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Introduction: Congenital heart disease (CHD) is a cardiovascular disorder caused
by structural defects in the heart. Early screening holds significant importance for
the effective treatment of this condition. Heart sound analysis is commonly
employed to assist in the diagnosis of CHD. However, there is currently a lack
of an efficient automated model for heart sound classification, which could
potentially replace the manual process of auscultation.

Methods: This study introduces an innovative and efficient screening and classification
model, combining a locally concatenated fusion approach with a convolutional neural
network based on coordinate attention (LCACNN). In this model, Mel-frequency
spectral coefficients (MFSC) and envelope features are locally fused and employed
as input to the LCACNN network. This model automatically analyzes feature map
energy information, eliminating the need for denoising processes.

Discussion: The proposed classificationmodel in this study demonstrates a robust
capability for identifying congenital heart disease, potentially substituting manual
auscultation to facilitate the detection of patients in remote areas.

Results: This study introduces an innovative and efficient screening and classification
model, combining a locally concatenated fusion approach with a convolutional neural
network based on coordinate attention (LCACNN). In this model, Mel-frequency
spectral coefficients (MFSC) and envelope features are locally fused and employed
as input to theLCACNNnetwork. Thismodel automatically analyzes featuremapenergy
information, eliminating theneed fordenoisingprocesses. Toassess theperformanceof
the classification model, comparative ablation experiments were conducted, achieving
classification accuracies of 91.78% and 94.79% on the PhysioNet and HS databases,
respectively. These results significantly outperformed alternative classification models.
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1 Introduction

Congenital Heart Disease (CHD) is a group of severe congenital anomalies that
profoundly affect the physical health of adolescents. Without timely medical intervention,
these conditions can significantly impair quality of life and even lead to mortality.
Consequently, early screening plays a crucial role in enhancing patient survival rates and

OPEN ACCESS

EDITED BY

Feng Liu,
The University of Queensland, Australia

REVIEWED BY

Wenlong Xu,
China Jiliang University, China
Jan Kubicek,
VSB-Technical University of Ostrava,
Czechia

*CORRESPONDENCE

Weilian Wang,
wlwang_47@126.com

†These authors have contributed equally
to this work and share first authorship

RECEIVED 11 October 2023
ACCEPTED 13 November 2023
PUBLISHED 23 November 2023

CITATION

Wang Y, Yang X, Qian X, Wang W and
Guo T (2023), Assistive diagnostic
technology for congenital heart disease
based on fusion features and
deep learning.
Front. Physiol. 14:1310434.
doi: 10.3389/fphys.2023.1310434

COPYRIGHT

© 2023 Wang, Yang, Qian, Wang and
Guo. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physiology frontiersin.org01

TYPE Original Research
PUBLISHED 23 November 2023
DOI 10.3389/fphys.2023.1310434

https://www.frontiersin.org/articles/10.3389/fphys.2023.1310434/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1310434/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1310434/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1310434/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2023.1310434&domain=pdf&date_stamp=2023-11-23
mailto:wlwang_47@126.com
mailto:wlwang_47@126.com
https://doi.org/10.3389/fphys.2023.1310434
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2023.1310434


overall wellbeing (Hoffman et al., 2004). Decades of clinical
experience have demonstrated that Phonocardiogram (PCG) holds
vital physiological and pathological information about the heart,
serving as a pivotal diagnostic basis for cardiovascular diseases
(Rangayyan and Lehner, 1987). The first heart sound (S1) and the
second heart sound (S2) constitute primary components of heart
sounds and are of paramount clinical interest. In the past, patients
residing in remote areas faced high medical costs and limited
healthcare resources. Disease screenings were predominantly
carried out through medical teams dispatched to local hospitals,
incurring substantial personnel, material, and financial resources.
Manual auscultation demanded doctors possess extensive
auscultatory expertise, yet yielded low detection rates and lacked
means to preserve auscultation data. Consequently, researchers
worldwide have long been engaged in the exploration of
automated heart sound diagnostics, initiating diverse avenues of
research. For instance, Zabihi et al. (2016), in 2016, employed the
PhysioNet Challenge database for Cardiology, selecting 18 feature
subsets from the time domain, frequency domain, and time-frequency
domain (such as wavelet transform, Mel-Frequency Cepstral
Coefficients - MFCC, etc.). Their approach achieved an accuracy
of 85.90% on the test set. Tan et al. (2019). adopted MFCC for time-
frequency analysis of PCG signals, constructing feature maps from
spectral coefficients obtained via Mel filters. They proposed an
automated model for coronary artery disease classification. Chen
et al (Chen and Zhang, 2020). Employed Short-Time Fourier
Transform (STFT) spectrograms as input to a Convolutional
Neural Network (CNN), achieving an accuracy of 95.49% on
39 test samples. Rubin et al. (2016). Selected 3,240 heart sounds
from the heart sound challenge dataset and employed MFCC
combined with CNN to realize heart sound classification, attaining
an accuracy of 84.80% on the test set.

