
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Virginie Lafont,
Institut National de la Santé et de la
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Cancer immunotherapies include monoclonal antibodies, cytokines, oncolytic

viruses, cellular therapies, and other biological and synthetic immunomodulators.

These are traditionally studied for their effect on the immune system’s role in

eliminating cancer cells. However, some of these therapies have the unique ability

to directly induce cytotoxicity in cancer cells by inducing immunogenic cell death

(ICD). Unlike general immune stimulation, ICD triggers specific therapy-induced cell

death pathways, based on the release of damage-associated molecular patterns

(DAMPs) from dying tumour cells. These activate innate pattern recognition

receptors (PRRs) and subsequent adaptive immune responses, offering the

promise of sustained anticancer drug efficacy and durable antitumour immune

memory. Exploring how onco-immunotherapies can trigger ICD, enhances our

understanding of their mechanisms and potential for combination strategies. This

review explores the complexities of these immunotherapeutic approaches that

induce ICD, highlighting their implications for the innate immune system,

addressing challenges in cancer treatment, and emphasising the pivotal role of

ICD in contemporary cancer research.

KEYWORDS

onco-immunotherapy, immunogenic cell death, innate immune system, monoclonal
antibodies, cytokines, oncolytic virus, cellular therapies, immunomodulators
1 Introduction

Cancer immunotherapy aims to harness the patient’s own immune system to target

and eliminate malignant cells. In 2013, cancer immunotherapy was named as

“Breakthrough of the Year” by the journal Science for its promising potential in the field

of oncology (1). Immunotherapy is often combined with other cancer treatments such as
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chemotherapy, surgery, radiotherapy, and targeted therapies, which

aim to eliminate cancer cells by killing them. The combination of

immune system activation with cancer cell-killing not only triggers

the immune response but also precisely targets and eliminates

cancer cells. This fusion demonstrates a markedly enhanced

antitumor effect. In this way, cancer cells are eliminated by direct

killing, while at the same time the immune system is activated.

Recently, ICD has been described as a promising form of

therapy-induced anti-tumour immune system activation, and it is

now considered to play a central role in various cancer treatment

modalities. Although ICD targets cancer cells and mediates

tumour‐specific immune responses, it occurs in the precise

context of cell death induced by a specific therapy, making it

conceptually distinct from cases of immune stimulation or

inflammatory responses that do not rely on a therapy capable of

inducing a specific modality of cell death (2). Thus, although ICD

could be considered a form of immunotherapy, it has not been

classified as such because it depends on a specific treatment that

must be able to induce a specific cell death pathway that ends with a

dying cancer cell that has sufficient antigenicity and adjuvanticity

able to activate the immune system. ICD is characterized by the

exposure and release of DAMPs from dying tumour cells that

confer adjuvanticity. DAMPs are recognised by innate PRRs,

resulting in the activation of innate cells and the subsequent

activation of adaptive cells that mediate tumour‐specific immune

responses. ICD is a promising strategy because it induces long‐term

efficacy of anticancer drugs through the combination of the direct

cancer cell killing and the activation of the antitumour immune

system, leading to an anti-tumour immunological memory (3).

Some chemotherapies, radiotherapies, and targeted therapies

have been shown to induce immunogenic cell death (4–6). Such

ICD inductors have been successfully combined with different types

of immunotherapies to promote better outcomes (7, 8). However,

some immunotherapies, in parallel with their immunomodulatory

effect that targets the immune system, can also be directly cytotoxic

to the cancer cell and induce ICD. This article will review these

specific types of immunotherapies, with an additional focus on their

impact on the innate immune system.
2 Immunotherapies for
cancer treatment

Oncology met immunology in 1891 when William B. Coley

noticed that cancer patients who got infections after surgery seemed

to do better than those who didn’t. So he tried immunotherapy for

cancer by using erysipelas on a patient with inoperable sarcoma (9).

He then created a filtered mixture of bacterial lysates called “Coley’s

Toxins” to treat tumours. His first patient, John Ficken, with a large

inoperable tumour (probably a malignant sarcoma) had a complete

remission that lasted until his death from a heart attack 26 years

later. Coley’s toxins may have stimulated the immune system to

attack cancer cells. Thereafter, clinical interest in onco-

immunotherapy waned, with research focusing on radiotherapy
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and chemotherapy (10–12), until 2013, when immunotherapy of

cancer was named “Breakthrough of the Year” by Science (1).

Cancer is characterised by a number of features including

activation of oncogenes, inactivation of tumour suppressor genes,

resistance to cell death, angiogenesis, maintenance of proliferative

signalling, immune suppression and avoidance of immune

destruction (13). Even during cancer immunosurveillance, the

most immunoevasive or highly mutagenic cancer cells may

acquire the ability to evade immunosurveillance and thus

generate a clinically relevant tumour. In this sense, cancer cells in

an established tumour can evade anti-tumour immunity. In

addition to the immunosuppressive microenvironment within the

tumour, cancer cells can use several mechanisms for

immunoeva s ion , wh ich inc lude (1) : r educ ing the i r

immunogenicity through the downregulation of tumour-

associated antigens (TAAs) and major histocompatibility complex

(MHC) class I expression (2), inducing tolerance by suppressing T

ce l l s (CD4+ and CD8+) through the promot ion of

immunosuppressive cytokines (e.g. IL-10 or TGFb) or immune-

checkpoints (e.g. regulated cell death 1, regulated cell death-ligand,

cytotoxic T lymphocyte-associated protein-4), and (3) avoiding the

immune cell-mediated lysis by overriding cell death pathways (14,

15), among others.

Pharmacological induction of cell death is the basis of almost all

non-invasive cancer therapies. One of the major challenges in cancer

treatment is to restore an anti-tumour immune response. In this

sense, immunotherapies have transformed cancer treatment in recent

years and have revitalised the field of tumour immunology (16).

Cancer immunotherapy aims to stimulate the immune system in a

controlled manner to eliminate cancer cells and prevent uncontrolled

autoimmune inflammatory responses that lead to contraindications

and therapeutic limitations (17). The main goals are to increase the

quality or quantity of immune cells (especially effector cells), to

generate tumour antigens and to eliminate mechanisms associated

with immunosuppression, while minimising off-target effects. In

addition, immunotherapies seek to induce long-lasting and durable

responses in several cancer subsets, including solid and

haematological malignancies. In this sense, several types of cancer

immunotherapies have been developed with the aim of promoting

cancer remission (18). These onco-immunotherapies are very vast

and include (1) monoclonal antibodies (2), cytokines (3), oncolytic

viruses (4), cellular therapies (5), and other biological and

synthetic immunomodulators.

Activation of the anti-tumour immune system requires

treatment strategies that can overcome the physiological barriers

that control immune responses against tumour cells. Accordingly,

immunotherapy use s s t r a t eg i e s tha t t a rge t spec ific

immunoregulatory processes to enhance anti-tumour immunity.

However, cancer immunoediting can occur in response to

immunotherapy as well as during tumour development. In this

sense, immunotherapy may induce secondary (acquired) resistance

that manifests as a clinical response followed by cancer progression

(secondary escape) (19).

In general, the resistance of most cancers to immunotherapies

and the lack of anti-tumour memory underline the need to
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overcome the immunosuppressive microenvironment, improve the

immunogenicity of tumour cells and promote the induction of anti-

tumour memory, rather than focusing only on stimulating broad

and untargeted immune responses (20). In this sense, a novel

strategy to induce immune system activation, antitumour

memory and tumour microenvironment remodelling is the

induction of a specific form of cell death called immunogenic

cell death.
3 Immunogenic cell death in cancer

The immunogenicity of cancer cells has been identified as an

essential factor in the development of anti-cancer therapies.

Therefore, new research has focused on understanding the

immunobiology of tumours in order to overcome the

immunosuppressive function of the tumour microenvironment

(TME) and increase the immunogenicity of cancer cells (21). In

this sense, ICD is characterised by the increased immunogenicity of

the cells (acting as a tumour vaccine) and the release of DAMPs,

leading to the generation of immunological memory (21).

ICD is a type of cell death that can promote the antitumour

immune response and induce immunological memory against

endogenous (cellular) or exogenous (viral) antigens. The ability of

ICD to stimulate adaptive immunity comprises two main

parameters: antigenicity and adjuvanticity. Antigenicity is the

ability of a molecule, such as a protein, to be recognised as an

antigen and to promote an inflammatory response. This is provided

by the production and presentation of antigens in the context of

central tolerance in a given host that do not lead to clonal deletion,

indicating that the host has naive T cell clones that can recognise

such antigens. Adjuvanticity is mainly provided by the release or

exposure of danger signals such as DAMPs due to cell damage or

stress, and by pathogen-associated molecular patterns (PAMPs) in

pathogen-derived ICD, which promote the recruitment and

maturation of dendritic cells (DCs). These molecules have non-

immunological effects within the cell, but, their exposure on the cell

surface or their release into the extracellular space due to cellular

stress allow their binding to receptors in immune cells (14, 21).

Cancer research has undergone a significant paradigm shift in

recent years, with increasing emphasis on the importance of ICD in

the context of cancer therapy. Both preclinical and clinical data have

converged to support the notion that the way cancer cells undergo

cell death in response to treatment carries is more important for

long-term disease outcome than the proportion of cells that die.

