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Due to the small sample sizes in early-phase clinical trials, the toxicity and efficacy
profiles of the dose-schedule regimens determined for subsequent trials may not
be well established. The recent development of novel anti-tumor treatments and
combination therapies further complicates the problem. Therefore, there is an
increasing recognition of the essential place of optimizing dose-schedule
regimens, and new strategies are now urgently needed. Bayesian adaptive
designs provide a potentially effective way to evaluate several doses and
schedules simultaneously in a single clinical trial with higher efficiency, but
real-world implementation examples of such adaptive designs are still few. In
this paper, we cover the critical factors associated with dose-schedule
optimization and review the related innovative Bayesian adaptive designs. The
assumptions, characteristics, limitations, and application scenarios of those
designs are introduced. The review also summarizes some unresolved issues
and future research opportunities for dose-schedule optimization.
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1 Introduction

For a long time, dose-finding trials for anti-tumor drugs aim to identify the maximum
tolerated dose (MTD), and the MTD, or the next lower dose, will generally be administered
in subsequent clinical trials without further optimization. This more-is-better paradigm was
originally developed for cytotoxic drugs and is based on the assumption that both efficacy
and toxicity increase monotonically with the dose. Thus, MTD is naturally deemed as the
most efficacious dose among all safe doses. However, this assumption may not hold for novel
molecularly targeted agents (MTAs) and immunotherapies which have much wider
therapeutic indices (Bedard et al., 2020; Araujo et al., 2021). In these cases, doses below
the MTD may have similar efficacy to the MTD but with fewer toxicities. Sometimes, the
MTD even cannot be determined as no dose-limiting toxicity (DLT) is observed. This means
the traditional MTD-finding trial designmay not be optimal, and comprehensive evaluations
for safety, efficacy, dose-response relationships, pharmacokinetic (PK) and
pharmacodynamic (PD) characteristics should be incorporated in dose-finding trials. On
the other hand, a substantial portion of early phase oncology clinical trials does not fully take
into account the effects of dosing schedules (i.e., the interval between doses and duration of
treatment) on safety and efficacy, which is not desirable now as patients can often receive
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those targeted therapies for much longer periods. Therefore, it is
necessary to optimize dose-schedule regimens for novel anti-tumor
drugs at the stage of clinical development.

There is an increasing recognition of the essential place of
optimizing dose-schedule regimens. In 2021, the U.S. Food and
Drug Administration (FDA) Oncology Center of Excellence
initiated Project Optimus to reform the dosage optimization and
dosage selection paradigm in oncology drug development (Shah
et al., 2021). Its mission is to ensure that doses of anti-tumor drugs
are optimized to maximize efficacy as well as safety and tolerability.
In January 2023, the FDA issued a draft guidance on optimizing the
dosage (refers to the dose and schedule) for the treatment of
oncologic diseases (FDA, 2023), encouraging sponsors to plan the
drug development programs such that identification of the optimal
dosages can occur prior to or concurrently with the establishment of
the drug’s safety and effectiveness. We focus on dose-schedule
(dosage) optimization in this review, and dose optimization,
which may be more commonly seen, refers to optimize the
quantity of the drug based on the same schedule here.

Optimizing dose-schedule regimens aims to minimize toxicity
while delivering the desired therapeutic effect. It is of great
importance in terms of increasing medication compliance,
reducing side effects, improving the quality of life, and
ultimately, maximizing the benefit-risk ratio for cancer patients.
An optimized dose-schedule regimen can also provide an
opportunity for patients with poor performance status to receive
treatment, as clinicians may be reluctant to treat them with a
regimen that does not have a good tolerability and safety profile.

However, due to the small sample sizes in early-phase clinical
trials, the toxicity and efficacy profiles of the dose-schedule regimens
determined for subsequent trials may not be well established. There
are some examples of drugs whose doses or schedules were modified
for safety or tolerability after approval (Shah et al., 2021). New
strategies for optimizing dose-schedules in early-phase clinical trials
are now urgently needed. Bayesian adaptive designs provide a
potentially effective way to evaluate several doses and schedules
simultaneously in a single clinical trial with higher efficiency. For
example, with a rational Bayesian model and prior settings, we can
obtain more efficient estimates for toxicity and efficacy. In addition,
some Bayesian designs allow borrowing information across different
populations or across different dose-schedules, which may increase
the probabilities of selecting the optimal dose-schedule and
identifying inadmissible dose-schedules. They may also be useful
in saving sample size and shortening trial duration. However, real-
world implementation examples of such adaptive designs are still
few. In this paper, we cover the critical factors associated with dose-
schedule optimization and review the related innovative Bayesian
adaptive designs. The assumptions, characteristics, limitations, and
application scenarios of those designs are introduced. The review
also summarizes some unresolved issues and future research
opportunities for dose-schedule optimization.

