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Plants have been explored as a platform to produce pharmaceutical proteins for

over 20 years. Important features such as the cost-effectiveness of production,

the ease of scaling up to manufacturing capacity, the lack of cold chain

requirements and the ability to produce complex therapeutic proteins which

are biologically and functionally identical to their mammalian counterparts, make

plants a strong alternative for vaccine production. This review article focuses on

both the expression as well as the downstream purification processes for plant

made vaccines. Expression strategies including transgenic, transient and cell

suspension cultures are outlined, and various plant tissues targeted such as

leaves and seeds are described. The principal components used for downstream

processing of plant made vaccines are examined. The review concludes with a

reflection of the future benefits of plant production platforms for

vaccine production.
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Introduction

Infectious diseases are the foremost source of human mortalities around the globe. The

recent COVID-19 pandemic vividly illustrates the lack of global preparedness for novel viral

diseases (Lobato Gomez et al., 2021). In addition to the emergence of newly emerging

diseases, many well-known infectious viruses, for instance, Severe Acute Respiratory

Syndrome Coronavirus-2 (SARS-CoV-2) and influenza, continuously undergo genetic

changes, thus giving rise to frequent outbreaks associated with severe illnesses and

fatalities. The rapid and widespread transmission of SARS-CoV-2 has led to an

unprecedented global crisis, resulting in millions of deaths (Hu et al., 2021). Therefore,

cost effective and rapid biomanufacturing of recombinant vaccine antigens at large scale for

remedy against numerous infectious diseases will be urgently needed. Molecular farming, also

known as biopharming, is a cutting-edge technology that harnesses the ability of plant’s cells,

organs, or tissues as bio-factories for the production of valuable biopharmaceuticals and other
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high-value proteins, including vaccine antigens (Faye and Gomord,

2010; Ma et al., 2003). This technology offers a promising alternative

to traditional methods of protein production using prokaryotic and

eukaryotic hosts, for example, Saccharomyces cerevisiae, Chinese

hamster ovary (CHO) cells, Escherichia coli (E. coli), human

embryonic kidney (HEK) cells, Pichia pastoris (Cereghino and

Cregg, 2000; Macauley-Patrick et al., 2005), and insect systems

such as Spodoptera frugiperda (Sf9). These production hosts are

widely accepted for large scale manufacturing because of the well-

defined regulatory pathway available (Schillberg et al., 2005) higher

expression and ease of production; however, each production

platform comes with its own advantages and disadvantages. Plants

are the bio-factories of diverse and complex proteins and offer several

advantages. Plants allow for scalable and cost-effective production

due to their ability to be cultivated on masses. Plant cells possess the

remarkable ability to process proteins post transcription to make

tailored glycan structures (post-translational modification) and

correct folding, providing an advantage in producing recombinant

proteins with specific glycosylation patterns (Gomord and Faye,

2004). As an illustration, plants offer cost-effective and highly

scalable production capabilities when compared to CHO cells

(Buyel et al., 2017). Transient expression systems, on the other

hand, allow for rapid scalability surpassing traditional fermenter-

based platforms (Hiatt et al., 2015). Furthermore, in terms of safety,

plants pose a lower risk of harboring human or animal pathogens,

making them a favorable option for protein production (Nosaki et al.,

2021). Thus, the use of plants as production hosts for recombinant

vaccines hold immense promise and continues to be an area of active

research and development in the field of biotechnology. The selection

of an expression host involves considering a blend of host properties,

including food or feed crop, ease of genetic manipulation, the

presence of specific endogenous metabolic pathways, expression

capacity, as well as intellectual property constraints. In addition,

product characteristics such as the intended purpose, structural

complexity, and the level of purification needed are also crucial

factors in choosing a host for production.

Vaccines play a crucial role in preventing and controlling

infectious diseases, and their availability and accessibility are of

utmost importance for global public health. However, traditional

vaccine manufacturing processes often face challenges related to

scalability, cost-effectiveness, and cold chain storage requirements.

Plant-based systems offer several advantages for vaccine production.

Moreover, plants can be engineered to produce complex and

multicomponent vaccines, allowing for the production of

combination vaccines or those targeting multiple strains of a

pathogen. The use of plant systems for vaccine production also

offers logistical advantages. Unlike traditional vaccines, plant-based

vaccines are stable at higher temperatures and do not require cold

chain storage and distribution, making them particularly suitable for

resource-limited regions or areas with inadequate infrastructure.

In recent decades, significant strides have been achieved in the

advancement of plant-based platforms for vaccine production.

Various plant species, including tobacco, maize, potato, and

others have been successfully engineered to produce a wide range

of vaccines against viral, bacterial, and parasitic diseases. These
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plant-produced vaccines have shown promising results in

preclinical and clinical studies, demonstrating safety, efficacy, and

the ability to induce strong immune responses. In this context, here

we provide an overview of the current state of vaccine production in

plant systems within the field of molecular farming. It discusses the

advancements, challenges, and prospects of using plants as bio-

factories for vaccine production, highlighting the potential of this

innovative approach to revolutionize the vaccine manufacturing

landscape and improve global accessibility to life-saving

immunizations. Importantly, the shortcomings encountered

during expression of recombinant proteins/vaccines in plants are

highlighted and the review concludes with a unique perspective and

insight into the use of state-of-the-art genome editing technology in

circumventing the drawbacks of plant-based expression systems.
Strategies for expression of vaccines

Transgenic plants for edible vaccines

Transgenic plants are being explored as a potential platform for

producing edible vaccines. Edible seeds or vegetative tissues can be

engineered to produce recombinant vaccines that can be administered

via the oral route, thus, minimizing the painful needles, and require no

cold-chain requirements, enabling rapid and efficient global-scale

deployment during vaccine distribution (Stöger et al., 2005; Hefferon,

2014a). The oral route can revolutionize the current approaches for

vaccine delivery. Production of vaccine antigen in plant cells has great

potential to eliminate prohibitively costly and complex fermentation,

simplify its transportation and distribution, eliminate sterile injections

and improve the shelf-life for years at ambient temperature (Kurup and

Thomas, 2020; Khan and Daniell, 2021). There are several plant species

where recombinant vaccines have been expressed to achieve oral

delivery such as potato (Mason et al., 1996; Mason et al., 1998), rice

(Oszvald et al., 2007; Qian et al., 2008; Fukuda et al., 2018; Saba-

Mayoral et al., 2023), banana, tomato (Lou et al., 2007; Davod et al.,

2018; Hoshikawa et al., 2019), lettuce (Kim et al., 2007), tobacco (Hahn

et al., 2007), alfalfa (Wigdorovitz et al., 1999), wheat (Shi et al., 2023),

spinach and carrot.