Given the challenge posed by the inability of current cancer

therapies to achieve the utopian goal of eradicating 100% of

cancer cells, there is a growing consensus among scientists for a

strategic shift in focus. Rather than seeking cell death in isolation,

the forefront of cancer research is now centred on the development

of innovative combination therapeutic regimens designed to

stimulate the antitumour immune system and induce cancer cell

death (22–24).

Therefore, the use of immunotherapies that can both stimulate

the immune system and induce ICD is of great interest because they

can enhance the immune system’s ability to fight cancer while
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killing cancer cells. In the next section, we will focus on describing

the role of the main onco-immunotherapies (monoclonal

antibodies, cytokines, oncolytic viruses, cellular therapies, and

other biological or synthet ic immunomodulators) in

immunogenic cell death induction and their role in modulating

the innate immune system.
4 Dual action of immunotherapy:
inducing immunogenic cell
death and stimulating the
innate immune response

4.1 Monoclonal antibodies

Monoclonal antibody (mAb)-based immunotherapies have

recently emerged as one of the most important components of

cancer therapy compared to surgery, radiation, and chemotherapy.

Novel mAbs have been developed against neoantigens or

overexpressed antigens in cancer cells that favour a variety of cell

death mechanisms, including ICD (25, 26). The main clinically

relevant mechanisms of action induced by mAbs on cancer cells are:

antibody-dependent cellular cytotoxicity (ADCC), complement-

dependent cytotoxicity (CDC), antibody-dependent cellular

phagocytosis (ADCP), which involve the activation of innate cells

such as natural killer (NK) cells, dendritic cells, and macrophages

(27). As the aim of this review is to focus on immunotherapies that

induce ICD, we will describe the principal mAbs that induce ICD

and their role in innate immune responses (Figure 1).

Some types of monoclonal antibodies can induce ICD as

monotherapy. For example, belantamab mafodotin is a

humanised mAb that targets B-cell maturation antigen (BCMA)

in multiple myeloma and other B-cell malignancies. The anti-

BCMA is afucosylated and linked to the microtubule

polymerization inhibitor, MMAF via a protease-resistant

maleimidocaproyl linker. After binding to the cell surface, anti-

BCMA is internalised, leading to cell-cycle arrest and apoptosis.

This type of cell death triggers cell surface exposure of calreticulin

(CRT), heat shock protein 70 and 90 (HSP70, HSP90), and the

release of the high mobility group box protein 1 (HMGB1),

adenosine triphosphate (ATP), HSP70, and HSP90, triggering

activation and maturation of DCs. This leads to host innate and

adaptive immune responses through tumour recruitment of

cytotoxic T lymphocytes, NK cells and DCs (28). In addition, the

afucosylation favours binding to FcgRIIIa receptors on the surface

of immune effector cells, which promotes immune cell recruitment,

activates ADCC and ADCP and generates long-term immune

memory (28). Obinutuzumab (GA101), the second generation of

rituximab (anti-CD20 mAb) induces ICD, which is characterised by

the release of DAMPs, such as HSP90, HMGB1 and ATP, which

induce DCs maturation (enhancing CD86 and CD83 expression)

and subsequent T-cell proliferation (29). In addition, GA101

potentiates cellular immune responses by binding to NK cells,

promoting their activation and triggering ADCC more effectively

than rituximab (30). It is also able to activate gd T-cells and
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1294434
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Calvillo-Rodrı́guez et al. 10.3389/fimmu.2023.1294434
potentiate killing of lymphoma cells (31), and strongly engage

monocytes and M1 macrophages, leading to high levels of nitric

oxide and the elimination of CD20-expressing tumour cells (32).

Although some mAbs can induce ICD as a single treatment,

most reports inc lude the i r combinat ion with other

immunotherapies or chemotherapies to induce ICD on multiple

cancer cells. For example, cetuximab has been shown to induce

increased ICD in colorectal cancer when used in combination with

leucovorin calcium (folinic acid), fluorouracil, and irinotecan

hydrochloride (FOLFIRI). Cetuximab induced endoplasmic

reticulum (ER) stress and CRT and ERp57 expression on the cell

surface, favouring phagocytosis by DCs of dying cancer cells, which

triggered the stimulation of a protective T-cell (CD8+) memory

immune response observed alone and in combination with

FOLFIRI (33). In addition to its direct ICD induction, cetuximab

is able to repolarise tumour-associated macrophages (TAMs) from

M2-like to M1-like phenotypes, mainly by suppressing IL-6

expression through NFkB and STAT3 pathways (34).

Among the various antibodies used in combination, anti-PD-1

and anti-PD-L1 are the most used. For example, dinaciclib, a CDK1,

-2, 5 and -9 kinase inhibitor, is a bona fide ICD inducer that, when

combined with anti-PD1 mAbs, enhances DCs activation and

favours antitumour response in a variety of murine syngeneic
Frontiers in Immunology 04
tumour models (35). Also, photodynamic therapy (PDT)

enhances antitumour effects of the anti-PD-L1 mAb, inducing

ICD in SCC7 cells by stimulating DCs maturation. In fact, the

combination of PDT-DC vaccine and anti-PD-L1 mAb

synergistically triggered an antitumour immune response and

inhibited tumour progression (36). The PD-L1 mAb in

combination with doxorubicin improved the immunosuppressive

tumour microenvironment and promoted NK and T cell activation

and proliferation. It also increased infiltrating CD8+ T cells through

the secretion of CRT and HMGB1, and promoted tumour necrosis

factor alpha (TNF-a) and interferon gamma (IFN-g) production in

tumour tissue in a hepatocarcinoma model (37). In addition to

these effects, anti-PD-1 and anti-PD-L1 therapies increase the levels

of M1-like macrophages markers and promote macrophage

polarization towards the pro-inflammatory phenotype (38–40),

improve NK cell anti-tumour efficacy and promote NK cell

persistence and retention of their cytotoxic phenotype (41, 42).

The principal antibodies that were related to ICD induction are

summarized in Table 1.

Monoclonal antibodies can also activate cells of the innate

immune system, such as NK cells, and trigger ADCC via NK cell-

activating receptors, such as CD16. Even polymorphonuclear

granulocytes such as eosinophils, neutrophils, macrophages, and
FIGURE 1

Monoclonal antibodies. The mAbs, alone or in combination with chemotherapy, improve innate cell recruitment, increase non-phagocytic tumour
cell killing by neutrophils and NK cells, favour ADCC and reduce anti-inflammatory cytokines. In a variety of cancer cells, mAbs bind specifically to
cancer cells, favouring Fc receptor recognition by NK cells and triggering ADCC via activating receptors. In addition, mAbs can induce ICD on
cancer cells through the release and exposure of DAMPs to favour phagocytosis by DCs, triggering the stimulation of a protective T-cell (CD4+ and
CD8+) memory immune response.
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monocytes can engage in Fc-mediated effector functions against

antibody-opsonized tumour cells through multiple mechanisms

(43, 44).

Several antibody therapeutics approved by the Food and Drug

Administration (FDA) for various haematological and solid cancers

have been reported (45), and have shown to activate innate immune

cells. Among these, Rituximab was the first FDA approved mAb

against B-cell lymphomas; its therapeutic activity in combination

with chemotherapy improves innate cell recruitment (46). Human

anti-CD47 antibodies enhance nonphagocytic tumour cell killing by

neutrophils and NK cells in an acute myeloid leukaemia (47).

Enavatuzumab is a humanized IgG1 antibody that exerts potent

ADCC on TweakR positive tumour cells by monocytes and NK cells

in vitro (48). Monalizumab, a humanized anti-NKG2A antibody,

increased NK cell activity against cancer cells and established CD8+

T cell function in BALB/c mice bearing B cell lymphoma A20 cells

in vivo (49).

The potential of mAbs to induce innate antitumour immune

responses suggests that it may only be a matter of time before we

fully exploit their capabilities to orchestrate a collaborative effort

between innate and adaptive immune responses against cancer,

ultimately generating long-term antitumour memory (Figure 1).
4.2 Cytokines

Cytokines are molecules that play a central role in cellular

autocrine or paracrine signals that are released or produced in

response to various stimuli, leading to differentiation, proliferation,
Frontiers in Immunology 05
activation, cell death and other effects. Cytokines also regulate

innate and acquired immune responses such as pro- and anti-

tumour effects. Thus, cytokine-based immunotherapies are a

promising therapeutic approach that can be used to promote,

enhance, maintain or regulate the establishment of an anti-

tumour immune system (50).

In general, it has been reported that IL-2, IL-7, IL-12, IL-15, IL-

18, and IL-21 induce the expansion and enhance the cytotoxicity of

NK, NKT and T lymphocytes, whereas granulocyte macrophage

colony-stimulating factor (GM-CSF) and granulocyte-colony

stimulating factor (G-CSF) promote the expansion and activation

of DCs, and most of them have recently been evaluated in various

clinical trials (50, 51). However, most of the cytotoxic or antitumour

evaluations of cytokines are in combination with other agents and

the direct cytotoxic effect of cytokines in tumour cells is

poorly evaluated.

