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Abstract: Statistical process control is a procedure of quality control that is widely used in industrial 
processes to enable monitoring by using statistical techniques. All production processes are faced with 
natural and unnatural variations. To maintain the stability of the production process and reduce variation, 
different tools are used. Control charts are significant tools to monitor a production process. In this article, 
we design an extended exponentially weighted moving average (EEWMA) chart under the assumption of 
inverse Maxwell (IM) distribution, an IM EEWMA (IMEEWMA) control chart. We have estimated the 
performance of the proposed chart in terms of various run-length (RL) properties, including the average 
RL, standard deviation of the RL and median RL. We have also carried out a comparative analysis of the 
proposed chart with the existing Shewhart-type chart for IM distribution (VIM chart) and IM exponential 
weighted moving average (IMEWMA) chart. We observed that the proposed IMEEWMA chart performed 
better than the VIM chart and IMEWMA chart in terms of the ability to detect small and moderate shifts. 
To demonstrate its practical application, we have applied the IMEEWMA chart, along with existing control 
charts, to monitor the lifetime of car brake pad data. This real-world example illustrates the superiority of 
the IMEEWMA chart over its counterparts in industrial scenarios. 

Keywords: statistical process control; exponentially weighted moving average; extended exponentially 
weighted moving average; Inverse Maxwell distribution; maximum likelihood estimator; average run length 
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1. Introduction  

Statistical process control (SPC) is a widely utilized quality control procedure to monitor 
industrial processes by using statistical techniques. In any production process, both natural and 
unnatural variations occur. To maintain process stability and reduce variation, various tools are 
employed. Control charts play a significant role in monitoring production processes. These charts can 
be categorized as memory-less control charts and memory-type control charts. The fundamental 
memory-type control chart is the exponentially weighted moving average (EWMA) control chart. 
Additionally, there are other control charts such as the extended-EWMA (EEWMA), cumulative sum 
(CUSUM) and hybrid-EWMA (HEWMA), which have been developed for the quick detection of small 
to moderate shifts. Several variations of the EWMA control chart have been introduced to detect small 
shifts, some of which can monitor changes in both mean and variance simultaneously.  

Literature suggests that EWMA control charts primarily rely on the assumption of normality for 
process distribution. For instance, Chen et al. [1] monitored variations in the mean and variance of a 
normal process. Yeh et al. [2] developed an improved EWMA control chart for monitoring the variability 
in multivariate normal processes. Other studies have proposed various applications of normal 
distribution-based EWMA control charts. Zhang and Chen [3] introduced the double EWMA (DEWMA) 
control chart as an enhancement of the traditional EWMA control chart. Khoo and Wong [4] extended 
the DEWMA methodology by introducing the double moving average approach. Haq [5] proposed a 
new control chart named the HEWMA control chart, which combines concepts from the traditional 
EWMA control chart. Shabbir and Awan [6] presented a Shewhart-type control chart to monitor 
moderate-sized shifts effectively in the process mean. Naveed et al. [7] introduced EEWMA-based 
and EWMA-based monitoring charts for tracking the process location parameters by using the moving 
average statistic, considering both known and unknown additional information. 

One favorable property of the EWMA chart, along with the mentioned charts, is its robustness to 
non-normality. However, in reality, there are cases in which the assumption of normality may not hold, 
making non-normality an important issue in ongoing process monitoring. Therefore, the development 
of control charts based on non-normality conditions is essential. Borror et al. [8] and Maravelakis et 
al. [9] demonstrated that EWMA control charts can robustly monitor the mean and variance of a 
process when the normality assumption is violated. They also provided useful transformation schemes 
for handling non-normal data. Several other studies have highlighted the critical role of a normality 
assumption in Phase I, while non-normality becomes a concern in Phase II monitoring. Specifically, 
when the sample size is not sufficiently large, non-normality becomes problematic. To address this, 
monitoring schemes based on control charts have been developed for non-normal symmetric and 
skewed distributions. In recent years, scholars have focused on using EWMA and CUSUM control 
charts to monitor non-normal processes. For example, Borror et al. [10] developed a Poisson EWMA 
control chart, and Gan [11,12] applied an EWMA control char to monitor binomial observations and 
Poisson observations. Yu et al. [13] used EWMA control chart schemes to monitor the water quality in 
the negative binomial distribution. Gan [14] provided an EWMA control chart with reflecting 
boundaries. Maravelakis et al. [9] investigated the use of EWMA chart as a tool to monitor dispersion 
in non-normal distributions. Abbasi et al. [15] studied EWMA control charts for both normal and non-
normal processes, exploring several non-normal distributions such as the logistic and Student's t 
distributions. Raza et al. [16] developed EWMA charts under the multivariate student’s t distribution 
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and multivariate gamma distribution. Zhang and Chen [3] designed EWMA charts for monitoring the 
mean of censored Weibull lifetimes. Pascual [17] developed an EWMA control chart for monitoring 
location parameters, and he assumed Weibull distribution parameters. Arif et al. [18] introduced the 
EWMA-np control chart for Weibull distribution. 

In real-life scenarios, non-normal datasets are commonly encountered across various applied 
fields such as the engineering, agricultural and industrial sectors. While statistics offers a range of 
established distribution models to characterize these non-normal datasets, practical situations often 
arise whereby these conventional distributions prove inadequate. In such cases, alternative statistical 
distributions, including the inverse counterparts of typical distributions, become necessary to 
effectively capture the data's behavior. One notable candidate for modeling non-normal distributions 
is the Maxwell distribution. Particularly in the context of lifetime modeling, this distribution exhibits 
significant distributional properties and finds applications not only in the realm of statistics but also in 
fields of chemistry, physics and statistical mechanics. It is important to recognize that utilizing the 
inverse of a distribution is often less parsimonious compared to using the original distribution itself. 
Consequently, Singh and Srivastava [19] introduced the IM distribution, derived from the Maxwell 
distribution, to expand its applicability. They conducted a comprehensive exploration of various 
statistical properties, including moments, survival functions, and parameter estimation techniques. 
However, it is worth noting that none of the aforementioned research endeavors delved into practical 
applications of this distribution. This absence of applied usage, coupled with the unavailability of some 
crucial statistical properties, served as the primary motivation for our current study. Furthermore, in 
the existing literature, there is a notable absence of memory-type control charting methods apart from 
that associated with IM EWMA (IMEWMA). Therefore, an attempt was made to address this gap by 
introducing another memory-type control chart, known as the IM extended EWMA (IMEEWMA). 

While the aforementioned distributions are commonly considered for data modeling, there is a need 
to explore other non-normal distributions in theoretical and real-life fields. Karlis and Santourian [20] 
demonstrated an improvement in the parsimony of real distributions by considering the inverse of a 
distribution, using the example of the inverse Gaussian distribution. In the literature, several studies 
have derived and applied different forms of inverse distributions, such as inverse exponential, inverse 
gamma, inverse Rayleigh, inverse Lindley, inverse Weibull and IM distributions [21–34]. The IM 
distribution is another positively skewed non-normal distribution. Essentially, the IM distribution is 
derived from the Maxwell distribution and has heavier tails than the Maxwell distribution, which 
means that it has a higher probability of observing extreme values than the Maxwell distribution. This 
statement was presented by Karlis and Santourian [20] who compared the coefficient of skewness for 
both the Maxwell and IM distributions. They also suggest that the IM distribution enhances the 
applicability of the Maxwell family of distributions. Although the theoretical properties of the IM 
distribution have been investigated, no real-life applications of this distribution have been attempted 
yet. Arafat et al. [25] conducted a study on the survival times of breast cancer patients and found that 
these times followed an IM distribution. As part of their research, they developed an EWMA control 
chart to enable the early detection of breast cancer cells for timely patient treatment. This study is 
motivated to consider the IM distribution because its application in control charts has many potential 
advantages over other heavy-tailed distributions. These advantages include the following. i) The IM 
distribution can be a suitable choice when your data follow a distribution that is characterized by a 
heavy tail, which means that it has a higher probability of extreme values. This distribution allows you 
to model data with longer tails, endowing it with the flexibility to capture extreme events or outliers 
in a process under study. ii) If data closely follows the characteristics of an IM distribution, using it in 
control charts can result in a better fit to the data than other heavy-tailed distributions. A better fit can 



30078 

AIMS Mathematics  Volume 8, Issue 12, 30075–30101. 

lead to more accurate statistical process control. iii) Control limits in control charts are typically based 
on the assumed distribution of the data. If the data follow an IM distribution, control limits derived 
from this distribution may be more appropriate for identifying significant deviations from the mean or 
median of the process. iv) In situations wherein a process yields extreme values or outliers that are 
essential to detect, a heavy-tailed distribution like the IM distribution can provide increased sensitivity 
to these events. It can help to identify process shifts or variations that might be missed when using 
control charts based on distributions with thinner tails. An IM distribution is more sensitive to quick 
shift or outlier than the Maxwell distribution and other heavy-tailed distributions. The distribution is 
widely used in statistical mechanics, lifetime modeling and chemistry applications. 