2 Optimization: what factors are
critical?

There are a lot of factors that may shape the strategy of
optimizing dose-schedule regimens. The authors found that a

clear way to categorize them is to follow the estimand framework
(Figure 1), which provides a precise definition of the treatment
effects (Akacha and Kothny, 2017). According to ICH E9 (R1), five
major attributes are used to construct the estimand, including
‘treatment’, ‘population’, ‘variable’, ‘intercurrent event’, and
‘population-level summary’ (ICH, 2019). In this section, we will
go into detail about how those factors affecting dose-schedule
optimization are categorized into these five attributes. We believe
that familiarity with the estimand framework is of profound
significance for designing a dose-schedule optimization trial.

2.1 Treatment

The treatment condition should be well-defined in a dose-
schedule optimization trial. Candidate doses and schedules can
be determined based on preclinical data, clinical data, or other
data from compounds in the same drug class. The mechanism of
action (MOA) for the investigational treatment induces its specific
dose-toxicity and dose-efficacy curves, calling for adopting
appropriate designs. For example, those traditional MTD-finding
designs such as 3 + 3 design (Storer, 1989) and continual
reassessment method (O’Quigley et al., 1990), may be suitable for
cytotoxic drugs. If the chronic and cumulative toxicities are of
concern, we can further consider determining the maximum
tolerated schedule (MTS). For immunotherapies that potentially
result in lower grade but persistent symptomatic toxicities, there do
exist requirements to optimize both doses and schedules as a lower
dose or a longer dosing interval may have similar efficacy to that of
the MTD/MTS. The potential orderings of schedules regarding
toxicity and efficacy can also greatly affect the choice of trial
designs. As is customary in the literature, we refer to ordered/
unordered schedules that can be anticipated in the planning stage as
the ‘nested/non-nested schedules’. For example, it is reasonable to
assume a 14 days on/6 days off schedule is more toxic than a 7 days
on/3 days off schedule. So, these two schedules are nested, and it may
not be appropriate to randomly assign patients to these two
schedules when there are great uncertainties regarding toxicity.
An example of non-nested schedules is that Schedule A and B
are once every 4 weeks and once every week respectively, given the
same total dose. The former schedule may have a higher short-term
drug exposure, while the latter has more drug administrations.
Therefore, the order of efficacy or toxicity of these two schedules
is unclear in the planning stage. If the investigational treatment is a
combination of several interventions administered concurrently,
whether optimizing the dose-schedule regimens for one or all
interventions requires careful consideration.

2.2 Population

The identification of patient populations has become
increasingly important with the development of targeted
therapies. Patient factors (e.g., age and performance status, organ
function, previous therapies, histopathology patterns or biomarker
expressions) may give rise to different sensitivities to drugs. For
example, in the dose-expansion trial of trastuzumab deruxtecan,
investigators identified doses for clinical use as 5.4 mg/kg q3w and

Frontiers in Pharmacology frontiersin.org02

Chen et al. 10.3389/fphar.2023.1261312

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1261312


6.4 mg/kg q3w for HER2+ breast cancer and HER2+ gastric/
gastroesophageal junction adenocarcinoma, respectively (Shitara
et al., 2019; Tamura et al., 2019). Therefore, the optimal dose-
schedule regimen may not be the same across subpopulations (e.g.,
different indications, subgroups, or principal stratums defined by
the occurrence of a specific intercurrent event). Innovative trial
designs, represented by the basket design, make it possible to
evaluate one targeted therapy for multiple subpopulations
simultaneously in a single trial (Park et al., 2020; Hobbs et al.,
2022). Bayesian adaptive designs with information borrowing across
subpopulations have the potential to improve the efficiency of
clinical trials (Su et al., 2022).

2.3 Variable

The variables, or more commonly used in the context of clinical
trials, the endpoints, should be pre-specified based on the specific
clinical questions. The primary endpoints should be able to support
the overall goal of determining a dosage that is safe and effective and
does not result in unnecessary toxicities. In a dose-schedule
optimization trial, the endpoints to be collected can be
considered based on the following aspects.

The first is toxicity, which is usually the primary concern in
traditional dose-finding designs for cytotoxic drugs. Ensuring the
safety of current and subsequent subjects is one eternal theme for
clinical trials. For some anti-tumor therapies, collecting and
evaluating chronic, cumulative and low-grade symptomatic
toxicities, not just DLTs, may sometimes need to be considered.