In this sense, the combination of TNF-a and secondary

mitochondria-derived activator of caspases (SMAC) mimetics has

been reported to induce immunogenic cell death in fibrosarcoma,

melanoma, liposarcoma, synovial sarcoma and patient-derived

cutaneous squamous cell carcinoma. In vivo, the combination of

TNF-a, SMAC mimetics and melphalan induced tumour

shrinkage, promoted the activation of CD8+ T cells as well as NK

cells and prolonged survival in a rat model of liposarcoma (52).

On the other hand, a cytokine-triggered inflammatory cell

death pathway involving crosstalk between the machinery of

pyroptosis, apoptosis and necroptosis cell death, termed

PANoptosis, has recently been reported. Subbarao et al. showed

that a cocktail of pro-inflammatory cytokines including TNF-a,
TABLE 1 Monoclonal antibodies related to ICD induction.

mAbs Cancer model DAMPs Cell death
modality/
characteristic

Key Result Ref

Cetuximab alone or
in combination with
FOLFIRI

Panel of BRAF WT
colorectal cancer cell
lines

CRT and ERp57 exposure
to thge cell surface

Apoptosis through
ER stress

Induces phagocytosis of tumour dying cells by DCs and
the induction of a protective CD8+ T cell memory
immune response.

(33)

Obinutuzumab Human lymphoma
cell lines (Raji,
Daudi and SU-
DHL4)

Release of HSP90, HSP60,
HMGB1 and ATP

Non-apoptotic
programed cell
death

Induces DCs maturation (enhancing CD86 and CD83
expression) and subsequent T-cell proliferation.

(29)

Belantamab Multiple Myeloma
(NCI-H929 cells)

Exposure and release of
CRT, HSP70, HSP90,
HMGB1 and release of
ATP

Apoptosis Induces cell-cycle arrest and apoptosis and promotes the
recruitment of immune cells leading to ADCC and ADCP.

(28)

The PD-L1 mAb in
combination with
doxorubicin

Mouse
hepatocarcinoma
cell lines Hepa1-6
and H22

Release of CRT and
HMGB1,
TNF-a and IFN-g
production in tumour
tissues

Apoptosis through
cell cycle arrest

Improves tumour immunosuppressive microenvironment
and promotes the activation and proliferation of NK and T
cells. Also, increased CD8+ T cells infiltration

(37)

Anti-PD1 mAb
combined with
Dinaciclib

Mouse colon
adenocarcinoma in
MC38 cell line

Release of CRT, HMGB1
and ATP

Not described Enhances DCs activation and antitumour activity in
several murine syngeneic tumour models.

(35)

Anti-PD-L1 mAb
combined with
Photodynamic
therapy

Squamos cell
carcinoma SCC7
cells

Release of CRT, HMGB1
and ATP

Not described Stimulates DCs maturation, induces antitumour immunity,
and suppresses tumour progression.

(36)
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IFN-g, IL-1a, IL-1b, IL-18, IL-6, IL-8, and IL-15 induced cell death

in NCI-60 colon cancer cells, while individual treatments or a

cocktail lacking TNF-a and IFN-g did not induce cell death,

suggesting a synergistic effect of this cytokines signalling to

induce cell death. The unique combination of TNF-a and IFN-g
induced PANoptosis in different cancer cell types such as colon,

melanoma, lung cancer and leukemic cell lines, highlighting the

robust cell death induction by TNF-a and IFN-g in a wide range of

cancer cells. Interestingly, the intratumorally administration of a

combination of TNF-a and IFN-g suppresses the tumour growth in

a human colon cancer model (53), while independent treatment

does not induce these effects. However, although pyroptosis and

necroptosis are associated with immunogenicity, immunogenic cell

death has not been assessed, but these reports shed light on the

possibility that these combinations could lead to ICD.
4.3 Oncolytic viruses

Oncolytic viruses (OVs) are a novel immunotherapy strategy

using competent or genetically modified oncolytic viruses that

selectively infect, replicate, and induce cell death in tumour cells.

OVs have a unique mechanism of action, combining direct tumour

cell death, tumour-specific immune response, and antiviral immune

system activation. OVs induce oncolysis through the production of

viral particles that spread to surrounding tumour cells and promote

immune system activation through the release of PAMPs, DAMPs,

viral particles and neoantigens (54, 55) (Figure 2). OVs have been

reported as ICD inducers and, depending on the type of virus
Frontiers in Immunology 06
(adenovirus, herpes simplex, semliki forest virus, vaccinia virus,

reovirus, among others), they can induce cell death by different

mechanisms. These cell death mechanisms include apoptosis,

necroptosis, pyroptosis and autophagic cell death, but in general

they all induce the exposure and release of DAMPs and PAMPs

(54, 56).

Currently, a diverse array of OVs has undergone extensive

evaluation of their ability to induce ICD across a wide spectrum of

tumour models. Notable examples include adenovirus OBP-702 in

pancreatic cancer (57), adenovirus dl922-947 in mesothelioma (58),

talimogene laherparepvec, and measles virus in melanoma (59),

adenovirus serotype 5, semliki forest virus, and vaccinia virus in

osteosarcoma (60), reovirus type 3 Dearing strain in lymphoma and

prostate cancer (61), adenoviruses, Ad884 and Ad881 in colon

cancer (62), oncolytic Newcastle disease virus (NDV) in human

lung cancer (63), while herpes virus H-1PV, RH2, and VC2 in

pancreas, squamous carcinoma, and melanoma cancer cells (64–

66) (Table 2).

These viruses have demonstrated their capacity to trigger the

release of critical DAMPs, such as ATP, HMGB1, calreticulin,

HSP70, and HSP90 from dying cancer cells. This release enhance

the phagocytosis and maturation of DCs, facilitating the infiltration

of cytotoxic T cells, and bolstering the NK cell’s antitumor activity,

particularly notable in the case of the measles virus, reovirus type 3

Dearing strain, and HSV-P10 (59, 61, 70). This immunogenic

response leads to the secretion of pro-inflammatory cytokines

such as IFN-g, TNF-a. Table 2 offers a comprehensive

compilation of various research studies delving into the utilization

of oncolytic viruses as potent inducers of immunogenic cell death.
FIGURE 2

Oncolytic virotherapy. Oncolytic virotherapy has a dual antitumour effect. It induces a direct cytotoxic effect, causing cancer cell death through
mechanisms involving the exposure and release of DAMPs, the production of viral particles and finally the induction of immunogenic cell death. At
the same time, oncolytic virus triggers the activation of innate immune cells, leading to the stimulation of pro-inflammatory responses. While this
may enhance the anti-tumour immune attack, it could also inhibit the virus spread, which could pose a challenge to treatment efficacy.
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In addition to their primary role in killing cancer cells, OVs also

serve as potent activators of the innate immune system (71). This is

because OVs are pathogens specifically designed to infect and

destroy cancer cells. When OVs infect tumour cells, they elicit an

inflammatory response, leading to the localized production of

cytokines and chemokines that promote the stimulation of the

innate immune response trough different mechanisms. These

mechanisms include the activation and recruitment of neutrophils
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(72), macrophages, and NK cells (71). Furthermore, OVs can

initiate the activation of PRR in innate cells, triggering the

activating receptors such as toll like receptors (TLRs).

Thus ICD-induction by OVs plus the antiviral immune

response activated by OVs, promote an immune-stimulatory

environment, leading to the uptake of TAAs and neo-antigens by

PRR stimulated antigen presenting cells (APCs). Altogether, these

events result in a dual immune system activation, on the one hand
TABLE 2 Oncolytic virus eliciting immunogenic cell death.

Virus Cancer model DAMPs Cell death modal-
ity/characteristic

Antitumour effect and
immune system involvement

Ref

Adenovirus
OBP-702

Human Pancreatic ductal adenocarcinoma cells
(PDAC) with different p53 status (Capan-2, PK-
59, PK-45H, Capan-1, MIA PaCa-2, BxPC-3) and
murine PDAC cells (PAN02)

ATP and
HMGB1

Increased the expression of
p53, cleaved PARP,
decreased the expression of
p62

Tumour infiltration of CD8+ T cells and
CD11c dendritic cells

(57)

dl922-947 Malignant mesothelioma cell lines MSTO-211H
and NCI-H28

ATP,
HMGB1
and
Calreticulin

Necroptosis Inhibits tumour growth and reduces the
tumour micro-vessel density (TMD)

(58)

Talimogene
laherparepvec
(T-VEC)

Human melanoma cell line SK-MEL-28 ATP,
HMGB1
and
Calreticulin

Cleaved caspase-3 and
PARP

Increased of CD3+ and CD8+ T cells,
and induces a systemic pro-inflammatory
gene signature

(67)

Wild-type
human
Adenovirus
serotype 5
(Ad)

Human bone osteosarcoma cell line HOS and
human lung carcinoma cell line A549

ATP,
HMGB1,
Calreticulin
and HSP90

RIP3 and MLKL activation,
Inflammasome assembly
and mature IL-1b,
autophagosome formation

Increased DCs phagocytosis and
maturation, activation of antigen specific
T cells

(60)

Semliki Forest
virus (SFV)
strain4

Human bone osteosarcoma cell line HOS and
human lung carcinoma cell line A549

ATP,
HMGB1,
Calreticulin
and HSP90

Cleaved caspase-3/7 and
caspase-8, autophagosome
formation

Increased DCs phagocytosis and
maturation, activation of antigen specific
T cells

(60)

Vaccinia virus
(VV) Western
Reserve stain

Human bone osteosarcoma cell line HOS and
human lung carcinoma cell line A549

ATP,
HMGB1,
Calreticulin
and HSP90

Activation of MLKL Increased DCs phagocytosis and
maturation

(60)

Measles virus Human melanoma cell lines Mel888, Mel624,
SkMel28 and MeWo

Not
determined

Not determined Increased the activation marker CD69
and degranulation marker CD107a in
NK cells.
Promoted DCs maturation and T CD8+
cells priming.

