
SOFTWARE

METAPAPER

WRaINfo: An Open Source
Library for Weather Radar
INformation for FURUNO
Weather Radars Based on
Wradlib

ALICE KÜNZEL

KAI MÜHLBAUER

JULIA NEELMEIJER

DANIEL SPENGLER

ABSTRACT
WRaINfo is a software for real-time weather radar data processing developed by
the Helmholtz Innovation Lab FERN.Lab, a technology and innovation platform of
the German Research Centre for Geosciences Potsdam (GFZ). WRaINfo is specifically
designed for processing X-band weather radar data of FURUNO devices. The modules
of the package allow to read and process raw data of the WR2120 and WR2100. For this
purpose, many functions of the library wradlib are used and adapted. The processing is
controlled by a configuration file, main functionalities include formatting, attenuation
correction, clutter detection, georeferencing and gridding of the data. This allows the
construction of reproducible, automatic data processing chains. The package is written
in the Python programming language. The source code is publicly available on GitLab.
Compiled versions are also available on PyPi. The package is distributed under the
Apache 2.0 license.

CORRESPONDING AUTHOR:
Alice Künzel

Helmholtz-Centre Potsdam,
German Research Centre for
Geosciences (GFZ), Potsdam,
Germany

alicek@gfz-potsdam.de

KEYWORDS:
WRaINfo; python; weather
radar; X-band; quality control;
real-time; data processing;
precipitation estimation;
attenuation correction; clutter
detection; georeferencing and
gridding; meteorology; remote;
sensing

TO CITE THIS ARTICLE:
Künzel A, Mühlbauer K,
Neelmeijer J, Spengler D 2023
WRaINfo: An Open Source
Library for Weather Radar
INformation for FURUNO
Weather Radars Based on
Wradlib. Journal of Open
Research Software, 11: 9. DOI:
https://doi.org/10.5334/jors.453

*Author affiliations can be found in the back matter of this article

mailto:alicek@gfz-potsdam.de
https://doi.org/10.5334/jors.453
https://orcid.org/0000-0002-3633-7436
https://orcid.org/0000-0001-6599-1034
https://orcid.org/0000-0002-1165-9404
https://orcid.org/0000-0003-2939-8764

2Künzel et al. Journal of Open Research Software DOI: 10.5334/jors.453

(1) OVERVIEW

INTRODUCTION
Raw data of weather radars can provide useful visual
information about the spatial distribution of precipitation
events. But in order to use weather radar data for
quantitative studies, the raw data have to be processed in
order to account for typical error sources such as ground
clutter, uncertainties in polarimetric variables and in the
relationship between radar reflectivity and rain rate as
well as attenuation of the radar signal.

A ground-based weather radar not only detects
reflectivities of water droplets in the atmosphere but
also of all non-meteorological objects. These include
wind parks, buildings, mountains, aircraft and bird flocks.
These echoes are called (ground) clutter and must first
be removed from the raw data. For this purpose, clutter
maps are created over a long period of time to remove
the non-meteorological echoes from the raw data.

The radar signal may be attenuated by heavy
precipitation, so that only weak reflectivities are detected
within the heavy rain cell and behind it. To correct this, an
attenuation correction must be performed.

Weather radars don’t measure precipitation directly.
Thus, the amount of precipitation (R) is estimated from
the clutter and attenuation corrected reflectivity (Z). The
relationship is called “Z-R Relationship”.

The software package WRaINfo has been developed
on top of the software package wradlib [1] to process
and correct all formerly effects of data originating from
the ground-based dual-polarized X-band weather radar
system (WR2120) of FURUNO.

Clutter detection, attenuation correction and
precipitation estimation are based on polarimetric
variables that are recorded in addition to reflectivity by
dual-polarized weather radar systems. Table 1 provides a
summary about the characteristics of measured variables.

DATA FORMAT
Per default, FURUNO weather radars generate binary
files. For each elevation angle one scnx (WR2120)/scn
(WR2100) file per scan interval is generated. The scnx/
scn files are provided with a 16-bit resolution.

COMPARISON TO EXISTING SOFTWARE
WRaINfo heavily depends on functionalities implemented
in wradlib [3], which is a package providing many
functions for processing weather radar data in general.
WRaINfo, however, has been developed to handle
data coming particularly from FURUNO weather radar
devices. This allows to reuse functionalities like clutter
detection, precipitation estimation and georeferencing
from wradlib. Additionally, a specific function for reading
the binary raw data (scn/scnx data) of FURUNO has been
implemented in wradlib and is used in WRaINfo.

WRaINfo incorporates X-band specific attenuation
correction methods, as the implementation in wradlib is
dedicated for C-band weather radars [4–6], which are found
not to be suitable for X-band devices. As a consequence,
the Z-PHI method [7–9] was implemented in WRaINfo for
attenuation correction. To enable completely automated
processing, process chains for the generation of clutter
maps and precipitation products from the FURUNO raw
data were also integrated in WRaINfo.