The second to be concerned is efficacy. Traditional phase I dose-
finding trials for anti-tumor drugs are often based solely on toxicity
with a small sample size, ignoring efficacy when selecting doses for
future study or clinical practice (Yan et al., 2018). This more-is-
better paradigm cannot fully characterize the benefit-risk ratio for
cancer patients. Therefore, for recently proposed dosage
optimization designs, the most distinctive feature is that they
incorporate both efficacy and toxicity endpoints. Due to time
constraints, short-term endpoints, such as tumor response or

some biomarker expression levels, are commonly used to reflect
short-term benefits for patients.

Except for toxicity and efficacy endpoints, collecting and
analyzing pharmacokinetic (PK) and pharmacodynamic (PD)
data is becoming increasingly important for dosage selection with
the development of quantitative pharmacology. In recent years,
model-informed drug development (MIDD) has been involved in
the determination of dose-schedule regimens for several monoclonal
antibody immune checkpoint inhibitors (Peer et al., 2020). An
integrated PK/PD analysis approach may help to interpret early
clinical data. It may also be beneficial to leverage data from other
compounds in the same drug class.

Last but not least, although there are now few explicit practical
uses, patient-reported outcomes (PRO) should be considered to
enhance the assessment of the benefit-risk ratio in early-phase
clinical trials. Collecting and analyzing PROs can provide a
systematic and quantitative assessment of symptomatic adverse
events and the quality of life, consistent with the concept of
patient-focused drug development (PFDD). The most commonly
used PRO measurements in the field of oncology include the
Functional Assessment of Cancer Therapy-General (FACT-G),
the European Organisation for Research and Treatment of
Cancer Quality of Life Questionnaire (EORTC QLQ), and the
Patient Reported Outcomes Measurement Information System
(PROMIS) (Warsame and D’Souza, 2019).

2.4 Intercurrent event

The intercurrent event (ICE), e.g., discontinuation of assigned
treatment, use of an additional or alternative treatment, and
terminal events such as death, is one of the most central parts
that ICH E9 (R1) emphasized. Envisioning and handling ICEs
appropriately is important to precisely describe the treatment
effect. However, there is often neglect in handling ICEs in early-
phase clinical trials, which may result in intractable missing data for
some key efficacy or safety outcomes. This is mainly because the
uncertainty of the estimated treatment effect resulting from a small

FIGURE 1
Critical factors that affect the strategy of optimizing dose-schedule regimens can be categorized into the five attributes of the estimand framework.
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sample size is large, even if the handling of various ICEs is fully
considered. On the other hand, the time required to collect the
primary endpoints is shorter and the management of patients is
more stringent in early-phase clinical trials. Thus, the impacts of
ICEs on estimating treatment effects are not as large as those in
Phase III confirmatory trials. There are now limited studies that
provide strategies for handling ICEs in dose-schedule optimization
trials. The focus of this paper is not on ICEs as well. We just want to
make the readers rethink about the issue through the brief
introduction in this section.

2.5 Population-level summary

In a dose-schedule optimization trial, population-level
summaries that evaluate endpoints of interest should be pre-
specified. For example, the primary population-level summary
can be the probability of DLT in a phase I MTD-finding trial,
while for some phase I-II trials focusing on both safety and efficacy,
the summaries of tumor response or changes in biomarkers are also
important. In recently developed Bayesian phase I-II clinical trial
designs, the population-level summary can be the utility, a
measurement of the toxicity-efficacy tradeoff (Zhou et al., 2019;
Lin et al., 2020a). The population-level summary should reflect the
goal of optimization and be placed at the center of the dose-schedule
optimization process.

3 Bayesian adaptive designs for dose-
schedule optimization

The trial design is a connection of those critical factors
introduced in Section 2. It determines the process of a clinical
trial and whether the trial can achieve its intended objectives. As
clinical trials are conducted to address specific medical questions
with limited resources, prospectively designing trials with adaptive
features may allow more resources to be devoted to the best use. For
example, the response adaptive randomization can assign more
patients to dose-schedule regimens with better benefit-risk
tradeoff and thus may improve the probability of identifying the
optimal dosage. In this section, we review Bayesian adaptive designs
for dose-schedule optimization. The assumptions, characteristics,
limitations, and application scenarios of those designs are
introduced, and the summary table of these designs
(Supplementary Table S1) can be found in the Supplementary
Material. We summarize the pros and cons of Bayesian methods,
and some key elements of trial designs are discussed at the end of
this section.

