1)nanzn−2,

g′′′(z) = −
6
z4 a0 +

∞∑
n=3

(n − 2)(n − 1)nanzn−3.

(3.50)
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Next, we calculate the E-K fractional differential operator. Analogous to Eqs (3.34), (3.35) and (3.36),
one respectively obtains

(
P

1− 3
2α, α

2
λ

g
)

(z) =
a0

z
Γ(1 − α

2 + λ
2 )

Γ(1 − 3
2α + λ

2 )
+

∞∑
n=1

Γ(1 − α
2 −

λ
2 n)

Γ(1 − 3
2α −

λ
2 n)

anzn, (3.51)

(
P

1− 3
2α−

λ
2 , α

2
λ

g′
)

(z) = −
a0

z2

Γ(1 − α
2 + λ

2 )

Γ(1 − 3
2α + λ

2 )
+

∞∑
n=1

Γ(1 − α
2 −

λ
2 n)

Γ(1 − 3
2α −

λ
2 n)

nanzn−1, (3.52)

and (
P

1− 3
2α−λ, α

2
λ

g′′
)

(z) =
2a0

z3

Γ(1 − α
2 + λ

2 )

Γ(1 − 3
2α + λ

2 )
+

∞∑
n=2

Γ(1 − α
2 −

λ
2 n)

Γ(1 − 3
2α −

λ
2 n)

(n − 1)nanzn−2. (3.53)

Thus, substituting Eqs (3.50)–(3.53) into Eq (3.42), we have the following formula:

∞∑
n=2

Γ(1 − α
2 −

λ
2 n)

Γ(1 − 3
2α −

λ
2 n)

(1 − n2)anzn +

1
z

a0 +

∞∑
n=1

anzn

2 −3a0

z
+

∞∑
n=1

(4 − n2)nanzn


+

1
z

a0 +

∞∑
n=1

anzn

 −1
z

a0 +

∞∑
n=1

nanzn

 −3
z

a0 −

∞∑
n=1

3n2anzn

 = 0.

(3.54)

Then, in view of the Cauchy product formula, Eq (3.54) can be converted to

∞∑
n=2

Γ(1 − α
2 −

λ
2 n)

Γ(1 − 3
2α −

λ
2 n)

(1 − n2)anzn + a2
0

∞∑
n=0

(1 − n2)(3 + n)an+2zn

+ a0

∞∑
n=0

n+1∑
m=1

m(2m2 − 3mn − 3m + 4)aman+1−mzn

+ a0

∞∑
n=1

n∑
m=1

m(4 − m2)am+1an−mzn

+

∞∑
n=1

n∑
k=1

k∑
m=1

m(2m2 − 3mk + 4)amak−man−kzn = 0.

(3.55)

Hence, by vanishing the coefficients of different powers of z in Eq (3.55), we deduce that a0 and a3 are
arbitrary constants, and that a2 = −a1. When n ≥ 2, one obtains

an+2 =
1

(n2 − 1)(n + 3)

 Γ(1 − α
2 −

λ
2 n)

Γ(1 − 3
2α −

λ
2 n)a2

0

(1 − n2)an

+
1
a0

n∑
m=0

(m3 + 3m2 + 8m − 3n(m + 1)2 + 3)am+1an−m

+
1
a2

0

n∑
k=1

k∑
m=1

m(2m2 − 3mk + 4)amak−man−k

 .
(3.56)
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Insert Eq (3.56) into Eq (3.49) to obtain the power-series solution of Eq (3.42) as follows:

g(z) =
1
z

a0 + a1z − a1z2 + a3z3

+

∞∑
n=2

1
(n2 − 1)(n + 3)

 Γ(1 − α
2 −

λ
2 n)

Γ(1 − 3
2α −

λ
2 n)a2

0

(1 − n2)an

+
1
a0

n∑
m=0

(m3 + 3m2 + 8m − 3n(m + 1)2 + 3)am+1an−m

+
1
a2

0

n∑
k=1

k∑
m=1

m(2m2 − 3mk + 4)amak−man−k

 zn+2.