POLARIMETRIC VARIABLE DEFINITION SHORT CHARACTERISTICS APPLICATION

ZH
Horizontal reflectivity

reflectivity in the horizontally
polarized channel

Increases with horizontal particle
dimension, number concentration,
density and water content.

–

ZV
Vertical reflectivity

reflectivity in the vertical
polarized channel

Increases with vertical particle
dimension, number concentration,
density and water content.

–

ZDR
Differential reflectivity

difference between ZH and ZV Increases with density, flattening
and water content and is
proportional to the hydrometeor
concentration.

hydrometeor classification,
clutter detection

PHIDP
Differential phase shift

cumulative phase shift between
H and V polarized waves

Is a measure of the attenuation
integrated along the path.

attenuation correction,
precipitation estimation

RHOHV
Correlation coefficient

correlation coefficient between
ZH and ZV

Is a measure of the diversity of
hydrometeors in the radar volume
and the data quality. RHOHV is
close to 1 for most hydrometeors
and significantly less than 1 for
non-meteorological scatters.

clutter detection,
hydrometeor classification

KDP
Specific differential phase

derivative of PHIDP Increases with density, flattening
and water content and is
proportional to the hydrometeor
concentration.

attenuation correction,
precipitation estimation

Table 1 Short characteristics of polarimetric variables [2].

3Künzel et al. Journal of Open Research Software DOI: 10.5334/jors.453

Due to the development of xradar [10], other software
packages can also be integrated in the future, so that
tools from the Python ARM Radar Toolkit [11] can also be
implemented in the future.

WRaINfo has reached a mature stage in the last
months, which allows the operational use of the FURUNO
weather radar devices. The software can be used for both
radar types (WR2120 & WR2100) of FURUNO.

OVERVIEW OF WRAINFO
In summary WRaINfo provides the following functionality:

•	 raw data reading and returned as xarray dataset
•	 optional: HDF5 data reading
•	 application of clutter detection, phase processing and

attenuation correction with optimized parameters for
X-Band weather radars

•	 estimation of precipitation amounts with Z-R
Relationship

•	 georeferencing and gridding of data
•	 operational use: processing chain to generate clutter

maps over long period of time followed by entire data
processing

The software has been developed by the Helmholtz
Innovation Lab FERN.Lab [12], the technology and
innovation platform for remote sensing for a sustainable
use of resources at GFZ Potsdam, in cooperation with the
University of Bonn. The following goals are pursued:

1.	 Testing the functionality of the software by increasing
the coverage of unit tests.

2.	 Contribute to wradlib so that the software developed
by FERN.Lab can be made available to a wider
audience.

3.	 Facilitate the use of weather radar data for farmers
based on WRaINfo.

IMPLEMENTATION AND ARCHITECTURE
Used programming language
To allow the close connection to wradlib, WRaINfo has
been developed in Python 3.6, which is a widely used
programming language and has a large standard library,
supplemented by a variety of open source packages.
Developments have been embedded within the open
source cookiecutter python package template [13]. With
this template it is possible to automatically generate
software documentation based on Sphinx [14] and to
perform quality control of the software using Pylint [15]
and pytest. WRaINfo was created using the cookiecutter
template adapted by FERN.Lab [16].

Configuration
The package uses a configuration file. The entire contents
of this file can be loaded with the wrainfo.reader.read_
config_file() function. For this purpose, the file path to

the configuration file and “selection = None” must be
specified. Before the other modules of WRaINfo can be
used, all directories and settings in the configuration file
have to be defined. Table 2 contains an overview of the
configuration file and a description of the parameters to
be defined.

Modules
WRaINfo contains eight modules, which are subdivided
according to the respective functionality (Figure 1). The
individual modules are described below.

a) Reader
The reader module (reader.py) contains functions to read
the configuration file and generate file lists. The function
wrainfo.reader.create_flist() loads FURUNO raw data for a
defined period of time into a list. The file list is compared
with an error file list. The error file list contains manually
defined erroneous files and these are removed from the
created file lists in order to exclude these data from the
processing. The two individual file lists are merged into one.
Per default, scn/scnx format is supported as input data
format, optionally data can be provided in HDF5 format. A
file list with all raw data of the defined period is returned.

Scn/scnx files are processed by the function wrainfo.
reader.read_single_file(). A raw dataset is read and
returned as an xarray dataset. Figure 2 shows the most
important polarimetric variables of a FURUNO raw
dataset, which are read by the function.

Raw reflectivity (ZH) provides information on the
spatial distribution of a recorded precipitation event
extending from north to south-east (Figure 2).

By means of the polarimetric variable RHOHV, non-
meteorological (ground clutter) and meteorological
echoes can be distinguished in the raw reflectivity (ZH). If
the cross correlation coefficient (RHOHV) is greater than
0.9, it is assumed that mostly precipitation occurs [17].
Thus, Figure 2 shows that the individual pixels with high
reflectivity, such as in the west and south, are ground
clutter. KDP allows conclusions to be drawn about the
size and concentration of raindrops. Thus, high positive
values in KDP correlate with high reflectivity, which can
be seen in the north (Figure 2).

