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Abstract: Let H be a graph with edge set EH. The Sombor index and the reduced
Sombor index of a graph H are defined as S O(H) =

∑
uv∈EH

√
dH(u)2 + dH(v)2 and S Ored(H) =∑

uv∈EH

√
(dH(u) − 1)2 + (dH(v) − 1)2, respectively. Where dH(u) and dH(v) are the degrees of the vertices

u and v in H, respectively. A cactus is a connected graph in which any two cycles have at most one
common vertex. Let C(n, k) be the class of cacti of order n with k cycles. In this paper, the lower
bound for the Sombor index of the cacti in C(n, k) is obtained and the corresponding extremal cacti are
characterized when n ≥ 4k − 2 and k ≥ 2. Moreover, the lower bound of the reduced Sombor index of
cacti is obtained by similar approach.
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1. Introduction

Throughout this paper, we consider simple and undirected graphs. Let H = (VH, EH) be a graph,
where VH and EH be the vertex set and the edge set of H, respectively. The degree of a vertex u ∈ VH,
denoted by dH(u), is the number of edges which connected to u in H. A vertex u is called a pendant
vertex if dH(u) = 1. For an edge e = xy ∈ EH, e is a pendant edge of H if dH(x) = 1 or dH(y) = 1. For
a vertex v ∈ VH and an edge xy ∈ EH, H − v and H − xy denote the graphs obtained from H by deleting
the vertex v and the edge xy, respectively. If x and y are two vertices in VH and xy < EH, H + xy is the
graph obtained from H by adding an edge xy. For any vertex u ∈ VH, NH(u) denoted the neighborhood
vertex set in H. The symbols δ(H) and ∆(H) represent the minimum degree and the maximum degree
of H, respectively. Denote by Pn and Cn the path and the cycle with n vertices, respectively. One can
refer to [1] for other notations and terminologies undefined in this paper.

Topological indices of graphs have been widely studied in mathematical chemistry. The topological
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indices can be used in theoretical, medicinal and organic chemistry for studying the structure and
physicochemical properties of chemical molecular. The Wiener index is the most well-known
topological index which is introduced by the famous chemist Harry Wiener for investigating boiling
points of alkanes [2].

Recently, two new degree-based graph topological indices, named Sombor index and reduced
Sombor index, are introduced by Gutman [3]. The Sombor index and the reduced Sombor index
of a graph H are defined, respectively, as

S O(H) =
∑

e=uv∈EH

√
dH(u)2 + dH(v)2

and
S Ored(H) =

∑
e=uv∈EH

√
(dH(u) − 1)2 + (dH(v) − 1)2.

Nowdays, the study on the Sombor index and the reduced Sombor index of various graphs has been
a hot topic in graph theory. Alidadi et al. [4] investigated the minimum Sombor index of the unicyclic
graphs with given diameter. Zhou et al. [5] characterized the extremal trees and unicyclic graphs with
minimum Sombor index among the trees and unicyclic graphs with given order and maximum degree.
The lower and upper bounds of the Sombor index of the trees in terms of order, independence number
and the number of pendant vertices were given by Das and Gutman in [6], and the corresponding
extremal trees were characterized. Li et al. [7] characterized the extremal graphs with respect to
the Sombor index among all the n-order trees with a given diameter. The maximum and minimum
Sombor indices of trees with fixed domination number were presented by Sun and Du in [8]. Cruz
et al. [9] discussed the Sombor index of chemical graphs, chemical trees and hexagonal systems and
characterized the extremal graphs. The upper bound for the Sombor index among all molecular trees
with given order was obtained by Deng et al. in [10]. Ülker et al. [11] studied the relations between
energy and Sombor index of a graph in terms of its degrees. Horoldagva and Xu [12] investigated the
lower and upper bounds for the Sombor index of the the graphs with given girth. Liu et al. [13] studied
the reduced Sombor index of the graphs with given graph parameters, obtained the expected values of
reduced Sombor index in random polyphenyl chain, and applied the reduced Sombor index to graph
spectrum and energy problems.

A cactus is a connected graph that any block is either a cut edge or a cycle. It is also a graph in
which any two cycles have at most one common vertex. A cycle in a cactus is called pendant cycle if
all but one vertex of this cycle have degree 2, a cycle C in a cactus is called interal cycle if C is not a
pendant cycle. Let C(n, k) be the class of cacti of order n with k cycles.