Hossain et al. [21] proposed the Shewhart-type chart for the Maxwell distribution (VM chart) 
specifically for the purpose of analyzing and monitoring data that follows the Maxwell distribution. The 
VM control chart is based on a sample mean and range, and its statistical properties were evaluated by 
performing a simulation study. The authors demonstrated that the proposed control chart performs well in 
terms of monitoring process parameters. Further Hossain et al. [22] provided an improved and efficient 
version of the VM chart by introducing a CUSUM control chart for monitoring the failure rate in the boring 
process. Hossain and Omar [23] conducted a study on Shewhart-type control charts for observing processes 
that adhere to a Rayleigh distribution. They developed a chart designed to effectively monitor the scale 
parameter of the Rayleigh-distributed process. Morals and Panza [24] presented an adaptive version of 
the EWMA control chart with rigorous limits that allow one to obtain the mean from an asymmetric 
normal distribution. Lin et al. [25] utilized a Bayesian approach to construct a Phase II EWMA control 
chart for monitoring the variance of distribution-free service processes. There is a wealth of literature 
available that explores the applications of EWMA control charts based on different non-normal 
distributions. Al-Omari et al. [26] investigated the theoretical properties of the IM distribution. The IM 
distribution provides a suitable option for modeling various types of life or survival time data and 
genetic data, with potential applications in various fields, including statistical mechanics and chemistry. 

The primary objective of this study is to address the need for effective monitoring of processes 
when the underlying distribution deviates from normality and follows a heavy-tailed IM distribution. 
The focus is specifically on detecting changes in the scale parameter of an ongoing process. The 
motivation for this research stems from the recognition that non-normality is prevalent in real-life 
processes, and assuming normality can lead to inadequate process monitoring. While existing literature 
has explored control charts based on various non-normal distributions, there is a lack of research that 
specifically targets the IM distribution by using the EEWMA control chart, which yields heavier tails 
than the Maxwell distribution and has potential applications in life or survival time data and genetic 
data analysis. 

The crux of this paper lies in the development of an EEWMA control chart tailored to the IM 
distribution, aiming to provide valuable insights for accurate process monitoring and contribute to 
improved quality control practices. By addressing the limitations of assuming normality and focusing 
on the IM distribution, this study was proposed to enhance understanding in the field of statistical 
process monitoring and facilitate more robust and reliable quality control techniques. 

In Section 2, we discuss the existing control charts related to the IM and IMEWMA control charts. 
Section 3 presents the development of the proposed control chart, while Section 4 describes the 
different performance measures associated with the proposed control chart. In Section 5, a comparison 
between the IMEEWMA control charts and the existing V and IMEWMA charts is presented through 
the result of simulation. Furthermore, Section 6 includes a real-life application to illustrate the 
application of the proposed control chart. Finally, in Section 7, the manuscript provides a general 
discussion of the findings.  
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2. Materials and methods 

In order to investigate the properties and performance of the proposed chart, we present the 
methodology and related details for the chart's development in different sub-sections. Subsection 2.1 
offers a concise introduction to a heavy- tailed IM distribution, including its properties. Additionally, 
subsection 2.2 provides a reproduction of existing control charts that are based on the IM distribution. 

2.1. IM distribution and its properties 

Let us consider that Y is a continuous random variable that follows the Maxwell distribution with 
the scale parameter σ. The probability distribution function is given as follows: 

𝑓(𝑦, 𝜎) =  𝜎 𝑦 𝑒 ;  𝑦 > 0, 𝜎 > 0        (1) 

where X = 𝑌 then, then Z can be defined as an IM random variable. The probability density function 
(PDF) of the IM distribution with scale parameter σ is defined as follows: 

𝑓(𝑥, 𝜎) =  𝜎 𝑥 𝑒  ;  𝑥 > 0, 𝜎 > 0.         (2) 

The IM distribution has one scale parameter 𝜎. The maximum likelihood estimator (MLE) 𝜎 of 
𝜎 is given below 

𝜎 = 3𝑛 ∑ .          (3) 

2.2. Some existing control charts for IM distribution 

If it is assumed that an ongoing production process follows an IM distribution, and interest is in 
monitoring the process scale parameter σ, then there are two control charts available for monitoring the 
process for a possible shift in the value of its scale parameter. This section presents methods for 
developing the available control charts for an IM distributed process, i.e., A memory-less Shewhart-type 
(VIM) control chart and a memory-based EWMA control chart. A VIM control chart is given by Omar 
et al. [31], and a memory-based EWMA control chart is given by Arafat et al. [32] in order to monitor 
the scale parameter of a positively skewed process. 

2.2.1. VIM control chart for IM distribution  

Omar et al. [31] proposed an IM distribution-based control chart for monitoring the scale 
parameter 𝜎, and their suggested control chart is named the 𝑉  control chart. Their plotting statistic 
for the IM distribution-based control chart is given by 

𝑉 = (3𝑛) ∑  .         (4) 

The expected mean and variance of 𝑉   are given, respectively, by 𝐸[𝑉 ] =  𝜎   and 
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𝑉𝑎𝑟(𝑉 ) =    

The control limits for the proposed chart can be expressed as follows, 
𝐿𝐶𝐿 = 𝑅  𝜎 ,  𝐶𝐿 = 𝜎 ,  𝑈𝐶𝐿 = 𝑅 𝜎 ,  

where, 𝑅 =  1 − 𝐿 ,  and 𝑅 =  1 + 𝐿 . 

R1 and R2 factors may be used to simplify the calculations involving the L control chart coefficient. 
Utilizing these factors will significantly contribute to reduce the complexity involved in the 
construction of the VIM control chart for monitoring a scale parameter. 

During the monitoring of the IM scale parameter, two situations regarding the availability of 
required process parameters may need to be addressed in different practical situations: 
i) when 𝜎  is known, 
ii) when 𝜎  is unknown. 

For an unknown 𝜎 , the control limits are given below, 
𝐿𝐶𝐿 = 𝑅  𝑉 ,  𝐶𝐿 = 𝑉 , 𝑈𝐶𝐿 = 𝑅 𝑉 . 

If any data point exceeds the upper control limit (UCL) or falls below the lower control limit 
(LCL), it indicates that the process is out of control. On the other hand, if the data points remain within 
these control limits, we can conclude that the process is in control. 

2.2.2. Arafat et al. [32] EWMA control chart for IM distribution  

The EWMA control chart was first introduced by Roberts [35] but this chart is based on the 
normality assumption and considering Arafat et al. [32] established a new EWMA control chart in the 
case of non-normal distribution. In their case, the non-normal distribution is the IM distribution and 
the proposed control chart is the IMEWMA chart. The chart is reproduced as given below. 
The plotting statistic for the IMEWMA control chart is defined as follows 

𝑍 =  𝜆𝑉 + (1 − 𝜆)𝑍 .        (5) 

In the above statistic, 𝑉  is the current observation for (𝑖 = 1,2,3, … ). 𝑍  represents the 

previous value of the statistic. The smoothing constant 𝜆 lies between 0 and 1 ( i. e. , 0 < 𝜆 ≤ 1). 
The initial value 𝑍  is taken to be 𝜎 . If we do not have any information about the target scale 

parameter, then it can be estimated from phase I sample. An alternative form of the EWMA statistic 
can be written as follows 

𝑍 =  𝜆(1 − 𝜆) 𝑉 + (1 − 𝜆) 𝑍 .       (6) 

The mean and variance of IMEWMA statistics, respectively, are given by; 

E(𝑍 ) = 𝜎 , and Var(𝑍 ) = 1 − (1 − 𝜆) , 

where, 𝜎  is the square of the scale parameter. So, the control structure of an IMEWMA chart is given 
as follows 

𝑈𝐶𝐿 = 𝑃 𝜎 ,  𝐶𝐿 = 𝜎 , 𝑈𝐶𝐿 = 𝑃 𝜎 ,     (7) 
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where 𝑃 =  1 − 𝐿 × (1 − (1 − 𝜆) ) , and 𝑃 = 1 + 𝐿 × (1 − (1 − 𝜆) ) . 