The polarimetric variable PHIDP is a measure of the
attenuation. Strong attenuation is visible in the north
(Figure 2). Even if the attenuation is not strong, an
attenuation correction must be made.

b) Clutter detection
The clutter detection module (clutter.py) contains
functions to detect clutter and then remove it from the
raw data. Furthermore, a clutter map can be created with
this module.

A clutter map can be generated using the wrainfo.
clutter.create_clutter_map_sequential() function. To do
this, a file list must first be created that contains all raw

4Künzel et al. Journal of Open Research Software DOI: 10.5334/jors.453

data over a defined time period. This can be done using
the wrainfo.reader.create_filelist() function.

The created file list is one of the function parameters.
The parameter threshold specifies that only positive
values of the uncorrected reflectivity, which are in the
boolean dataset of the clutter map, are considered. If
the status parameter is set to true, then the processing
progress of the clutter map is obtained as a percentage.
Only the reflectivity values are extracted from the raw
data and added. Ground clutter is located at the points
where high reflectivities occur in each dataset. Afterwards
a boolean dataset is created where the added reflectivity
values must be greater than the threshold. The clutter
maps generated with WRaINfo contain a dataset with
the summed reflectivities and another boolean dataset
(1 = clutter, 0 = no clutter).

Figure 3 shows a clutter map for the elevation angle
of 0.5°. Pixels which are identified as clutter, are marked
in yellow. These are wind parks and high buildings in the
town, where the weather radar is located.

For clutter detection the fuzzy echo classification
from wradlib is used [18, 19]. The function wrainfo.
clutter.fuzzy_echo_classification() needs as input a two
dimensional (azimuth and range) raw dataset of the
weather radar and the clutter map as xarray dataset.
The raw dataset may additionally contain time as a
dimension. Then the parameter “dims” must be adjusted
accordingly.

For the fuzzy echo classification all polarimetric
variables (RHOHV, PHIDP, ZDR, VRAD) as well as the
generated clutter map (CMAP) are used as described in
Vulpiani et al. [19].

PARAMETER DESCRIPTION DATA FORMAT
[RANGE IF
NECESSARY]

DEFAULT VALUES
(IF NECESSARY)

Read data

raw_data_directory path to raw data str –

subfolder_structure_raw_
data

regex format of subfolders in the raw data
directory

str Y/m/d/

error_flist_directory path to file list with faulty files str –

monthly_clutter_directory path to monthly clutter maps str –

subfolder_structure_clutter_
directory

date format of subfolders in the monthly
clutter directory

str Y/m/

static_clutter_directory path to the static clutter maps str –

static_cmap complete file path to the selected clutter
map

–

Save data in output directory

output_directory_tar_gz_files output directory for compressed raw data str –

output_path_processed_files output directory for processed data str –

output_path_error_flist output directory for file list with faulty files str –

Settings for processing data

radar_location_identifier Abbreviation for location and type of
weather radar

str –

epsg_code EPSG Code of the desired coordinate
reference system

integer 32633

nb_pixels Resolution in pixels of the georeferenced
data

integer 1400

dimensions dimension of the data, two or three
dimensional

list [“azimuth”,”range”,”time”]

scan_interval scan interval of the weather radar in
seconds

integer 300

re_index_parameters Correction of the original azimuth angles list
[0–360°]

[0.25, 360, 0.5]

moments_in_processed_files Moments which are to be stored in the
processed data

list [‘RATE’, ‘DBZH’, ‘VRAD’, ‘ZDR’, ‘KDP’,
‘PHIDP’, ‘RHOHV’, ‘WRADH’, ‘FUZZ’,’DBZH_
no_clutter’, ‘DBZH_CORR’, ‘PREC_ZR’]

Table 2 Description of the parameter used in the configuration file.

5Künzel et al. Journal of Open Research Software DOI: 10.5334/jors.453

Figure 1 Software architecture of WRalNfo.

Figure 2 Polarimetric variables of raw data.

6Künzel et al. Journal of Open Research Software DOI: 10.5334/jors.453

The default values for the weighting of each variable
correspond to the study of Crislogo et. al [18] and can be
found in Table 3.

The new variable “FUZZ” is appended to the raw dataset.
This is the clutter map resulting from the fuzzy echo
classification and is needed for the function wrainfo.clutter.
dbzh_no_clutter(). Figure 4 shows the clutter map and
results of the fuzzy echo classification. All radar bins that
have been classified as clutter are now marked in yellow.

