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Background: Despite significant advances over the past decade, patients
diagnosed with advanced colorectal cancer (CRC) continue to face
unfavorable prognoses. Recent studies have underscored the pivotal role of
lysosomes in tumor development and progression. This led us to postulate and
develop a novel lysosomal-centric model for predicting CRC risk and therapeutic
response.

Methods: CRC tissue samples were sourced from the TCGA database, while
lysosome-associated genes were collated from the GSEA database. Differentially
expressed lysosome-related genes (DE-LRGs) were discerned by contrasting
tumor samples with normal tissue. Based on the expression profile of DE-
LRGs, patients were stratified into two distinct clusters. Survival disparities
between the clusters were delineated using Kaplan-Meier estimators. For
tumor microenvironment assessment, we employed ESTIMATE and ssGSEA.
Functional pathway enrichment was ascertained using both GSVA and GSEA.
Subsequent uni- and multi-variate Cox regression analyses pinpointed risk-
associated DE-LRGs. Leveraging these genes, we constructed a novel risk
prediction model and derived risk scores. The model’s prognostic capability
was externally validated using dataset GSE39084. The mutational landscape
across risk categories was evaluated using the Maftools algorithm. The
potential efficacy of targeted and immunotherapeutic interventions for each
patient cohort was gauged using pRRophetic, CYT, and IMvigor210.

Results: We identified 46 DE-LRGs. Tumor Immune MicroEnvironment (TIME)
assessment revealed that cluster 2 patients exhibited elevated ESTIMATE,
Immunocore, and stromal scores, yet diminished tumor purity relative to
cluster 1. Notable differences in immune cell infiltration patterns were
observed between clusters, and distinct pathway enrichments were evident.
Cluster 2 manifested a pronounced expression of immune checkpoint-related
genes. Four DE-LRGs (ATP6V0A4, GLA, IDUA, and SLC11A1) were deemed critical
for risk association, leading to the formulation of our novel risk model. The model
exhibited commendable predictive accuracy, which was corroborated in an
external validation cohort. A palpable survival advantage was observed in high-
TMB, low-risk subgroups. Moreover, the low-risk cohort displayed heightened
sensitivity to both targeted and immunotherapeutic agents.
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Conclusion: Our findings underscore the potential of lysosome-associated genes
as robust prognostic and therapeutic response markers in CRC patients.
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Introduction

Colorectal cancer (CRC) is a leading gastrointestinal
malignancy, holding the third position in global cancer-related
morbidity and the second in cancer-associated mortality (Torre
et al., 2015). Adenocarcinoma dominates the histopathological
landscape, constituting about 95% of CRC diagnoses, with
squamous cell and mucinous carcinoma filling the remaining 5%.
Early-stage diagnosis offers a promising 5-year overall survival rate
surpassing 90% (Dekker et al., 2019). However, the paucity of robust
diagnostic tools often results in diagnostic delays. Advances in
chemotherapy and targeted therapies have enhanced treatment
paradigms, yet patients with metastatic CRC (mCRC) confront a
daunting prognosis, attributed to heightened recurrence and drug
resistance. Specifically, advanced CRC presents with over a 40%
recurrence rate, and the 5-year survival rate for mCRC remains
below 20% (Andre et al., 2020; Biller and Schrag, 2021).

Recent innovations spotlighting immunotherapy have shown
remarkable efficacy, particularly in CRC patients exhibiting dMMR/
MSI-H, with disease-free survival (DFS) rates between 70% and 90%
(Ganesh et al., 2019; Diaz et al., 2022). However, dMMR/MSI-H
characterizes only 15%–30% of the general CRC population and a
mere 2%–4% in mCRC, relegating a significant majority with MMR/
MSS, a “cold” tumor phenotype resistant to immunotherapy
(Ganesh et al., 2019). Given this landscape, there is a pressing
demand for innovative models for predicting survival and
therapeutic outcomes in advanced or metastatic CRC.