We propose a novel classification model of locally superimposed
fusion features and LCACNN with attention mechanism. By
comparing with recent research in this field, the main
contributions of this article are as follows:

(1) Uniqueness of Database: To the best of our knowledge, this
paper employs the first database specifically curated for
congenital heart diseases. Zeinali et al.(Zeinali and Niaki,
2022) and Ren et al. (2022) only used the PhysioNet
database for heart sound classification experiments. However,
the PhysioNet data set has a small amount of data, a large age
gap between patients, and poor data quality (because the
challenge is in a cluttered environment, the heart sound
collection process is interference).

(2) Superior Performance: Across various performance metrics, our
classification model significantly outperforms other comparative
and ablation methods Chen et al. (2022). Employed the CNN-
LSTM network to classify heart disease and achieved an accuracy
of 85%. Rath et al. (2022) used machine learning methods to
detect heart sounds and obtained an accuracy of 85.08%. In
addition, the larger volume of heart sound data we usedmakes the
results more convincing.

(3) Enhanced Screening in Remote Areas: In remote screening
settings, the proposed classification model demonstrates a
strong capability to replace auscultation specialists,
eliminating the need for specialized auscultation training.

In the Materials and Methods section, we describe the division of
cardiac cycles and heart sound segmentation methods, and extract and
fuse the MFSC and homomorphic envelope features of the segmented
heart sounds. In the classification model we build LCACNN. In the
results section, we conduct comparative experiments on the HS
database and PhysioNet database to verify our method. In the
discussion and conclusion sections, we analyze the role of fusion
features and attention mechanisms, and draw the reasons for the
effectiveness of our method based on experimental results.

2 Materials and methods

2.1 Description of experimental data

The experimental data in this study originated from two datasets:
(1) A cardiac sound database created from samples collected by our
research group at Yunnan Fuwai Cardiovascular Hospital and during
congenital heart disease screenings in various mountainous primary
schools across Yunnan province. The age range of the cardiac sound
volunteers was between 8 months and 18 years. The HS database was
recorded using The ONE ThinkLabs electronic stethoscope, with a
sampling frequency of 5,000 Hz and a recording duration of 20 s. The
database consists of 133 synchronized heart sound-electrocardiogram
recordings (HS_ECG database) and 7,000 heart sound recordings (HS
database). Abnormal patient samples obtained during the screening
process were subsequently confirmed by following ultrasound
examinations and hospital diagnosis. These abnormal cases
encompassed common congenital heart disease types, including
Atrial Septal Defect (ASD), Ventricular Septal Defect (VSD), and
Patent Ductus Arteriosus (PDA). The distribution of positive and
negative samples was balanced. (2)The PhysioNet database from the
2016 PhysioNet/CinC Challenge (Springer et al., 2016), containing
3,240 heart sound recordings. The ratio of normal volunteer heart
sound recordings to abnormal volunteer heart sound recordings was
4:1. The sampling rate was 2,000 Hz, and the recording duration
varied from 5 to 120 s. The PhysioNet database was divided into
training set (70%), testing set (20%), and validation set (10%).