(59)

Reovirus type
3 Dearing
strain

B cell lymphoma (Daudi) and bladder (EJ)
tumour cell lines

Prostate cancer-derived cell lines PC-3, DU145
(human), and TRAMP-C2 (Murine)

Not
determined

ATP,
HMGB1
and
Calreticulin

Not determined

Not determined

Promoted DCs maturation and
proliferation of T cells and enhance NK
cells anti-tumour-cytotoxicity
Promoted the survival of TRAMP-C2-
bearing C57BL/6 mice, and increased the
CD4+ expressing IFN-g cells and
promotes antitumour memory

(61,
68)

(61,
68)

Reovirus type
3 Dearing
strain-mutant
jin-3

Human prostate cancer cell lines PC-3M-
Pro4luc2, DU145, and 22Rv1

Not
determined

Cleaved caspase-3 Decreased tumour burden and tumor
volume.
Increased the expression of the
inflammatory cytokines CXCL10, TNF-
a, and IL-1b.

(69)

HSV-P10 Murine breast cancer cell lines DB7, Met-1, and
MVT-1 and human MDA-MB-231, SK-BR-3,
MCF-7, and MDA-MB-468

Not
determined

Not determined Increased mice survival and induced
antitumour immune memory of mice
bearing breast cancer brain metastases.
Induced intratumoral infiltration of
macrophage, DCs, NK and CD8+ cells.

(70)
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the generation of immune responses against virally infected cancer

cells, and in the other hand immune responses against TAAs and

neo-antigens of un-infected cancer cells. Thus, the ‘indirect’ effects

of the antiviral immune response within the tumour site, including

the release of pro-inflammatory cytokines and the cytotoxicity of

infected tumour cells, can reverse the immunosuppressive TME.

This in turn may enhance ICD-related properties, including

stimulation of innate and adaptive immune cells, release of pro-

inflammatory cytokines, and recruitment of immune cells into

tumours (63, 73). The anti-viral immunity triggered against viral

antigens from the resultant infection is also a key player during OV-

based therapies, as tumour cell infection promotes the antiviral

immune response, which can be seen as a negative response

triggered against OVs, but it helps to settle an inflammatory site

that turns “cold” tumours “warm” (74).

However if unbalanced, this immune response could induce

premature clearance of OVs and compromise their antitumour

efficacy (75), as it has been observed in herpes simplex virus (oHSV)

therapy, where activated NK cells reduce the anti-tumour efficacy of

HSV in glioblastoma cells (76). In this regard, the combination of

transforming growth factor beta (TGFb) and oHSV therapy inhibits

NK cell recruitment and function, resulting in enhanced viral

replication in glioblastoma mouse models (77). In addition, the

downregulation of the NK cell-activating ligand CD155 inhibited

NK cell recruitment in vitro, enhancing viral replication in a rat

model of hepatocellular carcinoma (78). IFN-g and TNF-a
secretion also induce virotherapy resistance in different animal

models (79, 80), being IFN-g signalling modulators/inhibitors a

strategy used to improve the success of OV treatment (81).

In summary, oncolytic viruses exert a wide range of direct and

indirect antitumour effects, including tumour oncolysis, induction

of tumour-specific immune responses and activation of the antiviral

immune system. These effects culminate in the effective generation

of neoantigens and the release of DAMPs and PAMPs, which in

turn promote the recruitment of neutrophils, granulocytes, NK cells

and APCs to the site of viral replication (56, 72, 81). This in turn

enhances the activation of the T- and B-cell-mediated adaptive

immune response (56). Finally, these combined effects can

potentiate the anti-tumour immune response, which is further

enhanced by the induction of ICD, ultimately leading to the

establishment of anti-tumour memory.
4.4 Cellular immunotherapies

Cellular immunotherapy, or adoptive cell therapy, is a form of

treatment that involves the infusion of live cells into a patient’s body

to eliminate cancer. Some of these approaches involve the direct

isolation and subsequent expansion of immune cells (T cell-based,

NK cell-based, macrophage cell-based, and DC-based), while others

use genetic engineering techniques, such as gene therapy, to

enhance their cancer-fighting potential (such as chimeric antigen

receptor (CAR)-based immunotherapies) . CAR-based

immunotherapies involve the genetic modification of the cells to
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confer tumour specificity and include CAR T cells, which comprise

the innate T cell subsets such as the gd T cells (gdCAR T cells) and

natural killer T (CAR NKT), CAR NK, and CAR macrophages,

which together enhance the potential of cellular immunotherapies

(82, 83). In this section, we will focus on the role of cellular

immunotherapies in ICD and the activation of innate immune cells.

4.4.1 CAR-based immunotherapies
4.4.1.1 CAR T-cell therapies

CAR T-cell therapy is a highly promising and rapidly advancing

treatment approach primarily for haematologic malignancies (84,

85). CAR T cells eliminate cancer cells by binding to target cell

surface antigens without the need for MHC restriction. Many

articles have reviewed broadly their use, limitations and potential

strategies (86–89), while in this review we will principally approach

their possibility as ICD inductors, and CAR innate T cell subsets.

Although T cells predominate in CAR-based immunotherapies,

innate T cell subsets can also be used for CAR redirection, such as

gdCAR T cells and CAR NKT cells. It has been proposed that CARs

in innate cells may be preferable than CAR T cells, because of a

reduced cytokine release storms (CRS) and graft versus host disease

(GvHD). CAR NKT cells simultaneously express the invariant TCR

in addition to the CAR, thereby preserving their responsiveness to

glycolipid antigens (90). CAR NKT cells in addition to presenting

effects on liquid tumours like B-cell lymphoma and multiple

myeloma, through CD19, CD38/BMCA, CEA, or HER2 targeting

(91, 92), they can also target solid tumours like GD2 in

neuroblastoma (93), CSPG4 in melanoma (94) due to their

unique capabilities, like high infiltration into TME (91). On the

other hand, gdCAR T cells can respond to CD19-positive and

-negative tumour cells, suggesting that CD19-directed gdCAR T

cells can target leukemic cells even after antigen loss (95). In

addition to CD19 targeting, gdCAR T cells have also shown

interesting results when targeting glypican-3 in hepatocellular

carcinoma (96). In addition, gdCAR T cells produce less IFN-g
and other inflammatory cytokines when compared to conventional

ab CAR T-cells, which may result in a lower risk of CRS (97).

CAR T cells mediate their anti-tumour effects using similar

mechanisms as native T cells, such as granular exocytosis and

expression of death ligands (98). These mechanisms lead, in native T

cells, to different cell death modalities that include apoptosis,

necroptosis, pyroptosis, and ferroptosis (99), and can lead to

immunogenic cell death in target cancer cells (100, 101). T

lymphocytes promote calreticulin exposure, HMGB1 and IL-1b
release, leading to DC uptake and cross presentation, providing a

mechanism for amplification and self-perpetuation of the immune

response against cancer neoantigens (100, 101). They also release

cytokines that sensitise the tumour stroma and promote

inflammatory signalling, such as IFN-g which has also the ability to

sensitize to cell death and directly trigger cell death alone or combined

with other inflammatory molecules, such as TNF-a (99). Although

there are no reports specifically describing whether CAR T, gdCAR T

or CAR NKT therapies can induce ICD on cancer cells, it is likely that

this could occur, as they share common mechanisms of cytotoxicity.
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4.4.1.2 CAR NK Cells

Natural killer cells are a vital component of the innate immune

system, serving as the frontline defence against infected,

transformed, and stressed cells. NK cell activation is initiated by

stimulation of an activating receptor, often NK46 encoded by NCR1

(102, 103). Upon activation, NK cells release cytotoxic granules that

contain perforin and granzymes to directly lyse cells (104, 105), or

regulate the adaptive immune responses by releasing chemokines

and cytokines such as IFN-g and TNF-a. Importantly, NK cells are

critical for tumour immunosurveillance, as increased cancer

susceptibility and metastasis have been reported in mouse models

and clinical trials with low NK activity (106, 107). Due to their

inherent ability to target and destroy cancer cells, NK cell-based

immunotherapies have been investigated for cancer treatment for

decades, including therapies such as CAR NK cell therapy.