3.1 Dose-schedule optimization focusing on
toxicity

At first, dose-schedule optimization designs were proposed
mainly to deal with chronic and cumulative toxicities. Braun
et al. (Braun et al., 2005) proposed a Bayesian adaptive design to
determine a MTS rather than an MTD. The model is based on time-
to-toxicity data, with the hazard of toxicity modeled as the sum of a

sequence of ‘up-and-down’ triangular hazards, each associated with
one administration. The candidate schedules are nested and the
schedules assigned to newly enrolled patients are adaptively updated
based on accumulated data. This design can incorporate the actual
timing of individuals’ administrations, but it assumes only a single
dose is under study. After that, Liu and Braun (Liu and Braun, 2009)
proposed a phase I clinical trial design to find the MTS, based on a
parametric non-mixture cure model. The hazard for each
administration is proportional to a Weibull density, which is
more flexible than the previously proposed triangular hazard.
However, this method also assumes that there is only one
investigational dose.

To address this issue, Braun et al. (Braun et al., 2007), Zhang and
Braun (Zhang and Braun, 2013) further generalized the work of
(Braun et al., 2005) respectively and developed Bayesian designs that
can simultaneously optimize dose and schedule by allowing different
hazards for each dose. The goal is to determine a maximum tolerated
dose and schedule (MTDS). Zhang and Braun (Zhang and Braun,
2013) also considered optimizing the dose and schedule assignments
within patients. This method can reevaluate the current assignment
of each enrolled patient and automatically determines whether
intrapatient dose-schedule reassignment is needed.

Different from the assumption of nested schedules in the above
designs, Wages et al. (Wages et al., 2014) proposed a dose-schedule
finding design that can be applied to both completely and partially
ordered schedules. This design focuses on binary toxicity outcomes
and is an extension of the partial order continual reassessment
method (POCRM) (Wages et al., 2011). Compared with the designs
introduced before, this method is simpler and may be more easily
understood by clinicians.

3.2 Dose-schedule optimization considering
both toxicity and efficacy

Most designs for dose-schedule optimization consider both
toxicity and efficacy. Li et al. (Li et al., 2008) proposed a joint
model for the probabilities of toxicity and efficacy, and apply a
Bayesian isotonic transformation to make the estimated toxicity
probabilities adhere to a pre-specified ordering. Then, with the
order-constrained toxicity probabilities and the unordered
efficacy probabilities, the design sequentially assigns patients to
the optimal dose-schedule regimen, which has the maximal
posterior probability that the toxicity probability is smaller than
or equal to the physician-specified upper limit for toxicity and the
efficacy probability is larger than or equal to the physician-specified
lower limit for efficacy. Thall et al. (Thall et al., 2013) used joint
utilities of time-to-toxicity and time-to-response to guide the dose-
schedule optimization. They assumed non-nested schedules and
adopted an adaptive randomization strategy to assign patients. Guo
et al. (Guo et al., 2016) proposed a Bayesian dynamic model for a
trinary patient outcome (no efficacy and no toxicity, efficacy and no
toxicity, toxicity) to model the joint effects of dose and schedule.
There is no need to assume whether the schedules are nested or non-
nested, and the proposed model allows to borrow strength across
dose-schedule regimens adaptively.

In the context of therapeutic cancer vaccines, Cunanan and
Koopmeiners (Cunanan and Koopmeiners, 2017) proposed a two-
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stage, randomized Bayesian adaptive trial design to select the best
vaccination schedule from several non-nested schedules, assuming
the same dose levels. In stage 1, acceptable schedules are identified
by pre-specified criteria, and the optimal schedule is selected based
on the magnitudes of the immune response. If stage 1 does not give a
conclusive result, the trial would continue to stage 2 and predictive
probabilities are calculated to determine the sample size required for
stage 2.

To address the issue of optimizing dose-schedule regimens
within multiple disease subgroups, Quintana et al. (Quintana
et al., 2016) proposed a Bayesian adaptive design for an adoptive
T cell therapy. Safety data (i.e., DLT) for different subtypes is pooled
while efficacy information (i.e., complete response) is borrowed
across subtypes using a hierarchical dose-response model. Disease-
specific utilities are used to guide dosage optimization, and an
adaptive randomization approach is applied to dynamically
assign patients. Lin et al. (Lin et al., 2020b) proposed a more
widely applicable trial design that can handle delayed outcomes
using likelihood-based approaches. Ordered disease subgroups and
non-nested schedules are assumed. Utilities are used to quantify the
efficacy-toxicity trade-off, and adaptive randomization is used to
assign patients to candidate dose-schedule regimens. This method
also allows information borrowing across subgroups, doses, and
schedules. Shortly afterward, Lin et al. (Lin et al., 2021) further
extended their previous work (Lin et al., 2020b) and relaxed the
assumption of ordered disease subgroups. They also considered
using more of the available data, including bioactivity and low-grade
toxicity data, to predict the unobserved delayed outcomes.