Lysosomes have been recognized as pivotal cellular organelles,
steering myriad processes from protein secretion and endocytic
receptor recycling to energy metabolism and intricate cell signaling
pathways (Perera and Zoncu, 2016; Piao and Amaravadi, 2016;
Ballabio and Bonifacino, 2020). The cathepsin protease family,
featuring over 60 hydrolases, garners significant research
attention. Particularly, cathepsins B, S, and E have associations
with cancer dynamics, with their cellular localization determining
their tumorigenic roles (Piao and Amaravadi, 2016). Moreover,
lysosomal membrane proteins are emerging as key players in
modulating cell-cell adhesion and migration, especially in the
context of metastatic CRC (Piao and Amaravadi, 2016).

Recent investigations underscore the pivotal roles of lysosomes
in apoptotic, autophagic, and degradative pathways, with a direct
nexus to CRC’s onset and progression (Rizzollo et al., 2021; Wang
et al., 2021). Autophagy, in tandem with lysosomes, has been linked
to CRC tumor progression, angiogenesis, and chemoresistance
(Zhao et al., 2020; Chen et al., 2022; Yang et al., 2022), positing
it as a potential therapeutic target (Fu et al., 2020; Yang et al., 2022).
Crucially, lysosomes have been implicated in modulating
immunotherapy efficacy through their involvement in PD-L1
degradation (Gou et al., 2020).

In this study, we probed genomic shifts in CRC patients, harnessing
data from the Cancer Genome Atlas (TCGA) and Gene Expression

Omnibus (GEO). Our comprehensive analysis of lysosome-associated
genes revealed molecular subtypes in CRC with potential as predictive
biomarkers for clinical-pathological attributes and patient prognosis.We
further discerned associations between thesemolecular subtypes, stromal
activity in the tumor microenvironment, tumor-infiltrating immune
cells (TIICs), and immune checkpoints. Notably, we introduced a
scoring system anchored on lysosome-associated genes, designed to
enhance the prediction of patient outcomes and the efficacy of CRC
immunotherapy. The process of this study was shown in Figure 1.

Materials and methods

Patient cohort and data acquisition

In this study, we used The Cancer Genome Atlas (TCGA)
database as the training cohort and GSE39084 as the validation
cohort. Their clinical details were shown in Supplementary Table S2.

RNA-sequencing data from 698 CRC samples (including COAD
and READ) were sourced from TCGA database. This dataset
encompassed 647 tumoral and 51 adjacent non-tumoral samples.
Comprehensive clinicopathological metadata accompanied these
samples (https://portal.gdc.cancer.gov/).

Identification of lysosome-associated genes

A curated list of 163 lysosome-associated genes was retrieved
from the Gene Set Enrichment Analysis (GSEA) database (https://
www.gsea-msigdb.org) for subsequent analyses (Supplementary
Table S1).

Analysis of differential-expressed
lysosomes-related Genes (DE-LRGs)

DE-LRGs were discerned by contrasting the transcriptomic
profiles of 51 normal tissues against 647 COAD and READ
samples from TCGA. Stringent filtering criteria of |log_2 Fold
Change| > 1 and FDR <0.05 were applied. Protein-protein
interactions among these DE-LRGs were mapped using the
STRING database.

Molecular subtyping through consensus
clustering

The “ConsensusClusterPlus” R package (Wilkerson and Hayes,
2010) facilitated molecular subtyping based on DE-LRG expression
profiles. Parameters encompassed 80% item resampling, a
maximum K of 5, 50 iterations, and 1-Pearson correlation
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distances. Clusters ranging from K = 2 to K = 5 were assessed, with
the optimal cluster number determined through cumulative
distribution function (CDF) and consensus heatmaps.

Tumor Immune Microenvironment (TIME)
and Immune Infiltration Analysis.

The ESTIMATE algorithm was employed to compute stromal
and immune scores, as well as tumor purity, leveraging gene
expression data (Yoshihara et al., 2013). Additionally, single-
sample gene set enrichment analysis (ssGSEA) assessed immune
cell enrichment in both identified clusters.