To remove the pixels masked as ground clutter from
the raw reflectivity, the wrainfo.clutter.dbzh_no_clutter()
function is used. The output dataset of the fuzzy echo
classification is needed for this function. In addition, the
static clutter map has to be loaded. The ground clutter is
excluded from the raw reflectivity using the clutter map
and the previously created variable “FUZZ”. All pixels
that have been identified as clutter are flagged as NaN
values. Figure 5 shows the raw reflectivity and the clutter
corrected reflectivity. The returned xarray dataset gets a
new variable “DBZH_no_clutter”.

c) Attenuation correction
After the clutter detection is done, the attenuation
correction follows. This is accomplished by the wrainfo.
attenuation_corr.phase_zphi() function and processes
the phase PHIDP. The function needs the data array of
PHIDP from the clutter corrected xarray dataset. The
parameters “start_range” and “range” of the moving
window have to be defined. Within the function a binary
array (True = rain, False = not-rain) rolling a range-
long sum from PHIDP is generated. Afterwards the first
occurrence of the maximum (from front and back) of
PHIDP binary array is searched for. This gives the indices of
the centres of the rolling window. Then min, max, median
and mean of these are calculated. Finally, the true start
and end indices of the phase PHIDP are calculated (+/-
half window length). The returned dataset additionally
contains the first and last values (min, max, median,
mean) of the phase PHIDP (Figure 6).

In the Z-PHI method, the rain profile along the radar
beam is derived from the reflectivity profile (ZH). The
required boundary condition is the total attenuation of
the radar beam, which is derived from PHIDP.

In the following function wrainfo.attenuation_corr.
zphi() the specific attenuation (AH) is calculated using
an optimized algorithm based on the ZPHI-Method [7,

POLARIMETRIC VARIABLE WEIGHT

RHOHV 0.4

PHIDP 0.1

ZDR 0.4

VRAD 0.1

CMAP 0.5

Table 3 Weights of the fuzzy echo classification procedure.

Figure 3 Clutter map.

Figure 4 Comparison of the clutter map and results of the fuzzy echo classification.

7Künzel et al. Journal of Open Research Software DOI: 10.5334/jors.453

Figure 5 Comparison of raw reflectivity and clutter corrected reflectivity.

Figure 6 Results of the processed phase PHIDP.

8Künzel et al. Journal of Open Research Software DOI: 10.5334/jors.453

8]. The function needs the clutter corrected reflectivity
and the added dataset of the function wrainfo.
attenuation_corr.phase_zphi() as function parameters.
To define the boundary conditions, within the function
wrainfo.attenuation_corr.zphi() first DP is calculated
(eq. 1) from the parameters “last_median” and “first_
median” (Figure 7). In eq. 1 r1 and r2 represent the
integration bounds.

 These are contained in the returned xarray dataset of
the function wrainfo.attenuation_corr.phase_zphi(). First
any DP values less than 0 are set to 0. Then the function
of DP (DPfΔ ) is calculated (eq. 2). According to eq. 3 we
prepare attenuated reflectivity to the power of b

ab [Z (r)] ,
where b is a constant parameter (usually within 0.6–0.9
at microwave frequencies) and the integral of that from
each range bin to maximum range [9]. The calculation
of that integral is done per ray by cumulative trapezoidal
integration over the range dimension and following
subtraction from its maximum value. α is calculated as

D

A
K P

  and is assumed as constant or temperature

dependent [9, 20]. A stands for the specific attenuation.

	 ()DP DP 2 DP 1Δ r (r) Φ = Φ − Φ � (1)

	 DP0.1 b Δ
DPfΔ 10 1       � (2)

For performance reasons eq. 3 is rearranged as

	 ()
b

a
H r2 b

r2a br1
ar1

DP

[Z (r)]
A r

0.46b [Z (s)] ds
 0.46b [Z (s)] ds

f(Δ)

=

+
Φ

 

� (3)

The integral (r1, r2) is extracted from the above integral
by selection using the first index provided from wrainfo.

attenuation_corr.phase_zphi() function. In advance KDP
is derived from AH and further PHIDP is recalculated from
KDP.

The ZPHI-based AH, KDP, and PHIDP are merged into
one xarray dataset which is finally returned.

Figure 7 shows the recalculated polarimetric variables
PHIDP and KDP, respectively, and the respective raw
dataset as well as the calculated specific attenuation (AH).

Subsequently, the attenuation correction of the
reflectivity is performed with the recalculated PHIDP
(eq. 4). Figure 8 shows a comparison of the reflectivity
before and after attenuation correction. α depends
on temperature and drop size distribution. The range
of values for X-Band weather radars is between 0.14 –
0.35 dB/deg. α is mostly assumed to be constant (α =
0.28) and corresponds to the climatic mean. Certain
uncertainties, such as variability in summer and winter,
cannot be excluded. Thus, 0.28 is used for α in eq. 5.

	 corr raw DPrecalcZH ZH   � (4)

	 corr raw DPrecalcZH ZH 0.28   � (5)

d) Precipitation estimation
The precipitation module (precipitation.py) is used to
estimate precipitation rates from clutter and attenuation
corrected reflectivity based on the Z-R relationship. This
is an empirical relationship between the reflectivity (Z)
of the weather radar and the precipitation rate (R). In
equation 6 a and b are the relationship parameter and
depend on the rainfall type (stratiform or convective).
Marshall and Palmer [21] defines default values for a and
b are: a = 200 and b = 1.6.

	 b a Z R  � (6)

Figure 7 ZPHI based recalculated PHIDP, KDP and specific attenuation.

