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Abstract: The article explores multiple attribute decision making problems through the use
of the Pythagorean neutrosophic vague normal set (PyNVNS). The PyNVNS can be generalized
to the Pythagorean neutrosophic interval valued normal set (PyNIVNS) and vague set. This
study discusses q-rung log Pythagorean neutrosophic vague normal weighted averaging (q-rung log
PyNVNWA), q-rung logarithmic Pythagorean neutrosophic vague normal weighted geometric (q-
rung log PyNVNWG), q-rung log generalized Pythagorean neutrosophic vague normal weighted
averaging (q-rung log GPyNVNWA), and q-rung log generalized Pythagorean neutrosophic vague
normal weighted geometric (q-rung log GPyNVNWG) sets. The properties of q-rung log PyNVNSs
are discussed based on algebraic operations. The field of agricultural robotics can be described as
a fusion of computer science and machine tool technology. In addition to crop harvesting, other
agricultural uses are weeding, aerial photography with seed planting, autonomous robot tractors and
soil sterilization robots. This study entailed selecting five types of agricultural robotics at random.
There are four types of criteria to consider when choosing a robotics system: robot controller features,
cheap off-line programming software, safety codes and manufacturer experience and reputation. By
comparing expert judgments with the criteria, this study narrows the options down to the most suitable
one. Consequently, q has a significant effect on the results of the models.
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1. Introduction

The complexity of real-world systems makes it challenging for decision makers to select the most
appropriate option among the various options available. Even though condensing is difficult, it is not
impossible. It proves difficult for many businesses to set goals, incentive systems, and viewpoint
restrictions. In decision making (DM), therefore, multiple objectives must be considered at the same
time. Multiple-attribute DM (MADM) is the process of choosing the most appropriate option from
many possibilities. The MADM team deals with a wide range of MADM problems on a daily basis.
As a result, researchers need to improve their DM skills. DM problems are of interest to a number of
researchers. Real life systems often present MADM problems due to their complexity, consequently
introducing uncertainty to the evaluation information. The possibility that artificial intelligence (AI)
could contribute significantly to addressing the grand social challenges of the future has been
emphasized by Kaplan and Haenlein [1]. Margetts and Dorobantu [2] have explained the concept of
major economies promoting AI research and development with substantial policy interventions. It has
been argued that the key technical subsystems that define the current AI paradigm include machine
learning, neural networks, natural language processing, smart robots, knowledge graphs and expert
systems [3, 4]. As well as ethical concerns, AI negatively impacts democracy and the labor market,
which is a risk to society. The assessment of these risks and opportunities requires interdisciplinary
technology assessment (TA). AI is perceived as a general-purpose technology according to a number
of studies. Online platforms not only provide profit from deep learning technology, they also provide
highly effective social governance tools. Furthermore, AI’s potential to transform society continues to
increase with its application in specific economic and financial areas [5, 6]. To better understand the
potential impacts and necessary governance of AI, this study intends to identify critical AI research
topics from a TA perspective. It can be challenging for decision-makers to decide what action to take
as real-world systems continue to evolve. Despite the difficulty, it is possible to reduce many goals to
one. Several businesses have found it difficult to restrict people’s goals, motivations, and viewpoints.
Multiple goals must be considered simultaneously when people or committees make decisions. The
decision-makers are unable to select the most practical course of action based on this view. The best
option is therefore identified by decision makers using more practical and reliable methods. An
efficient interactive DM framework for robotic applications has been discussed by Agostini et al. [7].

Many authors have contributed to this field of study by using different techniques. As a result of
the uncertainties the following sets have been developed: fuzzy set (FS) [8], intuitionistic FS (IFS) [9],
interval valued FS (IVFS) [10], vague set (VS) [11], Pythagorean FS (PyFS) [12], Pythagorean IVFS
(PyIVFS) [13] an aggregation operator (AO), spherical FS (SFS) [14], and neutrosophic FS (NFS) [15].
Xu [16] discussed the concept of regression prediction for fuzzy time series. The membership grade
(MG) in a set consists of degrees of belongingness that lie between 0 and 1. As a result, Atanassov [9]
introduced the concept of an IFS and the condition that the sum of MG with a non-membership grade
(NMG) is less than one. The DM approach sometimes generates a single problem when the sum of the
MGs and NMGs exceeds one. The concept of the PyFS was developed by Yager [12] to generalize the
IFS by ensuring that the square total of its MG and NMG does not exceed one. Expanding the scope
of the PyFS, Yager [17] developed the q-rung orthopair FS (q-ROFS). In terms of their outcomes, the
MG and NMG were constrained within [0, 1]. By definition, the q-ROFSs are extensions of IFSs and
PyFSs: if q=1, they transform into IFSs, and if q=2, they transform into PyFSs. The concept of q-rung
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orthopair IVFSs and their properties were discussed by Joshi et al. [18]. A generalized orthopair FS
was introduced by Yager [19]. They proved that every PyFS is a q-ROFS, but the converse is not true.
For an example, (0.8)2 + (0.75)2 = 1.2025 > 1 and (0.8)3 + (0.75)3 = 0.933875 ≤ 1. Habib et al. [20]
used an improved possibilistic programming approach for supply chain networking. Sarkar et al. [21]
applied an advanced approach of metaheuristic approaches for reverse logistics management. Besides
other studies [22, 23] have been found to not apply a fuzzy or uncertainty concept to find the optimum
solutions.

According to these hypotheses, the neutral state cannot be demonstrated (neither favor nor disfavor).
Cuong and Kreinovich [24] proposed the notion of a picture FS, and they used three pointers; positive,
neutral and negative, with a total of not more than one grade. Moreover, it has more advantages than the
IFS and PyFS for a few applications [25–27] in terms of supporting the use of these sets for DM. Owing
to Liu et al. [28], the idea of a generalized PyFS with an AO was introduced and its applications were
described. The characteristics of PyIVFSs with AOs were described by Rahman [29,30] and Yang [31].
DM challenge a one problem, where the sum of the truth MG (TMG), the interminacy MG (IMG)
and falsity MG (FMG) is greater than one. Thus, Ashraf et al. [14] proposed an SFS with a square
total of TMG, IMG, and FMG less than one. According to Fatmaa and Cengiza [32], SFS could be
conceptualized by using the technique for order of preference by similarity to ideal solution (TOPSIS)
approach. A study, conducted by Liu et al. [33], examined the topic of particular types of q-rung picture
FSs with an AO for DM in 2020. The q-ROFS is a generalized orthopair FS which quantifies vague
information comprehensively. Yang et al. [34] introduced the notion of q-rung orthopair normal fuzzy
AOs and their application in MADM. As a result of Yager [19], the concept of q-ROFSs emerged as
the most significant generalization of PyFS. A q-ROFS must contain the sum of the MG’s qth power
and NMG’s qth power within the unit interval [0, 1], and when rung q increases, the orthopair’s range
satisfies the boundary restriction. In this sense a q-ROFS is more powerful and useful than IFSs and
PyFSs because they are special cases of the q-ROFS. The basic properties of q-ROFSs have been
described by Yager and Alajlan [35]. The concept of orbits was proposed by Ali [36] for another
view of q-ROFSs. A number of concepts have been proposed by Liu and Wang [37], including q-ROF
weighted averaging (q-ROFWA) and q-rung orthopair fuzzy weighted geometric (q-ROFWG). Liu and
Liu [38] combined Bonferroni means (BMs) with the q-ROFS to study the q-rung orthopair fuzzy
BM operators and geometric BMs with their desirable properties. Jana et al. [39] initiated the q-rung
orthopair fuzzy Dombi averaging and geometric AOs. Wang et al. [40] explored the combined concept
of Muirhead mean (MM) operators and the q-ROFS to obtain new AOs that are q-rung orthopair fuzzy
MM operators. An idea of q-rung orthopair normal FSs was presented by [41], wherein its operational
laws and a score function were defined. In addition to those operators, they initiated some aggregation
operations for the same concept, known as q-rung orthopair neutrosophic fuzzy weighted averaging (q-
RONFWA) and q-rung orthopair neutrosophic fuzzy orhopair weighted averaging (q-RONFOWG). A
further discussion of hesitant q-ROFWA and hesitant q-ROFWG operators was presented by Hussain
et al. [42]. The generalized and group generalized averaging operations using the q-rung orthopair
fuzzy information were proposed by Hussain et al. [43].

Recently, neutrosophic logic and sets theory were introduced. Neutrosophy refers to the knowledge
of neutral thought, and that neutrality is the main difference between an FS and IFS. The concept of
a neutrosophic set (NSS) was introduced by Smarandache [44]. A degree of truth, an indeterminacy
degree and a falsity degree were assigned to each proposition in this logic. An NSS is a set in which
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every element of the universe has a degree of truth, indeterminacy and falsity, respectively, between 0
and 1. Philosophically, the NSS generalizes a classical set, an FS and an IVFS. A method based on AOs
for multi-criteria DM (MCDM) under interval neutrosophic conditions was presented by Ye [45]. A
discussion of interval-valued neutrosophic set in MCDM problems was presented by Zhang et al. [46].
The VS was introduced by Biswas [11]. In VS, two functions are defined, namely, a TMG tv and
an FMG fv, with tv(x) denoting the TMG of x derived from the evidence for x, and fv(x) denoting
the FMG of x derived from the evidence against x, as well as tv(x) and fv(x) belonging to [0, 1] and
the sum is not exceed one. There are several recognized applications of IVFSs and FSs, which are
extensions of a VS [47–49]. As suggested by Zhang and Xu [50], a PyFS should be expanded to
include MCDM by using TOPSIS. Hwang and Yoon [51] evaluated MADM practical problems in
their discussion. Jana and Pal [52] investigated the generalization of the bipolar fuzzy soft set (BFSS)
with applications. Jana [53] developed an approach to DM based on an extended bipolar FS with multi-
attributive border approximation area comparison. A novel approach for robust single-valued NS AOs
was developed by Jana and Pal [54] for BFSS. In a study by Jana et al. [55], the PyFS was implemented
with DOMBI AOs. According to Ullah et al. [56], distance measuring in complex PyFSs can be
applied to practical pattern recognition applications. Under the conditions of MADM, Jana et al. [57]
introduced AOs that were derived from trapezoidal NS algorithms. According to Jana and Pal [58],
MCDM can be realized by combining the NS with DOMBI power AOs. A study of MADM spherical
vague normal operators was conducted by Palanikumar et al. [59], who evaluated and their applications
in farmer selection. Recently, Ulucay [60, 61] and Ulucay et al. [62] discussed the concept of the
generalization of neutrosophic soft set and its various applications. The authors of [63, 64] studied
neutrosophic applications. Lu et al. [65] discussed the concept of consensus progress for group DM in
social networks with incomplete probabilistic hesitant fuzzy information. Lu et al. [66] combined the
concept of social network clustering and consensus-based distrust behavioral management for large
scale group DM with incomplete hesitant fuzzy preference relations.

Recently, Jana et al. [67] described the MCDM technique by using single valued triangular
neutrosophic Dombi AOs. Palanikumar et al. [68] presented the idea of a Pythogorean interval-valued
neutrosophic normal set (PyIVNNS) with AOs. A significant role is played by the AOs in the solution
of MADM problems. Under the conditions of PyFS weighted, ordered weighted and weighted power
circumstances, Yager [12] presented some geometric and averaging AOs. In a subsequent study, Peng
and Yuan [69] examined several fundamental features of PyFSs based on AOs. By using AOs, this
study obtains q-rung log Pythagorean neutrosophic vague normal set (PyNVNS) information. The
remainder of this paper is organized as follows. The Pythagorean neutrosophic set and VS
information is described in Section 2. The definition and some operations of q-rung log PyNVNSs are
provided in Section 3. This study discusses the relation between q-rung log PyNVNS and
neutrosophic fuzzy numbers (NFNs). Therefore, H1 = ([log TH1, log (1 − FH1)],
[log IH1, log IH1], [log FH1, log (1 − TH1)]) = ([1, 1], [1, 1], [0, 0]) and
H2 = ([log TH2, log (1 − FH2)], [log IH2, log IH2], [log FH2, log (1 − TH2)]) = ([1, 1], [1, 1], [0, 0])
which is known as the distance between q-rung log Pythagorean neutrosophic vague normal numbers
(PyNVNNs), is transformed to the distance between NFNs. Section 4 discusses MADM from the
perspective of the Hamming distance (HD) and Euclidean distance (ED) with q-rung log PyNVNNs.
We demonstrate that the existence an interaction between MADM and AOs for q-rung log PyNVNNs
in Section 5. Section 6 discusses an application of q-rung log PyNVNSs, as well as presents the insert
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algorithm, flowchart and numerical example. The conclusion is provided in Section 7. Accordingly,
the paper has the following outcomes:

(i) A number of algebraic properties of q-rung log PyNVNSs have been established such as
associativity, distributivity, and idempotency.

(ii) A q-rung log PyNVN is characterized by HD and ED. The purpose of this method is to calculate
the ED between two q-rung log PyNVNNs. In addition, the idea of converting q-rung log
PyNVNNs into NFNs discussed.

