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The quality of the indoor environment significantly impacts human health and 
productivity, especially given the amount of time individuals spend indoors 
globally. While chemical pollutants have been a focus of indoor air quality 
research, microbial contaminants also have a significant bearing on indoor 
air quality. This review provides a comprehensive overview of microbial 
contamination in built environments, covering sources, sampling strategies, and 
analysis methods. Microbial contamination has various origins, including human 
occupants, pets, and the outdoor environment. Sampling strategies for indoor 
microbial contamination include air, surface, and dust sampling, and various 
analysis methods are used to assess microbial diversity and complexity in indoor 
environments. The review also discusses the health risks associated with microbial 
contaminants, including bacteria, fungi, and viruses, and their products in indoor 
air, highlighting the need for evidence-based studies that can relate to specific 
health conditions. The importance of indoor air quality is emphasized from the 
perspective of the COVID-19 pandemic. A section of the review highlights the 
knowledge gap related to microbiological burden in indoor environments in 
developing countries, using India as a representative example. Finally, potential 
mitigation strategies to improve microbiological indoor air quality are briefly 
reviewed.
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1 Introduction

Around 90% of our time is spent indoors due to lifestyle changes and work habits; thus, 
indoor air quality is closely related to our health and comfort (1, 2). Many reports confirm that 
the concentration of pollutants can be 2 to 5 times higher inside than outside (3). In addition to 
the chemical pollutants, biological contaminants, such as bacteria, viruses, fungi, insects, mites, 
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pollen, and pet dander, are also present in the indoor environment (4, 
5). Microbial contaminants in the indoor environment can exist on 
surfaces, as suspended cells, or as bioaerosols (6). They show variations 
in numbers and types depending on the kind of indoor environment, 
sources of contamination, and other environmental factors. These 
chemical and biological pollutants may adversely impact indoor air 
quality leading to Indoor Air Pollution (IAP).

IAP is considered one of the five top risks influencing public 
health and presents a much higher risk than outdoor pollution. An 
estimated 3.2 million people die every year due to IAP (7, 8). Poor 
indoor air can have both immediate and long-term health effects, 
which are commonly referred to as Sick building syndrome (SBS), 
Building-related illnesses (BRIs), and Multiple chemical sensitivities 
(1, 9, 10). SBS refers to a collection of symptoms reported by the 
occupants or workers of a given building and is generally not 
attributed to a particular cause (10). These may include immediate or 
short-term effects such as irritation of the eyes, nose, and throat, 
headaches, dizziness, and fatigue (11, 12). This may also affect the 
nervous and cardiovascular systems and cause reduced fertility and 
congenital disabilities in the long term (8). BRI’s on the other hand 
refers to medical conditions such as hypersensitivities, asthma, and 
respiratory infections such as pneumonia, linked to a specific cause 
(13). Generally, exposure to microbes or their components is 
associated with three main groups of illness: toxicity, infections, and 
allergic reactions, including respiratory infections and other related 
diseases (1, 14, 15). Neonates, young children, older adults, and 
especially people suffering from co-morbid conditions are highly 
vulnerable to IAP (2, 16).

Particularly in developing nations, including India, the situation 
is more critical because of overpopulation and other socio-economic 
factors (17, 18). Tackling indoor air pollution is challenging and 
requires interdisciplinary efforts (19). There remains a significant 
knowledge gap and a lack of standards and guidelines, especially for 
assessing the microbiological quality of indoor air (20). Since the 
COVID-19 pandemic, IAP has been brought to the forefront because, 
globally, people are working remotely and spending more time 
indoors (21).

This review provides a comprehensive overview of microbial 
contaminants in diverse indoor environments, their sources, sampling 
and assessment strategies, the factors affecting their prevalence, and 
the associated health risks (Figure 1). The significance of IAP in the 
context of the COVID-19 pandemic is also highlighted. The severity 
of the problem is highlighted for developing countries with a 
particular reference to the scenario in India. The last section discusses 
various strategies to mitigate this challenge.

2 Methodology to conduct literature 
search

A thorough search of academic databases such as Google scholar 
and PubMed was conducted. We searched for specific terms such as 
‘Microbial Indoor air quality,’ ‘Indoor air and Bioaerosols,’ ‘Bacteria in 
indoor air, ‘Fungi and molds in Indoor air,’ ‘Microbes in Indoor air and 
health’. The titles and abstracts of the articles were screened and 
assessed for the inclusion in the review. Articles were cross checked, 
duplicated and irrelevant articles were excluded. Further, relevant 
papers from the reference list of the included papers were also 

considered to ensure maximum coverage of the literature. A list of 430 
papers were extensively discussed among the authors to resolve any 
discrepancies and reach a consensus. Finally, 314 references were 
included in this review, out of which 76% are from 2010 onwards.

3 Sources of microbial contaminants 
in indoor air

Outdoor pollutants influence the number and kind of 
microorganisms that enter the indoor environment displaying a 
source-sink relationship (22, 23). Apart from these, various inherent 
sources in the built environment contribute to the abundant microbial 
numbers and variety. Abiotic factors like moisture, relative humidity, 
and temperature can influence indoor microbiology (24, 25).

3.1 Humans

Human occupancy and their activities affect the microbial 
numbers and diversity in the indoor environment (25, 26). In the 
indoor air, respirable particulate matter and bacterial DNA increased 
with human occupancy (27). It has been estimated that humans shed 
approximately a billion skin cells daily, likely influencing microbial 
concentrations in the indoor air (28). Abundant bacteria and viruses 
from human oral and respiratory fluids can become aerosolized via 
talking, breathing, coughing, sneezing, etc. and reach varying 
distances depending on the droplet size (29). The frequency of 
cooking, vacuum cleaning, showering, and other human activities also 
affect microbial numbers and diversity (30). Patients, doctors, visitors, 
and hospital staff and their activities contribute to the pathogen load 
in the hospital environment (5, 31). Fungal concentrations have been 
reported to be  elevated due to increased human movement from 
outside to inside, specifically linked to increased dust levels (32).

3.2 Pets

Pets also influence the indoor air microbiome. Animal skin, saliva, 
hair, fecal matter, and fleas are expected to contribute to microbial 
diversity in indoor air (28, 33, 34). Bacterial diversity and community 
richness have been reported to increase in households owning dogs 
and cats (35, 36). In a study involving 70 pet dogs, about 44 fungal 
isolates were obtained from the hair and skin of these animals (37).

3.3 Dust

House dust consists of hair, cotton fibers, bacteria, molds, and 
other particulate matter (38–40). Dust-borne microbes can become 
resuspended into indoor air, increasing the risk of inhalation (41). 
Dust is reported to be dominated by skin-associated Gram-positive 
bacteria (35, 42, 43). Leppänen et al. (44) quantitatively assessed 259 
house dust samples from both rural and urban homes in Finland. This 
study indicated that the fungal composition and seasonal variations 
correlated well between indoor air, settled, and reservoir dust samples. 
The latter showed reproducibility in repeated sampling over time. In 
another study by Wu et al. (45), bacterial composition and diversity in 
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indoor dust samples were found to be affected by abiotic factors in the 
indoor environment. Marked differences in bacteria isolated from 
dust samples collected from university dormitory rooms and printing 
shops were reported. Human activities or strong air currents can also 
suspend respiratory viruses deposited in dust or indoor surfaces (46).

3.4 Building characteristics

Building design and maintenance, moisture build-up, and 
inadequate ventilation are common triggers for microbial build-up in 
the indoor environment (47). Plumbing systems can impact indoor 
air quality by adding bioaerosols to the built environment. Toilet 
flushing can generate large numbers of aerosolized bacteria from 
human faces, especially in case of poor ventilation, and if pathogenic, 
they carry the risk of transmission to healthy occupants (48, 49). In a 
toilet-seeding experiment by Barker and Jones (50), colony-forming 
units of Serratia marcescens rose sharply from 0 to 1,370 CFU/m3 after 
the first flush. Plumbing faults or leaks, water-damped carpets, 
ceilings, walls, and cramped building design can lead to increased 
dampness in the indoor environment, further increasing mold growth, 
odor, and microbial counts (47, 51). Additionally, the events of 
flooding can substantially increase the dampness inside houses which 
may favor the growth and dispersal of mold and bacteria. This was 
observed in the aftermath of flooded houses due to hurricane Katrina 
in New Orleans, Louisiana, United States (52). Construction and other 
materials used in buildings significantly contribute as potential 
sources as they can degrade and convert into organic compounds that 
support the growth of microorganisms (5). Both natural and 
mechanical ventilation practices influence the microbial ecology of 

indoor air (26, 53). Heating, ventilation, and air-conditioning systems 
(HVAC), primarily installed for air exchange, cleaning, and thermal 
comfort, can favor microorganisms’ growth if not properly maintained 
and cleaned (54). These microbes can remain viable on the internal 
filters of air-conditioning units for a long time. They can re-enter the 
indoor environment due to filter clogging, inefficient operation, 
improper maintenance, and malfunction (55). Further, leakage or 
condensation can wet the filters, favoring mold and bacterial 
proliferation (56).

3.5 Indoor plants

Microbial diversity and numbers are significantly contributed by 
indoor plants in the built environment (57, 58). Indoor plants can 
increase humidity levels and favor the excessive growth of molds and 
other airborne microorganisms (59). Due to agitation from the 
watering of plants or through the generation of strong air currents 
from fans, levels of airborne fungi were found to increase (60).