2.2 Experimental procedure

The classification model proposed in this study involves the
following steps, as illustrated in Figure 1: (1) Initially, cardiac
sound signals are annotated based on electrocardiogram (ECG)
signals to establish a baseline. Subsequently, using the duration of
cardiac cycles as a constraint, a Hidden Markov Model (HMM) is
employed to model the cardiac sound signals, resulting in segmented
and localized cardiac sound signals. (2) The segmented cardiac sound
signals undergo feature extraction, where considering the primary
components of S1 and S2, a fusion of Homomorphic Envelope
Features and Mel-Frequency Spectral Coefficients (MFSC) is
introduced for local feature integration. (3) The feature maps are
fed into the LCACNN network. To enhance focus on the S1 and
S2 regions, a Channel Attention (CA) mechanism is incorporated. To
meet practical screening requirements, Depthwise Separable
Convolutions (DC) are employed instead of standard convolution
modules to reduce model parameter count. Mixed Pooling (MP) is
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used in the pooling layers as a replacement for both Max Pooling and
Average Pooling, alleviating issues related to granularity of
information aggregation to some extent.

2.3 Heart sound segmentation

In the heart sound segmentation model, the R-wave and T-wave
in the electrocardiogram correspond to the S1 and S2 periods of the
heart sound signal (Zhu et al., 2018). The peak of the R-wave
corresponds to the start of the S1 period, while the end of the
T-wave corresponds to the start of the S2 period (Manikandan and
Soman, 2012). The S1, S2, systolic, and diastolic periods need to be
labeled based on the R-peak and T-wave (Hempel et al.) The average
time (�S1 ±σS1) between the R peak and the next R peak is set as S1.
The peak value of the heart sound signal S2 corresponding to the end
of the T wave is the largest. This peak is used as the S2 average point,
so S2 can be recorded as the average time around the peak ((�S2 ±σS2)

2 ).
The systole is between S1 and S2, and the diastole is between S2 and
the next S1.

Heart sound can be regarded as a quasi-periodic, short-term
stationary signal, with slight differences between each cycle. The
autocorrelation method can be used to analyze the heart sound
signal to obtain a complete cardiac cycle. We use the autocorrelation
of the Hilbert envelope to extract the cardiac cycle (Qin and Zhong,
2006), and the autocorrelation coefficient is shown in Eq 1. N is the
total sampling length of the heart sound signal, and ~rx(l) is its
autocorrelation coefficient.

~rx l( ) � 1
N

∑N−l−1

n�0
x n + l( )x n( ) (1)

The traditional Hidden Markov Models (HMM) partition the
four phases of heart sounds with equal probabilities (Yin et al.,
2022). However, the four periods in which the human body actually
produces heart sounds have unequal durations. Using HMM for

segmentation can easily lead to segmentation errors in S1, systole,
S2, and diastole (Tokuda et al., 2002). Therefore, we introduce
duration into the HMM model to further approximate the heart
sound period pattern in reality. We define the duration probability
constraint function pj

d, which represents the occurrence probability
of constraint duration d in a certain j period, j ∈ C1, C2, C3, C4{ }. A
is the period probability state transition matrix. It is known from
clinical experience that the four phases of heart sound always appear
in a specific pattern, namely, S1, systole, S2 and diastole, so A can be
written as Eq 2.

A �
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2)

Since there are only four heart sound status periods i� 1, 2, 3, 4.
In the actual collection process of heart sounds, the time when we
place the auscultation probe may correspond to any period of the
cardiac cycle, so the initial state probability π is shown in Eq 3.

π � P ct � Ci{ } � 1/4 (3)
Then, we need to performDHMMmodeling on the heart sounds,

and the average value dμj and variance d∑ j of the duration are used
tomeasure themodel parameters λ. The observation formula is shown
in Eq 4. Finally, the Viterbi algorithm is employed to perform model
decoding (Guo et al., 2022), completing the heart sound segmentation
process, as shown in Figure 2.

λ � aij, πi, pj
d, dμj, d∑ j{ } (4)

2.4 Fusion features

Time-frequency domain features are widely employed in heart
sound analysis, encompassing both temporal and spectral

FIGURE 1
Procedure of CHD classification model.
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characteristics (You et al., 2022). These features effectively capture
the relationship between frequency and energy. Mel-frequency
spectral coefficients (MFSC) are a commonly used method for
extracting time-frequency domain features. For instance, Li et al.
(2022a) differentiated between normal and pathological heart
sounds using MFSC features. Meanwhile, the Homomorphic
Envelope (Monteiro et al., 2022), as a morphological feature,
reflects changes in the waveform of heart sounds. To accentuate
the differences between normal and congenital heart disease (CHD)
heart sounds in the S1 and S2 components, this study considers the
joint use of temporal envelope features and MFSC features for
feature analysis.