Plant made vaccines are bioencapsulated by the cell wall and

cellular organelles that enable vaccine proteins to withstand

degradation and pass through digestive system so that they can

be recognized by the immune surveillance system (Khan and

Daniell, 2021). Due to its substantial mucosal surface area, the

human intestine provides an optimal site of entry for orally

administered plant-derived vaccines. The gut-associated lymphoid

tissue (GALT), which constitutes the largest immune system tissue

in the human body (over 70%), is a crucial reservoir of regulatory T

cells (Tregs) and encompasses an extensive surface area of

approximately 300 m2 (Vighi et al., 2008). The unique advantage

of plant made vaccine antigens is that they become bioencapsulated

into plant cell walls; this enables them to withstand the enzymatic

and acidic conditions within the gut lumen. Due to the inability of

human digestive enzymes to break down the glycosidic bonds of

carbohydrates present in the cell wall, plant-made vaccine antigens
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can successfully pass through the digestive tract. The cellulosome,

present in anaerobic cellulolytic bacteria as an extracellular enzyme

complex, contains binding, structural, and catalytic domains that

enable direct interaction with the plant cell wall and the cleavage of

glycosidic bonds. Once the vaccine reaches the gut mucosal layer,

the inhabitant bacteria help to break down of the plant cell wall and

therefore facilitate the release of vaccine antigen. Bacteroides fragilis

aids in the penetration of the mucous layer by degrading mucin

glycoproteins (Koropatkin et al., 2012). The crossing into the

intestinal epithelium and the presentation of vaccine antigens to

the immune system is crucial and is accomplished by different tags

(receptor binding proteins) attached to the vaccine such as CTB

(Sanchez and Holmgren, 2008).
Transient expression systems

Plant transient expression systems are being utilized as favored

expression systems because of their rapid and high production,

simplicity for scale up, low cost, ease of purification and most

importantly, already established protocols available for some plants

(Nosaki et al., 2021). The ability and reliability of transient systems in

producing highly valuable and complex proteins has been

successfully demonstrated (Lindsay et al., 2018; Malm et al., 2019;

Ward et al., 2021). Nicotiana benthamiana is a dominant production

host for research and commercial purposes that has the potential to

make proteins days post-delivery of the DNA-construct, and

therefore is utilized for commercial biomanufacturing of hormones,

antibodies, enzymes, therapeutics and vaccines etc. by several

companies such as Medicago Inc. (https://www.medicago.com),

Forte Protein Inc. (www.forteprotein.com), Kentucky BioProcessing

(https://kentuckybioprocessing.com) and Icon Genetics (https://

www.icongenetics.com). Achieving the highest possible yield is a

primary concern in expressing high value proteins, as downstream

processing costs rise considerably when proteins are extracted from

more diluted mixtures. Transgenic plant development can be a time-

consuming project and typically requires around 2-3 years until a

homozygous line for a host plant is obtained. In contrast, transient

expression enables the swift production of substantial quantities of

recombinant proteins. For instance, Medicago Inc., a company

utilizing plant-based transient expression systems, can produce the

purified end-product of an influenza vaccine just three weeks after

receiving the sequence (D’Aoust et al., 2008). Most recently,

Medicago Inc. demonstrated the capability of using transient

systems for the production of a vaccine against SARS-CoV-2 and

influenza (Venkataraman, 2022). The data demonstrated consistent

immunogenicity in human clinical trials (Ward et al., 2021). During

the recent COVID-19 pandemic, several research groups produced

RBD as a vaccine antigen using different host systems. For instance,

the Receptor Binding Domain (RBD) of the SARS-CoV-2 spike

protein induces humoral immunity in animal models as well as in

non-human primates (Diego-Martin et al., 2020; Rattanapisit et al.,

2020; Maharjan et al., 2021; Siriwattananon et al., 2021; Ceballo et al.,

2022) using Nicotiana benthamiana as the production host.

Transient expression systems can usually yield recombinant

proteins at concentrations of grams per kilogram of fresh biomass
Frontiers in Plant Science 03
and have the potential to improve further with innovations. Several

recombinant proteins i.e., vaccines (Lindsay et al., 2018; Malm et al.,

2019; Rattanapisit et al., 2020; Ruocco and Strasser, 2022), growth

factors (Soleimanizadeh et al., 2022) therapeutics (Gengenbach et al.,

2018; Silberstein et al., 2018; Xiong et al., 2022), hormones (Gils et al.,

2005; Xiong et al., 2022), and antibodies (Lai et al., 2012) have been

produced using transient expression systems. Besides having several

advantages over competitive systems, transient expression systems

require further innovations with respect to novel vectors, expression

strategies, clarification and in particular, downstream processing to

achieve the goal of large scale production at a lower cost to make

alternative proteins more affordable and accessible.
Plant suspension culture systems

In vitro cultured plant cells, also known as plant cell suspension

culture, have shown great promise as bioproduction platforms for

alternative proteins. Suspension cultures may be comprised of

transgenic plants, hairy roots, protoplasts or cell cultures, and

combine the advantages of whole-plant cultivation systems with the

benefits of microbial and mammalian cell cultures, making them

highly promising and versatile options for producing therapeutic

proteins. Scalability, safety, protein folding, post-translational

modification, cost of production, stability and flexibility are the key

points of consideration for using plant cell suspension culture. Unlike

other eukaryotic systems such as CHO or HEK cells, plant cultures

can be grown in simple and inexpensive growth media, are easy to

scale up for rapid biomanufacturing; both features reduce the overall

cost of production. High value recombinant proteins can be secreted

by adding a signal peptide to target proteins to simplify downstream

processing (Huang et al., 2015). N-terminal signal peptides derived

from different sources can transport recombinant proteins into the

endoplasmic reticulum (ER) lumen. The transport occurs in a signal

recognition particle (SRP)-dependent manner, facilitated by SRP

receptors (Gilmore et al., 1982). Subsequently, while residing in the

ER, the signal peptides are cleaved from the precursor proteins, and

the proteins are then encapsulated into small vesicles, which bud to

the Golgi apparatus and ultimately get released into extracellular

compartments (Khan et al., 2012). The targeting of recombinant

proteins to ER and Golgi apparatus facilitates the correct folding of

recombinant proteins, required for their functionality (de Ruijter et

al., 2016). Secretory proteins undergo additional modifications in the

endoplasmic reticulum (ER) and Golgi apparatus, including N-

glycosylation (Faye et al., 2005; Breitling and Aebi, 2013). For the

last few decades, several recombinant proteins have been expressed

and validated for their functionality. Most importantly, the first plant

made recombinant protein taliglucerase alfa that was approved by the

FDAwas expressed in carrot suspension culture (Tekoah et al., 2015).

Plant cell suspension culture has been used as a host for vaccine

production. Most recently, the production of RBD and spike

proteins are reported in tobacco cells (BY-2) and Medicago

truncatula A17 cells (Rebelo et al., 2022). Considering the

advantages of plant suspension culture, numerous vaccine

antigens have been successfully expressed and validated for their

functionality through both in-vivo and in-vitro analyses (Smith
frontiersin.org
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et al., 2002; Smith et al., 2003; Lenzi et al., 2008; Muthamilselvan

et al., 2016). Technology for using cells from carrot, soybean,

tobacco, rice, medicago and potato has been developed and have

produced vaccines against a variety of diseases. However, there is

considerable potential for future research and development (R&D)

to optimize the culture environment, with the aim of improving

both production levels and protein recovery efficiency. The primary

benefits regarding bioreactors are regulated growth environments

with complete containment, consistency in protein quality, yield

and homogeneity as well as rapid pace of production from the level

of gene to protein within a short span 4-5 weeks (Fischer et al., 2009;