(iii) The purpose of this study was to demonstrate numerically that MADM and AOs can be applied to
real world problems by using the q-rung log PyNVNSs. There is a need to develop an algorithm
for q-rung log PyNVNs. Additionally, this study entailed using a q-rung log PyNVNN algorithm
to determine a normalized decision matrix based on the response matrix.

(iv) It is imperative that an ideal value can be determined for each of the concepts referenced in the
q-rung log Pythagorean neutrosophic vague normal weighted averaging (PyNVNWA), q-rung
log Pythagorean neutrosophic vague normal weighted geometric (PyNVNWG), q-rung log
generalized PyNVNWA (GPyNVNWA), and q-rung log generalized PyNVNWG
(GPyNVNWG).

(v) As a result, the decision maker can select the ranking results based on their preference by referring
to the q-rung log PyNVNWA, q-rung log PyNVNWG, q-rung log GPyNVNWA, and q-rung log
GPyNVNWG operators in a flexible manner.

(vi) It is observed that some examples are examined in order to assess the validity of the proposed
models.

(vii) Results of DM are found based on q.

2. Basic concepts

This section reviews the concepts of the PyFS and VS.

Definition 2.1. Let U be the universal set. The PyFS H =
{
ε,

〈
τT

H(ε), τF
H(ε)

〉∣∣∣ε ∈ U
}
, where τT

H :
U → [0, 1] and τF

H : U → [0, 1] denote the MG and NMG of ε ∈ U to H, respectively and 0 �
(τT

H(ε))2 + (τF
H(ε))2 � 1. For convenience, H =

〈
τT

H, τ
F
H
〉

is called the Pythagorean fuzzy number [12].

Definition 2.2. The q-rung FS H =
{
ε,

〈
τT

H(ε), τF
H(ε)

〉∣∣∣ε ∈ U
}
, where τT

H : U → [0, 1] and τF
H :

U → [0, 1] denote the MG and NMG of ε ∈ U to H, respectively and 0 � (τT
H(ε))q + (τF

H(ε))q � 1,

where q � 1. The degree of indeterminacy π(ε) =
(
(τT

H(ε))q + (τF
H(ε))q − (τT

H(ε))q(τF
H(ε))q

)1/q
. For

convenience, H =
〈
τT

H, τ
F
H
〉

is called the q-rung fuzzy number [19].

Definition 2.3. The PyIVFS H =
{
ε,

〈
τ̃T

H(ε), τ̃F
H(ε)

〉∣∣∣∣ε ∈ U
}
, where τ̃T

H : U → Int([0, 1]) and τ̃F
H : U →

Int([0, 1]) denote the MG and NMG of ε ∈ U to H, respectively, and 0 � (τT+
H (ε))2 + (τF+

H (ε))2 � 1. For
convenience, H =

〈[
τT−

H , τT+
H

]
,
[
τF−

H , τF+
H

]〉
is called the Pythagorean interval-valued fuzzy number [13].

Definition 2.4. The q-rung IVFS H =
{
ε,

〈
τ̃T

H(ε), τ̃F
H(ε)

〉∣∣∣∣ε ∈ U
}
, where τ̃T

H : U → Int([0, 1]) and τ̃F
H :

U → Int([0, 1]) denote the MG and NMG of ε ∈ U to H, respectively, and 0 � (τT+
H (ε))q+(τF+

H (ε))q � 1.
For convenience, H =

〈[
τT−

H , τT+
H

]
,
[
τF−

H , τF+
H

]〉
is called the q-rung interval-valued fuzzy number [18].
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Definition 2.5. The Pythagorean neutrosophic set H =
{
ε,

〈
τT

H(ε), τI
H(ε), τF

H(ε)
〉∣∣∣ε ∈ U

}
, where τT

H :
U → [0, 1], τI

H : U → [0, 1] and τF
H : U → [0, 1] denote the TMG, IMG and FMG of ε ∈ U to H,

respectively and 0 � (τT
H(ε))2 + (τI

H(ε))2 + (τF
H(ε))2 � 2. For convenience, H =

〈
τT

H, τ
I
H, τ

F
H
〉

is called
the Pythagorean neutrosophic fuzzy number [68].

Definition 2.6. (i) A VS H in U is a pair (TH, FH), where TH : U → [0, 1] and FH : U → [0, 1] are
mappings such that TH(ε) + FH(ε) � 1,∀ε ∈ U; additionally, TH and FH denotes the truth and false
membership function respectively.
(ii) H(ε) = [TH(ε), 1 − FH(ε)] is called the vague value of ε in H [11].

Definition 2.7. (i) A VS H is contained in VS H1 and H ⊆ H1 if and only if H(ε) � H1(ε). That is,
TH(ε) � TH1(ε) and 1 − FH(ε) � 1 − FH1(ε),∀ε ∈ U.
(ii) The union of two VSs H and H1 and X = H∪H1, TX = max{TH,TH1} and 1−FX = max{1−FH, 1−
FH1} = 1 − min{FH, FH1}.
(iii) The intersection of two VSs H and H1 and X = H ∩ H1, TX = min{TH,TH1} and 1 − FX =

min{1 − FH, 1 − FH1} = 1 − max{FH, FH1} [11].

Definition 2.8. Consider a VS H of a set U,∀ε ∈ U. Then
(i) TH(ε) = 0 and FH(ε) = 1 constitute a zero VS of U.
(ii) TH(ε) = 1 and FH(ε) = 0 constitute a unit VS of U [11].

Definition 2.9. Let R be the set of real numbers. The membership function of fuzzy number M(x) =

exp−
(x−Γ)2

δ2 , (δ > 0) is called the NFN M = (Γ, δ), where N is an NFN set [41].

Definition 2.10. Let L1 = (κ1, δ1) ∈ N and L2 = (κ2, δ2) ∈ N, (δ1, δ2 > 0). Then the distance between

L1 and L2 is defined as D(L1, L2) =

√
(κ1 − κ2)2 + 1

2 (δ1 − δ2)2, where N is an NFN set [16].

3. q-rung log PyNVNN and its operations

Several intriguing fundamental operations are described for the q-rung log PyNVNN.

Definition 3.1. The q-rung log Pythagorean neutrosophic VS H =
{
ε,

〈[
log TH(ε), log (1 − FH(ε))

]
,[

log IH(ε), log IH(ε)
]
,
[

log FH(ε), log (1 − TH(ε))
]〉∣∣∣∣ε ∈ U

}
, τ̃T

H : U → Int([0, 1]), τ̃I
H : U → Int([0, 1])

and τ̃F
H : U → Int([0, 1]) denote the TMG, IMG and FMG of ε ∈ U to H, respectively and 0 �

(logΓi
1 − FH(ε))q + (logΓi

IH(ε))q + (logΓi
1 − TH(ε))q � 2, where Γ =

∏
[TH, 1− FH], [IH, IH], [FH, 1−

TH]. For convenience, H =
〈[

log TH, log (1 − FH)
]
,
[

log IH, log IH

]
,
[

log FH, log (1 − TH)
]〉

is called
the q-rung log PyNVN.

Definition 3.2. Let (κ, δ) ∈ N and H =
〈
(Γ, δ); [log TH, log (1 − FH)], [log IH, log IH], [log FH,

log (1 − TH)]
〉

be the q-rung log PyNVNN; TMG, IMG and FMG are defined as[
logΓi

TH, logΓi
(1 − FH)

]
=

[
logΓi

TH · exp−
(x−κ)2

δ2 , logΓi
(1 − FH) · exp−

(x−κ)2

δ2
]
,[

logΓi
IH, logΓi

IH
]

=
[

logΓi
IH · exp−

(x−κ)2

δ2 , logΓi
IH · exp−

(x−κ)2

δ2
]

and[
logΓi

FH, logΓi
(1 − TH)

]
=

[
1 −

(
1 − logΓi

FH
)
· exp−

(x−κ)2

δ2 , 1 −
(
1 − logΓi

(1 − TH)
)
· exp−

(x−κ)2

δ2
]
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respectively, where x ∈ X is a non-empty set; also
[
log TH, log (1 − FH)

]
,[

log IH, log IH
]
,

[
log FH, log (1 − TH)

]
∈ Int([0, 1]) and

0 �
(

log (1 − FH)(ε)
)q

+
(

log IH(ε)
)q

+
(

log (1 − TH)(ε)
)q

� 2, where
Γ =

∏
[TH, 1 − FH], [IH, IH], [FH, 1 − TH].

Definition 3.3. Let H =
〈
(κ, δ);

[
log TH, log (1 − FH)

]
,
[

log IH, log IH

]
,
[

log FH, log (1 − TH)
]〉

be the
log PyNVNN; the score function of H is defined as S(H) =

S1(H)+S2(H)
2 , −1 � S(H) � 1; where

S1(H) =
κ

2

(
X

2
+ 1 −

Y

2
+ 1 −

Z

2

)
,S2(H) =

δ

2

(
X

2
+ 1 −

Y

2
+ 1 −

Z

2

)
.

The accuracy function of H is A(H) =
A1(H)+A2(H)

2 , where 0 � A(H) � 1.

A1(H) =
κ

2

(
X

2
+ 1 +

Y

2
+ 1 +

Z

2

)
,A2(H) =

δ

2

(
X

2
+ 1 +

Y

2
+ 1 +

Z

2

)
,

where
X = (logΓi

TH)2 + (logΓi
(1 − FH))2,Y = (logΓi

IH)2 + (logΓi
IH)2,Z = (logΓi

FH)2 + (logΓi
(1 − TH))2.

Definition 3.4. Let H =
〈
(κ, δ); [log TH, log (1 − FH)], [log IH, log IH], [log FH, log (1 − TH)]

〉
,

H1 =
〈
(κ1, δ1); [log TH1, log (1 − FH1)], [log IH1, log IH1], [log FH1, log (1 − TH1)]

〉
and H2 =

〈
(κ2, δ2); [log TH2, log (1 − FH2)], [log IH2, log IH2], [log FH2, log (1 − TH2)]

〉
be any three q-

rung log PyNVNNs, and real number q > 0 and Γ =
∏

[THi , 1 − FHi], [IHi , IHi], [FHi , 1 − THi]. Their
corresponding operations are defined as follows:

(i) H1 � H2 =

(κ1 + κ2, δ1 + δ2);
2q
√

(logΓi
TH1)2q + (logΓi

TH2)2q − (logΓi
TH1)2q · (logΓi

TH2)2q,

2q
√

(logΓi
(1 − FH1))2q + (logΓi

(1 − FH2))2q − (logΓi
(1 − FH1))2q · (logΓi

(1 − FH2))2q

 ,[
q
√

(logΓi
IH1)q + (logΓi

IH2)q − (logΓi
IH1)q · (logΓi

IH2)q,
q
√

(logΓi
IH1)q + (logΓi

IH2)q − (logΓi
IH1)q · (logΓi

IH2)q

]
,[

logΓi
FH1 · logΓi

FH2, logΓi
(1 − TH1) · logΓi

(1 − TH2)
]


,

(ii) H1 � H2 =

(κ1 · κ2, δ1 · δ2);
[

logΓi
TH1 · logΓi

TH2, logΓi
(1 − FH1) · logΓi

(1 − FH2)
]
,[

q
√

(logΓi
IH1)q + (logΓi

IH2)q − (logΓi
IH1)q · (logΓi

IH2)q,
q
√

(logΓi
IH1)q + (logΓi

IH2)q − (logΓi
IH1)q · (logΓi

IH2)q

]
,

2q
√

(logΓi
FH1)2q + (logΓi

FH2)2q − (logΓi
FH1)2q · (logΓi

FH2)2q,

2q
√

(logΓi
(1 − TH1))2q + (logΓi

(1 − TH2))2q − (logΓi
(1 − TH1))2q · (logΓi

(1 − TH2))2q




,

(iii) Θ · H =


(Θ · κ,Θ · δ);[

2q
√

1 −
(
1 − (logΓi

TH)2q)q
, 2q
√

1 −
(
1 − (logΓi

(1 − FH))2q)q
]
,[

(logΓi
IH)q, (logΓi

IH)q
]
,
[
(logΓi

FH)q, (logΓi
(1 − TH))q

]
 ,

(iv) HΘ =

(κΘ, δΘ);
[
(logΓi

TH)q, (logΓi
(1 − FH))q

]
,
[
(logΓi

IH)q, (logΓi
IH)q

]
,[

2q
√

1 −
(
1 − (logΓi

FH)2q)q
, 2q
√

1 −
(
1 − (logΓi

(1 − TH))2q)q
]  .
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4. Distance between q-rung log PyNVNNs

Measurements of the ED and HD were conducted and some mathematical characteristics of q-rung
log PyNVNNs are examined here.