The process for obtaining MFSC features involves the following
steps: Fast Fourier Transform (FFT) is often used to transform
signals from the time domain to the frequency domain(Li et al.,
2022b), which can reflect the energy changes of the signal, as shown
in Eq 5. The heart sound signal is a weak signal and its energy
spectrum cannot be observed in the time domain. Therefore, the
time domain characteristics of the heart sound can be converted into
frequency domain information through FFT.

X k( ) � ∑N−1
n�0 x n( )e j2πkn

N , 0≤ n, k≤N−1 (5)

Firstly, the heart sound signal undergoing frame processing is
subjected to FFT, followed by the calculation of energy values A in
corresponding frequency bands using a Mel filter bank. We define

the Mel filter group Hn(k) to contain N Mel scale filters, where
Hn(k) is shown in Eq 6.

Hn k( ) �

0, k<f n−1( )
k − f n−1( )

f n( ) − f n−1( ), f n−1( )≤ k≤f n( )

1, k � f n( )
f n+1( ) − k

f n+1( ) − f n( ), f n( )< k≤f n+1( )

0, k>f n+1( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

We calculate the obtained X(k) and Hn(k) through each Mel
filter to get the output logarithmic energy s(n), and the unit of
physical quantity is db. Finally, we convert PCG from the time
domain to the time-frequency domain for analysis. This process
yields the MFSC features, as depicted in Eq 7.

s n( ) � ln ∑M−1
k�0 X k( )| |2Hn k( )( ), 0≤ n≤N (7)

Here, X(k) represents the transformed frequency-domain heart
sound signal, N stands for the number of signal samples in each
frame, Hn(k) represents the frequency response of the Mel filter
bank, and n denotes theMel scale filter in the current filter bank, and
the units of physical quantities areHZ/db, F is the center frequency
of the nth Mel scale filter, and the unit of physical quantity is HZ.

FIGURE 2
Heart sound segmentation results.
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The computation of the Homomorphic Envelope involves three
steps: Firstly, a Butterworth filter is used to filter the signal (Siew
et al., 2022), resulting in a transfer function. Subsequently, the
preprocessed heart sound signal undergoes Hilbert
transformation, producing its narrow-band signal. Finally, the
narrow-band signal is passed through a zero-phase filter to
obtain the envelope of the heart sound signal, as depicted in Eq 8.

He � exp log a t( )[ ] (8)
Here, a(t) represents the low-frequency component of the

signal, and He represents the homomorphic envelope signal.
The envelope signal obtained from the previous step is

partitioned, with individual cardiac cycles of the same volunteer
at the same position treated as a reference envelope. This reference
envelope then undergoes maximum pooling, where the maximum
value is selected within a defined sampling region. The sampling
region should not be excessively large, as doing so might lead to the
loss of pathological information. In this study, the minimum
sampling region comprises three adjacent sample points. The
sampled reference envelope, denoted as H′

e, subsequently
undergoes a non-linear processing step, as illustrated in Eq 9.

Qi t( ) � log H′
e[ ] (9)

Subsequently, multiple non-linearized reference envelopesQi(t)
are superimposed to form a two-dimensional matrix Q. The matrix

Q undergoes centralization and amplitude normalization to yield G,
as described by Eq 10.

G � Q − �Q

max Q − �Q
∣∣∣∣ ∣∣∣∣( ) (10)

Finally, energy value encoding visualization is performed on C.
Locations with higher energy values are assigned a brighter color,
while locations with lower energy values are assigned a darker shade.
The hue values selected for shading are consistent with the energy
hues of MFSC features, as illustrated in Figure 3.

In feature engineering, feature fusion refers to the process of
combining two distinct categories of features in a manner that
enhances their performance capabilities (Xiang et al., 2023). To
prevent the generation of excessive redundant information due to
fusion, and considering the research objectives and the analysis of
pathological features, this study proposes a local overlay fusion strategy.

The local overlay fusion strategy involves the following steps:
Firstly, in the analysis of pathological features, a cardiac cycle is
approximately 0.8 s long, with the S1 and S2 phases each lasting
around 0.2 s. Since heightened S1 and S2 phases result in elevated
energy values, a sliding window (Hou et al., 2022) is set to detect
energy value magnitudes within the 0.2-s interval. If the energy
values of the sampled frames within the window exceed a
predetermined threshold (derived as the average energy value of
an individual cardiac cycle in this study), the phase is identified as an

FIGURE 3
Envelopes and MFSC feature maps of normal and CHD heart sounds.
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elevated energy period. The subsequent process is exemplified using
the S2 phase.