3.3 Dose-schedule optimization
incorporating PK/PD information

In nearly all early-phase clinical trials for oncologic diseases, PK and
PD data would be collected and analyzed. But few studies have explicitly
incorporated them into the process of dose-schedule optimization.
Ursino et al. (Ursino et al., 2017) compared several methods that
incorporate PK measurements in phase I dose-finding trials. They
found that, although it does not improve the efficiency of dose-finding
trials, adding PK measurements does allow better estimation of dose-
toxicity curves. Günhan et al. (Günhan et al., 2020) proposed using the
pseudo-PK model to describe the time-varying drug exposures and
modeling the time-to-toxicity variable with the drug exposures.
However, the PK data are not actual drug concentration data and
the generation of pseudo-PK data needs support from previous PK
studies, which may limit the practical application.

Gerard et al. (Gerard et al., 2021; Gerard et al., 2022) proposed
Bayesian dose regimen assessmentmethods using PK/PD information
to identify the maximum tolerated regimen at the end of a dose-
escalation trial. The regimen-PK/PD model and PK/PD-toxicity
model are integrated. They concluded that the inclusion of PK/PD
information can help more precisely estimate the dose regimen
toxicity and the methods they proposed may recommend
alternative untested regimens for further study. These methods are
post hoc analyses and therefore not a kind of trial design. With the
development of quantitative pharmacology, we believe that more and
more dose-schedule optimization studies will prospectively
incorporate PK/PD information during dosage allocation.

3.4 Dose-schedule optimization for drug
combination

As the drugs may have overlapping toxicities and can become
intolerable when used in combination, additional dose-schedule
optimization trials are needed. To the best of our knowledge, few
studies have focused on this issue so far. Mozgunov and Jaki
(Mozgunov and Jaki, 2019) simplified the complex dose-
combination-schedule, and directly modeled efficacy and toxicity
with candidate regimens. The regimen optimization can be achieved
without any parametric or monotonicity assumptions. Similarly,
Abbas et al. (Abbas et al., 2020) and Mozgunov et al. (Mozgunov
et al., 2022) extended the POCRM and tailored it to adapt dose-
schedule optimization for drug combinations respectively. However,
it may sometimes be necessary to generate evidence regarding the
contribution of each component in the drug combination. Those
methods introduced above, although easy to implement, are more
like single-agent dose-finding designs without monotonicity
assumption to some extent.

3.5 Critique

The main components of an adaptive dose-schedule
optimization trial design are summarized in Figure 2. Most of
them, such as target population, variables of interest and
population-level summary, have been introduced in Section 2.
The dose-schedule admissible criteria, which is considered in
almost all published designs, is set to stop enrollment to those
futile or overly toxic dosages promptly. Then, let us turn our
attention to the last, yet also very important, component that has
not been discussed, the dose-schedule assignment rules. Typically, if
the toxicity ordering of candidate dose-schedule regimens is
completely or partially known, there is a tendency to assign
patients sequentially to regimens in a non-randomized manner,
like a dose-escalation trial. This avoids exposing patients to higher
toxicity risks when uncertainties about safety are still high. In
contrast, if the toxicity ordering of candidate regimens is
unknown or the safety uncertainties are controllable, patients are
often assigned randomly to admissible regimens. A randomized,
parallel dose-response trial is recommended to compare dosages by
FDA (FDA, 2023), as it ensures the similarity of patients receiving
each dose-schedule regimen and interpretability of dose-response
(including both dose-toxicity and dose-efficacy) relationships. Two
practical implementation examples of the presented designs are
summarized in Table 1 based on the essential design components in
Figure 2.

Why we emphasize Bayesian methods in this review lies in
several aspects. First, Bayesian posterior probabilities, e.g., the
probability that regimen A has a higher DLT rate than regimen
B, are more intuitive and comprehensible than p-values, making it
easier for clinicians to make informed decisions. Second, Bayesian
methods can facilitate the synthesis of clinical evidence conveniently
by introducing appropriate priors, which is attractive for early-phase
clinical trials with small sample sizes. Third, the accumulated data
from dosage optimization trials can continuously update the
posteriors, which is consistent with the iterative ‘learn and
confirm’ paradigm for drug discovery (Sheiner, 1997). For more
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about how Bayesian methods can be applied to benefit-risk
assessment, the readers may refer to Costa et al. (Costa et al., 2017).