Huang et al., 2009). Nevertheless, bioreactors are not favorable due

to scale-up constraints similar to their mammalian cell culture

equivalents such as relatively lower concentrations (Weathers et al.,

2010; Xu et al., 2011), instability of secreted protein products

(Hellwig et al., 2004), and higher capital expenses compared to

greenhouses or open-field cultivation. From the perspective of

downstream processing, major advantages of secreted protein

products include more facile, low-cost purification (Hellwig et al.,

2004; Doran, 2006) along with the drawback that the efficiency of

secretion may be circumscribed by protein hydrophobicity, size

and/or charge (Fischer et al., 2009). For non-secreted recombinant

proteins, plant cell homogenates encounter the same complexities

as that of leafy plants. As a result, they may not be as economically

attractive as other protein expression systems, as potential savings

from producing intracellular proteins are offset when compared to

secreted proteins.
Expression of vaccines and related
recombinant proteins from plants

Biotechnological expression of therapeutic proteins requires

efficacious expression and purification schemes so that recombinant

proteins can be generated in their native conformations. Stable or

transient expression of such recombinant therapeutic or vaccine

proteins in plants are propitious tools to achieve unbridled potential

for both scale-up and reduced production costs (Yusibov and

Rabindran, 2008; Phan et al., 2013a). The first proof-of-concept was

the expression of Hepatitis B surface antigen (HBsAg) in plants (Mason

et al., 1992), following this, several subunit vaccines and virus-like

particles have been successfully generated (D’Aoust et al., 2008;

Rybicki, 2014; Mbewana et al., 2015). This approach has been

recently adopted by Medicago for the generation of the COVID-19

vaccine and seasonal influenza vaccines which have now fortuitously

completed clinical trials.

Transient expression systems using plants to biosynthesize

recombinant pharmaceutical proteins are found to be advantageous

compared to other systems. Transient expression enables rapid scale

up compared to any other fermenter-derived platforms (Hiatt et al.,

2015; Holtz et al., 2015). Further, transient expression vectors such as

those derived from full or deconstructed plant viruses facilitate high

level expression of recombinant biopharmaceuticals (Hefferon,

2014b). Nevertheless, two principal challenges must be surmounted

to develop plants as expression vehicles for recombinant therapeutics:
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purification methods.
Seed-based expression systems

Seeds have been used for the successful expression of several

recombinant proteins i.e., vaccine antigens, therapeutic, antibodies,

hormones, industrial enzymes, and cell culture proteins. The USDA

has endorsed the field release of transgenic plant seeds expressing

proteins such as lactoferrin, serum albumin and human lysozyme in

rice, the apolipoprotein in safflower as well as brazzein and hepatitis

B surface antigen in corn (http://www.isb.vt.edu/searchrelease-

data.aspx). Seed crops present several advantages compared to

mammalian cell cultures, transgenic animals and microbial

fermentations as host platforms by virtue of the availability of a

vast knowledge base regarding their cultivation, harvesting,

processing and storage (Kusnadi et al., 1997; Nikolov and

Hammes, 2002).

Shi et al. 2023 report the stable expression of the TM-1 gene-

encoded amino acid sequences of Mycoplasma gallisepticum (MG),

considered as a vaccine antigen candidate against Chronic

Respiratory Disease (CRD) affecting chickens. In this study, wheat

seed tissues are used as production hosts. The recombinant 41.8

kDa protein was ubiquitously expressed in endosperm tissues and

an expression level of 1.03 mg/g dry weight was achieved. Upon oral

administration in chickens, this plant-made edible vaccine was

effectual in eliciting antibody responses without any identifiable

weight loss. Two doses of the orally delivered TM-1 vaccine

candidate triggered an immune response and protection against

challenge with MG at levels comparable to the commercially

produced inactivated vaccine against CRD. This investigation

proves that plant-made edible vaccines are safe, scalable, stable at

room temperature and cost-effectual.

Shahid et al. 2020 report a study wherein the protective

antigens, hemagglutinin-neuraminidase (HN) and fusion (F)

proteins of Newcastle Disease Virus (NDV) were expressed using

a constitutive seed-specific Zein promoter and the 35S promoter,

respectively, in transgenic maize. In this case, almost 2-7.1-fold

greater expression of the F gene mRNA was observed in the leaves

and about 8-28-fold higher expression of the HN gene mRNA was

detected in the seeds. For the F protein, 1.66 µg/ml was observed

accounting for 0.5% of the leaf total soluble protein while for the

HN protein, 2.4µg/ml was found accounting for 0.8% of the total

seed protein. When chicks were orally administered with the seeds

and leaves of transgenic maize, an immune response was generated

against both NDV antigens.

Stable transgenic rice seeds which express the F protein of

Newcastle disease (ND) virus were generated through

agroinfiltration (Ma et al., 2020). When this vaccine was

inoculated into pathogen-free chickens, it significantly triggered

neutralizing antibody responses against both heterologous and

homologous ND virus strains. Two doses of 4.5 µg antigen

completely protected chickens from challenge with a lethal dose

of NDV. Additionally, F protein-immunized chicken exhibited a
frontiersin.org
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higher mean weight gain within 15 days following challenge

compared to the conventional whole virus vaccine-immunized

chickens, thus yielding higher cost benefits. This study underlined

the success of plant-based vaccines as NDV eradication platforms.

In the case of nutraceuticals, industrial enzymes and oral

vaccines, requirements for processing and purification are

minimized through the use of seed crops (Nandi et al., 2002;

Yang et al., 2008; Hood and Howard, 2009). In comparison with

leaf crops, seed crops contain lesser biomass yields per unit surface

area. Nevertheless, if crops are cultivated in open fields, protein

stability and economy of scale far outweigh the disadvantage

associated with low biomass yield (Nikolov and Hammes, 2002;

Schillberg et al., 2005).
Leaf-based and fruit-based
expression platforms

Leafy crops such as tobacco and alfalfa are highly advantageous

due to their elevated biomass yields, likelihood of yearly several

growth cycles, and well-established infrastructure for agriculture

similar to their seed equivalents; however, they have the advantage

of lower risk of pollen spread by prevention offlowering. Tobacco is a

leading leaf-based platform for commercial expression of

recombinant proteins (Dubey et al., 2018; Twyman et al., 2003)

ever since the advent of tobacco expressing monoclonal antibody

(Hiatt et al., 1989). Additionally, important advances have taken place

wherein leaves are used for transient expression of vaccines,

monoclonal antibodies and other therapeutics using tobacco

(Nicotiana benthamiana) as the expression system (D’Aoust et al.,

2010; Joensuu et al., 2010; Conley et al., 2011). Transient expression

circumvents regulatory concerns associated with transgenic plants

and is currently the preferred method of recombinant protein

expression for low-volume protein synthesis (Fischer et al., 2009;

Pogue et al., 2010). Transient expression using leafy tissues affords a

distinct advantage for tobacco grown in greenhouses particularly in

instances where rapid expression of pandemic vaccines is necessary

(D’Aoust et al., 2010). The simplicity of leaf-based protein extraction

is at times perceived as an advantage compared to extraction from

seeds which may necessitate additional operations, for example,

soaking and grinding (Schillberg et al., 2005).