P1 and P2 factors may be used to simplify the calculations involving the L control chart coefficient. 
Utilizing these factors will significantly contribute to reduce the complexity involved in the 
construction of the IMEWMA control chart for monitoring a scale parameter. 

As previously mentioned two different scenarios may need to be present to monitor the scale 
parameter in the IM distribution, and these scenarios are stated as follows 
i) when 𝜎  is known, 
ii) when 𝜎  is unknown. 
For an unknown 𝜎 , involved control limits are given below 
𝐿𝐶𝐿 = 𝑃 𝑉 ,  𝐶𝐿 = 𝑉 ,  𝑈𝐶𝐿 = 𝑃  𝑉 . 

If any data point is beyond the UCL or falls below the LCL, it signifies that the process is out of 
control. Conversely, if the data points consistently remain within these control limits, we can deduce 
that the process is under control. 

3. Development of the proposed EEWMA control chart for IM distribution  

Naveed et al. [36] presented an extended form of the Robert [33] EWMA control chart known as 
an EEWMA control chart. Like an EWMA control chart, the EEWMA control chart is also based on 
the assumption that the distribution of an ongoing process is a normal distribution. This study was 
designed to develop the Naveed et al. [36] EEWMA control chart for a non-normal distribution by 
following the methodology proposed by Arafat et al. [32], and Omer et al. [31]. For this study, the non-
normal distribution is a positively skewed IM distribution, and the proposed control chart is referred 
to as the IMEEWMA control chart. The structure of the proposed IMEEWMA chart is designed and 
illustrated in the following text. 

Considering a random variable Q, where, Q = , the PDF of Q is given by 

𝑓 (𝑞) =
𝚪 (  ) 

 𝑞  𝑒 .        (8) 

The above expression is a pdf of the gamma distribution which shows that the shape and scale 
parameters are 3/2 and 1, respectively. As per the additive property of the gamma distribution, we can 

write the IM variates as ∑ 𝑄 ~ 𝑔𝑎𝑚𝑚𝑎 , 1 .  Here, we introduce another variable 𝑉 =

(3𝑛) ∑  which is the square of the MLE of scale parameter 𝜎. Finally, we consider the pivotal 

quantity S which follows a gamma distribution with scale and shape parameters as 3/2 and 1. Here, S 

is a gamma-distributed random variable, so its mean is 𝐸[S ] = 𝐸 = . Thus we can write 

the mean and variance of 𝑉  as 𝐸[𝑉 ] =  𝜎  and 𝑉𝑎𝑟(𝑉 ) =   respectively. 

The plotting statistic for the proposed EEWMA control chart which is an extension of the EWMA 
chart for the IM distribution that gives positive weight to the current observation and negative weight 
to the proceeding observations, is defined as 

𝑢 =  𝜑 𝑉 − 𝜑 𝑉 + (1 − 𝜑 + 𝜑 )𝑢 .     (9) 

The smoothing constants of 𝜑  and 𝜑  lie between 0< 𝜑 ≤ 1 and 0< 𝜑 ≤ 𝜑  respectively. 
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For the proposed statistic, 𝑉  is the current observation for (𝑖 = 1,2,3, … ). The quantity 𝑉  

represents the previous value of the variable and 𝑈  represents the previous value of the statistic. 
The initial value 𝑢  is taken to be 𝜎 . If we do not have any information about the target scale 
parameter, then it can be estimated from Phase I sample. The mean and variance of IMEEWMA 
statistics are respectively as follows. 
E(𝑢 ) = 𝜎 ,  
and 

Var(𝑢 ) = {𝜑 + 𝜑 }
( ) ( )

−
( ) ( )

,   (10) 

where, 𝜎  is the square of the scale parameter. So, the control structure of an IMEEWMA chart is 
given follows: 

𝐿𝐶𝐿 = 𝑊 𝜎 ,  𝐶𝐿 = 𝜎  ,  𝑈𝐶𝐿 = 𝑊 𝜎 ,      (11) 

where,   𝑊 =  1 − 𝐾 {𝜑 + 𝜑 }
( ) ( )

−
( ) ( )

 

and    𝑊 =  1 + 𝐾 {𝜑 + 𝜑 }
( ) ( )

−
( ) ( )

. 

In the process of monitoring the scale parameter of the IM distribution, we may need to encounter 
two situations: 
i) when 𝜎  is known, 
ii) when 𝜎  is unknown. 
In the case of a known 𝜎 , the control limits can be written as follows 
𝐿𝐶𝐿 = 𝑊 𝜎 , 𝐶𝐿 = 𝜎 , 𝑈𝐶𝐿 = 𝑊 𝜎 . 
But in the second case when 𝜎  is unknown, we estimate 𝑉  and use it as follows 

𝐿𝐶𝐿 = 𝑊 𝑉 , 𝐶𝐿 = 𝑉 ,  𝑈𝐶𝐿 = 𝑊  𝑉 .       (12) 

K control chart coefficients (see, Tables 1–6) are used to calculate 𝑊  and 𝑊 . The factor K 
which is mentioned in Eq (11) was obtained by conducting Monte Carlo simulation with 𝜎  = 1 in 
such a manner that the expected in-control average run length (𝐴𝑅𝐿 )  can been obtained. K 
determines the width of the control limits and its value can be selected according to 𝐴𝑅𝐿 . 

Table 1. Values of K coefficient for ARL0= 370. 

Sample size 𝜑 = 0.1, 
𝜑 =0.03 

𝜑 = 0.3, 
𝜑 =0.05 

𝜑 = 0.5, 
𝜑 =0.07 

𝜑 = 0.1, 
𝜑 =0.0005 

𝜑 =0.25, 
𝜑 =0.1 

2 4.990 4.011 4.125 2.799 5.093 

3 5.530 4.070 4.069 2.769 5.532 

5 6.420 4.224 4.065 2.757 6.281 

6 6.801 4.306 4.087 2.753 6.599 

9 7.799 4.540 4.173 2.749 7.459 
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Table 2. Factors for IMEEWMA control chart with φ = 0.1, φ =0.03 and 𝐴𝑅𝐿 = 370. 

Time 
(i) 

Sample size (n) 

2 3 5 6 9 

W1 W2 W1 W2 W1 W2 W1 W2 W1 W2 

1 0.69922 1.30078 0.72784 1.27216 0.75525 1.24475 0.76332 1.23668 0.77839 1.22161 

2 0.72027 1.27973 0.74689 1.25311 0.77239 1.22761 0.77989 1.22011 0.79390 1.20610 

3 0.73985 1.26015 0.76460 1.23540 0.78832 1.21168 0.79529 1.20471 0.80833 1.19167 

4 0.75806 1.24194 0.78108 1.21892 0.80314 1.19686 0.80962 1.19038 0.82175 1.17825 

5 0.77500 1.22500 0.79641 1.20359 0.81692 1.18308 0.82295 1.17705 0.83423 1.16577 

6 0.79075 1.20925 0.81066 1.18934 0.82973 1.17027 0.83534 1.16466 0.84583 1.15417 

7 0.80540 1.19460 0.82391 1.17609 0.84165 1.15835 0.84687 1.15313 0.85662 1.14338 

8 0.81902 1.18098 0.83624 1.16376 0.85274 1.14726 0.85759 1.14241 0.86666 1.13334 

9 0.83169 1.16831 0.84770 1.15230 0.86304 1.13696 0.86756 1.13244 0.87599 1.12401 

10 0.84347 1.15653 0.85836 1.14164 0.87263 1.12737 0.87683 1.12317 0.88467 1.11533 

11 0.85443 1.14557 0.86828 1.13172 0.88155 1.11845 0.88545 1.11455 0.89275 1.10725 

12 0.86462 1.13538 0.87750 1.12250 0.88984 1.11016 0.89347 1.10653 0.90025 1.09975 

13 0.87409 1.12591 0.88607 1.11393 0.89755 1.10245 0.90093 1.09907 0.90724 1.09276 

14 0.88291 1.11709 0.89405 1.10595 0.90472 1.09528 0.90786 1.09214 0.91373 1.08627 

15 0.89110 1.10890 0.90146 1.09854 0.91139 1.08861 0.91431 1.08569 0.91977 1.08023 

16 0.89873 1.10127 0.90836 1.09164 0.91759 1.08241 0.92031 1.07969 0.92538 1.07462 

17 0.90582 1.09418 0.91478 1.08522 0.92336 1.07664 0.92589 1.07411 0.93061 1.06939 

18 0.91241 1.08759 0.92074 1.07926 0.92873 1.07127 0.93108 1.06892 0.93546 1.06454 

19 0.91854 1.08146 0.92629 1.07371 0.93372 1.06628 0.93590 1.06410 0.93998 1.06002 

20 0.92424 1.07576 0.93145 1.06855 0.93836 1.06164 0.94039 1.05961 0.94418 1.05582 
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Table 3. Factors for IMEEWMA control chart with φ = 0.3, φ =0.05 and 𝐴𝑅𝐿 = 370. 