It is routine to check that C(n, 0) is the set of trees and C(n, 1) is the set of unicyclic graphs. Gutman
investigated the Sombor index of trees in [3] and proved that S O(H) ≥ 2

√
2n for any tree H with n

vertices. Cruz and Rada [14] proved that S O(H) ≥ 2
√

2n for any unicyclic graph H with n vertices.
Recently, Wu, An and Wu [15] established the lower bound for the Sombor index of the cacti in

C(n, k) and characterized the corresponding extremal cacti when n ≥ 6k − 4 and k ≥ 2. In this paper,
the lower bound for the Sombor index of a cactus in C(n, k) is obtained and the corresponding extremal
cacti are characterized when n ≥ 4k−2 and k ≥ 2 which improves the result of Wu et al. [15]. Moreover,
it is also shown that our approach is valid for the reduced Sombor index of the cacti in C(n, k). The
following Theorems 1.1 and 1.2 are our main results.
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Theorem 1.1. Let H be a cactus in C(n, k) with n ≥ 4k − 2 and k ≥ 2. Then,

S O(H) ≥
√

8n + 2
√

13k + (5
√

2 − 2
√

13)⌊
k
2
⌋ + 2

√
13 − 10

√
2

with equality holds if and only if H ∈ C̃(n, k) (where C̃(n, k) is a subset of C(n, k), and the definition of
C̃(n, k) is introduced in Section 4).

Theorem 1.2. Let H be a cactus in C(n, k) with n ≥ 4k − 2 and k ≥ 2. Then,

S Ored(H) ≥
√

2n + (2
√

5 +
√

2)k + (3
√

2 − 2
√

5)⌊
k
2
⌋ + 2

√
5 − 7

√
2

with equality holds if and only if H ∈ C̃(n, k) (where C̃(n, k) is a subset of C(n, k), and the definition of
C̃(n, k) is introduced in Section 4).

The rest of this paper is organized as follows. In Sections 2 and 3, it is proved that the minimum
and maximum degrees of the cacti in C(n, k) (n ≥ 4k − 2 and k ≥ 2) with minimum Sombor index (and
reduced Sombor index) are 2 and 3, respectively. In Section 4, the proofs of Theorems 1.1 and 1.2 are
presented.

2. The minimum degree of the cacti in C(n, k) with minimum Sombor index and reduced
Sombor index

In this section, the minimum degree of the cacti in C(n, k) (n ≥ 4k − 2 and k ≥ 2) with minimum
Sombor index and reduced Sombor index is discussed. Let TH be the graph obtained from a graph H
in C(n, k) by contracting each cycle of H into a vertex (called a cyclic vertex). Let P = v1v2 · · · vl be a
path in H. If dH(v1) ≥ 3, dH(vl) = 1 and dH(vi) = 2 for 2 ≤ i ≤ l − 1, then we call P is a pendant path
of H.

Lemma 2.1. [16] Let x and y be two nonnegative integers and z be a fixed nonnegative integer. Then
the function

√
(x + z)2 + y2 −

√
x2 + y2 is increasing with x for fixed y and decreasing with y for fixed

x.

Lemma 2.2. Let H be a cactus in C(n, k) with k ≥ 2. If P = v1v2 · · · vl and P′ = u1u2 · · · us are
two different pendant paths of H with dH(v1) ≥ 3 and dH(u1) ≥ 3. Let H′ = H − v1v2 + usv2. Then
S O(H) > S O(H′) and S Ored(H) > S Ored(H′).

Proof. Let dH(v1) = t (t ≥ 3) and NH(v1) = {v2,w1,w2, · · · ,wt−1}. By the conditions, one has dH′(v1) =
t−1, dH(us) = 1, dH′(us) = 2 and dH(v) = dH′(v) for any vertex v ∈ VH \{v1, us}. We divide this problem
into two cases.

Case 1: l > 2.
By the definition of Sombor index, one has that

S O(H) − S O(H′)

=

t−1∑
i=1

√
dH(v1)2 + dH(wi)2 +

√
dH(v1)2 + dH(v2)2 +

√
dH(us−1)2 + dH(us)2
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−

t−1∑
i=1

√
dH′(v1)2 + dH′(wi)2 −

√
dH′(v2)2 + dH′(us)2 −

√
dH′(us−1)2 + dH′(us)2

=

t−1∑
i=1

√
t2 + dH(wi)2 +

√
t2 + 22 +

√
dH(us−1)2 + 12

−

t−1∑
i=1

√
(t − 1)2 + dH′(wi)2 −

√
22 + 22 −

√
dH′(us−1)2 + 22

≥
√

t2 + 22 −
√

22 + 22 +
√

dH(us−1)2 + 12 −
√

dH′(us−1)2 + 22

≥
√

13 −
√

8 +
√

dH(us−1)2 + 12 −
√

dH′(us−1)2 + 22.

It is routine to check that dH(us−1) ≥ dH′(us−1) ≥ 2 if s = 2 and dH(us−1) = dH′(us−1) = 2 if s > 2. Thus,
by Lemma 2.1, we obtain that√

dH(us−1)2 + 12 −
√

dH′(us−1)2 + 22 ≥
√

22 + 12 −
√

22 + 22.

