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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm || · ||. Let C be a nonempty,
convex and closed subset of H and A : H → H a nonlinear operator. The classical variational inequality
problem (VIP) first introduced by Stampacchi [20] is defined as

Find a point x∗ ∈ C such that 〈Ax∗, y − x∗〉 ≥ 0, ∀ y ∈ C. (1.1)

We denote the solution set of VIP (1.1) by VI(C, A). Several problems that arise from different areas of
pure and applied sciences can be studied in a general and unified framework of variational inequality
problems. In view of this, the theory of variational inequality has become an important tool in physics,
control theory, engineering, economics, management, science and mathematical programming (refer to
references [2,3,10,13,18]). One of the most difficult and important problems is developing an efficient
method for solving variational inequality problem. Over the years, several iterative methods have been
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proposed for solving variational inequality problems (see [4, 5, 9, 12, 21, 25, 37]). The simplest and
classical iterative method for solving the VIP in a real Hilbert space is the gradient-projection method,
which is defined as follows: starting with the initial point x0 ∈ C, update xn+1 with the formula

xn+1 = PC(xn − λAxn), (1.2)

where λ > 0 is a suitable stepsize and PC is the metric projection mapping onto the convex and closed
subset C of H. This method is based on the fact that a point x∗ ∈ C is a solution of VIP (1.1) if and only
if x∗ = PC(x∗ − λAx∗). Even though the gradient-projection method (1.2) can be easily implemented
because it only needs to find the function value and one projection onto the closed convex set C per
iteration. But the convergence of this method (1.2) needs a kind of strong hypothesis that the operator
A is strongly monotone (or inverse strongly monotone, see [37]). To avoid the hypothesis of strong
monotonicity on operator A, Korpelevich [12] in 1976 proposed the extragradient method with double
projections in Euclidean space, as follows:{

yn = PC(xn − λAxn),
xn+1 = PC(xn − λAyn),

(1.3)

where A : C → Rn is monotone and L-Lipschitz continuous with L > 0 and λ ∈ (0, 1/L). If the
solution set VI(C, A) in (1.3) is nonempty, then the iterative sequence {xn} generated by Algorithm (1.3)
converges weakly to a point in VI(C, A). Even though the conditions imposed on operator A under the
extragradient method (1.3) are weaker than those of the gradient-projection method (1.2), the iterative
algorithm (1.3) needs to calculate two projections onto the closed convex set C per iteration. This
may affect its efficiency if C is a general closed convex set. There are some methods to overcome this
drawback. In 2011, Censor et al. [5] introduced the subgradient extragradient method in a real Hilbert
space H in which the second projection onto C in (1.3) is replaced by a projection onto a specific
constructible half-space. Their algorithm is defined as

yn = PC(xn − λAxn),
Tn = {z ∈ H : 〈xn − λAxn − yn, z − yn〉 ≤ 0},
xn+1 = PTn(xn − λAyn),

(1.4)

where A is monotone and L-Lipschitz continuous with L > 0 and fixed stepsize λ ∈ (0, 1/L). Also,
He [9] and Sun [21] independently studied the projection and contraction method (PCM), proposed as

x1 ∈ H,

yn = PC(xn − λAxn),
d(xn, yn) = (xn − yn) − λ(Axn − Ayn),
xn+1 = xn − γηnd(xn, yn), ∀n ≥ 1,

(1.5)

where γ ∈ (0, 2), λ ∈ (0, 1/L) and ηn := 〈xn−yn,d(xn,yn)〉
||d(xn,yn)||2 . He [9] established that the sequence {xn} generated

by (1.5) converges weakly to a solution of VIP (1.1). Since PCM requires only one projection onto
the feasible set C, it reduces the computational cost per iteration. Some researchers have improved
PCM in many different ways; see, for instance, [33–35]. The major drawback of the projection and
contraction method (1.5) is that the step size λ requires the knowledge of an upper bound of the
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Lipschitz constant L. A greater value of L can lead to very small step-sizes λ, which may contribute to
the slow convergence of Algorithm (1.5). To overcome this difficulty in PCM (1.5), the self-adaptive
method that does not necessarily know the Lipschitz constant of the mapping in advance is required.