 
Time 

(i) 

Sample size (n) 

2 3 5 6 9 

W1 W2 W1 W2 W1 W2 W1 W2 W1 W2 

1 0.29569 1.70431 0.41648 1.58352 0.53090 1.46910 0.56346 1.43654 0.62420 1.37580 

2 0.47177 1.52823 0.56236 1.43764 0.64818 1.35182 0.67260 1.32740 0.71815 1.28185 

3 0.60383 1.39617 0.67177 1.32823 0.73613 1.26387 0.75445 1.24555 0.78861 1.21139 

4 0.70287 1.29713 0.75383 1.24617 0.80210 1.19790 0.81583 1.18417 0.84146 1.15854 

5 0.77715 1.22285 0.81537 1.18463 0.85157 1.14843 0.86188 1.13812 0.88109 1.11891 

6 0.83286 1.16714 0.86153 1.13847 0.88868 1.11132 0.89641 1.10359 0.91082 1.08918 

7 0.87465 1.12535 0.89615 1.10385 0.91651 1.08349 0.92231 1.07769 0.93312 1.06688 

8 0.90599 1.09401 0.92211 1.07789 0.93738 1.06262 0.94173 1.05827 0.94984 1.05016 

9 0.92949 1.07051 0.94158 1.05842 0.95304 1.04696 0.95630 1.04370 0.96238 1.03762 

10 0.94712 1.05288 0.95619 1.04381 0.96478 1.03522 0.96722 1.03278 0.97178 1.02822 

11 0.96034 1.03966 0.96714 1.03286 0.97358 1.02642 0.97542 1.02458 0.97884 1.02116 

12 0.97025 1.02975 0.97535 1.02465 0.98019 1.01981 0.98156 1.01844 0.98413 1.01587 

13 0.97769 1.02231 0.98152 1.01848 0.98514 1.01486 0.98617 1.01383 0.98810 1.01190 

14 0.98327 1.01673 0.98614 1.01386 0.98886 1.01114 0.98963 1.01037 0.99107 1.00893 

15 0.98745 1.01255 0.98960 1.01040 0.99164 1.00836 0.99222 1.00778 0.99330 1.00670 

16 0.99059 1.00941 0.99220 1.00780 0.99373 1.00627 0.99417 1.00583 0.99498 1.00502 

17 0.99294 1.00706 0.99415 1.00585 0.99530 1.00470 0.99562 1.00438 0.99623 1.00377 

18 0.99471 1.00529 0.99561 1.00439 0.99647 1.00353 0.99672 1.00328 0.99718 1.00282 

19 0.99603 1.00397 0.99671 1.00329 0.99736 1.00264 0.99754 1.00246 0.99788 1.00212 

20 0.99702 1.00298 0.99753 1.00247 0.99802 1.00198 0.99815 1.00185 0.99841 1.00159 
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Table 4. Factors for IMEEWMA control chart with φ = 0.5, φ =0.07 and ARL0= 370. 

Time 
(i) 

Sample size (n) 

2 3 5 6 9 

W1 W2 W1 W2 W1 W2 W1 W2 W1 W2 

1 00000 2.20240 00000 2.20240 0.25060 1.74940 0.31219 1.68781 0.42659 1.57341 

2 0.31463 1.68537 0.31463 1.68537 0.57284 1.42716 0.60795 1.39205 0.67316 1.32684 

3 0.60934 1.39066 0.60934 1.39066 0.75652 1.24348 0.77653 1.22347 0.81370 1.18630 

4 0.77732 1.22268 0.77732 1.22268 0.86122 1.13878 0.87262 1.12738 0.89381 1.10619 

5 0.87307 1.12693 0.87307 1.12693 0.92089 1.07911 0.92739 1.07261 0.93947 1.06053 

6 0.92765 1.07235 0.92765 1.07235 0.95491 1.04509 0.95862 1.04138 0.96550 1.03450 

7 0.95876 1.04124 0.95876 1.04124 0.97430 1.02570 0.97641 1.02359 0.98033 1.01967 

8 0.97649 1.02351 0.97649 1.02351 0.98535 1.01465 0.98655 1.01345 0.98879 1.01121 

9 0.98660 1.01340 0.98660 1.01340 0.99165 1.00835 0.99234 1.00766 0.99361 1.00639 

10 0.99236 1.00764 0.99236 1.00764 0.99524 1.00476 0.99563 1.00437 0.99636 1.00364 

11 0.99565 1.00435 0.99565 1.00435 0.99729 1.00271 0.99751 1.00249 0.99792 1.00208 

12 0.99752 1.00248 0.99752 1.00248 0.99845 1.00155 0.99858 1.00142 0.99882 1.00118 

13 0.99859 1.00141 0.99859 1.00141 0.99912 1.00088 0.99919 1.00081 0.99933 1.00067 

14 0.99919 1.00081 0.99919 1.00081 0.99950 1.00050 0.99954 1.00046 0.99962 1.00038 

15 0.99954 1.00046 0.99954 1.00046 0.99971 1.00029 0.99974 1.00026 0.99978 1.00022 

16 0.99974 1.00026 0.99974 1.00026 0.99984 1.00016 0.99985 1.00015 0.99988 1.00012 

17 0.99985 1.00015 0.99985 1.00015 0.99991 1.00009 0.99991 1.00009 0.99993 1.00007 

18 0.99991 1.00009 0.99991 1.00009 0.99995 1.00005 0.99995 1.00005 0.99996 1.00004 

19 0.99995 1.00005 0.99995 1.00005 0.99997 1.00003 0.99997 1.00003 0.99998 1.00002 

20 0.99997 1.00003 0.99997 1.00003 0.99998 1.00002 0.99998 1.00002 0.99999 1.00001 
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Table 5. Factors for IMEEWMA control chart with φ = 0.1, φ =0.0005 and ARL0= 370. 

Time 
(i) 

Sample size (n) 

2 3 5 6 9 

W1 W2 W1 W2 W1 W2 W1 W2 W1 W2 

1 0.83840 1.16160 0.86947 1.13053 0.89933 1.10067 0.90820 1.09180 0.92518 1.07482 

2 0.85448 1.14552 0.88245 1.11755 0.90934 1.09066 0.91733 1.08267 0.93263 1.06737 

3 0.86896 1.13104 0.89415 1.10585 0.91836 1.08164 0.92556 1.07444 0.93933 1.06067 

4 0.88200 1.11800 0.90468 1.09532 0.92649 1.07351 0.93297 1.06703 0.94537 1.05463 

5 0.89374 1.10626 0.91417 1.08583 0.93380 1.06620 0.93964 1.06036 0.95080 1.04920 

6 0.90431 1.09569 0.92271 1.07729 0.94039 1.05961 0.94564 1.05436 0.95570 1.04430 

7 0.91383 1.08617 0.93040 1.06960 0.94632 1.05368 0.95105 1.04895 0.96011 1.03989 

8 0.92241 1.07759 0.93732 1.06268 0.95166 1.04834 0.95592 1.04408 0.96407 1.03593 

9 0.93013 1.06987 0.94356 1.05644 0.95647 1.04353 0.96031 1.03969 0.96765 1.03235 

10 0.93708 1.06292 0.94918 1.05082 0.96080 1.03920 0.96426 1.03574 0.97087 1.02913 

11 0.94334 1.05666 0.95423 1.04577 0.96470 1.03530 0.96781 1.03219 0.97377 1.02623 

12 0.94898 1.05102 0.95879 1.04121 0.96821 1.03179 0.97102 1.02898 0.97638 1.02362 

13 0.95405 1.04595 0.96289 1.03711 0.97138 1.02862 0.97390 1.02610 0.97873 1.02127 

14 0.95863 1.04137 0.96658 1.03342 0.97422 1.02578 0.97650 1.02350 0.98084 1.01916 

15 0.96274 1.03726 0.96991 1.03009 0.97679 1.02321 0.97883 1.02117 0.98275 1.01725 

16 0.96645 1.03355 0.97290 1.02710 0.97910 1.02090 0.98094 1.01906 0.98447 1.01553 

17 0.96979 1.03021 0.97560 1.02440 0.98118 1.01882 0.98284 1.01716 0.98601 1.01399 

18 0.97279 1.02721 0.97802 1.02198 0.98305 1.01695 0.98454 1.01546 0.98740 1.01260 

19 0.97550 1.02450 0.98021 1.01979 0.98474 1.01526 0.98608 1.01392 0.98866 1.01134 

20 0.97794 1.02206 0.98218 1.01782 0.98626 1.01374 0.98747 1.01253 0.98979 1.01021 
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Table 6. Factors for IMEEWMA control chart with φ = 0.1, φ =0.25 and ARL0= 370. 