The MFSC feature matrix corresponding to the S2 phase is
overlaid with the energy values of the envelope feature matrix
corresponding to the S2 phase. For the remaining regions, the
average is taken, as depicted in Eqs 11, 12.

W S2 � M S2 + G S2 (11)

Wo � Mo + Go

2
(12)

Here, Wo, Mo, and Go represent the average energy values for
the remaining periods, corresponding to the energy values of the
remaining periods in matrix M and the energy values of the
remaining periods in matrix.

Finally, energy value encoding is performed to generate the
illustrative diagram of the fused feature, as depicted in Figure 4. The
red shaded area corresponds to the energy value overlay region,
while the blue shaded area corresponds to the energy value averaging
region.

2.5 Classification network

In recent years, neural networks have been widely applied in
fields like heart sound analysis, achieving significant advancements
in classification and recognition tasks. In the domain of heart sound
classification, Xiao et al. employed CNN for sound classification
(Xiao et al., 2020). CNN networks have demonstrated their efficacy
in handling local details and feature maps in classification tasks (Liu
et al., 2021). Therefore, this paper proposes an LCACNN
classification network model.

The classification network comprises four sets of modules, each
containing convolutional layers, mixed pooling layers, and CA
attention mechanisms. The first two convolutional layers are
standard convolutions, while the latter two layers employ

depthwise separable convolutions. This combination of standard
and depthwise separable convolution layers is chosen due to the
input feature dimensionality and richness in detail in the initial
layers, leading to the use of standard convolutions for the first two
layers to improve classification accuracy. For the subsequent layers
where spatial feature influence is reduced, depthwise separable
convolutions are utilized to reduce parameter count.

The mixed pooling strategy combines the advantages of max
pooling and average pooling (Yu et al., 2014), requiring no
additional hyperparameter tuning and incurring minimal
computational overhead. It to a certain extent addresses the
issues of potential loss of local details and redundant information
in heart sound feature maps associated with max and average
pooling. This helps reduce the risk of overfitting. Let yk

ij

represent the output value of sub-region Rij partitioned from the
k th matrix, and let λ� 0, 1 denote a random value (with
1 representing max pooling operation and 0 representing average
pooling operation). The calculation process is illustrated in Eqs
13, 14.

yk
ij � λ · ŷk

ij + 1 − λ( ) · �yk
ij (13)

yk
ij � λ · max

p,q( )∈Rij

xk
pq + 1 − λ( ) · 1

Rij

∣∣∣∣ ∣∣∣∣ ∑
p,q( )∈Rij

xk
pq (14)

In this study, a comparison was made among common attention
mechanisms such as SE (Woo et al., 2018) and CBAM (Hou et al.,
2021), and a coordinate-based attention mechanism was proposed.
The principle of the CA attention mechanism is illustrated in
Figure 5. Initially, the input feature block (c × h × w) undergoes
global average pooling (GAP) for compression to obtain activations
along the horizontal axis (w) and vertical axis (h), resulting in
MW(·) and MH(·) respectively(Kumar et al., 2021). This embeds
spatial information into channels at different positions.
Subsequently, MW(·) and MH(·) are concatenated and processed
through a convolutional module. After passing through a Batch
Normalization (BN) layer, the concatenated feature block is split and

FIGURE 4
Local overlay.
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subjected to separate convolution operations (Lyu et al., 2022). The
weight values are obtained by applying the sigmoid activation
function to the split features, which are then multiplied with the
input feature block to yield an output feature block imbued with
both spatial and channel information. This construction facilitates a
better focus on the S1 and S2 feature regions.

3 Results

The signal preprocessing (heart sound segmentation), feature
extraction (MFSC, envelope features), and construction of the deep
learning model (LCACNN) in this research were executed on a
system equipped with Ryzen 7 4800H@ 2.90GHz, NVIDIA GeForce
RTX 2060 6GB, and 32 GB of memory. The deep learning
framework employed was TensorFlow 2.0 from Google, utilizing
the programming language Python 3.8.