Functional pathway enrichment

Gene set variation analysis (GSVA) discerned differential
signaling pathway activations between the clusters. The “GSVA”
R package facilitated this, while a subsequent GSEA provided deeper
insights into inter-cluster differences.

Gene expression profiling

Distinctive DE-LRG expressions across clusters were assessed,
alongside the expression of immune checkpoint-related and HLA
family genes. Results were visualized using boxplots.

Survival outcomes and prognostic model
development

Prognostically relevant DE-LRGs were delineated using
univariate and multivariate Cox regression. Kaplan-Meier
analysis compared survival outcomes between clusters. A risk
model, evaluated through time-dependent ROC analysis using
the “survivalROC” package, was then established, with its
robustness verified using the GSE39084 cohort. Clinical data of
the corhort was shown in Supplementary Table S2.

Risk model formulation and validation

Risk models, based on previously identified genes via Cox
regression, were formulated. Risk scores were ascertained for
each patient, categorizing them into risk groups based on median
values. Cox regression analyses ascertained risk factors, culminating
in a nomogram. ROC and calibration curves gauged model
prediction accuracy, complemented by Decision Curve
Analysis (DCA).

Mutational landscape and TMB assessment

Using “maftools”, mutational landscapes were charted, and
oncoplots for risk categories were produced. Tumor mutation
burden (TMB) was determined using the same package

(Mayakonda et al., 2018), and differential mutational landscapes
between risk categories underwent Fisher’s exact test scrutiny, with
subsequent survival analysis via K-M plotter.

Chemotherapeutic and immunotherapeutic
response prediction

To forecast IC50 values of prevalent chemotherapeutics, the
“pRRophetic” package was utilized (Geeleher et al., 2014). The
Wilcoxon test discerned group differences. The Tumor Immune
Dysfunction and Exclusion (TIDE) algorithm estimated the TIDE
score and forecasted immune checkpoint blockade responses (Jiang
et al., 2018).

Cytolytic activity score (CYT) calculation

From the TCGA database, FPKM values were transmuted to
TPM values. Cytolytic activity, indicative of CD8+ T cell activation,
was calculated based on GZMA and PRF1 transcript levels (Rooney
et al., 2015).

Immunotherapy response analysis

An anti-PD-L1 immunotherapy cohort of CRC patients was
accessed from the IMvigor 210 Core Biologies R package
(Mariathasan et al., 2018). Risk scores allocated patients into
risk categories, with subsequent analyses assessing therapeutic
efficacy. Information on the response to immunotherapy was
obtained for each patient and classified into one of four
categories: stable disease (SD), partial response (PR),
progressive disease (PD), or complete response (CR). Risk
scores allocated patients into risk categories, with subsequent
analyses assessing therapeutic efficacy.

Cell culture

Colon cancer cell lines, HCT-116, SW-480, and HCT-8,
alongside the standard colon epithelial line FHC, were
procured from the American Type Culture Collection (ATCC;
http://www.atcc.org/). These cells were propagated in RPMI-
1640 medium enriched with 10% fetal bovine serum (FBS),
100 mg/mL penicillin, and 100 mg/mL streptomycin. Upon
reaching approximately 80% confluence, the cells were
subcultured post-dissociation with 0.25% trypsin-EDTA.
Culture maintenance was performed at 37°C in a 5%
CO2 atmosphere. For specific experimental conditions, cells
were subjected to a hypoxic environment, consisting of 94%
N2, 5% CO2, and 1% O2.

Quantitative real-time PCR assay

The qRT-PCR assay was employed to elucidate the expression
variances of risk-associated DE-LRGs between colon cancer cells
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and their normal counterparts. RNA from the designated cells was
harvested using the RN001 RNA Quick Purification kit (ESscience).
This RNA served as a template for the synthesis of first-strand
cDNA via the same kit. The qRT-PCR reactions were orchestrated
on the Bio-Rad SPX platform (either 96-well or 384-well format),
utilizing a 2X SYBR Green mix from Life Technologies (Carlsbad,
CA, United States). Expression data were normalized against
GAPDH levels for analytical consistency.