On the other hand, to speed up the convergence rate of algorithms, Polyak [14] studied the heavy ball
method, an inertial extrapolation process for minimizing a smooth convex function. Since then, many
authors have introduced this technique in different methods for solving VIPs (see [16, 17, 27, 28, 41]
for more details). In 2021, Tan et al. [30], using the modified extragradient and projection contraction
method proposed by Thong and Hieu [31], studied the inertial modified extragradient projection and
contraction method with the hybrid steepest descent method with Armijo-type line search to update the
step size in each iteration as follows:

x0, x1 ∈ H,
wn = xn + θn(xn − xn−1),
yn = PC(wn − λnAwn),
zn = PTn(wn − θλnηnAyn),
Tn = {x ∈ H : 〈wn − λnAwn − yn, x − yn〉 ≤ 0},
d(wn, yn) = (wn − yn) − λn(Awn − Ayn),
ηn := 〈wn−yn,d(wn,yn)〉

||d(wn,yn)||2 ,

xn+1 = zn − φnγS zn, ∀n ≥ 1,

(1.6)

where λn is chosen to be largest λ ∈ {δ, δξ, δξ2, · · · }, δ, ξ ∈ (0, 1), A is Lipschitz continuous and
pseudomonotone, S is Lipschitz and α-strongly monotone and Lipschitz continuous, and {φn} is a
control sequence in (0, 1) with some condition. Under suitable conditions on the parameters, they
proved strong convergence of the sequence generated by (1.6). We note that Algorithm (1.6) as
proposed by Tan et al. [30] uses an Armijo-type line search criteria to update the step size of each
iteration. It is known that an approach with a line search would require many additional computations
and further reduce the computational efficiency of the method used. Recently, many methods with a
simple step size have been proposed for solving the VIP (see [29, 32, 36]).

Inspired and motivated by the above-mentioned results, in this paper we introduce an inertial
modified extragradient and contraction projection method with self-adaptive stepsize for finding a
common solution to the quasimonotone variational inequality problem and a common fixed point of the
infinite family of demimetric mapping in real Hilbert spaces. In this regard, we highlight the following
motivations that signify the contributions of our proposed algorithm (method):

(a) the operator A involved is quasimonotone instead of monotone or pseudomonotone;
(b) the proposed algorithm embeds inertial terms which helps increase the convergence speed of the

iterative sequence;
(c) the method uses a new non-monotonic step size so that it can work without knowing the Lipschitz

constant of the mapping;
(d) the projection onto the feasible set needs to be evaluated only once in each iteration;
(e) we establish that the sequence generated by our proposed method converges strongly to common

fixed points of the infinite family of demimetric mappings, which is also the solution of variational
inequality problems for quasimonotone operators;

(f) we demonstrate the effectiveness of our proposed method by providing numerical examples and
comparing it with related methods in the literature.
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2. Preliminaries

Throughout this section, the symbols “→”and “⇀”represent the strong and weak convergences
respectively.

Let C be a closed and convex subset of a real Hilbert space H. The metric projection from H onto
C is the mapping PC : H → C for each x ∈ H, and there exists a unique point z = PC(x) such that

||x − z|| = inf
y∈C
||x − y||.

From this definition, it is easy to show that PC has the following characteristic properties; see [7] for
more details.

Lemma 2.1. (Goebel and Reich [7]) Let x ∈ H and z ∈ C be any point. Then we have

(i) z = PC(x) if and only if the following relation holds

〈x − z, y − z〉 ≤ 0, ∀y ∈ C. (2.1)

(ii) For all x, y ∈ H, we have

〈PC(x) − PC(y), x − y〉 ≥ ||PC(x) − PC(y)||2.

(iii) For x ∈ H and y ∈ C
||y − PC(x)||2 + ||x − PC(x)||2 ≤ ||x − y||2.

We also need the following nonlinear operators, which are introduced below.

Definition 2.1. Let the fixed point set of a mapping T : C → H be denoted by F(T ) := {x ∈ C : T x =

x}. The mapping T is called

(1) L-Lipschitz continuous with L > 0 if for all x, y ∈ C,

‖T x − Ty‖ ≤ L‖x − y‖.

If L = 1, then T is called nonexpansive mapping.
(2) quasi-nonexpansive if ‖T x − y‖ ≤ ‖x − y‖ for all x ∈ C, y ∈ F(T ),
(3) (α, β)-generalized hybrid [11] if there exist α, β ∈ R such that

α‖T x − Ty‖2 + (1 − α)‖x − Ty‖2 ≤ β‖T x − y‖2 + (1 − β)‖x − y‖2, ∀x, y ∈ C,

(4) τ-demicontractive, if F(T ) , ∅ and there exists τ ∈ [0, 1) such that

‖T x − y‖2 ≤ ‖x − y‖2 + τ‖x − T x‖2, f or all x ∈ C, y ∈ F(T ).