A wide range of tumour antigens have been targeted by CAR

NK cells in pre-clinical studies for haematological malignancies and

solid tumours (108). As for CAR T therapies CD19 is the most

common target in CAR NK cells in both preclinical and clinical

studies. Also, molecules such as CD20 and Flt3, have been

developed as specific targets of CAR-NK against B-cell tumours

(109), while CD38, CD138, B-cell maturation antigen, and

signalling lymphocytic activation molecule family member 7 have

been developed against acute myeloid leukaemia, and CD3, CD5

and CD7 for the cases of T-cell malignancies (110–113).

Interestingly, in another therapeutic approach, CAR NK cells seek

to eliminate myeloid-derived suppressor cells (MDSCs) (114) and

M2TAMs (115) to reve r s e the immunosuppre s s i v e

tumour microenvironment.

While detailed analyses of cell death induced by CAR NK cells

have not been conducted, it is plausible that they share similar

mechanisms with conventional NK cells, which execute cellular

cytotoxicity through granule exocytosis and death ligands. NK cells

possess the versatile ability to activate diverse cell death pathways,

including apoptosis, necroptosis, and pyroptosis, and they are also

capable of mediating immunogenic cell death by enhancing

dendritic cell uptake of dying cells and facilitating antigen cross-

presentation, ultimately leading to the development of

immunogenic memory (101, 116). Similar to CAR T cells, there

are no reports describing whether CAR NK therapies can induce

ICD on cancer cells, but it is likely that this mechanism could also

be applicable.

4.4.1.3 CAR macrophages

CAR macrophages (CAR M) are widely recognised as a

potential treatment for solid tumours due to their prominent

functions in immune regulation and their ability to infiltrate solid

tumours. They are currently under clinical investigation as they

retain phagocytic and M1 functions while migrating to both

primary and metastatic tumours (117). Tumour antigen-specific

CARs show significantly enhanced cytotoxicity against tumour

antigen-expressing cells and have the potential to remodel the

tumour microenvironment (118). CAR constructs used in CAR

M cells principally include CD19 in non-solid tumours (119), HER
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2 in breast (120) and ovarian cancer cells (121), and mesothelin in

ovarian cancer cells (121).

The molecular mechanisms underlying the anti-tumour activity

of macrophages are not fully understood. It has been established

that macrophages have the ability to eliminate cancer cells through

multiple mechanisms, including (1) indirect killing by recruiting

cancer cell-killing immune cells such as innate (NK) and adaptive

(T) cells (2), cytolysis through antibody (Ab)-dependent cellular

cytotoxicity, and (3) direct cancer cell killing by releasing oxygen

radicals such as nitric oxide, reactive oxygen species, IL-1b, and
TNF-a (122). Although nitic oxide (NO), reactive oxygen species

(ROS), IL-1b and TNF-a mediated cell death has been studied in

cancer cells and may be associated with ICD induction, this cell

death mechanism has not yet been elucidated in macrophage

mediated cell death.
4.4.2 Dendritic cells

Dendritic cells are the major APCs that form the link between

the innate and adaptive immune systems. These cells efficiently

process and present antigens via histocompatibility complex I and II

molecules to both innate and adaptive immune cells, thereby

triggering the activation of both cellular and humoral immune

responses (123).

In addition, DCs play a central role in the activation of the

antitumour response during immunogenic cell death. Following the

induction of cancer DAMPs exposure or release by various

treatments (anthracyclines, oncolytic viruses, anticancer peptides,

among others) , DCs can be st imulated by di fferent

pathways (Table 3).

Due to the immunostimulatory effects of DCs, and their crucial

role in the presentation of TAAs, DCs are an excellent means of

enhancing the body’s natural anti-tumour responses. Therefore,

DC-based immunotherapy focuses on harnessing the potential of
TABLE 3 The impact of DAMPs in Dendritic cells.

DAMPs Cell
receptor

Effect in DCs Ref

ATP P2X7, P2Y2 Intracellular Ca2+ increase, actin
rearrangement, chemotaxis, migration,
activation of NLRP3 inflammasome
and release of IL-1b

(124–
126)

Calreticulin CD91 Promotes the phagocytic activity and
the release of pro-inflammatory
cytokines

(125–
128)

HSP70 and
HSP90

CD91,
TLR4

Promotes the antigen cross
presentation, and enhances the
processing and presentation of antigens

(129,
130)

HMGB1 TLR2, TLR4
and RAGE

Stimulates the generation of pro-
inflammatory cytokines while
simultaneously aiding in effective
antigen presentation and promotes
cross presentation

(131–
133)
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DCs to effectively present tumour antigens and induce targeted

anti-tumour immune responses.

In DC-based immunotherapy, the source of the DCs (peripheral

blood monocytes, haematopoietic precursors, peripheral blood

enriched DCs, etc.) and the stimulation with the antigen are

crucial steps for the efficacy of the therapy. In addition, different

sources of TAAs such as: whole tumour lysates, synthetic peptides,

purified tumour antigens, genetically engineered DCs, among

others, and different antigen-loading methods are used for

stimulation (134). Interestingly, a very important source of TAAs

for DC vaccines are cancer cells killed by ICD inducers or strategies.

In particular, whole tumour vaccines are crucial for the stimulation

of long-term anti-tumour immune responses by DC vaccines, as

they serve as a potential reservoir of tumour antigens and could lead

to enhanced anti-tumour T-cell responses (135). DCs vaccines

loaded with doxorubicin-treated tumour cells are effective in a

prophylactic application by reducing tumour development in

neuroblastoma (NXS2) and melanoma (B16F10) cell-bearing mice

in a prophylactic and therapeutic setting, respectively (136, 137).

Also, a DCs vaccine loaded with shikonin (an ICD inductor) treated

melanoma cells significantly promoted tumour reduction and

improved survival of mice in a therapeutic application (137).

Additionally, DCs stimulated with shikonin-treated breast cancer

(4T1) cells suppressed metastasis and increased survival of breast

cancer cells in an orthotopic tumour resection model (138).

On the other hand, although ICD was initially conceived as a

form of chemotherapy-induced tumour cell death, physical

anticancer approaches (radiotherapy, photodynamic therapy,

among others) have demonstrated the capacity to generate an

immune response that can be exploited in DC-based vaccine

strategies (125). In this sense, it has been reported that DCs

vaccines stimulated with killed squamous cell carcinoma cells by

PDT promote tumour reduction and increase the survival of mice

showing a better response that the application of tumour cell lysate

(139), indicating that the use of DCs enhance the antitumour

response. In addition, PDT-based DCs vaccine inhibits the

growth of mesothelioma tumours and increases the survival of

mice (140).

Furthermore, immunotherapy with DCs is currently being used

in combination with ICD inducers. Mice treated with DCs and

doxorubicin show an increase in CD8+ T lymphocytes within

metastatic tumours and inhibition of metastatic growth (141).

Similarly, an increase in serum IL-2, IL-12 and IFN-g, as well as
the proportion of IFN-g+ CD8+ T cells, was observed in a

randomized trial of oesophageal cancer patients treated with DCs

vaccine and radiotherapy (142).

Finally, despite the diverse reports of DCs vaccine effects, most

of the DCs activities in immunotherapy focus on the activation of

the adaptive immune system. However, there are reports on the

effect of DCs in different cells of the innate immune system. DCs

activate and potentiate the cytotoxic activity of NK cells via IL-12,

IL15 and IFN-g (143). In addition, DCs can activate NKT cells

through the expression of invariant CD1 molecules and the

presentation of glycolipids (144). Thus, DCs play a critical role in

the activation of both innate and adaptive immune responses.

However, the activation of innate immune cells by DCs is poorly
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understood and further evaluation in the context of ICD induction

is needed to expand the knowledge of the effect of DCs and to

propose more efficient combinatorial treatments.
4.5 Other immunomodulators

4.5.1 Biological immunomodulators
Biological immunomodulators, also called biological therapies

are a subset of immunotherapies obtained from biological entities,

such as bacillus Calmette-Guérin (BCG), an attenuated

Mycobacterium bovis derivative, and dialyzable leukocyte extracts,

obtained from immune cells, among others. They are used in several

diseases such as autoimmune diseases, viral and bacterial infections

and recently in cancer (145, 146).

Bacille-Calmette-Guerin (BCG) is a live attenuated tuberculosis

vaccine that is widely used in neonates to induce long-term

immunity against pathogens such as Mycobacterium tuberculosis,

Candida albicans and Staphylococcus aureus (147). Few reports

have described its involvement in the cancer immune response. In

this sense, it has been reported that it induces caspase-independent

cell death with the release of HMGB1 into the extracellular space in

a dose-dependent manner in urothelial carcinoma (UC) T24 and

253J cell lines. The authors also found urinary levels of HMGB1 in

patients diagnosticated with UC at 24 hours after BCG therapy

(148). In other hand, BCG vaccination triggers innate immune

training in several types of immune cells, including monocytes,

neutrophils, NK cells and dendritic cells. This training occurs

through the interaction of various PRRs with PAMPs present in

the bacterial cell wall (149). Immediately, innate cells respond by

secreting pro-inflammatory cytokines, including IL-6 IL-1b, TNF-
a, monocyte chemoattractant protein- 1 (MCP-1), and IL-8 (150).