Then S O(H) − S O(H′) ≥
√

13 −
√

8 +
√

5 −
√

8 > 0.
By a similar calculation method, we get

S Ored(H) − S Ored(H′)

=

t−1∑
i=1

√
(dH(v1) − 1)2 + (dH(wi) − 1)2 +

√
(dH(v1) − 1)2 + (dH(v2) − 1)2

+
√

(dH(us−1) − 1)2 + (dH(us) − 1)2 −

t−1∑
i=1

√
(dH′(v1) − 1)2 + (dH′(wi) − 1)2

−
√

(dH′(v2) − 1)2 + (dH′(us) − 1)2 −
√

(dH′(us−1) − 1)2 + (dH′(us) − 1)2

≥
√

(t − 1)2 + 12 −
√

12 + 12 +
√

(dH(us−1) − 1)2 + 02 −
√

(dH′(us−1) − 1)2 + 12

≥
√

5 −
√

2 +
√

(dH(us−1) − 1)2 + 02 −
√

(dH′(us−1) − 1)2 + 12

≥
√

5 −
√

2 +
√

1 −
√

2
> 0.

Case 2: l = 2.
According to the definition of Sombor index, we have

S O(H) − S O(H′)

=

t−1∑
i=1

√
dH(v1)2 + dH(wi)2 +

√
dH(v1)2 + dH(v2)2 +

√
dH(us−1)2 + dH(us)2

−

t−1∑
i=1

√
dH′(v1)2 + dH′(wi)2 −

√
dH′(v2)2 + dH′(us)2 −

√
dH′(us−1)2 + dH′(us)2

=

t−1∑
i=1

√
t2 + dH(wi)2 +

√
t2 + 12 +

√
dH(us−1)2 + 12
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−

t−1∑
i=1

√
(t − 1)2 + dH′(wi)2 −

√
12 + 22 −

√
dH′(us−1)2 + 22

≥
√

t2 + 12 −
√

12 + 22 +
√

dH(us−1)2 + 12 −
√

dH′(us−1)2 + 22

≥
√

10 −
√

5 +
√

dH(us−1)2 + 12 −
√

dH′(us−1)2 + 22

≥
√

10 −
√

5 +
√

5 −
√

8
> 0.

In a similar manner, we deduce that

S Ored(H) − S Ored(H′)

=

t−1∑
i=1

√
(dH(v1) − 1)2 + (dH(wi) − 1)2 +

√
(dH(v1) − 1)2 + (dH(v2) − 1)2

+
√

(dH(us−1) − 1)2 + (dH(us) − 1)2 −

t−1∑
i=1

√
(dH′(v1) − 1)2 + (dH′(wi) − 1)2

−
√

(dH′(v2) − 1)2 + (dH′(us) − 1)2 −
√

(dH′(us−1) − 1)2 + (dH′(us) − 1)2

≥
√

(t − 1)2 + 02 −
√

02 + 12 +
√

(dH(us−1) − 1)2 + 02 −
√

(dH′(us−1) − 1)2 + 12

≥
√

4 −
√

1 +
√

1 −
√

2
> 0.

These complete the proof. □

Lemma 2.3. Let H be a cactus in C(n, k) with k ≥ 2. If there is at most one pendant path in H, then
there exists an edge u1u2 ∈ EH on some cycle of H such that dH(u1) = dH(u2) = 2.

Proof. By the fact that H is a cactus, then TH is a connected tree. Thus there exists at least two pendant
vertices in H. By the condition that there is at most one pendant path in H, then there exists at least
one pendant vertex which is cyclic vertex in TH. So there exists at least one pendant cycle in H. By the
definition of pendant cycle, the result follows. □

Lemma 2.4. Let H be a cactus in C(n, k) (k ≥ 2) with an edge u1u2 ∈ EH on some cycle of H
such that dH(u1) = dH(u2) = 2. Let P = v1v2 · · · vl be a pendant path of H with dH(v1) ≥ 3 and
H′ = H − v1v2 − u1u2 + u1v2 + u2vl. Then S O(H) > S O(H′) and S Ored(H) > S Ored(H′).

Proof. Let dH(v1) = t (t ≥ 3) and NH(v1) = {v2,w1,w2, · · · ,wt−1}. By the conditions, one has dH′(v1) =
t − 1, dH(vl) = 1, dH′(vl) = 2 and dH(v) = dH′(v) for any vertex v ∈ VH \ {v1, vl}. We divide this problem
into two cases.

Case 1: l > 2.
By the definition of Sombor index, one has that

S O(H) − S O(H′)

=

t−1∑
i=1

√
dH(v1)2 + dH(wi)2 +

√
dH(v1)2 + dH(v2)2 +

√
dH(u1)2 + dH(u2)2
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+
√

dH(vl−1)2 + dH(vl)2 −

t−1∑
i=1

√
dH′(v1)2 + dH′(wi)2 −

√
dH′(u1)2 + dH′(v2)2

−
√

dH′(u2)2 + dH′(vl)2 −
√

dH′(vl−1)2 + dH′(vl)2

=

t−1∑
i=1

√
t2 + dH(wi)2 +

√
t2 + 22 +

√
22 + 22 +

√
22 + 12

−

t−1∑
i=1

√
(t − 1)2 + dH′(wi)2 −

√
22 + 22 −

√
22 + 22 −

√
22 + 22

≥
√

t2 + 22 +
√

22 + 12 − 2
√

22 + 22

≥
√

13 +
√

5 − 2
√

8
> 0.

