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In this paper, we report the modelling of quantum capacitance in both single-layer and bilayer graphene devices to investigate the 
temperature dependence. The model includes the existence of electron and hole puddles due to local fluctuations of the potential, 
which is taken into account with the possibility of finite lifetimes of electronic states to calculate the quantum capacitance using 
the Gaussian distribution. The results indicate that the simulations are in agreement with the experimental measurements, which 
proves the accuracy of the proposed model. On the other hand, temperature dependence around the charge neutrality point has 
been reported for both single and bilayer graphene. 
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1. INTRODUCTION∗ 

Graphene is a single-layer of two-dimensional carbon 
atoms that was discovered in 2004 [1]. It has received much 
attention in recent years because of its extraordinary 
properties [2], including excellent transport properties 
expressed by high charge carrier mobility. There is the 
possibility of tuning the ultra-high mobility by introducing 
anti-site defects in the single-layer [3], which makes this 
material attractive for high-speed electronics [4]. 

Bilayer graphene has the property of controlling both 
carrier density and band gap by applying gate bias [5] or 
doping [6], which makes it a serious candidate for a wide 
range of applications [7, 8]. The band structure near the 
Dirac point represents the main parameter to distinguish the 
two types of single-layer and bilayer graphene. Single-layer 
graphene exhibits a conical band structure and a density of 
states that linearly disappears at the Dirac point. The latter, 
which is the epicentre of the Dirac cone that describe the 
electronic structure of 2D material, is a key parameter that 
provides several information, especially the doping 
properties. In contrast, bilayer graphene exhibits a low-
energy parabolic band structure and a density of states that 
increases linearly with energy from a finite value at zero 
energy [9], as results, the quasi-particles in bilayers are 
chiral massive fermions that differ from those in single-
layer (massless fermions) [10]. 

One major application of this material is as a channel 
for field-effect transistors (FETs), where a sample is placed 
on an oxidized silicon substrate and connected to source and 
drain electrodes. Generally, it is well known that the 
dominant capacitance in this configuration is the oxide 
capacitance, however because of the scale of graphene 
devices, the quantum capacitance becomes dominant [11]. 

Several theoretical and experimental studies [12, 13] 
have reported the determination of the quantum capacitance 
of graphene. Despite the fact that graphene-based materials 
are still undergo study due to the low density of free 
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electrons. It has been noted that the quantum capacitance of 
these materials plays an important role when they are used 
as electrode materials. To our knowledge, from the 
theoretical work of the literature, the quantum capacitance 
of graphene is the limiting factor influencing the total 
capacitance [14]. Unlike in the conventional 2D systems, 
the density of states in graphene depends on doping, this 
makes even small density of states contributions readily 
noticeable to the structure/device geometrical capacitance. 
This allowed observations of graphene’s quantum 
compressibility. Likewise, considerable charge 
inhomogeneity typical for graphene deposited on silicon 
oxide leads to strong spatial averaging. This inhomogeneity 
obscures details in the DoS which can indicate new 
phenomena in relationship with quantum capacitance [15]. 
So, this parameter is important for understanding 
fundamental electronic properties of the material such as the 
density of state, also it gives graphene an advantage in 
sensing applications [16]. Here, we present a simple 
analytical model for the quantum capacitance of both single-
layer and bilayer graphene devices. This model takes into 
account the electron-hole puddles induced by charged 
impurities and possibly finite lifetimes of electro-nic states 
through a Gaussian broadening distribution as well as the 
energy broadening parameter with a value of Ebr = 75 MeV. 
The temperature dependence of the quantum capacitance as 
a function of the Fermi level for a graphene-based device 
single-layer and bilayer is investigated. 

2. MODEL DESCRIPTION 

2.1. Single-layer graphene 
To determine the quantum capacitance, the existence of 

electron and hole puddles has been considered to include 
both single and bi-layer graphene. As reported by Fates et 
al. [9], for single-layer graphene (SLG), the electrons have 
a relativistic zero mass fermions behavior. Physically, both 



the Hamiltonian and the susceptibility can be decomposed 
into those equivalent to the monolayer band. The 
monolayerlike band exists only in odd-layered graphenes 
and gives a strong diamagnetic peak at zero energy [17]. 
These electrons obey the following linear dispersion relation 
[18]: 

( )( ) Fk v kχ = ±  , (1) 

where (+)
 

corresponds to the conduction band and (-) 
 corresponds to the valence band,   is the reduced Plank 

constant, 6~ 10  m/sFv  is the Fermi velocity of the charge 
carriers in graphene, and k represents the wave vector in the 
2D plane of the graphene sheet which is expressed as 

2 2 0.5( )x yk k k= + . When 0k = , the energy at the Dirac point 
( 0) 0 eVkε = =  could be a convenient choice for the 

energy reference. 
In an undoped single-layer graphene (SLG) in the 

thermal equilibrium state, electrons and holes are created in 
the conduction band and valence band respectively. The 
linear density of states (DOS) of SLG is given by [19]: 
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When the graphene is deposited on a substrate, there are 
various defects and charged impurities that contribute to the 
creation of electron/hole puddles, which leads to an 
inhomogeneous distribution of charge carrier density [20]. 
The broadened density of states that takes into account the 
electron-hole puddles and the possible finite lifetime of the 
electronic states through a Gaussian broadening distribution 
is expressed as follows [21]: 
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where Ebr is the energy broadening parameter. From the 
integration of Eq. 3, we obtain the broadened density of 
states for SLG:
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As reported in the literature, the quantum capacitance 
depends on the density of states in the channel [22]. On the 
other hand, using the definition, ( )Q tot FC q dQ d E= , 
where ( )totQ q n p= −  is the total charge density in a 
graphene sheet corresponding to the local electrostatic 
potential and the Fermi energy, i.e. , we obtain : 

2 1
0( ) 2

2 2Q F
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E E
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where K is the Boltzmann constant, T is the temperature, 
2 2

0 2 ( )FC q vπ=   is the dimensional unit of QC  the 
quantum capacitance, ( )erf χ  is the Gaussian error function 
and α is the fitting parameter. Note that 1χ  and 2χ  are 
mathematical parameters tending to –∞ and +∞ for hole and 
electron respectively. 