(3.57)

As a consequence, substituting Eq (3.57) into Eq (3.43), we can construct the explicit solution to
Eq (1.2) as follows:

u(x, t) =a0e−xt
λ−α

2 + a1ext−
λ+α

2 − a1e2xt−
2λ+α

2 + a3e3xt−
3λ+α

2

+

∞∑
n=2

1
(n2 − 1)(n + 3)

 Γ(1 − α
2 −

λ
2 n)

Γ(1 − 3
2α −

λ
2 n)a2

0

(1 − n2)an

+
1
a0

n∑
m=0

(m3 + 3m2 + 8m − 3n(m + 1)2 + 3)am+1an−m

+
1
a2

0

n∑
k=1

k∑
m=1

m(2m2 − 3mk + 4)amak−man−k

 e(n+2)xt−
(n+2)λ+α

2 .

(3.58)

Remark 3.1. In accordance with the method introduced in [38] and the explicit function theorem
in [39], the power-series solutions given by Eqs (3.41) and (3.58) are convergent, and we omit the
details of the proof.

4. Conservation laws for the time-fractional BBMP equation

In this section, the conservation laws for the time-fractional BBMP equation given by Eq (1.1) will
be investigated by using the new conservation theorem [23, 40]. The vector (Ct,Cx) for Eq (1.1) that
satisfies the equation

(Dt(Ct) + Dx(Cx))|(1.1) = 0 (4.1)

is called the conserved vector, where Ct = Ct(t, x, u, · · · ), Cx = Cx(t, x, u, · · · ).
The formal Lagrangian of Eq (1.1) can be represented as

L = v(x, t)(∂αt u − ∂αt (uxx) − uux), (4.2)

where v(x, t) is a new dependent variable.
The adjoint equation is given by

F ∗ =
δL

δu
= 0; (4.3)
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here, δ
δu symbolizes the Euler-Lagrange operator defined by

δ

δu
= (∂αt )∗

∂

∂(∂αt u)
+ (∂αt )∗D2

x
∂

∂(∂αt uxx)
+
∂

∂u
− Dx

∂

∂ux
+ D2

x
∂

∂uxx
+ · · · , (4.4)

where (∂αt )∗ is the adjoint operator of ∂αt that is defined by Eq (2.4).
In view of Eqs (4.2) and (4.3), we can derive the adjoint equation of Eq (1.1) with the following

form:
(∂αt )∗v − (∂αt )∗D2

xv − uxv + Dx(uv) = 0. (4.5)

Regarding the nonlinear self-adjointness of Eq (1.1), Eq (4.5) must be satisfied for all solutions of
Eq (1.1) with the substitution

v(x, t) = ψ(x, t, u), ψ(x, t, u) , 0. (4.6)

The derivatives of Eq (4.6) are given as

vx = ψx + ψuux,

vxx = ψxx + 2ψuxux + ψuuxx + ψuuu2
x.

(4.7)

Substituting Eqs (4.6) and (4.7) into Eq (4.5), we obtain the following nonlinear self-adjointness
expression:

(∂αt )∗(ψ − ψxx − 2ψuxux − ψuuxx − ψuuu2
x) + uψx + uψuux = 0. (4.8)

Solving the above Eq (4.8), we conclude that

ψ(x, t, u) = C, (4.9)

where C is a constant. Then, taking C = 1, according to the vector fields described by Eq (3.10), as
admitted by Eq (1.1), and the formulas of Lie characteristic functions Wi = ηi − ξiux − τiut (i = 1, 2),
the characteristic functions can be expressed as follows

W1 = −ux, W2 = −αu − tut. (4.10)

The fractional Noether operator for the variable t is defined by [21]

Ct
i =I1−α

t (Wi)
∂L

∂(∂αt u)
− I1−α

t (DxWi)Dx
∂L

∂(∂αt uxx)

+J

(
Wi,Dt

∂L

∂(∂αt u)

)
− J

(
DxWi,DxDt

∂L

∂(∂αt uxx)

)
,

(4.11)

where the operator J( f , g) is given by

J( f , g) =
1

Γ(1 − α)

∫ t

0

∫ T

t

f (x, s)g(x, r)
(r − s)α

drds. (4.12)
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Equivalently, the fractional Noether operator for the component x of the conserved vector is introduced
as follows:

Cx
i =Dα

t Dx(Wi)
∂L

∂(∂αt uxx)
−Wi(∂αt )∗Dx

∂L

∂(∂αt uxx)

+ Wi(
∂L

∂ux
− Dx

∂L

∂uxx
+ D2

x
∂L

∂uxxx
)

+ Dx(Wi)(
∂L

∂uxx
− Dx

∂L

∂uxxx
) + D2

x(Wi)
∂L

∂uxxx
.