The corresponding result for reduced Sombor index is the following:

S Ored(H) − S Ored(H′)

=

t−1∑
i=1

√
(dH(v1)2 − 1) + (dH(wi) − 1)2 +

√
(dH(v1) − 1)2 + (dH(v2) − 1)2

+
√

(dH(u1) − 1)2 + (dH(u2) − 1)2 +
√

(dH(vl−1) − 1)2 + (dH(vl) − 1)2

−

t−1∑
i=1

√
(dH′(v1) − 1)2 + (dH′(wi) − 1)2 −

√
(dH′(u1) − 1)2 + (dH′(v2) − 1)2

−
√

(dH′(u2) − 1)2 + (dH′(vl) − 1)2 −
√

(dH′(vl−1) − 1)2 + (dH′(vl) − 1)2

≥
√

(t − 1)2 + 12 +
√

12 + 02 − 2
√

12 + 12

≥
√

5 +
√

1 − 2
√

2
> 0.

Case 2: l = 2.
From the definition of Sombor index, we have

S O(H) − S O(H′)

=

t−1∑
i=1

√
dH(v1)2 + dH(wi)2 +

√
dH(v1)2 + dH(v2)2 +

√
dH(u1)2 + dH(u2)2

−

t−1∑
i=1

√
dH′(v1)2 + dH′(wi)2 −

√
dH′(u1)2 + dH′(v2)2 −

√
dH′(u2)2 + dH′(v2)2

=

t−1∑
i=1

√
t2 + dH(wi)2 +

√
t2 + 12 +

√
22 + 22

−

t−1∑
i=1

√
(t − 1)2 + dH′(wi)2 −

√
22 + 22 −

√
22 + 22

≥
√

t2 + 12 +
√

22 + 22 − 2
√

22 + 22
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≥
√

10 −
√

8
> 0.

By a similar calculation method, one obtains that

S Ored(H) − S Ored(H′)

=

t−1∑
i=1

√
(dH(v1) − 1)2 + (dH(wi) − 1)2 +

√
(dH(v1) − 1)2 + (dH(v2) − 1)2

+
√

(dH(u1) − 1)2 + (dH(u2) − 1)2 −

t−1∑
i=1

√
(dH′(v1) − 1)2 + (dH′(wi) − 1)2

−
√

(dH′(u1) − 1)2 + (dH′(v2) − 1)2 −
√

(dH′(u2) − 1)2 + (dH′(v2) − 1)2

≥
√

(t − 1)2 + 02 +
√

12 + 12 − 2
√

12 + 12

≥
√

4 −
√

2
> 0.

These end the proof. □

Lemma 2.5. Let H be a cactus in C(n, k) (k ≥ 2) with minimum Sombor index. Then δ(H) = 2.

Proof. If H contains no pendant edge, by Lemma 2.3, there exists at least one vertex with degree 2, the
result follows.

If H contains pendant edges, from Lemma 2.2, H contains just one pendant edge. By Lemmas 2.3
and 2.4, there exists a cactus H′ in C(n, k) such that S O(H) > S O(H′), which contradicts to the
condition that H is a cactus with minimum Sombor index.

This ends the proof. □

By a similar proof with Lemma 2.5, the following Corollary 2.6 can be obtained immediately.

Corollary 2.6. Let H be a cactus in C(n, k) (k ≥ 2) with minimum reduced Sombor index. Then
δ(H) = 2.

3. The maximum degree of the cacti in C(n, k) with minimum Sombor index and reduced
Sombor index

In this section, the maximum degree of the cacti in C(n, k) (n ≥ 4k − 2 and k ≥ 2) with minimum
Sombor index and reduced Sombor index is discussed.

Lemma 3.1. Let H be a cactus in C(n, k) (k ≥ 2) with minimum Sombor index. Then there does not
exist a path u1u2 · · · ul (l ≥ 3) in H such that dH(u1) ≥ 3, dH(ul) ≥ 3 and dH(ui) = 2 (i = 2, · · · , l − 1),
where u1 and ul are not adjacent.