9Künzel et al. Journal of Open Research Software DOI: 10.5334/jors.453

The function wrainfo.precipitation.qpe_zr() is used for the
precipitation estimation. The function needs as input
parameter the returned dataset of the attenuation
correction and the name of the data array, which contains
the attenuation corrected reflectivity. The directory to
the configuration file also has to be defined as a function
parameter. In the configuration file the scan interval in
seconds and the dimensions of the dataset have to be
defined.

First, the precipitation intensity [mm/h] is derived from
the corrected reflectivity in this function. Second, the
amount of precipitation [mm] within the specified scan
interval is calculated based on the precipitation intensity
[mm/h]. Finally, the returned xarray dataset contains a
new variable “PREC_ZR”. Figure 9 shows the estimated

precipitation amount for the clutter and attenuation
corrected reflectivity.

e) Georeferencing and gridding
The geometry module is used to project the polar data
into a Cartesian grid and to write georeferenced radar
data as netCDF files to the hard disk.

The function wrainfo.geometry.furuno_
georeferencing() uses as input parameter an xarray
dataset and the directory to the configuration file,
because the target coordinate reference system, the
spatial resolution in pixels and the moments, which
should be georeferenced have to be defined in the
configuration file. The function returns a georeference
xarray dataset, which shows in Figure 10.

Figure 8 Reflectivity before and after attenuation correction.

Figure 9 Attenuation corrected reflectivity and estimated precipitation.

10Künzel et al. Journal of Open Research Software DOI: 10.5334/jors.453

The writing of (georeferenced) radar data as netCDF
files to the hard disk is done with the function wrainfo.
geometry.furuno_sweep_to_netcdf(). This function has
the same parameters as the function for georeferencing.
Additionally, the data type can be defined. This refers to
the level of data processing. The output directory has to
be specified in the configuration file.

f) Error and compression module
The error file list (error_flist.py) and compression
(compression.py) module allow the data management
of FURUNO data on the hard disk. With the former it
is possible to exclude erroneous files from the data
processing. With the compression module it is possible to
store raw data per day in a compressed tar.gz file.

g) Process chains
WRaINfo contains the module process_chains.py, which is
based on the modules reader.py, clutter.py, attenuation_
corr.py, precipitation.py and geometry.py (Figure 1).

The module process_chains.py shows how the
operational mode can be set up to process the raw
data of the FURUNO weather radars and subsequently
generate georeferenced precipitation products with any
temporal resolution. In this paragraph, the individual
process chains are described in detail which allow an
operational workflow.

GENERATION OF GROUND CLUTTER MAPS
To remove ground clutter from the raw data, monthly
clutter maps are generated for each elevation angle
over a period of at least 3 months. For this purpose the
function wrainfo.process_chains.clutter_chain() is used.

The start time and the number of days over which the
clutter map should be created must be defined. The stop
time is then calculated within the function by adding
the start time and the number of days. First, a file list is
created for all raw data of the specified elevation angle
for the period between start and stop time. Then the
processing of the clutter map is done with the function
wrainfo.clutter.create_clutter_map_sequential() as
described in chapter b) clutter detection.

The output filename of the clutter map is created, which
contains start and end time of the processed clutter map
as well as the elevation angle. The clutter maps are stored
as netCDF datasets in the specified output path “monthly_
clutter_directory” in the configuration file (Table 2).

The function wrainfo.process_chains.static_cmap()
is used for creating a clutter map from the last three
clutter maps for the selected elevation angle. Within the
function the last three generated clutter maps are added
and saved as netCDF dataset. The created clutter map
covers a period of 9 months and is used in the function
wrainfo.process_chains.wr_routine_furuno().

If the available data covers only a time series shorter
than 9 months, the directory to a clutter map with
another arbitrary time period can be specified in the
configuration file. This is then used for the function
wrainfo.process_chains.wr_routine_furuno().

WEATHER RADAR ROUTINE
For the function wrainfo.process_chains.wr_routine_
furuno(), which is a process chain to generate precipitation
products from the raw data, the following parameters
have to be defined in the configuration file. Details can
be found in Table 2:

Figure 10 Georeferenced and gridded precipitation data with WRalNfo.

11Künzel et al. Journal of Open Research Software DOI: 10.5334/jors.453

•	 subfolder_structure_raw_data
•	 error_flist_directory
•	 re_index_parameters
•	 raw_data_directory
•	 dimensions
•	 static_cmap
•	 scan_interval
•	 epsg_code
•	 nb_pixels
•	 moments_in_processed_files
•	 radar_location_identifier
•	 output_path_processed_files

Data reading
At first the static clutter map for the selected elevation
angle is read. The boolean data array is then extracted
from the dataset. This is needed later for the clutter
detection. In the next step the filenames of the FURUNO
raw data are stored in a list. The list always contains all
files for one day, if delta = 1 was set. If delta is chosen
differently, the processing is done for a different time
period within the for loop.

The data processing of the raw data is accomplished
like follows: first, the extension is used to check how to
read the data. Second, by reading the data the reindexing
of the azimuth angle is done and third, errors in the data
array of the elevation angle are corrected.