Time 
(i) 

Sample size (n) 

2 3 5 6 9 

W1 W2 W1 W2 W1 W2 W1 W2 W1 W2 

1 0.20826 1.79174 0.29783 1.70217 0.38246 1.61754 0.40772 1.59228 0.45338 1.54662 

2 0.32702 1.67298 0.40315 1.59685 0.47509 1.52491 0.49656 1.50344 0.53538 1.46462 

3 0.42797 1.57203 0.49268 1.50732 0.55383 1.44617 0.57208 1.42792 0.60507 1.39493 

4 0.51377 1.48623 0.56878 1.43122 0.62075 1.37925 0.63627 1.36373 0.66431 1.33569 

5 0.58671 1.41329 0.63346 1.36654 0.67764 1.32236 0.69083 1.30917 0.71466 1.28534 

6 0.64870 1.35130 0.68844 1.31156 0.72599 1.27401 0.73720 1.26280 0.75746 1.24254 

7 0.70140 1.29860 0.73518 1.26482 0.76709 1.23291 0.77662 1.22338 0.79384 1.20616 

8 0.74619 1.25381 0.77490 1.22510 0.80203 1.19797 0.81013 1.18987 0.82477 1.17523 

9 0.78426 1.21574 0.80866 1.19134 0.83173 1.16827 0.83861 1.16139 0.85105 1.14895 

10 0.81662 1.18338 0.83736 1.16264 0.85697 1.14303 0.86282 1.13718 0.87339 1.12661 

11 0.84413 1.15587 0.86176 1.13824 0.87842 1.12158 0.88340 1.11660 0.89239 1.10761 

12 0.86751 1.13249 0.88250 1.11750 0.89666 1.10334 0.90089 1.09911 0.90853 1.09147 

13 0.88738 1.11262 0.90012 1.09988 0.91216 1.08784 0.91575 1.08425 0.92225 1.07775 

14 0.90427 1.09573 0.91510 1.08490 0.92534 1.07466 0.92839 1.07161 0.93391 1.06609 

15 0.91863 1.08137 0.92784 1.07216 0.93654 1.06346 0.93913 1.06087 0.94382 1.05618 

16 0.93084 1.06916 0.93866 1.06134 0.94606 1.05394 0.94826 1.05174 0.95225 1.04775 

17 0.94121 1.05879 0.94786 1.05214 0.95415 1.04585 0.95602 1.04398 0.95941 1.04059 

18 0.95003 1.04997 0.95568 1.04432 0.96102 1.03898 0.96262 1.03738 0.96550 1.03450 

19 0.95753 1.04247 0.96233 1.03767 0.96687 1.03313 0.96823 1.03177 0.97068 1.02932 

20 0.96390 1.03610 0.96798 1.03202 0.97184 1.02816 0.97299 1.02701 0.97507 1.02493 

W1 and W2 are used directly to simplify the calculations involving the K control chart coefficient. 
Utilizing these factors will significantly contribute to reduce the complexity involved in the 
construction of the IMEEWMA control chart for monitoring a scale parameter. 

Regarding monitoring the process scale parameter for the case of the IM distribution, the 
hypotheses are given as follows: 
𝐻 = 𝜎 = 𝜎 ; or, 𝛿 = 1; (no shift in the process) 
𝐻 = 𝜎 = 𝜎 = 𝛿𝜎 ; or, 𝛿 ≠ 1; (shift occurs in the process) 
here 𝛿 indicates the process shift. 
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4. Performance evaluation of the IMEEWMA control chart 

We can evaluate the performance of control charts by using various measures such as the average run 
length (ARL), the standard deviation of run length (SDRL) and the median run length (MRL). These 
measurements are famous standards for comparing the performances of different control charts. The RL is 
the number of sample points on the control chart before signaling the first out of control (OOC) point. The 
ARL is the expected number, and SDRL is the standard deviation of the RL. The ARL0 for an in-control 
process (IC) should be larger than the ARL1 for an OOC signal when a shift in the process parameter is 
observed. The ARL decreases when the shift increases so an alarm for an OOC situation can be raised 
quickly [37]. There are several ways to conduct a performance evaluation for control charts such as the 
integral equation method, Markov chain method and Monte Carlo method [38,39]. Here we use the ARL 
along with the SDRL to evaluate the performance of the proposed IMEEWMA control chart and other 
relevant control charts. The Monte Carlo simulation was performed by using R language to compute the 
ARLs and SDRLs. In order to compute control chart coefficients for the proposed control chart and other 
control charts, ARL0 was fixed at 370 (see Tables 7–11). 

Table 7. ARL and SDRL results for IMEEWMA chart with φ =  0.1, φ = 0.03 and ARL0= 370.  

Sample size and K coefficient 

𝜹 

n = 2 & K=4.990 n = 3 & K=5.530 n = 5 & K=6.420 n = 6 & K=6.801 n = 9 & K=7.799 

ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL 

1 372.94 349.87 368.13 342.32 368.70 332.83 368.62 332.51 368.86 332.37 

1.25 34.21 22.29 28.16 15.86 22.72 10.49 21.20 9.08 18.47 6.67 

1.5 14.57 8.69 12.29 6.48 10.16 4.48 9.51 3.93 8.42 3.00 

1.75 8.79 5.40 7.40 4.03 6.13 2.84 5.76 2.50 5.10 1.96 

2 6.14 3.81 5.14 2.90 4.24 2.05 4.00 1.85 3.55 1.44 

2.25 4.68 2.96 3.93 2.24 3.24 1.61 3.03 1.44 2.69 1.13 

2.5 3.76 2.40 3.15 1.81 2.60 1.31 2.45 1.17 2.16 0.93 

2.75 3.16 2.01 2.65 1.53 2.19 1.10 2.06 0.98 1.82 0.79 

3 2.74 1.73 2.32 1.30 1.91 0.94 1.80 
0.85 

1.59 
0.67 

5 1.53 0.80 1.33 1 1.16 0.39 1.11 0.33 1.04 0.20 
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Table 8. ARL and SDRL results for IMEEWMA chart with φ = 0.3,  φ = 0.05 and ARL0= 370. 

Sample size and K coefficient 

𝜹 
n = 2 & K=4.011 n = 3 & K=4.070 n = 5 & K=4.224 n = 6 & K=4.306 n = 9 & K=4.540 

ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL 

1 369.97 369.34 367.74 364.25 368.58 364.85 368.41 363.79 371.05 365.71 

1.25 38.41 35.63 28.15 25.20 18.71 15.31 16.22 12.75 11.74 8.29 

1.5 13.10 11.02 9.48 7.35 6.40 4.36 5.65 3.66 4.34 2.49 

1.75 7.17 5.59 5.29 3.76 3.71 2.32 3.31 1.97 2.62 1.39 

2 4.89 3.63 3.69 2.47 2.64 1.56 2.37 1.32 1.91 0.95 

2.25 3.73 2.66 2.83 1.83 2.08 1.17 1.87 0.99 1.54 0.71 

2.5 3.05 2.09 2.34 1.45 1.74 0.91 1.59 0.78 1.33 0.55 

2.75 2.60 1.72 2.02 1.19 1.53 0.75 1.41 0.64 1.21 0.44 

3 2.28 1.47 1.79 1.01 1.40 0.64 1.29 0.53 1.13 0.35 

5 1.39 0.68 1.19 0 1.05 0.22 1.03 0.16 1.00 0.06 

Table 9. ARL and SDRL results for IMEEWMA chart with φ =  0.5, φ = 0.07, and ARL0 = 370. 