(6) τ-demimetric [22] if F(T ) , ∅ and there exists τ ∈ (−∞, 1) such that for any x ∈ C and y ∈ F(T ),
we have

〈x − y, x − T x〉 ≥
1 − τ

2
‖x − T x‖2.
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Observe that a (1, 0)-generalized hybrid mapping is nonexpansive and every generalized hybrid
mapping with nonempty fixed point set is quasi-nonexpansive. Also, the class of τ-demicontractive
covers that of nonexpansive and quasi-nonexpansive. The class of τ-demimetric mappings includes
that of τ-demicontractive and generalized hybrid mappings as special cases.

The following result is important and crucial in the proof of our main result.

Lemma 2.2. ( [23, Lemma 2.2]) Let H be a Hilbert space and let C be a nonempty, closed, and convex
subset of H. Let k ∈ (−∞, 0) and let T be a k-demimetric mapping of C into H such that F(T ) , ∅. Let
λ be a real number with 0 < λ ≤ 1 − k and define S = (1 − λ)I + λT. Then

(i) F(T ) = F(S ),
(ii) F(T ) is closed and convex,

(iii) S is a quasi-nonexpansive mapping of C into H.

We also apply the following results to establish our main result.

Lemma 2.3. ( [19, Lemma 3.3]) Let H be a Hilbert space and C be a nonempty, closed, and convex
subset of H. Assume that {Ti}

∞
i=1 : C → H is an infinite family of τi − demimetric mappings with

sup{τi : i ∈ N} < 1 such that
⋂∞

i=1 F(Ti) , ∅. Assume that {ηi}
∞
i=1 is a positive sequence such that∑∞

i=1 ηi = 1. Then
∑∞

i=1 ηiTi : C → H is a τ-demimetric mapping with τ = sup{τi : i ∈ N} and
F(

∑∞
i=1 ηiTi) =

⋂∞
i=1 F(Ti).

The so-called demiclosedness principle plays an important role in our argument.

Lemma 2.4. ( [6]) Let T : C → H be a nonexpansive mapping, then T is demiclosed on C in the sense
that if {xn} converges weakly to x ∈ C and {xn − T xn} converges strongly to 0 then x ∈ F(T ).

Lemma 2.5. ( [24]) Let H be a real Hilbert space. Then, for all x, y ∈ H and α ∈ R, the following
hold.

(1) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉;
(2) ‖αx + (1 − α)y‖2 = α‖x‖2 + (1 − α)‖y‖2 − α(1 − α)‖x − y‖2.

Next, we present some concepts of monotonicity of an operator.

Definition 2.2. Let A : H → H be a mapping and let x, y ∈ H. Then, A is said to be

(a) η-strongly monotone, if there exists η > 0 such that

〈Ax − Ay, x − y〉 ≥ η||x − y||2;

(b) monotone, if

〈Ax − Ay, x − y〉 ≥ 0;

(c) pseudomonotone, if

〈Ay, x − y〉 ≥ 0 =⇒ 〈Ax, x − y〉 ≥ 0;

(d) quasimonotone, if

〈Ay, x − y〉 > 0 =⇒ 〈Ax, x − y〉 ≥ 0;
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It is obvious to see that (a) =⇒ (b) =⇒ (c) =⇒ (d). But the converses are not generally true.

Lemma 2.6. ( [8, 40]) Let C be a nonempty, closed, and convex subset of a Hilbert space H and
F : H → H be L-Lipschitzian and quasimonotone operator. Let y ∈ C. If, for some x∗ ∈ C, we have
that 〈F(y), x∗ − y〉 ≥ 0, then at least one of the following must hold:

〈F(x∗), x∗ − y〉 ≥ 0 or 〈F(y), z∗ − y〉 ≤ 0 ∀z∗ ∈ C.

The following result is useful when proving strong convergence of our iterative sequence.

Lemma 2.7. ( [15]) Let {an} be a sequence of nonnegative real numbers, {αn} be a sequence of real
numbers in (0, 1) with condition

∞∑
n=1

αn = ∞

and {bn} be a sequence of real numbers. Assume that

an+1 ≤ (1 − αn)an + αnbn,∀n ≥ 1.

If lim sup
k→∞

bnk ≤ 0 for every subsequence {ank} of {an} satisfying the condition

lim inf
k→∞

(ank+1 − ank) ≥ 0,

then lim
n→∞

an = 0.