Proof. Suppose to the contrary that there exists a path u1u2 · · · ul (l ≥ 3) in H such that
dH(u1) ≥ 3, dH(ul) ≥ 3 and dH(ui) = 2 (i = 2, · · · , l − 1), where u1 and ul are not adjacent.
By Lemma 2.5, each end block of H is a cycle and there exists at least one edge e = v1v2 with
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dH(v1) = dH(v2) = 2 on some end block of H. Let H′ = H − u1u2 − ul−1ul − v1v2 + v1u2 + v2ul−1 + u1ul.
It is routine to check that dH′(u) = dH(u) for each vertex u of H. Therefore,

S O(H) − S O(H′) =
√

dH(u1)2 + dH(u2)2 +
√

dH(ul−1)2 + dH(ul)2 +
√

dH(v1)2 + dH(v2)2

−
√

dH′(v1)2 + dH′(u2)2 −
√

dH′(v2)2 + dH′(ul−1)2 −
√

dH′(u1)2 + dH′(ul)2

=
√

dH(u1)2 + 22 +
√

22 + dH(ul)2 +
√

22 + 22

−
√

22 + 22 −
√

22 + 22 −
√

dH′(u1)2 + dH′(ul)2

=
√

dH(u1)2 + 22 +
√

22 + dH(ul)2 −
√

22 + 22 −
√

dH′(u1)2 + dH′(ul)2

= (
√

dH(u1)2 + 22 −
√

22 + 22) − (
√

dH′(u1)2 + dH′(ul)2 −
√

22 + dH(ul)2)
= (
√

dH(u1)2 + 22 −
√

22 + 22) − (
√

dH(u1)2 + dH(ul)2 −
√

22 + dH(ul)2).

Note that dH(u1) ≥ 3 and dH(ul) > 2, by Lemma 2.1, one has that

(
√

dH(u1)2 + 22 −
√

22 + 22) − (
√

dH(u1)2 + dH(ul)2 −
√

22 + dH(ul)2) > 0.

Thus, S O(H) − S O(H′) > 0 which contradicts to the fact that H has minimum Sombor index.
This completes the proof. □

The corresponding result for reduced Sombor index is the following Lemma 3.2.

Lemma 3.2. Let H be a cactus in C(n, k) (k ≥ 2) with minimum reduced Sombor index. Then there does
not exist a path u1u2 · · · ul (l ≥ 3) in H such that dH(u1) ≥ 3, dH(ul) ≥ 3 and dH(ui) = 2 (i = 2, · · · , l−1),
where u1 and ul are not adjacent.

From Lemmas 3.1 and 3.2, the following Corollary 3.3 can be obtained immediately.

Corollary 3.3. Let H be a cactus in C(n, k) (k ≥ 2) with minimum Sombor index or minimum redeced
Sombor index. Then, the following results hold.

(i) If u is a vertex of H with dH(u) = 2, then u lies on some cycle of H.
(ii) Let C be a cycle of H. Then, either C is an end block, or C contains exactly two adjacent vertices

whose degrees are not 2, or no vertex of C with degree 2.

Lemma 3.4. Let H be a cactus in C(n, k) (n ≥ 4k − 2 and k ≥ 2) with minimum Sombor index. If
∆(H) ≥ 4, then there exists a path v1v2v3v4 in H such that dH(v2) = dH(v3) = 2 and v1 , v4.

Proof. Let t = ∆(H) and ni be the number of vertices of H with degree i (i = 1, 2, · · · , t). From
Lemma 2.5, δ(H) = 2. Then, we get

n2 + n3 + · · · + nt = n (3.1)

and
2n2 + 3n3 + · · · + tnt = 2|EH | = 2(n + k − 1). (3.2)

From (3.1) and (3.2), one obtains that

n3 + 2n4 + · · · + (t − 2)nt = 2k − 2
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and

n2 = n − n3 − n4 − · · · − nt

= n − [n3 + 2n4 + · · · + (t − 2)nt] + [n4 + 2n5 + · · · + (t − 3)nt]
≥ 4k − 2 − (2k − 2) + [n4 + 2n5 + · · · + (t − 3)nt]
= 2k + [n4 + 2n5 + · · · + (t − 3)nt].

By the condition ∆(H) ≥ 4, we have

n4 + 2n5 + · · · + (t − 3)nt ≥ 1

and
n2 ≥ 2k + 1.

From Corollary 3.3(i), each vertex with degree 2 lies on some cycle of H. Since there are exactly
k cycles in H and n2 ≥ 2k + 1, there exists a cycle C in H which contains at least three vertices with
degree 2. By Corollary 3.3(ii), C is an end block or C contains exactly two adjacent vertices whose
degrees are not 2. Combining the fact that C contains at least three vertices with degree 2, the result
holds. □

Lemma 3.5. Let H be a cactus in C(n, k) (n ≥ 4k − 2 and k ≥ 2) with minimum Sombor index. Then
∆(H) = 3.

Proof. Suppose to the contrary that ∆(H) ≥ 4. Let u ∈ VH be a vertex with dH(u) = ∆(H) = t and
NH(u) = {v1, v2, · · · , vt}. It is routine to check that u is a cut vertex of H. Let H1,H2, · · · ,Hs (s ≤ t)
be the pairwise-vertex-disjoint connected components of H − u. By Lemma 3.4 and the condition that
∆(H) ≥ 4, there exists a path P = w1w2w3w4 in H such that dH(w2) = dH(w3) = 2 and w1 , w4. We
divide this discussion into two cases.