Results

Differential expression and PPI network of
LRGs

Visualization of LRGs differential expression between normal
and tumor samples from TCGA was achieved through a heatmap
(Figure 2A). This revealed 46 distinct DE-LRGs, with 24 being
upregulated and 22 being downregulated in the tumor cohort
(Figure 2B). The significant differential expression of these DE-
LRGs is represented in Figure 2C. A subsequent analysis
highlighted the correlation and protein-protein interaction
(PPI) dynamics among these DE-LRGs (Supplementary
Figure S1).

Molecular subtyping based on DE-LRGs
reveals two distinct clusters

Using the consensus clustering paradigm predicated on the
46 DE-LRGs, the colorectal cancer patients in the training set
(COAD and READ) were partitioned into two definitive
subgroups. The optimal clustering number was determined as
K = 2, substantiated by Figures 3A, B and Supplementary Figures
S1A–C. The patient distribution was 506 in cluster 1 and 140 in
cluster 2, with the DE-LRGs’ expression patterns displayed in
Figure 3C. Notably, survival analyses, as reflected by the K-M
plot, did not identify significant differences between these clusters
(Supplementary Figures S2A–C).

Distinct tumor microenvironments and
mutational landscapes characterize the
molecular subtypes

A comprehensive immune analysis was employed to delineate
the differential immune and mutational profiles of the two
molecular subtypes. The ESTIMATE algorithm unveiled
pronounced disparities, with cluster 2 manifesting significantly
augmented ESTIMATE (p < 0.0001), Immunocore (p < 0.0001),

FIGURE 1
Flowchart of research.
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and stromal scores (p < 0.0001) juxtaposed with a diminished tumor
purity (p < 0.0001) compared to cluster 1 (Figures 4A–D).

An expansive immune landscape evaluation via the ssGSEA
algorithm further underscored the pronounced divergence between
clusters, with all 26 immune cell types exhibiting marked
enrichment in cluster 2 (Figure 4E).

Functional pathway analysis reveals
distinctive characteristics between clusters

To discern the enriched pathways and pivotal functions that
segregate colorectal patients across clusters, both GSVA and GSEA
were harnessed. The GSVA highlighted a panoply of divergent
pathways (Figure 5A). Specifically, pathways integral to
angiogenesis, epithelial-mesenchymal transition, coagulation, and
several signaling cascades, including KRAS, p53, interferon, TNF,
and inflammatory response, were markedly accentuated in cluster
2 relative to cluster 1. Furthermore, GSEA delineated distinctive
pathways: while cluster 1 was enriched in DNA repair, fatty acid
metabolism, and oxidative phosphorylation, cluster 2 manifested
heightened IL-2/STAT5, IL-6/JAK/STAT3 signaling, and KRAS

signaling activities (Figures 5B, C). Intriguingly, the differential
expression of immune checkpoint-associated genes was evident
between clusters, with a set of genes including BTLA, CD200R1,
and CD276, among others, showing amplified expression in cluster 2
(Figure 5D).

Risk model development and validation

Utilizing univariate Cox analysis, prognosis-associated genes
from DE-LRGs were identified. The subsequent multivariate Cox
regression discerned ATP6V0A4, GLA, IDUA, and SLC11A1 as
pivotal for the risk model, as evidenced in the forest plot (Figures 6A,
B). Risk scores were then deduced for each patient across training
and validation cohorts using the formula: risk score=
(0.831×expression value of ATP6V0A4) + (−1.44×expression
value of GLA) + (0.733×expression value of IDUA)+
(0.456×expression value of SLC11A1). This resultant model
adeptly partitioned patients into high- and low-risk factions
(Figures 6C–E). A heatmap further elucidated the differential
expression of central genes across these risk groups (Figures
6C–E). Alarmingly, those within the high-risk category