Sample size & K Coefficient 

𝜹 

n=2& k=4.125 n=3 & k=4.069 n=5& k=4.065 n=6& k=4.087 n=9& k=4.173 

ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL 

1 367.43 364.80 367.58 365.35 368.35 365.24 367.33 364.78 367.64 365.22 

1.25 49.28 47.91 36.39 34.77 23.45 21.60 20.04 18.06 13.86 11.80 

1.5 16.28 14.91 11.34 9.92 7.03 5.49 6.00 4.54 4.33 2.90 

1.75 8.37 7.15 5.87 4.66 3.83 2.64 3.31 2.15 2.48 1.43 

2 5.44 4.38 3.88 2.83 2.62 1.65 2.33 1.38 1.79 0.92 

2.25 4.03 3.08 2.94 2.00 2.04 1.18 1.84 1.00 1.46 0.68 

2.5 3.22 2.33 2.39 1.53 1.71 0.92 1.56 0.77 1.27 0.51 

2.75 2.72 1.90 2.05 1.25 1.51 0.75 1.38 0.62 1.17 0.40 

3 2.36 1.58 1.81 1.04 1.37 0.62 1.27 0.51 1.10 0.31 

5 1.40 0.70 1.19 0 1.04 0.21 1.02 0.15 1.00 0.05 



30090 

AIMS Mathematics  Volume 8, Issue 12, 30075–30101. 

Table 10. ARL and SDRL results for IMEEWMA chart taking φ = 0.1, φ = 0.0005, and ARL0= 370. 

Sample size & K Coefficient 

𝜹 

n = 2& 

K=2.799 

n =3 & 

K=2.769 

n =5 & 

K=2.757 

n = 6 & K=2.753 n = 9 & K=2.749 

ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL 

1 370.23 378.65 368.68 376.47 368.72 374.11 368.30 376.02 369.83 375.15 

1.25 26.88 25.38 19.79 17.80 13.39 11.22 11.63 9.50 8.50 6.53 

1.5 9.67 8.34 6.99 5.71 4.76 3.61 4.17 3.05 3.10 2.10 

1.75 5.45 4.46 4.04 3.13 2.78 1.94 2.48 1.64 1.91 1.12 

2 3.83 3.03 2.84 2.07 2.03 1.28 1.81 1.07 1.46 0.73 

2.25 2.96 2.25 2.24 1.52 1.65 0.93 1.50 0.78 1.24 0.50 

2.5 2.44 1.76 1.89 1.19 1.43 0.71 1.32 0.60 1.13 0.37 

2.75 2.11 1.44 1.67 0.98 1.29 0.57 1.21 0.47 1.07 0.27 

3 1.90 1.24 1.50 0.81 1.13 0.37 1.14 0.39 1.04 0.21 

5 1.26 0.55 1.11 0.34 1.01 0.09 1.01 0.09 1.00 0.02 

Table 11. ARL and SDRL results for IMEEWMA chart with φ = 0.25, φ = 0.1 and ARL0= 370. 

Sample size & K Coefficient 

𝜹 
n=2 & K=5.093 n=3 & K=5.532 n=5 & K=6.281 n=6 & K=6.599 n=9 & K=7.459 

ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL 

1 371.15 362.81 369.69 358.55 367.60 350.12 367.63 352.58 368.90 353.59 

1.25 35.59 28.22 27.28 19.45 20.15 12.06 18.15 10.08 14.85 6.92 

1.5 13.92 9.36 10.98 6.43 8.53 4.14 7.86 3.56 6.70 2.58 

1.75 8.28 5.23 6.65 3.72 5.27 2.50 4.89 2.19 4.22 1.65 

2 5.81 3.63 4.74 2.64 3.78 1.82 3.50 1.60 3.04 1.23 

2.25 4.49 2.80 3.64 2.05 2.91 1.43 2.72 1.26 2.38 0.98 

2.5 3.63 2.26 2.98 1.66 2.40 1.17 2.24 1.04 1.95 0.81 

2.75 3.11 1.90 2.53 1.41 2.04 0.98 1.92 0.89 1.68 0.69 

3 2.72 1.65 2.22 1.21 1.80 0.85 1.69 0.77 1.48 0.60 

5 1.55 0.80 1.32 1 1.14 0.36 1.09 0.30 1.03 0.18 

5. Simulation results and discussion 

In a simulation study, we generate a sample of random data in such a way that it replicates a real 
problem. The steps are taken as follows 

 Generate data from IM distribution. 
 Fix the sample size n for each random sample. 
 Generate a random sample of size n from T ~ gamma(3/2,2𝜎 ). 
 Take the square root of T to get a sample with a Maxwell distribution. 
 Obtain a sample from the IM random variable R of size n by setting R=1/x. 
 Compute IEEWMA computing statistic, i.e., 𝑢  
 Repeat the first five steps until the expected number of subgroups is obtained. 
 Develop the control limits as proposed in the previous section. 
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 Plot all values of the 𝑢  statistic with respect to the control limits. 
We consider 𝜎 =1 and generated 120 sample observations by adopting the K-S test, we then 

found that the null hypothesis cannot be rejected for the generated data. 
Here, for the graphical representation of the IMEEWMA control chart in the case of the simulated 

data, we consider the design parameters as n = 6, λ = 0.25, φ =  0.1,φ = 0.0005 and ARL  = 

370. To check the ability of the chart to detect the process variations when it is OOC, we have 
considered a shift in the process scale parameter. We increased the scale parameter by 25% (i.e., δ = 
1.25) and 30% (i.e., δ = 1.3) after the 10th sample and constructed the proposed IMEEWMA with the 
existing VIM charts (see Figures 1 and 2). It is obvious that for a 25% increment, there was no OOC 
signal for the VIM chart and the IMEWMA chart yielded the OOC signal after 13 data points whereas 
the IMEEWMA chart yielded the OOC signal after 4 data points. Similarly, for a 30% increment (δ = 
1.3) we noticed that all points were within the control limits for the VIM chartand the IMEWMA chart 
yielded the OOC signal after 11 points whereas the control limits for the IMEEWMA chart were 
exceeded after 4 data points (see Figure 2). Hence the proposed IMEEWMA chart shows better 
detection ability than the V and IMEWMA charts for both small and moderate shifts. 

 

Figure 1(a). VIM control chart with δ = 1.25. 

 

Figure 1(b). IMEWMA control chart with δ = 1.25. 
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Figure 1(c). IMEEWMA control chart with δ =1.25, φ = 0.1, & φ = 0.0005. 

 

Figure 2(a). VIM control chart with δ =1.3. 

 

Figure 2(b). IMEWMA control chart with δ =1.3, φ = 0.1, & φ = 0.0005. 
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Figure 2(c). IMEEWMA control chart with δ =1.3, φ = 0.1, & φ = 0.0005. 

6. Real-life application-based results and discussion 

To demonstrate the performance of our proposed IMEEWMA chart, a real data set was collecte. 
The brake pad is a crucial component of a vehicle's braking system, and its lifetime refers to the 
distance covered by the vehicle while the brake pads are installed. In this particular dataset, we have 
information on the brake pad lifetimes of 98 vehicles. Therefore, we were able to utilize this dataset to 
construct our proposed chart, which, after truncation, included 84 samples, with each sample having a 
subgroup size of seven. 

Based on the design of the IMEEWMA control chart, the estimated value of the MLE was 𝑉 = 
9.08×10   for the car's data sets. To create time-varying control limits for the three control charts 
mentioned in the text, we computed the R, P and W coefficients for n = 7 the results are provided in 
Tables 12–15. Figures 3–5 present a graphical representation of the IMEEWMA chart using these values. 

We are aware that there are multiple criteria for detecting a lack of control. For instance, in Figure 5, 
if a point falls outside of the control limits or point 8 exceeds the control limit, it indicates a lack of control. 

Observing Figures 6–8 respectively, we note that the V, EWMA and IMEWMA charts for brake 
pad lifetime data use δ = 1.25 after the seventh sample. Despite a 25% increase in the shift, the VIM 
chart and IMEWMA chart still indicate that the process is in control. However, the IMEEWMA chart 
reveals that the process goes out of control since, among the seven points, four points fall outside of 
the control limits. Therefore, based on our car brake pad lifetime data, we can conclude that our 
proposed IMEEWMA control chart can detect small shifts more effectively than both the VIM chart 
and the IMEWMA chart. 
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Table 12. W coefficients for IMEEWMA, VIM and IMEWMA control charts based on 
cars’ brake pad lifetimes with δ =1.25 and n=7. 