Case 1: u < {w1,w4}.
Without loss of generality, suppose that P ⊂ Hs. We claim that |VHi ∩ {v1, v2, · · · , vt}| ≤ 2 for

each i = 1, 2, · · · , s. Otherwise, one can suppose to the contrary that there exists some i such that
|VHi ∩ {v1, v2, · · · , vt}| ≥ 3. Without loss of generality, suppose that {v1, v2, v3} ⊂ VHi ∩ {v1, v2, · · · , vt}.
Then, there exist two different cycles C1 and C2 in H such that {v1, v2, u} ⊂ VC1 and {v1, v3, u} ⊂ VC2 .
Which contradicts to the definition of cactus that any two cycles have at most one common vertex.

If |VHi ∩ {v1, v2, · · · , vt}| = 1 for each i = 1, 2, · · · , s − 1, by t ≥ 4, s ≥ 3 and one can suppose that
v1 ∈ H1, v2 ∈ H2. If there exists some j ∈ 1, 2, · · · , s − 1 such that |VH j ∩ {v1, v2, · · · , vt}| = 2, by t ≥ 4,
s ≥ 2 and one can suppose that v1, v2 ∈ H j.

Let H′ = H−uv1−uv2−w1w2−w2w3+w1w3+v1w2+v2w2+uw2. Then dH(u) = t, dH(w2) = 2, dH′(u) =
t − 1, dH′(w2) = 3 and dH′(g) = dH(g) for each other vertex g of H. Thus,

S O(H) − S O(H′) =
t∑

i=1

√
dH(vi)2 + dH(u)2 +

√
dH(w1)2 + dH(w2)2 +

√
dH(w2)2 + dH(w3)2

−

t∑
i=3

√
dH′(vi)2 + dH′(u)2 −

√
dH′(v1)2 + dH′(w2)2 −

√
dH′(v2)2 + dH′(w2)2

−
√

dH′(u)2 + dH′(w2)2 −
√

dH′(w1)2 + dH′(w3)2
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=

t∑
i=1

√
dH(vi)2 + t2 +

√
dH(w1)2 + 22 +

√
22 + 22

−

t∑
i=3

√
dH(vi)2 + (t − 1)2 −

√
dH(v1)2 + 32 −

√
dH(v2)2 + 32

−
√

(t − 1)2 + 32 −
√

dH(w1)2 + 22

=

t∑
i=3

[
√

dH(vi)2 + t2 −
√

dH(vi)2 + (t − 1)2]

+

2∑
i=1

[
√

dH(vi)2 + t2 −
√

dH(vi)2 + 32] +
√

22 + 22 −
√

(t − 1)2 + 32

≥

t∑
i=3

[
√

t2 + t2 −
√

t2 + (t − 1)2]

+

2∑
i=1

[
√

t2 + t2 −
√

t2 + 32] +
√

22 + 22 −
√

(t − 1)2 + 32

= (t − 2)[
√

t2 + t2 −
√

t2 + (t − 1)2] + 2[
√

t2 + t2 −
√

t2 + 32]
+
√

8 −
√

(t − 1)2 + 32

=
(t − 2)(2t − 1)

√
t2 + t2 +

√
t2 + (t − 1)2

+
2(t2 − 9)

√
t2 + t2 +

√
t2 + 32

+
√

8 −
√

(t − 1)2 + 32

≥
(t − 2)(2t − 1)

2
√

2t
+

2(t2 − 9)

2
√

2t
+
√

8 −
√

(t − 1)2 + 32

=
√

2t −
5

2
√

2
−

16

2
√

2t
+
√

8 −
√

(t − 1)2 + 32

=
√

2t −
1

2
√

2
+

4

2
√

2
−

16

2
√

2t
−
√

(t − 1)2 + 32

≥
√

2t −
1

2
√

2
−
√

(t − 1)2 + 32.

Set f (t) =
√

2t − 1
2
√

2
−
√

(t − 1)2 + 32. Then f ′(t) =
√

2 − (t−1)√
(t−1)2+32

>
√

2 − 1 > 0 for t ≥ 4. This

implies that

f (t) ≥ f (4) = 4
√

2 −
1

2
√

2
−
√

(4 − 1)2 + 32 > 0

and
S O(H) − S O(H′) ≥

√
2t −

1

2
√

2
−
√

(t − 1)2 + 32 > 0.

Which contradicts to the condition that H is a cactus with minimum Sombor index. Therefore,
∆(H) ≤ 3.

Case 2: u ∈ {w1,w4}.
If u = w4, let H′ = H − uv1 − uv2 − w1w2 − w2w3 + w1w3 + v1w2 + v2w2 + uw2. If u = w1, let

H′ = H − uv1 − uv2 −w4w3 −w2w3 +w4w2 + v1w3 + v2w3 + uw3. By a similar calculation method with
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Case 1, one has that S O(H) − S O(H′) > 0. Which contradicts to the condition that H is a cactus with
minimum Sombor index. Thus, ∆(H) ≤ 3.