Lettuce and tomato are preferred vegetable systems that can be

consumed raw (Concha et al., 2017; Miranda et al., 2020). Lettuce

(Lactuca sativa) varieties have been used to produce edible vaccines

against swine fever, stage I hepatitis and E. coli (Kim et al., 2007).

Similarly, carrot (Daucus carota) has been used to obtain edible

vaccines against Helicobacter pylori and E. coli (Zhang et al., 2010)

Banana (Musa acuminata) has been the plant of choice for raising

vaccine against hepatitis B. Banana is consumed raw and is widely

cultivated in developing countries, the major advantage of bananas

being the expression of sufficient levels of antigenic protein in fruits

(Kumar et al., 2005; Altindis et al., 2014).Nevertheless, leafy tissues

entail major disadvantages, such as elevated water content, storage

instability of harvested leaf biomass resulting in stability issues for the

recombinant protein, and difficulties decoupling downstream and
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expression is offset by the likelihood of instability of the expressed

proteins in tissues (and their extracts) that are metabolically active

(Doran, 2006; DeMuynck et al., 2010). Moreover, leaf extracts harbor

phenolics, chlorophyll-derived pigments and inherent proteolytic

activities that interfere with downstream processing (Yu et al.,

2008; Woodard et al., 2009; Barros et al., 2011) resulting in

laborious, multi-stage purification processes that impact the

quantity and quality of the purified proteins. Further, despite the

low costs associated with leafy and seed crops for production in open

fields, biosynthesis of plant-based pharmaceuticals has moved on

towards expression in confined environments such as bioreactors and

greenhouses (McDonald et al., 2005; Spok and Karner, 2008).
Downstream processing of plant-made
recombinant proteins

Plant-made vaccines utilize plants as bioreactors for the

production of vaccine antigens. This innovative approach offers

several advantages over traditional vaccine production methods,

such as lower production costs, scalability, and reduced dependence

on cold chain storage (Habibi et al., 2017; Habibi et al., 2022).

Protein purification, as an essential downstream technology in

the field of biological industry, relies on defining an effective

purification method and establishing continuous optimal

strategy for refinement of purification steps. The objective is to

achieve the desired concentration, purity, and yield of the target

protein using the fewest possible steps. This process holds immense

importance for subsequent research endeavors, providing

researchers with high-quality proteins that can be suitable for

diverse applications (Owczarek et al., 2019; Schiermeyer, 2020;

Du et al., 2022).

Moreover, purification strategies for plant-made vaccines are

essential for ensuring the safety, efficacy, and regulatory compliance

of innovative vaccines. The downstream processing process

involves a series of steps which are shown in (Figures 1, 2). Each

step should be carefully designed to remove impurities, achieve high

product purity, and maintain the integrity of the target antigen.

Prior to purification, it is beneficial to gather fundamental

information about the target protein through bioinformatics analysis

software. These analyses provide insights into various properties,

including: isoelectric point (pI), cysteine content, protein stability,

protein solubility, molecular weight (MW), secondary structure,

susceptibility and sensitivity to oxidation and high amounts of salt

ions or pH. Selecting an appropriate tag for facilitating overexpression

and purification during vector construction is also important.

Considerations such as the method for the purpose of cell disruption

following protein expression and its potential impact on protein

denaturation and structural changes should be addressed. These

factors should be evaluated comprehensively to ensure optimal

purification outcomes.

The purification approach for plant-derived proteins primarily

involves leveraging the unique physical and chemical characteristics
frontiersin.org

https://doi.org/10.3389/fpls.2023.1273958
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Venkataraman et al. 10.3389/fpls.2023.1273958
of the desired proteins. These properties include the sequence of a

specific amino acid and its composition, the charge distribution,

the polarity, and the hydrophilic or hydrophobic nature of the

polypeptide chains, as well as the overall shape and the arrangement

of amino acid residues present on the protein surface (Du et al.,

2022). By carefully considering and understanding these

characteristics, an effective purification strategy can be devised to

isolate and purify the desired proteins in plant system.

The selection of a suitable purification method is crucial and

should be based on not only careful consideration of the

characteristics of the target protein but also the impurities. Here

are some factors to take into account when making a

reasonable selection:
Fron
(1) When considering the purification system for plant-based

proteins, it is important to understand the impurity profile

specific to plants. Some common impurities that can be

encountered during plant protein purification are plant cell

debris, soluble proteins, pigments and phenolic

compounds, l ipids and waxes, saccharides and

polysaccharides and nucleic acids. These compounds can

contribute to sample discoloration, sample turbidity, and

affect protein stability and purity. Understanding the

impurity profile specific to plant-based systems allows for

the selection of appropriate purification strategies and

optimization of purification conditions to effectively

separate the target protein from unwanted components.

Each purification step can be tailored to address these

impurities, resulting in the isolation of high-quality plant

proteins.

(2) Clarification, the initial step in purifying plant-based

vaccines, serves as a crucial link between upstream and

downstream processes. It has a crucial impact on
tiers in Plant Science 06
determining the yield, consistency, and reproducibility of

the final product. A well-executed clarification process

should result in a solution with low turbidity while

minimizing the impact on product recovery. It is

designed to eliminate both process and product-related

impurities. The clarification process should target the

removal of larger particles, and insoluble and soluble

impurities associated with the process or product,

including large aggregates (Liu et al., 2010; Gupta et al.,

2020). There are several clarification techniques commonly

used in the purification of plant-based vaccines.

(3) Sedimentation: Sedimentation is a gravity-based

clarification method where the plant extract can be

allowed to stand undisturbed, allowing the larger particles

and impurities to settle at the bottom due to their higher

density or involves spinning the extract at high speeds to

separate the heavier particles, such as plant cells, debris, and

larger impurities, from the liquid phase. The clarified

supernatant can then be collected, leaving behind the

sedimented solids (Naik et al., 2012; Nejatishahidein

et al., 2020).

(4) Filtration: Filtration methods, including depth filtration

and microfiltration, are employed for both primary and

secondary clarification of plant extracts for production of

human papillomavirus (HPV) (Naupu et al., 2020) and

hepatitis B virus (HBV) (Pantazica et al., 2023). The

purification of these plant-derived vaccines often involves

filtration steps to remove particulate matter, impurities, and

host cell proteins while retaining the desired vaccine

antigens. Depth filters, composed of fibrous or granular

media, can effectively trap larger particles and impurities.

Microfiltration membranes with pore sizes typically

ranging from 0.1 to 10 micrometers are used to remove
FIGURE 1

Process of recombinant protein production in plant system, its downstream processing, and applications.
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Fron
smaller particles and colloidal matter, resulting in a clarified

solution.

(5) Flocculation can be employed to enhance the clarification

of plant extracts (Buyel and Fischer, 2015). Flocculation is a

process that involves the aggregation of fine particles and

colloidal matter in a suspension, allowing them to form

larger clumps or flocs. These flocs can then settle more

readily or be easily separated through filtration, leading to

improved clarity of the extract (Gregory and Barany, 2011;

Buyel and Fischer, 2014b). Flocculants in plant extract

clarification can include both natural and synthetic

polymers such as Polyethyleneimine (PEI) (Zhang et al.,

2013) polyacrylic acid (PAA;Wang et al., 2020) or

polydiallyldimethylammonium chloride (PDADMAC)

(Lin et al., 2007), Chitosan (Khodaei et al., 2018), and

Aluminum Sulfate (Kittur et al., 2015; Park et al., 2015). In a

study conducted by (Park et al., 2015). (Zhang et al., 2013),

developed and evaluated a method by combining PEI

precipitation and protein sample fractionation to improve

Rubisco removal from TSP. By applying 50 and 100 mg/g of

polyethyleneimine (PEI), a high efficiency of rubisco

removal was achieved. Also, Ammonium sulfate was

utilized for the purification of a plant-based colorectal

cancer vaccine candidate GA733-FcK, and the researchers

employed a concentration of 50% ammonium sulfate

during the purification process. The results showed a

significant 1.8-fold increase in the protein’s concentration.