Application of all corrections
The clutter detection takes place and first the complete
dataset is masked with the variable RHOHV. Clutter are
removed from the uncorrected reflectivity. Subsequently
the phase processing is performed in which PHIDP is
recalculated and the specific attenuation is determined
and KDP is derived. The recalculated PHIDP is then

used for attenuation correction. After the attenuation
correction, the quantitative precipitation estimation can
be performed using the Z-R relationship. This is followed
by smoothing and georeferencing of the dataset. Finally,
the precipitation product is stored in the specified output
directory as a netCDF file.
Figure 11 provides an overview of how the individual
process chains in the process_chains.py module build on
each other.

QUALITY CONTROL
In order to ensure functionality and also to be able
to release high quality software, WRaINfo contains
automated tests for the majority of the functions of each
sub-module. For new functions that are integrated into
the software, new tests are added respectively. All tests
are based on pytest.

When software with newly developed functions is
uploaded, an integrated CI pipeline in GitLab is used to
attempt to install WRaINfo from a Docker container. If the
installation is successful, all automated functional tests
are completed. Additionally, the code is checked for PEP8
style using Pylint, and hyperlinks, which are available in
the documentation and in README are checked for their
response via a dedicated urlchecker test. Only when all tests
are successfully completed, the software documentation
based on Sphinx is created and deployment to Zenodo
and Pypi takes place. The software documentation
includes an installation guide and additionally, for
each submodule, a set of examples written in Jupyter
Notebooks. Using pandoc and the other requirements
(nbconvert, nbsphinx, nbformat, jupyter and notebook),
the “docstrings” are extracted from the source code and
formatted. The Jupyter notebooks are not executed when
creating the documentation. However, they can be run

Figure 11 Flowchart of WRalNfo in operation mode.

12Künzel et al. Journal of Open Research Software DOI: 10.5334/jors.453

and traced by users in a python environment themselves.
For this purpose, the Git Repository contains a test folder
with a few sample files. These files are also used for the
automated functional tests.

With each upload, the documentation is automatically
updated so that the new code and the documentation
remain in sync.

(2) AVAILABILITY

OPERATING SYSTEM
GNU/Linux, Windows

PROGRAMMING LANGUAGE
WRaINfo has been written in Python 3.6 +

DEPENDENCIES

•	 numpy 1.9+
•	 rioxarray 0.11.2+
•	 scipy 1.0+
•	 wradlib 1.15+
•	 xarray 0.17.0+

LIST OF CONTRIBUTORS
Alice Künzel, software developer, Helmholtz-Centre
Potsdam, German Research Centre for Geoscience (GFZ)

Kai Mühlbauer, software developer, University of Bonn,
Institute of Geoscience – Meteorology Section

Julia Neelmeijer, project leader/supervisor, Helmholtz-
Centre Potsdam, German Research Centre for Geoscience
(GFZ)

Daniel Spengler, project leader/supervisor, Helmholtz-
Centre Potsdam, German Research Centre for Geoscience
(GFZ)

SOFTWARE LOCATION
Archive

Name: WRaINfo
Persistent identifier: 10.5281/zenodo.7521387
Licence: Apache Software License 2.0
Publisher: FERN.Lab (GFZ Potsdam)
Version published: v0.9.3
Date published: 10/01/2023

CODE REPOSITORY
Name: GitLab
Identifier: https://git.gfz-potsdam.de/fernlab/
products/furuno/wrainfo
Licence: Apache Software License 2.0
Date published: 04/10/2022

LANGUAGE
English

(3) REUSE POTENTIAL

WRaINfo is a relatively new software package. At the
moment WRaINfo is used by the University of Graz and
the University of Natural Resources and Applied Life
Sciences Vienna. In addition, WRaINfo is already part of
a thesis at the University of Graz.

WRaINfo has been written in such a way that it is not
only reusable but also extensible. In the future, research
institutions operating a FURUNO weather radar will be
able to use WRaINfo as a basis and extend the software
with their own developments. FURUNO weather radars
are already operated at several locations in Germany
and also in other countries, so that WRaINfo will gain in
importance in the future.

In addition, it is planned to develop a software module
for high-resolution precipitation information gathering for
farmers, who would like to consider these measurements
for management purposes. WRaINfo will be the basis for
such an application development and could surely be
also used for other application developments based on
FURUNO weather radar data (e.g. fire monitoring, storm
monitoring, etc.).

ACKNOWLEDGEMENTS

We would like to thank FURUNO Germany for providing us
with a dual polarized X-band weather radar and for the
close cooperation.

We would also like to thank Neubrandenburg
University of Applied Sciences for allowing us to install
the weather radar on their building.

FUNDING INFORMATION

1. “Initiative and Networking Fund of the Helmholtz
Association”, HIL-A15 FERN.Lab, “Helmholtz Innovation
Lab – FERN.Lab
2. German Federal Ministry of Food and Agriculture
(on the basis of a decision by the German Bundestag),
28DE114A18, AgriSens DEMMIN 4.0

COMPETING INTERESTS

The authors have no competing interests to declare.