I 
IMEEWMA VIM IMEWMA 

W1 W2 R1 R2 P1 P2 

1 0.914978 1.085022 0 2.1367 0.767696 1.232304 

2 0.923438 1.076562 0 2.1367 0.70962 1.29038 

3 0.931055 1.068945 0 2.1367 0.681574 1.318426 

4 0.937915 1.062085 0 2.1367 0.666834 1.333166 

6 0.944093 1.055907 0 2.1367 0.658822 1.341178 

7 0.959176 1.040824 0 2.1367 0.650554 1.349446 

8 0.963238 1.036762 0 2.1367 0.649781 1.350219 

9 0.966896 1.033104 0 2.1367 0.649347 1.350653 

10 0.970189 1.029811 0 2.1367 0.649103 1.350897 

11 0.973156 1.026844 0 2.1367 0.648966 1.351034 

12 0.975827 1.024173 0 2.1367 0.648889 1.351111 

13 0.978232 1.021768 0 2.1367 0.648846 1.351154 

Table 13. ARL results for IMEEWMA, IMEWMA and VIM charts with ARL0 = 370 and n= 6. 

𝜹Shift 1 1.05 1.1 1.15 1.2 1.25 1.35 1.5 1.75 2 

V 370.59 288.19 200.54 130.61 88.72 61.01 31.86 14.49 5.93 3.39 

IMEWA 

𝝀 = 𝟎. 𝟕𝟓 
368.97 194.87 110.04 67.69 43.70 29.79 15.99 8.01 3.84 2.49 

𝝀 = 𝟎. 𝟓𝟎 
368.97 172.76 90.06 51.65 32.85 21.85 11.90 6.33 3.36 2.34 

𝝀 = 𝟎. 𝟐𝟓 371.20 143.43 66.41 36.41 22.68 15.69 9.18 5.50 3.35 2.46 

IMEEWA 

𝝓𝟏 = 𝟎. 𝟏, 𝝓𝟐

= 𝟎. 𝟎𝟑 
367.19 114.11 57.90 37.11 27.15 21.24 14.50 9.53 5.76 4.00 

𝝓𝟏 = 𝟎. 𝟑, 𝝓𝟐

= 𝟎. 𝟎𝟓 
367.80 139.26 65.10 36.68 19.18 16.05 9.53 5.64 3.32 2.37 

𝝓𝟏 = 𝟎. 𝟓, 𝝓𝟐

= 𝟎. 𝟎𝟕 
370.38 163.59 82.81 47.10 29.68 19.86 

11.07 
6.02 3.31 2.32 

𝝓𝟏 = 𝟎. 𝟏, 𝝓𝟐

= 𝟎. 𝟎𝟎𝟎𝟓 
369.08 118.40 48.91 26.07 16.60 11.65 6.93 4.13 2.48 1.82 
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Table 14. SDRL results for IMEEWMA, IMEWMA and VIM charts with ARL0 = 370 and n = 6. 

𝜹 1 1.05 1.1 1.15 1.2 1.25 1.35 1.5 1.75 2 

V  369.30 282.50 203.72 131.35 88.68 61.04 31.68 13.93 5.41 2.84 

IMEWMA 

𝝀 = 𝟎. 𝟕𝟓 
366.39 194.13 110.24 66.63 42.75 29.11 15.11 7.21 3.04 1.72 

𝝀 = 𝟎. 𝟓𝟎 367.53 170.38 88.23 50.16 31.36 20.17 10.46 4.99 2.25 1.39 

𝝀 = 𝟎. 𝟐𝟓 369.58 140.45 63.31 33.06 19.65 12.79 6.64 3.44 1.80 1.20 

IMEEWA 

𝝓𝟏 = 𝟎. 𝟏, 𝝓𝟐

= 𝟎. 𝟎𝟑 
362.72 85.76 35.22 19.07 12.37 9.13 5.95 3.93 2.52 1.84 

𝝓𝟏 = 𝟎. 𝟑, 𝝓𝟐

= 𝟎. 𝟎𝟓 
364.90 134.78 60.10 32.33 19.18 12.65 6.81 3.61 1.98 1.33 

𝝓𝟏 = 𝟎. 𝟓, 𝝓𝟐

= 𝟎. 𝟎𝟕 
367.10 161.18 80.84 44.70 27.73 17.90 9.34 4.53 2.17 1.37 

𝝓𝟏 = 𝟎. 𝟏, 𝝓𝟐

= 𝟎. 𝟎𝟎𝟎𝟓 
372.70 118.29 46.70 23.32 14.11 9.50 5.38 3.02 1.64 1.08 

Table 15. MDRL for IMEEWMA, IMEWMA and VIM charts with ARL0= 370 and n= 6. 

𝜹 1 1.05 1.1 1.15 1.2 1.25 1.35 1.5 1.75 2 

V 256 204 139 91 63 42 22 10 4 3 

IMEMA 

𝝀 = 𝟎. 𝟕𝟓 257 135 76 48 30 21 11 6 3 2 

𝝀 = 𝟎. 𝟓𝟎 257 121 63 36 23 16 9 5 3 2 

𝝀 = 𝟎. 𝟐𝟓 258 100 47 26 17 12 7 5 3 2 

IMEEWMA 

𝝓𝟏 = 𝟎. 𝟏, 𝝓𝟐

= 𝟎. 𝟎𝟑 
265 89 49 33 25 20 14 9 6 4 

𝝓𝟏 = 𝟎. 𝟑, 𝝓𝟐

= 𝟎. 𝟎𝟓 
256 98 47 27 17 13 8 5 3 2 

𝝓𝟏 = 𝟎. 𝟓, 𝝓𝟐

= 𝟎. 𝟎𝟕 
258 114 58 33 21 15 8 5 3 2 

𝝓𝟏 = 𝟎. 𝟏, 𝝓𝟐

= 𝟎. 𝟎𝟎𝟎𝟓 
256 82 35 20 13 9 6 3 2 1 
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Figure 3. ARL curves for IMEEWMA, IMEWMA and VIM chart for n=6. 

 

Figure 4. MRL curves for IMEEWMA, IMEWMA and VIM chart for n=6. 
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Figure 5. IMEEWMA chart results for cars’ brake pad lifetimes at δ = 1. 

 

Figure 6. IM chart results for cars’ brake pad lifetimes at δ =1.25. 



30098 

AIMS Mathematics  Volume 8, Issue 12, 30075–30101. 

 

Figure 7. IMEWMA charts for cars’ brake pad lifetimes at δ =1.25. 

 

Figure 8. IMEEWMA charts for cars’ brake pad lifetimes at δ =1.25. 
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7. Conclusions 

In this study, we designed a control chart, named the IMEEWMA chart, to monitor a process 
following the IM distribution. The proposed chart is based on the MLE of the scale parameter of the 
IM distribution. The performance of the IMEEWMA chart was investigated by using RL 
characteristics like the ARL, SDRL and MRL. Based on these measures, it has been observed that the 
best performance of the IMEEWMA chart is obtained when the smoothing parameter value is small, 
and it keeps improving with the increase in sample size. The simulation study suggests that our 
proposed chart is more effective than the existing VIM chart and IMEWMA chart for small shifts, 
whereas the VIM chart and IMEWMA chart demonstrated better performance for larger shifts and 
small to moderate shifts respectively. We have also considered real-life scenarios and applied our 
designed IMEEWMA chart to monitor the process of car brake pad lifetimes. 

Use of AI tools declaration 

The authors declare that they have used Chat GPT as an artificial intelligence tool only to improve 
the readability of this article. 

Acknowledgments 

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid 
University for funding this work through the Larg Groups Project under grant number (RGP.2/32/44) 
and this study was supported via funding from Prince Sattam bin Abdulaziz University project number 
(PSAU/2023/R/1444). 

Conflict of interest 

The authors declare no conflict of interest. 

References 

1. G. Chen, S. W. Cheng, H. Xie, Monitoring process mean and variability with one EWMA chart, 
J. Qual. Technol., 33 (2001), 223–233. https://doi.org/10.1080/00224065.2001.11980069 

2. B. Yeh, L. Huwang, Y. F. Wu, A Likelihood-Ratio-Based EWMA control chart for monitoring 
variability of multivariate normal processes, IIE Trans., 36 (2004), 865–879. 
https://doi.org/10.1080/07408170490473042 

3. L. Zhang, G. Chen, An extended EWMA mean chart, Qual. Technol. Quant. Manag., 2 (2005), 
39–52. https://doi.org/10.1080/16843703.2005.11673088 

4. M. B. C. Khoo, V. H. Wong, A double moving average control chart, Commun. Stat.-Simul. 
Comput., 37 (2008), 1696–1708. https://doi.org/10.1080/03610910701832459 

5. Haq, A new hybrid exponentially weighted moving average control chart for monitoring process 
mean, Qual. Reliab. Eng. Int., 29 (2013), 1015–1025. https://doi.org/10.1002/qre.1453 



30100 

AIMS Mathematics  Volume 8, Issue 12, 30075–30101. 