These polymers possess properties that promote the

formation of flocs by bridging, charge neutralization, or

adsorption mechanisms. By selecting an appropriate

flocculant and optimizing the flocculation conditions (e.g.,

pH, temperature, flocculant dosage), the efficiency of the

clarification process can be significantly improved (Buyel

and Fischer, 2014a).

(6) Combination of Techniques: Often, a combination of

clarification techniques is employed to achieve optimal

results. For example, a sequence of centrifugation

followed by filtration can be utilized to remove different

sizes of particles and impurities (O’Leary et al., 2014; Sentis-

Mor et al., 2022). The specific choice of clarification

technique depends on factors such as the nature of the

plant material, the desired level of purity, the scale of the

process, and the properties of the target vaccine antigen.

These clarification methods aid in the removal of unwanted

particles, debris, and impurities from plant extracts,

resulting in a clarified solution that can be further

processed for downstream purification and formulation of

plant-based vaccines.
Various chromatography techniques, such as AC, IEX, HIC,

and SECb2 are commonly employed for purifying recombinant

biopharmaceuticals. The main goal of these techniques is to attain a

product of high purity, while ensuring its biological activity is

preserved (Rathore et al., 2018). It is widely recognized that an

elevated concentration of the target protein in the initial stages of
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the process requires a larger quantity of chromatography resin and

an increased buffer demand.

AC is a widely recognized and highly selective technique used

for purifying various plant-based biomolecules, including tagged

proteins, bispecific antibodies, and vaccines (Fujita-Yamaguchi,

2015; Habibi et al., 2018; Song et al., 2019; Cibelli et al., 2022).

Hexahistidine (His), glutathione S-transferase (GST), and maltose-

binding protein (MBP) are among the commonly employed affinity

tags . A notable chal lenge associated with Protein A

chromatography is the leaching of Protein A, leading to binding

of DNA, host cell proteins, and other impurities originated from the

cell culture. These challenges involve increased resin expenses,

restricted resin lifespan, modifications to the Protein A ligand,

which necessitate exploration of alternatives including

microspheres, and monolith membranes (Ramos-de-la-Pena et al.,

2019). These endeavors aim to overcome the limitations associated

with conventional Protein A chromatography, aiming for improved

efficiency and cost-effectiveness in purification processes.

IEX is a highly utilized and cost-effective technique for purifying

plant-based recombinant proteins (Champagne et al., 2013; Buyel

and Fischer, 2014c). It involves cation CEX and AEX, which

effectively remove various impurities including leached Protein A,

media components, product variants, host cell proteins (HCPs) and

DNA. HIC capitalizes on the diverse hydrophobic nature of protein

molecules and is used as a critical part in the refinement of proteins.

By HIC, proteins adhere to chromatographic ligands under high ionic

strength conditions, while their release occurs under low ionic

strength conditions. This technique efficiently segregates and

purifies proteins based on their hydrophobic properties, thereby

enhancing the overall purification process.

In SEC, protein molecules are separated based on their

molecular weight. This approach has been widely employed for

the purification of different proteins, including SARS-CoV-2 spike

trimer vaccine (Song et al., 2019), human interleukin-6 (hIL6)

(Islam et al., 2019), recombinant allergens and hypoallergenic

variants (Weber et al., 2003).

In addition to SEC, membrane-based chromatography

technique is used to achieve recombinant proteins with high

purity. This approach involves attaching a high specific ligand to

microfiltration membrane. In this method impurities can be

removed from solution with neutral to basic pH as well as low

conductivity. In this method however, optimizing flow distribution

as well as the size and thickness of membrane are required for the

purpose of protein purification (Orr et al., 2013; Chen et al., 2023).

These advancements in membrane-based chromatography provide

enhanced purification capabilities and broaden the options available

for efficient protein purification processes.
Examples of plant-made vaccine
purification using affinity tags

Affinity tags are critical for bench-top purification as well as for

characterization of the recombinant protein. However, not every

purification tag may be economically viable at the production scale

as removal of the tags (necessary for biopharmaceuticals) by
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chemical or enzymatic cleavage decreases the yield of the target

protein and thus are not efficient.

Protein fusions are advantageous during plastid-based

expression as the fusion partners stabilize and shield the

chloroplast-expressed recombinant proteins from proteolytic

degradation and enable fusion protein purification (Daniell et al.,

2005). Nevertheless, fusion proteins expression level of > 10% of the

total soluble protein form inclusion bodies that need solubilization

followed by refolding before purification. Therefore, despite great

advances in plastid transformation and recombinant protein

expression, few reports exist on purification development using

plastid-based platforms.

The fusion partner in fusion proteins can be advantageous for

protein accumulation and facile purification. The GUS-interferon

(INF) fusion protein was purified by weak anion-exchange

chromatography and subsequent IMAC-Ni chromatography

providing a yield of 6% of the TSP. The inclusion of His-tagged

GUS as fusion enhanced expression 60-fold while simplifying

purification. INF as fusion protein was cleaved off using the factor

Xa with 58% efficiency followed by purification through cation-

exchange chromatography (Leelavathi and Reddy, 2003). Two

precipitation steps using ammonium sulfate and an IgG-affinity

column were used to purify insulin-like growth factor (IGF) in

fusion with the Z-domain of Staphylococcus aureus (Daniell et al.,

2009). In this case, the fusion protein (~10% TSP) was subjected to

chemical cleavage with hydroxylamine to remove the Z-domain.

The cholera toxin B-proinsulin fusion that accumulated in the

leaves of tobacco plants as inclusion bodies (up to 47% of TSP),

was subjected to solubilization and refolding prior to purification by

an IMAC-Ni column metal affinity chromatography as the cholera

toxin B domain possesses three adjacent His residues that allow

strong interactions between the Ni-agarose resin and the fusion

protein (Boyhan and Daniell, 2011).

Santoni et al., 2022 propound the use of transient expression of

recombinant proteins containing 6 His-tag fused to the N- or C-

terminus of the recombinant vaccine candidate wherein the tag

enables facile initial evaluation of the plant-derived candidate

vaccine. However, the His tag must be removed in the final

vaccine product prior to promoting it to the stage of clinical

trials. Also, the appropriate positioning of the His tag has to be

assessed considering that the position of the tag can influence

protein accumulation and expression (Pinnola et al., 2015).