Definition 4.1. Let H1 =
〈
(κ1, δ1); [log TH1, log (1 − FH1)], [log IH1, log IH1], [log FH1, log (1 − TH1)]

〉
and H2 =

〈
(κ2, δ2); [log TH2, log (1 − FH2)], [log IH2, log IH2], [log FH2, log (1 − TH2)]

〉
be any two q-

rung log PyNVNNs. Then, the ED between H1 and H2 is

DE

(
H1,H2

)
=

1
2

√√√√√√√√√√√√√√√√√√√√√√√


1+(logΓi
TH 1)2−(logΓi

IH 1)2−(logΓi
FH 1)2+1+(logΓi

(1−FH 1))2−(logΓi
IH 1)2−(logΓi

(1−TH 1))2

2 κ1

−
1+(logΓi

TH 2)2−(logΓi
IH 2)2−(logΓi

FH 2)2+1+(logΓi
(1−FH 2))2−(logΓi

IH 2)2−(logΓi
(1−TH 2))2

2 κ2


2

+
1
2


1+(logΓi

TH 1)2−(logΓi
IH 1)2−(logΓi

FH 1)2+1+(logΓi
(1−FH 1))2−(logΓi

IH 1)2−(logΓi
(1−TH 1))2

2 δ1

−
1+(logΓi

TH 2)2−(logΓi
IH 2)2−(logΓi

FH 2)2+1+(logΓi
(1−FH 2))2−(logΓi

IH 2)2−(logΓi
(1−TH 2))2

2 δ2


2

and the HD between H1 and H2 is defined as
DH

(
H1,H2

)
=

1
2



∣∣∣∣∣∣∣∣∣∣∣∣
1 + (logΓi

TH 1)2 − (logΓi
IH 1)2 − (logΓi

FH 1)2 + 1 + (logΓi
(1 − FH 1))2 − (logΓi

IH 1)2 − (logΓi
(1 − TH 1))2

2
κ1

−
1 + (logΓi

TH 2)2 − (logΓi
IH 2)2 − (logΓi

FH 2)2 + 1 + (logΓi
(1 − FH 2))2 − (logΓi

IH 2)2 − (logΓi
(1 − TH 2))2

2
κ2

∣∣∣∣∣∣∣∣∣∣∣∣
+ 1

2

∣∣∣∣∣∣∣∣∣∣∣∣
1 + (logΓi

TH 1)2 − (logΓi
IH 1)2 − (logΓi

FH 1)2 + 1 + (logΓi
(1 − FH 1))2 − (logΓi

IH 1)2 − (logΓi
(1 − TH 1))2

2
δ1

−
1 + (logΓi

TH 2)2 − (logΓi
IH 2)2 − (logΓi

FH 2)2 + 1 + (logΓi
(1 − FH 2))2 − (logΓi

IH 2)2 − (logΓi
(1 − TH 2))2

2
δ2

∣∣∣∣∣∣∣∣∣∣∣∣


.

Theorem 4.1. Let H1 =
〈
(κ1, δ1); [log TH1, log (1 − FH1)], [log IH1, log IH1], [log FH1, log (1 − TH1)]

〉
,

H2 =
〈
(κ2, δ2); [log TH2, log (1 − FH2)], [log IH2, log IH2], [log FH2, log (1 − TH2)]

〉
and

H3 =
〈
(κ3, δ3); [log TH3, log (1 − FH3)], [log IH3, log IH3], [log FH3, log (1 − TH3)]

〉
be any three q-rung

log PyNVNNs. Then, we have the following:

(i) DE(H1,H2) = 0, if and only if H1 = H2.
(ii) DE(H1,H2)=DE(H2,H1).

(iii) DE(H1,H3) � DE(H1,H2) + DE(H2,H3).

Proof. Conditions (i) and (ii) are clear and concise. Condition (iii) remains to be proven. Now,
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DE(H1,H2) + DE(H2,H3)

)2
=

1
2

√√√√√√√√√√√√√√√√√√√√√√


1+(logΓi
TH 1)2−(logΓi

IH 1)2−(logΓi
FH 1)2+1+(logΓi

(1−FH 1))2−(logΓi
IH 1)2−(logΓi

(1−TH 1))2

2 κ1

−
1+(logΓi

TH 2)2−(logΓi
IH 2)2−(logΓi

FH 2)2+1+(logΓi
(1−FH 2))2−(logΓi

IH 2)2−(logΓi
(1−TH 2))2

2 κ2


2

+
1
2


1+(logΓi

TH 1)2−(logΓi
IH 1)2−(logΓi

FH 1)2+1+(logΓi
(1−FH 1))2−(logΓi

IH 1)2−(logΓi
(1−TH 1))2

2 δ1

−
1+(logΓi

TH 2)2−(logΓi
IH 2)2−(logΓi

FH 2)2+1+(logΓi
(1−FH 2))2−(logΓi

IH 2)2−(logΓi
(1−TH 2))2

2 δ2


2

+ 1
2

√√√√√√√√√√√√√√√√√√√√√√


1+(logΓi
TH 2)2−(logΓi

IH 2)2−(logΓi
FH 2)2+1+(logΓi

(1−FH 2))2−(logΓi
IH 2)2−(logΓi

(1−TH 2))2

2 κ2

−
1+(logΓi

TH 3)2−(logΓi
IH 3)2−(logΓi

FH 3)2+1+(logΓi
(1−FH 3))2−(logΓi

IH 3)2−(logΓi
(1−TH 3))2

2 Γ3


2

+
1
2


1+(logΓi

TH 2)2−(logΓi
IH 2)2−(logΓi

FH 2)2+1+(logΓi
(1−FH 2))2−(logΓi

IH 2)2−(logΓi
(1−TH 2))2

2 δ2

−
1+(logΓi

TH 3)2−(logΓi
IH 3)2−(logΓi

FH 3)2+1+(logΓi
(1−FH 3))2−(logΓi

IH 3)2−(logΓi
(1−TH 3))2

2 δ3


2



2

=
1
4

(
(ω1κ1 − ω2κ2)2 +

1
2

(ω1δ1 − ω2δ2)2
)

+
1
4

(
(ω2κ2 − ω3κ3)2 +

1
2

(ω2δ2 − ω3δ3)2
)

+
1
2

(√
(ω1κ1 − ω2κ2)2 +

1
2

(ω1δ1 − ω2δ2)2 ×

√
(ω2κ2 − ω3κ3)2 +

1
2

(ω2δ2 − ω3δ3)2

)
�

1
4

(
(ω1κ1 − ω2κ2)2 +

1
2

(ω1δ1 − ω2δ2)2
)

+
1
4

(
(ω2κ2 − ω3κ3)2 +

1
2

(ω2δ2 − ω3δ3)2
)

+
1
2

(
(ω1κ1 − ω2κ2) × (ω2κ2 − ω3κ3) +

1
2

(ω1δ1 − ω2δ2) × (ω2δ2 − ω3δ3)
)

=
1
4

(ω1κ1 − ω2κ2 + ω2κ2 − ω3κ3)2 +
1
8

(ω1δ1 − ω2δ2 + ω2δ2 − ω3δ3)2

=
1
4

(ω1κ1 − ω3κ3)2 +
1
8

(ω1δ1 − ω3δ3)2

= DE(H1,H3)2

where

ω1 =
1 + (logΓi

TH1)2 − (logΓi
IH1)2 − (logΓi

FH1)2 + 1 + (logΓi
(1 − FH1))2 − (logΓi

IH1)2 − (logΓi
(1 − TH1))2

2
,

ω2 =
1 + (logΓi

TH2)2 − (logΓi
IH2)2 − (logΓi

FH2)2 + 1 + (logΓi
(1 − FH2))2 − (logΓi

IH2)2 − (logΓi
(1 − TH2))2

2
,

ω3 =
1 + (logΓi

TH3)2 − (logΓi
IH3)2 − (logΓi

FH3)2 + 1 + (logΓi
(1 − FH3))2 − (logΓi

IH3)2 − (logΓi
(1 − TH3))2

2
.

Corollary 4.1. Let H1 =
〈
(κ1, δ1); [log TH1, log (1 − FH1)], [log IH1, log IH1], [log FH1, log (1 − TH1)]

〉
,

H2 =
〈
(κ2, δ2); [log TH2, log (1 − FH2)], [log IH2, log IH2], [log FH2, log (1 − TH2)]

〉
and

H3 =
〈
(κ3, δ3); [log TH3, log (1 − FH3)], [log IH3, log IH3], [log FH3, log (1 − TH3)]

〉
be any three q-rung

log PyNVNNs. Then, we have the following

i. DH(H1,H2) = 0 if and only if H1 = H2.
ii. DH(H1,H2) = DH(H2,H1).
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iii. DH(H1,H3) � DH(H1,H2) + DH(H2,H3).

Proof. This proof is based on Theorem 4.1.

Remark 4.1. Note that H1 = ([log TH1, log (1 − FH1)], [log IH1, log IH1],
[log FH1, log (1 − TH1)]) = ([1, 1], [1, 1], [0, 0]) and H2 = ([log TH2, log (1 − FH2)],
[log IH2, log IH2], [log FH2, log (1 − TH2)]) = ([1, 1], [1, 1], [0, 0]) which is known as the distance
between q-rung log PyNVNNs is transformed to the distance between NFNs.

5. AOs based on q-rung log PyNVNS approach

A novel concept is presented in this section and it includes q-rung log PyNVNWA, q-rung log
PyNVNWG, q-rung log GPyNVNWA, and q-rung log GPyNVNWG operators in the environment of
a q-rung log PyNVNS. Based on the operational rules of q-rung log PyNVNNs, the weighed AOs for
q-rung log PyNVNNs are presented.

5.1. q-rung log PyNVNWA operator

Definition 5.1. Let Hi =
〈
(κi, δi); [log THi, log (1 − FHi)], [log IHi, log IHi], [log FHi, log (1 − THi)]

〉
be

the family of q-rung log PyNVNNs, Ξ = (Ξ1,Ξ2, ...,Ξn) be the weight of Hi where Ξi � 0 and �n
i=1Ξi =

1; also, Γ =
∏

[THi , 1 − FHi], [IHi , IHi], [FHi , 1 − THi]. Then, the q-rung log PyNVNWA operator is the
q-rung log PyNVNWA operator (H1,H2, ...,Hn) = �n

i=1ΞiHi for i = 1, 2, ..., n.

Theorem 5.1 illustrates the aggregated q-rung log PyNVNWA result based on the above definition.

Theorem 5.1. Let Hi =
〈
(κi, δi); [log THi, log (1 − FHi)], [log IHi, log IHi], [log FHi, log (1 − THi)]

〉
be

the family of q-rung log PyNVNNs. Then, the q-rung log PyNVNWA operator (H1,H2, ...,Hn) =

(associativity property).

(
�n

i=1 Ξiκi,�
n
i=1Ξiδi

)
;[

2q

√
1 −©n

i=1

(
1 − (logΓi

THi)2q
)Ξi
,

2q

√
1 −©n

i=1

(
1 − (logΓi

(1 − FHi))2q
)Ξi

]
,[

q

√
1 −©n

i=1

(
1 − (logΓi

IHi)q
)Ξi
,

q

√
1 −©n

i=1

(
1 − (logΓi

IHi)q
)Ξi

]
,[

©n
i=1 (logΓi

FHi)Ξi ,©n
i=1(logΓi

(1 − THi))Ξi
]


.

Proof. Using the induction method, the proof can be established.
If n = 2, then the q-rung log PyNVNWA operator (H1,H2) = Ξ1H1 � Ξ2H2, where

Ξ1H1 =



(
Ξ1κ1,Ξ1δ1

)
;[

2q

√
1 −

(
1 − (logΓi

TH1)2q
)Ξ1
,

2q

√
1 −

(
1 − (logΓi

(1 − FH1))2q
)Ξ1

]
,[

q

√
1 −

(
1 − (logΓi

IH1)q
)Ξ1
,

q

√
1 −

(
1 − (logΓi

IH1)q
)Ξ1

]
,[

(logΓi
FH1)Ξ1 , (logΓi

(1 − TH1))Ξ1
]
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and

Ξ2H2 =



(
Ξ2κ2,Ξ2δ2

)
;[

2q

√
1 −

(
1 − (logΓi

TH2)2q
)Ξ2
,

2q

√
1 −

(
1 − (logΓi

(1 − FH2))2q
)Ξ2

]
,[

q

√
1 −

(
1 − (logΓi

IH2)q
)Ξ2
,

q

√
1 −

(
1 − (logΓi

IH2)q
)Ξ2

]
,[

(logΓi
FH2)Ξ2 , (logΓi

(1 − TH2))Ξ2
]


.