4 Sampling strategies

There is a lack of international consensus and standard operating 
procedures for collecting samples from indoor environments for both 
qualitative and quantitative estimation of microbial contaminants. 
International standards, including ISO 16000 series such as 16,000-17, 
16,000-18, 16,000-19, 16,000-34, offer guidelines concerning sampling 
techniques, kinds of samplers, and sample analysis (47, 61, 62). Indoor 
air and dust samples are mainly used for microbial assessment of the 

FIGURE 1

Various aspects of microbiological contamination of indoor air.
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indoor environment. Dust samples could be settled dust (on various 
surfaces like floors and tables) or reservoir dust (in mattresses, carpets, 
and bedding) (44). Dust collection is a quick but indirect method for 
sampling bioaerosols in the indoor environment. Various kinds of 
passive and active sampling techniques are widely and routinely used 
for the assessment of microbial contamination of indoor air.

4.1 Passive sampling

Passive sampling using ‘agar settle plates’ is one of the most widely 
practiced procedures to collect settled dust samples under the force of 
gravity. The air sample is collected according to the 1/1/1 scheme, 
plates are incubated, and results are expressed as CFU/m3 using the 
equation described by Omeliansky (63, 64). It is a simple, inexpensive, 
and unobtrusive sampling method (65). It gives comparable results, 
requires no special powered instruments or personnel, and is not 
influenced by engineering factors. Further, it provides a valid risk 
assessment if passive sampling is performed in an operation theater 
or near a surgical site (63, 66).

A simple and cost-effective dustfall collector developed by Wurtz 
et al. (67) is useful for prolonged airborne dust collection to measure 
significant concentrations of culturable fungi. Passive samplers based 
on electrostatic attractions, such as electrostatic dust clothes and the 
recently invented Rutgers electrostatic sampler, are also used (68, 69). 
Also, a vacuum cleaner can collect reservoir dust like those from 
mattresses/carpets or settled dust samples above floor surfaces (44, 
70). Swabs are used to collect surface dust from table tops, computers, 
doors, walls, and cupboards. However, it allows only a qualitative 
measure of microorganisms’ airborne concentrations, and the sample’s 
age is unknown (47).

4.2 Active sampling

Active sampling collects airborne microorganisms present in 
inhalable dust in the indoor environment. In this, an air sampler 
physically draws a pre-set volume of air with the help of a pump, 
through or over a particle collection device into a liquid or solid 
culture medium or a nitrocellulose membrane (71). Various types of 
active air samplers like Anderson, Active Casella slit, Surface air 
system, and Coriolis cyclone samplers are available commercially 
based on sampling techniques such as filtration, impaction, 
impingement, and cyclone, each with its own sets of advantages and 
limitations (4, 61, 65). Active samplers require trained operators and 
a power supply, which might constrain their use in remote areas. 
Frequent replacement of collection media can help avoid reducing 
sample viability and overloading (65). Massoudinejad et al. (72) stated 
that active sampling was more sensitive and precise than passive 
sampling. This sampling technique is mainly applicable when the 
concentration of microorganisms is not very high, such as in an 
operating theater of a hospital (73).

These two sampling procedures have shown a good correlation in 
some studies (68, 74, 75) while others reported no correlation (70, 73, 
76, 77). These variations in results could occur due to the type of 
sample and sampler used, the volume of air sampled, and the place or 
time of sampling (61, 78). Frankel et al. (79) pointed towards an urgent 
need for standardized sampling methodologies as they observed 

significant differences in the levels of culturable fungi, bacteria, 
endotoxin, and total inflammatory potential, in various air and dust 
samples collected from homes.

5 Sample analysis

Various culture-based and culture-independent methods 
employed to enumerate and identify microorganisms in the indoor 
environment are represented in Figure 2.

5.1 Culture-based methods

5.1.1 Culturing and microscopy
Microbial culturing techniques are simple, traditional, low-cost, 

and well-developed, primarily involving different types of 
microbiological media. Bacteria are routinely grown on general-
purpose media such as nutrient agar, tryptic soy agar, blood agar, and 
casein soy peptone agar (80, 81). In addition to this, various selective 
media such as endo agar, eosin methylene blue agar, and mannitol salt 
agar are also employed (82). This method provides qualitative and 
quantitative measures of culturable bacteria and population diversity. 
Several broad-spectrum complex media, such as potato dextrose agar, 
malt extract agar, rose bengal agar, and dichloran glycerol 18 agar are 
used for fungal isolation and quantification (80, 81). Compared to 
bacteria, enumerating fungi is more complex and thus limits the 
comparison of data from different studies (7).

After processing the sample and using appropriate staining 
techniques, identification and enumeration of bacterial or fungal 
contaminants can be  carried out by bright field microscopy (6). 
Alternatively, airborne microbial particles can be directly sampled 
onto glass slides, semisolid media, or membrane filters and 
microscopically examined (4). For enumeration and identification of 
fungi and their spores, hemocytometer chambers and adhesive tapes 
appressed onto indoor surfaces are also combined with microscopy 
(83). Both culturing and microscopic techniques are however time-
consuming and tedious. Culturing methods show intrinsic constraints 
in obtaining actual microbial numbers and diversity. Direct 
microscopic counts are generally exceedingly higher than viable 
colony counts, commonly phrased as ‘the great plate count 
anomaly’ (84).

5.1.2 Matrix-assisted laser desorption/ionization 
time-of-flight mass spectrometry

MALDI-TOF MS is a highly reliable and rapid spectrometric 
technique compared to traditional microbiological and molecular 
methods and is thus useful for high-throughput microbial 
identification (85). In this, the mass-to-charge (m/z) ratio of ribosomal 
protein/peptide (analyte of interest) of the given microorganism is 
measured by determining the time required for it to travel the length 
of the flight tube following ionization with a laser beam (86). A unique 
mass spectrum called peptide mass fingerprint is obtained for the 
organism quickly. Identification is made using an algorithm-based 
approach from databases containing the MS reference spectra of 
peptides and proteins extracted from known microorganisms (87, 88). 
This technique is gaining popularity for identifying bacteria and fungi 
from indoor dust and air samples (89–91). The microbial culture is 
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transferred directly onto the sample target from the culture medium. 
MALDI-TOF MS is simple, cost-effective, and does not require highly 
skilled personnel (92).

5.1.3 Laser-induced fluorescence and 
laser-induced breakdown spectroscopy

LIF spectroscopy is a relatively novel technique for non-contact real-
time online detection of bioaerosols. In this technique, the given bacterial 
or fungal culture is excited by laser light, showing the largest cross section 
with the selected wavelength (4, 93). Following de-excitation, the light of 
a longer wavelength is emitted, which is recorded by a photomultiplier 
tube resulting in the generation of a spectral fingerprint for each 
microbial species. Bioaerosols can be differentiated from other airborne 
particles based on their distinct fluorescence spectra and assessed 
quantitatively based on fluorescence intensity (94). It efficiently detects 
microbial contamination of surfaces in industrial and hospital cleanroom 
facilities, the food-processing industry, operating theaters, and as a 
biosafety measure in microbiological or medical laboratories or cases of 
suspicion of a deliberate or accidental release of biological warfare agents 
(95, 96). However, not all excited species may fluoresce, causing improper 
measurements (4). This technique has also been recently investigated for 
the first time for detecting Picorna viruses, thus showing the potential 
for rapid virological analysis with a substantial cost reduction (97, 98).

LIBS is yet another rapid, flexible, and real-time monitoring 
technique based on the unique atomic composition of plasma produced 
when a high-power pulsed laser is focused on a minimal area of the 
sample surface (99). The sample gets ablated, generating a plasma plume 
with temperatures over 100,000 K, breaking the sample into excited ionic 
and atomic species. The plasma then expands and cools within a short 
time, emitting radiation. Thus, the characteristic emission lines give 
information about the sample (4). Saari et al. (94, 100) demonstrated the 
potential of LIBS and LIF techniques as promising tools for the online 
detection and differentiation of bioaerosol types.

5.2 Culture-independent methods

5.2.1 Epifluorescence microscopy
Samples of airborne microbes collected in liquid buffer solutions 

or on membrane filters from the indoor environment are stained with 

fluorescent dyes and counted using epifluorescence microscopy (81, 
101). DAPI and Acridine orange are popularly used for bioaerosol 
monitoring (4). It is a high throughput automated technique that 
allows the counting and differentiation of viable cells of culturable and 
non-culturable bacteria and fungi from non-viable cells or particles. 
Compared to conventional culturing, this technique gives much 
higher estimates of airborne microbial numbers for bacteria and fungi 
(102, 103), which was confirmed by Chi and Li (104) in a study 
conducted on bioaerosol concentrations and viability in swine 
buildings. However, the technique has the limited ability to 
differentiate between bacteria and fungi in case of size overlap and 
gives false positive results if the dye binds to the organic material 
(4, 102).

5.2.2 Flow cytometry
Flow cytometry is a rapid real-time technique for enumerating, 

detecting, and sorting microscopic particles suspended in a fluid 
stream with a high sample throughput (105, 106). It has been widely 
used for microbial analysis of environmental samples (107, 108). 
Different cell types cannot be  distinguished only based on light 
scattering characteristics for bioaerosols, so using fluorescent dyes are 
recommended with this technique (106). After collecting indoor air 
samples in a liquid, flow cytometry with fluorescence is applied to 
quantify cells (4). The sample is hydrodynamically focused to create a 
single cell stream that passes in front of a laser beam, and the 
fluorescence emitted by each particle is then measured with photon 
detectors (105). The combination of FCM with fluorescence has been 
used to assess bacterial counts in hospital wards, reporting significantly 
higher counts than culture-based methods (109). This method can 
also detect and quantify airborne fungi (83). The significant drawbacks 
of FCM are high cost, the need for highly skilled labor, low-temperature 
requirements, and false positive results due to abiotic particles (4).