FIGURE 2
Differential expression analysis of lysosme related genes in CRC based on TCGA. (A,B) Heatmap and Volcano plot shown the differential expression
of LRG of normal and tumor samples. (C) Barplot shown expression level of DE-LRGs.
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confronted a more dire survival outcome than their low-risk peers
(Figure 6F). The ROC curve attested to the model’s commendable
predictive accuracy (Figure 6G), a finding echoed in the validation
dataset (Figures 6H–L).

Risk gene-immune cell correlation and
experimental validation

Figure 7A elucidates the intricate associations between risk
genes and immune cell populations. Notably,
ATP6V0A4 expression manifested positive ties with
M0 macrophages and negative ties with CD8+ T cells, CD4+

memory-activated T cells, and dormant dendritic cells. GLA’s
expression correlated positively with subsets like M1 and
M2 macrophages, and CD4+ memory-activated T cells, but
negatively with CD4+ memory resting T cells and naive B cells.
IDUA’s expression exhibited affinities with Treg cells, but displayed
discord with resting mast cells, CD4+ memory-activated T cells, and
active dendritic cells. SLC11A1’s expression showed positive

relations with various cells, including resting NK cells and
M0 macrophages, but negative with cells like naive B cells and
resting dendritic cells.

Employing qRT-PCR, we gauged the expression of the four risk-
associated DE-LRGs across normal and tumor-derived colon cell
lines (Figure 7B). Remarkably, IDUA expression surged in HCT8,
while both SLC11A1 and ATP6V0A4 were significantly upregulated
in HCT8 and SW480 relative to FHC. GLA’s expression was notably
augmented across all tumor cell lines.

Independence of the constructed risk model
and built a novel nomogram model

Probing deeper, we assessed the interplay between the risk score
and clinical attributes, substantiating the independence of our
formulated risk model via subgroup and regression analyses
(Figures 8A–C and Supplementary Figures S2F–I). Intriguingly,
female patients and those with advanced or metastatic colorectal
cancer exhibited heightened risk scores. Univariate-multivariate

FIGURE 3
Identification of molecular subtypes based on DE-LRGs. (A,B) K = 2was identified as the optimal value for consensus clustering. (C)Heatmap shown
DE-LRGs expression in different clusters.
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Cox regression analyses further solidified our risk model as a
standalone prognostic indicator for colorectal cancer
(Figures 8D, E).

Capitalizing on these insights, we sculpted a cutting-edge
nomogram for prognosticating CRC outcomes (Figure 8F). For
instance, consider a 78-year-old female patient with stage I CRC;
her cumulative score of 197 translates to a 1-year survival likelihood
of ~98.5%, and a 5-year survival rate nearing 92.3%. The ROC curve
accentuated the model’s precision, with the calibration curve
affirming a tight alignment between forecasted and actual overall
survival rates (Figures 8G, H). Parallel findings were replicated
utilizing a GEO validation dataset, underscoring the model’s
robustness (Figures 8I–K).

Risk score: Interplay with oncogenic activity,
tumor mutation burden, and immunological
insights

We explored the risk score’s genomic dimensions by assessing
gene mutations. The oncoprint highlighted the 20 most prevalent
mutated genes in both risk categories, with missense mutations
predominantly featured. While APC mutations were ubiquitous,

they showed differential prevalence: 79% in low-risk versus 67% in
the high-risk group (Figures 9A,B).

Regarding tumor mutation burden (TMB), no discernible
difference spanned the risk groups (Figure 9C). The risk score and
TMB also lacked significant correlation (Figure 9D). Although the
high TMB group did not showcase a survival advantage
(Supplementary Figure S2E), an intriguing pattern emerged when
juxtaposing TMB with risk scores: a combination of high TMB and
low-risk scores portended favorable prognoses (Figure 9E).