In both stable and transient expression systems, elastin-like

polypeptide (ELP) derivatives (ELPylation) have been proven to

enhance protein expression (Patel et al., 2007; Floss et al., 2010;

Phan et al., 2014). The ELP tag can be used in the purification of

fusion proteins (Phan and Conrad, 2016) which is particularly

advantageous for veterinary applications with the necessity for low

priced production. This is highly favorable for the production of

vaccines needed for ensuring animal health, and it is a critical goal

for producers driven by animal care regulations and the necessity to

preclude contaminated food due to public health concern.

Outbreaks of zoonotic disease such as swine flu and avian flu in

the last few years have underlined the necessity of developing

efficacious, scalable vaccination procedures (Organization, W. H.,

2022). Trimerization of hemagglutinin (HA), the major flu antigen,
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is an essential tool to accomplish sufficient antigenicity (Cornelissen

et al., 2010). ELPylation has been shown to augment expression

while enabling scalable and low-cost purification also for HA

trimers (Phan and Conrad, 2011; Phan et al., 2013b).

(Kim et al., 2021) cloned a fusion gene of the tumor-associated

antigen GA733 glycoprotein (that is distinctly expressed in

colorectal cancer) and the immunoglobulin Fc fragment (GA733-

Fc), as well as the fusion of GA733-Fc with an endoplasmic

reticulum retention motif (GA733-FcK) into the transient,

deconstructed plant expression vector, pEAQ-HT derived from

Cowpea mosaic virus. Both the fusion clones were transformed

into Agrobacterium tumefaciens, followed by infiltration of the

transformed Agrobacteria into the leaves of Nicotiana

benthamiana plants. Following the identification of their maximal

expression levels in the top leaves, both the fusion proteins were

purified from the infiltrated leaves using protein A affinity

chromatography. Shen et al. 2023 selected a SARS-CoV-2 spike

protein-targeted human heavy chain variable domain (VHH)

antibody fragment for rapid expression using plant cell

suspensions and transgenic tobacco plants. Purification of this

antibody was enabled through 6x His tag and C-Myc tag. This

plant-derived VHH antibody proved to be capable of recognizing

the SARS-CoV-2 spike protein as efficiently as that expressed in

mammalian and bacterial cell cultures.
Glycoengineering in plants

The majority of biologically significant proteins with

therapeutic applications undergo N-linked glycosylation, and the

sugar molecules within them significantly influence their folding,

assembly, solubility, and functionality (Loos and Steinkellner,

2014). Consequently, glycoengineering, a process that alters the

carbohydrate components of proteins to achieve specific protein

characteristics, serves as an approach to enhance the effectiveness,

safety, and resilience of pharmaceutical proteins. The difficulty lies

in creating biological structures that can reliably generate

homogenous glycan-containing glycoproteins on demand

(Sethuraman and Stadheim, 2006). The accessibility of

such structures will spur advancements on two levels: (i)

understanding the role of sugar moieties in a variety of biological

processes; and (ii) designing innovative biological substances with

precisely customized glycosylation to fulfill their functional

requirements (Chen, 2016).

The majority of eukaryotic cells have similar N-glycans pattern

until the formation of the intermediate GnGn. However, processing

after this point varies greatly, resulting in the synthesis of several

complicated N-glycoforms. Glycoengineering is the most intriguing

feature of plant-based systems for biopharmaceutical development.

Table 1 enlists some benefits and drawbacks of various expression host

systems. Only two main glycan structures, GnGnXF and MMXF, are

produced by plant cells, compared to mammals’ much reduced array

of Golgi-located glycoenzymes (Varki, 2011) As a consequence, plant

proteins often possess an unique dominating N-glycan structure as

opposed to the variety of N-glycans found in CHO cell-derived
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proteins. Core 1,3-fucose and xylose, which are absent from human

glycoproteins, are found in GnGnXF and MMXF (Loos and

Steinkellner, 2014). There have been worries that plant-based

proteins may set off immunological reactions that might end up in

the induction of plant-glycan-specific antibodies, which might have

negative repercussions. In contrast to mammalian cells, which have a

massive glycome and leading to glycan variability that makes it

difficult to specifically manipulate the N-glycosylation pathway,

plants, offer a small repertoire of glycoenzymes for N-glycosylation,

which enable plant system as ideal system to produce proteins with

homogeneous glycans Chen, 2016}. Additionally, plants have a

tremendous resistance for different glycan modifications, which

cannot impact their growth or development phenotypes significantly.

Following this development, various well-defined human N-

glycan structures, such as those featuring 1,6-fucosylation, bisected

patterns, tetra-antennary structures, and bigalactosylation, have been

effectively manufactured within plants (Loos and Steinkellner, 2014).

As a result, CHO cells are no longer incapable of generating multi-

branched N-glycans (Boune et al., 2020), all thanks to the innovation

of glycoengineered plants. These plants can produce monoclonal

antibodies (mAbs) with identical N-glycan profiles, differing only in

their core 1,6-fucose (Yamane-Ohnuki and Satoh, 2009). These

studies have also demonstrated that achieving the targeted

production of human glycoforms necessitates the precise

localization of the introduced glycoenzymes within specific

subcellular compartments. Introducing mammalian enzymes

randomly would disrupt the natural glycosylation pathway, leading

to suboptimal or unusual hybrid N-glycans (Barolo et al., 2020). By

employing a temporary expression method, this knowledge has

facilitated the successful production of biantennary sialylated N-

glycans by simultaneously expressing and accurately directing six

different mammalian glycoenzymes to various subcellular locations

(Loos and Steinkellner, 2014).

Another biosynthetic capability of plant systems is the

production of terminal polysialic acid (polySia) glycoproteins,

which can address challenges associated with the existing polySia

conjugation process, such as the need for numerous fermentations,

product purification, and in vitro chemical interactions (Colley

et al., 2014).

PolySia plays multiple roles in various biological processes, such

as cell regeneration, various immunological processes, and brain

development Chen, 2016. By cotransforming six human

glycoenzymes into XF plants, (Kallolimath et al., 2016) have

successfully generated t plants that are capable of producing

specific sialylated N-glycan structures with functional activity.

The COVID-19 vaccine and taliglucerase-alpha serve as notable

examples of the immense potential of using plant systems to

produce glycosylated biopharmaceuticals. Recent research on the

efficient production of vaccine candidates in low- and middle-

income countries highlights the future advancements in plant-

based glycosylated biopharmaceuticals. This research, as indicated

by (Margolin et al., 2023) and (Phoolcharoen et al., 2023) suggests

that manufacturing these molecules in plant systems can offer

solutions to current challenges such as unequal vaccine

distribution, high costs per dose, and the need for cold chain

infrastructure, as discussed by (Chung et al., 2022).
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Although plant glycoengineering has advanced significantly

over the past 15 years, there are still several targets that need to

be designed to minimize N and O-glycan variability and prevent

potentially immunogenic glycan epitopes. These features are

recently reviewed elsewhere by (Strasser, 2023) Table 1.
TABLE 1 Advantages and disadvantages of different expression host systems.