Hence,

Ξ1H1 � Ξ2H2 =



(
Ξ1κ1 + Ξ2κ2,Ξ1δ1 + Ξ2δ2

)
;

2q

√√√√√ (
1 −

(
1 − (logΓi

TH1)2q
)Ξ1)

+
(
1 −

(
1 − (logΓi

TH2)2q
)Ξ2)

−
(
1 −

(
1 − (logΓi

TH1)2q
)Ξ1)
·
(
1 −

(
1 − (logΓi

TH2)2q
)Ξ2)

,

2q

√√√√√ (
1 −

(
1 − (logΓi

(1 − FH1))2q
)Ξ1)

+
(
1 −

(
1 − (logΓi

(1 − FH2))2q
)Ξ2)

−
(
1 −

(
1 − (logΓi

(1 − FH1))2q
)Ξ1)
·
(
1 −

(
1 − (logΓi

(1 − FH2))2q
)Ξ2)


,



q

√√√√√ (
1 −

(
1 − (logΓi

IH1)q
)Ξ1)

+
(
1 −

(
1 − (logΓi

IH2)q
)Ξ2)

−
(
1 −

(
1 − (logΓi

IH1)q
)Ξ1)
·
(
1 −

(
1 − (logΓi

IH2)q
)Ξ2)

,

q

√√√√√ (
1 −

(
1 − (logΓi

IH1)q
)Ξ1)

+
(
1 −

(
1 − (logΓi

IH2)q
)Ξ2)

−
(
1 −

(
1 − (logΓi

IH1)q
)Ξ1)
·
(
1 −

(
1 − (logΓi

IH2)q
)Ξ2)


,

[
(logΓi

FH1)Ξ1 · (logΓi
FH2)Ξ2 , (logΓi

(1 − TH1))Ξ1 · (logΓi
(1 − TH2))Ξ2

]



=



(
Ξ1κ1 + Ξ2κ2,Ξ1δ1 + Ξ2δ2

)
;

2q

√
1 −

(
1 − (logΓi

TH1)2q
)Ξ1
·
(
1 − (logΓi

TH2)2q
)Ξ2
,

2q

√
1 −

(
1 − (logΓi

(1 − FH1))2q
)Ξ1
·
(
1 − (logΓi

(1 − FH2))2q
)Ξ2

 ,
q

√
1 −

(
1 − (logΓi

IH1)q
)Ξ1
·
(
1 − (logΓi

IH2)q
)Ξ2
,

q

√
1 −

(
1 − (logΓi

IH1)q
)Ξ1
·
(
1 − (logΓi

IH2)q
)Ξ2

 ,[
(logΓi

FH1)Ξ1 · (logΓi
FH2)Ξ2 , (logΓi

(1 − TH1))Ξ1 · (logΓi
(1 − TH2))Ξ2

]



.

Thus, the q-rung log PyNVNWA operator (H1,H2) =

(
�2

i=1 Ξiκi,�
2
i=1Ξiδi

)
;[

2q

√
1 −©2

i=1

(
1 − (logΓi

THi)2q
)Ξi
,

2q

√
1 −©2

i=1

(
1 − (logΓi

(1 − FHi))2q
)Ξi

]
,[

q

√
1 −©2

i=1

(
1 − (logΓi

IHi)q
)Ξi
,

q

√
1 −©2

i=1

(
1 − (logΓi

IHi)q
)Ξi

]
,[

©2
i=1 (logΓi

FHi)Ξi ,©2
i=1(logΓi

(1 − THi))Ξi
]


.
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It is valid for n = l and l � 3.
Hence, the q-rung log PyNVNWA operator (H1,H2, ...,Hl) =

(
�l

i=1 Ξiκi,�
l
i=1Ξiδi

)
;[

2q

√
1 −©l

i=1

(
1 − (logΓi

THi)2q
)Ξi
,

2q

√
1 −©l

i=1

(
1 − (logΓi

(1 − FHi))2q
)Ξi

]
,[

q

√
1 −©l

i=1

(
1 − (logΓi

IHi)q
)Ξi
,

q

√
1 −©l

i=1

(
1 − (logΓi

IHi)q
)Ξi

]
,[

©l
i=1 (logΓi

FHi)Ξi ,©l
i=1(logΓi

(1 − THi))Ξi
]


.

If n = l + 1 and we apply q-rung log PyNVNWA operator (H1,H2, ...,Hl,Hl+1)

=



(
�l

i=1 Ξiκi + Ξl+1Γl+1,�
l
i=1Ξiδi + Ξl+1δl+1

)
;

2q

√√√√√ �l
i=1

(
1 −

(
1 − (logΓi

THi)2q
)Ξi)

+
(
1 −

(
1 − (logΓi

THl+1)2q
)Ξl+1)

−©l
i=1

(
1 −

(
1 − (logΓi

THi)2q
)Ξi)
·
(
1 −

(
1 − (logΓi

THl+1)2q
)Ξl+1)

,

2q

√√√√√ �l
i=1

(
1 −

(
1 − (logΓi

(1 − FHi))
2q
)Ξi)

+
(
1 −

(
1 − (logΓi

(1 − FHl+1))2q
)Ξl+1)

−©l
i=1

(
1 −

(
1 − (logΓi

(1 − FHi))
2q
)Ξi)
·
(
1 −

(
1 − (logΓi

(1 − FHl+1))2q
)Ξl+1)


,



q

√√√√√ �l
i=1

(
1 −

(
1 − (logΓi

IHi)q
)Ξi)

+
(
1 −

(
1 − (logΓi

IHl+1)q
)Ξl+1)

−©l
i=1

(
1 −

(
1 − (logΓi

IHi)q
)Ξi)
·
(
1 −

(
1 − (logΓi

IHl+1)q
)Ξl+1)

,

q

√√√√√ �l
i=1

(
1 −

(
1 − (logΓi

IHi)q
)Ξi)

+
(
1 −

(
1 − (logΓi

IHl+1)q
)Ξl+1)

−©l
i=1

(
1 −

(
1 − (logΓi

IHi)q
)Ξi)
·
(
1 −

(
1 − (logΓi

IHl+1)q
)Ξl+1)


,

[
©l

i=1 (logΓi
FHi)Ξi · (logΓi

FHl+1)Ξl+1 ,©l
i=1(logΓi

(1 − THi))Ξi · (logΓi
(1 − THl+1))Ξl+1

]



=



(
�l+1

i=1 Ξiκi,�
l+1
i=1Ξiδi

)
;[

2q

√
1 −©l+1

i=1

(
1 − (logΓi

THi)2q
)Ξi
, 2q

√
1 −©l+1

i=1

(
1 − (logΓi

(1 − FHi))
2q
)Ξi

]
,[

q

√
1 −©l+1

i=1

(
1 − (logΓi

IHi)q
)Ξi
, q

√
1 −©l+1

i=1

(
1 − (logΓi

IHi)q
)Ξi

]
,[

©l+1
i=1 (logΓi

FHi)Ξi ,©l+1
i=1(logΓi

(1 − THi))Ξi
]


.

Theorem 5.2. (idempotency property) If all Hi =
〈
(κi, δi); [log THi, log (1 − FHi)],

[log IHi, log IHi][log FHi, log (1 − THi)]
〉

(i = 1, 2, ..., n) are equal and Hi = H, then the q-rung log
PyNVNWA (H1,H2, ...,Hn) = H.

Proof. Note that (κi, δi) = (κ, δ), [log THi, log (1 − FHi)] = [log TH, log (1 − FH)] , [log IHi, log IHi] =

[log IH, log IH] and [log FHi, log (1 − THi)] = [log FH, log (1 − TH)], for i = 1, 2, ..., n and �n
i=1Ξi = 1.
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Now, the q-rung log PyNVNWA operator (H1,H2, ...,Hn)

=



(
�n

i=1 Ξiκi,�
n
i=1Ξiδi

)
;[

2q

√
1 −©n

i=1

(
1 − (logΓi

THi)2q
)Ξi
, 2q

√
1 −©n

i=1

(
1 − (logΓi

(1 − FHi))
2q
)Ξi

]
,[

q

√
1 −©n

i=1

(
1 − (logΓi

IHi)q
)Ξi
, q

√
1 −©n

i=1

(
1 − (logΓi

IHi)q
)Ξi

]
,[

©n
i=1 (logΓi

FHi)Ξi ,©n
i=1(logΓi

(1 − THi))Ξi
]



=



(
κ �n

i=1 Ξi, δ �
n
i=1 Ξi

)
;[

2q

√
1 −

(
1 − (logΓi

TH)2q
)�n

i=1Ξi
, 2q

√
1
(
1 − (logΓi

(1 − FH))2q
)�n

i=1Ξi

]
,[

q

√
1 −

(
1 − (logΓi

IH)q
)�n

i=1Ξi
, q

√
1
(
1 − (logΓi

IH)q
)�n

i=1Ξi

]
,[

(logΓi
FH)�

n
i=1Ξi , (logΓi

(1 − TH))�
n
i=1Ξi

]



=



(κ, δ);[
2q
√

1 −
(
1 − (logΓi

TH)2q
)
, 2q
√

1 −
(
1 − (logΓi

(1 − FH))2q
) ]
,[

q
√

1 −
(
1 − (logΓi

IH)q
)
, q
√

1 −
(
1 − (logΓi

IH)q
) ]
,[

(logΓi
FH), (logΓi

(1 − TH))
]


= H.

Theorem 5.3. (boundedness property) Let Hi =
〈
(κi j, δi j); [log THi j, log (1 − FHi j)],

[log IHi j, log IHi j][log FHi j, log (1 − THi j)]
〉

(i = 1, 2, ..., n).( j = 1, 2, ..., i j) be the collection of q-rung

log PyNVNWA operators, where κ = min κi j, κ = max κi j, δ = max δi j, δ = min δi j,

logΓi
TH = min logΓi

THi j, logΓi
TH = max logΓi

THi j, logΓi
(1 − FH) = min logΓi

(1 − FHi j),

logΓi
(1 − FH) = max logΓi

(1 − FHi j), logΓi
IH = min logΓi

IHi j, logΓi
IH = max logΓi

IHi j,

logΓi
IH = min logΓi

IHi j, logΓi
IH = max logΓi

IHi j, logΓi
FH = min logΓi

FHi j, logΓi
FH = max logΓi

FHi j,

logΓi
(1 − TH) = min logΓi

(1 − THi j), logΓi
(1 − TH) = max logΓi

(1 − THi j).

Then,
〈
(κ, δ); [logΓi

TH, logΓi
(1 − FH)], [logΓi

IH, logΓi
IH], [logΓi

FH, logΓi
(1 − TH)]

〉
� q − rung log PyNVNWA(H1,H2, ...,Hn)
�

〈
(κ, δ); [logΓi

TH, logΓi
(1 − FH)], [logΓi

IH, logΓi
IH], [logΓi

FH, logΓi
(1 − TH)]

〉
,

where 1 � i � n, j = 1, 2, ..., i j.

Proof. Suppose that, logΓi
TH = min logΓi

THi j, logΓi
TH = max logΓi

THi j

logΓi
(1 − FH) = min logΓi

(1 − FHi j), logΓi
(1 − FH) = max logΓi

(1 − FHi j), logΓi
TH � logΓi

THi j �

logΓi
TH and logΓi

(1 − FH) � logΓi
(1 − FH)i j � logΓi

(1 − FH).
Now, logΓi

TH + logΓi
(1 − FH)

=
2q

√
1 −©n

i=1

(
1 − (logΓi

TH)2q
)Ξi

+
2q

√
1 −©n

i=1

(
1 − (logΓi

(1 − FH))2q
)Ξi
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�
2q

√
1 −©n

i=1

(
1 − (logΓi

THi j)2q
)Ξi

+
2q

√
1 −©n

i=1

(
1 − (logΓi

(1 − FHi j))
2q
)Ξi

�
2q

√
1 −©n

i=1

(
1 − (logΓi

TH)2q
)Ξi

+
2q

√
1 −©n

i=1

(
1 − (logΓi

(1 − FH))2q
)Ξi

= logΓi
TH + logΓi

(1 − FH).

Suppose that, logΓi
IH = min logΓi

IHi j, logΓi
IH = max logΓi

IHi j,

logΓi
IH = min logΓi

IHi j, logΓi
IH = max logΓi

IHi j,

logΓi
IH � logΓi

IHi j � logΓi
IH and logΓi

IH � logΓi
IHi j � logΓi

IH. Now,

logΓi
IH + logΓi

IH =
q

√
1 −©n

i=1

(
1 − (logΓi

IH)q
)Ξi

+
q

√
1 −©n

i=1

(
1 − (logΓi

IH)q
)Ξi

�
q

√
1 −©n

i=1

(
1 − (logΓi

IHi j)q
)Ξi

+
q

√
1 −©n

i=1

(
1 − (logΓi

IHi j)q
)Ξi

�
q

√
1 −©n

i=1

(
1 − (logΓi

IH)q
)Ξi

+
q

√
1 −©n

i=1

(
1 − (logΓi

IH)q
)Ξi

= logΓi
IH + logΓi

IH.

Suppose that, logΓi
FH = min logΓi

FHi j, logΓi
FH = max logΓi

FHi j

logΓi
(1 − TH) = min logΓi

(1 − THi j),

logΓi
(1 − TH) = max logΓi

(1 − THi j), logΓi
FH � logΓi

FHi j � logΓi
FH

and logΓi
(1 − TH) � logΓi

(1 − THi j) � logΓi
(1 − TH). Now,

logΓi
FH + logΓi

(1 − TH) = ©n
i=1(logΓi

FH)Ξi +©n
i=1(logΓi

(1 − TH))Ξi

� ©n
i=1(logΓi

FHi j)Ξi +©n
i=1(logΓi

(1 − THi j))
Ξi

� ©n
i=1(logΓi

FH)Ξi +©n
i=1(logΓi

(1 − TH))Ξi

= logΓi
FH + logΓi

(1 − TH).