On the other hand, by k ≥ 2, there exists at least one vertex in H with degree 3. The result holds. □

By similar proof with Lemmas 3.4 and 3.5, the following Corollary 3.6 can be obtained immediately.

Corollary 3.6. Let H be a cactus in C(n, k) (n ≥ 4k − 2 and k ≥ 2) with minimum reduced Sombor
index. Then ∆(H) = 3.

4. The proofs of Theorems 1.1 and 1.2

Let H be a cactus in C(n, k) (n ≥ 4k − 2 and k ≥ 2) with minimum reduced Sombor index. By
Corollaries 2.6 and 3.6, we have 2 ≤ dH(v) ≤ 3 for each vertex v in H. Let Ei, j = {uv ∈ EH |dH(u) =
i, dH(v) = j} for i, j ∈ {2, 3} and ei, j = |Ei, j|. Thus

e2,2 + e2,3 + e3,3 = n + k − 1. (4.1)

Note that ni is the number of vertices of H with degree i (i ∈ {2, 3}). It can be check that the degree
sums of the vertices of degree 2 and degree 3, respectively, are

2n2 = 2e2,2 + e2,3

and
3n3 = 2e3,3 + e2,3.

By the fact n2 + n3 = n, one has that

6e2,2 + 5e2,3 + 4e3,3 = 6n. (4.2)

Combining (4.1) and (4.2), we have

e2,2 = n − 5k + 5 + e3,3 (4.3)

and
e2,3 = 6k − 6 − 2e3,3. (4.4)

Lemma 4.1. Let H be a cactus in C(n, k) (n ≥ 4k− 2 and k ≥ 2) with minimum reduced Sombor index.
Then

S Ored(H) =
√

2n + (6
√

5 − 5
√

2)(k − 1) + (3
√

2 − 2
√

5)e3,3.

Proof. By the definition of the reduced Sombor index and the fact that 2 ≤ dH(v) ≤ 3 for each vertex v
in H, combining (4.3) and (4.4), we get

S Ored(H) =
∑

e=uv∈EH

√
(dH(u) − 1)2 + (dH(v) − 1)2

=
√

2e2,2 +
√

5e2,3 +
√

8e3,3

=
√

2n + (6
√

5 − 5
√

2)(k − 1) + (3
√

2 − 2
√

5)e3,3.

This completes the proof. □
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By a similar proof with Lemma 4.1, the following Corollary 4.2 can be gotten directly.

Corollary 4.2. Let H be a cactus in C(n, k) (n ≥ 4k − 2 and k ≥ 2) with minimum Sombor index. Then

S O(H) =
√

8n + (6
√

13 − 10
√

2)(k − 1) + (5
√

2 − 2
√

13)e3,3.

In the following, a new set of cacti, named C̃(n, k), is introduced. Let C̃(n, k) denote the set of the
element H of C(n, k) with the following properties:

(i) δ(H) = 2 and ∆(H) = 3.
(ii) A vertex is cut vertex if and only if its degree is 3, and there are exactly 2k − 2 cut vertices.
(iii) If k is even, there are k−2

2 internal cycles and every internal cycle is triangle. Moreover, there is
no vertex not belong to any cycle and the degree of each vertex on internal cycles is 3.

(iv) If k is odd, there are k−3
2 internal cycles, and each internal cycle is one of the following 3 kinds

of cycles: (1) a 3-cycle whose vertices are all degree 3; (2) a 4-cycle whose vertices are all degree 3;
(3) a cycle which contains exactly two adjacent 3-degree vertices. Moreover, there are b internal 4-
cycles whose vertices are all degree 3, c2 cycles each of which contains exactly two adjacent 3-degree
vertices, and t3 vertices with degree 3 which not belong to any cycle such that b + c2 + t3 = 1.

One element of C̃(n, k) is shown in Figure 1 where k is even, and three elements of C̃(n, k) are shown
in Figure 2 where k is odd. Moreover, the graph of Type I in Figure 2 is an example graph with c2 = 1
and b = t3 = 0; the graph of Type II in Figure 2 is an example graph with t3 = 1 and c2 = b = 0; the
graph of Type III in Figure 2 is an example graph with b = 1 and c2 = t3 = 0.
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Remark. In [15], Wu et al. defined a set of cacti C∗(n, k) which was different with the set C̃(n, k) in
this paper. Actually, when k is odd, the set C∗(n, k) in [15] contains two types of cacti meanwhile the
set C̃(n, k) in this paper contains three types of cacti. Furthermore, if k is odd, the two types cacti of
C∗(n, k) in [15] are just the cacti of the Types I and II in this paper.

Lemma 4.3. Let H be a cactus in C(n, k) (n ≥ 4k − 2 and k ≥ 2) with minimum Sombor index. Then,
e3,3 ≤ ⌊

5k
2 ⌋ − 4 with equality holds if and only if H ∈ C̃(n, k).