3. Main results

We begin this section with the following assumptions for the convergent analysis of our method:

Assumption 3.1. Let H be a real Hilbert space and C be a nonempty, closed and convex subset of H.
Suppose the following conditions are satisfied:

(C1) A : H → H is a quasimonotone and L-Lipschitz continuous with L > 0.
(C2) A : H → H is sequential weakly continuous, i.e., for each sequence {xn} ⊂ C converges weakly to

x, implies {A(xn)} converges weakly to A(x).
(C3) {Ti}

∞
i=1 : H → H is an infinite family of τi-demimetric mapping and demiclosed at zero with

τi ∈ (−∞, 1) for each i ≥ 1 and τ = sup{τi : i ≥ 1} ≤ 1. Letting Ψ :=
∑∞

i=1 γiTi, by Lemma 2.3, Ψ

is τ-demimetric mapping, where
∑∞

i=1 γi = 1 and G := (1 − ζ)I + ζΨ with ζ ∈ (0, 1 − τ].
(C4) {µn} is a positive sequence with µn = ◦(αn), {βn} ⊂ (a, 1 − αn) for some a > 0, where {αn} ⊂ (0, 1)

satisfies the following lim
n→∞

αn = 0 and
∑∞

n=1 αn = ∞.
(C5) Denote the set of solutions VI(C, A) ∩ F(Ψ) as Γ and is assumed to be nonempty.

Now, using the inertial extrapolation term, we introduce a modified inertial Mann-type subgradient
extragradient method with projection and contraction iterative techniques for solving variational
inequality and common fixed point problems:

Algorithm 3.1. Initialization: Choose θ > 0, λ > 0, µ ∈ (0, 1), ρ ∈ (0, 2). Let x0, x1 ∈ H be taken
arbitrary.
Iterative Steps: Calculate xn+1 as follows:
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Step 1. Given the iterates xn−1 and xn for each n ≥ 1, θ > 0, choose θn such that 0 ≤ θn ≤ θ̄n, where

θ̄n =

 min
{
θ, µn
‖xn−xn−1‖

}
, i f xn , xn−1,

θ, otherwise.
(3.1)

Step 2. Compute {
yn = xn + θn(xn − xn−1),
wn = PC(yn − λnAyn),

(3.2)

where

λn+1 =

 min
{
µ||yn−wn ||

||Ayn−Awn ||
, λn

}
, i f Ayn , Awn,

λn, otherwise.
(3.3)

Step 3. Compute 
vn = PTn(yn − ρλnηn(Awn)),
un = (1 − αn)vn,

xn+1 = (1 − βn)un + βnGun, n ∈ N,
(3.4)

where Tn := {z ∈ H : 〈yn−λnAyn−wn, z−wn〉 ≤ 0} and ηn := 〈yn−wn,dn〉

||dn ||2
, dn = yn−wn−λn(Ayn−Awn).

Set n := n + 1 and return to Step 1.

Remark 3.1. From (C4) of Assumption 3.1, we have µn = o(αn), i.e. lim
n→∞

µn
αn

= 0. Also, from (3.1),

θn ≤ θ̄n ≤
µn

‖xn−xn−1‖
for all n ≥ 1 and xn , xn−1, it is easy to see that

θn

αn
‖xn − xn−1‖ ≤

µn

αn
→ 0 as n→ ∞. (3.5)

The following two lemmas, which were basically proved in [25, 38] and [26], respectively, are
significant and vital in the proof of our main result. For the sake of completeness, we give their proofs.

Lemma 3.1. (see Yang et al. [38] and Tan et al. [25]) The sequence {λn} in Algorithm 3.1 generated
by (3.3) is nonincreasing and the limit exists.

Proof. It is straight forward to see that the sequence {λn} is monotone and nonincreasing. Using the
fact that A is Lipschitz continuous and Ayn , Awn, we have

µ||yn − wn||

||Ayn − Awn||
≥
µ||yn − wn||

L||yn − wn||
=
µ

L
,

thus, {λn} is bounded from below by min{ µL , τ0}. Since the sequence {λn} is monotone nonincreasing
and bounded from below, then the lim

n→∞
τn exists. So, by denoting λ = lim

n→∞
τn, we get that λ > 0. �

Lemma 3.2. (see [26, Lemma 3.2]) If yn = wn or dn = 0 in Algorithm 3.1, then yn ∈ VI(C, A).

Proof. Using (3.2) and (3.3) in Algorithm 3.1, we get(
1 −

λn

λn+1
µ
)
||yn − wn|| = ||yn − wn|| −

λn

λn+1
µ||yn − wn||

≤ ||yn − wn|| − λn||Ayn − Awn||
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≤ ||yn − wn − λn(Ayn − Awn)||
= ||dn||

≤ ||yn − wn|| + λn||Ayn − Awn||

≤ ||yn − wn|| +
λn

λn+1
µ||yn − wn||

=
(
1 +

λn

λn+1
µ
)
||yn − wn||.