Consequently, cellular infiltration of T cells (CD3+), monocytes

(CD14+), but predominantly CD15+ neutrophils occur at the

vaccination site (151). In vitro studies show that human blood

neutrophils obtained from BCG vaccination sites cooperate with

dendritic cells to enhance antigen-specific T-cell responses (152)

Indeed, BCG enhances innate immunity in the context of pathogen

protection, however the implication of BCG vaccination and anti-

tumour immunity is not yet described (148).

Other types of biological immunomodulators are animal

extracts derived from the immune system. This group includes

substances produced by immune system cells, also known as

dialysable leukocyte extracts (DLE). DLE are a diverse mixture of

low-molecular weight compounds derived from blood or lymphoid

tissue with immunomodulatory properties (153). Several reports

have shown that DLE derived from human blood or lymphoid

tissue from different animals (crocodile, porcine or bovine) can

regulate numerous molecular targets, thereby facilitating

immunomodulatory effects in conditions such as autoimmune

diseases, immunodeficiencies, asthma, bacterial infections and

certain types of cancer (153–156). The bioactive peptides

contained in DLE, irrespective of their source species, have

displayed analogous effects on both mouse and human leukocytes,

involving the activation of comparable signalling pathways

associated with their immunomodulatory properties (155, 157).
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Recently, DLE have been shown to induce cytotoxicity in several

cancer cell lines (156, 158–161).

Immunepotent CRP (I-CRP) is a DLE obtained from bovine

spleen (bDLE), which has a wide range of applications in humans.

Several studies have shown that it can modulate human and murine

immune cells, while inducing cytotoxicity against human and

murine tumour cell lines. In particular, its cytotoxic effect has

been demonstrated in lung cancer (161), breast cancer (156, 159,

160), murine lymphoma (146), cervical cancer (160, 162) and

leukemic cell lines (163). Currently, in a murine melanoma

model, I-CRP has been shown to increase the release of DAMPs

and the immunogenicity in combination with oxaliplatin (164). It

also induces ICD in a murine breast cancer model, involving the

DCs maturation in lymph nodes and the increase of CD8+ T cells in

lymph nodes, peripheral blood and tumour site, favouring long-

term memory (156). On the other hand, in human PBMC, ICRP

increased the CD56Dim CD16- subset and modulated NKp30,

NKp44, NKp46, NKG2D, NKG2C and KIR receptors, whereas

there were no significant differences in CD160, CD85j and CD226

in human NK cells. These alterations revealed increased antitumour

cytotoxic activity due to changes in the receptor repertoire of NK

cells (155) (Figure 3).

Another type of DLE, derived from human blood cells

(Transferon), suppressed tumour growth and promoted the

differentiation of haematopoietic stem/progenitor cells into

CD56+CD16+CD11c+ NK-like cells capable of eliminating

tumour cells and stimulating the proliferation of gd T

lymphocytes (165). Besides, it decreased metastatic dissemination

of intracardiac prostate epithelial cells and prevented tumour
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establishment of subcutaneous isotransplants. This effect has been

associated with high levels of IL-12 and CXCL1, diminution of

VEGF levels and changes in tumour infiltration of mononuclear

cells and neutrophils (158). Also, Immodin, another human DLE, in

combination with manumycin A suppressed tumour growth and

prolonged survival in mammary tumour-bearing mice. This

combination increased the infiltration of neutrophils and

eosinophils into the TME, while independent treatments

increased the phagocytic activity of monocytes and neutrophils

(166). However, the immunogenicity of cell death has not been

evaluated. In Figure 3 we can depict the effect of biological

immunomodulators in cancer cells and innate immune cells.

4.5.2 Synthetic immunomodulators
Synthetic immunomodulators are chemical agents that can be

derived from diverse sources and can modulate biological responses

by interacting with specific cellular targets (167, 168). Synthetic

immunomodulators, which may encompass peptides and small

molecules, have been used for decades (167–170). They are now

being employed in cancer immunotherapy, with a focus on

targeting specific surface molecules on cancer cells. These

compounds can directly influence signalling pathways and

modulate immune cells to selectively target specific types of

cancer cells (168, 170). Additionally, some of them show a

cytotoxic effect and their role as ICD inducers has recently

been explored.

One of these molecules is imiquimod (IMQ), the first member

of the immune response modifier family to be approved by the FDA

in 1997, for the treatment of external genital and perianal warts
FIGURE 3

Effect of Biological Immunomodulators on cancer cells and innate immune cells. BCG induces HMGB1 release in cancer cells that promotes ICD.
Also, on innate immune cells it induces pro-inflammatory cytokines’ release IL-6, IL-1b, TNF-a, MCP-1, and IL-8. On the other hand, bovine
dialysable leukocyte extracts induce cytotoxicity on a variety of cancer cells, in most cases through immunogenic cell death induction, thereby
enhancing antitumour immune responses. In parallel it enhances effector activity on NK cells against cancer cells while decreasing proinflammatory
cytokines on macrophages and monocytes during lipopolysaccharide (LPS) stimulation.
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(171, 172). IMQ activates toll like receptor 7 (TLR7), which is

overexpressed in different types of cancer (173), it also has potent

antiviral and antitumour effects as shown in preclinical and clinical

studies. Specifically, in human peripheral blood mononuclear cells

(PBMC), IMQ has been shown to increase cytokine production

including IFN-g, TNF-a, IL-1, IL-6 and IL-12 by macrophages and

monocytes. IMQ also stimulates NK cell activity against skin-

infected cells and the activation of macrophages to produce nitric

oxide (171, 174). Also, in acute and chronic infectious diseases it

promotes anti-inflammatory molecules such as IL-10, and

indoleamine 2,3-dioxygenase (IDO) (175–177).

In the context of cancer cells, it can directly induce tumour

autophagic cell death in melanoma (178), breast cancer (179) and

colorectal cancer (180). It has also been shown that IMQ induces

ICD by promoting ROS production, which triggers ER stress

followed by surface-exposed CRT, ATP secretion and HMGB1

release (Figure 4), in BCC/KMC-1, AGS, HeLa and B16F10

cancer cells (181). Vaccination with IMQ-killed cancer cells also

increased T lymphocyte proliferation, cytotoxic killing and immune

cell infiltration into the tumour lesion in an in vivo melanoma

model (181). In transgenic mice IMQ promoted breast cancer

tumour regression, which progressed at the end of treatment due

to CD4+ cells augmentation that enhanced IL-10 levels (182). On

the other hand, IMQ could also improve the antitumour immune

response by MAA peptide-pulsed DC immunotherapy (183). These

effects are due to the stimulation of TLR7 in tumour cells and seem

to depend on the type of cancer, the level of TLR7 expression, the

downstream function of TLR7 signalling, or chemotaxis of
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suppressive cells into the tumour (173). Thus, although IMQ has

promising cell death inducing and immunomodulatory effects,

caution should be taken about these contrary effects reported.

Other synthetic molecules such as thalidomide, lenalidomide

and pomalidomide have demonstrated cytotoxicity in a variety of

cancer subsets, however their activity as ICD inductors have not

been described (184, 185). Recently, clinical trials have reported

improved antitumour responses in multiple myeloma when used

alone or in combination with other immunomodulatory agents

(186–188). Thalidomide, in particular, was originally synthesised in

the late 1950s as a non-addictive, non-barbiturate sedative (189). It

is clinically useful in a number of cancers because of its antitumour

activity, which is related to the secretion of various cytokines,

including IL-2 and IFN-g as well as inducing T-cell costimulatory

and antiangiogenic activities (189, 190). These reports suggest that

these molecules can provide satisfactory stimulation of innate

immune cells and contribute to cancer elimination through

ICD induction.

4.5.2.1 Peptide-based immunotherapies

Peptides are short-chain molecules, typically consisting of less

than 50 amino acids. They have applications in the treatment of

various conditions such as allergies, infections, tumours, and other

diseases. Some peptides can induce cell death in bacteria, fungi, and

tumour cells. In particular, peptides are gaining prominence in the

field of immunotherapy due to their significant impact on the

immune system (191). Therapeutic peptides have found

application in immunotherapy, serving various purposes such as
FIGURE 4

Synthetic immunomodulators in cancer cells and innate immune cells. Imiquimod induces ATP and HMGB1 release and CRT exposure, leading to
ICD in cancer cells, also on innate immune cells it induces pro-inflammatory cytokines’ release favouring antitumour immune responses. TSP-1
peptide mimics induce cytotoxicity in a variety of cancer cells leading to ICD, through CRT exposure and ATP, HMGB1, HSP70 and HSP90 release,
also in immune cells it induces the modulation of IL-12 and TNF-a and DC maturation. All these effects promote antitumour immune responses.
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cancer vaccines, blocking or inhibiting agents, and inducers of cell

death, among others (192). As this review focuses on

immunotherapies that induce ICD, we aimed to describe

immunotherapeutic peptides that are capable of inducing ICD.

4.5.2.2 Host defence peptides

An important source of ICD-inducing peptides are the host

defence peptides (HDP), also known as antimicrobial peptides

(AMPs), which are a conserved component of the innate immune

system of a wide range of organisms (193), and they have specific

physicochemical properties, such as a net positive charge and a

specific distribution of cationic and hydrophobic amino acids (194),

which enable their electrostatic interaction with cell membranes,

membrane proteins or intracellular targets to promote cell lysis or

regulated cell death.