Host
System

Pros Cons

Bacterial • Low cost in terms of
culture condition (media
and additives)
• Require a short time
to express recombinant
proteins
• The methods adapted
to scale-up bioproduction
are straightforward

• Large proteins are often highly
variable in terms of expression
and proteolyzed upon purification
• The accumulation of inclusion
bodies and protein precipitation
Incorrect folding for large
proteins, aggregation, or low
chaperone activity
• Endotoxin accumulation
• No posttranslational
modification for human proteins

Mammalian • Post translational
modifications
• Correct protein
folding
• Human-ike
glycosylation
• Secretion capability
• Scalability
• Exiting regulatory
approval

• Higher media and facility costs
Longer cultivation times
• The need for specialized
equipment and expertise
• Lower growth rates, Regulatory
requirements and quality control
measures,
• Higher risk of human
pathogen
• large-scale mammalian cell
culture can be challenging and
costly

Plants • Require less expensive
growth media and
facilities
• Large scale protein
production
• Performing many
post-translational
modifications including
glycosylation and
disulfide bond formation
• Low risk of
contamination with
human pathogens
• Production of
recombinant proteins in a
relatively short time
frame
• No risk of mammalian
pathogens Environmental
friendliness.

• Protein yield variability
• Transgene containment
• Non-human glycosylation
• Lacks regulatory approval

Yeast • Rapid timeframe for
the expression of
recombinant proteins
• Vectors are not
dependent on helper
viruses express
• Secretion of most
complex posttranslational
modification proteins
• Low secretion of host
proteins
• Existing regulatory
pathway

• Glycosylation differences
• Time-consuming
• Scale-up challenges
• More expensive than microbial
systems due to the need for
specialized media and insect cell
lines
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Drawbacks of recombinant protein
expression and purification in
plant systems

Effects of proteases on recombinant
proteins expressed in plants

Plant cells have an abundance of proteolytic enzymes belonging

to diverse classes (Rawlings et al., 2014; 2016) and are highly

expressed in the lytic vacuole as well as the apoplast (Goulet

et al., 2012). N-glycosylation (Saint-Jore-Dupas et al., 2007), and

proteolytic processing directly influence the posttranslational fate of

many heterologous proteins expressed in plants in addition to

impacting the quality of the respective recombinant proteins

(Pillay et al., 2014; Doran, 2006; Benchabane et al., 2008; Duwadi

et al., 2015). Proteases play a primary role in controlling the

turnover of proteins and are involved in the regulation of several

developmental and cellular processes (Moon et al., 2004; Schaller,

2004; Smalle and Vierstra, 2004). Nevertheless, these enzymes are

ubiquitous in plant tissues while being highly diverse (Grosse-Holz

et al., 2018b; Beers et al., 2004) and pose a significant hurdle that

compromises the successful expression of several recombinant

proteins (Goulet and Michaud, 2006; Benchabane et al., 2008).

Proteases are associated with several different aspects of the

biological processes in plants including plant development,

remobilization of nutrients, pathogen defense and senescence

(Schaller, 2004; Liu et al., 2008; van der Hoorn, 2008). Proteases

could impact the integrity of the expressed recombinant proteins in

various ways, either within the plant following biosynthesis or

outside the plant cell during the extraction procedures (Rivard

et al., 2006; Benchabane et al., 2009a). Based on the number of sites

susceptible and accessible to endogenous proteases for hydrolysis of

peptide bonds, recombinant proteins could remain stable within the

plant cell, or can be subjected to complete hydrolysis or partial

cleavage that could negatively impact their activity, structural
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integrity or homogeneity and thereby their therapeutic value.

Apart from negatively impacting the target protein yields,

proteolytic processing could lead to generation of degradation

products having equivalent physico-chemical characteristics as the

intact recombinant target protein and hence difficult to get rid of

during downstream extraction.

A plethora of recombinant proteins targeted to the apoplast

have been expressed successfully in plants, but nevertheless, the

plenitude and poor specificity of proteases within the apoplast often

pose a major impediment that is not compatible with efficacious

schemes of recombinant protein expression (Hellwig et al., 2004;

Schiermeyer et al., 2005; Doran, 2006; Benchabane et al., 2008;

Delannoy et al., 2008; De Muynck et al., 2009). Protease inhibitors

have been used to augment recombinant protein expression in

plants (Grosse-Holz et al., 2016; 2018a).
Other approaches to improving
recombinant protein accumulation

Other important parameters regarding the improvement of

recombinant protein expression include maximizing or

harmonizing codon preference as well as modifying tRNA pools

towards the achievement of codon harmonization which requires

prior knowledge of codon usage and the size of tRNA pools in the

source organism and the host. Additionally, viral silencing

suppressors could be co-expressed along with the recombinant

protein to block systemic and local RNA silencing by precluding

the accretion of siRNAs, disrupting siRNA-AGO interaction or

eliciting AGO1 degradation (Watson et al., 2005; Baumberger et al.,

2007). Table 2 enlists some of the recombinant vaccines generated

using various plant systems. Approaches to establishing ER stress

resilience and alteration of degradation pathways could be added

avenues for augmenting recombinant protein expression. Also,

enhancing the protein storage capacity of the endomembrane

system by expanding the ER through promotion of membrane
FIGURE 2

Schematic representation of the downstream processes used to clarify, concentrate, and purify recombinant proteins expressed in plant systems.
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synthesis serves to increase the productivity and capacity of the ER,

thus overcoming ER stress (Schuck et al., 2009; de Ruijter et al.,

2016; Vitale and Pedrazzini, 2005). Cells can be genetically

engineered to synthesize larger quantities of phospholipids,

especially phosphatidylcholine (PC) to facilitate increase in

ER capacity.

Plant storage vacuoles are preferred intracellular destinations

for recombinant proteins expressed in seeds (Arcalis et al., 2014;
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Takaiwa et al., 2017; Torrent et al., 2009). Contrastingly, vacuoles in

leaf cells as well as undifferentiated suspension cells are often

deemed undesirable compartments for protein expression as they

do not provide a stable environment. Despite this, several

recombinant proteins such as endolysin, cellulolytic enzymes and

avidin have been shown to accumulate at high levels in leaf central

vacuoles (Marin Viegas et al., 2017). The human glucocerebrosidase

was expressed in carrot cells using a vacuolar targeting signal that
TABLE 2 Recombinant vaccines produced in different plant systems.

Name Function Host Expression Reference

Hepatitis B Core Antigen (HBc) Assembles into capsid particles, inducing
immune response

N. benthamiana 2.38 g/kg FLW (Huang et al.,
2006)

Hepatitis B Surface Antigen (HBsAg) Triggers induction of anti-HBs antibodies in
humans following 2-3 doses

Lactuca sativa L.
(transgenic lettuce),
transformed with A.

tumefaciens

>15 ng/g FLW
(.0015mg/kg)

(Kapusta
et al., 2001)

Respiratory Syncytial Virus F Protein
(RSV-F)

Induction of Th-1 type response Tomato
Lycopersicon esculentum

1.0 - 32.5 µg/g FFW (Sandhu et al.,
2000)

Binding subunit of heat-labile enterotoxin in
E coli (LT-B)

Triggers immune response and adds mucosal
protection to intestine

Transgenic corn Up to 10 mg/g (10
g/kg) in corn germ

(Tacket et al.,
2004)

Rotavirus Capsid Protein (VP6) Generates anti-VP6 Serum IgG and intestinal IgA
antibodies; stimulates humoral and mucosal

antibody production

Potato
Solanum tuberosum

0.01% of TSP (Yu and
Langridge,
2003)

sC protein of avian reovirus, with strong
promoter

Th-driven immune response Arabidopsis thaliana 4.9% total soluble
protein

(Wu et al.,
2009)