Therefore
(
1 − λn

λn+1
µ
)
||yn − wn|| ≤ ||dn|| ≤

(
1 + λn

λn+1
µ
)
||yn − wn||. Since the limit of λn exists, then for all

n ≥ 1 we get (1 − µ)||yn − wn|| ≤ ||dn|| ≤ (1 + µ)||yn − wn||, thus yn = wn if and only dn = 0. Therefore, if
yn = wn or dn = 0 we get yn = PC(yn − λnAyn) which implies yn ∈ VI(C, A). �

Lemma 3.3. Let {xn} be the sequence generated by Algorithm 3.1 under Assumption 3.1. Then, {xn} is
bounded.

Proof. Let x∗ ∈ Γ ⊂ C, since from (3.2), wn ⊂ C, then

〈Ax∗,wn − x∗〉 ≥ 0, (3.6)

and since A acts on C, by Lemma 2.6, we have

〈Awn,wn − x∗〉 ≥ 0, (3.7)

thus

〈Awn, vn − x∗〉 = 〈Awn, vn − wn〉 + 〈Awn,wn − x∗〉

≥ 〈Awn, vn − wn〉. (3.8)

By definition of Tn in Algorithm 3.1, we get vn ∈ Tn, which implies

〈yn − λnAyn − wn, vn − wn〉 ≤ 0,

hence

〈dn, vn − wn〉 = 〈yn − wn − λn(Ayn − Awn), vn − wn〉

= 〈yn − λnAyn − wn, vn − wn〉 + λn〈Awn, vn − wn〉

≤ λn〈Awn, vn − wn〉. (3.9)

Combining (3.8) and (3.9), we get

〈dn, vn − yn〉 + 〈dn, yn − wn〉 = 〈dn, vn − wn〉 ≤ λn〈Awn, vn − x∗〉. (3.10)

Using (3.4), (3.10) and the fact that the projection operator is firmly nonexpansive, by Lemma 2.1(ii),
we obtain

2||vn − x∗||2 ≤ 2〈yn − x∗ − ρλnηnAwn, vn − x∗〉

= ||vn − x∗||2 + ||yn − x∗ − ρλnηnAwn||
2 − ||vn − yn + ρλnηnAwn||

2
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= ||vn − x∗||2 + ||yn − x∗||2 − ||vn − yn||
2 − 2ρλnηn〈Awn, yn − x∗〉 − 2ρλnηn〈Awn, vn − yn〉

= ||vn − x∗||2 + ||yn − x∗||2 − ||vn − yn||
2 − 2ρλnηn〈Awn, vn − x∗〉

= ||vn − x∗||2 + ||yn − x∗||2 − ||vn − yn||
2 − 2ρηn〈dn, vn − yn〉 − 2ρηn〈dn, yn − wn〉

≤ ||vn − x∗||2 + ||yn − x∗||2 − ||vn − yn||
2 + 2ρηn〈dn, yn − vn〉 − 2ρη2

n||dn||
2

= ||vn − x∗||2 + ||yn − x∗||2 − ||vn − yn||
2 + ρ2η2

n||dn||
2 − 2ρη2

n||dn||
2 + ||vn − yn||

2 − ||yn − vn − ρηndn||
2,

therefore

||vn − x∗||2 ≤ ||yn − x∗||2 + ρ2η2
n||dn||

2 − 2ρη2
n||dn||

2 − ||yn − vn − ρηndn||
2. (3.11)

Moreover, we have

〈dn, yn − wn〉 = ||yn − wn||
2 − λn〈Ayn − Awn, yn − wn〉

≥ ||yn − wn||
2 − λn||Ayn − Awn||||yn − wn||

≥ ||yn − wn||
2 −

λnµ

λn+1
||yn − wn||

2

=
(
1 −

λnµ

λn+1

)
||yn − wn||

2.