There are also some obstacles that hinder the application of
Bayesian methods in optimizing dose-schedule regimens, the most
prominent of which is the use of subjective prior beliefs. To date, no
universally accepted methods for eliciting priors exist and sensitivity
analyses are always needed. In addition, due to the fast pace and
potentially seamless progression of oncology clinical trials, the
analyses should be prioritized and performed in real-time fashion
in order to timely assist decision-making (Ji et al., 2018). However,
there are now few user-friendly desktop software available, as can be
seen from Supplementary Table S1. In most cases, the trialists have
to determine a lot of parameters when applying such Bayesian
designs. It is recommended that clinicians first provide some
options for clinically intuitive parameters, e.g., the lower limit of
acceptable response rate. Then, the choices of parameters should be
evaluated by simulation and calibration. Repeated discussions and
modifications on the parameter choices can usually take several
times. Programming, validating and conducting simulation studies
can be more time-consuming for a Bayesian adaptive design. But in
general, we still believe that the Bayesian methods will play a more
important role in early-phase dose-schedule optimization trials.

It should be noted that all of the methods we have introduced
before rely on some assumptions, such as the ordering of schedules,
the ordering of subgroups, the exposure-response relationships, etc.
If the assumptions are violated, the analysis results may be
misleading and the identified dose-schedule regimen may not be
optimal. The readers may now have a deeper appreciation of how

trial designs can connect those factors introduced in Section 2, and it
is recommended to carefully evaluate those five attributes before
designing a dose-schedule optimization trial. It is also important to
emphasize that those existing Bayesian adaptive designs, as well as
some other conventional trial designs and MIDD strategies, are not
mutually exclusive, and they can be integrated appropriately to align
trial-specific objectives.

4 Opportunities

As illustrated in Section 3, the Bayesian adaptive design is a
potentially effective way to evaluate several doses and schedules
simultaneously in a single clinical trial with higher efficiency.
Dozens of publications have proposed specific designs for
different clinical scenarios. However, there are still some issues
that have not been fully considered or have not been addressed.
In Section 4 and Section 5, several future research opportunities and
challenges are presented respectively for Bayesian dose-schedule
optimization trial designs.

4.1 Patient-focused drug development
(PFDD)

A prospective phase I patient survey concludes that adverse
events (AEs) considered intolerable by patients are toxicities that
directly impact their quality of life and differ from those feared by

FIGURE 2
The main components of an adaptive dose-schedule optimization trial design.
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physicians or included in the DLT definition (Henon et al., 2017).
Therefore, optimizing dose-schedule regimens should be patient-
focused, ensuring that patients’ experiences, perspectives, needs, and
priorities are captured (Schroeder et al., 2022). Clinical outcome
assessments (COAs), especially PROs, are getting more and more
attention in clinical research.

The ubiquity of smartphones makes it more convenient to collect
PRO data. Compared with traditional assessments of safety and
efficacy (e.g., laboratory testing and imaging examination), the
frequency of PRO assessment can be higher, thus it can reflect the
patient’s quality of life in a more timely manner. In the context of
dose-schedule optimization, PRO data can be prediction signals for
toxicity and efficacy, or be directly incorporated into the benefit-risk
assessment. To the best of our knowledge, there are now limited
dosage optimization designs considering PRO data explicitly. The
opportunities for constructing Bayesian joint models and benefit-risk
trade-off criteria, which link longitudinal PRO data with toxicity and
efficacy endpoints, are immense.

4.2 Using external data

Utilizing information from external data, such as preclinical
data, real-world data, or historical data from clinical trials, is one of
the distinguishing features of Bayesian trial designs. For example, in
the dose-escalation study of asciminib for patients with chronic
myeloid leukemia, a Bayesian logistic regression model was used to
estimate the DLT probabilities of various dose-schedule regimens
(Hughes et al., 2019). It can be seen from the trial protocol that
weakly informative priors were derived for model parameters based
on pre-clinical and historical data.

In the past few years, several single-agent dose-finding designs
have been proposed to borrow information from external data (Liu
et al., 2015; Li and Yuan, 2020; Zhou et al., 2021; Chen et al., 2022;
Lin et al., 2022). Hashizume et al. (Hashizume et al., 2023) further
considered incorporating single-agent historical data into drug
combination phase I cancer trials. It is expected that in the near
future, researchers would propose more complex innovative

TABLE 1 Summary of two practical implementation examples of the presented designs.