Host defence peptides have immunomodulatory properties,

such as modulation of inflammatory responses, chemokine

expression, activation and differentiation of leukocytes,

stimulation of antigen presentation, among others (193). Many

HDP also have antitumour activities, most of them related to

overcoming the immunosuppressive microenvironment,

including: reduction of immunosuppressive cells, migration of

phagocytic cells, reduction of pro-tumour molecules, recruitment

of antitumour cytotoxic cells, among others (193). Among the

HDP, some have been reported as ICD inducers, such as LTX-

315 which, in addition to its effect in reducing pro-tumour immune

cells, has also been reported to induce the emission of DAMPs

(calreticulin, HMGB1 and ATP) and to induce in vivo myeloid and

T lymphocyte tumour infiltration (195). The oncolytic peptides

DTT-205 and DTT-304 induced calreticulin exposure and HMGB1

release, promoting tumour remission and the development of long-

term immune memory against sarcoma and lung cancer cells in vivo

(196). In addition, the peptide LTX-401 induced the release of ATP

and HMGB1, and induced tumour remission with abscopal effect

and promoted the establishment of antitumour memory against

hepatocellular carcinoma cells in vivo (197). Taken together, the

diverse effects of HDP could enhance their ICD properties to

promote the antitumour immune system activation.

4.5.2.3 Thrombospondin-1 peptide mimics

Thrombospondin-1 (TSP-1) mimic peptides are synthetic

sequences (natural or modified) designed to mimic the functions

of the different motifs in the TSP-1. In this sense, two sequences

with a VVM motif were identified within the C-terminal cell-

binding domain (CBD) of TSP-1 (198, 199). This led to the

generation of 7N3 (1102-FIRVVMYEGKK-1112) and 4N1 (1016-

RFYVVMWK-1024) peptides. Then, a modified version of 4N1,

called 4N1K (K-RFYVVMWK-K) was developed, containing two

lysine (K) residues flanking the 4N1 sequence, to increase the

peptide solubility (198, 200).

4N1K was found to induce cell death in leukemic cells in

addition to the modulation of cytokines in DCs and microglial

cells (201–204). Thus, to improve these effects a structure-activity

relationship study led to the synthesis of the first serum-stable

analogue of 4N1K, called PKHB1. PKHB1 is recognized as an ICD
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inducer in leukemic and breast cancer cells. This peptide induces a

calcium-dependent and caspase-independent cell death

mechanism. Furthermore, PKHB1-induced cell death exhibits key

molecular hallmarks of ICD, including the exposure of calreticulin,

HSP70, HSP90, and the release of ATP and HMGB1 (Figure 4) in

various leukemic and breast cancer cell lines (205–207).

Furthermore, PKHB1-treated cells promote DC maturation and

stimulate the antitumour response of T-cells ex vivo. In a

prophylactic context, PKHB1-treated cells prevent the tumour

establishment in leukemic and breast cancer tumour bearing

mice. PKHB1 also induce tumour shrinkage, increasing cytotoxic

T-cell counts in blood and tumours, while reducing MDSCs and

regulatory T-cells (T-regs) in breast cancer tumour-bearing mice

(207). Notably, PKHB1 possess antiviral properties by triggering

ICD in cases of infectious corneal disease caused by Herpes simplex

virus type II. This event triggers an antiviral immune response, that

reduces viral levels and mitigates the severity of the infection (208).

Finally, PKHB1 also promotes the elimination of inflammatory

macrophages in models of subretinal and peritoneal inflammation

(209). Despite the evaluation of the immunogenicity and the

antitumor effect of PKHB1, its impact on innate immune system

cells and their role in the antitumor activity of PKHB1 have not

been evaluated to date.
4.5.2.4 Other peptides as ICD-inductors

F-pY-T is a mitochondria-targeting peptide that has been

reported as an ICD inducer, triggering calreticulin exposure (in

vitro and in vivo), ATP and HMGB1 release. F-pY-T in vivo

induced DC maturation and promoted the intratumoral

infiltration of CD8+ cells, and inhibited tumour growth (210).

The recombinant human milk peptide lactaptin RL2 induced

calreticulin exposure, ATP and HMGB1 release in breast cancer

cells and promoted the phagocytosis of dying-cancer cells by

macrophages. In vivo, vaccination with RL2-treated cells also

increased the survival of mice (211).

The calmodulin binding peptide CBP501 has been reported as

an ICD inducer, which promotes calreticulin exposure and HMGB1

release, and increases in vivo mouse survival in vaccination

experiments (in combination with cisplatin).Also, the

combination of cisplatin and CBP501 also reduces tumour growth

and increases intratumoral CD8+ cell infiltration (212).

Other peptides that have been demonstrated to possess

immunomodulatory proprieties and induce immunogenic cell

death are peptide-based proteasome inhibitors. Proteasome

inhibitors are a class of drugs whose main mechanism is to

inhibit the multi-protease subunits of the proteosome, leading to

the accumulation of undegraded proteins, affecting different cellular

processes which lead to cell death (213). Bortezomib is a dipeptide

boronic acid derivative that acts as a reversible inhibitor of the 26S

proteasome and is the first FDA approved proteosome inhibitor

(214). It has been shown to have various immunomodulatory effects

in allogeneic stem cell transplantation, antibody-mediated graft

rejection and various inflammatory diseases (215). Furthermore,

it is considered an ICD inducer, as it (1) prevents breast cancer

tumour establishment (216) (2); promotes HSP90 exposure, DC
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maturation and antitumour T-cell response against myeloma cells

from patients (217) (3); triggers calreticulin exposure, induces DCs

maturation (increase of CD83 and CD86) and the antitumour T-cell

response, increasing the number of effector memory CD4+ and

CD8+ cells (4); the in vivo vaccination with bortezomib-treated cells

prevents tumour establishment and promotes long-term

antitumour memory against multiple myeloma cells (218).
5 Discussion and concluding remarks

Since 1891, when Coley used the first immunotherapies, there

have been tremendous advances and discoveries that have revealed

the promising potential of immunotherapies for the prevention and

treatment of cancer. Although these are usually combined with

other cancer treatments capable of killing cancer cells to attack

cancer cells from different perspectives, some immunotherapies

have the capacity to be cytotoxic to cancer cells through

immunogenic cell death induction. Although few in number,

these ICD-inducing immunotherapies represent a promising and

innovative approach in the fight against cancer, with the innate

immune system playing a key role in their success.

ICD has the potential to induce a robust antitumor immune

response (219). However, the principal challenge is associated with

treatment resistance, which could hamper its therapeutic efficacy.

This may be related with the ICD induction which depends on the

host (for example immune perception of ICD), the tumour (for

example DAMPs’ exposure), the ICD inductor (for example, its

immunosuppres s i ve e ff e c t s ) , o r the spec ific cancer

microenvironment (the specific immunosuppressive cells present

in the TME) (220). Cell death resistance could be addressed by
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combination regimens of therapeutic alternatives that could attack

from different sources. For example, it has been demonstrated that

bortezomib improves adoptive T cell therapy by sensitizing cancer

cells to FasL cytotoxicity (221). Also, oncolytic viruses provide

potent antitumor effects against brain tumours when combined

with adoptive T-cell therapy (222). While, bovine dialyzable

leukocyte extract, which induces ICD in breast cancer, when

combined with cyclophosphamide induces synergic cell death

(223). The combination of chemotherapy with immunotherapies

is a primary approach evaluated to overcome cancer cell resistance

(224–226). However, these combinations mostly look for ICD

inducing chemotherapies with non-necessarily ICD inducing

immunotherapies, yet combination of different ICD-inducing

agents might promote better responses. Especially if combining

immunotherapeutic and chemotherapeutic agents that possess ICD

potential and immunomodulatory properties, as it has also been

described for certain types of chemotherapies (227, 228).

Immunotherapies may help to surpass tumour resistance

mechanisms, as immunotherapies that stimulate the innate

immune system may augment ICD by enhancing the effect

triggered by DAMPs, thereby promoting a robust immune

response (229). Additionally, they may activate DCs, enhancing

antigen presentation and promoting the recruitment and activation

of effector immune cells (125), like NK cells, which in turn can

efficiently trigger cellular cytotoxicity, potentially leading to ICD

(101). This synergy is a promising alternative to overcome ICD

resistance, providing an interesting avenue for enhanced antitumor

effects and improved therapeutic outcomes.

The intricate interplay between ICD and the innate immune

response opens new avenues for the development of more effective

and durable cancer treatments with promising potential. These
FIGURE 5

Immunotherapies that induce immunogenic cell death. Various immunotherapies promote the stimulation of various pro-inflammatory responses in
cells of the innate immune system. In addition, immunotherapies can induce direct cell death of tumour cells through induction of immunogenic
cell death, leading to activation of the anti-tumour immune system. Thus, the direct effect of immunotherapies on innate immune cells could
enhance their ICD induction and enhance the anti-tumour immune response.
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onco-immunotherapies, including monoclonal antibodies,

cytokines, oncolytic viruses, cellular immunotherapies, and other

biological or synthetic immunomodulators, have clearly

demonstrated their potential to harness the body’s natural

defences against cancer cells. By triggering the ICD, these

treatments also facilitate the release of tumour antigens and

danger signals, stimulating innate immune cells such as dendritic

cells, natural killer cells and macrophages. Activation of these innate

first-line defence cells is critical for mounting a potent and sustained

anti-cancer response, which involves the durable long-term

memory of the adaptive immune system (Figure 5).