3.1 Model construction experiment

The LCACNN model was configured with the following
settings: Adam optimizer was employed with a learning rate set
to 0.001. Sigmoid was chosen as the primary binary classification
activation function, and Batch Normalization (BN) layers were
introduced to mitigate model overfitting. The batch size for
training was uniformly set at 64, and the model underwent
100 epochs of training. We used the binary_crossentropy loss
function commonly used in binary classification problems

(Mantas, 2023), which is often used to evaluate the effectiveness
of neural network models in classifying tasks between two
categories. The mathematical expression of the binary_
crossentropy loss function is shown in Eq 15. L(y, p) represents
the binary_crossentropy loss function, y is the actual label (0 or 1),
and p is the predicted probability of the model.

L y, p( )� − y · log p( ) + 1 − y( ) · log 1 − p( )[ ] (15)
In order to explore the impact of the selected module group

(Conv, CA and Pooling) on the experimental results, We utilized
4,900 heart sounds from the HS database for our training set and
700 heart sounds for the test set. According to the results in Table 1,
we successfully built the network structure. The experimental results
show that under the LCACNN network structure with 4 groups of
modules, the accuracy reached the highest value and the loss value
also reached the lowest point. We conducted model training on this
network structure based on the HS database. The visualization

FIGURE 5
(A) LCACNN network architecture (B) design of the CA attention mechanism module.

TABLE 1 Relationship between Acc and loss value under the module.

Module/piece Acc Loss

1 79.57 2.02

2 85.43 1.49

3 90.21 2.10

4 94.79 0.21

5 77.65 2.99
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results of the loss value during the training process are shown in
Figure 6.

3.2 Performance evaluation experiment

The performance evaluation experiment consists of comparative
experiments and ablation experiments (Meyes et al., 2019). Five
evaluation metrics are employed to assess the model’s performance
in CHD classification. These metrics include classification accuracy
(Acc), classification sensitivity (Se), and classification specificity
(Sp), as depicted in Equations (16)–(18).

Se � TP
TP + FN

× 100% (16)

Sp � TN
TN + FP

× 100% (17)

Acc � TP + TN
TP + TN + FP + FN

× 100% (18)

Here, TP denotes the number of correctly identified anomalies,
also known as true positives; FN represents the number of
undetected anomalies, termed as false negatives; TN signifies the
number of correctly identified normal cases, denoted as true
negatives; FP accounts for the number of falsely identified
normal cases, referred to as false positives.

The other two metrics are the Modified Accuracy (MAcc) and
the F-Score (Fβ). The MAcc metric is introduced to account for the
influence of external noise factors on accuracy. Following the
evaluation guidelines of the PhysioNet Challenge, unweighted
coefficients (∂) are incorporated into the specificity (Sp) and
sensitivity (Se) metrics, and their values are set to 0.5 to derive
the Modified Accuracy (MAcc) metric, as demonstrated in Eq 19.

MAcc � Se + Sp
2

(19)

The risk of false negatives in clinical practice is significantly
greater than that of false positives. False positives can be further
excluded through subsequent examinations, whereas false negatives
can delay treatment due to screening result inaccuracies. Thus,

reducing false negative cases holds paramount importance in
clinical settings. To address this, the present study introduces the
Fβ index for further assessment, as shown in Eq 20, where Fβ

represents the harmonic coefficient of both Sp and Se. In this
research, we adopt the F1 index to harmonize the Sp and Se
coefficients of the binary classification model.

Fβ � 1 + β2( ) × Sp · Se
β2 · Sp + Se

(20)

Based on the aforementioned approach, comparative
experiments between the feature extraction and classification
algorithm proposed in this study and other algorithms are
presented in Tables 2, 3. Ablation experiments are demonstrated
in Tables 4, 5. Both the comparative experiments and our proposed
algorithm were conducted on the same test dataset. In the PhysioNet
database, the training set comprises 4,900 heart sounds, and the test
set consists of 700 heart sounds. Regarding the HS database, the
training set comprises 2,268 heart sounds, and the test set
encompasses 324 heart sounds.