AUTHOR AFFILIATIONS

Alice Künzel orcid.org/0000-0002-3633-7436

Helmholtz-Centre Potsdam, German Research Centre for

Geosciences (GFZ), Potsdam, Germany

https://doi.org/10.5281/zenodo.7521387
https://git.gfz-potsdam.de/fernlab/products/furuno/wrainfo
https://git.gfz-potsdam.de/fernlab/products/furuno/wrainfo
https://orcid.org/0000-0002-3633-7436
https://orcid.org/0000-0002-3633-7436

13Künzel et al. Journal of Open Research Software DOI: 10.5334/jors.453

Kai Mühlbauer orcid.org/0000-0001-6599-1034

University of Bonn, Institute of Geoscience – Meteorology

Section, Bonn, Germany

Julia Neelmeijer orcid.org/0000-0002-1165-9404

Supervisor/Project leader, Helmholtz-Centre Potsdam, German

Research Centre for Geosciences (GFZ), Potsdam, Germany

Daniel Spengler orcid.org/0000-0003-2939-8764

Supervisor/Project leader, Helmholtz-Centre Potsdam, German

Research Centre for Geosciences (GFZ), Potsdam, Germany

REFERENCES

1.	 Heistermann M, Jacobi S, Pfaff T. Technical Note: An open

source library for processing weather radar data (wradlib).

Hydrol. Earth Syst. Sci. 2013; 17: 863–871. DOI: https://doi.

org/10.5194/hess-17-863-2013

2.	 Ryzhkov AV, Zrnic DS. Radar Polarimetry for Weather

Observations. Springer Atmospheric Sciences; 2019. DOI:

https://doi.org/10.1007/978-3-030-05093-1

3.	 Mühlbauer K, Heistermann M, Pfaff T, et al. wradlib: An

open source library for weather radar data processing;

2022. DOI: https://doi.org/10.5281/zenodo.6442964

4.	 Hitschfeld W, Bordan J. Errors inherent in the

radar measurement of rainfall at attenuating

wavelengths. Journal of the Atmospheric Sciences.

1953; 11(1): 58–67. DOI: https://doi.org/10.1175/1520-

0469(1954)011<0058:EIITRM>2.0.CO;2

5.	 Harrison, Driscoll, Kitchen M. Improving precipitation

estimates from weather radar using quality control

and correction techniques. Meteorological Applications.

2000; 7(6): 135–144. DOI: https://doi.org/10.1017/

S1350482700001468

6.	 Jacobi S, Heistermann M. Benchmarking attenuation

correction procedures for six years of single-polarized

C-band weather radar observations in South-West Germany.

Geomatics, Natural Hazards and Risk. 2016; 7(6): 1785–1799.

DOI: https://doi.org/10.1080/19475705.2016.1155080

7.	 Bringi VN, Chandrasekar V, Balakrishnan N, et al.

An Examination of Propagation Effects in Rainfall

on Radar Measurements at Microwave Frequencies.

Journal of Atmospheric and Oceanic Technology. 1990;

7(6): 829–840. DOI: https://doi.org/10.1175/1520-

0426(1990)007<0829:AEOPEI>2.0.CO;2

8.	 Testud J, Le Bouar E, Obligis E, et al. 2000 The Rain

Profiling Algorithm Applied to Polarimetric Weather

Radar. Journal of Atmospheric and Oceanic Technology.

17(3): 332–356. DOI: https://doi.org/10.1175/1520-

0426(2000)017<0332:TRPAAT>2.0.CO;2

9.	 Ryzhkov A, Diederich M, Zhang P, et al. Potential

Utilization of Specific Attenuation for Rainfall Estimation,

Mitigation of Partial Beam Blockage, and Radar

Networking. Journal of Atmospheric and Oceanic

Technology. 2014; 31(3): 599–619. DOI: https://doi.

org/10.1175/JTECH-D-13-00038.1

10.	 Grover M, Mühlbauer K, Goudenhoofdt E. openradar/

xradar: xradar v0.3.0 (Version 0.3.0); 2023. DOI: https://doi.

org/10.5281/zenodo.7091737

11.	 Helmus JJ, Collis SM. The Python ARM Radar Toolkit

(Py-ART), a Library for Working with Weather Radar Data

in the Python Programming Language. Journal of Open

Research Software. 2016; 4(1): e25. DOI: https://doi.

org/10.5334/jors.119

12.	 Beamish AL, Anbuhl L, Behlin R, et al. FERN.Lab: Bridging

the gap between remote sensing academic research

and society. Remote Sensing Applications: Society and

Environment. 2021; 24. DOI: https://doi.org/10.1016/j.

rsase.2021.100641

13.	 Lampridis K. 2022 Cookiecutter Python Package.

https://python-package-generator.readthedocs.io/en/

master/.

14.	 Sphinx. Python Documentation Generator; 2015. https://

www.sphinx-doc.org/en/master/.

15.	 Pylint Pylint. 2.16.0-dev documentation. https://pylint.

pycqa.org/en/latest/.