Suppose that, κ = min κi j, κ = max κi j, δ = max δi j, δ = min δi j, κ � κi j � κ and δ � δi j � δ.
Hence, �n

i=1Ξiκ � �
n
i=1Ξiκi j � �

n
i=1Ξiκ and �n

i=1Ξiδ � �
n
i=1Ξiδi j � �

n
i=1Ξiδ.

Therefore,

�n
i=1Ξiκ

2
×



 2q

√
1 −©n

i=1

(
1 − (logΓi

TH)2q
)Ξi


2

+

 2q

√
1 −©n

i=1

(
1 − (logΓi

(1 − FH))2q
)Ξi


2

2

+1 −

 q

√
1 −©n

i=1

(
1 − (logΓi

IH)q
)Ξi


2

+

 q

√
1 −©n

i=1

(
1 − (logΓi

IH)q
)Ξi


2

2

+1 −
(
©n

i=1(logΓi
FH)Ξi

)2
+
(
©n

i=1(logΓi
(1−TH))Ξi

)2

2
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�
�n

i=1Ξiκi j

2
×



 2q

√
1 −©n

i=1

(
1 − (logΓi

THi j)2q
)Ξi


2

+

 2q

√
1 −©n

i=1

(
1 − (logΓi

(1 − FHi j))
2q
)Ξi


2

2

+1 −

 q

√
1 −©n

i=1

(
1 − (logΓi

IHi j)q
)Ξi


2

+

 q

√
1 −©n

i=1

(
1 − (logΓi

IHi j)q
)Ξi


2

2

+1 −
(
©n

i=1(logΓi
FH i j)Ξi

)2
+
(
©n

i=1(logΓi
(1−TH i j))Ξi

)2

2



�
�n

i=1Ξiκ

2
×



 2q

√
1 −©n

i=1

(
1 − (logΓi

TH)2q
)Ξi


2

+

 2q

√
1 −©n

i=1

(
1 − (logΓi

(1 − FH))2q
)Ξi


2

2

+1 −

 q

√
1 −©n

i=1

(
1 − (logΓi

IH)q
)Ξi


2

+

 q

√
1 −©n

i=1

(
1 − (logΓi

IH)q
)Ξi


2

2

+1 −

(
©n

i=1(logΓi
FH)Ξi

)2
+

(
©n

i=1(logΓi
(1−TH))Ξi

)2

2


.

Hence,
〈
(κ, δ); [log TH, log (1 − FH)], [log IH, log IH], [log FH, log (1 − TH)]

〉
� q − rung log PyNVNWA(H1,H2, ...,Hn)
�

〈
(κ, δ); [log TH, log (1 − FH)], [log IH, log IH], [log FH, log (1 − TH)]

〉
.

Theorem 5.4. (monotonicity property) Let Hi =
〈
(κti j , δti j); [log THti j , log (1 − FHti j)],

[log IHti j , log IHti j], [log FHti j , log (1 − THti j
)]
〉

and Ξi =
〈
(κhi j , δhi j); [log THhi j ,

log (1 − FHhi j
)], [log IHhi j , log IHhi j], [log FHhi j , log (1 − THhi j

)]
〉

(i = 1, 2, ..., n), ( j = 1, 2, ..., i j) be the

families of q-rung log PyNVNWA operators. For any i, Suppose that there is κti j � δhi j ,
(
logΓi

THti j

)2
+(

logΓi
(1 − FHti j

)
)2
�

(
logΓi

THhi j

)2
+

(
logΓi

(1 − FHhi j
)
)2

and
(
logΓi

IHti j

)2
+

(
logΓi

IHti j

)2
�

(
logΓi

IHhi j

)2
+(

logΓi
IHhi j

)2
,
(
logΓi

FHti j

)2
+

(
logΓi

(1 − TH)ti j

)2
�

(
logΓi

FHhi j

)2
+

(
logΓi

(1 − THhi j)

)2
or Hi � Wi. Then,

theq-rung log PyNVNWA operator (H1,H2, ...,Hn) � q-rung log PyNVNWA operator (W1,W2, ...,Wn).

Proof. For any i, κti j � δhi j . Therefore, �n
i=1κti j � �

n
i=1δhi j .

For any i,
(
logΓi

THti j

)2
+

(
logΓi

(1 − FHti j
)
)2
�

(
logΓi

THhi j

)2
+

(
logΓi

(1 − FHhi j
)
)2

.

Therefore, 1 −
(
logΓi

THti

)2
+ 1 −

(
logΓi

(1 − FHti)
)2
� 1 −

(
logΓi

THhi

)2
+ 1 −

(
logΓi

(1 − FHhi
)
)2

.

Hence,©n
i=1

(
1 −

(
logΓi

THti

)2
)Ξi

+©n
i=1

(
1 −

(
logΓi

(1 − FHti)
)2
)Ξi

�

©n
i=1

(
1 −

(
logΓi

THhi

)2
)Ξi

+©n
i=1

(
1 −

(
logΓi

(1 − FHhi
)
)2
)Ξi

and 2q

√
1 −©n

i=1

(
1 −

(
logΓi

THti

)2q
)Ξi

+
2q

√
1 −©n

i=1

(
1 −

(
logΓi

(1 − FHti)

)2q
)Ξi

�
2q

√
1 −©n

i=1

(
1 −

(
logΓi

THhi

)2q
)Ξi

+
2q

√
1 −©n

i=1

(
1 −

(
logΓi

(1 − FHhi)

)2q
)Ξi

.

For any i,
(
logΓi

IHti j

)q
+

(
logΓi

IHti j

)q
�

(
logΓi

IHhi j

)q
+

(
logΓi

IHhi j

)q
.

Therefore, 1 −
(
logΓi

IHti

)q
+ 1 −

(
logΓi

IHti

)q
� 1 −

(
logΓi

IHhi

)q
+ 1 −

(
logΓi

IHhi

)q
.
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Hence, ©n
i=1

(
1 −

(
logΓi

IHti

)q)Ξi
+ ©n

i=1

(
1 −

(
logΓi

IHti

)q)Ξi
�

©n
i=1

(
1 −

(
logΓi

IHhi

)q)Ξi
+©n

i=1

(
1 −

(
logΓi

IHhi

)q)Ξi

implies that
q
√

1 −©n
i=1

(
1 −

(
logΓi

IHti

)q)Ξi
+

q
√

1 −©n
i=1

(
1 −

(
logΓi

IHti

)q)Ξi

�
q
√

1 −©n
i=1

(
1 −

(
logΓi

IHhi

)q)Ξi
+

q
√

1 −©n
i=1

(
1 −

(
logΓi

IHhi

)q)Ξi
.

Hence, 1 −
q
√

1 −©n
i=1

(
1 −

(
logΓi

IHti

)q)Ξi
+

q
√

1 −©n
i=1

(
1 −

(
logΓi

IHti

)q)Ξi

� 1 −
q
√

1 −©n
i=1

(
1 −

(
logΓi

IHhi

)q)Ξi
+

q
√

1 −©n
i=1

(
1 −

(
logΓi

IHhi

)q)Ξi
.

For any i,
(
logΓi

FHti j

)2
+

(
logΓi

(1 − THti j)

)2
�

(
logΓi

FHhi j

)2
+

(
logΓi

(1 − THhi j)

)2
.

Therefore, 1 −

(
©n

i=1 logΓi
FH ti j

)2
+

(
©n

i=1 logΓi
(1−TH ti j)

)2

2 � 1 −

(
©n

i=1 logΓi
FH hi j

)2
+

(
©n

i=1 logΓi
(1−TH hi j)

)2

2 .

�n
i=1κti j

2
×



 2q

√
1 −©n

i=1

(
1 − (logΓi

THti)2q
)Ξi


2

+

 2q

√
1 −©n

i=1

(
1 − (logΓi

(1 − FHti))
2q
)Ξi


2

2

+1 −

 q

√
1 −©n

i=1

(
1 − (logΓi

IHti)q
)Ξi


2

+

 q

√
1 −©n

i=1

(
1 − (logΓi

IHti)q
)Ξi


2

2

+1 −
(
©n

i=1(logΓi
FH ti j)

)2
+
(
©n

i=1(logΓi
(1−TH ti j))

)2

2



�
�n

i=1κhi j

2
×



 2q

√
1 −©n

i=1

(
1 − (logΓi

THhi)2q
)Ξi


2

+

 2q

√
1 −©n

i=1

(
1 − (logΓi

(1 − FHhi))
2q
)Ξi


2

2

+1 −

 q

√
1 −©n

i=1

(
1 − (logΓi

IHhi)q
)Ξi


2

+

 q

√
1 −©n

i=1

(
1 − (logΓi

IHhi)q
)Ξi


2

2

+1 −
(
©n

i=1(logΓi
FH hi j)

)2
+
(
©n

i=1(logΓi
(1−TH hi j))

)2

2


.

Hence, the q-rung log PyNVNWA operator (H1,H2, ...,Hn) � q-rung log PyNVNWA operator
(W1,W2, ...,Wn).

5.2. q-rung log PyNVNWG operator

Definition 5.2. Let Hi =
〈
(κi, δi); [log THi, log (1 − FHi)], [log IHi, log IHi], [log FHi,

log (1 − THi)]
〉

be the family of q-rung log PyNVNNs. Then, the q-rung log PyNVNWG operator is
the q-rung log PyNVNWG operator (H1,H2, ...,Hn) = ©n

i=1HΞi
i (i = 1, 2, ..., n).

Theorem 5.5. Let Hi =
〈
(κi, δi); [log THi, log (1 − FHi)], [log FHi, log (1 − THi)]

〉
be the family of q-

rung log PyNVNNs. Then, the q-rung log PyNVNWG operator (H1,H2, ...,Hn) =

(
©n

i=1 κ
Ξi
i ,©

n
i=1δ

Ξi
i

)
;
[
©n

i=1(logΓi
THi)Ξi ,©n

i=1(logΓi
(1 − FHi))Ξi

]
,[

q

√
1 −©n

i=1

(
1 − (logΓi

IHi)q
)Ξi
,

q

√
1 −©n

i=1

(
1 − (logΓi

IHi)q
)Ξi

]
,[

2q

√
1 −©n

i=1

(
1 − (logΓi

FHi)2q
)Ξi
,

2q

√
1 −©n

i=1

(
1 − (logΓi

(1 − THi))2q
)Ξi

]

.
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Proof. This proof is based on Theorem 5.1.

Theorem 5.6. Suppose that all Hi =
〈
(κi, δi); [log THi, log (1 − FHi)], [log IHi, log IHi][log FHi,

log (1 − THi)]
〉

are equal and Hi = H, for i = 1, 2, ..., n. Then, the q-rung log PyNVNWG operator
(H1,H2, ...,Hn) = H.

Proof. This proof is based on Theorem 5.2.

Corollary 5.1. The q-rung log PyNVNWG operator is used to satisfy the boundedness and
monotonicity properties.

Proof. This proof is based on Theorems 5.3 and 5.4.

5.3. q-rung log GPyNVNWA operator

As generalizations of the q-rung log PyNVNWA operators, some generalized q-rung log
GPyNVNWA operators are developed in Section 5.3.

Definition 5.3. Let Hi =
〈
(κi, δi); [log THi, log (1 − FHi)], [log IHi, log IHi], [log FHi,

log (1 − THi)]
〉

be the family of q-rung log PyNVNN. Then, the q-rung log GPyNVNWA operator

(H1,H2, ...,Hn) =
(
�n

i=1 ΞiHΘ
i

)1/Θ
is called the q-rung log GPyNVNWA operator.

Theorem 5.7 Illustrates the q-rung log GPyNVNWA result based on the above definition.

Theorem 5.7. Let Hi =
〈
(κi, δi); [log THi, log (1 − FHi)], [log IHi, log IHi], [log FHi,

log (1 − THi)]
〉

be the family of q-rung log PyNVNNs. Then q-rung log GPyNVNWA
(H1,H2, ...,Hn) =

((
�n

i=1 Ξiκ
Θ
i

)1/Θ
,
(
�n

i=1 Ξiδ
Θ
i

)1/Θ
)
;( 2q

√
1 −©n

i=1

(
1 −

(
(logΓi

THi)q
)2q

)Ξi
)1/q

,

(
2q

√
1 −©n

i=1

(
1 −

(
(logΓi

(1 − FHi))
q
)2q

)Ξi
)1/q

 ,( q

√
1 −©n

i=1

(
1 −

(
(logΓi

IHi)q
)q
)Ξi

)1/q

,

(
q

√
1 −©n

i=1

(
1 −

(
(logΓi

IHi)q
)q
)Ξi

)1/q
 ,

2q

√
1 −

(
1 −

(
©n

i=1

(
2q
√

1 −
(
1 − (logΓi

FHi)2q
)q
)Ξi

)2q)1/q

,

2q

√
1 −

(
1 −

(
©n

i=1

(
2q
√

1 −
(
1 − (logΓi

(1 − THi))2q
)q
)Ξi

)2q)1/q





.