5.2.3 Single cell-based techniques: Raman 
microspectroscopy and nanoscale secondary ion 
mass spectrometry

Normal or spontaneous Raman spectroscopy and its variations 
have been used for the spectroscopic analysis of biochemical 
components of microorganisms. It is an effective, non-invasive, and 
label-free technique to extract the chemical fingerprint of an 

FIGURE 2

Techniques for the microbiological analysis of the indoor environment.
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individual microbial cell (110). However, the spectra are obscured in 
standard Raman spectroscopy due to intrinsic fluorescence. Also, a 
burning effect is caused due to high-energy UV photons in UV 
resonance Raman enhancement spectroscopy (111). Surface-
enhanced Raman spectroscopy (SERS) increases the Raman signal by 
suppressing the fluorescence and is effective under infrared and visible 
excitation and has thus emerged as an upcoming rapid, cultivation-
independent technique for selective and real-time detection of single 
microbial aerosols (111, 112). The method involves adsorption or 
proximity of the analyte to a roughened gold or silver surface or 
nanoparticles. Following excitation by the incident light, the total 
enhancement of the SERS process is due to chemical and 
electromagnetic enhancement effects that generate a sizeable 
spectroscopic signal for the analyte (113). The major limitation is the 
reproducibility of the spectral data, as the laser has to strike at a point 
where the substrate and the analyte are present at an appropriate 
geometry. This limitation is overcome by combining Raman 
spectroscopy with other techniques. One study involved the 
combination of powerful magnification provided by scanning electron 
microscope in conjunction with the Raman interface to successfully 
target SERS active regions of the sample matrix to produce 
reproducible spectra (113).

Similarly in another study, bioaerosols were impacted and 
transferred to colloidal silver nanoparticles to obtain efficient Raman 
spectra (111). Schwarzmeier et al. (114) employed a Coriolis μ wet 
particle sampler with SERS to detect E. coli aerosols, facilitated using 
an advanced microarray readout system. Distinct Raman spectra of 
spores from several fungi associated with a damp indoor environment 
were obtained, suggesting the need to develop a library of Raman 
spectra for maximal differentiation of fungal spores at the species 
level (115).

NanoSIMS uses a sufficiently small beam size of approximately 
50 nm to analyze single microbial cells or their parts. It combines 
features of microbial imaging techniques, stable isotope probing, and 
molecular biomarkers to study environmental microbial communities 
and draw comparisons (116, 117). Both Raman microspectroscopy 
and NanoSIMS, though have the potential to dissect and compare 
microbial communities in environmental samples but have not been 
used widely for profiling microbes in the indoor environment.

5.2.4 Molecular methods
Several culture-independent molecular methods have vastly 

improved the quality of data obtained for indoor air microbiomes in 
terms of greater microbial abundance and diversity and thus have 
changed the way we think about built environments (118, 119). The 
polymerase chain reaction is the most widely used molecular 
technique for environmental microbial samples. It is frequently used 
to amplify genes coding for 16S rRNA for prokaryotes and 18S rRNA 
and internal transcribed spacer region (ITS) for eukaryotes (28, 120). 
This technique is rapid and particularly useful when concentrations 
of airborne microorganisms are low. Indoor airborne bacteria and 
fungi associated have been analyzed by conventional PCR in many 
studies (22, 53, 121). In recent years, quantitative PCR (qPCR), also 
called real-time PCR, has gained popularity in providing accurate data 
on total microbial numbers in environmental samples (122). It has 
been used to assess bacterial (123) and fungal concentrations and 
types (70) in indoor air and dust samples. The limitations of PCR 
include a prior requirement of sequence knowledge to design the 

primers and non-specific binding of the primer to similar sequences 
on template DNA (124).

Amplicons obtained from PCR can be  further analyzed using 
various genetic fingerprinting techniques like amplified ribosomal 
DNA restriction analysis, terminal restriction fragment length 
polymorphism (T-RFLP), automated ribosomal intergenic spacer 
analysis, denaturing gradient gel electrophoresis, temperature gradient 
gel electrophoresis, single-strand conformation polymorphism, and 
denaturing high-performance liquid chromatography (125). These 
techniques are widely used for studying microbial communities in 
environmental samples and have also been applied for indoor air 
microbial profiling (116). For instance, in a study by Weikl et al. (126) 
involving T-RFLP, the variation, and diversity of bacterial and fungal 
microbiomes were studied in dust samples from 286 households. The 
study indicated that both bacterial and fungal communities followed a 
temporal and seasonal pattern, with indoor and outdoor determinants 
affecting the fungal microbiome more strongly.

Our knowledge of indoor air microbiome diversity and 
community dynamics has been substantially enhanced by 
metagenomic-based sequencing, having the advantage of rapidly 
analyzing millions of samples in parallel with high sensitivity (127). 
The classic first-generation Sanger sequencing is often replaced by 
advanced sequencing approaches using platforms such as the second-
generation Illumina MiSeq/HiSeq and Ion Torrent systems, third 
generation PacBio SMRT sequencing, and recently commercialized 
fourth-generation Oxford Nanopore MinION technology (128, 129).

These advanced identification methods are being increasingly 
applied to analyze microbial diversity in indoor air and dust samples 
(130, 131). In a study, indoor air samples from elementary schools and 
day-care centers in Korea showed the presence of a wide variety of 
taxa in microbial communities previously not identified by culture-
based methods (132). Nygaard et al. (128) characterized microbiomes 
in the building-dust by comparing Nanopore MinION and Illumina 
MiSeq 16S rRNA gene sequencing. This study did not find significant 
differences in microbial composition between the two methods; 
however, a greater taxonomic resolution was achieved with MinION 
technology. Diverse indoor airborne viral communities associated 
with disparate hosts were also observed using metagenomic 
sequencing of dust samples obtained from the HVAC filters by Rosario 
et al. (133).

However, metagenomic-based sequencing studies of the indoor 
environment are limited by the availability of reference sequences in 
genome databases, low biomass of microbial aerosols leading to poor 
DNA extraction, and missing out the DNA of microbes present in 
low-abundance. Also, a significant deterrent to adopting these 
advanced methods for routine microbial surveillance is offset by the 
high cost of resources and machinery, especially in low- and middle-
income countries (134, 135).

6 Microbial diversity of indoor air

The indoor microflora is complex and dynamic, with their 
numbers and diversity guided by their sources and associated 
environmental factors. There are no uniform standards for the 
acceptable levels of microbial contaminants in the indoor 
environment. A study by the WHO expert group to assess the health 
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risks of biological agents in indoor environments suggested that the 
total microbial concentration should not exceed 1,000 CFU/m3 (47). 
However, some recommend 300 CFU/m3 and 750 CFU/m3, the 
maximum limit for fungi and bacteria (136). Also, the standards 
followed may vary from one country to another and from one kind 

of indoor environment to another. Table 1 provides an insight into 
the vast diversity of microflora in various indoor environments such 
as homes, offices, schools, universities, libraries, healthcare facilities, 
shopping centers, public restrooms, and gyms. In comparison to 
bacteria and fungi, there are limited studies on viruses.

TABLE 1 An overview of the microbial diversity in different indoor environments (2017-2023).

S. No. Type of Indoor Environment/
Region

Source/Sample Microbial diversity References

1 Primary Schools; Malta Settled dust was collected using a 

vacuum, airborne dust collected using 

electrostatic dust fall collectors, and the 

floor dust was collected using ALK 

adaptors and filter cassettes fitted to 

vacuum cleaners

Bacteria: Mycobacterium, Streptomyces

Fungi: Alternaria alternata, Aspergillus 

versicolor, Cladosporium herbarum, 

Trichoderma viride, and a larger fungal group 

comprising Penicillium/Aspergillus/Paecilomyc

es spp.

(137)

2 Healthcare facilities; Liguria, Veneto, 

Tuscany, Campania, Lazio, Apulia, Sardinia, 

and Sicily; Italy

Air sample by active sampling using 

Surface Air System and Coriolis®μ, and 

passive sampling by settle plate method

Selective detection of Legionella spp. including 

L. pneumophila

(138)

3 Wolatia Sodo University Teaching and 

Referral hospital; Ethiopia

Air sample by active sampling using a 

six-stage Anderson cascade impactor

Selective isolation of multi-drug resistant 

Acinetobacter baumanii

and Pseudomonas aeruginosa

(139)

4 Hospital; Islamabad, Pakistan Air samples using personal air 

samplers

Bacteria: Aerococcus viridans, Bacillus cereus, B. 

subtilis, Kocuria kristinae, K. rhizophila, K. 

rosia, Kytococcus sedantarius, Micrococcus 

luteus, M. terreus, Pseudomonas stutzeri, 

Staphylococcus aureus, S. cohnii

S. haemolyticus

Fungi: Alternaria alternata, Aspergillus flavus, 

A. fumigatus, A. niger, Cladosporium, 

Geotrichum, Penicillium, Ulocladium chartarum

(140)

5 Office Building; Gliwice, Poland Air sample using a six-stage Anderson 

cascade impactor

Bacteria: Bacillus cereus, Enterococcus faecium, 

Gemella haemolysans, Janibacter anophelis/

hoylei, Macrococcus brunensis, M. equipercicus, 

Micrococcus luteus, Staphylococcus xylosus

(141)

6 Duke University hospital; Durham, North 

Carolina, United States

Air sample using NIOSH BC 251 

personal aerosol sampler

Viruses: influenza A, influenza D, and 

adenovirus

(142)

7 Glasshouses in a botanical garden; 

Jagiellonian University, Kraków, Poland

Air sample using a six-stage Anderson 

cascade impactor

Bacteria: Arthrobacter, Bacillus, 

Curtobacterium, Exiguobacterium,

Kocuria, Microbacterium, Micrococcus, 

Pseudomonas, Solibacillus

Fungi: Alternaria, Aspergillus, Cladosporium, 

Fusarium, Penicillium, Rhizomucor, 

Rhodotorula, Scopulariopsis, Trichoderma

(143)