4 Discussion

4.1 Analysis of fusion feature experiments

The effectiveness of fusion features will be analyzed in this
section, considering both experimental theory and results. A wealth
of pathological information is contained within S1 and S2, and the
primary intention behind the design of the feature extraction process
is to accentuate the finer details of S1 and S2. As depicted in Figure 7,
the amplitude information in the time domain of the
Phonocardiogram (PCG) is mainly emphasized by envelope
features, while Mel-frequency spectral coefficients (MFSC)
concentrates on the representation of energy information in the
time-frequency domain of the PCG. By combining the information
from both sources, fusion features are capable of encompassing a
more extensive range of detailed information. As evidenced by
Tables 4, 5, superior performance is consistently exhibited by
fusion features across all evaluation metrics.

FIGURE 6
Loss function.
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4.2 Analysis of attention mechanism
experiments

The effectiveness of incorporating attention mechanisms will be
analyzed in this section, considering both experimental theory and

results. Within the field of computer vision, attention mechanisms
find widespread use due to the constraints posed by visual scope and
information processing. They enable the extraction of valuable
information while disregarding data that may be irrelevant or
unnecessary. By integrating attention mechanisms into neural

TABLE 2 Comparative experiments of various algorithms for CHD (PhysioNet database).

Classification algorithm Heart sound classification evaluation Metrics(%)

Acc Se Sp MAcc F-score

STFT + CNN 88.13 83.03 91.97 87.50 87.27

MFCC + CNN 89.33 84.41 92.37 88.39 88.21

MFSC + CNN 90.03 85.42 94.01 89.21 88.95

MFSC+ Envelope Features+ LCACNN 91.78 90.43 92.47 91.45 91.43

Bold indicates the resulting values.

TABLE 3 Comparative experiments of various algorithms for CHD (HS database).

Classification algorithm Heart sound classification evaluation Metrics(%)

Acc Se Sp MAcc F-score

STFT + CNN 88.61 84.11 92.37 88.24 88.04

MFCC + CNN 90.03 85.87 93.36 89.62 89.46

MFSC + CNN 91.11 86.04 95.31 90.68 90.44

MFSC+ Envelope Features+ LCACNN 94.79 93.41 95.77 94.59 94.58

Bold indicates the resulting values.

TABLE 4 Comparison of ablation experiments for CHD (PhysioNet database).

Classification algorithm Heart sound classification evaluation Metrics(%)

Acc Se Sp MAcc F-score

MFSC+ CNN 90.03 85.42 94.01 89.21 88.95

Envelope Features+ CNN 89.12 83.91 93.88 88.90 88.62

MFSC+ Envelope Features+ CNN 90.84 85.89 95.07 90.48 90.25

MFSC+ Envelope Features+ SE+ CNN 89.83 86.33 93.42 89.88 89.74

MFSC+ Envelope Features+ CBAM+ CNN 90.92 86.44 95.09 90.76 90.55

MFSC+ Envelope Features+ LCACNN 91.78 90.43 92.47 91.45 91.43

Bold indicates the resulting values.

TABLE 5 Comparison of ablation experiments for CHD (HS database).

Classification algorithm Heart sound classification evaluation Metrics(%)

Acc Se Sp MAcc F-score

MFSC + CNN 91.11 86.04 95.31 90.68 90.44

Envelope Features+ CNN 90.06 84.11 94.12 89.12 88.83

MFSC+ Envelope Features+ CNN 91.85 87.17 95.81 91.49 91.29

MFSC+ Envelope Features+ SE+ CNN 89.86 86.37 93.21 89.79 89.66

MFSC+ Envelope Features+ CBAM+ CNN 92.51 88.04 96.32 92.18 91.99

MFSC+ Envelope Features+ LCACNN 94.79 93.41 95.77 94.59 94.58

Bold indicates the resulting values.
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networks, the network’s focus can be directed toward salient feature
regions during the analysis. In this study, three types of attention
mechanisms were introduced for comparative experiments, to
enhance the concentration on the feature information of S1 and
S2. Visualized in Figure 3, the impact of different attention
mechanisms on the S1 and S2 features within the feature maps is
depicted, highlighting the attended regions. While the network
structure remains consistent apart from the attention mechanism
modules, it is evident from the results that Channel Attention (CA)
surpasses other attention mechanisms in its ability to identify
pathological regions, as illustrated in Figure 8. The focusing effect
of CA is further supported by the evaluation metrics presented in
Tables 4, 5.