(4.13)

Therefore, with the help of Eqs (4.11) and (4.13), we construct the conservation laws for Eq (1.1),
whose components of the conserved vectors are as follows:Cx

1 = Dα
t (uxx) + uux,

Cx
2 = αDα

t (ux) + Dα
t (tuxt) + u(αu + tut),

(4.14)

and Ct
1 = −I1−α

t (ux),
Ct

2 = −αI1−α
t (u) − I1−α

t (tut).
(4.15)

5. Discussion on exact solutions

In this section, we provide the 3-D graphical interpretations of the exact solutions given
by Eqs (3.23), (3.41) and (3.58) for the time-fractional BBMP equation and Novikov equation,
respectively. Moreover, we will discuss the influence of the parameter α in Eqs (1.1) and (1.2) on
solutions.

Figure 1 shows the influence of fractional parameter α on u(x, t) in Eq (3.23) (i.e., a solution) of
Eq (1.1). From Figure 1, we can observe that the maximum value of solution u(x, t) decreases as α
increases when the constant C = 1 and the points (x, t) are fixed. Particularly, the solution u(x, t)
approaches zero with the increase of the parameter α from 0.25 to 0.9 when the points (x, t) are near
the point (0, 0).

Figure 1. 3-D plots of the exact solution given by Eq (3.23) for Eq (1.1), with C = 1 and the
parameter α as α = 0.1, 0.25, 0.9.

Figure 2 displays the effect of fractional parameter α on u(x, t) in Eq (3.23) (i.e., a solution) of
Eq (1.1). The graphs show that the curvature of the graphs decreases as the fractional parameter α
increases from 0.1 to 0.9.
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Figure 2. 3-D plots of the exact solution given by Eq (3.23) for Eq (1.1), with C = −0.1 and
the parameter α as α = 0.1, 0.25, 0.9.

Figure 3 shows the influence of fractional parameter α on u(x, t) in Eq (3.41) (i.e., a solution) of
Eq (1.1). From Figure 3, we can find that the value of the solution u(x, t) increases as the fractional
parameter α increases. In particular, the curvature of the plots increases as the fractional parameter α
increases from 0.1 to 0.9 near the point (0, 0).

Figure 3. 3-D plots of the exact solution given by Eq (3.41) for Eq (1.1), with the constants
n = 2, a0 = 0 and a1 = ρ = 1 and the parameter α = 0.1, 0.9.

Figure 4 displays the effect of fractional parameter α on u(x, t) in Eq (3.58) (i.e., a solution) of
Eq (1.2). The plots show that the value of the solution u(x, t) decreases as the fractional parameter α
increases from 0.1 to 0.9.

Figure 4. 3-D plots of the exact solution given by Eq (3.58) for Eq (1.2), with n = 2, a0 =

a1 = a3 = λ = 1 and α = 0.1, 0.9 respectively. We notice that the plots have a mutation at
t = 0.
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6. Conclusions

In this paper, in accordance with Lie symmetry analysis and the power-series method, the explicit
solutions of the time-fractional BBMP equation and time-fractional Novikov equation have been
successfully constructed. More specifically, we have established the Lie algebra admitted by Eqs (1.1)
and (1.2) and obtained the group-invariant solutions by means of symmetry reductions. By using the
fractional E-K operator, we have transformed Eqs (1.1) and (1.2) into ODEs (3.25) and (3.42) with only
one variable, respectively, and constructed their power-series solutions. Moreover, the conservation
laws for the time-fractional BBMP equation have been obtained by using the new Noether’s theorem.
In addition, we have constructed the 3-D graphs of corresponding exact solutions by using Maple
software. In the future, we will devote ourselves to constructing exact solutions of Eqs (1.1) and (1.2)
with the help of other methods, such as the q-homotopy analysis method, invariant subspace method,
extended direct algebraic method, Chebyshev series method, etc.
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