16.	 FERN.Lab. FERN.Lab: Cookiecutter-pypackage; 2022.

https://github.com/FernLab/cookiecutter-pypackage.

17.	 Park HS, Ryzhkov A, Zrnic DS et al. The Hydrometeor

Classification Algorithm for the Polarimetric WSR-88D:

Description and Application to an MCS. Weather and

Forecasting. 2009; 24(3): 730–748. DOI: https://doi.

org/10.1175/2008WAF2222205.1

18.	 Crisologo I, Vulpiani G, Abon CC, et al. Polarimetric

rainfall retrieval from a C-Band weather radar in a tropical

environment (The Philippines). Asia-Pacific J Atmos Sci.

2014; 50: 595–607. DOI: https://doi.org/10.1007/s13143-

014-0049-y

19.	 Vulpiani G, Montopoli M, Passeri LD, et al. On the Use

of Dual-Polarized C-Band Radar for Operational Rainfall

Retrieval in Mountainous Areas. Journal of Applied

Meteorology and Climatology. 2012; 51(2): 405–425. DOI:

https://doi.org/10.1175/JAMC-D-10-05024.1

20.	 Diederich M, Ryzhkov A, Simmer C, et al. Use of Specific

Attenuation for Rainfall Measurement at X-Band Radar

Wavelengths, Part I: Radar Calibration and Partial Beam

Blockage Estimation. Journal of Hydrometeorological.

2015; 16(2): 487–502. DOI: https://doi.org/10.1175/JHM-D-

14-0067.1

21.	 Marshall JS, Palmer WMK. The distribution of raindrops

with size. Journal of Atmospheric Sciences. 1948; 5(4):

165–166. DOI: https://doi.org/10.1175/JHM-D-14-

0067.1

https://orcid.org/0000-0001-6599-1034
https://orcid.org/0000-0001-6599-1034
https://orcid.org/0000-0002-1165-9404
https://orcid.org/0000-0002-1165-9404
https://orcid.org/0000-0003-2939-8764
https://orcid.org/0000-0003-2939-8764
https://doi.org/10.5194/hess-17-863-2013
https://doi.org/10.5194/hess-17-863-2013
https://doi.org/10.1007/978-3-030-05093-1
https://doi.org/10.5281/zenodo.6442964
https://doi.org/10.1175/1520-0469(1954)011<0058:EIITRM>2.0.CO;2
https://doi.org/10.1175/1520-0469(1954)011<0058:EIITRM>2.0.CO;2
https://doi.org/10.1017/S1350482700001468
https://doi.org/10.1017/S1350482700001468
https://doi.org/10.1080/19475705.2016.1155080
https://doi.org/10.1175/1520-0426(1990)007<0829:AEOPEI>2.0.CO;2
https://doi.org/10.1175/1520-0426(1990)007<0829:AEOPEI>2.0.CO;2
https://doi.org/10.1175/1520-0426(2000)017<0332:TRPAAT>2.0.CO;2
https://doi.org/10.1175/1520-0426(2000)017<0332:TRPAAT>2.0.CO;2
https://doi.org/10.1175/JTECH-D-13-00038.1
https://doi.org/10.1175/JTECH-D-13-00038.1
https://doi.org/10.5281/zenodo.7091737
https://doi.org/10.5281/zenodo.7091737
https://doi.org/10.5334/jors.119
https://doi.org/10.5334/jors.119
https://doi.org/10.1016/j.rsase.2021.100641
https://doi.org/10.1016/j.rsase.2021.100641
https://python-package-generator.readthedocs.io/en/master/
https://python-package-generator.readthedocs.io/en/master/
https://www.sphinx-doc.org/en/master/
https://www.sphinx-doc.org/en/master/
https://pylint.pycqa.org/en/latest/
https://pylint.pycqa.org/en/latest/
https://github.com/FernLab/cookiecutter-pypackage
https://doi.org/10.1175/2008WAF2222205.1
https://doi.org/10.1175/2008WAF2222205.1
https://doi.org/10.1007/s13143-014-0049-y
https://doi.org/10.1007/s13143-014-0049-y
https://doi.org/10.1175/JAMC-D-10-05024.1
https://doi.org/10.1175/JHM-D-14-0067.1
https://doi.org/10.1175/JHM-D-14-0067.1
https://doi.org/10.1175/JHM-D-14-0067.1
https://doi.org/10.1175/JHM-D-14-0067.1

14Künzel et al. Journal of Open Research Software DOI: 10.5334/jors.453

TO CITE THIS ARTICLE:
Künzel A, Mühlbauer K, Neelmeijer J, Spengler D 2023 WRaINfo: An Open Source Library for Weather Radar INformation for FURUNO
Weather Radars Based on Wradlib. Journal of Open Research Software, 11: 9. DOI: https://doi.org/10.5334/jors.453

Submitted: 16 January 2023 Accepted: 25 September 2023 Published: 12 October 2023

COPYRIGHT:
© 2023 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by Ubiquity Press.

https://doi.org/10.5334/jors.453
http://creativecommons.org/licenses/by/4.0/