As these potential actions of immunotherapies have not been

the primary focus, several challenges remain. For example,

uncovering the potential role of immunotherapies in inducing

immunogenic cell death is a significant challenge, given that only

a few of them have been studied as ICD inducers. This is

particularly striking when compared to the large body of evidence

highlighting their role in the immune system. Another aspect is not

only to elucidate their role in ICD induction, but also to propose

combinations that enhance this dual action for a more

comprehensive approach against a wide range of cancers. In

conclusion, we recommend that these strategies be emphasised, as

addressing these aspects will undoubtedly contribute to a deeper

understanding, more effective use and further development of the

enormous potential offered by these immunotherapies.
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human dialyzable leukocyte extract (IMMODIN) as adjuvant in albendazole therapy on
frontiersin.org

https://doi.org/10.1186/s13045-020-01014-w
https://doi.org/10.3389/fimmu.2022.992232
https://doi.org/10.3324/haematol.2020.271908
https://doi.org/10.1016/j.molonc.2013.12.001
https://doi.org/10.1038/s41417-021-00365-x
https://doi.org/10.1038/s41417-021-00365-x
https://doi.org/10.1182/blood.V122.21.14.14
https://doi.org/10.1158/2326-6066.CIR-18-0572
https://doi.org/10.2217/imt-2018-0012
https://doi.org/10.3389/fimmu.2022.896228
https://doi.org/10.1038/s41573-022-00520-5
https://doi.org/10.1038/s41573-022-00520-5
https://doi.org/10.3390/cells11101652
https://doi.org/10.7554/eLife.36688
https://doi.org/10.1038/s41416-019-0578-3
https://doi.org/10.1038/s41587-020-0462-y
https://doi.org/10.1002/kjm2.12405
https://doi.org/10.1186/s40164-022-00257-2
https://doi.org/10.1186/s40164-022-00257-2
https://doi.org/10.1126/scisignal.aah7107
https://doi.org/10.1126/scisignal.aah7107
https://doi.org/10.3390/pharmaceutics12030256
https://doi.org/10.3390/pharmaceutics12030256
https://doi.org/10.1038/s41419-020-03221-2
https://doi.org/10.1016/j.cellimm.2015.12.003
https://doi.org/10.1038/nm1523
https://doi.org/10.1158/2326-6066.CIR-14-0079
https://doi.org/10.1038/cddis.2013.493
https://doi.org/10.1387/ijdb.150061pa
https://doi.org/10.1038/nm1622
https://doi.org/10.1038/s41423-023-00990-6
https://doi.org/10.3389/fimmu.2018.02804
https://doi.org/10.1053/j.seminoncol.2012.02.007
https://doi.org/10.3390/v10090455
https://doi.org/10.1007/s00262-012-1258-9
https://doi.org/10.1186/s12943-015-0435-9
https://doi.org/10.1186/s12943-015-0435-9
https://doi.org/10.3389/fonc.2019.00811
https://doi.org/10.3390/cancers12030545
https://doi.org/10.3892/ol.2016.4175
https://doi.org/10.1097/CJI.0000000000000155
https://doi.org/10.1097/CJI.0000000000000155
https://doi.org/10.1182/blood-2004-06-2492
https://doi.org/10.1182/blood-2004-06-2492
https://doi.org/10.1038/ni827
https://doi.org/10.1186/s12967-022-03842-5
https://doi.org/10.1080/14653240600847266
https://doi.org/10.1098/rsif.2013.0365
https://doi.org/10.1111/j.1464-410X.2008.08274.x
https://doi.org/10.3389/fimmu.2017.01134
https://doi.org/10.3389/fimmu.2019.02806
https://doi.org/10.3389/fimmu.2019.02806
https://doi.org/10.1093/infdis/jis012
https://doi.org/10.1002/eji.200737905
https://doi.org/10.5772/66524
https://doi.org/10.3389/fimmu.2023.1294434
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Calvillo-Rodrı́guez et al. 10.3389/fimmu.2023.1294434
mouse model of larval cestode infection: Immunomodulatory and hepatoprotective
effects. Int Immunopharmacol. (2018) 65:148–58. doi: 10.1016/j.intimp.2018.09.045
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Antitumor effect of the combination of manumycin A and Immodin is associated with
antiplatelet activity and increased granulocyte tumor infiltration in a 4T1 breast tumor
model. Oncol Rep (2017) 37(1):368–78. doi: 10.3892/or.2016.5265

167. Kayser O, Masihi KN, Kiderlen AF. Natural products and synthetic compounds
as immunomodulators. Expert Rev Anti-Infective Ther (2003) 1(2):319–35. doi:
10.1586/14787210.1.2.319

168. Iyer V. Small molecules for immunomodulation in cancer: A review. Anticancer
Agents Med Chem (2014) 15(4):433–52. doi: 10.2174/1871520615666141210152128

169. Lefrancier P. Chemistry of immunomodulators. Comp Immunol Microbiol
Infect Dis (1985) 8(2):171–85. doi: 10.1016/0147-9571(85)90043-8

170. Gokhale AS, Satyanarayanajois S. Peptides and peptidomimetics as
immunomodulators. Immunotherapy (2014) 6(6):755–74. doi: 10.2217/imt.14.37

171. Miller R. Imiquimod stimulates innate and cell mediated immunity which
controls virus infections and tumors. Int J Dermatol (2002) 41(Suppl 1):3–6. doi:
10.1111/j.1365-4632.2002.00017.x

172. Yoon HK, Shim YS, Kim PH, Park SR. The TLR7 agonist imiquimod selectively
inhibits IL-4-induced IgE production by suppressing IgG1/IgE class switching and
germline ϵ transcription through the induction of BCL6 expression in B cells. Cell
Immunol (2019) 338:1–8. doi: 10.1016/j.cellimm.2019.02.006

173. Dajon M, Iribarren K, Cremer I. Dual roles of TLR7 in the lung cancer
microenvironment. Oncoimmunology (2015) 4(3):e991615. doi: 10.4161/
2162402X.2014.991615

174. Miller RL, Gerster JF, Owens ML, Slade HB, Tomai MA. Review article
Imiquimod applied topically: A novel immune response modifier and new class of
drug. Int J Immunopharmacol (1999) 21(1):1–14. doi: 10.1016/s0192-0561(98)00068-x
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Glossary

ICD Immunogenic cell death

DAMPs Damage-associated molecular patterns

PRRs Pattern recognition receptors

TAAs Tumour-associated antigens

MHC Major histocompatibility complex

TME Tumour microenvironment

PAMPs Pathogen-associated molecular patterns

DCs Dendritic cells

mAb Monoclonal antibody

ADCC Antibody-dependent cellular cytotoxicity

CDC Complement-dependent cytotoxicity

ADCP Antibody-dependent cellular phagocytosis

NK Natural killer

BCMA B-cell maturation antigen

CRT Calreticulin

HSP Heat shock protein

ATP Adenosine triphosphate

HMGB1 high mobility group box protein 1

FOLFIRI 5-fluorouracil, irinotecan and leucovorin

ER Endoplasmic reticulum

TAMs Tumour associated macrophages

PDT Photodynamic therapy

TNF-a Tumour necrosis factor alpha

IFN-g Interferon gamma

FDA Food and Drug Administration

GM-CSF Granulocyte macrophage colony-stimulating factor

G-CSF Granulocyte-colony stimulating factor

SMAC Secondary mitochondria-derived activator of caspases

PANoptosis Pyroptosis apoptosis and necroptosis cell death

OVs Oncolytic viruses

NDV Newcastle disease virus

TLRs toll like receptors

APCs antigen presenting cells

oHSV herpes simplex virus

TGFb transforming growth factor beta

PDAC Human Pancreatic ductal adenocarcinoma cells

TMD tumour micro-vessel density

CAR chimeric antigen receptor

(Continued)
F
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CRS cytokine release storms

GvHD graft versus host disease

MDSCs myeloid-derived suppressor cells

CAR M CAR macrophages

NO nitric oxide

ROS reactive oxygen species

BCG Bacille-Calmette-Guerin

MCP-1 Monocyte chemoattractant protein-1

UC urothelial carcinoma

DLE dialysable leukocyte extracts

I-CRP Immunepotent CRP

bDLE dialysable leukocyte extract obtained from bovine spleen

LPS Lipopolysaccharide

IMQ Imiquimod

TLR7 toll like receptor 7

PBMC peripheral blood mononuclear cells

IDO indoleamine 2, 3-dioxygenase

HDP host defence peptides

AMPs antimicrobial peptides

TSP-1 Thrombospondin 1

CBD C-terminal cell-binding domain

T-regs regulatory T-cells
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