Leveraging the TIDE algorithm, we discerned elevated TIDE
scores in the high-risk cohort (Figure 9F). However, microsatellite
status comparisons between risk groups remained non-significant
(Figures 9G, H).

Targeted therapeutic efficacy &
immunotherapeutic responsiveness
assessment

The pRRophetic algorithm was harnessed to unearth the nexus
between risk scores and targeted therapeutic susceptibilities.
Remarkably, the low-risk category displayed enhanced sensitivity
to a spectrum of inhibitors, barring ATRA (Figure 10A).

FIGURE 4
Tumor microenviroment analysis in different clustered subtypes. (A–D) Estimate score, immuoscore, stromal score and tumor purity were
calculated. Except tumor purity, Estimate score, immunoscore and stromal score of cluster 2 were all higher than cluster 1. (E) Immune cell infiltration
levels in two subtypes analysed by ssGSEA algorithm respectively.
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Distinct correlations emerged between the CYT score and risk
score, but TMB differences across risk groups were inconsequential
(Figures 10B, C). Employing the IMvigor210 cohort to gauge
immunotherapy responsiveness, we observed that a lower risk
score corresponded with enhanced prognosis and
immunotherapeutic sensitivity (Figures 10D, E).

Discussion

Colorectal cancer persists as a formidable global health challenge.
Even with advancements like targeted and immunotherapies, achieving

a marked improvement in patient prognosis remains an unmet goal.
This underscores an imperative for adept risk stratification and tailored
therapeutic interventions. Intriguingly, lysosome-associated genes have
been spotlighted as pivotal players in tumorigenesis.

Within this study’s framework, we discerned two distinct
molecular clusters and subsequently forged a novel risk model,
anchored in the differential expression of lysosome-associated
genes. Notably, patients within the high-risk spectrum were
predominantly aligned with the second cluster. These
individuals were characterized by elevated ESTIMATE and
immune scores, enhanced immune cell infiltration, and a
pronounced TMB. However, they exhibited diminished tumor

FIGURE 5
Functional analysis among two clusters. (A) Heatmap shown enriched differential pathways by GSVA. (B,C) Different functions in two clusters were
enriched by GSEA. (D) Expression of immunue checkpoint-related genes was shown.
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purity. A pattern emerged wherein patients with less favorable
prognoses frequently exhibited elevated risk metrics juxtaposed
with a diminished TMB.

Delving deeper, our functional analysis illuminated a nexus
between the augmented anti-tumor responses and oncogenic
pathways, especially evident with increased immune cell

FIGURE 6
Establishment and validation of risk model. (A,B) Univariate-multivariate Cox analysis were conducted to screened prognosis-related genes. Four
risk related DE-LRGs included ATP6V0A4, GLA, IDUA and SLC11A1 were screened. (C) Expression level of risk related DE-LRGs among different risk
groups. (D,E) Distribution of risk score and survival time of CRC patients in high and low risk groups. (F) Survival curve of the CRC patients in different risk
group. (G) Time-dependent ROC curve of the risk model. (H–L) Similar result was obtained in verification group.
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infiltration within the tumor milieu. Further, our therapeutic
efficacy evaluation of both targeted and immunotherapies
highlighted an augmented treatment responsiveness in low-risk
patients. Collectively, these insights have the potential to reshape
colorectal cancer therapeutic paradigms and guide clinicians
towards more informed decision-making.

Leveraging consensus clustering, we adeptly delineated patients
into distinct molecular cohorts, informed by the expression profile
of DE-LRGs. While the overall survival between these cohorts
remained statistically congruent, discernible variations became
evident in the tumor-immune interplay (TIME), risk metrics, and
TMB. Our investigations further shed light on the role of DE-LRGs
in shaping colorectal cancer dynamics.