Since ||dn|| ≤
(
1 +

λnµ

λn+1

)
||yn − wn||, then

η2
n||dn||

2 = 〈dn, yn − wn〉 ·
〈dn, yn − wn〉

||dn||
2 ≥

(λn+1 − λnµ

λn+1 + λnµ

)2
||yn − wn||

2. (3.12)

Combining (3.11) and (3.12), we get

||vn − x∗||2 ≤ ||yn − x∗||2 − ||yn − vn − ρηndn||
2 − ρ(2 − ρ)

(λn+1 − λnµ

λn+1 + λnµ

)2
||yn − wn||

2. (3.13)

Thus

||vn − x∗|| ≤ ||yn − x∗||. (3.14)

Also, from the definition of (yn), we have

||yn − x∗|| = ||xn − x∗ + θn(xn − xn−1)|| ≤ ||xn − x∗|| + αn

( θn

αn
||xn − xn−1||

)
.

Since the sequence {( θn
αn
||xn−xn−1||)} converges to zero, then there exists K > 0 such that ( θn

αn
||xn−xn−1||) ≤

K for all n ≥ 1. Thus

||yn − x∗|| ≤ ||xn − x∗|| + αnK, (3.15)

it follows from (3.14) that

||vn − x∗|| ≤ ||xn − x∗|| + αnK. (3.16)
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Also,

||un − x∗|| = ||(1 − αn)(vn − x∗) + αnx∗||

≤ (1 − αn)||vn − x∗|| + αn||x∗||

≤ (1 − αn)||xn − x∗|| + αn[||x∗|| + K]. (3.17)

From (C3), since Ψ :=
∑∞

i=1 γiTi is τ-demimetric, then by Lemma 2.2, G := (1 − ζ)I + ζΨ is a
quasinonexansive mapping, and thus from (3.4) and (3.17), we get

||xn+1 − x∗|| ≤ (1 − βn)||un − x∗|| + βn||Gun − x∗||

≤ (1 − βn)||un − x∗|| + βn||un − x∗||

= ||un − x∗||

≤ (1 − αn)||xn − x∗|| + αn[||x∗|| + K]
≤ max{||xn − x∗||, [||x∗|| + K]}
...

...

≤ max{||x1 − x∗||, [||x∗|| + K].

Therefore, by induction we have

||xn − x∗|| ≤ max{||x1 − x∗||, [||x∗|| + K]}, n ≥ 1.

Hence {xn} is bounded. It follows that {un}, {vn}, {wn} and {yn} are also bounded. �

Lemma 3.4. Let {xn} be a sequence generated by Algorithm 3.1 such that Assumption 3.1 holds. Then,
for any x∗ ∈ Γ, the following inequality holds

||xn+1 − x∗||2 ≤ (1 − αn)||xn − x∗||2 + αn

(
2(1 − αn)〈vn − x∗,−x∗〉 +

θn

αn
||xn − xn−1|| + αn||x∗||2

)
.

Proof. Let x∗ ∈ Γ, then with Lemma 2.5, (3.4) and (3.13), we get

||xn+1 − x∗||2 = ||(1 − βn)(un − x∗) + βn(Gun − x∗)||2

= (1 − βn)||un − x∗||2 + βn||Gun − x∗||2 − βn(1 − βn)||Gun − un||
2

≤ (1 − βn)||un − x∗||2 + βn||un − x∗||2 − βn(1 − βn)||Gun − un||
2

= ||(1 − αn)(vn − x∗) − αnx∗||2 − βn(1 − βn)||Gun − un||
2

= (1 − αn)2||vn − x∗||2 + α2
n||x
∗||2 − αn(1 − αn)〈vn − x∗, x∗〉 − βn(1 − βn)||Gun − un||

2

≤ (1 − αn)||yn − x∗||2 − αn(1 − αn)〈vn − x∗, x∗〉 + α2
n||x
∗||2

−(1 − αn)||yn − vn − ρηndn||
2 − βn(1 − βn)||Gun − un||

2

−(1 − αn)ρ(2 − ρ)
(λn+1 − λnµ

λn+1 + λnµ

)2
||yn − wn||

2. (3.18)

Since

||yn − x∗||2 = ||xn − x∗ + θn(xn − xn−1)||
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= ||xn − x∗||2 + 2θn〈xn − x∗, xn − xn−1〉 + θ2
n||xn − xn−1||

2

= ||xn − x∗||2 + θn||xn − xn−1||[2||xn − x∗|| + θn||xn − xn−1||]
≤ ||xn − x∗||2 + θn||xn − xn−1||K1, (3.19)

for some K1 > 0. Combining (3.18) and (3.19), we get

||xn+1 − x∗||2 ≤ (1 − αn)||xn − x∗||2 + αn

(
2(1 − αn)〈vn − x∗,−x∗〉 +

θn

αn
||xn − xn−1|| + αn||x∗||2

)
−(1 − αn)||yn − vn − ρηndn||

2 − βn(1 − βn)||Gun − un||
2

−(1 − αn)ρ(2 − ρ)
(λn+1 − λnµ

λn+1 + λnµ

)2
||yn − wn||

2 (3.20)

≤ (1 − αn)||xn − x∗||2 + αn

(
2(1 − αn)〈vn − x∗,−x∗〉 +

θn

αn
||xn − xn−1|| + αn||x∗||2

)
.