Proof. �n
i=1ΞiHΘ

i =

((
�n

i=1 Ξiκ
Θ
i

)
,
(
�n

i=1 Ξiδ
Θ
i

))
; 2q

√
1 −©n

i=1

(
1 −

(
(logΓi

THi)q
)2q

)Ξi

, 2q

√
1 −©n

i=1

(
1 −

(
(logΓi

(1 − FHi))
q
)2q

)Ξi
 , q

√
1 −©n

i=1

(
1 −

(
(logΓi

IHi)q
)q
)Ξi

, q

√
1 −©n

i=1

(
1 −

(
(logΓi

IHi)q
)q
)Ξi

 ,©n
i=1

(
2q
√

1 −
(
1 − (logΓi

FHi)2q
)q
)Ξi

,©n
i=1

(
2q
√

1 −
(
1 − (logΓi

(1 − THi))2q
)q
)Ξi




.
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This proof is based on the induction method.
If n = 2, then
Ξ1H1 � Ξ2H2 =

(
Ξ1κ

Θ
1 + Ξ2κ

Θ
2 ,Ξ1δ

Θ
1 + Ξ2δ

Θ
2

)
;

2q

√√√√√√√√√√√√√√√√√
(

2q

√
1 −

(
1 −

(
(logΓi

TH1)q
)2q

)Ξ1
)2q

+

(
2q

√
1 −

(
1 −

(
(logΓi

TH2)q
)2q

)Ξ1
)2q

,

−

(
2q

√
1 −

(
1 −

(
(logΓi

TH1)q
)2q

)Ξ1
)2q

·

(
2q

√
1 −

(
1 −

(
(logΓi

TH2)q
)2q

)Ξ1
)2q

2q

√√√√√√√√√√√√√√√√√
(

2q

√
1 −

(
1 −

(
(logΓi

(1 − FH1))q
)2q

)Ξ1
)2q

+

(
2q

√
1 −

(
1 −

(
(logΓi

(1 − FH2))q
)2q

)Ξ1
)2q

−

(
2q

√
1 −

(
1 −

(
(logΓi

(1 − FH1))q
)2q

)Ξ1
)2q

·

(
2q

√
1 −

(
1 −

(
(logΓi

(1 − FH2))q
)2q

)Ξ1
)2q



,



q

√√√√√√√√√√√√√√√√√
(

q

√
1 −

(
1 −

(
(logΓi

IH1)q
)q
)Ξ1

)q

+

(
q

√
1 −

(
1 −

(
(logΓi

IH2)q
)q
)Ξ1

)q

,

−

(
q

√
1 −

(
1 −

(
(logΓi

IH1)q
)q
)Ξ1

)q

·

(
q

√
1 −

(
1 −

(
(logΓi

IH2)q
)q
)Ξ1

)q

q

√√√√√√√√√√√√√√√√√
(

q

√
1 −

(
1 −

(
(logΓi

IH1)q
)q
)Ξ1

)q

+

(
q

√
1 −

(
1 −

(
(logΓi

IH2)q
)q
)Ξ1

)q

−

(
q

√
1 −

(
1 −

(
(logΓi

IH1)q
)q
)Ξ1

)q

·

(
q

√
1 −

(
1 −

(
(logΓi

IH2)q
)q
)Ξ1

)q



,


(

2q
√

1 −
(
1 − (logΓi

FH1)2q
)q
)Ξ1

·

(
2q
√

1 −
(
1 − (logΓi

FH2)2q
)q
)Ξ1

,(
2q
√

1 −
(
1 − (logΓi

(1 − TH1))2q
)q
)Ξ1

·

(
2q
√

1 −
(
1 − (logΓi

(1 − TH2))2q
)q
)Ξ1





=



(
�2

i=1 Ξiκ
Θ
i ,�

2
i=1Ξiδ

Θ
i

)
;[

2q

√
1 −©2

i=1

(
1 −

(
(logΓi

TH1)q
)2q

)Ξi

,
2q

√
1 −©2

i=1

(
1 −

(
(logΓi

(1 − FH1))q
)2q

)Ξi
]
,[

q

√
1 −©2

i=1

(
1 −

(
(logΓi

IH1)q
)q
)Ξi

,
q

√
1 −©2

i=1

(
1 −

(
(logΓi

IH1)q
)q
)Ξi

]
,©2

i=1

(
2q
√

1 −
(
1 − (logΓi

FHi)2q
)q
)Ξi

,©2
i=1

(
2q
√

1 −
(
1 − (logΓi

(1 − THi))2q
)q
)Ξi




.

It is valid for n = l and l � 3.
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Hence, �l
i=1ΞiHΘ

i =

(
�l

i=1 Ξiκ
Θ
i ,�

l
i=1Ξiδ

Θ
i

)
;[

2q

√
1 −©l

i=1

(
1 −

(
(logΓi

TH1)q
)2q

)Ξi

,
2q

√
1 −©l

i=1

(
1 −

(
(logΓi

(1 − FH1))q
)2q

)Ξi
]
,[

q

√
1 −©l

i=1

(
1 −

(
(logΓi

IH1)q
)q
)Ξi

,
q

√
1 −©l

i=1

(
1 −

(
(logΓi

IH1)q
)q
)Ξi

]
,©l

i=1

(
2q
√

1 −
(
1 − (logΓi

FHi)2q
)q
)Ξi

,©l
i=1

(
2q
√

1 −
(
1 − (logΓi

FHi)2q
)q
)Ξi




.

If n = l + 1, then �l
i=1ΞiHΘ

i + Ξl+1HΘ
l+1 = �l+1

i=1ΞiHΘ
i .

Now, �l
i=1ΞiHΘ

i + Ξl+1HΘ
l+1 = Ξ1HΘ

1 � Ξ2HΘ
2 � ... � wlHΘ

l � Ξl+1HΘ
l+1 =

(
�l

i=1 Ξiκ
Θ
i + Ξl+1ΓΘ

l+1,�
l
i=1Ξiδ

Θ
i + Ξl+1δ

Θ
l+1

)
;

2q

√√√√√√√√√√√√√√√√√
(

2q

√
1 −©l

i=1

(
1 −

(
(logΓi

THi)q
)2q

)Ξi
)2q

+

(
2q

√
1 −

(
1 −

(
(logΓi

THl+1)q
)2q

)Ξ1
)2q

,

−

(
2q

√
1 −©l

i=1

(
1 −

(
(logΓi

THi)q
)2q

)Ξi
)2q

·

(
2q

√
1 −

(
1 −

(
(logΓi

THl+1)q
)2q

)Ξ1
)2q

2q

√√√√√√√√√√√√√√√√√
(

2q

√
1 −©l

i=1

(
1 −

(
(logΓi

(1 − FHi))
q
)2q

)Ξi
)2q

+

(
2q

√
1 −

(
1 −

(
(logΓi

(1 − FHl+1))q
)2q

)Ξ1
)2q

−

(
2q

√
1 −©l

i=1

(
1 −

(
(logΓi

(1 − FHi))
q
)2q

)Ξi
)2q

·

(
2q

√
1 −

(
1 −

(
(logΓi

(1 − FHl+1))q
)2q

)Ξ1
)2q



,



q

√√√√√√√√√√√√√√√√√
(

q

√
1 −©l

i=1

(
1 −

(
(logΓi

IHi)q
)q
)Ξi

)q

+

(
q

√
1 −

(
1 −

(
(logΓi

IHl+1)q
)q
)Ξ1

)q

,

−

(
q

√
1 −©l

i=1

(
1 −

(
(logΓi

IHi)q
)q
)Ξi

)q

·

(
q

√
1 −

(
1 −

(
(logΓi

IHl+1)q
)q
)Ξ1

)q

q

√√√√√√√√√√√√√√√√√
(

q

√
1 −©l

i=1

(
1 −

(
(logΓi

IHi)q
)q
)Ξi

)q

+

(
q

√
1 −

(
1 −

(
(logΓi

IHl+1)q
)q
)Ξ1

)q

−

(
q

√
1 −©l

i=1

(
1 −

(
(logΓi

IHi)q
)q
)Ξi

)q

·

(
q

√
1 −

(
1 −

(
(logΓi

IHl+1)q
)2q

)Ξ1
)q



,


©l

i=1

(
2q
√

1 −
(
1 − (logΓi

FHi)2q
)q
)Ξi

·

(
2q
√

1 −
(
1 − (logΓi

FHl+1)2q
)q
)Ξ1

,

©l
i=1

(
2q
√

1 −
(
1 − (logΓi

(1 − THi))2q
)q
)Ξi

·

(
2q
√

1 −
(
1 − (logΓi

(1 − THl+1))2q
)q
)Ξ1





.
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Thus,

�l+1
i=1ΞiHΘ

i =



(
�l+1

i=1 Ξiκ
Θ
i ,�

l+1
i=1Ξiδ

Θ
i

)
;[

2q

√
1 −©l+1

i=1

(
1 −

(
(logΓi

TH1)q
)2q

)Ξi

,
2q

√
1 −©l+1

i=1

(
1 −

(
(logΓi

(1 − FH1))q
)2q

)Ξi
]
,[

q

√
1 −©l+1

i=1

(
1 −

(
(logΓi

IH1)q
)q
)Ξi

,
q

√
1 −©l+1

i=1

(
1 −

(
(logΓi

IH1)q
)q
)Ξi

]
,©l+1

i=1

(
2q
√

1 −
(
1 − (logΓi

FHi)2q
)q
)Ξi

,©l+1
i=1

(
2q
√

1 −
(
1 − (logΓi

FHi)2q
)q
)Ξi




.

Hence,
(
�l+1

i=1ΞiHΘ
i

)1/Θ

((
�l+1

i=1 Ξiκ
Θ
i

)1/Θ
,
(
�l+1

i=1 Ξiδ
Θ
i

)1/Θ
)
;( 2q

√
1 −©l+1

i=1

(
1 −

(
(logΓi

THi)q
)2q

)Ξi
)1/q

,

(
2q

√
1 −©l+1

i=1

(
1 −

(
(logΓi

(1 − FHi))
q
)2q

)Ξi
)1/q

 ,( q

√
1 −©l+1

i=1

(
1 −

(
(logΓi

IHi)q
)q
)Ξi

)1/q

,

(
q

√
1 −©l+1

i=1

(
1 −

(
(logΓi

IHi)q
)q
)Ξi

)1/q
 ,

2q

√
1 −

(
1 −

(
©l+1

i=1

(
2q
√

1 −
(
1 − (logΓi

FHi)2q
)q
)Ξi

)2)1/q

,

2q

√
1 −

(
1 −

(
©l+1

i=1

(
2q
√

1 −
(
1 − (logΓi

(1 − THi))2q
)q
)Ξi

)2)1/q





.

It is valid for l � 1.

Remark 5.1. If q = 1, then the q-rung log GPyNVNWA operator is modified to the q-rung log
PyNVNWA operator.

Theorem 5.8. If all Hi =
〈
(κi, δi); [log THi, log (1 − FHi)], [log IHi, log IHi][log FHi,

log (1 − THi)]
〉

(i = 1, 2, ..., n) are equal and Hi = H, then the q-rung log GPyNVNWA operator
(H1,H2, ...,Hn) = H.

Proof. This proof is based on Theorem 5.2.

Remark 5.2. To satisfy the boundedness and monotonicity conditions, we use the q-rung log
GPyNVNWA operator.

Proof. This proof is based on Theorems 5.3 and 5.4.

5.4. q-rung log GPyNVNWG operator

As generalizations of the q-rung log PyNVNWG operators, some q-rung log GPyNVNWG
operators are developed in Section 5.4.

Definition 5.4. Let Hi =
〈
(κi, δi); [log THi, log (1 − FHi)], [log IHi, log IHi], [log FHi,

log (1 − THi)]
〉

be the family of q-rung log PyNVNNs, then the q-rung log GPyNVNWG operator

(H1,H2, ...,Hn) = 1
Θ

(
©n

i=1 (ΘHi)Ξi
)

(i = 1, 2, ..., n) is called the q-rung log GPyNVNWG operator.
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Theorem 5.9. Let Hi =
〈
(κi, δi); [log THi, log (1 − FHi)], [log IHi, log IHi], [log FHi,

log (1 − THi)]
〉

be the family of q-rung log PyNVNNs. Then, the q-rung log GPyNVNWG operator
(H1,H2, ...,Hn) =



(
1
Θ
©n

i=1 (Θκi)Ξi , 1
Θ
©n

i=1 (Θδi)Ξi

)
;

2q

√
1 −

(
1 −

(
©n

i=1

(
2q
√

1 −
(
1 − (logΓi

THi)2q
)q
)Ξi

)2q)1/q

,

2q

√
1 −

(
1 −

(
©n

i=1

(
2q
√

1 −
(
1 − (logΓi

(1 − FHi))2q
)q
)Ξi

)2q)1/q

 ,( q

√
1 −©n

i=1

(
1 −

(
(logΓi

IHi)q
)q
)Ξi

)1/q

,

(
q

√
1 −©n

i=1

(
1 −

(
(logΓi

IHi)q
)q
)Ξi

)1/q
 ,( 2q

√
1 −©n

i=1

(
1 −

(
(logΓi

FHi)q
)2q

)Ξi
)1/q

,

(
2q

√
1 −©n

i=1

(
1 −

(
(logΓi

(1 − THi))
q
)2q

)Ξi
)1/q





.