TIME plays a pivotal role in determining tumor evolution
and shaping patient prognosis. Pioneering algorithms, namely,
ESTIMATE, have emerged as tools to deduce tumor purity and
the interplay of immune and stromal cells within tumors based
on gene expression (Mao et al., 2018; Gong et al., 2020; Deng
et al., 2021). The ESTIMATE algorithm, in particular, quantifies

immune components within tumor specimens, offering a mirror
to TIME dynamics. A salient feature is tumor purity, delineated
as the proportion of malignant entities within tumor tissue, and
its association with prognosis is undeniable. Prevailing research
corroborates our findings wherein diminished tumor purity often
aligns with adverse prognoses (Pages et al., 2018; Mlecnik et al.,
2020), while heightened immune metrics portend favorable
outcomes in colorectal malignancies. Moreover, the
multifaceted role of diverse immune cell infiltrates in
tumorigenesis has been accentuated (Grivennikov et al., 2010;
Greten and Grivennikov, 2019; Mao et al., 2021). Within our
investigative paradigm, tools like ESTIMATE were harnessed to
profile the TIME across clusters, revealing pronounced immune
metrics but diminished tumor purity in the second cluster.
Further, the deployment of ssGSEA unveiled nuances of
immune status, emphasizing the predominance of specific
immune-related entities. Our observations aligned well with
extant literature, underscoring the heightened immune
landscape evident in the second cluster.

In a subsequent phase of our investigation, we devised an
innovative risk model rooted in the differential expression of
lysosome-related genes (DE-LRGs), with its validity affirmed
within an external cohort. Leveraging both uni- and multi-Cox
regression modalities, we pinpointed risk-pertinent DE-LRGs
integrally associated with tumor ontogeny and progression.
Notably, ATP6V0A4, a constituent of the v-ATPases ensemble,
has been documented to manifest pronouncedly in breast cancer
and gliomas (Hinton et al., 2009; Gleize et al., 2012; Savci-Heijink
et al., 2019). Glaucocalyxin A, denoted as GLA, has been recognized
for its tumor-suppressive capacities across a gamut of malignancies
(Zhu et al., 2018; Chen et al., 2021). While IDUA is traditionally
linked with Hurler syndrome, contemporary research illuminates its
upregulated presence in renal and breast carcinomas (Osborn et al.,
2008; Xing et al., 2021). SLA11A1, colloquially termed Nramp1, is a
member of the solute carrier lineage with roles in metal homeostasis
(Montalbetti et al., 2013; Zhu et al., 2022). Its accentuated expression
in CRC not only portends an unfavorable prognosis but also
earmarks its potential as a predictor for immunotherapeutic
responsiveness (Ma et al., 2022).

Our survival assessments underscored the formidable predictive
capacity of this risk model, consistently so across both foundational
and validation cohorts. Progressing further, we sculpted a
nomogram that harmoniously integrated risk indices with clinical
parameters, demonstrating robust prognostic and predictive finesse.
A meticulous examination of patient demographics across the
clusters manifested a preponderance of low-risk entities within
cluster 2. Despite this, overarching survival trajectories remained
statistically indistinct between the cohorts. Synthesizing these
insights, it emerges cogently that an enriched immune milieu,
characterized by augmented immune cell recruitment, underpins
the diminished risk profile observed within cluster 2.

To discern the intrinsic biological distinctions between the
two clusters, we employed GSVA and GSEA for comprehensive
functional analyses. Using GSVA, we quantified the signaling
pathway activities within individual samples derived from gene

FIGURE 7
Correlation analysis between risk genes and immune cells. (A)
The heatmap shown correlation between risk genes and immune
cells. (B) Expression level of four risk related DE-LRGs in cell line.
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expression profiles, identifying a pronounced augmentation of
these activities in cluster 2. Through GSEA, an integrative tool for
analyzing gene expression data, we precisely delineated gene set
expression patterns across the clusters. Notably, our GSEA
findings highlighted a predilection for immune response-
associated pathways in cluster 2, while pathways tethered to
oncogenes, oxidative distress, and DNA repair were
accentuated in cluster 1. This molecular landscape offers

clarity on the elevated risk disposition observed
predominantly among patients in cluster 1.