8 University hospitals, super tertiary care 

hospitals, regional/general (tertiary care) 

hospitals, and national infectious disease 

institute; Central Thailand

Air sample using a liquid impinger 

system

Selective detection of Mycobacterium 

tuberculosis

(144)

9 Historical museum; Egypt Active air sampling using volumetric 

Andersen 2-stage impactor and 

gravimetric air sample by settle plate 

method; dry deposited dust collected 

using a dust collector

Fungi: Alternaria, Aspergillus fumigatus, A. 

niger, A. terreus, A. versicolor, Aureobasidium, 

Chaetomium, Cladosporium, Eurotium, 

Penicillium, Rhizopus, Stachybotarys, 

Ulocladium

(145)

(Continued)
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6.1 Bacteria

The most common bacterial genera observed in dust and air 
samples collected from various types of indoor environments are 

Acinetobacter, Actinobacteria, Arthrobacter, Alcaligenes, Bacillus, 
Corynebacterium, Kocuria, Micrococcus, Propionibacterium, 
Staphylococcus, and Streptococcus species (43, 45, 140, 147). Barberan 
et al. (35) indicated that there could be differences in bacterial types 

TABLE 1 (Continued)

S. No. Type of Indoor Environment/
Region

Source/Sample Microbial diversity References

10 Public schools; Helsinki, and Vantaa, 

Finland

Filter and settled dust sample, Air 

sample using RCS® High flow touch 

microbial air sampler, and endotoxin 

samples from floors using a vacuum 

cleaner

Fungi: Aspergillus westerdijkiae, A. versicolor, A. 

flavus, Chaetomium globosum, 

Dichotomophilus, Fusarium, Penicillium 

chrysogenum, P. commune, P. expansum, 

Rhizopus oryzae, Trichoderma atroviride, T. 

citrinoviride, T. longibrachiatum, T. trixiae

(146)

11 Healthcare and care facilities; Nancy, and 

Rennes, France

Air sample using cyclonic liquid air 

sampler, Coriolis® μ

Bacteria: Bacillus cereus, B. licheniformis, 

Kocuria, Micrococcus, Pantoea, Pseudomonas, 

Staphylococcus hominis, S. epidermidis, S. 

saprophyticus, S. chromogenes, 

Stenotrophomonas maltophilia

Fungi: Alternaria, Aspergillus, Cladosporium, 

Eurotium, Penicillium, Rhodotorula

(147)

12 Homes; Cincinnati, Ohio, United States Floor dust samples using vacuum 

cleaners

Bacteria: Acinetobacter lwoffii, Alkanindiges 

illinoisensis, Coprococcus eutactus, 

Corynebacterium matruchotii, Dialister invisus, 

Lactococcus, Massilia, Pseudomonas, 

Staphylococcus aureus, Streptococcus

Fungi: Acrimonium fusidioides, A. illinoisensis, 

Candida parapsilosis, C. tropicalis, Epicoccum 

nigrum, Toxicladosporium irritans, 

Plectosphaerella oratosquillae, Phaeosphaeria 

podocarpi, Rhodotorula mucilaginosa

(148)

13 Three major hospitals; Kuwait Aerosol sample using a specialized 

sampler

Bacteria: Haemophilus influenzae,

Mycoplasma pneumoniae, Streptococcus 

pneumoniae

Viruses: SARS CoV-2 virus, non-SARS-

coronavirus strains HKU1 and NL-63, 

respiratory syncytial virus, human bocavirus, 

human rhinoviruses, human enteroviruses, 

influenza B virus

(149)

14 Detached house, townhouse, and 

apartment; Greater Copenhagen, Denmark

Inhalable air fraction collected using 

Gesamtstaubprobenahme (GSP) 

conical inhalable samplers, and PM1 

fraction collected using Triplex 

cyclones.

Fungi: Acremonium strictum, Aspergillus. 

fumigatus, A. glaucus, A. niger, A. versicolor, 

Chaetomium globosum, Cladosporium 

cladosporioides, C. herbarum, C. 

sphaerospermum, Penicillium chartarum, P. 

expansum, Rhizopus stolonifer, Trichoderma 

viride, Ulocladium chartarum, Wallemia sebi

(150)

15 University buildings; Johannesburg, 

South Africa

HVAC-filtered dust and floor dust 

samples collected using sterile swabs

Bacteria: Alcaligenes, Bacillus, Bradyrhizobium, 

Corynebacterium, Dietzia, Mesorhizobium, 

Mycobacterium, Paenochrobactrum, 

Pseudomonas, Rhodococcus

(151)

16 Various hospital wards; Ardabil, Iran Air sample using an impinger Specific detection of SARS CoV-2 virus (152)

17 Gyms; Ardabadil city, Iran Air sample using the Anderson single-

step sampler

Bacteria: E. coli,

Pseudomonas, Staphylococcus

(153)

(Continued)
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isolated depending on the gender occupancy of a particular 
environment. Relatively, a greater abundance of Corynebacterium, 
Dermabacter, and Roseburia spp. was found in homes dominated by 
males, whereas those occupied mainly by females had more 
Lactobacillus spp. Further, seasonal variations are observed in bacterial 
populations in the indoor environment. In a study by Rintala et al. 
(157), the relative abundance of alpha- and beta-proteobacteria 
increased slightly toward summer in house dust samples. The 
proportion of firmicutes and gamma-proteobacteria was highest in 
winter and that of actinobacteria, alpha- and beta-proteobacteria in 
spring or summer, whereas the diversity of Bacteroides peaked in fall. 
Barberan et  al. (35) reported that species of Bacteroides, 
Porphyromonas, Arthrobacter, Moraxella, Blautia, and Neisseria were 
associated with dogs, while species of Prevotella, Porphyromonas, 
Jeotgalicoccus, Sporosarcina, Moraxella, and Bifidobacterium were 
associated with cats, in household dust samples.

The indoor air of hospitals and healthcare settings can also be a 
source of harmful bacteria like Mycobacterium tuberculosis, 
Staphylococcus aureus, Escherichia coli, Legionella pneumophila, and 
Pseudomonas aeruginosa. Consequently, patients, healthcare workers, 
visitors, and mainly immunocompromised patients are at a higher risk 
of acquiring nosocomial infections (138, 144, 158). In particular, 

Legionella pneumophila, is a highly concerning indoor pathogen, that 
can easily get aerosolised from toilet or sink faucets, shower heads, 
bathtubs, plumbing systems, and is abundantly found in various 
healthcare facilities (159, 160). It has also been found to contaminate 
the dust in air conditioning and HVAC systems. Both water and air 
sampling are performed to evaluate the pathogen exposure and to 
suggest measures for its control. In a study using real time TaqMan 
PCR, Legionella pneumophila was found in 66.7% of the dust samples 
collected from the air ducts of central air conditioning system (161). 
Montagna et al. (138) conducted a multicentre study in Italy, to detect 
airborne contamination of Legionella from the water sources. They 
found that the liquid impingement technique (using Coriolis®μ) was 
effective in the collection of airborne pathogens combined with 
molecular investigations in comparison to passive and active dust 
sampling. Transmission of airborne antibiotic-resistant bacteria like 
methicillin-resistant Staphylococcus aureus, beta-lactam-resistant 
Acinetobacter sp., vancomycin-resistant streptococci, and their 
inhalable antibiotic-resistance genes in the hospital environment are 
also a significant threat to public health (162). In a study assessing 
bacterial contamination of surfaces, medical equipment, and indoor 
air of the pediatric ward and neonatal intensive care unit of an 
Ethiopian hospital, a quarter of the bacteria isolated were found to 

TABLE 1 (Continued)

S. No. Type of Indoor Environment/
Region

Source/Sample Microbial diversity References

18 Maputo central hospital and microbiology 

laboratory of the University of Eduardo 

Mondlane faculty of medicine; Mozambique

Air sample using passive method and 

surface swab samples

Bacteria: Acinetobacter baumanii, Bacillus sp., 

Burkholderia cepacia, Citrobacter koseri, C. 

braakii, Coagulase-negative staphylococci, 

Cronobacter, Enterobacter amnigenus, E. 

cloaceae, Haemophilus parainfluenzae, 

Klebsiella pneumoniae, K. oxytoca, Moellerella 

wisconsensis, Moraxella lacunata, Pantoea sp., 

Pseudomonas luteola, Raoultella ornithinolytica, 

Serratia odorifera, S. ficaria, S. plymuthica, S. 

rubidaea

Fungi: Aspergillus flavus, A. niger, Fusarium 

verticillioides, Mucor sp., Paecilomyces variotii, 

Rhizopus

(154)

19 Shopping Malls; Xiamen, China Floor and escalator surface swab 

samples

Bacteria: Acinetobacter baumanii, Enterobacter 

asburiae, E. cloacae, Erwinia, Leclercia 

adecarboxylata, Pantoea dispersa, 

Staphylococcus aureus

Fungi: Seasonal variations observed in fungal 

community composition with Eurotiomycetes, 

Saccharomycetes, and Wallemiomycetes 

dominating the summer samples and 

Tremellomycetes, Agaricomycetes, 

Microbotryomycetes, and Dothidiomycetes 

dominating the spring samples

(155)

20 Subway stations; Busan, South Korea; 

Boston, United States; Mexico City, Mexico; 

Moscow, Russia

Surface swab samples Bacteria: Brevundimonas, Corynebacterium, 

Cutibacterium, Deinococcus, Dietzia, Janibacter, 

Kocuria, Lawsonella, Leuconostoc, 

Methylobacterium, Micrococcus, Rothia, 

Streptococcus, Sphingomonas, Staphylococcus, 

Stenotrophomonas

(156)
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be multi-drug resistant, and most were associated with nosocomial 
infections (163).