6. J. Shabbir, W. H. Awan, An efficient Shewhart-Type control chart to monitor moderate size shifts 
in the process mean in Phase II, Qual. Reliab. Eng. Int., 32 (2015), 1597–1619. 
https://doi.org/10.1002/qre.1893 

7. M. Naveed, M. Azam, M. S. Nawaz, M. Saleem, M. Aslam, M. Saeed, Design of moving average 
chart and auxiliary information based chart using extended EWMA, Sci. Rep., 13 (2023), 5562. 
https://doi.org/10.1038/s41598-023-32781-4 

8. C. M. Borror, D. C. Montgomery, G. C. Runger, Robustness of the EWMA control chart to non-
normality, J. Qual. Technol., 31 (1999), 309–316. https://doi.org/10.1080/00224065.1999.11979929 

9. P. E. Maravelakis, J. Panaretos, S. Psarakis, An examination of the robustness to Non-normality 
of the EWMA control charts for the dispersion, Commun. Stat.-Simul. Comput., 34 (2005), 1069–
1079. https://doi.org/10.1080/03610910500308719 

10. C. M. Borror, C. W. Champ, S. E. Rigdon, Poisson EWMA control charts, J. Qual. Technol., 30 
(1998), 352–361. https://doi.org/10.1080/00224065.1998.11979871 

11. F. F. Gan, Monitoring observations generated from a binomial distribution using modified 
exponentially weighted moving average control chart, J. Stat. Comput. Simul., 37 (1990), 45–60. 
https://doi.org/10.1080/00949659008811293 

12. F. F. Gan, Monitoring Poisson observations using modified exponentially weighted moving 
average control charts, Commun. Stat.-Simul. Comput., 19 (1990), 103–124. 
https://doi.org/10.1080/03610919008812847 

13. F. J. Yu, Y. Y. Yang, M. J. Wang, Z. Wu, Using EWMA control schemes for monitoring wafer 
quality in negative binomial process, Microelectron. Reliab., 51 (2011), 400–405. 
https://doi.org/10.1016/j.microrel.2010.07.151 

14. F. F. Gan, Exponentially weighted moving average control charts with reflecting boundaries, J. 
Stat. Comput. Simul., 46 (1993), 45–67. https://doi.org/10.1080/00949659308811492 

15. S. A. Abbasi, M. Riaz, A. Miller, S. Ahmad, H. Z. Nazir, EWMA dispersion control charts for 
normal and nonnormal processes, J. Amer. Math. Soc., 31 (2015), 1691–1704. 
https://doi.org/10.1002/qre.1702 

16. S. M. M. Raza, M. Riaz, S. Ali, EWMA control chart for Poisson-Exponential lifetime distribution 
under Type I censoring, Qual. Reliab. Eng. Int., 32 (2016), 995–1005. 
https://doi.org/10.1002/qre.1809 

17. F. Pascual, EWMA charts for the Weibull shape parameter, J. Qual. Technol., 42 (2010), 400–416. 
https://doi.org/10.1080/00224065.2010.11917836 

18. O. H. Arif, M. Aslam, C. H. Jun, EWMA np control chart for the Weibull distribution, J. Test. 
Eval., 45 (2017), 1022–1028. https://doi.org/10.1520/JTE20150429 

19. K. L. Singh, R. S. Srivastava, Estimation of the parameter in the size-biased inverse maxwell 
distribution, Int. J. Stat. Math., 10 (2014), 52–55. 

20. D. Karlis, A. Santourian, Model-based clustering with non-elliptically contoured distributions, 
Stat. Comput., 19 (2009), 73–83. https://doi.org/10.1007/s11222-008-9072-0 

21. M. P. Hossain, M. H. Omar, M. Riaz, New V control chart for the Maxwell distribution, J. Stat. 
Comput. Simul., 87 (2017), 594–606. https://doi.org/10.1080/00949655.2016.1222391 

22. M. P. Hossain, R. A. Sanusi, M. H. Omar, M. Riaz, On designing Maxwell CUSUM control chart: 
An efficient way to monitor failure rates in boring processes, Int. J. Adv. Manuf. Technol., 100 
(2019), 1923–1930. https://doi.org/10.1007/s00170-018-2679-1 



30101 

AIMS Mathematics  Volume 8, Issue 12, 30075–30101. 

23. M. P. Hossain, M. H. Omar, On designing a new control chart for Rayleigh distributed processes 
with an application to monitor glass fiber strength, Commun. Stat.-Simul. Comput., 51 (2020), 1–
17. https://doi.org/10.1080/03610918.2019.1710192 

24. V. H. Morales, C. A. Panza, Control charts for monitoring the mean of Skew-Normal samples, 
Symmetry, 14 (2022), 2302. https://doi.org/10.3390/sym14112302 

25. C. H. Lin, M. C. Lu, S. F. Yang, M. Y. Lee, A bayesian control chart for monitoring process 
variance, Appl. Sci., 11 (2021), 2729. https://doi.org/10.3390/app11062729 

26. A. I. Al-Omari, A. D. Al-Nasser, F. Gogah, M. A. Haq, On the exponentiated generalized inverse 
Rayleigh distribution based on truncated life tests in a double acceptance sampling plan, Stoch. 
Qual. Control, 32 (2017), 37–47. https://doi.org/10.1515/eqc-2017-0007 

27. K. Kuar, K. K. Mahajan, S. Arora, Bayesian and semi-Bayesian estimation of the parameters of 
generalized inverse Weibull distribution, J. Mod. Appl. Stat. Methods, 17 (2018), 22. 
https://doi.org/10.22237/jmasm/1536067915 

28. M. Eltehiwy, Logarithmic inverse Lindley distribution: Model, properties and applications, J. 
King Saud Univ.-Sci., 32 (2018), 136–144. https://doi.org/10.1016/j.jksus.2018.03.025  

29. Fleishman, A method for simulating non-normal distributions, Psychometrika, 43 (1978), 521–
532. https://doi.org/10.1007/BF02293811 

30. M. P. Hossain, M. H. Omar, M. Riaz, Estimation of mixture Maxwell parameters and its possible 
industrial application, Comput. Ind. Eng., 107 (2017), 264–275. 
https://doi.org/10.1016/j.cie.2017.03.023 

31. M. H. Omar, S. Y. Arafat, M. P. Hossain, M. Riaz, Inverse Maxwell distribution and statistical 
process control: An efficient approach for monitoring positively skewed process, Symmetry, 13 
(2021), 189. https://doi.org/10.3390/sym13020189 

32. S. Y. Arafat, M. P. Hossain, J. O. Ajadi, M. Riaz, On the development of EWMA control chart for 
Inverse Maxwell distribution, J. Test. Eval., 49 (2019), 1–18. https://doi.org/10.1520/JTE20190082 

33. Z. Keller, A. R. R. Kamath, U. D. Perera, Reliability analysis of CNC machine tools, Reliab. Eng., 
3 (1982), 449–473. https://doi.org/10.1016/0143-8174(82)90036-1 

34. S. C. Gupta, V. K. Kapoor, Fundamentals of mathematical statistics: A modern approach, 910 
Eds., Sultan Chand & Sons, 2000. 

35. S. W. Roberts, Control chart tests based on geometric moving averages, Technometrics, 1 (1959), 
239–250. https://doi.org/10.1080/00401706.1959.10489860 

36. M. Naveed, M. Azam, N. Khan, M. Aslam, Design of a control chart using extended EWMA 
statistic, Technologies, 6 (2018), 108. https://doi.org/10.3390/technologies6040108 

37. M. Xie, T. N. Goh, V. Kuralmani, Statistical models and control charts for high-quality processes, 
London: Kluwer Academic Publishers, 2002. https://doi.org/10.1007/978-1-4615-1015-4 

38. J. M. Lucas, M. S. Saccucci, Exponentially weighted moving average control schemes: Properties and 
Enhancements, Technometrics, 32 (1990), 1–12. https://doi.org/10.1080/00401706.1990.10484583 

39. R. Domangue, S. C. Patch, Some omnibus exponentially weighted moving average statistical process 
control schemes, Technometrics, 33 (1991), 299–313. 
https://doi.org/10.1080/00401706.1991.10484836 

© 2023 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 