In the final phase of our analysis, we appraised the efficacy of
targeted and immunotherapeutic interventions using the
pRRophetic algorithm, TIDE, and IMvigor210. The pRRophetic
algorithm facilitated the estimation of targeted therapy efficacy,
unveiling enhanced responsiveness in low-risk patients across all
targeted agents. Concurrently, we assessed the efficacy of

FIGURE 8
Construction of novel risk model and nomogram. (A–C) The association between risk score and clinical features (cluster, gender and stage). (D,E)
Forest plot to show the result of Univariate and Multivariate Cox regression. (F) Nomogram integrating risk score and clinical features based on TCGA
training dataset. (G)Calibration of the nomogram at 1,3 and 5 years in the training cohort. (J,H) Predictive efficiency of the nomogramwas shown by ROC
curve. (I–K) Nomogram built based on validation corhort (GSE39084) and its calibration curve and ROC curve.
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immunotherapy leveraging both TIDE and IMvigor210. Previous
literature underscores that elevated TIDE scores correlate with
unfavorable prognosis and heightened immunotherapy resistance
(Jiang et al., 2018; Qiu et al., 2021; Shi et al., 2021). Consistent with
this, our data revealed that patients within the high-risk cohort
manifested superior TIDE scores, suggesting augmented resistance
to immunotherapy among these CRC patients. Further
substantiation was sought from survival and efficacy data from
the IMvigor210 repository. Intriguingly, CRC patients undergoing
PD-1 inhibitor treatment exhibited a distinct dichotomy: those

with lower risk scores demonstrated superior survival trajectories,
and individuals displaying robust responsiveness to
immunotherapy consistently harbored significantly diminished
risk scores compared to their non-responsive counterparts.

While our investigation sheds light on the intriguing role of
lysosome-related genes in CRC, it is imperative to acknowledge
certain constraints. Notably, despite patients in cluster
2 manifesting traits typically associated with a more favorable
prognosis—higher immune scores and reduced risk scores—there
was not a significant disparity in overall survival when juxtaposed

FIGURE 9
The correlations of tumormutationwith risk score, cluster subtypes and survival. (A,B) The oncoprintmap displayed the top 20most prevalent genes
in high-risk and low-risk groups. (C) TMB level among different risk group. (D) Correlation analysis among TMB level and risk score. (E) Survival analysis
combined with TMB and risk score. (F) Differences in TIDE score level among different risk group. (G) Difference in risk scores among different
microsatellite status. (H) Composition of microsatellite status in low and high-risk groups.
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against cluster 1. This observation could stem from the relatively
diminutive sample size of cluster 2. Furthermore, our conclusions,
derived predominantly from bioinformatics analyses, necessitate
corroboration through rigorous experimental endeavors. It is also
pertinent to note that our dataset, sourced from open-access
repositories, beckons validation in more expansive patient
cohorts to definitively ascertain the clinical implications of
lysosome-related genes in CRC.

Conclusion

In CRC, we delineated DE-LRGs into distinct clusters, with
ATP6V0A4, GLA, IDUA, and SLC11A1 pivotal to risk assessment.
Cluster 2 displayed enhanced anti-tumor immunity and favorable
prognosis. Significantly, low-risk patients showed enhanced
treatment susceptibility, underscoring the clinical promise of
these DE-LRGs in CRC management.

FIGURE 10
The correlation of targeted therapeutic and immunotherapeutic effectiveness with risk score. (A) Significant relationship between risk score and
targeted therapy sensitivity used pRRophetic algorithm. (B) Significantly positive correlation among CYT and risk score. (C) TMB level among different risk
group. No significant difference wae observed. (D) Patients with SD/PD had higher risk score. (E) Patients treated with immunotherapy in high risk group
had poorer prognosis. Supplementary Table S1 List of lysosomes-related genes.
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