Proof. By Lemmas 2.5 and 3.5, we have 2 ≤ dH(v) ≤ 3 for each vertex v in H. Let c1 be the number of
end blocks, c2 be the number of the cycles which contains exactly two adjacent vertices whose degrees
are not 2. By Corollary 3.3(ii), there are c3 = k− c1 − c2 cycles containing no vertex with degree 2, and
let them be C1,C2, · · · ,Cc3 . Let li = |VCi | for i = 1, 2, · · · , c3. Let t3 be the number of vertices which
does not lie on any cycle of H.

Let TH be the tree obtained by contracting each cycle of H into a vertex. Then |VTH | = k + t3 =

|ETH | + 1, and the degree sum of all vertices in TH is

3t3 + 2c2 + c1 + l1 + l2 + · · · + lc3 = 2(k + t3 − 1).

Therefore,
t3 + c2 + l1 + l2 + · · · + lc3 + c1 + c2 = 2k − 2 (4.5)

and
t3 + c2 + l1 + l2 + · · · + lc3 − 3c3 + 2c3 + k = 2k − 2.

Thus,

2c3 = k − 2 − [t3 + c2 +

c3∑
i=1

(li − 3)]. (4.6)

On the other hand, by Corollary 3.3, one has that

e3,3 = (k + t3 − 1) + c2 + l1 + l2 + · · · + lc3 . (4.7)

Combining (4.5), (4.6) and (4.7), we get

e3,3 = (k + t3 − 1) + c2 + l1 + l2 + · · · + lc3

= k − 1 + 2k − 2 − c1 − c2

= 2k − 3 + c3

= 2k − 3 +
1
2
{k − 2 − [t3 + c2 +

c3∑
i=1

(li − 3)]}

=
5k
2
− 4 −

1
2

[t3 + c2 +

c3∑
i=1

(li − 3)].

If k is even, we obtain

e3,3 ≤
5k
2
− 4

with equality holds if and only if t3 = c2 = 0 and li = 3 for i = 1, 2, · · · , c3, that is H ∈ C̃(n, k).
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If k is odd, we have

e3,3 ≤
5k − 1

2
− 4

with equality holds if and only if either t3 = 0, c2 = 1 and li = 3 for i = 1, 2, · · · , c3 (i.e., H is the graph
of Type I in Figure 2), or t3 = 1, c2 = 0 and li = 3 for i = 1, 2, · · · , c3 (i.e., H is the graph of Type II
in Figure 2), or t3 = c2 = 0 and

∑c3
i=1 (li − 3) = 1 (i.e., H is the graph of Type III in Figure 2), that is

H ∈ C̃(n, k). □

In a similar manner with Lemma 4.3, the following Corollary 4.4 can be deduced.

Corollary 4.4. Let H be a cactus in C(n, k) (n ≥ 4k − 2 and k ≥ 2) with minimum reduced Sombor
index. Then, e3,3 ≤ ⌊

5k
2 ⌋ − 4 with equality holds if and only if H ∈ C̃(n, k).

Proof of Theorem 1.1: From Corollary 4.2 and Lemma 4.3, one obtains that

S O(H) =
√

8e2,2 +
√

13e2,3 +
√

18e3,3

=
√

8n + (6
√

13 − 10
√

2)(k − 1) + (5
√

2 − 2
√

13)e3,3

≥
√

8n + 2
√

13k + (5
√

2 − 2
√

13)⌊
k
2
⌋ + 2

√
13 − 10

√
2.

Moreover, the equality holds if and only if H ∈ C̃(n, k). □
Proof of Theorem 1.2: From Lemma 4.1 and Corollary 4.4, we get

S Ored(H) =
√

2e2,2 +
√

5e2,3 +
√

8e3,3

=
√

2n + (6
√

5 − 5
√

2)(k − 1) + (3
√

2 − 2
√

5)e3,3

≥
√

2n + (2
√

5 +
√

2)k + (3
√

2 − 2
√

5)⌊
k
2
⌋ + 2

√
5 − 7

√
2.

Moreover, the equality holds if and only if H ∈ C̃(n, k). □

5. Conclusions

In this paper, the Sombor index and the reduced Sombor index on cacti with n vertices and k cycles
are discussed. The minimum Sombor index on cacti with n vertices and k cycles (n ≥ 4k − 2 and
k ≥ 2) is obtained and the corresponding extremal cacti are characterized which improves the result
of Wu et al. [15]. Moreover, the minimum reduced Sombor index of cacti with n vertices and k
cycles (n ≥ 4k − 2 and k ≥ 2) is obtained and the corresponding extremal cacti are characterized as
well. For further study, it would be interesting to generalize the Theorems 1.1 and 1.2 to the case
of 3k + 1 ≤ n ≤ 4k − 3 and k ≥ 2. Furthermore, it would be meaningful to study the Sombor index and
the reduced Sombor index of other kinds of graphs.
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