Proof. This proof is based on the Theorem 5.7.

Remark 5.3. If q = 1, then the q-rung log GPyNVNWG operator is converted to the q-rung log
PyNVNWG operator.

Remark 5.4. Boundedness and monotonicity properties can be met by using the q-rung log
GPyNVNWG operator.

Proof. This proof is based on Theorems 5.3 and 5.4.

Corollary 5.2. If all Hi =
〈
(κi, δi); [log THi, log (1 − FHi)], [log IHi, log IHi][log FHi,

log (1 − THi)]
〉

are equal and Hi = H, for i = 1, 2, ..., n, then the q-rung log GPyNVNWG operator
(H1,H2, ...,Hn) = H.

Proof. This proof is based on Theorem 5.2.

6. Multi-attributes neutrosophic DM method based on q-rung log PyNVNNs

The complexity of real-world systems increases daily, making it difficult for decision-makers to
choose the right option. It is difficult to summarize the objective of achieving a single goal, but it
is not impossible. Motivating employees, setting goals, and addressing opinions and complications
have been challenges for many organizations. The DM process, whether by an individual or by a
committee, must be transparent and consider multiple objectives at once. According to this reflection,
each decision- maker is prevented from achieving an ideal solution under each of the criteria involved
in practical problems. Therefore, decision-makers can develop more effective and reliable methods to
identify the most appropriate option. DM problems involving ambiguity and uncertainty do not always
respond well to classical or crisp methods. This paper presents an MADM approach based on q-rung
log PyNVNNs with AOs, which involves an algorithm for selecting the most suitable option from a set
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of options in the MADM problem, using q-rung log PyNVNNs with AOs. The purpose of this paper
is to propose a multi-attribute neutrosophic approach for DM problems with weights.

Let H = {H1,H2, ...,Hn} be a set of n-alternatives, Z = {Z1,Z2, ...,Zm} be a set of m-attributes and
the weights Ξ = {Ξ1,Ξ2, ...,Ξm}, where Ξi ∈ [0, 1] and

∑m
i Ξi = 1.

Let Hi j =
〈
(κi j, δi j); [logΓi

THi j, logΓi
(1 − FHi j)], [logΓi

IHi j, logΓi
IHi j], [logΓi

FHi j, logΓi
(1 − THi j)]

〉
denote the q-rung log PyNVNNs of alternative Hi in attribute Z j, i = 1, 2, ..., n and j = 1, 2, ...,m.

Suppose that[
logΓi

THi j, logΓi
(1 − FHi j)

]
,
[

logΓi
IHi j, logΓi

IHi j

]
,
[

logΓi
FHi j, logΓi

(1 − THi j)
]
∈ Int([0, 1]) and

0 � (logΓi
1 − FHi j(ε))q + (logΓi

IHi j(ε))q + (logΓi
1 − THi j(ε))q � 2. The MADM process is represented

by the following flowchart based on the q-rung log PyNVNN.

Figure 1. Flowchart of the MADM algorithm.

6.1. Algorithm

Using the proposed method, one can summarize the process depicted in Figure 1 as follows:
Step (a). Decision values for the q-rung log PyNVNNs.
Step (b). Compute the normalized decision values. The decision matrix D = (C̃i j)n×m

is normalized into
−→
D = (C̆i j)n×m,

where C̆i j =
〈
(−→κi j,
−→
δi j); [

−−−−−−−→
logΓi

THi j,
−−−−−−−−−−−−−→
logΓi

(1 − FHi j)], [
−−−−−−−→
logΓi

IHi j,
−−−−−−−→
logΓi

IHi j],

[
−−−−−−−−→
logΓi

FHi j,
−−−−−−−−−−−−−→
logΓi

(1 − THi j)]
〉
; −→κi j =

Γi j

maxi(κi j)
,
−→
δi j =

δi j

maxi(δi j)
·
δi j

κi j
,
−−−−−−−→
logΓi

THi j = logΓi
THi j,

−−−−−−−−−−−−−→
logΓi

(1 − FHi j) = logΓi
(1 − FHi j), where Γi =

∏
[THi , 1 − FHi], [IHi , IHi], [FHi , 1 − THi].

Step (c). Find the aggregate values for every alternative. On the basis of q-rung log PyNVNN
AOs, attribute Z j in C̃i, C̆i j =

〈
(−→κi j,
−→
δi j); [

−−−−−−−→
logΓi

THi j,
−−−−−−−−−−−−−→
logΓi

(1 − FHi j)],

[
−−−−−−−→
logΓi

IHi j,
−−−−−−−→
logΓi

IHi j], [
−−−−−−−−→
logΓi

FHi j,
−−−−−−−−−−−−−→
logΓi

(1 − THi j)]
〉

is aggregated into

C̆i =
〈
(−→κi ,
−→
δi ); [
−−−−−−−→
logΓi

THi,
−−−−−−−−−−−−→
logΓi

(1 − FHi)], [
−−−−−−→
logΓi

IHi,
−−−−−−→
logΓi

IHi], [
−−−−−−−→
logΓi

FHi,
−−−−−−−−−−−−→
logΓi

(1 − THi)]
〉
.

Step (d). The ideal values for each option can be calculated as follows:

C̆ + =

( max1�i�n(−→κi j),min1�i�n(
−→
δi j)

)
;

[1, 1], [1, 1], [0, 0]

 and C̆ − =

( min1�i�n(−→κi j),max1�i�n(
−→
δi j)

)
;

[0, 0], [0, 0], [1, 1]

.
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Step (e). The EDs between each alternative with various ideal values are as follows:
D+

i = DE

(
C̆i, C̆ +

)
; D−i = DE

(
C̆i, C̆ −

)
.

Step (f). The relative closeness values are calculated as follows: D∗i =
D−i

D+
i +D−i

.

Step (g). The greatest value is max D∗i .

6.2. Selection process based on agricultural robotics

The MADM process has the potential to improve and evaluate multiple conflicting criteria in all
areas of data mining. A business needs to respond more accurately and more effectively to changing
customer needs in this competitive environment. As a result, MADM is capable of handling the
evaluation process for multiple contradictory criteria successfully. In order to make an intelligent
decision, experts analyze every characteristic of an alternative and then make their decision based on
that analysis. Furthermore, this study presents the model for MADM and the basic steps to construct
it by using the q-ROFS AOs. MADM is demonstrated here by using the AOs of q-rung log PyNVNNs
as a practical example. A significant transformation has taken place in the agriculture sector in India
over the past few years, from conventional farming to smart farming; we have come a long way. In
rural agriculture, technology has risen to the occasion and yielded cutting-edge strategies to boost
productivity. Ultimately, the goal is to increase farmer productivity and to provide high yields of
crops to feed an expanding population. This sustainable growth is achieved by combining AI with
technical tools, such as drones, moisture sensors, etc. One example is the use of robots in agriculture.

A description and classification of agricultural robotics can be found here:

(1) Crop-Harvesting robots (B1):
There are many physical and mental demands associated with crop harvesting. A sensitive touch
is required, as well as a certain amount of knowledge. Several robotic components are used in
crop harvesting robots to enable them to operate in hot and unfavorable conditions. To handle
delicate crops and avoid unripe or diseased goods, these robots use machine learning algorithms
and computer vision. Abundant Robotics, Harvest Automation, and Harvest Croo are the top
three companies for manufacturing crop harvesting robots in the world.

(2) Weeding robots (B2):
Weed control is an extremely critical and challenging aspect of agriculture. Farmers continue to
use herbicides even when crop rotation is in place. Chemically modified food has become
increasingly disgusting to people and herbicide use is no longer a remedy. Robotic weed
management makes sense in these circumstances. AI is used by these robots to identify crops
from weeds. The use of traditional blades and finger weeders along the base of the plant reduces
the use of herbicides. Among the world’s leading manufacturers of weeding robots are the
French companies Nexus robotics and Naio technologies.

(3) Aerial imagery drones and seed-planting drones (B3):
Planting seeds and agricultural imagery seem to be in the air these days. Since aerial imaging
gives farmers a bird’s eye view of their crops, farmers save a lot of time. This technique can
be used by farmers to quickly assess the state of their plants, pest problems, and weed growth.
Additionally, they can use it to calculate how much seeds and fertilizer to apply. Precision farming
is becoming increasingly dependent on drones. Computer vision and data analytics are applied to
gather and analyze agricultural stress data through these high-technology, self-charging devices.

AIMS Mathematics Volume 8, Issue 12, 30209–30243.



30232

Additionally, they assist farmers in identifying growth opportunities.
(4) Autonomous robotic tractor (B4):

The world’s most advanced self-steering tractor has been developed in Belgium by researchers
from Katholieke Universiteit Leuven and Flanders Mechatronics Technology Center. Engineers
hope to create a robotic tractor that is precise, versatile, and capable of operating anywhere on
earth. As the tractor travels along the unpredictable and uneven terrain, keep an eye out for
obstacles that could change the direction of the tractor. There are three components to an
autonomous system: a steering system, an acceleration system, and a location detection system,
including GPS. Tractors cannot steer themselves on the right path even with strong sensors and
computers. With the software program being developed by the development team, any terrain
can be customized.

(5) Soil sterilization robot (B5):
A robot that has been developed by the Japanese Mitsubishi Research Institute administers
sterilizing medication to soil. Laser triangulation guidance allows the machine to calculate and
modify its position in constrained spaces. There is an addition of chemicals to the soil after
cultivation to combat weeds, bacteria, fungi, and viruses.

Suppose that five robots (alternatives) are represented by B = {B1,B2,B3,B4,B5}. Four attributes
are considered; robot controller features (Z1), affordable off line programming software (Z2), safety
codes (Z3), experience and reputation of the robot manufacturer (Z4). In this example, the weights
of Z1,Z2,Z3,Z4 are 0.4, 0.3, 0.2 and 0.1, respectively. Next, this study employs the methodology
developed in order to arrive at the most optimal solution. One must consider different alternatives.
Step (i). DM information is given as follows:

Z1 Z2 Z3 Z4

B1


(0.7, 0.75);
[0.6, 0.63],
[0.8, 0.85],
[0.37, 0.4]



(0.6, 0.45);
[0.5, 0.55],
[0.6, 0.65],
[0.45, 0.5]




(0.7, 0.4);
[0.6, 0.65],
[0.5, 0.55],
[0.35, 0.4]




(0.7, 0.3);
[0.4, 0.45],
[0.3, 0.35],
[0.55, 0.6]


B2


(0.65, 0.45);
[0.3, 0.35],
[0.4, 0.45],
[0.65, 0.7]



(0.7, 0.55);
[0.45, 0.5],
[0.5, 0.55],
[0.5, 0.55]



(0.75, 0.45);
[0.4, 0.45],
[0.5, 0.6],
[0.55, 0.6]




(0.6, 0.4);
[0.6, 0.65],
[0.5, 0.55],
[0.35, 0.4]


B3


(0.75, 0.7);
[0.35, 0.4],
[0.15, 0.2],
[0.6, 0.65]



(0.8, 0.6);
[0.6, 0.7],
[0.3, 0.5],
[0.3, 0.4]




(0.9, 0.3);
[0.45, 0.5],
[0.6, 0.65],
[0.5, 0.55]



(0.85, 0.65);
[0.35, 0.4],
[0.4, 0.5],
[0.6, 0.65]


B4


(0.6, 0.55);
[0.45, 0.5],
[0.3, 0.4],
[0.5, 0.55]



(0.75, 0.5);
[0.5, 0.6],

[0.4, 0.45],
[0.4, 0.5]



(0.85, 0.2);
[0.5, 0.55],
[0.45, 0.5],
[0.45, 0.5]




(0.8, 0.5);
[0.45, 0.5],
[0.45, 0.55],
[0.5, 0.55]


B5


(0.75, 0.65);
[0.25, 0.3],

[0.35, 0.45],
[0.7, 0.75]



(0.55, 0.45);
[0.55, 0.65],
[0.35, 0.4],
[0.35, 0.45]




(0.7, 0.4);
[0.55, 0.6],
[0.4, 0.55],
[0.4, 0.45]



(0.75, 0.4);
[0.4, 0.45],
[0.55, 0.6],
[0.55, 0.6]
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Step (ii). We obtain the normalized decision matrix is as follows:

Z1 Z2 Z3 Z4

B1


(0.9412, 0.9375);

[0.6, 0.63],
[0.8, 0.85],
[0.37, 0.4]



(0.8824, 0.6205);

[0.5, 0.55],
[0.6, 0.65],
[0.45, 0.5]



(1, 0.7686);
[0.6, 0.65],
[0.5, 0.55],
[0.35, 0.4]



(0.9375, 0.8711);

[0.4, 0.45],
[0.3, 0.35],
[0.55, 0.6]


B2


(0.7059, 0.6722);

[0.3, 0.35],
[0.4, 0.45],
[0.65, 0.7]



(0.9412, 0.6923);

[0.45, 0.5],
[0.5, 0.55],
[0.5, 0.55]



(0.6471, 0.6061);

[0.4, 0.45],
[0.5, 0.6],
[0.55, 0.6]



(0.8750, 0.8048);

[0.6, 0.65],
[0.5, 0.55],
[0.35, 0.4]