6.2 Fungi

Exposure to fungi, their spores, hyphal fragments, and compounds 
like mycotoxins and beta-glucans in the indoor environment, is 
considered a major health risk mainly associated with hypersensitivity 
and allergic risks to the occupants (164). Outdoor air fungi mostly 
dominate the patterning of indoor air and can easily get suspended in 
the dust or settle on surfaces of any built environment (22, 32). The 
indoor temperature range of 10-35°C is highly conducive to the 
growth of fungi. Fungi can obtain nutrients from plant or animal 
matter in house dust, building, construction, and painting materials, 
cooking oil deposits, clothes, books, and paper (47). Dampness is a 
significant contributor to fungal growth and their spores, fragments, 
and allergens can easily get aerosolized in the indoor environment (47, 
165). Both natural and mechanical ventilations are also considered as 
likely sources of fungal contamination. High humidity due to 
condensation of water and settled dust inside air-conditioning ducts, 
filters, and collecting trays are considered potential sites for high 
fungal contamination (165, 166). The prevalence of fungi in the 
indoor air of healthcare facilities poses a high risk of invasive fungal 
infections. This has been extensively studied and reviewed by Belizario 
et al. (167). The fungal genera predominating various indoor 
environments are Aspergillus, Penicillium, Fusarium, Alternaria, 
Cladosporium, Stachybotrys, Trichoderma, and yeasts like Candida 
spp. (137, 154, 168). They have frequently been related to hospital-
acquired infections and exacerbation of respiratory symptoms (20, 
167). The microbial content of rug dust and vacuum cleaner bag, dust 
samples determined by qPCR showed Penicillium, Aspergillus, and 
Paecilomyces to be present in the highest concentrations (169).

6.3 Viruses

Though bacteria and fungi are monitored frequently in various 
indoor environments, not many efforts have been made to investigate 
the viral diversity of the indoor air (101, 133). Respiratory infections, 
like the common cold, bronchiolitis, and influenza, can transmit 
through aerosolized droplets (170, 171). Respiratory syncytial, 
influenza, parainfluenza, corona, and adeno viruses are implicated in 
these infections (172). Low relative humidity and cold temperatures 
are believed to increase the transmission of respiratory viruses (173, 
174). Human activities like breathing, coughing, sneezing, talking, and 
laughing release viral aerosols abundantly in the indoor air (175). 
Moon et al. (176) showed that the indoor air of residential apartments 
in South Korea mainly contained adenoviruses and influenza A virus, 
with concentrations of adenoviruses higher in winter than in spring. 
In another study by Yang et al. (177), one-third of the samples from 
the health center and two-thirds from the day-care center were 
confirmed to contain aerosolized influenza A virus.

The diversity of viruses in the indoor environment could 
be beyond human viruses. Rosario et al. (133) used a metagenomic 
approach to investigate the diversity of DNA and RNA viruses in the 
dust samples accumulated in HVAC filters of university dormitory 
rooms. They detected a broad diversity of viruses, including human 

papillomaviruses (HPVs) and polyomaviruses (HPyVs), which were 
found to be associated with a range of hosts. Rare zoonotic diseases 
caused by deadly viruses like Marburg, Ebola, Hanta, and Lassa can 
pose a potential nosocomial threat (178). During the SARS outbreak 
of 2003, infectious viral droplets entered buildings via sewage and 
drainage systems due to inadequacies in plumbing (179). The profuse 
transmission of SARS-CoV-2 and cluster cases were primarily due to 
the confined, crowded, and poorly ventilated indoor 
environment (180).

7 Microbe-associated health risks in 
the indoor environment

Exposure to microbes in the indoor environment can lead to 
adverse health effects like respiratory illnesses, including allergies, 
microbial infections, acute toxic effects, and cancer, as described 
below. The major routes of human exposure to airborne 
microorganisms and their products are mainly inhalation followed by 
ingestion and dermal contact (15). Various health effects following 
microbial exposure depend on the dose, route, and timing of exposure 
and the person’s genetic disposition (181). Molds and bacteria can also 
produce components like endotoxin, beta-1-3-glucan, muramic acid, 
ergosterol, allergenic proteins, volatile organic compounds of 
microbial origin (MVOCs), and mycotoxins (32, 182, 183) which can 
also pose additional health hazards.

7.1 Respiratory illnesses, allergies, and 
hypersensitive reactions

Exposure of the respiratory tract to microbes or their products 
can lead to mucous membrane irritation, allergic rhinitis, asthma, 
bronchitis, organic dust toxic syndrome (ODTS), chronic obstructive 
pulmonary disease (COPD), or allergic alveolitis (184, 185). Moldy 
and dusty environments are highly uncomfortable to susceptible 
individuals, with fungi such as Aspergillus, Penicillium, Cladosporium, 
Acremonium, Paecilomyces, and Mucor found to be  commonly 
associated with respiratory infections and allergies (168). Asthma is 
common in children, with allergens and molds influencing the 
development of the disease (137). Fungal DNA has also been 
considered a risk factor for childhood asthma at home (181). 
However, according to hygiene hypothesis, exposure to microbes in 
early childhood could protect against allergies and asthma by 
stimulating the immune system, and that excessive cleanliness in the 
human environment might not necessarily be  beneficial (186). 
Among fungi, Aspergillus species are the most commonly found 
indoor fungi. Aspergillus fumigatus and Aspergillus flavus are 
frequently encountered and responsible for sinusitis, allergic 
broncho-pulmonary aspergillosis (ABPA), and hospital-acquired 
infections (187, 188). High fungal or dust exposure has been linked 
to hypersensitive pneumonitis (189). Fungal metabolism produces 
volatile compounds such as 3-methyl furan that can irritate eyes, 
nose, and airways leading to headache, nausea, dizziness, and fatigue 
(40, 190). Inhalation of high doses of endotoxins, glucans, fungal 
spores, and mycotoxins can contribute to airway irritation and 
inflammation, decrease lung function, exacerbate asthma, and 
chronic conditions like ODTS and COPD (164, 191).
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7.2 Infections

Airborne transmission is the most likely route for many microbial 
infections in the indoor environment. Legionella bacteria causing 
Pontiac fever and highly fatal pneumonia can rapidly spread in indoor 
environments through aerosolized contaminated water and inhalation 
of infected mist or vapor (138). Mycobacterium tuberculosis can 
be transmitted by inhaling the infectious droplet nuclei expectorated 
from sputum-positive patients in the indoor air of hospitals or other 
environments (192). Staphylococcus aureus, Pseudomonas aeruginosa, 
Enterococcus faecalis, Enterococcus faecium, Acinetobacter baumanii, 
and Escherichia coli are some of the most frequently encountered 
bacteria in the indoor air of hospitals, causing various nosocomial 
infections (193).

Immunocompromised patients are at potential risk for more 
severe opportunistic and systemic fungal infections caused by 
Blastomyces, Coccidioides, Cryptococcus, Histoplasma, Alternaria, 
Heliminthosporium, Cladosporium, Fusarium, Aspergillus, Phoma, and 
Penicillium (194, 195). Similarly, the presence of these fungi in the 
indoor air of critical hospital areas, especially neonatal and pediatric 
ICU, has been linked to the increased incidence of mucocutaneous 
colonization and a high risk of invasive fungal infections in 
neonates (167).

Human corona, respiratory syncytial, rhino, adeno, measles, 
mumps, rubella, and enteric viruses are readily transmitted 
through air droplets in the indoor environment causing various 
infections (196–198). The COVID-19 pandemic has recently 
shown the extreme contagiousness of the Severe Acute 
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus in the 
indoor environment, which has been responsible for high 
morbidity and mortality (199). A special section is dedicated here 
to the potential implications of poor indoor air quality in 
transmitting SARS-CoV2.

7.3 Cancer

Several studies have tried to ascertain the link between cancer 
and bioaerosol exposure (200–202). Mycotoxins have been 
established as non-viral biological carcinogens (203, 204). Among 
them, aflatoxin from Aspergillus flavus is the best-known 
carcinogenic mycotoxin, particularly linked to liver cancer (205, 
206). Ochratoxin A is also a possible human carcinogen (183, 
207). The lung cancer risk of workers in the meat/poultry industry 
was reviewed with evidence pointing to oncogenic viruses 
associated with animals and heavy exposure to airborne material, 
including micro-organisms, fecal material, dander, and 
feathers (201).

8 Indoor air pollution from the 
COVID-19 perspective

The global pandemic of COVID-19 caused by the SARS-
CoV-2 has left an unprecedented impact on various facets of 
human life, including health, lifestyle, economy, and the 
environment (208, 209). Terms like disinfection, masks, social 
distancing, and quarantine have become a part of our daily life. 

On the one hand, a few studies indicated improvement in ambient 
air quality in many cities during the lockdown, attributed to 
reduced industrial activities, vehicular movements, and various 
human activities (210–213). On the other hand, the reduced 
outdoor pollution did not contribute to any health gains, as 
prolonged exposure to polluted indoor air negated this effect (214, 
215). Poor indoor air quality increased COVID-19 infection and 
viral transmission in enclosed spaces (216). It took several months 
before the WHO acknowledged the airborne transmission of 
SARS CoV2, especially when people spent prolonged periods in 
indoor, crowded, inadequately ventilated spaces (217). The 
aerosolized virus is stable for 3 h and can travel long distances in 
closed and open environments (214). These aerosols need to 
be controlled to reduce the risk of new infections. Also, in a study 
conducted in Bergamo, Northern Italy, viral RNA was isolated 
from the particulate matter, possibly explaining a higher 
COVID-19 burden in areas with high air pollution (218).