2.2. Bilayer graphene 
Unlike SLG which has a density of states that 

disappears linearly at the Dirac point, bilayer graphene 
(BLG) has a quite constant density of states near the Dirac 
point due to parabolic dispersion [23]. The dispersion 
relation for bilayer graphene is given by [24]: 

( ) ( )
2

21 1

2 2 F
t tk v kχ µ

   = ± + +    
 , (6) 

where the parameter µ toggles between -1 and +1. For the 
negative value of µ, both bands are closer to zero energy, 
elsewhere the two bands are repulsed by 1t  which represents 
the vertical coupling between the two atoms in the Bernal 
configuration. The density of states of pure and perfect 
bilayer graphene can be approximated in the range of energy 

1tε ≤  by a linear relationship as a function of energy [26] 
as follows: 
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By integrating Eq. 3, we get the broadened density of 

states for the BLG: 
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As carried out for SLG, the BLG quantum capacitance 
expression can be extracted as follows: 
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3. RESULTS AND DISCUSSION 
In Fig. 1, we plot the dependence of the quantum 

capacitance of SLG (Fig. 1 a) and BLG (Fig. 1 b) versus the 
Fermi level FE  for different values of the temperature. 

ch FqV E=



      
Fig. 1. Quantum capacitance as a function of Fermi level for: a – SLG; b – BLG at several temperature values ranging from 77 K to 300 K. 

The simulations were performed for Ebr = 75 MeV and α = 0.47 

 

Our results show that the minimum of the quantum 
capacitance is reached at the Dirac point. The Dirac point is 
the access/contact point of the valence band to the 
conduction band. When the Fermi level converges to the 
Diract point from the top (bottom), the density of the free 
electron (hole) decreases. This result means there is a 
minimum carrier density at the Diract point. The 
characteristic curvature increases as the temperature 
decreases. This observation is valid for both SLG and BLG. 
The quantum capacitance becomes independent of 
temperature when the Fermi energy keeps rising over  
EF = 0.12 eV. This demonstrates the minor effect of the 
temperature for such Fermi energies. Physically, these 
results could be explained by the fact that the carriers 
induced by doping are higher than those induced by 
temperature beyond EF = 0.12 eV. 

On the other hand, we can distinguish a notable 
difference between Fig. 1 a and b concerning the quantum 
capacitance value which varies between 0.2 and 9 µF/cm2, 
and between 8 and 17 µF/cm2 for the SLG and BLG 
respectively. Otherwise, we note a decrease in the minimum 
value of the quantum capacitance when the temperature 
goes down for both SLG and BLG. These results are in line 
with those reported in the literature for both single-layer 
graphene [13, 16, 18 – 20, 22, 24, 25, 27] and bi-layer 
graphene [18, 20, 21, 23, 26, 27]. 

Fig. 2 shows the comparison between the simulated 
results and the measured data of the SLG quantum 
capacitance for three temperature values: 300 K, 120 K and 
77 K. The measurements were carried out at the ICTEAM 
of the Université Catholique de Louvain, Louvain-la-Neuve 
(Belgium). A good agreement is observed. This allows us to 
validate the proposed model. 

Fig. 3 shows the minimum quantum capacitance CQ, min 
ratio as a function of temperature. We find a similarity in the 
temperature dependence of the minimum capacitance of 
single and bi-layer graphene for low-temperature values, 
and a difference in the dependence between single and bi-
layer graphene for high-temperature values. The large 
difference in the high-temperature regime between the 
curves is attributed to the difference that exists in the effect 
of local potential fluctuations. 

 
Fig. 2. Temperature dependence of the simulated and measured 

quantum capacitance as a function of Fermi energy: 
a – T = 300K, b – T = 120 K and c – T = 77K. The solid 
lines are the simulations and the symbols are the 
measurements 

 
Fig. 3. Dependence of the minimum quantum capacitance on 

temperature for SLG (squares) and BLG (circles) 

4. CONCLUSIONS 
In this work, we report an analytical model of the 

quantum capacitance in single and bilayer graphene which 
can be used in the accurate modelling of GFET devices as 
well as in VLSI circuits. The temperature dependence of the 
quantum capacitance has been examined analytically, by 
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adopting three temperature values 77 K, 120 K and 300 K. 
The quantum capacitance of both SLG and BLG has a 
minimum value at the Dirac point, while the trends increase 
significantly for BLG, it slightly changes for SLG. The 
comparison of the simulations to the experimental 
measurements shows a good agreement which reflects the 
capability of the model to predict the temperature 
dependence of the quantum capacitance. Furthermore, a 
significant similarity was found between SLG and BLG 
concerning the effect of electron-hole puddles formation in 
the low-temperature regime.  
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