4.3 Analysis of comparative ablation
experiments

Clinical research has revealed that regions implementing early
screening for congenital heart disease (CHD) have demonstrated
notably elevated rates of treatment success in contrast to areas
lacking such screening protocols. The prevailing strategy for
CHD screening predominantly hinges on the expertise of
physicians in the field of auscultation. Nevertheless, this
approach is characterized by inefficiency, susceptibility to
diagnostic errors, and a substantial reliance on clinical
experience. As a result, the primary objective of our study is to
leverage automated analysis of cardiac sounds to offer
supplementary diagnostic support for CHD, thereby augmenting
both the precision and efficiency of the screening process.

To establish the credibility of the classification model, we
undertook comparative experiments against the latest
developments in the field and conducted ablation studies. About
the work by the Rizal research team(Rizal et al., 2022), commendable
classification outcomes were attained on a limited dataset through
the use of conventional Short-Time Fourier Transform (STFT)
techniques. The Nehary research team, on the other hand,
introduced Mel-Frequency Cepstral Coefficients (MFCC) (Nehary
et al., 2021)—frequently employed in speech recognition—and Mel-

Frequency Spectral Coefficients (MFSC), which implement
triangular filter banks resembling the human auditory system.
The feature extraction process of MFCC is enhanced by the
incorporation of Discrete Cosine Transform (DCT). Within the
context of ablation experiments, we juxtaposed singleMFSC features
with envelope features for feature selection. In the architecture of the
classification backbone network, we contrasted models that lacked
supplementary attention mechanisms against those augmented with
Squeeze-and-Excitation (SE) modules, as well as Convolutional
Block Attention Module (CBAM) modules.

Several feature extraction and classification methods achieved
favorable results as shown in the tables above. However, the
LCACNN model based on fusion features was significantly better
than the other methods. The results showed that:

(1) In comparative ablation experiments, our classification model
showed superior performance in three evaluation metrics:
Accuracy (Acc), Modified Accuracy (MAcc), and F-score.
Higher Acc values indicate that the local superposition
fusion is better at highlighting the features of the S1 and
S2 heart sounds, thus improving the detection rate of patients
during screening. Higher MAcc values indicate that the fusion
features have a higher resistance to noise. Higher F-scores
indicate that our classification model produces fewer false
negatives.

(2) In both comparative and ablation experiments, the Sensitivity
(Se) value of our classification model was notably higher than
other algorithm models, affirming its lower misdiagnosis rate
for CHD diagnosis.

(3) In the PhysioNet database, MFSC combined with a CNNmodel
showed slightly higher Specificity (Sp) values than our
algorithm, but significantly lower Se values, indicating an
increase in false negatives. Such a risk is unacceptable for
patients.

(4) In the ablation experiments, our algorithm outperformed the SE
and CBAM modules on the comprehensive MAcc and F-score
evaluation metrics, confirming the effectiveness of the Channel
Attention (CA) mechanism in focusing on characteristic CHD
regions.

FIGURE 7
Envelope features, MFSC, and fusion feature.
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(5) The various parameter indicators of our classification model
were verified using the PhysioNet database and the HS database,
rendering the experimental data more reliable.

4.4 Limitations and future work of this study

Two limitations are observed in this study. Firstly, Atrial Septal
Defect (ASD), Ventricular Septal Defect (VSD), and Patent Ductus
Arteriosus (PDA) constitute common types of congenital heart
disease (CHD). However, the requirement for screening solely
entails determining disease presence. Consequently, multi-class
experiments were not conducted in this study. Further research
could potentially differentiate among these specific diseases.
Secondly, high-risk areas for CHD include remote mountainous
regions. Yet, these regions often encounter poor network
connectivity, potentially impacting the diagnosis of the cloud-
deployed cardiac sound analysis model. Thus, future research
might contemplate the utilization of lighter models, embedded
within edge computing devices, to enhance diagnostic efficiency.
Despite these limitations, the automated cardiac sound analysis
models still retain the potential for significant application in
clinical screening, contributing to the conservation of medical
resources and cost reduction.

5 Conclusion

We have developed and validated the LCACNN cardiac sound
automatic classification model based on fusion features. This model
is employed for assisting in the diagnosis between normal and
patient cases, thereby enhancing patients’ survival rates and
holding significant implications for early screening of congenital
heart disease.
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