People were compelled to stay inside owing to home 
quarantine and lockdowns. This may have impacted indoor air 
quality due to insufficient ventilation, overcrowding, recirculation 
of polluted air, and increased household activities and office work 
(214, 215). Further, aerosolized virus released from infected 
people quarantined at homes, or hospitals could have increased 
the risk and deteriorated the indoor air (219). A study showed 
that the cough from an individual with a high SARS-CoV-2 load 
could contain 7.44 million viral copies/m3 (220). If the quality of 
the air is poor to begin with, people may be inadvertently exposed 
to various SBS-related symptoms (221) putting people with 
pre-existing medical conditions at a higher risk. Due to the high 
transmission of the SARS-CoV-2 virus in indoor spaces, IAP has 
thus become a table talk worldwide (180). The COVID-19 
pandemic has thus strongly taught us to focus equally on 
sustainable and safe indoor spaces, as poor indoor air, can likely 
intensify the impact of air-borne viral outbreaks and other 
microbial infections (222, 223).

9 Indoor air pollution in India

In developing countries, including India, people are exposed to 
the highest air pollution in the indoor environment (224, 225). There 
is a general lack of awareness among people in India as air pollution 
is only thought to be associated with the outdoor environment, and 
the inhabitants are considered safe indoors (18). Here, rural and urban 
poor populations still use simple solid fuels that release abundant 
amounts of suspended particulate matter, harmful chemicals and 
gasses and have been associated with severe respiratory and other 
health risks (226). Overcrowded and confined indoor spaces, 
improper ventilation, inadequacies in building design, and various 
socio-economic factors also aggravate poor indoor air quality (213, 
227). Microbial contaminants also significantly contribute to IAP; 
however, in India, this aspect has not been dealt with extensively (228) 
and can pose various health hazards to the occupants of the indoor 
environment, as discussed earlier.

Further, there are no standard guidelines to monitor and assess 
various parameters related to IAP, including microbiological 
assessment (18). The Central Pollution Control Board (229) under the 
Ministry of Environment and Forests (MoEF), Government of India, 
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does not include IAP in its agenda and mainly focuses on outdoor air 
pollution. Thus, this knowledge and skill gap is highly concerning 
(18). Damp, overcrowded houses, and poorly ventilated buildings are 
a hot spot for microbial contaminants and a source of respiratory 
illnesses like tuberculosis, contributing significantly to the national 
disease burden (230). India hosts diverse climatic conditions, and thus 
the indoor microflora diversity and concentration show a lot of 
seasonal variations (5, 231, 232). Some representative studies on the 
isolation and assessment of microflora in various indoor environments 
conducted in India’s urban and rural settings are highlighted in 
Table 2.

However, it is clear from these studies that primarily passive 
sampling procedures combined with conventional culturing methods 
have been used. Thus, a large proportion of non-culturable microbes 
still remain unassessed. There is a need to introduce advanced 
molecular and spectrometric techniques to routinely monitor 
microbiological indoor air quality and bridge this knowledge gap. 
Further, mainly bacterial and fungal contaminants have been studied, 
with only a few studies assessing viruses and microbial products such 
as endotoxins, mycotoxins, and microbial allergens in the indoor 
environment (252, 254).

10 Strategies for microbial control in 
the indoor environment

Various mitigation strategies aim to control microorganisms and 
improve indoor air quality by optimizing ventilation systems, 
controlling emission sources, and developing air purification 
technologies, as discussed here (255).

10.1 Ventilation

Ventilation can help remove or dilute pollutants and control 
humidity or dampness in the built environment, thereby maintaining 
the health and comfort of the occupants (256, 257). International 
agencies such as ASHRAE (American Society of Heating, 
Refrigerating, and Air-Conditioning Engineers), WHO, REHVA 
(Representatives of European Heating and Ventilation Associations), 
and CDC (Center for Disease Control and Prevention) have also 
recognized that the transmission of airborne diseases can be effectively 
managed by ventilation (257–259). For instance, CDC (258) has 
provided detailed guidelines including cost considerations for 
improving ventilation in buildings. Ventilation can be provided by 
natural or mechanical means (260, 261). Natural or passive ventilation 
is achieved through airflow provided by doors, windows, louvers, and 
vents (7, 259). Various studies have reported that natural ventilation 
is effective in controlling the transmission of the infectious airborne 
microbes (260, 262). In low resource healthcare settings, Escombe 
et  al. (263) demonstrated that it could be  used as a low-cost and 
energy efficient measure to reduce the risk of transmission of 
nosocomial tuberculosis. Further, the rampant spread of corona virus 
brought natural ventilation strategy to the forefront of the discussion 
as a crucial factor that can help in lowering the viral build-up in the 
indoor spaces. In this context, Vignolo et  al. (264) qualitatively 
assessed airborne viral transmission and natural ventilation in school 
classroom in Uruguay and reported that periodic ventilation can act 

as a useful strategy to reduce transmission of airborne microbes. 
However, in another study, no impact was reported (265). Despite the 
low cost, energy efficiency, low maintenance, and higher airflow 
changes, natural ventilation is difficult to maintain in a tight building 
without cross ventilation. Further, it is not a feasible strategy for 
healthcare facilities and countries with colder climates as natural 
ventilation can increase the thermal discomfort for the occupants 
(266). Thus, a cross-sectional study involving all the factors can 
potentially give an insight for optimal use of natural ventilation.

Mechanical ventilation uses an air handling system like HVAC 
that circulates fresh and recycled air via ducts (261). Healthcare 
facilities with efficiently maintained and operated mechanical air 
conditioning, and ventilation systems were found to be  less 
contaminated than buildings with naturally ventilated systems (267). 
In a study by Gołofit-Szymczak and Górny (268), different ventilation 
systems were assessed for their impact on microbiological indoor air 
quality of 15 office buildings. Higher concentrations of both bacteria 
and fungi were observed in naturally ventilated office in comparisons 
with offices having air-conditioning and mechanical ventilation 
systems. Similarly, HVAC system was found to effectively remove 
fungal spores (269). However, it is essential to note that mechanical 
ventilation systems may be a source of biological contamination, as 
discussed earlier. Further, the high transmission of SARS-CoV-2 in 
indoor spaces has made us all think critically about indoor air quality, 
especially in hospitals, and the approaches to controlling nosocomial 
infections (270). Fonseca et al. (271) suggested that the mechanical 
ventilation systems in healthcare facilities could be complemented 
with natural ventilation to adequately control relative humidity and 
CO2 concentrations to minimize the risk of airborne infections. Both 
mechanical and natural ventilation systems combined in a hybrid 
technology can also provide sustainability in terms of energy efficiency 
(272), and the shortcomings of natural ventilation can be overcome 
by the mechanical components (273). The frequency of regular 
monitoring, cleaning, and maintenance procedures can be adjusted 
based on operating hours and human occupancy to achieve good air 
quality (20).

Studies show that HVAC filtration can effectively control 
pathogens penetrating the building envelope and their transmission 
in the indoor environment (274, 275). Thus, to improve the 
performance of HVAC systems, panel filters are installed in their ducts 
(274, 276, 277). These filters are installed as per the standard guidelines 
and used widely (278, 279). HEPA or High-Efficiency Particulate Air 
filters must be cleaned and replaced periodically to maintain proper 
function (280). By following the air route and sources of contamination 
through sequential sampling, Cabo  Verde et  al. (20) assessed the 
efficacy of HEPA filters installed in the ventilation systems of 
operation theaters and found an effective reduction in bacterial 
concentration from outdoors to indoors. These filters have the limited 
ability to inactivate the collected biological agents, which may regrow 
with adequate humidity levels (281). Nanofiber filters can overcome 
this problem and are very effective in indoor environments where 
stringent air purification is needed, such as hospitals, food, and 
pharmaceutical industries (282).

The inactivation of microbial contaminants in indoor air could 
also be brought about by utilizing other methods integrated with the 
HVAC system (275, 280, 283). These include ultraviolet germicidal 
irradiation (UVGI) (284, 285); chlorine dioxide gas (286); 
antimicrobial compounds (287); electrostatic technology (288); 
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TABLE 2 Studies on microbiological assessment of the indoor environment in India (2012-2022).

S. No. City/State/
Rural or 
Urban

Type of Indoor 
environment

Purpose of 
the study

Sampling 
method

Culture 
media

Microbial 
diversity

Reference

1 Not specified Maxillofacial 

operation theater of a 

teaching dental 

hospital in India

Assessment of 

contamination of 

indoor air and 

surfaces

Active sampling 

by centrifugal air 

sampler method; 

Passive sampling 

by settle plate 

method; Surface 

Swabbing

NA and BA for 

bacteria; PDA for 

fungi

Bacteria.: E. coli, 

Proteus, S. aureus, 

Streptococcus beta-

hemolyticus Fungi: 

Aspergillus, Fusarium

(233)

2 West Chennai/

Tamil Nadu/Urban

Orthopedic Ward of a 

tertiary healthcare 

facility

Characterization of 

indoor bioaerosols 

in a hospital

Passive sampling 

by exposed-plate 

gravitational 

method; Active 

sampling by 

filtration 

(personal 

sampler with 

gelatin filters) 

and 

impingement 

(BioSampler)

5% Sheep BA and 

MA for bacteria; 

SDA for fungi

Bacteria: Coagulase-

negative staphylococci, 

diphtheroids, 

micrococci, 

Enterobacter, and 

Pseudomonas Fungi: 

Aspergillus flavus, A. 

fumigatus, A. niger, A. 

terreus Absidia, 

Candida krusei

(76)

3 Jodhpur/

Rajasthan/Urban

Senior secondary 

school

Quantitative and 

qualitative 

determination of 

airborne 

microorganisms 

and to study their 

seasonal variability

Passive sampling 

by plate exposure 

method

NA for bacteria; 