�

We know the following lemma obtained by Yotkaew et al. [39].

Lemma 3.5. (see Lemma 3.6 in [39]) Let {wn} and {yn} be sequences generated by Algorithm 3.1 with
condition (C1)–(C4) in Assumption 3.1. Suppose there exists a subsequence {wnk} of {wn} and {ynk} of
{yn} such that {ynk} converges weakly to z ∈ H and lim

k→∞
||wnk − ynk || = 0, then z ∈ VI(C, A).

Based on the analysis presented above and Lemma 3.5, we demonstrate that Algorithm 3.1
converges under assumptions (C1)–(C5).

Theorem 3.1. Suppose Assumption 3.1 holds. Then, the sequence {xn} generated by Algorithm 3.1
converges strongly to a point z ∈ Γ.

Proof. Let x∗ ∈ Γ. Then, by Lemmas 2.7 and 3.4, we only need to show that

lim sup
k→∞

〈vnk − x∗, x∗〉 ≤ 0

for every subsequence {‖xnk − x∗‖} of {‖xn − x∗‖} satisfying

lim inf
k→∞

(‖xnk+1 − x∗‖ − ‖xnk − x∗‖) ≥ 0.

Now, let {‖xnk − x∗‖} be a subsequence of {‖xn − x∗‖} such that

lim inf
k→∞

(‖xnk+1 − x∗‖ − ‖xnk − x∗‖) ≥ 0,

holds. Then

lim inf
k→∞

(‖xnk+1 − x∗‖2 − ‖xnk − x∗‖2)

= lim inf
k→∞

{(‖xnk+1 − x∗‖ + ‖xnk − x∗‖) × (‖xnk+1 − x∗‖ − ‖xnk − x∗‖)}

≥ 0. (3.21)
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It follows from (3.20) and (3.21) and the fact that the limit of λn exists and lim
n→∞

αn = 0, by letting

∆n := (1 − αn)||yn − vn − ρηndn||
2 + βn(1 − βn)||Gun − un||

2 + (1 − αn)ρ(2 − ρ)
(λn+1 + λnµ

λn+1 + λnµ

)2
||yn − wn||

2,

then

lim sup
k→∞

∆nk ≤ lim sup
k→∞

(
||xnk − x∗||2 − ||xnk+1 − x∗||2

)
+lim sup

k→∞
αnk

(
2(1 − αnk)〈vnk − x∗,−x∗〉

+
θnk

αnk

||xn − xnk−1|| + αnk ||x
∗||2 − ||xnk − x∗||2

)
≤ −lim inf

k→∞

(
||xnk+1 − x∗||2 − ||xnk − x∗||2

)
≤ 0.

Thus
lim
k→∞

∆nk = 0,

this implies that

lim
k→∞
||ynk − wnk || = lim

k→∞
||ynk − vnk − ρηndn|| = lim

k→∞
||Gunk − unk || = 0.

Also, by definition of (yn), we get that

||ynk − xnk || =
θnk

αnk

||xnk − xnk−1|| → 0 (3.22)

as k → ∞, it follows from (3.22) that

||wnk − xnk || ≤ ||wnk − ynk || + ||ynk − xnk || → 0 (3.23)

as k → ∞. Furthermore, we know that

||yn − vn|| ≤ ||yn − vn − ρηndn|| + ρηn||dn||

≤ ||yn − vn − ρηndn|| + ρ ·
〈yn − wn, dn〉

||dn||

≤ ||yn − vn − ρηndn|| + ρ||yn − wn||,

thus
||ynk − vnk || ≤ ||ynk − vnk − ρηnkdnk || + ||ynk − wnk ||,

with this and (3.22), we get

lim
k→∞
||ynk − vnk || = 0. (3.24)

From the definition of (un), and (C4), we have

||unk − vnk || = αnk ||vnk || → 0 as k → ∞. (3.25)
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Now, combining (3.22) and (3.24), we get

||xnk − vnk || ≤ ||xnk − ynk || + ||ynk − vnk || → 0 (3.26)

as k → ∞, also with (3.25) and (3.26), we get

||xnk − unk || ≤ ||xnk − vnk || + ||vnk − unk || → 0 (3.27)

as k → ∞. Moreover from (C3) and (3.22), we have

lim
k→∞
||Ψunk − unk || =

1
ζ

lim
k→∞
||Gunk − unk || = 0. (3.28)