Zika Virus Envelope Protein (ZIKV E) Elicits cellular immune response and potent zE-
specific antibody response

N. benthamiana 160 mg/g FW (Yang et al.,
2018)

Surface hemagglutinin in HAC1 influenza Elicits HAI antibody response following 2
dosages, improved by presence of Alhydrogel

(rabbits and mice)

N. benthamiana 90 mg/kg plant
biomass

(Shoji et al.,
2011)

Classical Swine Fever Virus E2 Subunit
(CSFV - E2)

E2-specific antibody response N. benthamiana 150 mg/kg plant
biomass

(Park et al.,
2020)

Pfs25 fused to ALfalfa mosaic virus coat for
malaria vaccine

Production of serum antibodies that block
malaria activity through binding of Pfs25

N. benthamiana 50 mg/kg (Jones et al.,
2013)

VHH nanobodies targeting SARS-CoV-2
spike protein

Production of single domain camel derived
antibodies that bind CoV-2 spike protein

N. tabacum (suspension
culture)

16.6 mg/mL
solution (suspension

culture)

(Shen et al.,
2023)

Recombinant ESAT-6 + MPT-64
(tuberculosis antigens)

Recombinant protein fused by CTB subunit, used
to promote polyclonal antibodies in rabbits

Transgenic cucumber 478 ng/g
(0.03% v/v) TSP

((Yadav et al.,
2023)

Human papillomavirus L1 protein under
pentatricopeptide repeat target site

HPV-L1 triggers immune response; PPR protein
drives expression by binding PPR sequence of

mRNA to promote translation

N. Tabacum 0.03% TSP (Legen et al.,
2023)

Hepatitus E capsid protein containing M2e
peptide of influenza A or receptor binding
domain of SARS-CoV-2 spike protein

When expressed in plants, HEV Capsid protein
assembles into virus-like particles that can be
used as carriers of antigens (such as M2e)

N Benthamiana M2e: 300-400 ug/g
of fresh leaf tissue

(10% TSP)
SARS-CoV-2: 80-
100 ug/g of fresh
leaf tissue (1-2%

TSP)

(Mardanova
et al., 2022)

Chicken interleukin 17B Immunoadjuvant for vaccine against chicken
infectious bronchitis virus; enhances humoral and

mucosal immune responses

L. minor ZH04043
(Duckweed)

1.89 ug/g FW,
0.0365% TSP

(Tan et al.,
2022)

Colorectal carcinoma associated antigen
(GA733-2)

Fruit used as vaccine, containing antigen that
triggers immune response as well as intrinsic
vitamins that help activate the immune system

S. lycopersicum (Tomato) 270 ng/g FW (Park et al.,
2022)
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achieved the incorporation of the required N-linked glycan

structure having terminal mannose residues, catalyzed by the

activity of a glycan-modifying enzyme in the vacuole (Shaaltiel

et al., 2007). Intriguingly, the plant-produced taliglucerase alfa, an

acidic beta-glucocerebrosidase used in the treatment of Gaucher’s

disease is capable of withstanding the highly hydrolytic conditions

prevalent in the lysosome (Shaaltiel et al., 2007). Increase in

recombinant protein expression could also be achieved through

modulation of endogenous chaperone levels by overexpressing

selected chaperones along with the recombinant protein of interest.
Regulatory and safety issues concerning
the expression and purification of
vaccines/recombinant proteins in plants

During the production of plant-based vaccines, regulatory

considerations are a vital component for approval of the

recombinant product and therefore it is obligatory to follow specific

guidelines as per good laboratory practices (GLPs) and good

manufacturing practices (GMPs) enforced by regulatory agencies

(Kirk et al., 2005; Tusé et al., 2020). Several heath organizations

such as the International Council of harmonization (ICH) and the

World Health Organization (WHO) covering regions in the United

States, Japan and Europe play important roles in the development,

implementation, surveillance and enforcement of regulatory strategies

for the manufacture and administration of high-quality, effective and

safe biopharmaceuticals in order to enable favorable public health

outcomes (Tusé et al., 2020; European Medicine Agency (2008);

WHO, 2005).

As per the FDA regulations of 2017, tobacco-derived

recombinant products must get approval for use only upon

fulfilment of the modified-risk tobacco products endorsement

providing evidence concerning therapeutic information of the

new plant-based product (Food and Drug Administration, HHS

(2017)). Stringent rules and regulations regarding molecular

farming are also enforced by the regulatory bodies of each specific

country such as the ECCC in Canada and the USDAAPHIS in the

USA primarily focused on precluding environmental risks

concerned with the cultivation of plants producing recombinant

vaccines (Hundleby et al., 2022). Tobacco has been shown to be a

propitious system for the expression of plant-based vaccines

because of its biocompatibility, low-cost, large-scale expression

and low risk of dissemination of animal diseases. Nevertheless,

protracted clinical trials have been hindered due to formidable

regulatory and safety constraints (Mathew and Thomas, 2023).

The FDA has put forth stringent directives towards the safe

application of plant-based products (FDA, 2020). Also, the

European Medicines Agency (EMA) has decreed that herbal

therapeutic compounds can only be administered if they have

been used for a minimum of 30 years including at least 15 years

within the EU as well as are not provided parenterally. Furthermore,

use and marketing of these plant-derived products must be allowed

only upon the availability of adequate scientific information

confirming that the purified constituent or active ingredient of
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EMA, 2020). Considering that there exist several toxic substances in

plants, it is imperative that any side effects be ruled out due to

unregulated administration of plant-derived products. Only then

can plant-based vaccine candidates against diseases be considered

for effectual use. Also, speedy harmonization of regulatory

operations will enable reduction of the time span required for

plant-based products to be adapted from the level of the bench to

the market. Besides, plant-based vaccines must meet with best

quality standards as per the strict GMP regulation guidelines

assigned for all biological compounds. Despite the favorability of

plant-based edible vaccines, there exist several challenges regarding

their use. These include inappropriate gene transfer methodologies,

low expression levels, impediments concerning codon bias and

regulatory sites, improper polyadenylation, mRNA instability,

epigenetic silencing, positional effects, inadequate immune

response following administration, dose consistency variations

and inappropriate selection of the vaccine antigen and host plant

combination. The recent example of Medicago Inc. completed

phase-2 clinical trials and also received regulatory approval of the

candidate vaccine for SAR-Cov-2 by Health Canada will pave a way

for plant-made products.
Conclusions

As plant expression platforms evolve, a major focus of research

and development will move from upstream to downstream

processing, to increase overall productivity (Gottschalk, 2008).

Downstream processing accounts for a major portion of the total

costs for operation and product manufacturing. Hence, to be

economically feasible, selective and efficient processes for product

extraction and purification are increasingly called for (Basaran and

Rodriguez-Cerezo, 2008). The efficiency of downstream processing

is dependent on the concentration of the recombinant protein,

complexities of cell-free culture media and plant extracts as well as

the required level of purity of the final product. This review has

sought to define the phases required to express and develop vaccines

and other pharmaceutical proteins from plants. These steps will

only become further refined as the search for cost-effective and

environmentally friendly expression platforms for vaccines increase

in demand.
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