PDA supplemented 

with 

chloramphenicol 

for fungi

Bacteria: Bacillus lentus, 

Bacillus megaterium, 

Bacillus subtilis, 

Enterobacter aerogenes, 

Escherichia coli, 

Micrococcus kristinae, 

Micrococcus luteus, 

Pseudomonas, Serratia 

marcescens, 

Staphylococcus aureus, 

Staphylococcus 

epidermidis, Fungi: 

Alternaria, Aspergillus 

flavus, A. fumigatus, A. 

niger, A. terreus, 

Cladosporium, 

Fusarium, 

Helminthosporium, 

Rhizopus

(234)

4 Delhi/India/Urban Various areas of 

Jawaharlal Nehru 

University Library

Estimation and 

identification of 

Bioaerosols

Active sampling 

by BUCK Bio-

culture pump

EMB and BA for 

bacteria; PDA for 

fungi

Bacteria: Bacillus, 

Micrococcus, 

Streptococcus Fungi: 

Aspergillus flavus, A. 

nidulans, Cladosporium, 

Curvularia, Penicillium, 

Rhizopus oryzae

(235)

5 Delhi/India/Urban School of 

Environmental 

Sciences building, 

Jawaharlal Nehru 

University

Determination of 

bacterial 

concentrations and 

to assess their 

correlation with 

meteorological 

parameters

Active sampling 

using a handy air 

sampler

LB broth and agar 

with cycloheximide

Gram-positive rods, 

Gram-positive cocci, 

Gram-negative rods, 

Gram-negative cocci 

(Bacterial genera not 

identified; only bacterial 

counts as CFU/m3 

determined)

(236)

(Continued)
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TABLE 2 (Continued)

S. No. City/State/
Rural or 
Urban

Type of Indoor 
environment

Purpose of 
the study

Sampling 
method

Culture 
media

Microbial 
diversity

Reference

6 Visakhapatnam/

Andhra Pradesh/

Urban

Primary and 

secondary schools 

(classrooms, office 

rooms, libraries, 

canteens, and toilets)

Assessment of 

microbiological 

indoor air quality

Passive sampling 

by settle plate 

method

EMB for bacteria; 

PDA for fungi

Bacteria: Bacillus, 

Escherichia coli, 

Micrococcus, 

Pseudomonas, Serratia, 

Staphylococcus aureus 

Fungi: Aspergillus flavus, 

Mucor, Rhizopus, 

Alternaria, Penicillium, 

Cladosporium

(237)

7 Kalyani/West 

Bengal/Urban

Hospital (general 

ward, female ward, 

children’s ward, and 

operation theater)

Environmental 

monitoring of 

hospital aero 

microflora

Passive sampling 

by settle plate 

method

NA for bacteria; 

PDA for fungi

Bacteria: Escherichia 

coli, Klebsiella, 

Pseudomonas 

aeruginosa, 

Staphylococcus aureus 

Fungi: Aspergillus, 

Candida, Fusarium, 

Penicillium

(238)

8 Manipal/

Karnataka/Urban

ICUs in a tertiary care 

hospital

Assessment of 

microorganisms 

and their 

antimicrobial 

susceptibility 

patterns in 

microbial in 

relation to the 

nosocomial 

infections

Passive sampling 

by Settle plate 

method

Blood agar medium Bacteria: Acinetobacter, 

E. coli, Klebsiella, 

Micrococcus, 

Pseudomonas, 

Staphylococcus Fungi: 

Aspergillus

(239)

9 Nagpur/

Maharashtra/

Urban

House Investigation of 

fungal flora

Passive sampling 

by plate exposure 

method

PDA and Peptone 

dextrose agar

Fungi: Aspergillus 

alternata, A. flavus, A. 

fumigatus, A. niger, A 

nidulans, Fusarium 

oxysporum, Penicillium 

chrysogenum

(240)

10 Triplicane, 

Chennai/Tamil 

Nadu/Urban

Public toilet Investigating the 

presence of 

airborne fungi in 

public toilets

Exposed Plate 

Technique

SDA for fungi Fungi: Aspergillus flavus, 

A. fumigatus, A. niger, 

A. terreus, Rhizopus 

oryzae

(241)

11 Jodhpur/

Rajasthan/Urban

Outdoor patient room 

of a three-story private 

hospital

Evaluation of the 

variability and the 

effect of 

meteorological 

parameters on 

airborne fungi

Passive sampling 

by settle plate 

method

PDA for fungi Fungi: Aspergillus flavus, 

A. fumigatus, A. niger, 

A. solani, Cladosporium 

herbarum, Fusarium 

oxysporum, 

Helminthosporium sp., 

Rhizopus

(242)

12. Dehradun/

Uttarakhand/

Urban

Doon hospital and 

combined medical 

institute

Investigating the 

airborne microbial 

population

Passive sampling 

by exposed plate 

technique

NA for bacteria; 

PDA for fungi

Bacteria: Bacillus, E. 

coli, Micrococcus, 

Staphylococcus Fungi: 

Alternaria, Aspergillus, 

Cladosporium, 

Penicillium, Rhizopus

(243)

(Continued)
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TABLE 2 (Continued)

S. No. City/State/
Rural or 
Urban

Type of Indoor 
environment

Purpose of 
the study

Sampling 
method

Culture 
media

Microbial 
diversity

Reference

13 Moga/Punjab/

Urban

Private maternity 

home

Assessment of 

microbial 

contamination

Passive sampling 

by settle plate 

method

NA, Cetrimide 

Agar, Hicrome™ 

Bacillus agar, MA, 

MSA, Sheep BA, 

Anaerobic BA for 

bacteria; PDA for 

fungi

Bacteria: Bacillus, 

Enterobacteriaceae, 

Pseudomonas, 

Staphylococcus Fungi: 

Absidia, Aspergillus, 

Exophiala, Mucor, 

Penicillium, Rhizopus

(244)

14 Pune/Maharashtra/

Urban

Hospital (pediatric 

ward, maternity ward, 

labor room, pediatric 

intensive care unit and 

neonatal intensive care 

unit)

Assessment of 

bacterial 

contamination and 

their relationship 

with nosocomial 

infections

Passive sampling 

by settle plate 

method

MA for bacteria Bacteria: Escherichia 

coli, Pseudomonas 

aeruginosa, 

Staphylococcus aureus

(245)

15 Chennai/Tamil 

Nadu/Urban

Diverse indoor 

environments 

including laboratory, 

student office, air-

conditioned room, 

eatery, and residential 

apartment

Assessment of 

bioaerosols

Active Sampling 

by six stage 

anderson 

sampler

TSA for bacteria; 

PDA for fungi

Bacteria: Actinobacteria, 

Alphaproteo-bacteria, 

Betaproteo-bacteria, 

Gammaproteo-bacteria, 

Dinococci, Bacillii, 

Flavobacteria Fungi: 

Bipolaris, Cladosporium, 

Aspergillus, Alternaria, 

Cochliocolus, 

Curvularia, Drechslera, 

Fusarium, 

Mucoromycotina, 

Nigrospora, Penicillium, 

Purpuriocillium, 

Rhizopus, Trichosporon

(246)

16 Jammu/Jammu and 

Kashmir/Urban

Banks located in 

different areas

Evaluation of 

bacteria and fungi 

in relation to 

suspended 

particulate matter 

and relative 

humidity

Active sampling 

using a handy air 

sampler

NA, MA and BTB 

Lactose Agar for 

bacteria; PDA and 

Czapek Dox Agar 

for fungi

Bacteria: Acinetobacter, 

Bacillus, E. coli, 

Klebsiella, Micrococcus, 

Pseudomonas, 

Staphylococcus aureus 

Fungi: Alternaria, 

Aspergillus fumigatus, A. 

glaucus, A. niger, A. 

versicolor, Bipolaris, 

Cladosporium, 

Curvularia, Fusarium, 

Mucor, Penicillium, 

Rhizopus, Saccharomyces

(247)

17 Delhi/Urban Slum, residential, and 

plush urban areas near 

the University of Delhi

Spatio-temporal 

variations in 

bioaerosol 

concentrations in 

the indoor 

environment of 

different socio-

economic zones

Passive sampling BA for bacteria; 

PDA for fungi

Only bacterial and 

fungal counts were 

determined.