Furthermore, since {xnk} is bounded, there then exists a subsequence {xnks
} of {xnk} such that {xnks

}

converges weakly to z in H as s → ∞. Then, from (3.27), we get that {unks
} also converges weakly to

z ∈ H and, from (C3), Ψ is demimetric and demiclosed at zero; then, by (3.28), we get z ∈ F(Ψ) :=
F(

∑∞
i=1 γiTi). Thus, by Lemma 2.3, we conclude that z ∈ ∩∞i=1F(Ti). On the other hand, from (3.22),

we know that {ynks
} converges weakly to z ∈ H, and thus, with (3.22), we conclude by Lemma 3.5

that z ∈ VI(C, A). Therefore, z ∈ Γ. Finally, we show that {xn} converges strongly to z ∈ Γ. Using
Lemma 3.4, we have

||xnk+1 − z||2 ≤ (1 − αnk)||xnk − z||2 + αnk

(
− 2(1 − αnk)〈vnk − z, z〉 +

θnk

αnk

||xnk − xnk−1|| + αnk ||z||
2
)
. (3.29)

Since {xnk} converges weakly to z as k → ∞, then lim
k→∞
〈xnk − z, z〉 = 0 and, implying that −2(1 −

αnk)〈vnk − z, z〉 +
θnk
αnk
||xnk − xnk−1|| + αnk ||z||

2 → 0 as k → ∞. It the follows from (3.29) and Lemma 2.7
that lim

k→∞
||xn − z|| = 0. Hence, xn → z ∈ Γ. This complete the proof. �

4. Numerical illustrations

In this section, we provide computational experiments in support of the convergence analysis of the
proposed algorithm. We also compare our method with existing methods in the literature.

Example 4.1. Let H = L2([0, 1]) with norm

||x|| :=
( ∫ 1

0
|x(t)|2dt

) 1
2
, for all x ∈ L2([0, 1])

and inner product

〈x, y〉 :=
∫ 1

0
x(t)y(t)dt, for all x, y ∈ L2([0, 1]).

Let the function A : H → H be defined by A(x(t)) = x
1+e‖x‖ . Then A is quasimonotone (see [1]), and

we set S and G to the identity mapping on H in (1.6) and Algorithm 3.1, respectively. We choose
λ1 = 3.1, θ = 0.5, ρ = 0.5, µ = 0.5, αn = 1

n+1 and µn = 1
n2.1 . Then, we let the iteration terminate

if En = ‖xn+1 − xn‖ ≤ ε where ε = 10−3. The numerical experiments are listed in Table 1. Also,
we illustrate the efficiency of strong convergence of proposed Algorithm 3.1 in comparison with the
convergence of (1.6), called IMSEM, and its, unaccelerated version MSEM in Figure 1.
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(Case A) x0 = e−2t + 1 and x1 = t3 + cos t;
(Case B) x0 = sin(−6t) + cos(−5t) and x1 = 11t2 + 2t + 1;
(Case C) x0 = t4 + 3t + 9 and x1 = 5t4 + 1;
(Case D) x0 = ln(−2t + 1) + 5t2 and x1 = t8 + 1.

Table 1. Table for Example 4.1.

Algorithm 3.1 IMSEM MSEM
Case A Iter. 12 18 25

Sec. 0.0076 0.0163 0.0732
Case B Iter. 12 18 25

Sec. 0.0211 0.0531 0.0835
Case C Iter. 12 21 25

Sec. 0.0164 0.0323 0.0683
Case D Iter. 13 18 25

Sec. 0.0212 0.0490 0.1202
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100

E
n

Algorithm 3.2
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Figure 1. The graph of En against the number of iterations for Example 4.1; Top Left: Case
A; Top Right: Case B; Bottom Left: Case C; Bottom Right: Case D.
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5. Conclusions

The paper presents a modified inertial Mann-type method that combines the subgradient
extragradient method with the projection contraction method to solve the Lipschitz continuous
quasimonotone variational inequality problem and fixed point problems in real Hilbert spaces. Under
certain mild conditions imposed on the parameters, we have proven the strong convergence of the
algorithm without requiring prior knowledge of the Lipschitz constant of the operator. Furthermore,
we have demonstrated the efficiency of the proposed algorithm by illustrating its convergence and
comparing it with previously known algorithms.
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