Braun et al. Braun et al. (2007)

Objective To determine the maximum tolerated dose and schedule of Vidaza for patients with acute myelogenous
leukemia (AML) who received allogeneic blood or bone marrow cell transplantation

Treatment 12 candidate dose-schedules of Vidaza

Three doses: 8, 16 and 24 mg/m2

Four nested schedules: 1, 2, 3 and 4 courses

Population AML patients who received allogeneic blood or bone marrow cell transplantation

Variable Time-to-toxicity

Population-level summay Cumulative toxicity probability

Dose-schedule admissible criteria The posterior probability that the toxicity probability of the dose-schedule higher than a fixed upper
bound is smaller than a pre-specified cutoff

Dose-schedule allocation rules Within the admissible dose-schedules, assign the next patient to the dose-schedule whose posterior mean
cumulative toxicity probability is closest to the target toxicity probability

Mozgunov et al. Mozgunov et al. (2022)

Objective To determine the maximum tolerated dose-combination-schedule of niraparib plus M1774 for patients
with metastatic or locally advanced unresectable solid tumors

Treatment 20 dose-combination-schedules of Niraparib plus M1774

Two doses for Niraparib: 100 and 200 mg

Five doses for M1774: 30, 60, 90, 130 and 180 mg

Two nested schedules for M1774: continuous once daily and once daily with breaks that is approximately
half as intensive as the first schedule

Population Patients with metastatic or locally advanced unresectable solid tumors

Variable DLT event

Population-level summay DLT probability

Dose-schedule admissible criteria The posterior probability that the DLT probability of the regimen higher than a fixed upper bound is
smaller than a pre-specified cutoff

Dose-schedule allocation rules Within the admissible regimens, assign the next cohort of patients to the regimen by a pre-specified
criterion that takes into account both the uncertainty in toxicity estimates and penalization for
overdosing
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Bayesian designs allowing borrowing strength from external data for
dose-schedule optimization trials.

4.3 Model-informed drug development
(MIDD)

A recent review of phase I immuno-oncology trials found that
positive PD biomarker results were infrequently correlated with
clinical activity or cited in subsequent trials (Salawu et al., 2022),
suggesting that PK/PD information has not been fully considered in
drug development.MIDD, commonly used to describe the application
of a wide range of quantitative models in drug development to
facilitate the decision-making process (Wang et al., 2019), has a
huge potential to integrate PK/PD information in clinical studies.
Well-known technologies forMIDD include PK/PDmodel, exposure-
response (ER) model, population pharmacokinetic model (Pop-PK),
physiologically based pharmacokinetic model (PB-PK), quantitative
systems pharmacology (QSP), model-based meta-analysis (MBMA),
and so forth. For example, publications (Gerard et al., 2021; Gerard
et al., 2022) introduced in Section 3.3 use nonlinear mixed-effects
models to link the PK data with the dose-schedule regimens, which is
a typical approach of Pop-PK.

There are several real examples where MIDD approaches are
applied for dose-schedule optimization, such as nivolumab,
pembrolizumab and atezolizumab (Peer et al., 2020). The model-
informed dose-schedule optimization is usually carried out when a
clinical trial is completed. Then, the recommended dose-schedule
regimen will be tested and confirmed in a new clinical trial.
Considering that pre-specifying candidate dosages before a dose-
optimization trial may be troublesome when the clinical data is
limited, the authors believe that it is promising to incorporate MIDD
approaches to adjust candidate dosages and guide the dose-schedule
optimization in the course of the clinical trial.

5 Challenges

5.1 Novel anti-tumor therapies

Novel anti-tumor drug classes, e.g., bispecific antibody, therapeutic
cancer vaccine, cellular therapy, and gene therapy, are rapidly emerging
in recent years. Their MOAs can be entirely distinct from those of
classical drugs, calling for new customized dosage optimization designs.
For example, the efficacy and on-target toxicity of bispecific antibodies
may be driven by trimer formation (complexes between the bispecific
antibody, T cell and tumor cell), resulting in a bell-shaped exposure-
response relationship (Betts and van der Graaf, 2020). Therefore, it can
be more challenging to optimize dose-schedule regimens for bispecific
antibodies. In this case, a maximum tolerated regimen is generally not
an optimal regimen, and the strategy for optimizing dose-schedule
regimens should be carefully considered. One potential way is to
consider maximizing the concentration of trimer formation when
designing a dose-schedule optimization trial.

Delayed outcomes, which are common occurrences in novel
anti-tumor therapies (Paoletti et al., 2014; de Miguel and Calvo,
2020; Dromain et al., 2020), can result in the missingness of data
when the interim analysis is to be conducted. Some designs, such as

(Lin et al., 2020b; Lin et al., 2021), are proposed to deal with delayed
outcomes in dose-schedule optimization trials. Apart from missing
data, the assessment windows for toxicity and efficacy should also be
determined carefully in the designing stage. The assessment window
should be long enough to ensure the delayed outcomes can be
identified, but a too long assessment window could inevitably
prolong the trial duration and increase the probability of
dropout. Close collaboration between clinicians and statisticians
is required to determine an appropriate assessment window.