B3


(1, 0.5647);
[0.35, 0.4],
[0.15, 0.2],
[0.6, 0.65]



(1, 0.6516);
[0.6, 0.7],
[0.3, 0.5],
[0.3, 0.4]



(0.9412, 0.9375);

[0.45, 0.5],
[0.6, 0.65],
[0.5, 0.55]



(0.8125, 0.7385);

[0.35, 0.4],
[0.4, 0.5],
[0.6, 0.65]


B4


(0.7647, 0.5128);

[0.45, 0.5],
[0.3, 0.4],
[0.5, 0.55]



(0.8235, 0.6648);

[0.5, 0.6],
[0.4, 0.45],
[0.4, 0.5]



(0.9412, 0.7042);

[0.5, 0.55],
[0.45, 0.5],
[0.45, 0.5]



(1, 0.9375);
[0.45, 0.5],

[0.45, 0.55],
[0.5, 0.55]


B5


(0.8235, 0.8048);

[0.25, 0.3],
[0.35, 0.45],
[0.7, 0.75]



(0.8824, 0.8667);

[0.55, 0.65],
[0.35, 0.4],
[0.35, 0.45]



(0.7647, 0.7385);

[0.55, 0.6],
[0.4, 0.55],
[0.4, 0.45]



(0.9375, 0.8711);

[0.4, 0.45],
[0.55, 0.6],
[0.55, 0.6]


Step (iii). Based on the q-rung log PyNVNWA operator, aggregated information regarding alternatives
(q = 1) are can be expressed as follows:

B̆1 B̆2 B̆3 B̆4 B̆5
(0.9349, 0.8020);
[0.2991, 0.3566],
[0.2380, 0.2464],
[0.2009, 0.2048]



(0.7816, 0.6783);
[0.3060, 0.3490],
[0.2023, 0.2137],
[0.1736, 0.1805]



(0.9695, 0.6827);
[0.2583, 0.2648],
[0.2612, 0.3697],
[0.2450, 0.2465]



(0.8412, 0.6392);
[0.3209, 0.3591],
[0.2588, 0.2590],
[0.2009, 0.2040]



(0.8408, 0.8167);
[0.4358, 0.4774],
[0.2568, 0.3106],
[0.1649, 0.1718]


Step (iv). Among the various ideal values, the values of every alternative are given by
B̆+ =

[
(0.9695, 0.6392); [1, 1], [1, 1], [0, 0]

]
and B̆− =

[
(0.7816, 0.8167); [0, 0], [0, 0], [1, 1]

]
.

Step (v). The EDs between every alternative with various ideal values are as follows:
D+

1 = 0.0540,D+
2 = 0.0911,D+

3 = 0.0248,D+
4 = 0.0770,D+

5 = 0.0923, and D−1 = 0.2204,D−2 =

0.1798,D−3 = 0.2435,D−4 = 0.1915,D−5 = 0.1826.
Step (vi). The relative closeness values are
D∗1 = 0.8033,D∗2 = 0.6636,D∗3 = 0.9076,D∗4 = 0.7132,D∗5 = 0.6642.
Step (vii). The ranking of alternatives is B3 > B1 > B4 > B5 > B2.

Thus the alternative aerial imagery drones and seed planting drones B3 is the most desirable
alternative based on the q-rung log PyNVNWG operator.
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6.3. Comparative study between the suggested and the existing approach

The ED and HD are extremely important for the MADM process. In contrast, few studies have
been conducted on MADM using ED and HD as criterion values for alternatives, which include
NSSs, interval NSSs and vague NSSs. Here, this study will compare ED and HD methods to validate
the feasibility of our proposed DM method. An overview of interval-valued Pythagorean normal
fuzzy information AOs was presented by Yang and Chang [31]. MADM-based Pythagorean
neutrosophic normal interval-valued AOs were discussed in Palanikumar et al. [68]. Its usefulness and
benefits can be seen in this example. q-rung log PyNVNWG, q-rung log GPyNVNWA, and q-rung
log GPyNVNWG approaches were used by focusing on ED and HD, respectively. Here, existing and
proposed methods of the comparative study are given in Table 1.

Table 1. Comparative analysis of existing and proposed methods.

q = 1 q − logPyNVNWA q − logPyNVNWG q − logGPyNVNWA q − logGPyNVNWG
TOPS IS − ED B3 > B1 > B4 B3 > B1 > B5 B3 > B1 > B4 B3 > B1 > B5

(Proposed) B5 > B2 B4 > B2 B5 > B2 B4 > B2

TOPS IS − HD B3 > B1 > B4 B3 > B1 > B5 B3 > B1 > B4 B3 > B1 > B5

(Proposed) B5 > B2 B4 > B2 B5 > B2 B4 > B2

TOPS IS − ED B3 > B1 > B4 B3 > B4 > B1 B3 > B1 > B4 B3 > B4 > B1

[68] B5 > B2 B5 > B2 B5 > B2 B5 > B2

TOPS IS − HD B3 > B1 > B4 B3 > B4 > B1 B3 > B1 > B4 B3 > B4 > B1

[68] B5 > B2 B5 > B2 B5 > B2 B5 > B2

ED [31] B3 > B1 > B5 B3 > B1 > B4 B3 > B1 > B5 B3 > B1 > B4

B4 > B2 B5 > B2 B4 > B2 B5 > B2

HD [31] B3 > B1 > B5 B3 > B1 > B4 B3 > B1 > B5 B3 > B1 > B4

B4 > B2 B5 > B2 B4 > B2 B5 > B2

ED [59] B3 > B1 > B4 B3 > B4 > B1 B3 > B1 > B4 B3 > B4 > B1

B5 > B2 B5 > B2 B5 > B2 B5 > B2

HD [59] B3 > B1 > B4 B3 > B4 > B1 B3 > B1 > B4 B3 > B4 > B1

B5 > B2 B5 > B2 B5 > B2 B5 > B2

Score [59] B3 > B1 > B5 B3 > B1 > B4 B3 > B1 > B5 B3 > B1 > B4

B4 > B2 B5 > B2 B4 > B2 B5 > B2

Consequently, the alternative third is the most suitable option among the other possibilities, so it
should be selected. In Figures 2 and 3, the distances between each alternative are ranked by using EDs
and HDs respectively.

We Analyzed the relationship between the MADM approach and the alternatives based on the
reliability of the circumstances. The closeness values and rankings are as follows. As a result, this
analysis shows that the developed methods are superior and more capable than existing ones. It has
been estimated by using the q-rung log PyNVNWA algorithm.

Below presents the aggregate information with the q-rung log PyNVNWA operator for alternatives
(q = 2).
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B̆1 B̆2 B̆3 B̆4 B̆5
(0.9349, 0.8020);
[0.3269, 0.3932],
[0.2420, 0.2495],
[0.2009, 0.2048]



(0.7816, 0.6783);
[0.3153, 0.3755],
[0.2243, 0.2323],
[0.1736, 0.1805]



(0.9695, 0.6827);
[0.2654, 0.2751],
[0.2633, 0.4298],
[0.2450, 0.2465]



(0.8412, 0.6392);
[0.3408, 0.3984],
[0.2633, 0.2938],
[0.2009, 0.2040]



(0.8408, 0.8167);
[0.5045, 0.5489],
[0.2760, 0.3799],
[0.1649, 0.1718]


Among the various ideal values of every alternative, there are the following values:

B̆+ =
[
(0.9695, 0.6392); [1, 1], [1, 1], [0, 0]

]
and B̆− =

[
(0.7816, 0.8167); [0, 0], [0, 0], [1, 1]

]
.

There is an ED between every alternative with various values
D+

1 = 0.0587,D+
2 = 0.0924,D+

3 = 0.0248,D+
4 = 0.0806,D+

5 = 0.1009 and
D−1 = 0.2148,D−2 = 0.1785,D−3 = 0.2435,D−4 = 0.1879,D−5 = 0.1730.

The relative closeness values are
D∗1 0.7852,D∗2 = 0.6590,D∗3 = 0.9074,D∗4 = 0.6998,D∗5 = 0.6315.

The ranking of every alternative is B3 > B1 > B4 > B2 > B5.

6.4. Sensitivity analysis

A q-rung log PyNVNN is converted to an NFN. The q-rung log PyNVNWA, q-rung log
PyNVNWG, q-rung log GPyNVNWA and q-rung log GPyNVNWG operators satisfy the properties
of associativity, boundedness, and monotonicity. When q = 1, this study converts the q-rung log
GPyNVNWA operator to the q-rung log PyNVNWA operator. Regarding the for q = 1 output
depicted in Figure 4, the q-rung log GPyNVNWG operator is converted into the q-rung log
PyNVNWG operator. Using the q-rung log PyNVNWA method, if q = 1, then the ranking of
alternatives is B3 > B1 > B4 > B5 > B2. If q = 2, then the ranking of alternatives in a new order is
B3 > B1 > B4 > B2 > B5. Thus, the robotic B5 becomes the robotic B2 as the best alternative. As
well, one can apply the q-rung log PyNVNWG, the q-rung log GPyNVNWA, and the q-rung log
GPyNVNWG operators.

Figure 2. ED for existing and proposed methods.

AIMS Mathematics Volume 8, Issue 12, 30209–30243.



30236

Figure 3. HD for existing and proposed methods.

Figure 4. Different q values.

6.5. Advantages

As a result of the analysis presented above, the recommended approach has the following
advantages. This paper introduces the notion of q-rung log PyNVNN by combining the ideas of a
PyNVNS. As the square sum of its TMG, IMG, and FMG is less than one, the q-rung log PyNVNN
explains ambiguous information. Humans, natural phenomena, and ambiguous information can be
interpreted by using a q-rung log PyNVNN. As a result, these methods are more general. Observe that
all of the NSSs, interval-valued NSSs, vague NSSs, Pythagorean neutrosophic interval-valued normal
sets and PyNVNSs in this study were derived from the q-rung log PyNVNN, which is a special case.
In real life, it analyzes human behavior and natural events that follow a normal distribution, as well as
analyzes the human behavior itself. Depending on q and the decision-maker’s preferences, the
outcome can be chosen. It is possible to achieve a variety of ranking outcomes of alternatives by using
operators like the q-rung log PyNVNWA, q-rung log PyNVNWG, q-rung log GPyNVNWA, and
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q-rung log GPyNVNWA operators. Furthermore, our method is more flexible, allowing
decision-makers to choose a different value of parameter q based on their risk attitude.

7. Conclusions

MADM has the potential and discipline to improve and evaluate multiple conflicting criteria in all
areas of data mining. When making an intelligent decision, experts analyze each and every
characteristic of an alternative. To arrive at a well-informed and intelligent decision, experts must
carefully prepare and analyze each and every aspect of an alternative. If they have all of the data and
information that they need, they can make a good decision. Classical set theory has been generalized
to cope with uncertain information through the use of FSs, IFSs, PyFSs, NSSs, interval-valued NSSs
and VSs. This research focuses on q-rung log PyNVNS problems, which arise in many DM domains.
In the discussion of some AOs for q-rung log PyNVNSs, this study has resulted in a number of
conclusions that are applicable to their q-rung log PyNVNSs. This study has yielded AO rules for
q-rung log PyNVNWA, q-rung log PyNVNWG, q-rung log GPyNVNWA, and q-rung log
GPyNVNWG operations. Using the q-rung log PyNVN-based MADM method can assist people in
selecting the most appropriate course of action in uncertain and inconsistent information contexts.
This study entailed applying the operators for q-rung log PyNVNWA, q-rung log PyNVNWG, q-rung
log GPyNVNWA, and q-rung log GPyNVNWG to the MADM problem based on q. It is possible to
compute distinct rankings by using q-rung log PyNVNWA, q-rung log PyNVNWG, q-rung log
GPyNVNWA, and q-rung log GPyNVNWG operators based on q. Thus, one can examine the q with
the greatest impact on alternative rankings. According to the examples, the proposed neutrosophic
DM method is more appropriate for real scientific and engineering applications. The reason for this is
that it can handle not only incomplete information, but also indeterminate information and
inconsistent data that are present in real-life situations. It is hoped that this paper will improve
existing DM methods and provide decision makers with an improved method for DM. Based on the
real-life scenario, decision makers can set the values of q to determine the optimal ranking. Therefore,
the decision-maker may decide on the outcome based on the actual value of q. The proposed approach
facilitates MCDM and stepwise DM by utilizing the proposed approaches. Finally, the developed
method has been illustrated numerically and compared with some existing methods to show that the
proposed models are more effective than existing methods. One can focus on the few other advanced
and intelligent techniques for DM that have been proposed by several researches [70]. Few studies
proposed advanced technologies for environmental improvement [71–73] and technology
usage [74, 75], which can be combined with the present study for further development. The following
topics will be discussed further in the future:

(1)An investigation of the q-rung logPythagorean neutrosophic vague normal types of soft sets and
expert sets.

(2) Investigating Pythagorean cubic FSs and spherical cubic FSs of generalized q-rungs.
(3) MADM problems by using other DM methodologies based on square root Fermatean cubic FSs.
(4) An investigation of complex PyNVNSs with q-rungs.
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