(248)

(Continued)
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TABLE 2 (Continued)

S. No. City/State/
Rural or 
Urban

Type of Indoor 
environment

Purpose of 
the study

Sampling 
method

Culture 
media

Microbial 
diversity

Reference

18 Israna/Haryana/

Rural

N.C. Medical College 

and Hospital (eye, 

general, ENT, 

orthopedics, 

gynecology, and 

emergency operation 

theaters)

Studying 

prevalence and type 

of bacterial 

contamination

Passive sampling 

by settle plate 

method and 

surface swabbing

NA, MA, BA for 

bacteria

Bacteria: Bacillus, 

Coagulase-negative 

Staphylococci, 

Escherichia coli, 

Klebsiella, Micrococci, 

Pseudomonas, 

Staphylococcus aureus, 

Streptococcus Fungi: 

Aspergillus, Penicillium

(249)

19 Puducherry/Urban Tertiary care hospital 

(general medicine, 

general surgery, 

obstetrics, gynecology, 

and orthopedics 

departments)

Assessment of 

prevalence rate of 

various 

microorganisms

Passive sampling 

by settle plate 

method

Sheep BA for 

bacteria; SDA for 

fungi

Bacteria: Bacillus, 

Diptheroides, 

Micrococcus, S. aureus 

Fungi: Aspergillus flavus, 

A. fumigatus, A. niger, 

Fusarium

(250)

20 Delhi/Urban Dr. B.R. Ambedkar 

central library and 

Central laboratory 

animal resources, 

Jawaharlal Nehru 

University

Assessment of 

prevalence and 

antibiogram of 

Staphylococcus

Passive sampling 

by settle plate 

method; Active 

sampling using 

biosampler

EMB for Gram-

negative bacteria, 

Sheep BA for 

Gram-positive 

bacteria and MSA 

for staphylococci

Bacteria: S. aureus, S. 

capitis, S. cohnii, S. 

epidermidis, S. 

haemolyticus, S. 

hominis, S. lentus, S. 

saprophyticus, S. sciuri, 

S. warneri, S. xylosus

(251)

21 Jalna/Maharashtra/

Urban

Indian Institute of 

Medical Sciences and 

Research (surgery, 

emergency, 

orthopedic, general, 

obstetric, medical, and 

tuberculosis wards)

Assessment of 

bioaerosols

Passive sampling 

by settle plate 

method

NA and blood agar 

for bacteria; SDA 

for fungi

Bacteria: Bacillus, 

Clostridium, 

Coccobacilli, 

Diphtheroids, E. coli, 

Klebsiella, Micrococci, 

Pseudomonas, 

Staphylococcus aureus 

Fungi: Aspergillus, 

Candida

(64)

22 Kyasaram/

Telangana/Rural

Living rooms of rural 

houses

Assessment of 

ambient 

concentrations of 

airborne microbes 

and endotoxins

Active Sampling 

by single-stage 

cascade impactor

TSA for bacteria; 

PDA for fungi

Bacteria: Bacillus, B. 

anthracis, Enterobacter 

cloacae, Micrococcus, 

Staphylococcus, Fungi: 

Alternaria, Aspergillus, 

Penicillium

(252)

23 Kolkata/West 

Bengal/Urban

Outdoor unit, 

newborn baby ward, 

respiratory care unit, 

step downward, and 

thalassemia care unit 

of government 

children hospital

Assessment of 

airborne fungi

Passive sampling 

by petri dish 

gravitational 

method

MEA for fungi Fungi: Alternaria, 

Aspergillus flavus, A. 

fumigatus, A. niger, A. 

sydowii, Cladosporium 

herbarum, 

Cladosporium, 

Corynespora cassicola, 

Curvularia lunata, 

Curvularia pallescens, 

Fusarium, Humicola 

grisea, Mucor, 

Penicillum

(231)

(Continued)
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photocatalytic oxidation (289); plasma cluster ion technology (290); 
microwave heating (291); ozone sterilization (292, 293); and 
dispersion of atomized nanoparticles in the air (294). UVGI system 
uses UVC rays (200–280 nm) to form photo dimers in nucleic acids to 
bring about disinfection and has been widely recognized and 
recommended for installation, especially in healthcare facilities (295, 
296). However, it is pertinent to mention that ozone-based 
technologies can themselves pose an additional health risk by releasing 
ozone as a harmful by-product (297). Recently, silver nanoparticles 
and multiwall carbon nanotubes coated with hybrid polypropylene 
nano-filter were tested in air-conditioning and found to be  very 
effective in killing Pseudomonas aeruginosa, Salmonella enterica, and 
Staphylococcus aureus (298). Thus, two or more such technologies can 
be  synergized to improve the efficient functioning of the HVAC 
systems to remove microbial contaminants (283, 299).

10.2 Air cleaners and purifiers

Air Purifiers/Cleaners (AP) have become essential for reducing 
IAP. There has been a considerable increase in sales of air purifiers 
from 0.8 million units in 2015 to almost 2 million units in 2018, with 
a similar projection for the future (300, 301). Portable air purifiers 
utilizing HEPA filtration are commonly used for homes. Air purifiers’ 
advantages are simple installation, portability, and the lack of harmful 

by-products (302). Their configuration generally employs a multilayer 
filter system consisting of a prefilter, a carbon filter, an antibacterial 
filter, and a HEPA filter (255, 303). Also, APs with disinfection 
capability are more effective than those with only HEPA filtration 
(216). In these, UVGI lights are installed within the body of the air 
cleaners. Combined HEPA and UVGI, air cleaning technologies could 
effectively remove airborne pathogens (304, 305). Air purifiers or 
cleaners based on ionization, electrostatic precipitation, cold plasma 
generation, and photocatalytic oxidation are emerging technologies 
(216, 255, 306–309). However, currently, no single technology can 
sufficiently achieve “cleaner” indoor air. Current research is focused 
on combined and innovative alternatives, such as plasma-catalytic 
hybrid systems, hybrid ozonation systems, and biofilter-adsorption 
systems, that can work synergistically to achieve optimum indoor air 
quality (310–312).

10.3 Housekeeping measures

The frequency of housekeeping can also help in lowering the 
microbial content of the indoor air. This includes basic measures like 
dusting with a damp cloth or using electrostatic cloth, vacuuming, 
carpet and rug cleaning, and removal of shoes while entering the 
house. Persistent dampness and moldy growth on indoor surfaces and 
in building structures can be minimized. For instance, USEPA has 

TABLE 2 (Continued)

S. No. City/State/
Rural or 
Urban

Type of Indoor 
environment

Purpose of 
the study

Sampling 
method

Culture 
media

Microbial 
diversity

Reference

24 Delhi/Semi-urban/

Urban

Residential areas 

(slum area), Wazirpur 

industrial area, and 

other commercial 

areas

Determination of 

microflora 

composition, 

diversity, and size 

distribution with 

regard to seasonal 

variation

Active sampling 

by Anderson six 

stage sampler

TSA with 

cycloheximide for 

bacteria; SDA with 

rose bengal dye for 

fungi and

Bacteria: E. coli, 

Klebsiella, Micrococcus, 

Pseudomonas, Spirillum, 

Staphylococcus, 

Streptobacillus, 

Streptococcus Fungi: 

Alternaria, Aspergillus 

flavipes, A. flavus, A. 

fumigatus, Candida, 

Cladosporium, 

Fusarium, Microsporum, 

Mucor, Penicillium, 

Rhizopus, 

Saccharomyces, 

Trichoderma

(232)

25 Delhi/Urban Residences, college 

classrooms, coaching 

academies, godowns, 

Research Laboratories

To investigate 

health risks among 

the people living in 

industrial, 

educational, and 

residential areas 

due to poor 

microbial indoor 

air quality

Passive sampling 

by settle plate 

method

TSA with 

cycloheximide for 

bacteria; SDA with 

chloramphenicol 

for fungi

Bacteria: E. coli, 

Micrococcus, 

Pseudomonas, 

Staphylococcus, 

Streptobacillus, 

Streptococcus Fungi: 

Alternaria, Aspergillus, 

Candida, Cladosporium, 

Fusarium, Mucor, 

Penicillium, Rhizopus

(253)

BA: blood agar, BTB Lactose agar: bromo thymol blue lactose agar, EMB: eosin methylene blue agar, LB: Luria-Bertani, MA: MacConkey agar, MEA: malt extract agar, NA: nutrient agar, PDA: 
potato dextrose agar, SDA: Sabouraud’s dextrose agar, TSA: trypticase soy agar.
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provided guidelines for the control of moisture and mold in homes 
(313). Franke et al. (314) carried long-term monitoring of a building 
for biological, chemical, and particulate matter, following a 
standardized cleaning program. This improved house-keeping 
initiative was found to be  effective in the reduction of culturable 
bacteria and fungi, airborne dust mass and total volatile organic 
compounds. However, barring a few reports, there are no direct 
studies that have ascertained the link between house-keeping and 
indoor microbial concentrations. This is definitely a thrust area that 
will also aim to increase awareness about the impact of poor indoor 
air quality on an individual’s health especially children and older 
people and those with underlying health conditions.

11 Conclusion

Rapid industrialization and urbanization have led people to spend 
most of their time indoors in tight-built environments. Thus, indoor 
air quality plays a significant role in their general state of health and 
comfort. They are exposed to a variety of pollutants, including 
microorganisms. A vast ecological niche has been created for these 
minuscule organisms leading to their presence in various 
microhabitats of the indoor environment, thus presenting us with a 
complex ecosystem that requires a more profound understanding. 
Compared to bacteria and fungi, there are limited studies on the viral 
diversity of the indoor environment. Protocols for sampling and 
assessing microorganisms need to be standardized and validated as 
the threshold limits can vary from one indoor environment to another, 
region to region, and country to country. Culture-independent 
methods can complement culture-based methods in comprehensively 
monitoring microbial composition and community structure. 
Advancements in metagenomic next-generation sequencing 
approaches have paved the way for better analysis of viral diversity 
which has been relatively unexplored in comparison to bacteria and 
fungi. To minimize the knowledge gap, a repository of microbial 
sequences obtained from different kinds of built environments must 
be maintained as a referential database source.

Developed countries mostly follow specific guidelines and 
standards for building design and management of indoor air quality. 
However, the situation is grave in developing countries with a high 
disease burden aggravated by various socio-economic factors. A 
concerted effort is needed to raise awareness about the issue, as simple 
source control measures can make a massive difference in the quality 
of the built environment. For example, basic housekeeping measures 
to prevent dust build-up or humidity control can curtail microbial 
growth, for which people need to be educated through awareness 
programs and surveys. Cross-sectional and evidence-based studies 

will provide a realistic analysis of the microbial impact and help design 
feasible mitigation strategies. We need to focus on hybrid air cleaning 
technologies and sustainable building architecture that combines 
energy saving with appropriate ventilation to minimize the buildup of 
indoor air pollutants. A multifactorial interdisciplinary approach will 
involve a synergy between microbiologists, public health experts, 
engineers, architects, environmental agencies, and the government to 
devise sustainable solutions to this serious public health issue.
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