Some designs introduced in Section 3 were proposed for specific
therapies, such as the therapeutic cancer vaccine (Cunanan and
Koopmeiners, 2017) and cellular therapy (Quintana et al., 2016).
However, those designs are not enough to meet the requirements of
optimizing dose-schedule regimens for all novel therapies, and new
treatments are springing up like mushrooms. How to design tailored
dose-schedule optimization trials according to the characteristics of
the investigational drugs is still a major challenge for clinical trialists.

5.2 Complex endpoints

Assessing benefit-risk trade-offs and optimizing dose-schedule
regimens often involve complex endpoints. For example, lower-
grade but persistent symptomatic toxicities are often concerns in
immunotherapy. Several approaches have been proposed to account
for multiple toxicity grades by assigning severity weights to each grade
and type of toxicity event (Bekele and Thall, 2004; Yuan et al., 2007; Lee
et al., 2012;Mu et al., 2019), but the elicitation of severity weights can be
challenging for both biostatisticians and physicians. In terms of PRO
endpoints, the types of response options can be a Likert scale, a rating
scale, or a visual analog scale. This may bring challenges for data
analysis and interpretation, especially when PRO endpoints are
integrated with other types of endpoints. In addition, joint
evaluations of safety, efficacy and PK/PD endpoints, which may
include a mixture of continuous and discrete variables, also make
the issue of complex endpoints more prominent. It is indeed necessary
to develop innovative Bayesian dose-schedule optimization designs for
complex endpoints.

5.3 Limited sample size and heterogeneous
populations

Compared to cytotoxic chemotherapies, the target population of a
targeted therapy may be much smaller, leading to more difficult
recruitment of patients. However, dose-schedule optimization usually
requires a higher sample size than traditional dose-escalation trials, as
the number of candidate regimens may increase and the optimization
may not just focus on toxicity. A rule of thumb in traditional phase I
dose-escalation trials is that the maximum sample size is six times the
number of pre-specified doses, but this may be insufficient for dose-
schedule optimization. Sometimes it is necessary to compare the
benefit-risk ratios between regimens, further increasing the demand
for sample sizes. Therefore, when selecting the optimal dose-schedule
regimen, the uncertainties resulting from limited sample sizes can be
large. Although a dose-schedule optimization trial does not
necessarily need to be powered to determine statistical superiority,
it should be designed to detect early efficacy and safety signals and
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identify recommended dosages for subsequent studies. Aiming at this
issue, it is recommended to fully utilize external data and identify
potential adaptivemodifications in the planning stage of clinical trials.
Another practical issue related with the sample size is the trial
duration, which is difficult to estimate. The trial duration depends
on the sample size, the assessment window, the accrual rate and the
algorithm for regimen assignments. Extensive simulation studies
should be conducted to help determine the required sample size
and estimate the trial duration.

Another challenge for dose-schedule optimization is the
population heterogeneity. For example, the recommended dosages
for several targeted therapies, e.g., trastuzumab deruxtecan (Shitara
et al., 2019; Tamura et al., 2019) and asciminib (Hughes et al., 2019;
Rea et al., 2021), are optimized to be population-specific. Some
published designs like (Quintana et al., 2016; Lin et al., 2021),
make it possible to optimize dose-schedule regimens for multiple
subpopulations simultaneously in a single trial. However, although the
strategy for borrowing information across subpopulations can
improve the efficiency of clinical trials, it may also cause biased
estimates and erroneous decision-making. It is recommended to
carry out extensive simulation studies to quantify both favorable
and unfavorable effects of information borrowing.

6 Conclusion

The recent development of novel anti-tumor treatments and
combination therapies results in an increasing recognition of the
essential place of optimizing dose-schedule regimens. This review
summarizes critical factors associated with dose-schedule
optimization from the perspective of the estimand framework.
Then, related innovative Bayesian adaptive designs are reviewed
and some comments about the pros, cons, and matters that need
attention when adopting these designs are given. At last, we summarize
some future research opportunities and challenges for dose-schedule
optimization. The authors hope that this review can help clinical
trialists consider various issues holistically when designing a dose-
schedule optimization trial. We also expect physicians, biostatisticians,
pharmacologists, and other stakeholders to work together and develop
more effective tools for dose-schedule optimization.
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